

Oracle® Fusion Middleware
Developer’s Guide for Oracle SOA Suite

11g Release 1 (11.1.1.4.0)

E10224-06

January 2011

Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite, 11g Release 1 (11.1.1.4.0)

E10224-06

Copyright © 2005, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Virginia Beecher, Deanna Bradshaw, Tulika Das, Vimmika Dinesh, Anirban Ghosh, Mark
Kennedy, Alex Prazma, Richard Smith, and Deborah Steiner

Contributor: Oracle SOA Suite development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... lv

Audience... lv
Documentation Accessibility ... lv
Related Documents .. lvi
Conventions .. lvi

Part I Introduction to Oracle SOA Suite

1 Introduction to Building Applications with Oracle SOA Suite

1.1 Introduction to Service-Oriented Architecture... 1-1
1.2 Introduction to Services ... 1-1
1.3 Introduction to Oracle SOA Suite... 1-2
1.4 Standards Used by Oracle SOA Suite to Enable SOA ... 1-2
1.5 Service Component Architecture within SOA Composite Applications............................ 1-3
1.5.1 Service Components.. 1-4
1.5.2 Binding Components .. 1-5
1.5.3 Wires.. 1-6
1.6 Runtime Behavior of a SOA Composite Application .. 1-6
1.6.1 Service Infrastructure .. 1-7
1.6.2 Service Engines .. 1-8
1.6.3 Deployed Service Archives .. 1-8
1.7 Approaches for Designing SOA Composite Applications.. 1-8
1.8 Learning Oracle SOA Suite.. 1-8

2 Developing SOA Composite Applications with Oracle SOA Suite

2.1 Creating a SOA Application.. 2-1
2.1.1 How to Create a SOA Application and Project ... 2-1
2.1.2 What Happens When You Create a SOA Application and Project 2-3
2.1.3 What You May Need to Know About Opening the composite.xml File Through a

 SOA-MDS Connection ... 2-6
2.2 Adding Service Components .. 2-6
2.2.1 How to Add a Service Component ... 2-6
2.2.2 What You May Need to Know About Adding and Deleting a Service Component . 2-8
2.2.3 How to Edit a Service Component.. 2-9
2.3 Adding Service Binding Components .. 2-10

iv

2.3.1 How to Add a Service Binding Component ... 2-10
2.3.2 How to Add a WSDL for a Web Service ... 2-12
2.3.3 How to View Schemas ... 2-15
2.3.4 How to Edit a Service Binding Component.. 2-16
2.3.5 What You May Need to Know About Adding and Deleting Services 2-16
2.4 Adding Reference Binding Components.. 2-16
2.4.1 How to Add a Reference Binding Component .. 2-16
2.4.2 What You May Need to Know About Adding and Deleting References................. 2-18
2.4.3 What You May Need to Know About WSDL References... 2-19
2.4.4 What You May Need to Know About Mixed Message Types in a WSDL File 2-19
2.4.5 What You May Need to Know About Invoking the Default Revision of a

Composite .. 2-19
2.5 Adding Wires ... 2-20
2.5.1 How to Wire a Service and a Service Component ... 2-20
2.5.2 How to Wire a Service Component and a Reference .. 2-21
2.5.3 What You May Need to Know About Adding and Deleting Wires 2-23
2.6 Adding Security ... 2-24
2.7 Deploying a SOA Composite Application ... 2-25
2.7.1 How to Invoke Deployed Composites .. 2-25
2.8 Managing and Testing a SOA Composite Application .. 2-25
2.8.1 How to Manage Deployed Composites .. 2-26
2.8.2 How to Test a Deployed Composite .. 2-29

3 Introduction to the SOA Sample Application

3.1 Introduction to the Fusion Order Demo.. 3-1
3.1.1 Store Front Module.. 3-1
3.1.2 WebLogic Fusion Order Demo Application .. 3-2
3.2 Setting Up the Fusion Order Demo Application.. 3-3
3.2.1 Task 1: Install Oracle JDeveloper Studio .. 3-3
3.2.2 Task 2: Install the Fusion Order Demo Application... 3-3
3.2.3 Task 3: Install Oracle SOA Suite .. 3-4
3.3 Taking a Look at the WebLogic Fusion Order Demo Application...................................... 3-6
3.3.1 Project Applications of the WebLogic Fusion Order Demo Application 3-7
3.3.2 The composite.xml File ... 3-7
3.4 Understanding the OrderBookingComposite Flow... 3-8
3.5 Deploying Fusion Order Demo ... 3-12
3.5.1 Task 1: Create a Connection to an Oracle WebLogic Server 3-12
3.5.2 (Optional) Task 2: Create a Connection to the Oracle BAM Server 3-14
3.5.3 Task 3: Install the Schema for the Fusion Order Demo Application......................... 3-15
3.5.4 Task 4: Set the Configuration Property for the Store Front Module 3-16
3.5.5 Task 5: Edit the Database Connection ... 3-18
3.5.6 Task 6: Deploy the Store Front Module... 3-19
3.5.7 Task 7: Deploy the WebLogic Fusion Order Demo Application 3-20
3.6 Running Fusion Order Demo... 3-23
3.7 Viewing Data Sent to Oracle BAM Server ... 3-24
3.8 Undeploying the Composites for the WebLogic Fusion Order Demo Application 3-24

v

Part II Using the BPEL Process Service Component

4 Getting Started with Oracle BPEL Process Manager

4.1 Introduction to the BPEL Process Service Component ... 4-1
4.1.1 How to Add a BPEL Process Service Component .. 4-1
4.2 Introduction to Activities... 4-6
4.3 Introduction to Partner Links.. 4-7
4.4 Creating a Partner Link ... 4-9
4.4.1 How to Create a Partner Link .. 4-9
4.4.1.1 Partner Links for an Outbound Adapter ... 4-10
4.4.1.2 Partner Links for an Inbound Adapter... 4-11
4.4.1.3 Partner Links from an Abstract WSDL to Call a Service 4-11
4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service......................... 4-11
4.4.1.5 Partner Links and Human Tasks or Business Rules... 4-12
4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle

Mediator.. 4-12
4.5 Introduction to Technology Adapters .. 4-13
4.6 Introduction to BPEL Process Monitors ... 4-14

5 Introduction to Interaction Patterns in a BPEL Process

5.1 Introduction to One-Way Messages... 5-1
5.2 Introduction to Synchronous Interactions... 5-2
5.3 Introduction to Asynchronous Interactions.. 5-3
5.4 Introduction to Asynchronous Interactions with a Timeout.. 5-4
5.5 Introduction to Asynchronous Interactions with a Notification Timer.............................. 5-5
5.6 Introduction to One Request, Multiple Responses .. 5-6
5.7 Introduction to One Request, One of Two Possible Responses ... 5-7
5.8 Introduction to One Request, a Mandatory Response, and an Optional Response.......... 5-8
5.9 Introduction to Partial Processing .. 5-9
5.10 Introduction to Multiple Application Interactions ... 5-10

6 Manipulating XML Data in a BPEL Process

6.1 Introduction to Manipulating XML Data in BPEL Processes ... 6-2
6.1.1 XML Data in BPEL... 6-2
6.1.2 Data Manipulation and XPath Standards .. 6-2
6.2 Delegating XML Data Operations to Data Provider Services .. 6-5
6.2.1 How to Create an Entity Variable ... 6-7
6.2.1.1 Understanding How SDO Works in the Inbound Direction.................................. 6-7
6.2.1.2 Understanding How SDO Works in the Outbound Direction 6-8
6.2.1.3 Creating an Entity Variable and Choosing a Partner Link..................................... 6-8
6.2.1.4 Creating a Binding Key.. 6-9
6.3 Using Standalone SDO-based Variables... 6-11
6.3.1 How to Declare SDO-based Variables ... 6-11
6.3.2 How to Convert from XML to SDO ... 6-12
6.4 Initializing a Variable with Expression Constants or Literal XML................................... 6-13
6.4.1 How To Assign a Literal XML Element .. 6-13

vi

6.5 Copying Between Variables ... 6-14
6.5.1 How to Copy Between Variables.. 6-14
6.5.2 Initializing Variables with an Inline from-spec in BPEL 2.0....................................... 6-15
6.6 Accessing Fields in Element and Message Type Variables ... 6-15
6.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables 6-15
6.7 Assigning Numeric Values... 6-17
6.7.1 How to Assign Numeric Values ... 6-17
6.8 Using Mathematical Calculations with XPath Standards.. 6-17
6.8.1 How To Use Mathematical Calculations with XPath Standards 6-17
6.9 Assigning String Literals... 6-18
6.9.1 How to Assign String Literals... 6-18
6.10 Concatenating Strings ... 6-18
6.10.1 How to Concatenate Strings.. 6-19
6.11 Assigning Boolean Values .. 6-19
6.11.1 How to Assign Boolean Values .. 6-19
6.12 Assigning a Date or Time ... 6-20
6.12.1 How to Assign a Date or Time.. 6-20
6.13 Manipulating Attributes ... 6-21
6.13.1 How to Manipulate Attributes ... 6-21
6.14 Manipulating XML Data with bpelx Extensions... 6-22
6.14.1 How to Use bpelx:append... 6-23
6.14.1.1 bpelx:append in BPEL 1.1... 6-23
6.14.1.2 bpelx:append in BPEL 2.0... 6-24
6.14.2 How to Use bpelx:insertBefore ... 6-24
6.14.2.1 bpelx:insertBefore in BPEL 1.1... 6-24
6.14.2.2 bpelx:insertBefore in BPEL 2.0... 6-25
6.14.3 How to Use bpelx:insertAfter .. 6-26
6.14.3.1 bpelx:insertAfter in BPEL 1.1... 6-26
6.14.3.2 bpelx:insertAfter in BPEL 2.0... 6-27
6.14.4 How to Use bpelx:remove ... 6-27
6.14.4.1 bpelx:remove in BPEL 1.1... 6-28
6.14.4.2 bpelx:remove in BPEL 2.0... 6-29
6.14.5 How to Use bpelx:rename and XSD Type Casting .. 6-29
6.14.5.1 bpelx:rename in BPEL 1.1... 6-29
6.14.5.2 bpelx:rename in BPEL 2.0... 6-31
6.14.6 How to Use bpelx:copyList ... 6-31
6.14.6.1 bpelx:copyList in BPEL 1.1... 6-32
6.14.6.2 bpelx:copyList in BPEL 2.0... 6-33
6.14.7 How to Use Assign Extension Attributes.. 6-34
6.14.7.1 ignoreMissingFromData Attribute ... 6-34
6.14.7.2 insertMissingToData Attribute.. 6-34
6.14.7.3 keepSrcElementName Attribute ... 6-35
6.15 Validating XML Data .. 6-35
6.15.1 How to Validate XML Data in BPEL 1.1.. 6-35
6.15.2 How to Validate XML Data in BPEL 2.0.. 6-35
6.16 Using Element Variables in Message Exchange Activities in BPEL 2.0........................... 6-36
6.17 Mapping WSDL Message Parts in BPEL 2.0 .. 6-37

vii

6.17.1 How to Map WSDL Message Parts.. 6-38
6.17.2 What Happens When You Map WSDL Message Parts... 6-39
6.18 Importing Process Definitions in BPEL 2.0 .. 6-44
6.19 Manipulating XML Data Sequences That Resemble Arrays ... 6-45
6.19.1 How to Statically Index into an XML Data Sequence That Uses Arrays.................. 6-45
6.19.2 How to Use SOAP-Encoded Arrays .. 6-46
6.19.2.1 SOAP-Encoded Arrays in BPEL 2.0 .. 6-47
6.19.3 How to Determine Sequence Size .. 6-47
6.19.4 How to Dynamically Index by Applying a Trailing XPath to an Expression.......... 6-48
6.19.4.1 Applying a Trailing XPath to the Result of getVariableData 6-48
6.19.4.2 Using the bpelx:append Extension to Append New Items to a Sequence........ 6-49
6.19.4.3 Merging Data Sequences .. 6-49
6.19.4.4 Generating Functionality Equivalent to an Array of an Empty Element.......... 6-50
6.19.5 What You May Need to Know About Using the Array Identifier 6-51
6.20 Converting from a String to an XML Element... 6-51
6.20.1 How To Convert from a String to an XML Element.. 6-51
6.21 Understanding Document-Style and RPC-Style WSDL Differences................................ 6-52
6.21.1 How To Use RPC-Style Files ... 6-52
6.22 Manipulating SOAP Headers in BPEL ... 6-53
6.22.1 How to Receive SOAP Headers in BPEL .. 6-53
6.22.2 How to Send SOAP Headers in BPEL ... 6-54
6.23 Declaring Extension Namespaces in BPEL 2.0 .. 6-55
6.23.1 How to Declare Extension Namespaces.. 6-55
6.23.2 What Happens When You Create an Extension .. 6-55

7 Invoking a Synchronous Web Service from a BPEL Process

7.1 Introduction to Invoking a Synchronous Web Service.. 7-1
7.2 Invoking a Synchronous Web Service ... 7-2
7.2.1 How to Invoke a Synchronous Web Service.. 7-2
7.2.2 What Happens When You Invoke a Synchronous Web Service 7-4
7.2.2.1 Partner Link in the BPEL Code... 7-4
7.2.2.2 Partner Link Type and Port Type in the BPEL Code .. 7-4
7.2.2.3 Invoke Activity for Performing a Request .. 7-5
7.2.2.4 Synchronous Invocation in BPEL Code .. 7-5
7.3 Specifying Timeout Values.. 7-6
7.3.1 How To Specify Timeout Values... 7-6
7.3.2 What You May Need to Know About SyncMaxWaitTime and Synchronous

Requests Not Timing Out... 7-6
7.4 Calling a One-Way Mediator with a Synchronous BPEL Process 7-7

8 Invoking an Asynchronous Web Service from a BPEL Process

8.1 Introduction to Invoking an Asynchronous Web Service... 8-1
8.2 Invoking an Asynchronous Web Service .. 8-2
8.2.1 How to Invoke an Asynchronous Web Service... 8-2
8.2.1.1 Adding a Partner Link for an Asynchronous Service ... 8-2
8.2.1.2 Adding an Invoke Activity ... 8-3

viii

8.2.1.3 Adding a Receive Activity .. 8-4
8.2.1.4 Performing Additional Activities... 8-5
8.2.2 What Happens When You Invoke an Asynchronous Web Service 8-6
8.2.2.1 portType Section of the WSDL File.. 8-6
8.2.2.2 partnerLinkType Section of the WSDL File.. 8-6
8.2.2.3 Partner Links Section in the BPEL File .. 8-7
8.2.2.4 Composite Application File .. 8-7
8.2.2.5 Invoke and Receive Activities... 8-8
8.2.2.6 createInstance Attribute for Starting a New Instance ... 8-8
8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes.. 8-9
8.2.2.8 Multiple Runtime Endpoint Locations.. 8-9
8.2.3 What You May Need to Know About Limitations on BPEL 2.0 IMA Support 8-9
8.2.4 What Happens When You Specify a Conversation ID.. 8-10
8.2.4.1 bpelx:conversationId in BPEL 1.1.. 8-10
8.2.4.2 bpelx:conversationId in BPEL 2.0.. 8-10
8.3 Using a Dynamic Partner Link at Runtime.. 8-11
8.3.1 How To Add and Use a Dynamic Partner Link at Runtime 8-11
8.4 Using WS-Addressing in an Asynchronous Service... 8-12
8.4.1 How to Use WS-Addressing in an Asynchronous Service... 8-13
8.4.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs 8-13
8.5 Using Correlation Sets in an Asynchronous Service .. 8-15
8.5.1 How to Use Correlation Sets in an Asynchronous Service... 8-15
8.5.1.1 Step 1: Creating a Project .. 8-15
8.5.1.2 Step 2: Configuring Partner Links and File Adapter Services 8-16
8.5.1.3 Step 3: Creating Three Receive Activities .. 8-20
8.5.1.4 Step 4: Creating Correlation Sets... 8-21
8.5.1.5 Step 5: Associating Correlation Sets with Receive Activities.............................. 8-22
8.5.1.6 Step 6: Creating Property Aliases.. 8-23
8.5.1.7 Step 7: Reviewing WSDL File Content ... 8-25
8.5.2 What You May Need to Know About Setting Correlations for an IMA Using a

 fromParts Element With Multiple Parts ... 8-26

9 Using Parallel Flow in a BPEL Process

9.1 Introduction to Parallel Flows in BPEL Processes.. 9-1
9.2 Creating a Parallel Flow... 9-2
9.2.1 How to Create a Parallel Flow ... 9-2
9.2.2 What Happens When You Create a Parallel Flow.. 9-3
9.2.3 Synchronizing the Execution of Activities in a Flow Activity 9-5
9.2.4 How to Create Synchronization Between Activities Within a Flow Activity............. 9-5
9.2.5 What Happens When You Create Synchronization Between Activities Within a

Flow Activity .. 9-8
9.2.6 What You May Need to Know About Join Conditions in Target Activities............ 9-10
9.3 Customizing the Number of Parallel Branches ... 9-10
9.3.1 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1 9-10
9.3.1.1 How to Create a flowN Activity.. 9-12
9.3.1.2 What Happens When You Create a FlowN Activity ... 9-13
9.3.2 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0......... 9-15

ix

9.3.2.1 How to Create a forEach Activity ... 9-17
9.3.2.2 What Happens When You Create a forEach Activity .. 9-19

10 Using Conditional Branching in a BPEL Process

10.1 Introduction to Conditional Branching .. 10-1
10.2 Defining Conditional Branching.. 10-2
10.2.1 Defining Conditional Branching with the Switch Activity in BPEL 1.1 10-2
10.2.1.1 How to Create a Switch Activity... 10-3
10.2.1.2 What Happens When You Create a Switch Activity.. 10-4
10.2.2 Defining Conditional Branching with the If Activity in BPEL 2.0............................. 10-5
10.2.2.1 How to Create an If Activity.. 10-6
10.2.2.2 What Happens When You Create an If Activity... 10-7
10.3 Creating a While Activity to Define Conditional Branching... 10-8
10.3.1 How To Create a While Activity .. 10-8
10.3.2 What Happens When You Create a While Activity .. 10-9
10.4 Creating a repeatUntil Activity to Define Conditional Branching 10-10
10.4.1 How to Create a repeatUntil Activity.. 10-10
10.4.2 What Happens When You Create a repeatUntil Activity... 10-11
10.5 Specifying XPath Expressions to Bypass Activity Execution .. 10-12
10.5.1 How to Specify XPath Expressions to Bypass Activity Execution 10-13
10.5.2 What Happens When You Specify XPath Expressions to Bypass Activity

Execution.. 10-14

11 Using Fault Handling in a BPEL Process

11.1 Introduction to a Fault Handler... 11-1
11.2 Introduction to BPEL Standard Faults .. 11-3
11.2.1 BPEL 1.1 Standard Faults... 11-3
11.2.2 BPEL 2.0 Standard Faults... 11-3
11.2.2.1 Fault Handling Order of Precedence in BPEL 2.0... 11-4
11.3 Introduction to Categories of BPEL Faults... 11-5
11.3.1 Business Faults .. 11-5
11.3.2 Runtime Faults .. 11-5
11.3.2.1 bindingFault ... 11-6
11.3.2.2 remoteFault... 11-6
11.3.2.3 replayFault.. 11-6
11.4 Using the Fault Management Framework ... 11-6
11.4.1 How to Design a Fault Policy ... 11-7
11.4.1.1 Understanding How Fault Policy Binding Resolution Works............................ 11-7
11.4.1.2 Creating a Fault Policy File for Automated Fault Recovery 11-8
11.4.1.3 Associating a Fault Policy with Fault Policy Binding .. 11-12
11.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples....................... 11-13
11.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers............................. 11-16
11.4.2 How to Execute a Fault Policy .. 11-17
11.4.3 How to Use a Java Action Fault Policy.. 11-17
11.4.4 What You May Need to Know About Fault Management Behavior When the

Number of Instance Retries is Exceeded ... 11-21

x

11.4.5 What You May Need to Know Executing the Retry Action with Multiple Faults in
the Same Flow ... 11-22

11.4.6 What You May Need to Know About Binding Level Retry Execution Within
Fault Policy Retries ... 11-22

11.4.7 What You May Need to Know About Defining the ora-java Option 11-23
11.5 Catching BPEL Runtime Faults ... 11-24
11.5.1 How to Catch BPEL Runtime Faults.. 11-24
11.6 Getting Fault Details with the getFaultAsString XPath Extension Function 11-25
11.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function.. 11-25
11.7 Throwing Internal Faults .. 11-25
11.7.1 How to Create a Throw Activity .. 11-25
11.7.2 What Happens When You Create a Throw Activity ... 11-26
11.8 Rethrowing Faults with the Rethrow Activity .. 11-26
11.8.1 How to Create a Rethrow Activity... 11-26
11.8.2 What Happens When You Rethrow Faults... 11-27
11.9 Returning External Faults ... 11-28
11.9.1 How to Return a Fault in a Synchronous Interaction.. 11-28
11.9.2 How to Return a Fault in an Asynchronous Interaction... 11-28
11.10 Using a Scope Activity to Manage a Group of Activities... 11-29
11.10.1 How to Create a Scope Activity.. 11-29
11.10.2 How to Add Descriptive Notes and Images to a Scope Activity............................. 11-30
11.10.3 What Happens After You Create a Scope Activity.. 11-31
11.10.4 What You May Need to Know About Scopes .. 11-33
11.10.5 How to Use a Fault Handler Within a Scope.. 11-33
11.10.6 How to Create a Catch Activity in a Scope ... 11-34
11.10.7 What Happens When You Create a Catch Activity in a Scope................................ 11-35
11.10.8 How to Create an Empty Activity to Insert No-Op Instructions into a Business

Process .. 11-36
11.10.9 What Happens When You Create an Empty Activity... 11-37
11.11 Re-executing Activities in a Scope Activity with the Replay Activity 11-37
11.11.1 How to Create a Replay Activity.. 11-37
11.11.2 What Happens When You Create a Replay Activity .. 11-38
11.12 Using Compensation After Undoing a Series of Operations .. 11-39
11.12.1 Using a Compensate Activity ... 11-39
11.12.2 How to Create a Compensate Activity .. 11-40
11.12.3 What Happens When You Create a compensate Activity.. 11-41
11.12.4 Using a compensateScope Activity in BPEL 2.0... 11-41
11.12.5 How to Create a compensateScope Activity... 11-41
11.12.6 What Happens When You Create a compensateScope Activity 11-42
11.13 Stopping a Business Process Instance ... 11-42
11.13.1 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1 .. 11-43
11.13.1.1 How to Create a Terminate Activity... 11-43
11.13.1.2 What Happens When You Create a Terminate Activity 11-43
11.13.2 Immediately Ending a Business Process Instance with the Exit Activity in

BPEL 2.0.. 11-43
11.13.2.1 How to Create an Exit Activity.. 11-44
11.13.2.2 What Happens When You Create an Exit Activity .. 11-44

xi

11.14 Throwing Faults with Assertion Conditions ... 11-45
11.14.1 bpelx:postAssert and bpelx:preAssert Extensions... 11-46
11.14.2 Use of faultName and message Attributes .. 11-47
11.14.3 Multiple Assertions .. 11-47
11.14.4 Use of Built-in and Custom XPath Functions and $variable References 11-48
11.14.5 Assertion Condition Evaluation Logging of Events to the Instance Audit Trail .. 11-49
11.14.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault ... 11-49
11.14.7 Assertion Conditions in a Standalone Assert Activity.. 11-49
11.14.8 How to Create Assertion Conditions... 11-49
11.14.9 How to Disable Assertions .. 11-52
11.14.10 What Happens When You Create Assertion Conditions.. 11-52

12 Transaction and Fault Propagation Semantics in BPEL Processes

12.1 Introduction to Transaction Semantics ... 12-1
12.1.1 Oracle BPEL Process Manager Transaction Semantics ... 12-1
12.1.1.1 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to

requiresNew... 12-2
12.1.1.2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to

required... 12-3
12.2 Introduction to Execution of One-way Invocations.. 12-4

13 Incorporating Java and Java EE Code in a BPEL Process

13.1 Introduction to Java and Java EE Code in BPEL Processes ... 13-1
13.2 Incorporating Java and Java EE Code in BPEL Processes.. 13-1
13.2.1 How to Wrap Java Code as a SOAP Service... 13-1
13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service 13-2
13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag 13-2
13.2.4 How to Embed Java Code Snippets in a BPEL Process in BPEL 2.0 13-3
13.2.5 How to Use an XML Facade to Simplify DOM Manipulation................................... 13-4
13.2.6 How to Use bpelx:exec Built-in Methods.. 13-4
13.2.7 How to Use Java Code Wrapped in a Service Interface.. 13-5
13.3 Adding Custom Classes and JAR Files... 13-6
13.3.1 How to Add Custom Classes and JAR Files ... 13-6
13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper 13-7
13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper 13-7
13.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding

 Activity .. 13-8
13.5 Embedding Service Data Objects with bpelx:exec .. 13-8
13.6 Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager...... 13-9
13.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence 13-10

14 Using Events and Timeouts in BPEL Processes

14.1 Introduction to Event and Timeout Concepts ... 14-1
14.2 Creating a Pick Activity to Select Between Continuing a Process or Waiting................ 14-2
14.2.1 How To Create a Pick Activity ... 14-3
14.2.2 What Happens When You Create a Pick Activity ... 14-5

xii

14.2.3 What You May Need to Know About Simultaneous onMessage Branches in
BPEL 2.0.. 14-6

14.3 Setting Timeouts for Request-Response Operations in Receive Activities 14-7
14.3.1 Timeout Settings Relative from When the Activity is Invoked 14-7
14.3.2 Timeout Settings as an Absolute Date Time... 14-8
14.3.3 Timeout Settings Computed Dynamically with an XPath Expression..................... 14-9
14.3.4 bpelx:timeout Fault Thrown During an Activity Timeout ... 14-9
14.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout 14-10
14.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration

Alarm Table).. 14-10
14.3.7 How to Set Timeouts for Request-Response Operations in Receive Activities..... 14-10
14.3.8 What Happens When You Set Timeouts for Request-Response Operations in

Receive Activities.. 14-11
14.4 Creating a Wait Activity to Set an Expiration Time.. 14-12
14.4.1 How To Specify the Minimum Wait Time.. 14-12
14.4.2 How to Create a Wait Activity.. 14-12
14.4.3 What Happens When You Create a Wait Activity .. 14-13
14.5 Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0 14-13
14.5.1 How to Create an onEvent Branch in a Scope Activity... 14-14
14.5.2 What Happens When You Create an OnEvent Branch... 14-15
14.6 Setting Timeouts for Synchronous Processes .. 14-15

15 Coordinating Master and Detail Processes

15.1 Introduction to Master and Detail Process Coordinations .. 15-1
15.1.1 BPEL File Definition for the Master Process... 15-3
15.1.1.1 Correlating a Master Process with Multiple Detail Processes 15-5
15.1.2 BPEL File Definition for Detail Processes ... 15-6
15.2 Defining Master and Detail Process Coordination in Oracle JDeveloper 15-7
15.2.1 How to Create a Master Process... 15-7
15.2.2 How to Create a Detail Process .. 15-9
15.2.3 How to Create an Invoke Activity ... 15-11

16 Customizing SOA Composite Applications

16.1 Introduction to Customizing SOA Composite Applications... 16-1
16.1.1 How To Create the Customizable Composite .. 16-1
16.1.2 How To Customize the Vertical Application ... 16-3
16.1.3 How to Customize the Customer Version .. 16-5
16.1.4 How to Create Customization Classes .. 16-6
16.1.5 How to Upgrade the Composite .. 16-7
16.1.5.1 Core Application Team... 16-8
16.1.5.2 The Vertical Application Team.. 16-8
16.1.5.3 The Customer... 16-8
16.1.6 Searching for Customized Activities in a BPEL Process ... 16-8
16.1.7 What You May Need to Know About Editing Artifacts in a Customized

Composite .. 16-9
16.1.8 What You May Need to Know About Resolving Validation Errors in Oracle

 JDeveloper... 16-9

xiii

16.1.9 What You May Need to Know About Resolving a Sequence Conflict 16-10
16.1.10 What You May Need to Know About Compiling and Deploying a Customized

 Application ... 16-11

17 Using the Notification Service

17.1 Introduction to the Notification Service ... 17-1
17.2 Introduction to Notification Channel Setup .. 17-3
17.3 Selecting Notification Channels During BPEL Process Design... 17-3
17.3.1 How To Configure the Email Notification Channel.. 17-4
17.3.1.1 Setting Email Attachments... 17-7
17.3.1.2 Formatting the Body of an Email Message as HTML .. 17-8
17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function 17-9
17.3.2 How to Configure the IM Notification Channel .. 17-9
17.3.3 How to Configure the SMS Notification Channel ... 17-10
17.3.4 How to Configure the Voice Notification Channel ... 17-12
17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically 17-12
17.3.6 How to Select Notification Recipients by Browsing the User Directory 17-13
17.4 Allowing the End User to Select Notification Channels .. 17-14
17.4.1 How to Allow the End User to Select Notification Channels 17-14
17.4.1.1 How to Create and Send Headers for Notifications... 17-15

18 Using Oracle BPEL Process Manager Sensors

18.1 Introduction to Sensors ... 18-1
18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper 18-3
18.2.1 How to Access Sensors and Sensor Actions ... 18-3
18.2.2 How to Configure Sensors .. 18-4
18.2.3 How to Configure Sensor Actions.. 18-8
18.2.4 How to Publish to Remote Topics and Queues.. 18-11
18.2.5 How to Create a Custom Data Publisher .. 18-12
18.2.6 How to Register the Sensors and Sensor Actions in composite.xml....................... 18-14
18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion

 Middleware Control Console.. 18-15

Part III Using the Oracle Mediator Service Component

19 Getting Started with Oracle Mediator

19.1 Introduction to Oracle Mediator.. 19-1
19.2 Introduction to the Mediator Editor Environment ... 19-3
19.3 Creating an Oracle Mediator.. 19-6
19.3.1 How to Create an Oracle Mediator .. 19-6
19.4 Configuring the Oracle Mediator Interface Definition... 19-9
19.4.1 Creating an Oracle Mediator Without an Interface Definition 19-9
19.4.1.1 How to Create an Oracle Mediator Without an Interface Definition 19-10
19.4.1.2 What Happens When You Create an Oracle Mediator Without an Interface

 Definition ... 19-10
19.4.1.3 How to Define an Interface for an Oracle Mediator... 19-11

xiv

19.4.2 Creating an Oracle Mediator Based on a WSDL File... 19-13
19.4.2.1 How to Create an Oracle Mediator Based on a WSDL File............................... 19-13
19.4.2.2 What Happens When You Create an Oracle Mediator from a WSDL File 19-14
19.4.3 Creating an Oracle Mediator With a One-Way Interface Definition 19-15
19.4.3.1 How to Create an Oracle Mediator with a One-Way Interface Definition 19-15
19.4.3.2 What Happens When You Create an Oracle Mediator with a One-Way

Interface Definition.. 19-16
19.4.4 Creating an Oracle Mediator with a Synchronous Interface Definition................. 19-16
19.4.4.1 How to Create an Oracle Mediator with a Synchronous Interface Definition 19-17
19.4.4.2 What Happens When You Create an Oracle Mediator with a Synchronous

 Interface Definition... 19-17
19.4.5 Creating an Oracle Mediator with an Asynchronous Interface Definition............ 19-18
19.4.5.1 How to Create an Oracle Mediator with an Asynchronous Interface

Definition .. 19-18
19.4.5.2 What Happens When You Create an Oracle Mediator with an

Asynchronous Interface Definition... 19-19
19.4.6 Creating an Oracle Mediator for an Event Subscription... 19-20
19.4.6.1 How to Create an Oracle Mediator for an Event Subscription......................... 19-20
19.4.6.2 What Happens When You Create an Oracle Mediator for an Event

Subscription.. 19-22
19.4.7 What You May Need to Know About the Mediator Editor 19-23
19.4.7.1 Resequencing ... 19-23
19.4.7.2 Routing Rules ... 19-24
19.5 Generating a WSDL File.. 19-25
19.5.1 How to Generate a WSDL File.. 19-25
19.6 Specifying Operation or Event Subscription Properties .. 19-33
19.7 Modifying an Oracle Mediator Service Component... 19-33
19.7.1 How To Modify Operations of an Oracle Mediator .. 19-34
19.7.2 How To Modify Event Subscriptions of an Oracle Mediator................................... 19-34

20 Creating Oracle Mediator Routing Rules

20.1 Introduction to Routing Rules ... 20-1
20.2 Defining Routing Rules... 20-1
20.2.1 How To Access the Routing Rules Section ... 20-2
20.2.2 How to Create Static Routing Rules... 20-3
20.2.2.1 How to Specify Oracle Mediator Services or Events.. 20-4
20.2.2.2 What You May Need to Know About Echoing a Service 20-8
20.2.2.3 How to Specify Sequential or Parallel Execution.. 20-9
20.2.2.4 How to Configure Response Messages .. 20-10
20.2.2.5 How to Handle Multiple Callbacks .. 20-11
20.2.2.6 How to Handle Faults... 20-12
20.2.2.7 How to Specify an Expression for Filtering Messages....................................... 20-14
20.2.2.8 How to Create Transformations.. 20-19
20.2.2.9 How to Assign Values .. 20-21
20.2.2.10 What You May Need to Know About the Assign Activity 20-25
20.2.2.11 How to Access Headers for Filters and Assignments .. 20-28
20.2.2.12 How to Use Semantic Validation .. 20-31

xv

20.2.2.13 How to Use Java Callouts... 20-32
20.2.3 How to Create Dynamic Routing Rules .. 20-41
20.2.4 What You May Need to Know About Using Dynamic Routing Rules................... 20-44
20.2.5 How to Define Default Routing Rules... 20-44
20.2.5.1 Default Rule Scenarios .. 20-45
20.2.5.2 Default Rule Target ... 20-46
20.2.5.3 Default Rule: Validation, Transformation, and Assign Functionality............. 20-46
20.2.5.4 Default Rule: Java Callouts .. 20-46
20.2.5.5 Default Rule: Oracle Mediator .mplan File.. 20-47
20.3 Creating an Oracle Mediator for Routing Messages... 20-47
20.3.1 How to Create the CustomerRouter Use Case ... 20-48
20.3.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project 20-48
20.3.1.2 Task 2: How to Create the CustomerRouter Oracle Mediator Service

Component ... 20-49
20.3.1.3 Task 3: How to Create a File Adapter Service... 20-49
20.3.1.4 Task 4: How to Create a File Adapter Reference .. 20-51
20.3.1.5 Task 5: How to Specify Routing Rules ... 20-53
20.3.1.6 Task 6: How to Create an Application Server Connection................................ 20-57
20.3.1.7 Task 7: How to Deploy the CustomerRouterProject .. 20-57
20.3.2 Running and Monitoring the CustomerRouterProject Application........................ 20-58
20.4 Creating an Asynchronous Request and Response Using Oracle Mediator................. 20-58
20.4.1 How to Create the AsyncMediator Use Case ... 20-59
20.4.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project 20-59
20.4.1.2 Task 2: How to Create a Server BPEL Process .. 20-59
20.4.1.3 Task 3: How to Create an Oracle Mediator Service Component...................... 20-59
20.4.1.4 Task 4: How to Create a Client BPEL Process ... 20-62
20.4.1.5 Task 5: How to Create the Invoke, Receive, and Assign Activities.................. 20-63
20.4.1.6 Task 6: How to Configure an Application Server Connection 20-67
20.4.1.7 Task 7: How to Deploy the SOA Composite Application 20-67

21 Working with Multiple Part Messages in Oracle Mediator

21.1 Introduction to Oracle Mediator Multipart Message Support .. 21-1
21.2 Working with Multipart Request Messages .. 21-2
21.2.1 How to Work with Multipart Request Messages... 21-2
21.2.1.1 How to Specify Filter Expressions .. 21-2
21.2.1.2 How to Add Validations .. 21-2
21.2.1.3 How to Create Transformations.. 21-3
21.2.1.4 How to Assign Values .. 21-3
21.2.2 How to Work with Multipart Reply, Fault, and Callback Source Messages 21-3
21.2.3 How to Work with Multipart Target Messages ... 21-4

22 Using Oracle Mediator Error Handling

22.1 Introduction to Oracle Mediator Error Handling ... 22-1
22.1.1 Fault Policies.. 22-1
22.1.1.1 Conditions .. 22-2
22.1.1.2 Actions .. 22-4

xvi

22.1.2 Fault Bindings ... 22-8
22.1.3 Error Groups in Oracle Mediator ... 22-9
22.2 Using Error Handling with Oracle Mediator... 22-10
22.2.1 How to Use Error Handling for an Oracle Mediator Service Component............. 22-10
22.2.2 What Happens at Runtime.. 22-10
22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control

Console .. 22-10
22.4 Error Handling XML Schema Definition Files .. 22-11
22.4.1 Schema Definition File for fault-policies.xml .. 22-11
22.4.2 Schema Definition File for fault-bindings.xml .. 22-15

23 Resequencing in Oracle Mediator

23.1 Introduction to the Resequencer.. 23-1
23.1.1 Groups and Sequence IDs ... 23-1
23.1.2 Identification of Groups and Sequence IDs .. 23-2
23.2 Resequencing Order .. 23-2
23.2.1 Standard Resequencer.. 23-3
23.2.1.1 Overview of the Standard Resequencer... 23-3
23.2.1.2 Information Required for Standard Resequencing... 23-3
23.2.1.3 Example of the Standard Resequencer ... 23-3
23.2.2 FIFO Resequencer ... 23-4
23.2.2.1 Overview of the FIFO Resequencer .. 23-4
23.2.2.2 Information Required for FIFO Resequencing.. 23-4
23.2.2.3 Example of the FIFO Resequencer .. 23-4
23.2.3 Best Effort Resequencer ... 23-5
23.2.3.1 Overview of the Best Effort Resequencer... 23-5
23.2.3.2 Information Required for Best Effort Resequencing .. 23-6
23.2.3.3 Example of Best Effort Resequencing Based on Maximum Rows...................... 23-6
23.2.3.4 Example of Best Effort Resequencing Based on a Time Window 23-7
23.3 Configuring the Resequencer... 23-8
23.3.1 How to Specify the Resequencing Level ... 23-8
23.3.2 How to Configure the Resequencing Strategy ... 23-9
23.4 Limitations in the Resequencer.. 23-12

24 Understanding Message Exchange Patterns of an Oracle Mediator

24.1 Understanding a One-way Message Exchange Pattern ... 24-2
24.1.1 The one.way.returns.fault Property ... 24-3
24.2 Understanding a Request-Reply Message Exchange Pattern.. 24-4
24.3 Understanding a Request-Reply-Fault Message Exchange Pattern 24-5
24.4 Understanding a Request-Callback Message Exchange Pattern....................................... 24-6
24.5 Understanding a Request-Reply-Callback Message Exchange Pattern........................... 24-8
24.6 Understanding a Request-Reply-Fault-Callback Message Exchange Pattern 24-9

Part IV Using the Business Rules Service Component

xvii

25 Getting Started with Oracle Business Rules

25.1 Introduction to the Business Rule Service Component.. 25-1
25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks 25-2
25.2 Overview of Rules Designer Editor Environment .. 25-2
25.2.1 Application Navigator ... 25-3
25.2.2 Rules Designer Window .. 25-3
25.2.3 Structure Window .. 25-4
25.2.4 Business Rule Validation Log Window... 25-5
25.3 Introduction to Creating and Editing Business Rules .. 25-5
25.3.1 How to Create Business Rules Components .. 25-5
25.3.2 Introduction to Working with Business Rules in Rules Designer 25-7
25.4 Adding Business Rules to a BPEL Process ... 25-7
25.4.1 How to Add Business Rules to a BPEL Process ... 25-7
25.4.2 What Happens When You Add Business Rules to a BPEL Process 25-13
25.4.3 What Happens When You Create a Business Rules Dictionary 25-14
25.4.4 What You May Need to Know About Invoking Business Rules in a BPEL

Process .. 25-14
25.4.5 What You May Need to Know About Decision Component Stateful Operation . 25-14
25.5 Adding Business Rules to a SOA Composite Application .. 25-15
25.5.1 How to Add Business Rules to a SOA Composite Application............................... 25-15
25.5.2 How to Select and Modify a Decision Function in a Business Rule Component.. 25-19
25.6 Running Business Rules in a Composite Application .. 25-21
25.6.1 What You May Need to Know About Testing a Standalone Decision Service

 Component .. 25-21
25.7 Using Business Rules with Oracle ADF Business Components Fact Types.................. 25-23

26 Using Declarative Components and Task Flows

26.1 Introduction to Declarative Components and Task Flows .. 26-1
26.2 Using the Oracle Business Rules Editor Declarative Component 26-2
26.2.1 Introduction to the Oracle Business Rules Editor Component 26-2
26.2.2 How to Create and Run a Sample Application by Using the Rules Editor

Component .. 26-6
26.2.3 How to Deploy a Rules Editor Application to a Standalone Weblogic Server...... 26-18
26.2.4 What You May Need to Know About the Custom Permissions for the Rules

Editor Component .. 26-19
26.2.5 What You May Need to Know About the Supported Tags of the Rules Editor

 Component ... 26-20
26.3 Using the Oracle Business Rules Dictionary Editor Declarative Component 26-24
26.3.1 Introduction to the Oracle Business Rules Dictionary Component 26-24
26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary

Editor Component .. 26-26
26.3.3 How to Deploy a Rules Dictionary Application to a Standalone Weblogic

Server .. 26-38
26.3.4 What You May Need to Know About the Supported Attributes of the Rules

Dictionary Editor Component .. 26-39
26.4 Using the Oracle Business Rules Dictionary Task Flow... 26-42

xviii

26.4.1 Introduction to the Oracle Business Rules Dictionary Task Flow........................... 26-42
26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary

Editor Task Flow... 26-42
26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone

 Weblogic Server ... 26-55
26.5 Localizing the ADF-Based Web Application ... 26-56

Part V Using the Human Workflow Service Component

27 Getting Started with Human Workflow

27.1 Introduction to Human Workflow .. 27-1
27.2 Introduction to Human Workflow Concepts... 27-3
27.2.1 Introduction to Design and Runtime Concepts ... 27-3
27.2.1.1 Task Assignment and Routing .. 27-3
27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment... 27-6
27.2.1.3 Task Stakeholders.. 27-7
27.2.1.4 Task Deadlines ... 27-7
27.2.1.5 Notifications ... 27-8
27.2.1.6 Task Forms ... 27-9
27.2.1.7 Advanced Concepts .. 27-9
27.2.1.8 Reports and Audit Trails .. 27-10
27.2.2 Introduction to the Stages of Human Workflow Design .. 27-10
27.3 Introduction to Human Workflow Features .. 27-11
27.3.1 Human Workflow Use Cases.. 27-11
27.3.1.1 Task Assignment to a User or Role ... 27-11
27.3.1.2 Use of the Various Participant Types ... 27-11
27.3.1.3 Escalation, Expiration, and Delegation .. 27-12
27.3.1.4 Automatic Assignment and Delegation... 27-12
27.3.1.5 Dynamic Assignment of Users Based on Task Content..................................... 27-13
27.3.2 Designing a Human Task from Start to Finish... 27-13
27.3.2.1 Prerequisites ... 27-13
27.3.2.2 How to Create the Vacation Request Process.. 27-14
27.3.3 Additional Tutorials ... 27-26
27.4 Introduction to Human Workflow Architecture... 27-27
27.4.1 Human Workflow Services ... 27-27
27.4.2 Use of Human Task .. 27-30
27.4.3 Service Engines ... 27-31

28 Designing Human Tasks

28.1 Introduction to Human Task Design Concepts... 28-1
28.2 Introduction to the Modeling Process... 28-1
28.2.1 Create a Human Task Definition.. 28-2
28.2.2 Associate the Human Task Definition with a BPEL Process...................................... 28-2
28.2.3 Generate the Task Form... 28-3
28.3 Creating the Human Task Definition with the Human Task Editor................................ 28-3
28.3.1 How to Create a Human Task Service Component... 28-3

xix

28.3.2 What Happens When You Create a Human Task Service Component 28-5
28.3.3 How to Access the Sections of the Human Task Editor.. 28-6
28.3.4 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and

 Application Context .. 28-7
28.3.4.1 Specifying a Task Title .. 28-8
28.3.4.2 Specifying a Task Description ... 28-8
28.3.4.3 Specifying a Task Outcome.. 28-8
28.3.4.4 Specifying a Task Priority .. 28-10
28.3.4.5 Specifying a Task Category.. 28-10
28.3.4.6 Specifying a Task Owner.. 28-11
28.3.4.7 Specifying an Application Context ... 28-17
28.3.5 How to Specify the Task Payload Data Structure.. 28-17
28.3.6 How to Assign Task Participants ... 28-19
28.3.6.1 Configuring the Single Participant Type ... 28-22
28.3.6.2 Configuring the Parallel Participant Type... 28-31
28.3.6.3 Configuring the Serial Participant Type .. 28-35
28.3.6.4 Configuring the FYI Participant Type .. 28-38
28.3.7 How to Select a Routing Policy... 28-39
28.3.7.1 Routing Tasks to All Participants in the Specified Order.................................. 28-41
28.3.7.2 Specifying Advanced Task Routing Using Business Rules............................... 28-44
28.3.7.3 Using External Routing .. 28-49
28.3.7.4 Configuring the Error Assignee .. 28-51
28.3.8 How to Specify Multilingual Settings and Style Sheets .. 28-54
28.3.8.1 Specifying WordML and Other Style Sheets for Attachments 28-54
28.3.8.2 Specifying Multilingual Settings ... 28-54
28.3.9 How to Escalate, Renew, or End the Task... 28-55
28.3.9.1 Introduction to Escalation and Expiration Policy... 28-56
28.3.9.2 Specifying a Policy to Never Expire ... 28-57
28.3.9.3 Specifying a Policy to Expire ... 28-57
28.3.9.4 Extending an Expiration Policy Period .. 28-58
28.3.9.5 Escalating a Task Policy.. 28-58
28.3.9.6 Specifying Escalation Rules.. 28-59
28.3.9.7 Specifying a Due Date... 28-60
28.3.10 How to Specify Participant Notification Preferences .. 28-60
28.3.10.1 Notifying Recipients of Changes to Task Status ... 28-62
28.3.10.2 Editing the Notification Message .. 28-64
28.3.10.3 Setting Up Reminders ... 28-64
28.3.10.4 Changing the Character Set Encoding.. 28-65
28.3.10.5 Securing Notifications to Exclude Details.. 28-65
28.3.10.6 Showing the Oracle BPM Worklist URL in Notifications.................................. 28-65
28.3.10.7 Making Email Messages Actionable ... 28-65
28.3.10.8 Sending Task Attachments with Email Notifications .. 28-66
28.3.10.9 Sending Email Notifications to Groups and Application Roles 28-66
28.3.10.10 Customizing Notification Headers ... 28-66
28.3.11 How to Specify Access Policies and Task Actions on Task Content....................... 28-67
28.3.11.1 Specifying Access Policies on Task Content.. 28-67
28.3.12 How to Specify a Workflow Digital Signature Policy ... 28-71

xx

28.3.12.1 Specifying a Certificate Authority... 28-72
28.3.13 How to Specify Restrictions on Task Assignments ... 28-72
28.3.14 How to Specify Java or Business Event Callbacks ... 28-73
28.3.14.1 Specifying Callback Classes on Task Status .. 28-73
28.3.15 How to Specify Task and Routing Customizations in BPEL Callbacks 28-76
28.3.16 Disabling BPEL Callbacks ... 28-77
28.3.17 How to Exit the Human Task Editor and Save Your Changes 28-77
28.4 Associating the Human Task Service Component with a BPEL Process 28-77
28.4.1 How to Associate a Human Task with a BPEL Process .. 28-78
28.4.2 What You May Need to Know About Deleting a Wire Between a Human Task

Service Component and a BPEL Process... 28-79
28.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter

 Variables.. 28-79
28.4.3.1 Specifying the Task Title... 28-80
28.4.3.2 Specifying the Task Initiator and Task Priority .. 28-81
28.4.3.3 Specifying Task Parameters ... 28-81
28.4.4 How to Define the Human Task Activity Advanced Features 28-83
28.4.4.1 Specifying a Scope Name and a Global Task Variable Name........................... 28-83
28.4.4.2 Specifying a Task Owner.. 28-84
28.4.4.3 Specifying an Identification Key ... 28-84
28.4.4.4 Specifying an Identity Context .. 28-84
28.4.4.5 Specifying an Application Context ... 28-84
28.4.4.6 Including the Task History of Other Human Tasks ... 28-84
28.4.5 How to View the Generated Human Task Activity .. 28-86
28.4.5.1 Invoking BPEL Callbacks ... 28-86
28.4.6 What You May Need to Know About Changing the Generated Human Task

Activity ... 28-88
28.4.7 What You May Need to Know About Deleting a Partner Link Generated by a

Human Task .. 28-89
28.4.8 How to Define Outcome-Based Modeling.. 28-89
28.4.8.1 Specifying Payload Updates .. 28-89
28.4.8.2 Using Case Statements for Other Task Conclusions .. 28-89

29 Designing Task Forms for Human Tasks

29.1 Introduction to the Task Form ... 29-1
29.1.1 What You May Need to Know About Task Forms: Time Zone Conversion 29-2
29.2 Associating the Task Flow with the Task Service ... 29-3
29.3 Creating an ADF Task Flow Based on a Human Task ... 29-3
29.3.1 How To Create an ADF Task Flow from the Human Task Editor 29-3
29.3.2 How To Create an ADF Task Flow Based on a Human Task 29-5
29.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task 29-6
29.3.4 What You May Need to Know About Having Multiple ADF Task Flows That

Contain the Same Element with Different Meta-attributes .. 29-7
29.4 Creating a Task Form .. 29-8
29.4.1 How To Create an Autogenerated Task Form ... 29-8
29.4.2 How to Register the Library JAR File for Custom Page Templates 29-10
29.4.3 How To Create a Task Form Using the Custom Task Form Wizard 29-11

xxi

29.4.4 How To Create a Task Form Using the Complete Task with Payload Drop
Handler... 29-18

29.4.5 How To Create Task Form Regions Using Individual Drop Handlers 29-26
29.4.6 How To Add the Payload to the Task Form... 29-28
29.4.7 What Happens When You Create a Task Form ... 29-30
29.5 Refreshing Data Controls When the Task XSD Changes ... 29-30
29.6 Securing the Task Flow Application ... 29-31
29.7 Creating an Email Notification ... 29-31
29.7.1 How To Create an Email Notification ... 29-31
29.7.1.1 Creating a Task Flow with a Router ... 29-32
29.7.1.2 Creating an Email Notification Page .. 29-35
29.7.2 What Happens When You Create an Email Notification Page................................ 29-38
29.7.3 What You May Need to Know About Creating an Email Notification Page......... 29-38
29.8 Deploying a Composite Application with a Task Flow ... 29-38
29.8.1 Before Deploying the Task Form: Port Changes .. 29-38
29.8.2 How To Deploy a Composite Application with a Task Flow 29-40
29.8.3 How To Redeploy the Task Form .. 29-40
29.8.4 How To Deploy a Task Flow as a Separate Application... 29-40
29.8.5 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server 29-40
29.8.5.1 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server .. 29-41
29.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic

Server... 29-42
29.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic

Server... 29-44
29.8.5.4 Including a Grant for bpm-services.jar... 29-46
29.8.5.5 Deploying the Application... 29-47
29.8.6 What Happens When You Deploy the Task Form .. 29-47
29.8.7 What You May Need to Know About Undeploying a Task Flow........................... 29-47
29.9 Displaying a Task Form in the Worklist... 29-47
29.9.1 How To Display the Task Form in the Worklist .. 29-48
29.10 Displaying a Task in an Email Notification ... 29-48
29.11 Reusing the Task Flow Application with Multiple Human Tasks 29-49
29.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks 29-50

30 Using Oracle BPM Worklist

30.1 Introduction to Oracle BPM Worklist ... 30-1
30.1.1 What You May Need To Know About Oracle BPM Worklist.................................... 30-3
30.2 Logging In to Oracle BPM Worklist ... 30-3
30.2.1 How To Log In to the Worklist ... 30-3
30.2.1.1 Enabling the weblogic User for Logging in to the Worklist................................ 30-4
30.2.2 What Happens When You Log In to the Worklist... 30-4
30.2.3 What Happens When You Change a User’s Privileges While They are Logged in

to Oracle BPM Worklist ... 30-8
30.3 Customizing the Task List Page .. 30-8
30.3.1 How To Filter Tasks ... 30-8
30.3.2 How To Create and Customize Worklist Views .. 30-15
30.3.3 How To Customize the Task Status Chart .. 30-19

xxii

30.3.4 How To Create a ToDo Task... 30-20
30.3.5 How To Create a Subtask .. 30-21
30.4 Acting on Tasks: The Task Details Page ... 30-22
30.4.1 System Actions.. 30-25
30.4.2 Task History .. 30-26
30.4.3 How To Act on Tasks ... 30-28
30.4.4 How To Act on Tasks That Require a Digital Signature... 30-35
30.5 Approving Tasks.. 30-38
30.6 Setting a Vacation Period.. 30-39
30.7 Setting Rules ... 30-41
30.7.1 How To Create User Rules .. 30-41
30.7.2 How To Create Group Rules... 30-43
30.7.3 Assignment Rules for Tasks with Multiple Assignees.. 30-44
30.8 Using the Worklist Administration Functions .. 30-45
30.8.1 How To Manage Other Users’ or Groups’ Rules (as an Administrator) 30-45
30.8.2 How To Set the Worklist Display (Application Preferences)................................... 30-46
30.9 Specifying Notification Settings... 30-47
30.9.1 Messaging Filter Rules ... 30-47
30.9.1.1 Data Types .. 30-48
30.9.1.2 Attributes .. 30-48
30.9.2 Rule Actions... 30-49
30.9.3 Managing Messaging Channels.. 30-49
30.9.3.1 Viewing Your Messaging Channels.. 30-49
30.9.3.2 Creating, Editing, and Deleting a Messaging Channel...................................... 30-50
30.9.4 Managing Messaging Filters ... 30-51
30.9.4.1 Viewing Messaging Filters ... 30-51
30.9.4.2 Creating Messaging Filters... 30-52
30.9.4.3 Editing a Messaging Filter.. 30-53
30.9.4.4 Deleting a Messaging Filter.. 30-53
30.10 Using Mapped Attributes (Flex Fields) .. 30-53
30.10.1 How To Map Attributes... 30-54
30.10.2 Custom Mapped Attributes .. 30-58
30.11 Creating Worklist Reports .. 30-58
30.11.1 How To Create Reports ... 30-59
30.11.2 What Happens When You Create Reports ... 30-60
30.11.2.1 Unattended Tasks Report... 30-61
30.11.2.2 Tasks Priority Report .. 30-62
30.11.2.3 Tasks Cycle Time Report .. 30-62
30.11.2.4 Tasks Productivity Report.. 30-63
30.12 Accessing Oracle BPM Worklist in Local Languages and Time Zones 30-64
30.12.1 Strings in Oracle BPM Worklist.. 30-64
30.12.2 How to Change the Preferred Language if the Identity Store is LDAP-Based...... 30-65
30.12.3 How to Change the Language in Which Tasks Are Displayed 30-65
30.12.4 How To Change the Language Preferences from a JAZN XML File 30-66
30.12.5 What You May Need to Know About Runtime Languages Not Displaying in the

 Worklist ... 30-67
30.12.6 What You May Need to Know About Inconsistent Display Languages in Worklist

xxiii

and Embedded User's Notification Preference Interface.. 30-67
30.12.7 How To Change the Time Zone Used in the Worklist .. 30-67
30.13 Creating Reusable Worklist Regions... 30-68
30.13.1 How to Create an Application With an Embedded Reusable Worklist Region.... 30-68
30.13.2 How to Set Up the Deployment Profile... 30-71
30.13.3 How to Prepare Federated Mode Task Flows For Deployment 30-71
30.13.4 What You May Need to Know About Task List Task Flow 30-71
30.13.5 What You May Need to Know About Certificates Task Flow 30-75
30.13.6 What You May Need to Know About the Reports Task Flow................................. 30-76
30.13.7 What You May Need to Know About Application Preferences Task Flow........... 30-78
30.13.8 What You May Need to Know About Mapped Attributes Task Flow 30-78
30.13.9 What You May Need to Know About Rules Task Flow ... 30-79

31 Building a Custom Worklist Client

31.1 Introduction to Building Clients for Workflow Services ... 31-1
31.2 Packages and Classes for Building Clients... 31-2
31.3 Workflow Service Clients ... 31-3
31.3.1 The IWorkflowServiceClient Interface .. 31-5
31.4 Class Paths for Clients Using SOAP.. 31-6
31.5 Class Paths for Clients Using Remote EJBs.. 31-6
31.6 Class Paths for Clients Using Local EJBs.. 31-7
31.7 Enterprise JavaBeans References in Web Applications.. 31-7
31.8 Initiating a Task.. 31-7
31.8.1 Creating a Task.. 31-8
31.8.2 Creating a Payload Element in a Task ... 31-8
31.8.3 Initiating a Task Programmatically.. 31-9
31.9 Changing Workflow Standard View Definitions.. 31-10
31.10 Writing a Worklist Application Using the HelpDeskUI Sample 31-10

32 Introduction to Human Workflow Services

32.1 Introduction to Human Workflow Services... 32-1
32.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow

Services... 32-2
32.1.1.1 Support for Foreign JNDI Names ... 32-3
32.1.2 Security Model for Services... 32-4
32.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP

Web Services... 32-5
32.1.2.2 Creating Human Workflow Context on Behalf of a User.................................... 32-5
32.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a

JAAS Application .. 32-6
32.1.3 Task Service ... 32-6
32.1.4 Task Query Service ... 32-9
32.1.5 Identity Service.. 32-11
32.1.5.1 Identity Service Providers .. 32-12
32.1.6 Task Metadata Service ... 32-13
32.1.7 User Metadata Service ... 32-14

xxiv

32.1.8 Task Report Service .. 32-16
32.1.9 Runtime Config Service ... 32-16
32.1.9.1 Internationalization of Attribute Labels... 32-18
32.1.10 Evidence Store Service and Digital Signatures... 32-19
32.1.10.1 Prerequisites ... 32-21
32.1.10.2 Interfaces and Methods .. 32-21
32.1.11 Task Instance Attributes .. 32-23
32.2 Notifications from Human Workflow .. 32-27
32.2.1 Contents of Notification... 32-28
32.2.2 Error Message Support .. 32-29
32.2.3 Reliability Support.. 32-29
32.2.4 Management of Oracle Human Workflow Notification Service 32-30
32.2.5 How to Configure the Notification Channel Preferences ... 32-30
32.2.6 How to Configure Notification Messages in Different Languages 32-31
32.2.7 How to Send Actionable Messages .. 32-32
32.2.7.1 How to Send Actionable Emails for Human Tasks .. 32-32
32.2.8 How to Send Inbound and Outbound Attachments ... 32-34
32.2.9 How to Send Inbound Comments.. 32-34
32.2.10 How to Send Secure Notifications.. 32-34
32.2.11 How to Set Channels Used for Notifications.. 32-34
32.2.12 How to Send Reminders .. 32-34
32.2.13 How to Set Automatic Replies to Unprocessed Messages 32-35
32.2.14 How to Create Custom Notification Headers .. 32-36
32.3 Assignment Service Configuration ... 32-36
32.3.1 Dynamic Assignment and Task Escalation Functions .. 32-37
32.3.1.1 How to Implement a Dynamic Assignment Function 32-37
32.3.1.2 How to Configure Dynamic Assignment Functions .. 32-38
32.3.1.3 How to Configure Display Names for Dynamic Assignment Functions........ 32-39
32.3.1.4 How to Implement a Task Escalation Function .. 32-39
32.3.2 Dynamically Assigning Task Participants with the Assignment Service 32-39
32.3.2.1 How to Implement an Assignment Service ... 32-40
32.3.2.2 Example of Assignment Service Implementation... 32-41
32.3.2.3 How to Deploy a Custom Assignment Service... 32-43
32.3.3 Custom Escalation Function.. 32-43
32.4 Class Loading for Callbacks and Resource Bundles... 32-44
32.5 Resource Bundles in Workflow Services .. 32-44
32.5.1 Task Resource Bundles .. 32-44
32.5.2 Global Resource Bundle – WorkflowLabels.properties .. 32-45
32.5.3 Worklist Client Resource Bundles.. 32-47
32.5.4 Task Detail ADF Task Flow Resource Bundles .. 32-47
32.5.5 Specifying Stage and Participant Names in Resource Bundles 32-47
32.5.6 Case Sensitivity in Group and Application Role Names ... 32-47
32.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server

 Services ... 32-48
32.6.1 Human Workflow Services Clients.. 32-48
32.6.1.1 Task Query Service Client Code.. 32-51
32.6.1.2 Configuration Option ... 32-53

xxv

32.6.1.3 Client Logging.. 32-56
32.6.1.4 Configuration Migration Utility.. 32-56
32.6.2 Identity Propagation .. 32-56
32.6.2.1 Enterprise JavaBeans Identity Propagation.. 32-57
32.6.2.2 SAML Token Identity Propagation for SOAP Client ... 32-57
32.6.2.3 Public Key Alias... 32-59
32.6.3 Client JAR Files ... 32-59
32.7 Task States in a Human Task ... 32-60
32.8 Database Views for Oracle Workflow... 32-60
32.8.1 Unattended Tasks Report View.. 32-60
32.8.2 Task Cycle Time Report View... 32-61
32.8.3 Task Productivity Report View .. 32-62
32.8.4 Task Priority Report View... 32-63

33 Integrating Microsoft Excel with a Human Task

33.1 Configuring Your Environment for Invoking a BPEL Process from an Excel
Workbook.. 33-1

33.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control 33-1
33.1.2 How to Create a Dummy JSF Page .. 33-2
33.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project...................... 33-2
33.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project . 33-2
33.1.5 How to Deploy the Web Application You Created in Step 1..................................... 33-4
33.1.6 How to Install Microsoft Excel.. 33-4
33.1.7 How to Install the Oracle ADF-Desktop Integration Plug-in 33-4
33.1.8 How to Specify the User Interface Controls and Create the Excel Workbook 33-4
33.2 Attaching Excel Workbooks to Human Task Workflow Email Notifications 33-4
33.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email

 Notifications ... 33-4
33.2.2 What Happens During Runtime When You Enable Attachment of Excel

Workbooks to Human Task Workflow Email Notifications 33-5
33.2.3 Example: Attaching an Excel Workbook to Email Notifications 33-5
33.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities . 33-5
33.2.3.2 Task 2: Set up Authentication.. 33-10
33.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel

Workbook ... 33-13
33.2.3.4 Task 4: Prepare the Excel Workbook .. 33-17
33.2.3.5 Task 5: Deploy the ADF Task Flow .. 33-23
33.2.3.6 Task 6: Test the Deployed Application .. 33-24

34 Configuring Task List Portlets

34.1 Introduction to Task List Portlets .. 34-1
34.2 Deploying the Task List Portlet Producer Application to a Portlet Server 34-2
34.2.1 Deployment Prerequisites ... 34-2
34.2.2 How to Deploy the Task List Portlet Producer Application 34-3
34.2.3 How to Connect the Task List Producer to the Remote SOA Server 34-3
34.2.3.1 How to Define the Foreign JNDI on the Oracle WebCenter Oracle WebLogic

xxvi

 Server.. 34-3
34.2.3.2 How to Configure EJB Identity Propagation... 34-5
34.2.3.3 How to Configure the Identity Store .. 34-5
34.2.4 How to Secure the Task List Portlet Producer Application Using Web Services

Security .. 34-6
34.2.5 How to Specify the Inbound Security Policy.. 34-7
34.3 Creating a Portlet Consumer Application for Embedding the Task List Portlet............ 34-9
34.3.1 How To Create a Portlet Consumer Application for Embedding the Task List

Portlet ... 34-9
34.4 Passing Worklist Portlet Parameters... 34-16
34.4.1 Assignment Filter Constraints .. 34-20
34.4.2 Example of File Containing All Column Constants .. 34-21

Part VI Using Binding Components

35 Getting Started with Binding Components

35.1 Introduction to Binding Components... 35-1
35.1.1 Web Services.. 35-2
35.1.1.1 WS-AtomicTransaction Support ... 35-2
35.1.2 HTTP Binding Service.. 35-5
35.1.2.1 Supported Interactions ... 35-5
35.1.2.2 How to Configure the HTTP Binding Service... 35-6
35.1.2.3 How to Enable Basic Authentication .. 35-8
35.1.3 JCA Adapters... 35-9
35.1.3.1 AQ Adapter .. 35-9
35.1.3.2 Database Adapter .. 35-9
35.1.3.3 File Adapter.. 35-9
35.1.3.4 FTP Adapter ... 35-10
35.1.3.5 JMS Adapter ... 35-10
35.1.3.6 MQ Adapter ... 35-10
35.1.3.7 Oracle Applications Adapter ... 35-10
35.1.3.8 Socket Adapter... 35-10
35.1.3.9 Third Party Adapter.. 35-10
35.1.4 Oracle BAM ... 35-11
35.1.5 Oracle B2B.. 35-11
35.1.6 ADF-BC Services... 35-11
35.1.7 EJB Services.. 35-11
35.1.8 Direct Binding Services .. 35-12
35.2 Introduction to Integrating a Binding Component in a SOA Composite Application 35-12
35.2.1 How to Integrate a Binding Component in a SOA Composite Application.......... 35-12
35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java

Class.. 35-13

36 Integrating Enterprise JavaBeans with SOA Composite Applications

36.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite
 Applications... 36-1

xxvii

36.1.1 Integration Through SDO-Based EJBs ... 36-2
36.1.2 Integration Through Java Interfaces .. 36-2
36.2 Designing an SDO-Based Enterprise JavaBeans Application.. 36-3
36.2.1 How to Create SDO Objects Using the SDO Compiler... 36-3
36.2.2 How to Create a Session Bean and Import the SDO Objects...................................... 36-4
36.2.3 How to Create a Profile and an EAR File.. 36-4
36.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean 36-4
36.2.5 How to Use Web Service Annotations .. 36-6
36.2.6 How to Deploy the Enterprise JavaBeans EAR File .. 36-8
36.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper...................................... 36-8
36.3.1 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite

Applications... 36-8
36.3.2 How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite

 Applications.. 36-11
36.4 Designing an SDO-Based Enterprise JavaBeans Client to Invoke Oracle SOA Suite .. 36-13
36.5 Specifying Enterprise JavaBeans Roles... 36-13
36.6 Configuring JNDI Access.. 36-14
36.6.1 How to Create a Foreign JNDI.. 36-14
36.6.2 How to Create a Custom CSF Map for JNDI Lookup ... 36-14

37 Using the Direct Binding Invocation API

37.1 Introduction to Direct Binding... 37-1
37.2 Introduction to the Direct Binding Invocation API .. 37-4
37.2.1 Synchronous Direct Binding Invocation ... 37-5
37.2.2 Asynchronous Direct Binding Invocation... 37-5
37.2.3 SOA Direct Address Syntax .. 37-6
37.2.4 SOA Transaction Propagation .. 37-6
37.3 Invoking a SOA Composite Application with the Invocation API 37-6
37.3.1 How to Create an Inbound Direct Binding Service ... 37-7
37.3.2 How to Create an Outbound Direct Binding Reference ... 37-9
37.3.3 How to Set an Identity for J2SE Clients Invoking Direct Binding.......................... 37-11
37.3.4 What You May Need to Know About Invoking SOA Composites on Hosts with

the Same Server and Domain Names .. 37-12
37.4 Samples Using the Direct Binding Invocation API... 37-12

Part VII Sharing Functionality Across Service Components

38 Creating Transformations with the XSLT Mapper

38.1 Introduction to the XSLT Mapper ... 38-1
38.1.1 Overview of XSLT Creation .. 38-3
38.1.2 Guidelines for Using the XSLT Mapper .. 38-6
38.2 Creating an XSL Map File ... 38-7
38.2.1 How to Create an XSL Map File in Oracle BPEL Process Manager 38-7
38.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files

in Oracle BPEL Process Manager ... 38-9
38.2.3 How to Create an XSL Map File in Oracle Mediator... 38-11

xxviii

38.2.4 What You May Need to Know About Creating an XSL Map File........................... 38-14
38.2.5 What You May Need to Know About Importing a Composite with an XSL File. 38-15
38.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator

Without Creating an XSL Map File .. 38-15
38.2.7 What Happens If You Receive an Empty Namespace Tag in an Output

Message .. 38-15
38.3 Designing Transformation Maps with the XSLT Mapper ... 38-16
38.3.1 How to Add Additional Sources .. 38-16
38.3.2 How to Perform a Simple Copy by Linking Nodes... 38-17
38.3.3 How to Set Constant Values.. 38-18
38.3.4 How to Add Functions... 38-19
38.3.4.1 Editing Function Parameters ... 38-20
38.3.4.2 Chaining Functions ... 38-20
38.3.4.3 Using Named Templates .. 38-21
38.3.4.4 Importing User-Defined Functions... 38-21
38.3.5 How to Edit XPath Expressions.. 38-24
38.3.6 How to Add XSLT Constructs .. 38-25
38.3.6.1 Using Conditional Processing with xsl:if ... 38-26
38.3.6.2 Using Conditional Processing with xsl:choose ... 38-28
38.3.6.3 Creating Loops with xsl:for-each .. 38-28
38.3.6.4 Cloning xsl:for-each .. 38-29
38.3.6.5 Applying xsl:sort to xsl:for-each ... 38-30
38.3.6.6 Copying Nodes with xsl:copy-of... 38-30
38.3.6.7 Including External Templates with xsl:include .. 38-31
38.3.7 How to Automatically Map Nodes.. 38-32
38.3.7.1 Using Auto Mapping with Confirmation .. 38-33
38.3.8 What You May Need to Know About Automatic Mapping 38-34
38.3.9 How to View Unmapped Target Nodes ... 38-35
38.3.10 How to Generate Dictionaries... 38-36
38.3.11 What You May Need to Know About Generating Dictionaries in Which Functions

are Used.. 38-37
38.3.12 How to Create Map Parameters and Variables.. 38-37
38.3.12.1 Creating a Map Parameter ... 38-38
38.3.12.2 Creating a Map Variable... 38-38
38.3.13 How to Search Source and Target Nodes ... 38-39
38.3.14 How to Control the Generation of Unmapped Target Elements............................. 38-40
38.3.15 How to Ignore Elements in the XSLT Document... 38-41
38.3.16 How to Replace a Schema in the XSLT Mapper... 38-41
38.3.17 How to Substitute Elements and Types in the Source and Target Trees................ 38-42
38.4 Testing the Map.. 38-45
38.4.1 How to Test the Transformation Mapping Logic .. 38-46
38.4.2 How to Generate Reports .. 38-48
38.4.2.1 Correcting Memory Errors When Generating Reports...................................... 38-49
38.4.3 How to Customize Sample XML Generation ... 38-50
38.5 Demonstrating Features of the XSLT Mapper ... 38-50
38.5.1 Opening the Application ... 38-51
38.5.2 Creating a New XSLT Map in the BPEL Process ... 38-51

xxix

38.5.3 Using Type Substitution to Map the Purchase Order Items 38-52
38.5.4 Referencing Additional Source Elements.. 38-53
38.5.5 Using Element Substitution to Map the Shipping Address 38-54
38.5.6 Mapping the Remaining Fields .. 38-55
38.5.7 Testing the Map .. 38-57

39 Using Business Events and the Event Delivery Network

39.1 Introduction to Business Events .. 39-1
39.1.1 Local and Remote Events Boundaries ... 39-3
39.2 Creating Business Events in Oracle JDeveloper .. 39-3
39.2.1 How to Create a Business Event... 39-4
39.3 Subscribing to or Publishing a Business Event from an Oracle Mediator Service

 Component .. 39-6
39.3.1 How to Subscribe to a Business Event... 39-6
39.3.2 What Happens When You Create and Subscribe to a Business Event 39-8
39.3.3 What You May Need to Know About Subscribing to a Business Event 39-9
39.3.4 How to Publish a Business Event ... 39-9
39.3.5 How to Configure a Foreign JNDI Provider to Enable Administration Server

 Applications to Publish Events to the SOA Server ... 39-10
39.3.6 How to Configure JMS-based EDN Implementations .. 39-11
39.3.7 What Happens When You Publish a Business Event.. 39-12
39.4 Subscribing to or Publishing a Business Event from a BPEL Process Service

Component ... 39-13
39.4.1 How to Subscribe to a Business Event... 39-13
39.4.2 How to Publish a Business Event ... 39-15
39.4.3 What Happens When You Subscribe to and Publish a Business Event 39-16
39.4.4 What You May Need to Know About Subscribing to a Business Event 39-18
39.5 How to Integrate Oracle ADF Business Component Business Events with Oracle

Mediator .. 39-18

Part VIII Completing Your Application

40 Enabling Security with Policies

40.1 Introduction to Policies ... 40-1
40.2 Attaching Policies to Binding Components and Service Components 40-2
40.2.1 How to Attach Policies to Binding Components and Service Components 40-2
40.2.2 How to Override Policy Configuration Property Values ... 40-6
40.2.2.1 Overriding Client Configuration Property Values... 40-6
40.2.2.2 Overriding Server Configuration Property Values .. 40-8

41 Deploying SOA Composite Applications

41.1 Introduction to Deployment... 41-1
41.2 Deployment Prerequisites .. 41-2
41.2.1 Creating the Oracle SOA Suite Schema... 41-2
41.2.2 Creating a SOA Domain .. 41-2
41.2.3 Configuring a SOA Cluster ... 41-2

xxx

41.3 Understanding the Packaging Impact .. 41-2
41.4 Anatomy of a Composite .. 41-3
41.5 Preparing the Target Environment ... 41-3
41.5.1 Creating Data Sources and Queues.. 41-3
41.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter 41-4
41.5.1.2 Script for Creation of the Database Resource and Redeployment of the

Database Adapter .. 41-5
41.5.2 Creating Connection Factories and Connection Pooling .. 41-6
41.5.3 Enabling Security .. 41-6
41.5.4 Deploying Trading Partner Agreements and Task Flows .. 41-6
41.5.5 Creating an Application Server Connection... 41-7
41.5.6 Creating a SOA-MDS Connection.. 41-7
41.6 Customizing Your Application for the Target Environment Prior to Deployment....... 41-7
41.6.1 Customizing SOA Composite Applications for the Target Environment................ 41-7
41.6.1.1 Introduction to Configuration Plans... 41-7
41.6.1.2 Introduction to a Configuration Plan File.. 41-8
41.6.1.3 Introduction to Use Cases for a Configuration Plan .. 41-10
41.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper 41-11
41.6.1.5 How to Create a Configuration Plan with the WLST Utility 41-14
41.6.1.6 How to Attach a Configuration Plan with ant Scripts 41-14
41.7 Deploying SOA Composite Applications .. 41-14
41.7.1 Deploying a Single SOA Composite in Oracle JDeveloper 41-14
41.7.1.1 How to Deploy a Single SOA Composite .. 41-14
41.7.1.2 What You May Need to Know About Deploying Human Task Composites

with Task Flows to Partitions .. 41-26
41.7.2 Deploying Multiple SOA Composite Applications in Oracle JDeveloper 41-27
41.7.2.1 How to Deploy Multiple SOA Composite Applications 41-27
41.7.3 Deploying and Using Shared Metadata Across SOA Composite Applications in

Oracle JDeveloper ... 41-29
41.7.3.1 How to Deploy Shared Metadata.. 41-29
41.7.3.2 How to Use Shared Metadata.. 41-35
41.7.4 Deploying an Existing SOA Archive in Oracle JDeveloper...................................... 41-39
41.7.4.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper................. 41-39
41.7.5 Managing SOA Composite Applications with Scripts.. 41-40
41.7.5.1 How to Manage SOA Composite Applications with the WLST Utility 41-41
41.7.5.2 How to Manage SOA Composite Applications with ant Scripts 41-41
41.7.6 Deploying SOA Composite Applications from Oracle Enterprise Manager

Fusion Middleware Control Console... 41-60
41.7.7 Deploying SOA Composite Applications to a Cluster.. 41-61
41.8 Postdeployment Configuration ... 41-61
41.8.1 Security... 41-61
41.8.2 Updating Connections ... 41-61
41.8.3 Updating Data Sources and Queues .. 41-61
41.8.4 Attaching Policies ... 41-61
41.9 Testing and Troubleshooting ... 41-61
41.9.1 Verifying Deployment ... 41-61
41.9.2 Initiating an Instance of a Deployed Composite.. 41-61

xxxi

41.9.3 Automating the Testing of Deployed Composites .. 41-62
41.9.4 Recompiling a Project After Receiving a Deployment Error.................................... 41-62
41.9.5 Troubleshooting Common Deployment Errors ... 41-62
41.9.5.1 Common Oracle JDeveloper Deployment Issues ... 41-62
41.9.5.2 ant Command Issues... 41-64
41.9.5.3 Common Configuration Plan Issues... 41-65
41.9.5.4 Deploying to a Managed Oracle WebLogic Server .. 41-65
41.9.5.5 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server 41-65
41.9.5.6 Deploying with an Unreachable Proxy Server.. 41-66
41.9.5.7 Increasing Memory to Recover from Compilation Errors................................. 41-66

42 Automating Testing of SOA Composite Applications

42.1 Introduction to the Composite Test Framework... 42-1
42.1.1 Test Cases Overview .. 42-1
42.1.2 Test Suites Overview.. 42-1
42.1.3 Emulations Overview .. 42-2
42.1.4 Assertions Overview .. 42-2
42.2 Introduction to the Components of a Test Suite.. 42-3
42.2.1 Process Initiation... 42-3
42.2.2 Emulations ... 42-3
42.2.3 Assertions... 42-4
42.2.4 Message Files... 42-5
42.3 Creating Test Suites and Test Cases.. 42-5
42.3.1 How to Create Test Suites and Test Cases .. 42-5
42.4 Creating the Contents of Test Cases.. 42-8
42.4.1 How to Initiate Inbound Messages .. 42-9
42.4.2 How to Emulate Outbound Messages... 42-11
42.4.3 How to Emulate Callback Messages.. 42-14
42.4.4 How to Emulate Fault Messages .. 42-16
42.4.5 How to Create Assertions.. 42-17
42.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML

Document ... 42-18
42.4.5.2 Creating Assertions on a Leaf Element .. 42-21
42.4.6 What You May Need to Know About Assertions.. 42-23
42.5 Deploying and Running a Test Suite .. 42-23

Part IX Advanced Topics

43 Managing Large Documents and Large Numbers of Instances

43.1 Best Practices for Handling Large Documents .. 43-1
43.1.1 Use Cases for Handling Large Documents... 43-1
43.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads 43-1
43.1.1.2 End-to-End Streaming with Attachments... 43-2
43.1.1.3 Adding MTOM Attachments to Web Services.. 43-9
43.1.1.4 Processing Large XML with Repeating Constructs.. 43-10
43.1.1.5 Processing Large XML Documents with Complex Structures 43-11

xxxii

43.1.2 Limitations on Concurrent Processing of Large Documents 43-12
43.1.2.1 Opaque Schema for Processing Large Payloads ... 43-12
43.1.3 General Tuning Recommendations ... 43-12
43.1.3.1 General Recommendations .. 43-12
43.1.3.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload

 Processing .. 43-13
43.1.3.3 Using the Assign Activity in Oracle BPEL Process Manager/Oracle

Mediator.. 43-13
43.1.3.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process

 Manager) .. 43-14
43.1.3.5 Using XSLT Transformations for Repeating Structures 43-15
43.1.3.6 Processing Large Documents in Oracle B2B.. 43-16
43.1.3.7 Using XPath Functions to Write Large XSLT/XQuery Output to a File

System ... 43-18
43.2 Best Practices for Handling Large Metadata ... 43-18
43.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process . 43-18
43.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)............. 43-19
43.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)................... 43-19
43.2.4 Using a Flow With Multiple Sequences .. 43-19
43.2.5 Using a Flow with One Sequence... 43-19
43.2.6 Using a Flow with No Sequence... 43-20
43.2.7 Large Numbers of Oracle Mediators in a Composite.. 43-20
43.2.8 Importing Large Data Sets in Oracle B2B.. 43-20
43.3 Best Practices for Handling Large Numbers of Instances.. 43-20
43.3.1 Instance and Rejected Message Deletion with the Purge Script 43-20
43.3.2 Improving the Loading of Pages in Oracle Enterprise Manager Fusion

Middleware Control Console.. 43-20

44 Working with Domain Value Maps

44.1 Introduction to Domain Value Maps .. 44-1
44.1.1 Domain Value Map Features .. 44-2
44.1.1.1 Qualifier Support... 44-2
44.1.1.2 Qualifier Order Support ... 44-3
44.1.1.3 One-to-Many Mapping Support ... 44-4
44.2 Creating Domain Value Maps.. 44-4
44.2.1 How to Create Domain Value Maps.. 44-4
44.2.2 What Happens When You Create a Domain Value Map ... 44-5
44.3 Editing a Domain Value Map... 44-7
44.3.1 How to Add Columns to a Domain Value Map .. 44-7
44.3.2 How to Add Rows to a Domain Value Map... 44-7
44.4 Using Domain Value Map Functions.. 44-8
44.4.1 Understanding Domain Value Map Functions .. 44-8
44.4.1.1 dvm:lookupValue.. 44-8
44.4.1.2 dvm:lookupValue1M .. 44-9
44.4.2 How to Use Domain Value Map Functions in Transformations 44-9
44.4.3 How to Use Domain Value Map Functions in XPath Expressions.......................... 44-11
44.4.4 What Happens at Runtime.. 44-12

xxxiii

44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup 44-12
44.5.1 How to Create the HierarchicalValue Use Case .. 44-13
44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project 44-13
44.5.1.2 Task 2: How to Create a Domain Value Map.. 44-13
44.5.1.3 Task 3: How to Create a File Adapter Service... 44-15
44.5.1.4 Task 4: How to Create ProcessOrders Oracle Mediator Component 44-16
44.5.1.5 Task 5: How to Create a File Adapter Reference .. 44-17
44.5.1.6 Task 6: How to Specify Routing Rules ... 44-18
44.5.1.7 Task 7: How to Configure an Application Server Connection 44-21
44.5.1.8 Task 8: How to Deploy the Composite Application... 44-22
44.5.2 How to Run and Monitor the HierarchicalValue Application................................. 44-22
44.6 Creating a Domain Value Map Use Case For Multiple Values....................................... 44-22
44.6.1 How to Create the Multivalue Use Case ... 44-22
44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project 44-23
44.6.1.2 Task 2: How to Create a Domain Value Map.. 44-23
44.6.1.3 Task 3: How to Create a File Adapter Service... 44-24
44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Oracle

Mediator.. 44-26
44.6.1.5 Task 5: How to Create a File Adapter Reference .. 44-26
44.6.1.6 Task 6: How to Specify Routing Rules ... 44-27
44.6.1.7 Task 7: How to Configure an Application Server Connection 44-30
44.6.1.8 Task 8: How to Deploy the Composite Application... 44-30
44.6.2 How to Run and Monitor the Multivalue Application ... 44-31

45 Using Oracle SOA Composer with Domain Value Maps

45.1 Introduction to Oracle SOA Composer .. 45-1
45.1.1 How to Log in to Oracle SOA Composer.. 45-2
45.2 Viewing Domain Value Maps at Runtime ... 45-3
45.2.1 How To View Domain Value Maps at Runtime .. 45-3
45.3 Editing Domain Value Maps at Runtime ... 45-4
45.3.1 How to Edit Domain Value Maps at Runtime ... 45-4
45.3.1.1 Adding Rows ... 45-5
45.3.1.2 Editing Rows .. 45-5
45.3.1.3 Deleting Rows .. 45-5
45.4 Saving Domain Value Maps at Runtime .. 45-5
45.4.1 How to Save Domain Value Maps at Runtime .. 45-5
45.5 Committing Changes at Runtime.. 45-5
45.5.1 How to Commit Changes at Runtime ... 45-6
45.6 Detecting Conflicts... 45-6

46 Working with Cross References

46.1 Introduction to Cross References... 46-1
46.2 Introduction to Cross Reference Tables.. 46-2
46.3 Creating and Modifying Cross Reference Tables.. 46-4
46.3.1 How to Create Cross Reference Metadata .. 46-4
46.3.2 What Happens When You Create a Cross Reference.. 46-6

xxxiv

46.3.3 How to Create Custom Database Tables... 46-7
46.3.4 How to Add an End System to a Cross Reference Table .. 46-8
46.4 Populating Cross Reference Tables ... 46-9
46.4.1 About the xref:populateXRefRow Function ... 46-10
46.4.2 About the xref:populateXRefRow1M Function.. 46-12
46.4.3 How to Populate a Column of a Cross Reference Table ... 46-13
46.5 Looking Up Cross Reference Tables ... 46-15
46.5.1 About the xref:lookupXRef Function... 46-15
46.5.2 About the xref:lookupXRef1M Function... 46-16
46.5.3 About the xref:lookupPopulatedColumns Function... 46-17
46.5.4 How to Look Up a Cross Reference Table for a Value.. 46-18
46.6 Deleting a Cross Reference Table Value... 46-19
46.6.1 How to Delete a Cross Reference Table Value ... 46-20
46.7 Creating and Running the Cross Reference Use Case.. 46-22
46.7.1 How to Create the Use Case.. 46-22
46.7.1.1 Task 1: How to Configure the Oracle Database and Database Adapter 46-22
46.7.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project 46-23
46.7.1.3 Task 3: How to Create a Cross Reference .. 46-24
46.7.1.4 Task 4: How to Create a Database Adapter Service ... 46-25
46.7.1.5 Task 5: How to Create EBS and SBL External References 46-27
46.7.1.6 Task 6: How to Create the Logger File Adapter External Reference 46-29
46.7.1.7 Task 7: How to Create an Oracle Mediator Service Component...................... 46-31
46.7.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service

Component ... 46-32
46.7.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator 46-42
46.7.1.10 Task 10: How to Configure an Application Server Connection 46-53
46.7.1.11 Task 11: How to Deploy the Composite Application... 46-53
46.7.2 How to Run and Monitor the XrefCustApp Application ... 46-53
46.8 Creating and Running Cross Reference for 1M Functions .. 46-54
46.8.1 How to Create the Use Case.. 46-54
46.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter 46-54
46.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project 46-55
46.8.1.3 Task 3: How to Create a Cross Reference .. 46-56
46.8.1.4 Task 4: How to Create a Database Adapter Service ... 46-57
46.8.1.5 Task 5: How to Create an EBS External Reference ... 46-59
46.8.1.6 Task 6: How to Create a Logger File Adapter External Reference................... 46-61
46.8.1.7 Task 7: How to Create an Oracle Mediator Service Component...................... 46-62
46.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component.. 46-63
46.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator 46-67
46.8.1.10 Task 10: How to Configure an Application Server Connection 46-72
46.8.1.11 Task 11: How to Deploy the Composite Application... 46-72

47 Defining Composite Sensors

47.1 Introduction to Composite Sensors ... 47-1
47.1.1 Restrictions on Use of Composite Sensors .. 47-1
47.2 Adding Composite Sensors .. 47-2
47.2.1 How to Add Composite Sensors .. 47-2

xxxv

47.2.2 How to Add a Variable .. 47-6
47.2.3 How to Add an Expression ... 47-6
47.2.4 How to Add a Property ... 47-7
47.3 Monitoring Composite Sensor Data During Runtime.. 47-8

48 Using Two-Layer Business Process Management (BPM)

48.1 Introduction to Two-Layer Business Process Management .. 48-1
48.2 Creating a Phase Activity ... 48-3
48.2.1 How to Create a Phase Activity.. 48-3
48.2.2 What Happens When You Create a Phase Activity... 48-4
48.2.3 What Happens at Runtime When You Create a Phase Activity................................ 48-5
48.2.4 What You May Need to Know About Creating a Phase Activity 48-5
48.3 Creating the Dynamic Routing Decision Table ... 48-6
48.3.1 How to Create the Dynamic Routing Decision Table ... 48-6
48.3.2 What Happens When You Create the Dynamic Routing Decision Table 48-7
48.4 Use Case: Two-Layer BPM ... 48-7
48.4.1 Designing the SOA Composite ... 48-7
48.4.2 Creating a Phase Activity .. 48-10
48.4.3 Creating and Editing the Dynamic Routing Decision Table 48-10
48.4.4 Adding Assign Activities to the BPEL Process Model .. 48-12
48.4.5 Deploying and Testing the Sample .. 48-13

49 Integrating the Spring Framework in SOA Composite Applications

49.1 Introduction to the Spring Service Component... 49-1
49.2 Integration of Java and WSDL-Based Components in the Same SOA Composite

Application 49-2
49.2.1 Java and WSDL-Based Integration Example .. 49-2
49.2.2 Using Callbacks with the Spring Framework... 49-4
49.3 Creating a Spring Service Component in Oracle JDeveloper.. 49-5
49.3.1 How to Create a Spring Service Component in Oracle JDeveloper 49-6
49.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL

 Conversions .. 49-17
49.4 Defining Custom Spring Beans Through a Global Spring Context................................ 49-17
49.4.1 How to Define Custom Spring Beans Through a Global Spring Context 49-17
49.5 Using the Predefined Spring Beans... 49-17
49.5.1 IHeaderHelperBean.java Interface for headerHelperBean....................................... 49-18
49.5.2 IInstanceHelperBean.java Interface for instancerHelperBean 49-18
49.5.3 ILoggerBean.java Interface for loggerBean... 49-19
49.5.4 How to Reference Predefined Spring Beans in the Spring Context File................. 49-20
49.6 Spring Service Component Integration in the Fusion Order Demo............................... 49-21
49.6.1 How to Use EJBs with Java Vector Type Parameters .. 49-26
49.7 JAXB and OXM Support ... 49-28
49.7.1 Extended Mapping Files .. 49-29

Part X Using Oracle Business Activity Monitoring

xxxvi

50 Integrating Oracle BAM with SOA Composite Applications

50.1 Introduction to Integrating Oracle BAM with SOA Composite Applications................ 50-1
50.2 Configuring Oracle BAM Adapter .. 50-2
50.3 Using Oracle BAM Monitor Express With BPEL Processes .. 50-2
50.3.1 How to Access BPEL Designer Monitor View ... 50-4
50.3.2 How to Configure Activity Monitors .. 50-5
50.3.3 How To Create BPEL Process Monitoring Objects .. 50-6
50.3.4 How to Configure Counters.. 50-7
50.3.5 How to Configure Intervals .. 50-9
50.3.6 How to Configure Business Indicators.. 50-11
50.3.7 How to Add Existing Monitoring Objects to Activities .. 50-14
50.3.8 How To Configure BPEL Process Monitors for Deployment 50-15
50.3.9 What You Need to Know About Using the Monitor Express Dashboard 50-18
50.3.10 What You Need To Know About Monitor Express Data Objects 50-18
50.3.10.1 Understanding the COMPONENT Data Object ... 50-19
50.3.10.2 Understanding the COUNTER Data Object .. 50-20
50.3.10.3 Understanding the INTERVAL Data Object ... 50-21
50.3.10.4 Understanding Business Indicator Data Objects .. 50-22
50.3.10.5 Troubleshooting.. 50-24
50.4 Creating a Design Time Connection to an Oracle BAM Server 50-25
50.4.1 How to Create a Connection to an Oracle BAM Server .. 50-25
50.5 Using Oracle BAM Adapter in a SOA Composite Application 50-26
50.5.1 How to Use Oracle BAM Adapter in a SOA Composite Application 50-26
50.6 Using Oracle BAM Adapter in a BPEL Process... 50-27
50.6.1 How to Use Oracle BAM Adapter in a BPEL Process ... 50-27
50.7 Integrating BPEL Sensors Using Oracle BAM Sensor Action ... 50-28
50.7.1 How to Create a Sensor.. 50-29
50.7.2 How to Create an Oracle BAM Sensor Action ... 50-29
50.8 Integrating SOA Applications and Oracle BAM Using Enterprise Message

Resources... 50-33

51 Using Oracle BAM Data Control

51.1 Introduction to Oracle BAM Data Control... 51-1
51.2 Creating Projects That Can Use Oracle BAM Data Controls... 51-2
51.3 Creating Oracle BAM Server Connections... 51-2
51.3.1 How to Modify Oracle BAM Data Control Connections to Oracle BAM Servers .. 51-2
51.3.1.1 How to Associate a BAM Data Control with a New Oracle BAM Connection 51-3
51.4 Exposing Oracle BAM with Oracle ADF Data Controls .. 51-4
51.4.1 How to Create Oracle BAM Data Controls... 51-4
51.4.2 What Happens in Your Project When You Create an Oracle BAM Data Control .. 51-4
51.4.2.1 How an Oracle BAM Data Control Appears in the Data Controls Panel 51-5
51.5 Creating Oracle BAM Data Control Queries ... 51-5
51.5.1 How to Choose a Query Type... 51-6
51.5.2 How to Create Parameters .. 51-7
51.5.3 How to Pass Values to Parameters... 51-8
51.5.4 How to Create Calculated Fields.. 51-9
51.5.4.1 Creating Groups in Calculated Fields .. 51-10

xxxvii

51.5.5 How to Select, Organize, and Sort Fields.. 51-11
51.5.6 How to Create Filters ... 51-11
51.5.6.1 How to Create Filter Headers .. 51-11
51.5.6.2 How to Create Filter Entries .. 51-12
51.5.6.3 Entering Comparison Values... 51-13
51.5.6.4 Using Active Now ... 51-14
51.5.7 How to Select and Organize Groups ... 51-15
51.5.7.1 How to Configure Time Groups and Time Series .. 51-15
51.5.8 How to Create Aggregates .. 51-16
51.5.9 How to Modify the Query ... 51-16
51.6 Using Oracle BAM Data Controls in ADF Pages .. 51-16
51.6.1 How to Use an Oracle BAM Data Control in a JSF Page .. 51-17
51.7 Deploying Applications With Oracle BAM Data Controls.. 51-17
51.7.1 How to Deploy to Oracle WebLogic Server in Development Mode....................... 51-18
51.7.2 How to Deploy to a Production Mode Oracle WebLogic Server 51-18

52 Defining and Managing Oracle BAM Data Objects

52.1 Introduction to Oracle BAM Data Objects ... 52-1
52.2 Defining Data Objects.. 52-2
52.2.1 How to Define a Data Object .. 52-2
52.2.2 How to Add Columns to a Data Object... 52-3
52.2.3 How to Add Lookup Columns to a Data Object.. 52-4
52.2.4 How to Add Calculated Columns to a Data Object... 52-5
52.2.5 How to Add Time Stamp Columns to a Data Object .. 52-6
52.2.6 What You May Need to Know About System Data Objects 52-6
52.2.7 What You May Need to Know About Oracle Data Integrator Data Objects 52-6
52.3 Creating Permissions on Data Objects.. 52-6
52.3.1 How to Create Permissions on a Data Object... 52-6
52.3.2 How to Add a Group of Users.. 52-7
52.3.3 How to Copy Permissions from Other Data Objects... 52-7
52.4 Viewing Existing Data Objects... 52-8
52.4.1 How to View Data Object General Information... 52-8
52.4.2 How to View Data Object Layouts... 52-9
52.4.3 How to View Data Object Contents ... 52-9
52.5 Using Data Object Folders .. 52-10
52.5.1 How to Create Folders ... 52-10
52.5.2 How to Open Folders ... 52-11
52.5.3 How to Set Folder Permissions... 52-11
52.5.4 How to Move Folders... 52-12
52.5.5 How to Rename Folders .. 52-12
52.5.6 How to Delete Folders ... 52-12
52.6 Creating Security Filters.. 52-13
52.6.1 How to Create a Security Filter... 52-13
52.6.2 How to Copy Security Filters from Other Data Objects ... 52-15
52.7 Creating Dimensions ... 52-15
52.7.1 How to Create a Dimension .. 52-15
52.7.2 How to Create a Time Dimension.. 52-16

xxxviii

52.8 Renaming and Moving Data Objects .. 52-17
52.8.1 How to Rename a Data Object .. 52-17
52.8.2 How to Move a Data Object .. 52-17
52.9 Creating Indexes .. 52-17
52.9.1 How to Create an Index ... 52-18
52.10 Clearing Data Objects.. 52-18
52.10.1 How to Clear a Data Object... 52-18
52.11 Deleting Data Objects .. 52-18
52.11.1 How to Delete a Data Object ... 52-18

53 Creating Oracle BAM Enterprise Message Sources

53.1 Introduction to Enterprise Message Sources ... 53-1
53.2 Creating Enterprise Message Sources... 53-2
53.2.1 How to Create an Enterprise Message Source.. 53-2
53.2.2 How to Configure DateTime Specification ... 53-7
53.2.3 How to Use Advanced XML Formatting .. 53-10
53.3 Using Enterprise Message Sources.. 53-11
53.3.1 How to Edit, Copy, and Delete Enterprise Message Sources................................... 53-11
53.3.2 How to Start and Stop Enterprise Message Sources.. 53-11
53.3.3 How to Subscribe and Unsubscribe Enterprise Message Sources........................... 53-12
53.3.4 How to Test Enterprise Message Sources ... 53-12
53.3.5 How to Refresh Enterprise Message Sources ... 53-12
53.3.6 How to Monitor Enterprise Message Source Metrics.. 53-12
53.4 Using Foreign JMS Providers... 53-13
53.5 Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider........................ 53-14
53.5.1 Creating a JMS Topic in AQ-JMS ... 53-14
53.5.2 Creating a Data Source in Oracle WebLogic Server .. 53-15
53.5.3 Creating a Foreign JMS Server.. 53-16
53.5.4 Defining an EMS in Oracle BAM Architect .. 53-17
53.5.5 Inserting and Updating Records in the SQL Table.. 53-18

54 Using Oracle Data Integrator With Oracle BAM

54.1 Introduction to Using the Oracle Data Integrator With Oracle Business Activity
Monitoring 54-1

54.2 Installing the Oracle Data Integrator Integration Files... 54-2
54.2.1 How to Install Integration Files Using the Script... 54-2
54.2.2 How to Manually Install Integration Files .. 54-4
54.2.3 Using the Logs... 54-7
54.3 Using Oracle BAM Knowledge Modules ... 54-7
54.4 Creating the Oracle BAM Target ... 54-13
54.4.1 How to Create the Oracle BAM Target ... 54-13
54.5 Reverse Engineering the Oracle BAM Schema.. 54-14
54.6 Updating the Oracle Data Integrator External Data Source Definition 54-14
54.6.1 How to Update the Oracle Data Integrator External Data Source Definitions...... 54-15
54.7 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts........................ 54-15
54.8 Running Oracle Data Integrator Agent as a Daemon or a Microsoft Windows Service

With Oracle BAM Embedded .. 54-15

xxxix

55 Creating External Data Sources

55.1 Introduction to External Data Sources.. 55-1
55.2 Creating External Data Sources ... 55-2
55.2.1 How to Create an External Data Source.. 55-2
55.2.2 What You May Need to Know About Oracle Data Integrator External Data

Sources.. 55-2
55.2.3 How to Edit an External Data Source .. 55-2
55.2.4 How to Delete an External Data Source .. 55-3
55.3 External Data Source Example... 55-3
55.4 Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition .. 55-4

56 Using Oracle BAM Web Services

56.1 Introduction to Oracle BAM Web Services .. 56-1
56.2 Using the DataObjectOperations Web Services .. 56-2
56.2.1 How to Use the DataObjectOperations Web Services... 56-2
56.3 Using the DataObjectDefinition Web Service.. 56-3
56.3.1 How to Use the DataObjectDefinition Web Service .. 56-3
56.4 Using the ManualRuleFire Web Service... 56-4
56.4.1 How to Use the ManualRuleFire Web Service ... 56-4
56.5 Using the ICommand Web Service ... 56-4
56.5.1 How to Use the ICommand Web Service.. 56-5

57 Creating Oracle BAM Alerts

57.1 Introduction to Creating Alerts ... 57-1
57.2 Creating Alert Rules .. 57-2
57.2.1 How to Create an Alert Rule... 57-2
57.2.2 How to Activate Alerts .. 57-3
57.2.3 How to Modify Alert Rules... 57-4
57.2.4 How to Delete an Alert .. 57-4
57.3 Creating Alert Rules From Templates .. 57-4
57.3.1 How to Create Alert Rules From Templates... 57-4
57.4 Creating Alert Rules With Messages .. 57-5
57.4.1 How to Create an Alert Rule With a Message.. 57-5
57.5 Creating Complex Alerts .. 57-6
57.5.1 How to Create a Dependent Rule... 57-6
57.6 Using Alert History ... 57-6
57.6.1 How to View Alert History ... 57-7
57.6.2 How to Clear Alert History... 57-8
57.7 Launching Alerts by Invoking Web Services... 57-8
57.8 Calling an External Action.. 57-8
57.9 Sending Alerts to External E-mail Accounts.. 57-9

58 Using ICommand

58.1 Introduction to ICommand .. 58-1
58.2 Executing ICommand.. 58-1

xl

58.3 Specifying the Command and Option Syntax ... 58-2
58.3.1 How to Specify the Security Credentials... 58-2
58.3.2 How to Specify the Command.. 58-3
58.3.3 How to Specify Object Names .. 58-3
58.3.4 How to Specify Multiple Parameter Targets .. 58-4
58.4 Using Command-line-only Parameters .. 58-5
58.5 Running ICommand Remotely.. 58-6

Part XI Using Oracle User Messaging Service

59 Oracle User Messaging Service

59.1 Introduction to User Messaging Service... 59-1
59.1.1 Components... 59-2
59.1.2 Architecture ... 59-2

60 Sending and Receiving Messages using the User Messaging Service EJB
API

60.1 Introduction to the UMS Java API... 60-1
60.1.1 Creating a Java EE Application Module.. 60-2
60.2 Creating a UMS Client Instance... 60-2
60.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative

 Approach .. 60-2
60.2.2 API Reference for Class MessagingClientFactory.. 60-3
60.3 Sending a Message... 60-3
60.3.1 Creating a Message... 60-3
60.3.1.1 Creating a Plaintext Message... 60-3
60.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML

 Parts)... 60-3
60.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for

Recipients with Different Delivery Types.. 60-4
60.3.2 API Reference for Class MessageFactory .. 60-4
60.3.3 API Reference for Interface Message ... 60-5
60.3.4 API Reference for Enum DeliveryType... 60-5
60.3.5 Addressing a Message ... 60-5
60.3.5.1 Types of Addresses ... 60-5
60.3.5.2 Creating Address Objects... 60-5
60.3.5.3 Creating a Recipient with a Failover Address... 60-5
60.3.5.4 API Reference for Class AddressFactory ... 60-6
60.3.5.5 API Reference for Interface Address .. 60-6
60.3.6 Retrieving Message Status... 60-6
60.3.6.1 Synchronous Retrieval of Message Status ... 60-6
60.3.6.2 Asynchronous Notification of Message Status ... 60-6
60.4 Receiving a Message.. 60-6
60.4.1 Registering an Access Point .. 60-6
60.4.2 Synchronous Receiving.. 60-7
60.4.3 Asynchronous Receiving ... 60-7

xli

60.4.4 Message Filtering .. 60-7
60.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application............ 60-8
60.5.1 Overview of Development .. 60-9
60.5.2 Configuring the Email Driver ... 60-9
60.5.3 Using JDeveloper 11g to Build the Application ... 60-9
60.5.3.1 Opening the Project ... 60-9
60.5.4 Deploying the Application .. 60-11
60.5.5 Testing the Application.. 60-11
60.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application 60-13
60.6.1 Overview of Development .. 60-14
60.6.2 Configuring the Email Driver ... 60-14
60.6.3 Using JDeveloper 11g to Build the Application ... 60-15
60.6.3.1 Opening the Project ... 60-15
60.6.4 Deploying the Application .. 60-18
60.6.5 Testing the Application.. 60-18
60.7 Creating a New Application Server Connection... 60-20

61 Sending and Receiving Messages using the User Messaging Service Java
API

61.1 Introduction to the UMS Java API... 61-2
61.2 Creating a UMS Client Instance and Specifying Runtime Parameters 61-2
61.2.1 API Reference for Class MessagingClientFactory.. 61-3
61.3 Sending a Message... 61-4
61.3.1 Creating a Message... 61-4
61.3.1.1 Creating a Plaintext Message... 61-4
61.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML

 Parts)... 61-4
61.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for

Recipients with Different Delivery Types.. 61-5
61.3.2 API Reference for Class MessagingFactory .. 61-5
61.3.3 API Reference for Interface Message ... 61-6
61.3.4 API Reference for Enum DeliveryType... 61-6
61.3.5 Addressing a Message ... 61-6
61.3.5.1 Types of Addresses ... 61-6
61.3.5.2 Creating Address Objects... 61-6
61.3.5.3 Creating a Recipient with a Failover Address... 61-6
61.3.5.4 API Reference for Class MessagingFactory ... 61-7
61.3.5.5 API Reference for Interface Address .. 61-7
61.3.6 User Preference Based Messaging ... 61-7
61.4 Retrieving Message Status.. 61-7
61.4.1 Synchronous Retrieval of Message Status... 61-7
61.4.2 Asynchronous Receiving of Message Status .. 61-8
61.4.2.1 Creating a Listener Programmatically.. 61-8
61.4.2.2 Default Status Listener.. 61-8
61.4.2.3 Per Message Status Listener... 61-8
61.5 Receiving a Message.. 61-9
61.5.1 Registering an Access Point .. 61-9

xlii

61.5.2 Synchronous Receiving.. 61-9
61.5.3 Asynchronous Receiving ... 61-10
61.5.3.1 Creating a Listener Programmatically.. 61-10
61.5.3.2 Default Message Listener ... 61-10
61.5.3.3 Per Access Point Message Listener ... 61-11
61.5.4 Message Filtering .. 61-11
61.6 Configuring for a Cluster Environment ... 61-11
61.7 Configuring Security ... 61-12
61.8 Threading Model.. 61-12
61.8.1 Listener Threading ... 61-13
61.9 Using the UMS Client API to Build a Client Application .. 61-13
61.9.1 Overview of Development .. 61-14
61.9.2 Configuring the Email Driver ... 61-14
61.9.3 Using JDeveloper 11g to Build the Application ... 61-14
61.9.3.1 Opening the Project ... 61-14
61.9.4 Deploying the Application .. 61-16
61.9.5 Testing the Application.. 61-17
61.10 Using the UMS Client API to Build a Client Echo Application 61-19
61.10.1 Overview of Development .. 61-20
61.10.2 Configuring the Email Driver ... 61-20
61.10.3 Using JDeveloper 11g to Build the Application ... 61-20
61.10.3.1 Opening the Project ... 61-20
61.10.4 Deploying the Application .. 61-22
61.10.5 Testing the Application.. 61-23
61.11 Creating a New Application Server Connection... 61-24

62 Sending and Receiving Messages using the User Messaging Service Web
Service API

62.1 Introduction to the UMS Web Service API .. 62-1
62.2 Creating a UMS Client Instance and Specifying Runtime Parameters 62-2
62.3 Sending a Message... 62-3
62.3.1 Creating a Message... 62-4
62.3.1.1 Creating a Plaintext Message... 62-4
62.3.1.2 Creating a Multipart/Mixed Message (with Text and Binary Parts)................. 62-4
62.3.1.3 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML

 Parts)... 62-4
62.3.1.4 Creating Delivery Channel-Specific Payloads in a Single Message for

Recipients with Different Delivery Types.. 62-5
62.3.2 API Reference for Interface Message ... 62-6
62.3.3 API Reference for Enum DeliveryType... 62-6
62.3.4 Addressing a Message ... 62-6
62.3.4.1 Types of Addresses ... 62-6
62.3.4.2 Creating Address Objects... 62-6
62.3.4.3 Creating a Recipient with a Failover Address... 62-7
62.3.4.4 Recipient Types.. 62-7
62.3.4.5 API Reference for Class MessagingFactory ... 62-7
62.3.4.6 API Reference for Interface Address .. 62-7

xliii

62.3.5 User Preference Based Messaging ... 62-7
62.4 Retrieving Message Status.. 62-8
62.4.1 Synchronous Retrieval of Message Status... 62-8
62.4.2 Asynchronous Receiving of Message Status .. 62-8
62.4.2.1 Creating a Listener Programmatically.. 62-8
62.4.2.2 Publish the Callback Service .. 62-9
62.4.2.3 Stop a Dynamically Published Endpoint ... 62-9
62.4.2.4 Registration... 62-9
62.5 Receiving a Message.. 62-9
62.5.1 Registering an Access Point .. 62-10
62.5.2 Synchronous Receiving.. 62-10
62.5.3 Asynchronous Receiving ... 62-11
62.5.3.1 Creating a Listener Programmatically.. 62-11
62.5.3.2 Default Message Listener ... 62-11
62.5.3.3 Per Access Point Message Listener ... 62-12
62.5.4 Message Filtering .. 62-12
62.6 Configuring for a Cluster Environment ... 62-12
62.7 Configuring Security ... 62-13
62.7.1 Client and Server Security ... 62-13
62.7.2 Listener/Callback Security.. 62-13
62.8 Threading Model.. 62-14
62.9 Sample Chat Application with Web Services APIs.. 62-14
62.9.1 Overview.. 62-14
62.9.1.1 Provided Files .. 62-14
62.9.2 Running the Pre-Built Sample .. 62-15
62.9.3 Testing the Sample.. 62-17
62.10 Creating a New Application Server Connection... 62-20

63 Parlay X Web Services Multimedia Messaging API

63.1 Introduction to Parlay X Messaging Operations... 63-1
63.2 Send Message Interface ... 63-2
63.2.1 sendMessage Operation... 63-2
63.2.2 getMessageDeliveryStatus Operation ... 63-3
63.3 Receive Message Interface .. 63-4
63.3.1 getReceivedMessages Operation.. 63-4
63.3.2 getMessage Operation.. 63-5
63.3.3 getMessageURIs Operation... 63-5
63.4 Oracle Extension to Parlay X Messaging.. 63-6
63.4.1 ReceiveMessageManager Interface .. 63-6
63.4.1.1 startReceiveMessage Operation .. 63-7
63.4.1.2 stopReceiveMessage Operation... 63-7
63.5 Parlay X Messaging Client API and Client Proxy Packages.. 63-8
63.6 Sample Chat Application with Parlay X APIs .. 63-8
63.6.1 Overview.. 63-9
63.6.1.1 Provided Files .. 63-9
63.6.2 Running the Pre-Built Sample .. 63-9
63.6.3 Testing the Sample.. 63-12

xliv

63.6.4 Creating a New Application Server Connection.. 63-14

64 User Messaging Preferences

64.1 Introduction to User Messaging Preferences ... 64-1
64.1.1 Terminology .. 64-1
64.1.2 Configuration of Notification Delivery Preferences.. 64-2
64.1.3 Delivery Preference Rules ... 64-2
64.1.3.1 Data Types .. 64-2
64.1.3.2 System Terms ... 64-3
64.1.3.3 Business Terms... 64-3
64.1.4 Rule Actions... 64-4
64.2 How to Manage Messaging Channels .. 64-5
64.2.1 Creating a Channel ... 64-5
64.2.2 Editing a Channel ... 64-6
64.2.3 Deleting a Channel ... 64-7
64.2.4 Setting a Default Channel.. 64-7
64.3 Creating Contact Rules using Filters... 64-7
64.3.1 Creating Filters.. 64-9
64.3.2 Editing a Filter... 64-10
64.3.3 Deleting a Filter... 64-10
64.4 Configuring Settings.. 64-10

Part XII Appendices

A BPEL Process Activities and Services

A.1 Introduction to Activities and Components .. A-1
A.2 Introduction to BPEL 1.1 and 2.0 Activities ... A-2
A.2.1 Tabs Common to Many Activities.. A-4
A.2.1.1 Annotations Tab .. A-4
A.2.1.2 Assertions Tab.. A-4
A.2.1.3 Correlations Tab .. A-5
A.2.1.4 Documentation Tab... A-5
A.2.1.5 Headers Tab.. A-5
A.2.1.6 Properties Tab .. A-5
A.2.1.7 Skip Condition Tab.. A-6
A.2.1.8 Source and Targets Tabs... A-6
A.2.1.9 Timeout Tab ... A-6
A.2.2 Assign Activity.. A-6
A.2.3 Assert Activity... A-9
A.2.4 Bind Entity Activity.. A-10
A.2.5 Compensate Activity.. A-11
A.2.6 CompensateScope Activity ... A-12
A.2.7 Create Entity Activity... A-13
A.2.8 Dehydrate Activity ... A-13
A.2.9 Email Activity.. A-14
A.2.10 Empty Activity .. A-15

xlv

A.2.11 Exit Activity ... A-16
A.2.12 Flow Activity ... A-16
A.2.13 FlowN Activity.. A-17
A.2.14 forEach Activity .. A-18
A.2.15 If Activity ... A-19
A.2.16 IM Activity... A-20
A.2.17 Invoke Activity.. A-20
A.2.18 Java Embedding Activity... A-21
A.2.19 Partner Link Activity.. A-22
A.2.20 Phase Activity.. A-23
A.2.21 Pick Activity .. A-24
A.2.22 Receive Activity .. A-26
A.2.23 Receive Signal Activity .. A-28
A.2.24 Remove Entity Activity.. A-28
A.2.25 RepeatUntil Activity... A-29
A.2.26 Replay Activity.. A-30
A.2.27 Reply Activity.. A-30
A.2.28 Rethrow Activity... A-31
A.2.29 Scope Activity.. A-32
A.2.30 Sequence Activity ... A-33
A.2.31 Signal Activity ... A-34
A.2.32 SMS Activity .. A-35
A.2.33 Switch Activity .. A-35
A.2.34 Terminate Activity.. A-36
A.2.35 Throw Activity .. A-37
A.2.36 Transform Activity ... A-37
A.2.37 User Notification Activity ... A-38
A.2.38 Validate Activity ... A-39
A.2.39 Voice Activity .. A-40
A.2.40 Wait Activity ... A-40
A.2.41 While Activity ... A-41
A.3 Introduction to BPEL Services ... A-42
A.3.1 ADF-BC Service... A-42
A.3.2 AQ Adapter ... A-42
A.3.3 Oracle B2B.. A-42
A.3.4 Oracle BAM Adapter.. A-42
A.3.5 Database Adapter ... A-43
A.3.6 Direct Binding Service.. A-43
A.3.7 EJB Service ... A-43
A.3.8 File Adapter ... A-43
A.3.9 FTP Adapter .. A-43
A.3.10 HTTP Binding.. A-43
A.3.11 JMS Adapter .. A-44
A.3.12 MQ Adapter... A-44
A.3.13 Oracle Applications .. A-44
A.3.14 Socket Adapter .. A-44
A.3.15 Third Party Adapter ... A-44

xlvi

A.3.16 Web Service ... A-44
A.4 Publishing and Browsing the Oracle Service Registry ... A-44
A.4.1 How to Publish a Business Service .. A-45
A.4.2 How to Create a Connection to the Registry .. A-45
A.4.3 How to Configure a SOA Project to Invoke a Service from the Registry A-46
A.4.3.1 Dynamically Resolving the SOAP Endpoint Location .. A-47
A.4.3.2 Dynamically Resolving the WSDL Endpoint Location.. A-48
A.4.3.3 Resolving Endpoints ... A-49
A.4.4 How To Configure the Inquiry URL, UDDI Service Key, and Endpoint Address

for Runtime.. A-51
A.4.4.1 Changing Endpoint Locations in the Registry Control.. A-52
A.4.4.2 Publishing WSDLs from Multiple SOA Partitions ... A-54
A.4.5 How to Publish WSDLs to UDDI for Multiple Partitions... A-54
A.5 Providing Design-time Governance with the Oracle Enterprise Repository.................. A-55
A.6 Validating When Loading a Process Diagram... A-55

B XPath Extension Functions

B.1 SOA XPath Extension Functions.. B-1
B.1.1 Database Functions... B-1
B.1.1.1 lookup-table.. B-1
B.1.1.2 query-database... B-2
B.1.1.3 sequence-next-val .. B-2
B.1.2 Date Functions... B-3
B.1.2.1 add-dayTimeDuration-to-dateTime ... B-3
B.1.2.2 current-date .. B-3
B.1.2.3 current-dateTime ... B-4
B.1.2.4 current-time.. B-4
B.1.2.5 day-from-dateTime ... B-4
B.1.2.6 format-dateTime .. B-5
B.1.2.7 hours-from-dateTime.. B-5
B.1.2.8 implicit-timezone... B-5
B.1.2.9 minutes-from-dateTime.. B-6
B.1.2.10 month-from-dateTime .. B-6
B.1.2.11 seconds-from-dateTime .. B-6
B.1.2.12 subtract-dayTimeDuration-from-dateTime... B-6
B.1.2.13 timezone-from-dateTime.. B-7
B.1.2.14 year-from-dateTime .. B-7
B.1.3 Mathematical Functions... B-7
B.1.3.1 abs .. B-8
B.1.4 String Functions .. B-8
B.1.4.1 compare... B-8
B.1.4.2 compare-ignore-case ... B-9
B.1.4.3 create-delimited-string.. B-9
B.1.4.4 ends-with .. B-9
B.1.4.5 format-string... B-10
B.1.4.6 get-content-as-string ... B-10
B.1.4.7 get-content-from-file-function ... B-10

xlvii

B.1.4.8 get-localized-string.. B-11
B.1.4.9 index-within-string.. B-11
B.1.4.10 last-index-within-string .. B-12
B.1.4.11 left-trim ... B-12
B.1.4.12 lower-case ... B-13
B.1.4.13 matches.. B-13
B.1.4.14 right-trim... B-13
B.1.4.15 upper-case... B-14
B.2 BPEL XPath Extension Functions .. B-14
B.2.1 addQuotes.. B-14
B.2.2 appendToList... B-14
B.2.3 copyList .. B-15
B.2.4 countNodes.. B-16
B.2.5 doc... B-16
B.2.6 doStreamingTranslate .. B-16
B.2.7 doTranslateFromNative... B-17
B.2.8 doTranslateToNative.. B-17
B.2.9 doXSLTransform... B-18
B.2.10 doXSLTransformForDoc.. B-19
B.2.11 formatDate ... B-19
B.2.12 generateGUID ... B-20
B.2.13 getApplicationName .. B-20
B.2.14 getAttachmentContent... B-20
B.2.15 getComponentName .. B-21
B.2.16 getComponentInstanceID.. B-21
B.2.17 getCompositeName.. B-21
B.2.18 getCompositeInstanceID ... B-21
B.2.19 getCompositeURL .. B-22
B.2.20 getContentAsString .. B-22
B.2.21 getConversationId .. B-22
B.2.22 getCreator .. B-22
B.2.23 getCurrentDate.. B-23
B.2.24 getCurrentDateTime .. B-23
B.2.25 getCurrentTime... B-23
B.2.26 getDomainId.. B-23
B.2.27 getECID .. B-24
B.2.28 getElement ... B-24
B.2.29 getFaultAsString ... B-24
B.2.30 getFaultName.. B-24
B.2.31 getGroupIdsFromGroupAlias .. B-25
B.2.32 getInstanceId ... B-25
B.2.33 getNodeValue.. B-25
B.2.34 getNodes .. B-26
B.2.35 getOwnerDocument ... B-26
B.2.36 getParentComponentInstanceID .. B-26
B.2.37 getPreference ... B-26
B.2.38 getProcessId... B-27

xlviii

B.2.39 getProcessOwnerId .. B-27
B.2.40 getProcessURL .. B-27
B.2.41 getProcessVersion... B-27
B.2.42 getUserAliasId... B-28
B.2.43 getUserIdsFromGroupAlias.. B-28
B.2.44 setCompositeInstanceTitle .. B-28
B.2.45 instanceOf .. B-29
B.2.46 integer... B-29
B.2.47 parseEscapedXML .. B-29
B.2.48 parseXML... B-29
B.2.49 processXQuery .. B-30
B.2.50 processXSLT .. B-30
B.2.51 processXSLTAttachment ... B-34
B.2.52 processXSQL.. B-34
B.2.53 readBinaryFromFile.. B-35
B.2.54 readFile... B-35
B.2.55 writeBinaryToFile ... B-36
B.2.56 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0 ... B-36
B.2.56.1 getLinkStatus.. B-36
B.2.56.2 getVariableData ... B-37
B.2.56.3 getVariableProperty (For BPEL 1.1).. B-38
B.2.56.4 getVariableProperty (For BPEL 2.0).. B-38
B.2.57 Utility Functions ... B-38
B.2.57.1 batchProcessActive.. B-38
B.2.57.2 batchProcessCompleted ... B-39
B.2.57.3 format .. B-39
B.2.57.4 genEmptyElem... B-39
B.2.57.5 getChildElement .. B-40
B.2.57.6 getMessage ... B-40
B.2.57.7 max-value-among-nodeset... B-40
B.2.57.8 min-value-among-nodeset ... B-41
B.2.57.9 square-root.. B-41
B.2.57.10 translateFromNative ... B-41
B.2.57.11 translateToNative .. B-42
B.2.57.12 translateFromNativeAttachment .. B-42
B.2.57.13 translateToNativeAttachment ... B-42
B.3 Oracle Mediator XPath Extension Functions ... B-43
B.3.1 doStreamingTranslate .. B-43
B.3.2 doTranslateFromNative... B-43
B.3.3 doTranslateToNative.. B-44
B.3.4 getAttachmentContent... B-45
B.3.5 getComponentInstanceID.. B-45
B.3.6 getComponentName .. B-45
B.3.7 getCompositeInstanceID ... B-46
B.3.8 getCompositeName.. B-46
B.3.9 getHeader... B-46
B.3.10 getECID .. B-47

xlix

B.3.11 getParentComponentInstanceID .. B-47
B.3.12 setCompositeInstanceTitle .. B-47
B.3.13 translateFromNativeAttachment.. B-48
B.3.14 translateToNativeAttachment .. B-48
B.4 Advanced Functions.. B-49
B.4.1 create-nodeset-from-delimited-string.. B-49
B.4.2 generate-guid... B-49
B.4.3 lookupPopulatedColumns .. B-49
B.4.4 lookupValue .. B-50
B.4.5 lookupValue1M... B-50
B.4.6 lookupXRef .. B-51
B.4.7 lookupXRef1M .. B-51
B.4.8 lookup-xml... B-52
B.4.9 markForDelete... B-52
B.4.10 populateXRefRow... B-53
B.4.11 populateXRefRow1M... B-53
B.5 Workflow Service Functions .. B-54
B.5.1 clearTaskAssignees... B-54
B.5.2 createWordMLDocument.. B-54
B.5.3 getNotificationProperty ... B-54
B.5.4 getNumberOfTaskApprovals ... B-55
B.5.5 getPreviousTaskApprover .. B-55
B.5.6 getTaskAttachmentByIndex.. B-55
B.5.7 getTaskAttachmentByName ... B-56
B.5.8 getTaskAttachmentContents... B-56
B.5.9 getTaskAttachmentsCount.. B-56
B.5.10 getTaskResourceBundleString.. B-57
B.5.11 wfDynamicGroupAssign... B-57
B.5.12 wfDynamicUserAssign .. B-58
B.5.13 Identity Service Functions ... B-59
B.5.13.1 getDefaultRealmName ... B-59
B.5.13.2 getGroupProperty ... B-59
B.5.13.3 getManager... B-59
B.5.13.4 getReportees ... B-60
B.5.13.5 getSupportedRealmNames .. B-60
B.5.13.6 getUserProperty... B-60
B.5.13.7 getUserRoles... B-61
B.5.13.8 getUsersInGroup ... B-62
B.5.13.9 isUserInRole ... B-62
B.5.13.10 lookupGroup.. B-62
B.5.13.11 lookupUser ... B-63
B.6 Building XPath Expressions in Oracle JDeveloper ... B-63
B.6.1 How to Use the Expression Builder ... B-63
B.6.2 Introduction to the XPath Building Assistant... B-65
B.6.3 How to Use the XPath Building Assistant .. B-65
B.6.4 Using the XPath Building Assistant in the XSLT Mapper .. B-66
B.6.5 Function Parameter Tool Tips... B-68

l

B.6.6 Syntactic and Semantic Validation... B-68
B.6.7 Creating Expressions with Free Form Text and XPath Expressions B-69
B.7 Creating User-Defined XPath Extension Functions.. B-70
B.7.1 How to Implement User-Defined XPath Extension Functions B-73
B.7.1.1 How to Implement Functions for the XSLT Mapper ... B-73
B.7.1.2 How to Implement Functions for All Other Components B-73
B.7.2 How to Configure User-Defined XPath Extension Functions.................................... B-74
B.7.3 How to Deploy User-Defined Functions to Runtime.. B-76

C Deployment Descriptor Properties

C.1 Introduction to Deployment Descriptor Properties.. C-1
C.1.1 How to Define Deployment Descriptor Properties ... C-1
C.1.2 How to Get the Value of a Preference within a BPEL Process..................................... C-3
C.2 Deprecated 10.1.3 Properties .. C-3

D Understanding Sensor Public Views and the Sensor Actions XSD

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File............................. D-1
D.2 Sensor Public Views... D-1
D.2.1 BPM Schema.. D-1
D.2.1.1 BPEL_PROCESS_INSTANCES.. D-2
D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES ... D-2
D.2.1.3 BPEL_FAULT_SENSOR_VALUES ... D-3
D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES.. D-4
D.3 Sensor Actions XSD File.. D-5

E Oracle BAM Web Services Operations

E.1 DataObjectOperations10131 ... E-1
E.1.1 Batch ... E-1
E.1.1.1 Request Message.. E-1
E.1.2 Delete .. E-2
E.1.2.1 Request Message.. E-2
E.1.3 Insert ... E-2
E.1.3.1 Request Message.. E-2
E.1.4 Update .. E-3
E.1.4.1 Request Message.. E-3
E.1.5 Upsert ... E-3
E.1.5.1 Request Message.. E-3
E.2 DataObjectOperationsByName.. E-4
E.2.1 Delete .. E-4
E.2.1.1 Request Message.. E-4
E.2.2 Get ... E-4
E.2.2.1 Request Message.. E-4
E.2.3 Insert ... E-5
E.2.3.1 Request Message.. E-5
E.2.4 Update .. E-5
E.2.4.1 Request Message.. E-5

li

E.2.5 Upsert ... E-5
E.2.5.1 Request Message.. E-6
E.3 DataObjectOperationsByID.. E-6
E.3.1 Batch ... E-6
E.3.1.1 Request Message.. E-6
E.3.2 Delete .. E-7
E.3.2.1 Request Message.. E-7
E.3.3 Insert ... E-7
E.3.3.1 Request Message.. E-7
E.3.4 Update .. E-8
E.3.4.1 Request Message.. E-8
E.3.5 Upsert ... E-8
E.3.5.1 Request Message.. E-8
E.4 DataObjectDefinition Operations .. E-9
E.4.1 Create.. E-9
E.4.1.1 Request Message.. E-9
E.4.1.2 Response Message ... E-11
E.4.2 Delete .. E-11
E.4.2.1 Request Message.. E-11
E.4.2.2 Response Message ... E-11
E.4.3 Get ... E-11
E.4.3.1 Request Message.. E-11
E.4.3.2 Response Message ... E-11
E.4.4 Update .. E-12
E.4.4.1 Request Message.. E-12
E.4.4.2 Response Message ... E-12
E.5 ManualRuleFire Operations ... E-12
E.5.1 FireRuleByName... E-13
E.5.1.1 Request Message.. E-13
E.5.1.2 Response Message ... E-13

F Oracle BAM Alert Rule Options

F.1 Events... F-1
F.1.1 In a specific amount of time .. F-1
F.1.2 At a specific time today.. F-1
F.1.3 On a certain day at a specific time.. F-2
F.1.4 Every interval between two times.. F-2
F.1.5 Every date interval starting on certain date at a specific time F-2
F.1.6 When a report changes .. F-2
F.1.7 When a data field changes in data object .. F-3
F.1.8 When a data field in a report meets specified conditions... F-3
F.1.9 When a data field in a data object meets specified conditions..................................... F-4
F.1.10 When this rule is launched.. F-5
F.2 Conditions... F-5
F.2.1 If it is between two times... F-5
F.2.2 If It is between two days .. F-5
F.2.3 If it is a particular day of the week... F-5

lii

F.3 Actions... F-5
F.3.1 Send a report via email .. F-6
F.3.2 Send a message via email .. F-6
F.3.3 Send a report via email and escalate to another user after a specific amount of

time ... F-6
F.3.4 Send a parameterized message... F-6
F.3.5 Send a parameterized message for every matching row in a data object F-10
F.3.6 Launch a rule... F-11
F.3.7 Launch rule if an action fails ... F-11
F.3.8 Delete rows from a Data Object.. F-11
F.3.9 Call a Web Service .. F-11
F.3.9.1 How to Use Call a Web Service: An Example ... F-13
F.3.10 Run an Oracle Data Integrator Scenario.. F-14
F.3.11 Call an External Action .. F-14
F.4 Frequency Constraint .. F-14

G Oracle BAM ICommand Operations and File Formats

G.1 Summary of Individual Operations .. G-1
G.2 Detailed Operation Descriptions ... G-3
G.2.1 Clear.. G-3
G.2.2 Delete .. G-3
G.2.3 Export ... G-5
G.2.4 Import ... G-10
G.2.5 Rename... G-14
G.3 Format of Command File.. G-15
G.3.1 Inline Content.. G-15
G.3.2 Command IDs ... G-16
G.3.3 Continue On Error .. G-17
G.4 Format of Log File.. G-17
G.5 Sample Export File ... G-18
G.6 Regular Expressions .. G-18

H Normalized Message Properties

H.1 Introduction to Normalized Messages ... H-1
H.2 Oracle BPEL Process Manager Properties .. H-2
H.3 Oracle Web Services Addressing Properties.. H-3
H.4 Manipulating Normalized Message Properties with bpelx Extensions H-4
H.4.1 BPEL 1.1 bpelx Extensions Syntax.. H-4
H.4.2 BPEL 2.0 bpelx Extensions Syntax.. H-5

I Interfaces Implemented By Rules Dictionary Editor Task Flow

I.1 The MetadataDetails Interface ... I-1
I.1.1 The getDocument Method .. I-2
I.1.2 The getRelatedDocument Method ... I-3
I.1.3 The setDocument Method ... I-3
I.2 The NLSPreferences Interface .. I-4

liii

J Oracle User Messaging Service Applications

J.1 Send Message to User Specified Channel .. J-1
J.1.1 Overview... J-2
J.1.1.1 Provided Files ... J-2
J.1.2 Installing and Configuring SOA and User Messaging Service..................................... J-2
J.1.2.1 Updating Addresses in Your LDAP User Profile .. J-2
J.1.3 Building the Sample .. J-3
J.1.4 Creating a New Application Server Connection... J-10
J.1.5 Deploying the Project .. J-11
J.1.6 Configuring User Messaging Preferences.. J-12
J.1.7 Testing the Sample... J-13
J.1.7.1 Verifying the Execution of Sending the Email ... J-13
J.2 Send Email with Attachments.. J-14
J.2.1 Overview... J-14
J.2.1.1 Provided Files ... J-15
J.2.2 Installing and Configuring SOA and User Messaging Service................................... J-15
J.2.2.1 Updating Addresses in Your LDAP User Profile .. J-15
J.2.3 Running the Pre-Built Sample ... J-16
J.2.4 Testing the Sample... J-17
J.2.4.1 Verifying the Execution ... J-18
J.2.5 Building the Sample .. J-18
J.2.5.1 Sending Text Content with base64 Encoding... J-27
J.2.6 Creating a New Application Server Connection... J-28

K Oracle SOA Suite Properties Road Map

K.1 Oracle BPEL Process Manager Deployment Descriptor Properties K-1
K.2 Normalized Message Header Properties.. K-2
K.2.1 Oracle JCA Adapter Message Header Properties .. K-2
K.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing Message

Header Properties ... K-2
K.2.3 Oracle B2B Message Header Properties .. K-3
K.3 SOA Composite Application Properties... K-3
K.4 Fault Policy and Adapter Rejected Message Properties... K-4
K.5 Oracle B2B System Properties .. K-4
K.6 Oracle Enterprise Manager Fusion Middleware Control Console Property Pages K-4
K.6.1 SOA Infrastructure Properties .. K-5
K.6.2 Oracle BPEL Process Manager.. K-5
K.6.3 Human Workflow Notification and Task Service.. K-5
K.6.4 Oracle Mediator .. K-6
K.6.5 Cross References ... K-6
K.6.6 Oracle B2B.. K-6
K.6.7 Service and Reference Binding Component Properties .. K-6
K.7 System MBean Browser Properties ... K-7
K.7.1 SOA Infrastructure Properties .. K-7
K.7.2 Oracle BPEL Process Manager Properties... K-8
K.7.3 Oracle Mediator Properties ... K-8

liv

K.7.4 Human Workflow Notification and Task Service Properties K-8
K.7.5 Oracle Service Registry WSDL URL Caching Configuration....................................... K-9

Index

lv

Preface

This manual describes how to use Oracle SOA Suite.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This manual is intended for anyone who is interested in developing applications with
Oracle SOA Suite.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

lvi

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following Oracle resources:

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM
Suite

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

To download Oracle BPEL Process Manager documentation, technical notes, or other
collateral, visit the Oracle BPEL Process Manager site at Oracle Technology Network
(OTN):

http://www.oracle.com/technology/bpel/

If you have a username and password for OTN, then you can go directly to the
documentation section of the OTN web site at

http://www.oracle.com/technology/documentation/

See the Business Process Execution Language for Web Services Specification, available at the
following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbizspec/html/bpel1-1.asp

See the XML Path Language (XPath) Specification, available at the following URL:

http://www.w3.org/TR/1999/REC-xpath-19991116

See the Web Services Description Language (WSDL) 1.1 Specification, available at the
following URL:

http://www.w3.org/TR/wsdl

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

lvii

lviii

Part I
Introduction to Oracle SOA Suite

This part provides an introduction to Oracle SOA Suite and developing SOA
composite applications.

This part contains the following chapters:

■ Chapter 1, "Introduction to Building Applications with Oracle SOA Suite"

■ Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite"

■ Chapter 3, "Introduction to the SOA Sample Application"

1

Introduction to Building Applications with Oracle SOA Suite 1-1

1Introduction to Building Applications with
Oracle SOA Suite

This chapter describes the architecture and key functionality of Oracle SOA Suite.

This chapter includes the following sections:

■ Section 1.1, "Introduction to Service-Oriented Architecture"

■ Section 1.2, "Introduction to Services"

■ Section 1.3, "Introduction to Oracle SOA Suite"

■ Section 1.4, "Standards Used by Oracle SOA Suite to Enable SOA"

■ Section 1.5, "Service Component Architecture within SOA Composite
Applications"

■ Section 1.6, "Runtime Behavior of a SOA Composite Application"

■ Section 1.7, "Approaches for Designing SOA Composite Applications"

■ Section 1.8, "Learning Oracle SOA Suite"

1.1 Introduction to Service-Oriented Architecture
Changing markets, increasing competitive pressures, and evolving customer needs are
placing greater pressure on IT to deliver greater flexibility and speed. Today, every
organization is faced with predicting change in a global business environment, to
rapidly respond to competitors, and to best exploit organizational assets for growth. In
response to these challenges, leading companies are adopting service-oriented
architecture (SOA) to deliver on these requirements by overcoming the complexity of
their application and IT environments.

SOA provides an enterprise architecture that supports building connected enterprise
applications to provide solutions to business problems. SOA facilitates the
development of enterprise applications as modular business web services that can be
easily integrated and reused, creating a truly flexible, adaptable IT infrastructure.

1.2 Introduction to Services
SOA separates business functions into distinct units, or services. A SOA application
reuses services to automate a business process.

A standard interface and message structure define services. The most widely used
mechanism are web services standards. These standards include the Web Service
Description Language (WSDL) file for service interface definition and XML Schema
Documents (XSD) for message structure definition. These XML standards are easily

Introduction to Oracle SOA Suite

1-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

exchanged using standard protocols. Because standards for web services use a
standard document structure, they enable existing systems to interoperate regardless
of the choice of operating system and computer language used for service
implementation.

When designing a SOA approach, you create a service portfolio plan to identify
common functionality to use as a service within the business process. By creating and
maintaining a plan, you ensure that existing services and applications are reused or
repurposed whenever possible. This plan also reduces the time spent in creating
needed functionality for the application.

1.3 Introduction to Oracle SOA Suite
Oracle SOA Suite provides a complete set of service infrastructure components for
designing, deploying, and managing composite applications. Oracle SOA Suite
enables services to be created, managed, and orchestrated into composite applications
and business processes. Composites enable you to easily assemble multiple technology
components into one SOA composite application. Oracle SOA Suite plugs into
heterogeneous IT infrastructures and enables enterprises to incrementally adopt SOA.

The components of Oracle SOA Suite benefit from common capabilities, including a
single deployment, management, and tooling model, end-to-end security, and unified
metadata management. Oracle SOA Suite is unique in that it provides the following
set of integrated capabilities:

■ Messaging

■ Service discovery

■ Orchestration

■ Web services management and security

■ Business rules

■ Events framework

■ Business activity monitoring

1.4 Standards Used by Oracle SOA Suite to Enable SOA
Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among
the standards it leverages are:

■ Service Component Architecture (SCA) assembly model

Provides the service details and their interdependencies to form composite
applications. SCA enables you to represent business logic as reusable service
components that can be easily integrated into any SCA-compliant application. The
resulting application is known as a SOA composite application. The specification
for the SCA standard is maintained by the Organization for the Advancement of
Structured Information Standards (OASIS) through the Open Composite Services
Architecture (CSA) Member Section:

http://www.oasis-opencsa.org

■ Service Data Objects (SDO)

Specifies a standard data method and can modify business data regardless of how
it is physically accessed. Knowledge is not required about how to access a
particular back-end data source to use SDO in a SOA composite application.

Service Component Architecture within SOA Composite Applications

Introduction to Building Applications with Oracle SOA Suite 1-3

Consequently, you can use static or dynamic programming styles and obtain
connected and disconnected access.

■ Business Process Execution Language (BPEL)

Provides enterprises with an industry standard for business-process orchestration
and execution. Using BPEL, you design a business process that integrates a series
of discrete services into an end-to-end process flow. This integration reduces
process cost and complexity. BPEL versions 1.1 and 2.0 are supported.

■ XSL Transformations (XSLT)

Processes XML documents and transforms document data from one XML schema
to another.

■ Java Connector Architecture (JCA)

Provides a Java technology solution to the problem of connectivity between the
many application servers in Enterprise Information Systems (EIS).

■ Java Messaging Service (JMS)

Provides a messaging standard that allows application components based on the
Java 2 Platform, Enterprise Edition (Java EE) to access business logic distributed
among heterogeneous systems.

■ Web Services Description Language (WSDL) file

Provides the entry points into a SOA composite application. The WSDL file
provides a standard contract language and is central for understanding the
capabilities of a service.

■ Simple Object Access Protocol (SOAP)

Provides the default network protocol for message delivery.

1.5 Service Component Architecture within SOA Composite Applications
Oracle SOA Suite uses the SCA standard as a way to assemble service components
into a SOA composite application. SCA provides a programming model for the
following:

■ Creating service components written with a wide range of technologies, including
programming languages such as Java, BPEL, C++, and declarative languages such
as XSLT. The use of specific programming languages and technologies (including
web services) is not required with SCA.

■ Assembling the service components into a SOA composite application. In the SCA
environment, service components are the building blocks of applications.

SCA provides a model for assembling distributed groups of service components into
an application, enabling you to describe the details of a service and how services and
service components interact. Composites are used to group service components and
wires are used to connect service components. SCA helps to remove middleware
concerns from the programming code by applying infrastructure declaratively to
composites, including security and transactions.

The key benefits of SCA include the following:

■ Loose coupling

Service components integrate with other service components without needing to
know how other service components are implemented.

Service Component Architecture within SOA Composite Applications

1-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Flexibility

Service components can easily be replaced by other service components.

■ Services invocation

Services can be invoked either synchronously or asynchronously.

■ Productivity

Service components are easily integrated to create a SOA composite application.

■ Easy Maintenance and Debugging

Service components can be easily maintained and debugged when an issue is
encountered.

A SOA composite is an assembly of services, service components, and references
designed and deployed in a single application. Wiring between the services, service
components, and references enables message communication. The details for a
composite are stored in the composite.xml file.

Figure 1–1 provides an example of a composite that includes an inbound service
binding component, a BPEL process service component (named Account), a business
rules service component (named AccountRule), and two outbound reference binding
components.

Figure 1–1 Simple SOA Composite Architecture

1.5.1 Service Components
Service components are the building blocks that you use to construct a SOA composite
application.

The following service components are available. There is a corresponding service
engine of the same name for each service component. All service engines can interact
in a single composite.

■ BPEL processes provide process orchestration and storage of a synchronous or an
asynchronous process. You design a business process that integrates a series of
business activities and services into an end-to-end process flow.

Service Component
AccountRule

Business
Rules

Service
Component

Service Component
Account

BPEL
binding.rmibinding.ws

binding.ws

Reference

Service

WebApp

Wire

Wire

Service
Component

Composite

Composite BigBank

Service Component Architecture within SOA Composite Applications

Introduction to Building Applications with Oracle SOA Suite 1-5

■ Business rules enable you to design a business decision based on rules.

■ Human tasks provide workflow modeling that describes the tasks for users or
groups to perform as part of an end-to-end business process flow.

■ Mediators route events (messages) between different components

■ Spring enables you to integrate Java interfaces into SOA composite applications

1.5.2 Binding Components
Binding components establish a connection between a SOA composite and the external
world. There are two types of binding components:

■ Services provide the outside world with an entry point to the SOA composite
application. The WSDL file of the service advertises its capabilities to external
applications. These capabilities are used for contacting the SOA composite
application components. The binding connectivity of the service describes the
protocols that can communicate with the service, for example, SOAP/HTTP or a
JCA adapter.

■ References enable messages to be sent from the SOA composite application to
external services in the outside world.

Table 1–1 lists and describes the binding components provided by Oracle SOA Suite.

Table 1–1 Binding Components Provided by Oracle SOA Suite

Binding Components Description

Web service (SOAP over HTTP) Use for connecting to standards-based services using SOAP
over HTTP.

JCA adapters Use for integrating services and references with technologies
(for example, databases, file systems, FTP servers, messaging:
JMS, IBM WebSphere MQ, and so on) and applications (Oracle
E-Business Suite, PeopleSoft, and so on). This includes the AQ
adapter, database adapter, file adapter, FTP adapter, JMS
adapter, MQ adapter, and Socket adapter.

B2B binding component Use for browsing B2B metadata in the MDS repository and
selecting document definitions.

ADF-BC service Use for connecting Oracle Application Development
Framework (ADF) applications using SDO with the SOA
platform.

Oracle Applications Use for integrating the Oracle Applications adapter with
Oracle applications.

BAM adapter Use for integrating Java EE applications with Oracle BAM
Server to send data, and also use as a reference binding
component in a SOA composite application.

EJB service Use for integrating SDO parameters or Java interfaces with
Enterprise JavaBeans.

Direct binding service Use to invoke a SOA composite application and exchange
messages over a remote method invocation (RMI) in the
inbound direction and to invoke an Oracle Service Bus (OSB)
flow or another SOA composite application in the outbound
direction.

HTTP binding Use to integrate SOA composite applications with HTTP
binding.

Runtime Behavior of a SOA Composite Application

1-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1.5.3 Wires
Wires enable you to graphically connect the following components in a single SOA
composite application for message communication:

■ Services to service components

■ Service components to other service components

■ Service components to references

1.6 Runtime Behavior of a SOA Composite Application
Figure 1–2 shows the operability of a SOA composite application using SCA
technology. In this example, an external application (a .NET payment calculator)
initiates contact with the SOA composite application.

For more information about descriptions of the tasks that services, references, service
components, and wires perform in an application, see Section 1.5, "Service Component
Architecture within SOA Composite Applications."

Figure 1–2 Runtime Behavior of SOA Composite Application

The .NET payment calculator is an external application that sends a SOAP message to
the SOA application to initiate contact. The Service Infrastructure picks up the SOAP
message from the binding component and determines the intended component target.
The BPEL process service engine receives the message from the Service Infrastructure
for processing by the BPEL Loan Process application and posts the message back to the
Service Infrastructure after completing the processing.

Table 1–2 describes the operability of the SOA composite application shown in
Figure 1–1.

BPEL
Process
Manager

Business
Rules

Oracle
Mediator

Human
Task

BAM B2B JCA
Adapters

Loan
Process

APR
Rule

Manager
Review

Task

EBS
Customer

View

Service Archive: Composite (deployment unit)

ADF BCHTTP
SOAP

.NET
Payment

Calculator

UDDI

MDS

Sends a SOAP message
to the SOA application

Service Engines
(Containers that host the
component business logic)

Service Infrastructure
(Picks up SOAP message
from binding component
and determines the
intended component
target)

Binding Components
(Connect SOA applications
to the outside world)

Runtime Behavior of a SOA Composite Application

Introduction to Building Applications with Oracle SOA Suite 1-7

1.6.1 Service Infrastructure
The Service Infrastructure provides the following internal message routing
infrastructure capabilities for connecting components and enabling data flow:

■ Receives messages from the service providers or external partners through SOAP
services or adapters

■ Sends the message to the appropriate service engine

■ Receives the message back from the service engine and sends it to any additional
service engines in the composite or to a reference binding component based on the
wiring

Table 1–2 Introduction to a SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1–1 See Section

Binding
components

Establishes the connectivity
between a SOA composite
and the external world. There
are two types:

■ Service binding
components provide an
entry point to the SOA
composite application.

■ Reference binding
components enable
messages to be sent from
the SOA composite
application to external
services.

The SOAP binding component service:

■ Advertises its capabilities in the WSDL
file.

■ Receives the SOAP message from the
.NET application.

■ Sends the message through the policy
infrastructure for security checking.

■ Translates the message to a normalized
message (an internal representation of the
service’s WSDL contract in XML format).

■ Posts the message to the Service
Infrastructure.

An example of a binding component reference
in Figure 1–2 is the Loan Process application.

Section 1.5.1,
"Service
Components"

Service
Infrastructure

Provides internal message
transport

The Service Infrastructure:

■ Receives the message from the SOAP
binding component service.

■ Posts the message for processing to the
BPEL process service engine first and the
human task service engine second.

Section 1.6.1,
"Service
Infrastructure"

Service engines
(containers
hosting service
components)

Host the business logic or
processing rules of the
service components. Each
service component has its
own service engine.

The BPEL service engine:

■ Receives the message from the Service
Infrastructure for processing by the BPEL
Loan Process application.

■ Posts the message to the Service
Infrastructure after completing the
processing.

Section 1.6.2,
"Service Engines"

UDDI and MDS The MDS (Metadata Service)
repository stores descriptions
of available services. The
UDDI advertises these
services, and enables
discovery and dynamic
binding at runtime.

The SOAP service used in this composite
application is stored in the MDS repository
and can also be published to UDDI.

Oracle Fusion
Middleware
Getting Started
with Oracle SOA
Suite

SOA Archive:
Composite

(deployment
unit)

The deployment unit that
describes the composite
application.

The SOA archive (SAR) of the composite
application is deployed to the Service
Infrastructure.

Section 1.6.3,
"Deployed
Service
Archives"

Approaches for Designing SOA Composite Applications

1-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1.6.2 Service Engines
Service engines are containers that host the business logic or processing rules of these
service components. Service engines process the message information received from
the Service Infrastructure.

There is a corresponding service engine of the same name for each service component.
All service engines can interact in a single composite.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite and Oracle BPM Suite.

1.6.3 Deployed Service Archives
The SAR is a SOA archive deployment unit. A SAR file is a special JAR file that
requires a prefix of sca_. (for example, sca_OrderBookingComposite_
rev1.0.jar). The SAR file is deployed to the Service Infrastructure. The SAR
packages service components, such as BPEL processes, business rules, human tasks,
and mediator routing services into a single application. The SAR file is analogous to
the BPEL suitcase archive of previous releases, but at the higher composite level and
with any additional service components that your application includes (for example,
human tasks, business rules, and mediator routing services).

For more information, see Chapter 41, "Deploying SOA Composite Applications."

1.7 Approaches for Designing SOA Composite Applications
When creating a SOA composite application, you have a choice of approaches for
building it:

■ Top-Down: You analyze your business processes and identify activities in support
of your process. When creating a composite, you define all the SOA components
through the SOA Composite Editor. You create all the services first, and then build
the BPEL process, referencing the created services.

■ Bottom-Up: You analyze existing applications and assets to identify those that can
be used as services. As you create a BPEL process, you build the services on an
as-needed basis. This approach works well when IT must react to a change.

1.8 Learning Oracle SOA Suite
In addition to this developer’s guide, Oracle also offers the following resources to help
you learn how you can best use Oracle SOA Suite in your applications:

■ Getting Started: Oracle Fusion Middleware Getting Started with Oracle SOA Suite
introduces you to Oracle SOA Suite, its components, and provides you with a
high-level understanding of what you can accomplish with the suite. Also, you
can refer to the Oracle SOA Suite section of the Oracle Fusion Middleware 11g
Release 1 documentation library for additional documentation.

■ Cue Cards in Oracle JDeveloper: Oracle JDeveloper cue cards provide step-by-step
support for the application development process using Oracle SOA Suite. They are
designed to be used either with the included examples and a sample schema, or
with your own data. Cue cards also include topics that provide more detailed
background information, and viewlets that demonstrate how to complete the steps
in the card. Cue cards provide a fast, easy way to become familiar with the basic
features of Oracle SOA Suite, and to work through a simple end-to-end task. In
Oracle JDeveloper, click Help > Cue Cards to access the cue cards.

Learning Oracle SOA Suite

Introduction to Building Applications with Oracle SOA Suite 1-9

■ https://soasamples.samplecode.oracle.com: The SOA OTN provides
access to various use case samples for Oracle SOA Suite and its components.

Note: While this guide primarily describes how to use Oracle SOA
Suite with Oracle WebLogic Server, most of the information is also
applicable to using Oracle SOA Suite with other third-party
application servers. However, there may be some differences with
using third-party application servers.

For information about these differences, see Oracle Fusion Middleware
Third-Party Application Server Guide.

Learning Oracle SOA Suite

1-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2

Developing SOA Composite Applications with Oracle SOA Suite 2-1

2Developing SOA Composite Applications
with Oracle SOA Suite

This chapter describes how to use Oracle JDeveloper to create a SOA composite
application. This overview is intended to guide you through the basic steps of
composite creation, along with describing key issues to be aware of when designing a
composite application.

This chapter includes the following sections:

■ Section 2.1, "Creating a SOA Application"

■ Section 2.2, "Adding Service Components"

■ Section 2.3, "Adding Service Binding Components"

■ Section 2.4, "Adding Reference Binding Components"

■ Section 2.5, "Adding Wires"

■ Section 2.6, "Adding Security"

■ Section 2.7, "Deploying a SOA Composite Application"

■ Section 2.8, "Managing and Testing a SOA Composite Application"

2.1 Creating a SOA Application
The first steps in building a new application are to assign it a name and to specify the
directory where to save source files. By creating an application using application
templates provided by Oracle JDeveloper, you automatically get the organization of
the workspace into projects, along with many of the configuration files required by the
type of application you are creating.

2.1.1 How to Create a SOA Application and Project
You first create an application for the SOA project.

To create an application:
1. Start Oracle JDeveloper Studio Edition Version 11.1.1.4.0.

Note: In order to create and deploy SOA composite applications and
projects, you must install the Oracle SOA Suite extension. For
instructions on installing this extension for Oracle JDeveloper, see the
Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.

Creating a SOA Application

2-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. If Oracle JDeveloper is running for the first time, specify the location for the Java
JDK.

3. Create a new SOA composite application, as described in Table 2–1.

The Create SOA Application wizard starts.

4. In the Name your application page, you can optionally change the name and
location for your web project. If this is your first application, from Application
Template, select SOA Application. Accept the defaults for the package prefix, and
click Next.

5. In the Name your project page, you can optionally change the name and location
for your SOA project. By default, Oracle JDeveloper adds the SOA project
technology, the composite.xml that generates, and the necessary libraries to your
model project. Click Next.

Table 2–1 SOA Composite Application Creation

If Oracle JDeveloper... Then...

Has no applications

For example, you are
opening Oracle JDeveloper
for the first time.

In the Application Navigator in the upper left, click New
Application.

Has existing applications From the File main menu or the Application menu:

1. Select New > Applications.

The New Gallery opens, where you can select different
application components to create.

2. In the Categories tree, under the General node, select
Applications. In the Items pane, select SOA Application
and click OK.

Notes:

■ Do not create an application name with spaces.

■ Do not create applications and projects in directory paths that
have spaces (for example, c:\Program Files).

■ On a UNIX operating system, it is highly recommended to enable
Unicode support by setting the LANG and LC_All environment
variables to a locale with the UTF-8 character set. This action
enables the operating system to process any character in Unicode.
SOA technologies are based on Unicode. If the operating system is
configured to use non-UTF-8 encoding, SOA components may
function in an unexpected way. For example, a non-ASCII file
name can make the file inaccessible and cause an error. Oracle
does not support problems caused by operating system
constraints.

In a design-time environment, if you are using Oracle JDeveloper,
select Tools > Preferences > Environment > Encoding > UTF-8 to
enable Unicode support. This setting is also applicable for runtime
environments.

Creating a SOA Application

Developing SOA Composite Applications with Oracle SOA Suite 2-3

A project deployed to the same infrastructure must have a unique name across
SOA composite applications. The uniqueness of a composite is determined by its
project name. For example, do not perform the actions described in Table 2–2.
During deployment, the second deployed project (composite) overwrites the first
deployed project (composite).

The Project SOA Settings page of the Create SOA Application wizard appears.

6. In the Configure SOA Settings page, click Empty Composite, and click Finish.

7. From the File main menu, select Save All.

2.1.2 What Happens When You Create a SOA Application and Project
When you create a SOA application, Oracle JDeveloper creates a project that contains
all the source files related to your application. Oracle JDeveloper automatically adds
the following libraries needed for your SOA project:

■ SOA Design time

■ SOA Runtime

■ BPEL Runtime

■ Oracle Mediator Runtime

■ MDS Runtime

You can then use Oracle JDeveloper to create additional projects needed for your
application.

Figure 2–1 shows the SOA Composite Editor for the OrderBookingComposite project
contained within the WebLogicFusionOrderDemo application of the Fusion Order
Demo.

Note: Composite and component names cannot exceed 500
characters.

Table 2–2 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...

Application1 Project1

Application2 Project1

Creating a SOA Application

2-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–1 New Workspace for a SOA Composite Application

Table 2–3 describes the SOA Composite Editor.

Table 2–3 SOA Composite Editor

Element Description

Application Navigator Displays the key files for the specific service components included
in the SOA project:

■ A composite.xml file that is automatically created when you
create a SOA project. This file describes the entire composite
assembly of services, service components, references, and
wires.

■ The business rules service component file (rules_
name.decs). Additional business rules files display under the
Oracle > rules subfolder (rules_name.rules).

■ The Oracle Mediator service component file (mediator_
name.mplan).

■ The BPEL process service component files (process_
name.bpel and process_name.wsdl).

■ The human task service component file (task_name.task).

■ The spring service component file (spring.xml).

■ The componentType file that describes the services and
references for each service component. This file ensures that
the wiring you create between components works.

■ Additional subfolders for class files, XSDs (schemas), and
XSLs (transformations).

Creating a SOA Application

Developing SOA Composite Applications with Oracle SOA Suite 2-5

Designer You drag service components, services, and references from the
Component Palette into the composite in the designer. When you
drag and drop a service component into the designer window, a
corresponding property editor is invoked for performing
configuration tasks related to that service component. For example,
when you drag and drop the Oracle Mediator service component
into the designer, the Mediator Editor is displayed that enables you
to configure the Oracle Mediator service component.

For all subsequent editing sessions, you double-click these service
components to re-open their editors.

Left Swimlane (Exposed
Services)

The left swimlane is for services, such as a web services or JCA
adapters, providing an entry point to the SOA composite
application.

Right Swimlane (External
References)

The right swimlane is for references that send messages to external
services in the outside world, such as web services and JCA
adapters.

Component Palette The component palette provides the various resources that you can
use in a SOA composite. It contains the following service
components and adapters:

■ Service components

Displays the BPEL process, business rule, human task, Oracle
Mediator, and spring components that can be dragged and
dropped into the designer.

■ Service adapters

Displays the JCA adapter (AQ, file, FTP, database, JMS, MQ,
Oracle Applications, and socket), Oracle BAM binding
component, B2B binding component, EJB binding component,
ADF-BC binding component, direct binding component,
HTTP binding component, and web service binding
component that can be dragged into the left or right
swimlanes.

If the Component Palette does not display, select Component
Palette from the View main menu.

Resource Palette The Resource Palette provides a single dialog from which you can
browse both local and remote resources. For example, you can
access the following resources:

■ Shared local application metadata such as schemas, WSDLs,
event definitions, business rules, and so on.

■ WSIL browser functionality that uses remote resources that
can be accessed through an HTTP connection, file URL, or
Application Server connection.

■ Remote resources that are registered in a Universal
Description, Discover, and Integration (UDDI) registry.

If the Resource Palette does not display, then select Resource
Palette from the View main menu.

You select these resources for the SOA composite application
through the SOA Resource Browser dialog. This dialog is accessible
through a variety of methods. For example, when you select the
WSDL file to use with a service binding component or an Oracle
Mediator service component or select the schema file to use in a
BPEL process, the SOA Resource Browser dialog appears. Click
Resource Palette at the top of this dialog to access available
resources.

Table 2–3 (Cont.) SOA Composite Editor

Element Description

Adding Service Components

2-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The composite.xml file displays as a tab in the designer and as a file in the Application
Navigator. This file is automatically created when you create a new SOA project. This
file describes the entire composite assembly of services, service components, and
references. There is one composite.xml file for each SOA project.

When you work with the composite.xml file, you mostly use the designer, the
Structure window, and the Property Inspector, as shown in Figure 2–1. The designer
enables you to view many of your files in a WYSIWYG environment, or you can view
a file in an overview editor where you can declaratively make changes, or you can
view the source code for the file. The Structure window shows the structure of the
currently selected file. You can select objects in this window, and then edit the
properties for the selection in the Property Inspector.

2.1.3 What You May Need to Know About Opening the composite.xml File Through a
SOA-MDS Connection

If you create a SOA-MDS connection in Oracle JDeveloper, expand the connection, and
attempt to open the composite.xml file of a composite from the Resource Palette, the
file may not load correctly. Only open a composite from the Application Navigator.

For information about the Oracle Metadata Services (MDS) repository, see Oracle
Fusion Middleware Administrator's Guide.

2.2 Adding Service Components
Once you create your application, often the next step is to add service components that
implement the business logic or processing rules of your application. You can use the
Component Palette from the SOA Composite Editor to drag and drop service
components into the composite.

2.2.1 How to Add a Service Component

To add a service component:
1. From the Component Palette, select SOA.

2. From the Service Components list, drag a component into the designer.

Figure 2–2 shows a BPEL process being added to the designer.

Log Window The Log window displays messages about application compilation,
validation, and deployment.

Property Inspector The Property Inspector displays properties for the selected service
component, service, or reference.

If the Property Inspector does not display, select Property
Inspector from the View main menu.

Application View The Application View shows the artifacts for the SOA composite
application.

Table 2–3 (Cont.) SOA Composite Editor

Element Description

Adding Service Components

Developing SOA Composite Applications with Oracle SOA Suite 2-7

Figure 2–2 Adding BPEL Process to Composite

A specific dialog for the selected service component is displayed. Table 2–4
describes the available editors.

3. Configure the settings for a service component. For help with a service component
dialog, click Help or press F1. Click Finish.

Figure 2–3 shows the BPEL Process dialog with data entered to create the
OrderProcessor BPEL process for the WebLogicFusionOrderDemo application of
the Fusion Order Demo. The process is selected to be asynchronous. The Expose as
a SOAP Service option directs Oracle JDeveloper to create this service component
automatically connected to an inbound web service.

Table 2–4 Starting Service Component Editors

Dragging This Service
Component... Invokes The...

BPEL Process Create BPEL Process dialog to create a BPEL process that
integrates a series of business activities and services into an
end-to-end process flow.

Business Rule Create Business Rules dialog to create a business decision based
on rules.

Human Task Create Human Task dialog to create a workflow that describes the
tasks for users or groups to perform as part of an end-to-end
business process flow.

Mediator Create Mediator dialog to define services that perform message
and event routing, filtering, and transformations.

Spring Context Create Spring dialog to create a spring context file for integrating
Java interfaces into SOA composite applications.

Adding Service Components

2-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–3 Create BPEL Process Dialog

4. Click OK.

The service component displays in the designer. Figure 2–4 shows the
OrderProcessor BPEL process added to the composite.xml file. A SOAP service
binding component called orderprocessor_client_ep in the left swimlane provides
the outside world with an entry point into the SOA composite application. If the
Expose as a SOAP Service option was not selected in the Create BPEL Process
dialog, the orderprocessor_client_ep service would not display. Section 2.3.1,
"How to Add a Service Binding Component," describes how you later add a
service.

Figure 2–4 BPEL Process in Composite

You can more fully define the content of the service component now or at a later
time. For this top-down example, the content is defined now.

5. From the File main menu, select Save All.

2.2.2 What You May Need to Know About Adding and Deleting a Service Component
Note the following details about adding service components:

Adding Service Components

Developing SOA Composite Applications with Oracle SOA Suite 2-9

■ Create a service component from either the SOA Composite Editor or the designer
of another component. For example, you can create a human task component from
the SOA Composite Editor or the Oracle BPEL Designer.

■ Use the Resource Palette to browse for service components defined in the SOA
Composite Editor, and those deployed.

Note the following details about deleting service components:

■ You can delete a service component by right-clicking it and selecting Delete from
the context menu.

■ When a service component is deleted, all references pointing to it are invalidated
and all wires are removed. The service component is also removed from the
Application Navigator.

■ A service component created from within another service component can be
deleted. For example, a human task created within the BPEL process service
component of Oracle JDeveloper can be deleted from the SOA Composite Editor.
In addition, the partner link to the task can be deleted. Deleting the partner link
removes the reference interface from its .componentType file and removes the
wire to the task.

2.2.3 How to Edit a Service Component
You modify a service component to define specific details about the service
component.

To edit a service component:
1. Double-click the service component in the designer to display the appropriate

editor or designer, as described in Table 2–5.

To return to the SOA Composite Editor from within any service component,
double-click composite.xml in the Application Navigator or single-click
composite.xml above the designer.

For help with a service component editor, click Help or press F1.

2. Click Finish.

3. Modify the settings for a service component. For help with a service component
editor or designer, click Help or press F1.

4. Click Finish.

5. In the Application Navigator, double-click composite.xml or single-click
composite.xml above the designer.

This action returns you to the SOA Composite Editor.

Table 2–5 Starting SOA Service Component Wizards and Dialogs

Double-Clicking This
Service Component... Displays The...

BPEL Process Oracle BPEL Designer for further designing.

Business Rule Business Rules Designer for further designing.

Human Task Human Task Editor for further designing.

Mediator Oracle Mediator Editor for further designing.

Spring Context Spring Editor for further designing.

Adding Service Binding Components

2-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. From the File main menu, select Save All.

2.3 Adding Service Binding Components
You add a service binding component to act as the entry point to the SOA composite
application from the outside world.

2.3.1 How to Add a Service Binding Component

You can use the Component Palette from the SOA Composite Editor to drag and drop
service binding components to the composite.

To add a service binding component:
1. From the Component Palette, select SOA.

2. From the Service Adapters list, drag a service to the left swimlane to define the
service interface.

Figure 2–5 shows a web service being added to the designer.

Figure 2–5 Adding Web Service to Composite

Notes:

■ This section describes how to manually create a service binding
component. You can also automatically create a service binding
component by selecting Expose as a SOAP Service when you
create a service component. This selection creates an inbound web
service binding component that is automatically connected to
your BPEL process, human task service, or Oracle Mediator
service component.

■ You cannot invoke a representational state transfer (REST) service
from the SOA Composite Editor.

Adding Service Binding Components

Developing SOA Composite Applications with Oracle SOA Suite 2-11

A specific dialog for the selected service displays. Table 2–6 describes the available
editors.

3. Configure the settings for the service. For help with a service editor, click Help or
press F1.

4. Click Finish.

Figure 2–6 shows the Web Service dialog with data entered to create the
orderprocessor_client_ep service for the OrderProcessor BPEL process.

Figure 2–6 Create Web Service Dialog

5. Click OK.

The service binding component displays in the left swimlane. Figure 2–7 shows
the orderprocessor_client_ep service binding component added to the
composite.xml file.

Table 2–6 Service Editors

Dragging This Service... Invokes The...

Web service Create Web Service dialog to create a web invocation service.

Adapters Adapter Configuration Wizard to guide you through integration of
the service with database tables, database queues, file systems, FTP
servers, Java Message Services (JMS), IBM WebSphere MQ, BAM
servers, sockets, or Oracle E-Business Suite applications.

ADF-BC Service Create ADF-BC Service dialog to create a service data object (SDO)
invocation service.

B2B B2B Wizard to guide you through selection of a document
definition.

EJB Service Create EJB Service to create an Enterprise JavaBeans service for
using SDO parameters or Java interfaces with Enterprise JavaBeans.

HTTP Binding Create HTTP Binding Wizard to create HTTP binding. This wizard
enables you to invoke SOA composite applications through HTTP
POST and GET operations.

Direct Binding Create Direct Binding Service dialog to invoke a SOA composite
application and exchange messages over a remote method
invocation (RMI) in the inbound direction.

Adding Service Binding Components

2-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–7 Web Service in Composite

6. Select Save All from the File main menu.

2.3.2 How to Add a WSDL for a Web Service
As described in Section 2.3.1, "How to Add a Service Binding Component," a web
service is a type of binding component that you can add to a SOA composite
application. You must select the WSDL file for the web service.

To add a WSDL for a web service:
1. In the Component Palette, select SOA.

2. From the Service Adapters list, drag a Web Service to the left swimlane.

This invokes the Create Web Service dialog shown in Figure 2–6.

3. Enter the details shown in Table 2–7:

4. Select the WSDL file for the service. There are three methods for selection:

a. To the right of the WSDL URL field, click the first icon and select an existing
WSDL file from the local file system (for this example, OrderProcessor.wsdl is
selected). Note that File System in the list at the top of the dialog is
automatically selected. Figure 2–8 provides details.

Table 2–7 Create Web Service Dialog Fields and Values

Field Value

Name Enter a name for the service.

Type Select the type (message direction) for the web service. Since you
dragged the web service to the left swimlane, the Service type is
the correct selection, and displays by default:

■ Service (default)

Creates a web service to provide an entry point to the SOA
composite application

■ Reference

Creates a web service to provide access to an external
service in the outside world

Since this example describes how to create an entry point to the
SOA composite application, Service is selected.

Adding Service Binding Components

Developing SOA Composite Applications with Oracle SOA Suite 2-13

Figure 2–8 WSDL File Selection

b. To the right of the WSDL URL field, click the first icon and select Resource
Palette from the list at the top of the dialog, as shown in Figure 2–9. This
action enables you to use existing WSDL files from other applications.

Figure 2–9 Use of Existing WSDL files from Other Applications

c. To the right of the WSDL URL field, click the second icon to automatically
generate a WSDL file from a schema. Figure 2–10 shows the Create WSDL
dialog. Default values for the WSDL file name, directory location, namespace,
port type, operation name, and interface type are displayed. If the specified
directory is not the subdirectory of the current project, a warning message is
displayed. If the specified directory does not exist, it is automatically created.

You can modify the default values.

Adding Service Binding Components

2-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–10 Automatic Generation of WSDL File

5. Click the Add icon above the Input table to display the Add Message Part dialog
to add a new WSDL message part. If the WSDL file contains multiple messages,
you can add a message part for each one. You can select XML schema simple
types, project schema files, and project WSDL files for a message part.

For more information, click Help.

6. Click OK to return to the Create Web Service dialog.

7. Note the additional details described in Table 2–8:

8. Click OK.

9. From the File main menu, select Save All.

Table 2–8 Create Web Service Dialog Fields and Values

Field Value

Port Type Displays the port type.

Callback Port Type Disabled, since this WSDL file is for a synchronous service. This
field is enabled for asynchronous services.

Adding Service Binding Components

Developing SOA Composite Applications with Oracle SOA Suite 2-15

2.3.3 How to View Schemas
You can view all schemas used by the interface's WSDL file and, if you want, choose a
new message schema for a selected message part in the Update Interface dialog.

To view schemas:
1. Double-click the small arrow handle that appears on the specific binding

component or service component. Figure 2–11 provides details.

Figure 2–11 Selection of Inbound Interface Handle

The Update Interface dialog shown in Figure 2–12 displays all schemas currently
used by the WSDL file.

Figure 2–12 Update Interface Dialog

2. If you want to select a new message schema, click Help or press F1 for
instructions.

Notes:

■ Do not manually update the WSDL location in the WSDL file in
Source View. This action is not supported. Only updates made in
Design View are supported.

■ WSDL namespaces must be unique. Do not just copy and rename
a WSDL. Ensure that you also change the namespaces.

Adding Reference Binding Components

2-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2.3.4 How to Edit a Service Binding Component
After initially creating a service, you can edit its contents at a later time. Double-click
the component icon to display its appropriate editor or wizard. Table 2–9 provides an
overview.

2.3.5 What You May Need to Know About Adding and Deleting Services
Note the following detail about adding services:

■ When a new service is added for a service component, the service component is
notified so that it can make appropriate metadata changes. For example, when a
new service is added to a BPEL service component, the BPEL service component is
notified to create a partner link that can be connected to a receive or an
on-message activity.

Note the following detail about deleting services:

■ When a service provided by a service component is deleted, all references to that
service component are invalidated and the wires removed.

2.4 Adding Reference Binding Components
You add reference binding components that enable the SOA composite application to
send messages to external services in the outside world.

2.4.1 How to Add a Reference Binding Component
You can use the Component Palette from the SOA Composite Editor to drag and drop
reference binding components to the composite.

To add a reference binding component:
1. From the Component Palette, select SOA.

2. From the Service Adapters list, drag a service to the right swimlane.

Figure 2–13 shows a web service being added to the designer.

Table 2–9 Starting Service Wizards and Dialogs

Double-Click This Service... To...

Web service Display the Update Service dialog.

Adapters Reenter the Adapter Configuration Wizard.

ADF-BC Service Display the Update Service dialog.

B2B Reenter the B2B wizard.

EJB Service Display the Update Service dialog.

HTTP Binding Reenter the HTTP Binding Wizard.

Direct Binding Reenter the Update Service dialog.

Adding Reference Binding Components

Developing SOA Composite Applications with Oracle SOA Suite 2-17

Figure 2–13 Adding Web Service to Composite

A specific dialog or wizard for the selected reference displays. Table 2–10 describes
the available editors.

3. Configure the settings for the reference binding component. For help with a
reference editor, click Help or press F1.

4. Click Finish.

Figure 2–14 shows the Create Web Service dialog with data entered to create a
reference.

Table 2–10 Reference Editors

Dragging This Service... Invokes The...

Web Service Create Web Service dialog to create a web invocation service.

Adapters Adapter Configuration Wizard to guide you through integration
of the service with database tables, database queues, file
systems, FTP servers, Java Message Services (JMS), IBM
WebSphere MQ, BAM servers, sockets, or Oracle E-Business
Suite applications.

ADF-BC Service Create ADF-BC Service dialog to create a service data object
(SDO) invocation service.

B2B B2B Wizard to guide you through selection of a document
definition.

EJB Service Create EJB Service dialog to create an Enterprise JavaBeans
service for using SDO parameters with Enterprise JavaBeans.

HTTP Binding Create HTTP Binding Wizard to create HTTP binding. This
wizard enables you to invoke SOA composite applications
through HTTP POST and GET operations, and invoke HTTP
endpoints through HTTP POST and GET operations.

Direct Binding Create Direct Binding Service Dialog to invoke an Oracle Service
Bus (OSB) flow or another SOA composite application.

Adding Reference Binding Components

2-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–14 Create Web Service Dialog

5. Click OK.

The reference binding component displays in the right swimlane. Figure 2–15
shows the StoreFrontService reference added to the SOA composite application.

Figure 2–15 Web Service in Composite

6. From the File main menu, select Save All.

2.4.2 What You May Need to Know About Adding and Deleting References
Note the following detail about adding references:

■ The only way to add a new reference in the SOA Composite Editor is by wiring
the service component to the necessary target service component. When a new
reference is added, the service component is notified so it can make appropriate
changes to its metadata. For example, when a reference is added to a BPEL service
component, the BPEL service component is notified to add a partner link that can
then be used in an invoke activity.

Note the following details about deleting references:

■ When a reference for a service component is deleted, the associated wire is also
deleted and the service component is notified so it can update its metadata. For

Adding Reference Binding Components

Developing SOA Composite Applications with Oracle SOA Suite 2-19

example, when a reference is deleted from a BPEL service component, the service
component is notified to delete the partner link in its BPEL metadata.

■ Deleting a reference connected to a wire clears the reference and the wire.

2.4.3 What You May Need to Know About WSDL References
A WSDL file is added to the SOA composite application whenever you create a new
component that has a WSDL (for example, a service binding component, service
component (for example, Oracle Mediator, BPEL process, and so on), or reference
binding component. When you delete a component, any WSDL imports used by that
component are removed only if not used by another component. The WSDL import is
always removed when the last component that uses it is deleted.

When a service or reference binding component is updated to use a new WSDL, it is
handled as if the interface was deleted and a new one was added. Therefore, the old
WSDL import is only removed if it is not used by another component.

If a service or reference binding component is updated to use the same WSDL
(porttype qname), but from a new location, the WSDL import and any other WSDL
reference (for example, the BPEL process WSDL that imports an external reference
WSDL) are automatically updated to reference the new location.

Simply changing the WSDL location on the source view of the composite.xml file’s
import is not sufficient. Other WSDL references in the metadata are required by the
user interface (see the ui:wsdlLocation attribute on composite and componentType
services and references). There can also be other WSDL references required by runtime
(for example, a WSDL that imports another WSDL, such as the BPEL process WSDL).

Always modify the WSDL location though the dialogs of the SOA Composite Editor in
which a WSDL location is specified (for example, a web service, BPEL partner link,
and so on). Changing the URL’s host address is the exact case in which the SOA
Composite Editor automatically updates all WSDL references.

2.4.4 What You May Need to Know About Mixed Message Types in a WSDL File
If a BPEL process has multiple WSDL messages declared in its WSDL file and one or
more messages have their parts defined to be of some type, whereas other messages
have their parts defined to be of some element, runtime behavior can become
unpredictable. This is because these WSDLs are considered to have mixed type
messages. For example, assume there are multiple copy actions within an assign
activity. These copy actions attempt to populate an output variable that has multiple
parts:

■ Part 1 is declared as an xsd:string type.

■ Part 2 is declared as an xsd:int type.

■ Part 3 is declared as an element of a custom-designed complex type.

 This behavior is not supported.

2.4.5 What You May Need to Know About Invoking the Default Revision of a Composite
A WSDL URL that does not contain a revision number is processed by the default
composite application. This action enables you to always call the default revision of
the called service without having to make other changes in the calling composite.

Select the default WSDL to use in the Resource Palette in Oracle JDeveloper.

Adding Wires

2-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. In the Create Web Service dialog, click the icon to the right of the WSDL URL field
to invoke the SOA Resource Browser dialog.

2. Select Resource Palette from the list at the top.

3. Expand the nodes under the Application Server connection or WSIL connection
to list all deployed composites and revisions. The default revision is identified by
the word Default in the title. For example, OrderBookingComposite [Default].

4. Select the appropriate default endpoint and click OK.

2.5 Adding Wires
You wire (connect) services, service components, and references. For this example, you
wire the web service and service component. Note the following:

■ Since a web service is an inbound service, a reference handle displays on the right
side. Web services that are outbound references do not have a reference handle on
the right side.

■ You can drag a defined interface to an undefined interface in either direction
(reference to service or service to reference). The undefined interface then inherits
the defined interface. There are several exceptions to this rule:

– A component has the right to reject a new interface. For example, an Oracle
Mediator can only have one inbound service. Therefore, it rejects attempts to
create a second service.

– You cannot drag an outbound service (external reference) to a business rule,
because business rules do not support references. When dragging a wire, the
user interface highlights the interfaces that are valid targets.

■ You cannot wire services and composites that have different interfaces. For
example, you cannot connect a web service configured with a synchronous WSDL
file to an asynchronous BPEL process. Figure 2–16 provides details.

Figure 2–16 Limitations on Wiring Services and Composites with Different Interfaces

The service and reference must match, meaning the interface and the callback
must be the same. If you have two services that have different interfaces, you can
place an Oracle Mediator between the two services and perform a transformation
between the interfaces.

2.5.1 How to Wire a Service and a Service Component
You can wire a service binding component to a service component from the SOA
Composite Editor.

To wire a service and a service component:
1. From a service reference handle, drag a wire to the service component interface, as

shown in Figure 2–17.

Adding Wires

Developing SOA Composite Applications with Oracle SOA Suite 2-21

Figure 2–17 Wire Connection

2. If the service component is a BPEL process, double-click the BPEL process and
note that the service displays as a partner link in the left swimlane, as shown in
Figure 2–18.

Figure 2–18 Display of the Service as a Partner Link in the BPEL Process

3. Select Save All from the File main menu.

2.5.2 How to Wire a Service Component and a Reference
You can wire a service component to a reference binding component from the SOA
Composite Editor.

To wire a service component and a reference:
1. In the Application Navigator, double-click composite.xml or single-click

composite.xml above the designer.

2. From the service component, drag a wire to the reference, as shown in Figure 2–19.

Adding Wires

2-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–19 Wiring of a Service Component and Reference

3. If the service component is a BPEL process, double-click the BPEL process and
note that the reference displays as a partner link in the right swimlane, as shown
in Figure 2–20.

Figure 2–20 Display of the Reference as a Partner Link in the BPEL Process

4. Select Save All from the File main menu.

5. In the Application Navigator, select the composite.xml file.

6. Click the Source tab to review what you have created.

The orderprocessor_client_ep service binding component shown in
Example 2–1 provides the entry point to the composite.

Example 2–1 Service

<service name="orderprocessor_client_ep"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/orderbooking/OrderBookingProcessor.wsdl">
 <interface.wsdl interface= "http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.interface(OrderProcessor)"
 <binding.adf serviceName="OrderProcessorService" registryName=""/>
 <callback>
 <binding.ws port="http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.endpoint(orderprocessor_clientep/OrderProcessorCallback_
pt)"/>
 </callback>
 </service>

Adding Wires

Developing SOA Composite Applications with Oracle SOA Suite 2-23

The OrderProcessor BPEL process service component is shown in Example 2–2:

Example 2–2 Service Component

<component name="OrderProcessor">
 <implementation.bpel src="OrderProcessor.bpel"/>
</component>

A reference binding component named StoreFrontService is shown in
Example 2–3. The reference provides access to the external service in the outside
world.

Example 2–3 Reference

 <reference name="StoreFrontService"
 ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/oracle/fodemo/storefront/store/service/common/serviceinterface/StoreFron
tService.wsdl">
 <interface.wsdl
 interface="www.globalcompany.example.com#wsdl.interface(StoreFrontService)"/>
 <binding.ws
port="www.globalcompany.example.com#wsdl.endpoint(StoreFrontService/StoreFrontServ
iceSoapHttpPort)"

location="oramds:/apps/FusionOrderDemoShared/services/oracle/fodemo/storefront/sto
re/service/common/serviceinterface/StoreFrontService.wsdl"/>
 </reference>

In Example 2–4, the communication (or wiring) between service components is
described:

■ The source orderprocessor_client_ep service binding component is
wired to the target OrderProcessor BPEL process service component.
Wiring enables web service message communication with this specific BPEL
process.

■ The source OrderProcessor BPEL process is wired to the target
StoreFrontService reference binding component. This is the reference to
the external service in the outside world.

Example 2–4 Wires

 <wire>
 <source.uri>orderprocessor_client_ep</source.uri>
 <target.uri>OrderProcessor/orderprocessor_client_ep</target.uri>
 </wire>

 <wire>
 <source.uri>OrderProcessor/StoreFrontService</source.uri>
 <target.uri>StoreFrontService</target.uri>
 </wire>

2.5.3 What You May Need to Know About Adding and Deleting Wires
Note the following details about adding wires:

■ A service component can be wired to another service component if its reference
matches the service of the target service component. Note that the match implies
the same interface and callback interface.

Adding Security

2-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Adding the following wiring between two Oracle Mediator service components
causes an infinite loop:

– Create a business event.

– Create an Oracle Mediator service component and subscribe to the event.

– Create a second Oracle Mediator service component to publish the same
event.

– Wire the first Oracle Mediator to the second Oracle Mediator component
service.

If you remove the wire between the two Oracle Mediators, then for every message,
the second Oracle Mediator can publish the event and the first Oracle Mediator
can subscribe to it.

Note the following details about deleting wires:

■ When a wire is deleted, the component's outbound reference is automatically
deleted and the component is notified so that it can clean up (delete the partner
link, clear routing rules, and so on). However, the component's interface is never
deleted. All Oracle SOA Suite services are defined by their WSDL interface. When
a component's interface is defined, there is no automatic deletion of the service
interface in the SOA Composite Editor.

If you want to change the service WSDL interface, there are several workarounds:

– In most cases, you just want to change the schema instead of the inbound
service definition. In the SOA Composite Editor, click any interface icon that
uses the WSDL. For example, you can click the web service interface icon or
the Oracle Mediator service icon. This invokes the Update Interface dialog,
which enables you to change the schema for any WSDL message.

– If you are using an Oracle Mediator service component, the Refresh
operations from WSDL icon of the Oracle Mediator Editor enables you to
refresh (after adding new operations) or replace the Oracle Mediator WSDL.
However, you are warned if the current operations are to be deleted. If you
change the WSDL to the new inbound service WSDL using this icon, the wire
typically breaks because the interface has changed. You can then wire Oracle
Mediator to the new service.

– In many cases, a new service requires a completely new Oracle Mediator.
Delete the old Oracle Mediator, create a new one, and wire it to the new
service.

– If you are using a BPEL process service component, select a new WSDL
through the Edit Partner Link dialog.

See Section 2.3.3, "How to View Schemas" for details about the Update Interface
dialog.

2.6 Adding Security
As you create your SOA composite application, you can secure web services by
attaching policies to service binding components, service components, and reference
binding components. For more information about implementing policies, see
Chapter 40, "Enabling Security with Policies."

Managing and Testing a SOA Composite Application

Developing SOA Composite Applications with Oracle SOA Suite 2-25

2.7 Deploying a SOA Composite Application
Deploying the SOA composite application involves creating a connection to an Oracle
WebLogic Server and deploying an archive of the SOA composite application to an
Oracle WebLogic Server managed server. For more information about deploying SOA
composite applications, see Chapter 41, "Deploying SOA Composite Applications."

2.7.1 How to Invoke Deployed Composites
You can invoke other deployed SOA composite applications from your SOA composite
application. The other applications must be deployed.

To invoke other composites:
1. Create a web service or partner link through one of the following methods.

a. In the SOA Composite Editor, drag a Web Service from the Component
Palette to the External References swimlane.

b. In Oracle BPEL Designer, drag a Partner Link from the Component Palette to
the right swimlane.

2. Access the SOA Resource Browser dialog based on the type of service you created.

a. For the Create Web Service dialog, click the Find existing WSDLs icon.

b. For the Edit Partner Link dialog, click the SOA Resource Browser icon.

3. From the list at the top, select Resource Palette.

4. Expand the tree to display the application server connection to the Oracle
WebLogic Administration Server on which the SOA composite application is
deployed.

5. Expand the application server connection.

6. Expand the SOA folder. Figure 2–21 provides details.

Figure 2–21 Browse for a SOA Composite Application

7. Select the composite service.

8. Click OK.

2.8 Managing and Testing a SOA Composite Application
As you build and deploy a SOA composite application, you manage and test it using a
combination of Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware
Control.

Managing and Testing a SOA Composite Application

2-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2.8.1 How to Manage Deployed Composites
You can manage deployed SOA composite applications from the Application Server
Navigator in Oracle JDeveloper. Management tasks consist of undeploying, activating,
retiring, turning on, and turning off SOA composite application revisions.

1. From the View main menu, select Application Server Navigator.

2. Expand your connection name (for this example, named MyConnection).

The SOA folder appears, as shown in Figure 2–22. The SOA folder displays all
deployed SOA composite application revisions and services. You can browse all
applications deployed on all Oracle WebLogic Administration Servers, managed
Oracle WebLogic Servers, and clustered Oracle WebLogic Servers in the same
domain. Figure 2–22 provides details.

Figure 2–22 Application Server Navigator

3. Expand the SOA folder.

4. Expand the partition in which the composite application is deployed.

Deployed SOA composite applications and services appear, as shown in
Figure 2–23.

Note: These instructions assume you have created an application
server connection to an Oracle WebLogic Administration Server on
which the SOA Infrastructure is deployed. Creating a connection to an
Oracle WebLogic Administration Server enables you to browse for
managed Oracle WebLogic Servers or clustered Oracle WebLogic
Servers in the same domain. From the File main menu, select New >
Connections > Application Server Connection to create a connection.

Managing and Testing a SOA Composite Application

Developing SOA Composite Applications with Oracle SOA Suite 2-27

Figure 2–23 Deployed SOA Composite Applications

5. Right-click a deployed SOA composite application.

6. Select an option to perform. The options that display for selection are based upon
the current state of the application. Table 2–11 provides details.

Table 2–11 SOA Composite Application Options

Option Description

Stop Shuts down a running SOA composite application revision. Any request
(initiating or a callback) to the composite is rejected if the composite is shut
down.

Note: The behavior differs based on which binding component is used. For
example, if it is a web service request, it is rejected back to the caller. A JCA
adapter binding component may do something else in this case (for example, put
the request in a rejected table).

This option displays when the composite application has been started.

Start Restarts a composite application revision that was shut down. This action enables
new requests to be processed (and not be rejected). No recovery of messages
occurs.

This option displays when the composite application has been stopped.

Retire Retires the selected composite revision. If the process life cycle is retired, you
cannot create a new instance. Existing instances are allowed to complete
normally.

An initiating request to the composite application is rejected back to the client.
The behavior of different binding components during rejection is the same as
with the shut down option.

A callback to an initiated composite application instance is delivered properly.

This option displays when the composite application is active.

Activate Activates the retired composite application revision. Note the following behavior
with this option:

■ All composite applications are automatically active when deployed.

■ Other revisions of a newly deployed composite application remain active
(that is, they are not automatically retired). If you want, you must explicitly
retire them.

This option displays when the application is retired.

Managing and Testing a SOA Composite Application

2-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. If you want to deploy a prebuilt SOA composite application archive that includes a
deployment profile, right-click the SOA folder and select Deploy SOA Archive.
The archive consists of a JAR file of a single application or a SOA bundle ZIP file
containing multiple applications.

You are prompted to select the following:

■ The target SOA servers to which you want to deploy the SOA composite
application archive.

■ The archive to deploy.

■ The configuration plan to attach to the application. As you move projects from
one environment to another (for example, from testing to production), you
typically must modify several environment-specific values, such as JDBC
connection strings, hostnames of various servers, and so on. Configuration
plans enable you to modify these values using a single text (XML) file called a
configuration plan. The configuration plan is created in either Oracle
JDeveloper or from the command line. During process deployment, the
configuration plan is used to search the SOA project for values that must be
replaced to adapt the project to the next target environment. This is an
optional selection.

■ Whether you want to overwrite an existing composite of the same revision ID.
This action enables you to redeploy an application revision.

Figure 2–24 provides details.

Undeploy Undeploys the selected composite application revision. The consequences of this
action are as follows:

■ You can no longer configure and monitor this revision of the composite
application.

■ You can no longer process instances of this revision of the composite
application.

■ You cannot view previously completed processes.

■ The state of currently running instances is changed to stale and no new
messages sent to this composite are processed.

■ If you undeploy the default revision of the composite application (for
example, 2.0), the next available revision of the composite application
becomes the default (for example, 1.0).

Set Default
Revision

Sets the selected composite application revision to be the default.

Table 2–11 (Cont.) SOA Composite Application Options

Option Description

Managing and Testing a SOA Composite Application

Developing SOA Composite Applications with Oracle SOA Suite 2-29

Figure 2–24 Deploy SOA Archive Dialog

For more information, see the following documentation:

■ Chapter 41, "Deploying SOA Composite Applications" for details about creating a
deployment profile and a configuration plan and deploying an existing SOA
archive

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM
Suite for details about managing deployed SOA composite applications from
Oracle Enterprise Manager Fusion Middleware Control Console

2.8.2 How to Test a Deployed Composite
After you deploy a SOA composite application, you can initiate a test instance of it
from the Test Web Service page in Oracle Enterprise Manager Fusion Middleware
Control Console to verify the XML payload data. For more information about
initiating a test instance, see the Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite and Oracle BPM Suite.

In addition to creating a test instance, you can also simulate the interaction between a
SOA composite application and its web service partners before deployment in a
production environment. This helps to ensure that a process interacts with web service
partners as expected by the time it is ready for deployment to a production
environment. For more information about creating a unit test, see Chapter 42,
"Automating Testing of SOA Composite Applications."

Managing and Testing a SOA Composite Application

2-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3

Introduction to the SOA Sample Application 3-1

3Introduction to the SOA Sample Application

This chapter introduces the SOA sample application that can be used with this guide.
The WebLogic Fusion Order Demo application of the Fusion Order Demo
demonstrates various capabilities of Oracle SOA Suite and is used as an example
throughout this guide.

This chapter includes the following sections:

■ Section 3.1, "Introduction to the Fusion Order Demo"

■ Section 3.2, "Setting Up the Fusion Order Demo Application"

■ Section 3.3, "Taking a Look at the WebLogic Fusion Order Demo Application"

■ Section 3.4, "Understanding the OrderBookingComposite Flow"

■ Section 3.5, "Deploying Fusion Order Demo"

■ Section 3.6, "Running Fusion Order Demo"

■ Section 3.7, "Viewing Data Sent to Oracle BAM Server"

■ Section 3.8, "Undeploying the Composites for the WebLogic Fusion Order Demo
Application"

3.1 Introduction to the Fusion Order Demo
The WebLogic Fusion Order Demo application is part of a larger sample application
called Fusion Order Demo. In this larger sample application, Global Company sells
electronic devices through many channels, including a web-based client application.
Electronic devices are sold through a storefront-type web application. Customers can
visit the web site, register, and place orders for the products.

There are two parts to the Fusion Order Demo, the Store Front module and the
WebLogic Fusion Order Demo application.

3.1.1 Store Front Module
The Store Front module provides a rich user interface built with Oracle Application
Development Framework to show how to combine an easily built AJAX user interface
with a sophisticated SOA composite application. It is based on Oracle ADF business
components, ADF model data bindings, and ADF faces.

The Store Front module sells electronic devices through a storefront-type web
application.

The Store Front module contains the following projects:

Introduction to the Fusion Order Demo

3-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ StoreFrontService: This project provides access to the storefront data and provides
transaction support to update data for customers, orders, and products.

■ StoreFrontUI: his project provides web pages that the customer uses to browse the
storefront, place orders, register on the site, view order information, and update
the user profile.

Figure 3–1 shows the Home page of the Store Front module user interface. It shows the
featured products that the site wants to promote and provides access to the full catalog
of items. Products are presented as images along with the name of the product. Page
regions divide the product catalog area from other features that the site offers.

Figure 3–1 StoreFrontUI Home Page

From the home page, you can browse the web site as an anonymous user, then log in
as a registered customer to place an order.

The Fusion Order Demo application ships with predefined customer data. Because the
Fusion Order Demo application implements Oracle ADF security to manage access to
Oracle ADF resources, only the authenticated user can view orders in their cart.

For more information about the Store Front module, see Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

3.1.2 WebLogic Fusion Order Demo Application
The WebLogic Fusion Order Demo application processes orders placed in the Store
Front module. It uses the following Oracle SOA Suite components:

■ Oracle Mediator

■ Oracle BPEL process

■ Human workflow (using a human task)

Setting Up the Fusion Order Demo Application

Introduction to the SOA Sample Application 3-3

■ Oracle Business Rules

■ Spring

■ Oracle User Messaging Service

■ Oracle Business Activity Monitoring

■ Oracle Metadata Repository

Once an order has been placed by using the Store Front module, the WebLogic Fusion
Order Demo application processes the order. When processing an order, it uses various
internal and external applications, including a customer service application, a credit
validation system, and both an internal vendor and external vendor. For example, the
internal vendor (InternalWarehouseService) and external vendor
(ExternalPartnerSupplier), are sent information for every order. As part of the order
process, they each return a price for which they would supply the items in the order. A
condition in the process determines which supplier is assigned the order.

For information about SOA composite applications, see Chapter 1, "Introduction to
Building Applications with Oracle SOA Suite."

3.2 Setting Up the Fusion Order Demo Application
This section describes how to prepare the environment to run the WebLogic Fusion
Order Demo application.

3.2.1 Task 1: Install Oracle JDeveloper Studio
Install Oracle JDeveloper 11g Studio Edition to create the WebLogic Fusion Order
Demo application. You can download Oracle JDeveloper from:

http://www.oracle.com/technology/products/jdev/11/index.html

Ensure that you download and install 11g and that it is the Studio Edition, not the Java
Edition. You can verify these details in Oracle JDeveloper from the Help > About
menu option.

In order to create and deploy SOA composite applications and projects, you must
install the Oracle SOA Suite extension. For instructions on installing this extension for
Oracle JDeveloper, see the Oracle Fusion Middleware Installation Guide for Oracle
JDeveloper.

3.2.2 Task 2: Install the Fusion Order Demo Application
Throughout this tutorial, you must view or use content from Fusion Order Demo in
your Oracle JDeveloper environment. The Fusion Order Demo is contained within a
ZIP file.

To access the ZIP file:

1. Download the Fusion Order Demo application ZIP file (FusionOrderDemo_
R1PS3.zip). You can download the ZIP file from:

http://www.oracle.com/technology/products/jdev/samples/fod/index.ht
ml

2. Unzip the file to a temporary directory.

This tutorial refers to this directory as DEMO_DOWNLOAD_HOME.

http://www.oracle.com/technology/products/jdev/11/index.html

http://www.oracle.com/technology/products/jdev/samples/fod/index.html
http://www.oracle.com/technology/products/jdev/samples/fod/index.html

Setting Up the Fusion Order Demo Application

3-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3.2.3 Task 3: Install Oracle SOA Suite
To successfully deploy and run the Fusion Order Demo applications, you must
complete an installation for Oracle SOA Suite. Specifically, the domain contains an
Administration Server and a Managed Server.

Installing Oracle SOA Suite requires the following

■ Creating schemas for Oracle SOA Suite in an Oracle database

■ Installing Oracle WebLogic Server

■ Configuring a domain in Oracle WebLogic Server to support Oracle SOA Suite,
Oracle Enterprise Manager, and optionally, Oracle BAM. Oracle BAM is not
required for the Fusion Order Demo, but if an Oracle BAM Server is configured,
Oracle BAM adapters send data to the Oracle BAM Server.

After the domain is created, it contains an Administration Server to host Oracle
Enterprise Manager Fusion Middleware Control Console for performing
administrative tasks, a Managed Server to host deployed applications, and, if you
configured Oracle BAM, a second Managed Server for the Oracle BAM Server.

For instructions on installing and configuring Oracle SOA Suite, see the Oracle Fusion
Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

After successfully completing the installation process, perform the following
additional configuration steps:
1. Enable the credentials that are included in the StoreFront module by adding a

setting to the configuration file for the domain:

a. Locate the configuration file set for the Oracle SOA Suite domain in the
following directory:

(UNIX) MW_HOME/user_projects/domains/domain_name/bin/setDomainEnv.sh
(Windows) MW_HOME\user_projects\domains\domain_name\bin\setDomainEnv.cmd

b. Add the following option to the JAVA_PROPERTIES (UNIX) or the SET
JAVA_PROPERTIES (Windows) line:

-Djps.app.credential.overwrite.allowed=true

For more information about setting this property, see Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

c. If the Oracle WebLogic Server Administration Server is running, stop it:

On UNIX, as the root user, change directories to directory MW_HOME/user_
projects/domains/domain_name/bin and enter the following command:

./stopWebLogic.sh

On Windows, from the Windows Start menu, select All Programs > Oracle
WebLogic > User Projects > domain_name > Stop Admin Server.

d. Start the Administration Server:

On UNIX, from directory MW_HOME/user_projects/domains/domain_
name/bin, enter the following command:

./startWebLogic.sh

On Windows, from the Windows Start menu, select All Programs > Oracle
WebLogic > User Projects > domain_name > Start Admin Server.

Setting Up the Fusion Order Demo Application

Introduction to the SOA Sample Application 3-5

When prompted on UNIX, enter your Oracle WebLogic Server user name and
password. The password is not visible as you type.

The Administration Server is started when the command window displays the
following messages:

<Server state changed to RUNNING>
<Server started in RUNNING mode>

Leave the command window open, although you may minimize it. The
Administration Server is now running and ready for use.

e. When the Administration Server is in RUNNING mode, start the Managed
Servers, if they are not running. In a command window, enter the following
command all on one line:

On UNIX, from directory MW_HOME/user_projects/domains/domain_
name/bin, enter the following command:

./startManagedWebLogic.sh managed_server_name admin_url username password

On Windows, from directory MW_HOME\user_
projects\domains\domain_name\bin, enter the following command:

startManagedWebLogic.cmd managed_server_name admin_url username password

Substitute the following values in Table 3–1.

2. If you are deploying remotely from one computer that has Oracle JDeveloper to
another computer that has the Oracle SOA Suite installation with Oracle WebLogic
Server, modify the JAVA_HOME and PATH environment variables on the computer
with the Oracle SOA Suite installation.

Oracle JDeveloper requires changes to these variables for running the scripts that
deploy the composite services. You set the JAVA_HOME variable to include the
path to the Oracle WebLogic Server JDK, and set the PATH variable to include the
path to the Oracle WebLogic Server bin directory for ant.

On UNIX, use the export command. For example:

Table 3–1 startManagedWebLogic Values

Value Description

managed_server The name of the Managed Server. For example:

soa_server1

bam_server1

admin_url The URL of the Managed Server. For example:

http://soahost:8001

http://soahost:9001

The port of the Managed Server for hosting SOA
applications is typically 8001. The port of the Managed
Server for Oracle BAM is typically 9001.

username The Oracle WebLogic Server administrator. For example:

weblogic

password The password of the Oracle WebLogic Server
administrator. For example:

welcome1

Taking a Look at the WebLogic Fusion Order Demo Application

3-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

export JAVA_HOME=$MW_HOME/jdk160_11
export PATH=$PATH:MW_HOME/modules/org.apache.ant_1.7.0/bin

On Windows, perform the following steps to modify the variables:

a. Open the Control Panel from the Windows Start menu and double-click the
System icon.

b. In the System Properties dialog, select the Advanced tab and click
Environment Variables.

c. In the Environment Variables dialog, locate the JAVA_HOME system variable
and ensure that it is set to the location of the Oracle WebLogic Server JDK.

If there is no JAVA_HOME variable defined, click New and in the New System
Variable dialog, enter a variable name of JAVA_HOME and a variable value
pointing to the Oracle WebLogic Server JDK, such as
C:\weblogic\jdk160_11. Click OK to set the new system variable.

d. Double-click the Path system variable and ensure that it includes the path to
the Oracle WebLogic Server ant\bin directory. If it does not, add the path to
the end of the variable value. For example:

;C:\weblogic\modules\org.apache.ant_1.7.0\bin

Click OK to set the new system variable.

e. Click OK twice more to dismiss the Environment Variables and the System
Properties dialogs.

3.3 Taking a Look at the WebLogic Fusion Order Demo Application
After you have set up the WebLogic Fusion Order Demo application, spend time
viewing the WebLogic Fusion Order Demo artifacts in Oracle JDeveloper.

To open the WebLogic Fusion Order Demo in Oracle JDeveloper:
1. From the Oracle JDeveloper main menu, choose File > Open.

2. In the Open dialog, browse to DEMO_DOWNLOAD_HOME/CompositeServices
and select WebLogic Fusion Order Demo.jws. Click Open.

3. When prompted to migrate files to the 11.1.1.3.0 format, click Yes. When the
migration is complete, click OK.

Figure 3–2 shows the Application Navigator after you open the file for the
application workspace. It displays the project applications of the WebLogic Fusion
Order Demo.

Figure 3–2 Projects of WebLogic Fusion Order Demo Application

Taking a Look at the WebLogic Fusion Order Demo Application

Introduction to the SOA Sample Application 3-7

3.3.1 Project Applications of the WebLogic Fusion Order Demo Application
Table 3–2 lists and describes the projects in the WebLogicFusionOrderDemo
application workspace.

3.3.2 The composite.xml File
To understand how a composite is designed, examine the main project,
OrderBookingComposite, in Oracle JDeveloper.

To view the composite.xml file:
1. In Application Navigator, expand OrderBookingComposite > SOA Content.

2. Select composite.xml.

The composite then appears in the SOA Composite Editor in Oracle JDeveloper, as
shown in Figure 3–3.

Table 3–2 Projects in the WebLogic Fusion Order Demo Application

Application Description

B2BX12OrderGateway This project contains a composite for Oracle B2B. This
composite is not used in this guide.

bin This project contains a build script for deploying all the
SOA projects. It also contains templates for seeding JMS
connector information, demo topics, and demo users.

CreditCardAuthorization This project provides the service needed by
OrderBookingComposite project to verify the credit card
information of a customer.

ExternalLegacyPartnerSupplierEj
b

This project provides an external system to provide price
quotes.

OrderApprovalHumanTask This project provides a task form for approving orders
from the OrderBookingComposite project.

OrderBookingComposite This project processes an order submitted in the Store
Front module user interface. This project contains the main
process for the WebLogic Fusion Order Demo application.
It also uses the Oracle BAM adapter and Oracle BAM
sensors to send active data into the Oracle BAM
dashboard. This composite is not used in this guide.

OrderSDOComposite This project simulates the StoreFrontService service of the
Store Front module for testing purposes.

PartnerSupplierComposite This project contains a composite containing both a BPEL
process and spring context for obtaining a quote from a
partner warehouse. It is referenced as a service from the
composite for the OrderBookingComposite project. The
quote request is routed to either the BPEL process or the
spring component based on the amount.

Understanding the OrderBookingComposite Flow

3-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 3–3 SOA Composite Editor

3.4 Understanding the OrderBookingComposite Flow
OrderBookingComposite is the main project of the WebLogic Fusion Order Demo
application, containing a composite application for processing orders from Global
Company. This composite demonstrates how services, both internal to an enterprise,
and external at other sites, can be integrated using the SOA architecture paradigm to
create one cohesive ordering system.

At the center of OrderBookingComposite composite is the OrderProcessor BPEL
process. It orchestrates all the existing services in the enterprise for order fulfillment
with the right warehouse, based on the business rules in the process.

Figure 3–4 shows an overview of the OrderBookingComposite composite for the
WebLogic Fusion Order Demo application, followed by a step-by-step description of
the composite flow for how the application processes an order.

Understanding the OrderBookingComposite Flow

Introduction to the SOA Sample Application 3-9

Figure 3–4 OrderBookingComposite Flow

When a new customer registers in Global Company’s storefront user interface, the web
client sends the customer’s information to the internal customer service application
called StoreFrontService. StoreFrontService then stores the customer information in a
database. The customer can then browse products, add them to their online shopping
cart, and place the order. User ngreenbe is the only user not required to register before
placing an order.

Understanding the OrderBookingComposite Flow

3-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When a registered customer uses Global Company’s storefront user interface, the user
interface invokes the StoreFrontService and provides authentication. A registered user
fills their shopping cart, and places an order. When the order is submitted, the
following events take place:

After an order is placed, the following sequence occurs to complete the order:

1. Oracle ADF Business Component writes the order to a database with schema for
Fusion Order Demo, and raises a NewOrderSubmitted event using the Event
Delivery Network (EDN). The data associated with this event is the order ID.

2. Because the OrderPendingEvent Oracle Mediator subscribes to the
NewOrderSubmitted event, the EDN layer notifies the OrderPendingEvent Oracle
Mediator of the new order.

3. The OrderPendingEvent Oracle Mediator receives the order and routes the input
order ID to the OrderProcessor BPEL process.

4. The OrderProcessor BPEL process receives the order ID from the database, using a
bind entity activity to bind to the exposed Oracle ADF Business Component
StoreFrontService service.

Some of the information about the order used later in the process is:

■ Customer ID

■ Items the customer purchased

■ Credit card used

■ Shipping address chosen

5. The BPEL process initiates StoreFrontService, passing it the order ID, to retrieve
information about the customer.

6. The BPEL process then sends the purchase amount, credit card type, and credit
card number to CreditCardAuthorizationService, which verifies if the customer's
credit card is valid.

If the credit card is not valid, the BPEL process cancels the order.

If the credit card is valid, the BPEL process sends the order to the
RequiresApprovalRule business rule to determine if the order requires approval
by management.

7. The RequiresApprovalRule business rule evaluates if manual approval is required.
The business rule contains a rule that requires manual approval for orders over
$2,000.

8. For those orders requiring manual approval, the BPEL process invokes the
ApprovalHumanTask human task, which in turn performs the following:

■ Routes a message to an assignee named jstein, who then approves or
disapproves the order.

■ Publishes the OnTaskAssigned event. The
OrderApprovalTaskAssignedMediator Oracle Mediator subscribes to this
event, and if an Oracle BAM Server is configured, it uses an Oracle BAM
adapter to send the assignee ID jstein (based on the ECID) of the order to the
Oracle BAM Server.

9. If the order is approved, the BPEL process sends the order information to the
following suppliers in parallel to obtain a bid:

Understanding the OrderBookingComposite Flow

Introduction to the SOA Sample Application 3-11

■ Internal supplier by using the InternalWarehouseService BPEL process, also
located in OrderBookingComposite

■ External supplier by using the PartnerSupplierMediator Oracle Mediator,
which in turn routes to the ExternalPartnerSupplier BPEL process or
SpringPartnerSupplierMediator spring component, located in another
composite called PartnerSupplierComposite

10. The two suppliers respond with their bids, and the BPEL process send the bids to
the EvaluatePreferredSupplierRule business rule.

11. The EvaluatePreferredSupplierRule business rule chooses the supplier with the
lower of the two bids.

12. The BPEL process invokes the FulfillOrder Oracle Mediator, which performs the
following four operations:

■ Stores the order in a temporary queue and uploads it to the fulfillment system
in batch mode overnight

■ Routes the order to USPS

■ If an Oracle BAM Server is configured, it uses an Oracle BAM adapter to send
data about the order (based on order ID) to the Oracle BAM Server.

■ If an Oracle BAM Server is configured, it uses an Oracle BAM adapter to send
data about the time for the order to process (based on the instance ID) to the
Oracle BAM Server.

13. Once the order is fulfilled, the BPEL process sets the order to complete.

14. The BPEL process invokes the NotificationService service, which sends the
customer an email notification with the purchase order information.

15. When the order completes, the OrderPendingEvent Oracle Mediator publishes the
OrderCompleted business for the OrderProcessor process.

While not depicted in Figure 3–4, the OrderBookingComposite composite provides the
following processing flow for approved orders:

1. The UpdateOrderStatus Oracle Mediator performs the following:

■ Publishes business event OrderUpdateEvent and sends the order ID to the
OrderProcessor BPEL process.

■ If an Oracle BAM Server is configured, it uses an Oracle BAM adapter to send
data about the order ID and order status to the Oracle BAM Server.

2. The OrderUpdateEventMediator Oracle Mediator subscribes to business event
OrderUpdateEvent, sends the order ID to StoreFrontService, and waits for the
StoreFrontService to respond with updated details about the order.

To aid with the tracking of an order, the OrderBookingComposite composite contains
sensors to provide a method for implementing trackable fields on messages. For
example, the CreditCardAuthorization service has a composite sensor that indicates if
the credit card was authorized. In addition, the OrderProcessor BPEL process also uses
sensors for various activities. For example, the Scope_AuthorizeCreditCard scope in
the OrderProcessor BPEL process, which verifies that the customer has acceptable
credit using the CreditCardAuthorizationService service, uses a sensor for tracking.
When you monitor instances of a composite through Oracle Enterprise Manager
Fusion Middleware Control Console, you can monitor the sensors for both the
composite and the BPEL process.

Deploying Fusion Order Demo

3-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

In the remaining sections of this chapter, deploy and run the Fusion Order Demo. As a
part of it running it, use Oracle Enterprise Manager Fusion Middleware Control
Console to monitor orders processed by the OrderBookingComposite composite.
When you monitor an order, you can also view the composite sensors and activity
sensors.

3.5 Deploying Fusion Order Demo
This section describes how to deploy the Fusion Order Demo applications in the
partition.

3.5.1 Task 1: Create a Connection to an Oracle WebLogic Server

To create a connection to an Oracle WebLogic Server:
1. Start Oracle JDeveloper:

(UNIX) ORACLE_HOME/jdev/bin/jdev
(Windows) JDEV_ORACLE_HOME\jdeveloper\JDev\bin\jdev.exe

2. From the Application Menu, select New, as shown in Figure 3–5.

Figure 3–5 Application Menu

3. In the New Gallery dialog, in the Categories tree, select General, and then
Connections.

4. Select Application Server Connection and click OK.

The Create Application Server Connection Type page displays.

5. Enter a unique name for the connection in the Connection Name field and select
WebLogic 10.3 from the Connection Type list. Figure 3–6 provides details.

Deploying Fusion Order Demo

Introduction to the SOA Sample Application 3-13

Figure 3–6 Create Application Server Connection

6. Click Next.

The Authentication page is displayed.

7. Enter weblogic for the User Name and the password for that administrator in
the Password field.

8. In the Configuration page, enter the details shown in Table 3–3.

9. Click Next.

The Test page displays.

10. Click Test Connection.

The following message should appear:

Testing JSR-88 ... success.
Testing JSR-88-LOCAL ... success.
Testing JNDI ... success.
Testing JSR-160 DomainRuntime ... success.
Testing JSR-160 Runtime ... success.
Testing JSR-160 Edit ... success.
Testing HTTP ... success.
Testing Server MBeans Model ... success.

8 of 8 tests successful.

If the test is unsuccessful, ensure that Oracle WebLogic Server is running, and
retry the test.

11. Click Finish.

Table 3–3 Configuration Page Fields and Values

Application Description

Weblogic Hostname
(Administration Server)

Name of the DNS name or IP address of the
Administration Server of the Oracle WebLogic Server

Port The address of the port on which the Administration
Server is listening for requests (7001 by default)

Weblogic Domain The domain name for Oracle WebLogic Server

Deploying Fusion Order Demo

3-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

12. In the Resource Palette, under IDE Connections, expand Application Server to
see the application server connection that you created. Figure 3–7 provides details.

Figure 3–7 Resource Palette

3.5.2 (Optional) Task 2: Create a Connection to the Oracle BAM Server
If you configured an Oracle BAM Server during installation, create a connection to it.

To create a connection to an Oracle BAM Server:
1. From the Application Menu, select New.

2. In the New Gallery dialog, in the Categories tree, select General, and then
Connections.

3. Select BAM Connection and click OK.

The BAM Connection Wizard displays.

4. Ensure that Application Resources is selected.

5. Provide a name for the connection.

6. Click Next.

7. Enter weblogic for the User Name and the password for that administrator in
the Password field.

8. Enter the connection information about the Oracle BAM Server host described in
Table 3–4.

Table 3–4 Oracle BAM Server Connection Information

Field Description

BAM Web Host Enter the name of the host on which the Oracle BAM Report
Server and web applications are installed. In most cases, the
Oracle BAM web applications host, Oracle BAM Server host,
and the Oracle WebLogic Server are the same.

BAM Server Host Enter the name of the host on which the Oracle BAM Server is
installed.

User Name Enter the Oracle BAM Server user name. For example:

weblogic

Password Enter the password of the user name.

HTTP Port Enter the port number or accept the default value of 9001. This
is the HTTP port for the Oracle BAM web applications host.

JNDI Port Enter the port number or accept the default value of 9001. The
JNDI port is for the Oracle BAM report cache, which is part of
the Oracle BAM Server.

Deploying Fusion Order Demo

Introduction to the SOA Sample Application 3-15

9. Click Next.

The Test page displays.

10. Click Test Connection.

The following message should appear:

Testing HTTP connection ... success.
Testing Data Object browsing ... success.
Testing JNDI connection ... success.

3 of 3 tests successful.

11. Click Finish.

3.5.3 Task 3: Install the Schema for the Fusion Order Demo Application

To install the schema for the sample application:
1. Start Oracle JDeveloper 11g, and from the main menu choose File > Open.

2. In the Open dialog, browse to DEMO_DOWNLOAD_HOME/Infrastructure and
select Infrastructure.jws.

3. Click Open.

4. When prompted to migrate files to the 11.1.1.4.0 format, click Yes. When the
migration is complete, click OK.

5. In the Application Navigator, expand MasterBuildScript and then Resources, and
double-click build.properties.

6. In the editor, modify the following properties shown in Table 3–5 for your
environment.

Use HTTPS Select this checkbox to use secure HTTP (HTTPS) to connect to
the Oracle BAM Server during design time. Otherwise, HTTP is
used.

Table 3–5 Properties Required to Install the Fusion Order Demo Application

Field Description

jdeveloper.home The root directory where you have Oracle JDeveloper 11g
installed. For example:

 C:/JDeveloper/11

jdbc.urlBase The base JDBC URL for your database in the format
jdbc:oracle:thin:@<yourhostname>. For example:

jdbc:oracle:thin:@localhost

jdbc.port The port for your database. For example:

1521

jdbc.sid The SID of your database. For example:

ORCL or XE

db.adminUser The administrative user for your database. For example:

system

Table 3–4 (Cont.) Oracle BAM Server Connection Information

Field Description

Deploying Fusion Order Demo

3-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. From the JDeveloper main menu, choose File > Save All.

8. In the Application Navigator, under the Resources node, right-click build.xml and
choose Run Ant Target > buildAll.

9. When prompted, enter the administrative-user password for your database.

The buildAll command then creates the FOD user and populates the tables in the
FOD schema. In the Apache Ant - Log, a series of SQL scripts display, followed by:

buildAll:
BUILD SUCCESSFUL
Total time: nn minutes nn seconds

For more information on the demo schema and scripts, see the README.txt file in
the MasterBuildScript project.

3.5.4 Task 4: Set the Configuration Property for the Store Front Module
You can deploy the Store Front module as a simple web application or as part of a SOA
environment. There is a property defined in the service portion of the Store Front
module that is used within one of its pages to determine whether the Submit Order
button fires an event that launches a BPEL process. When using the Store Front
module within a SOA environment, you must change the default value for this
property.

1. Choose File > Open.

2. In the Open dialog, browse to DEMO_DOWNLOAD_HOME/StoreFrontModule and
select StoreFrontModule.jws. Click Open.

3. When prompted to migrate files to the 11.1.1.3.0 format, click Yes. When the
migration is complete, click OK.

Figure 3–8 shows the Application Navigator after you open the file for the
application workspace.

Figure 3–8 Application Navigator with StoreFrontModule

4. In the Application Navigator, expand StoreFrontService > Application Sources >
oracle.fodemo.storefront > store > service.

5. Right-click StoreServiceAM and select Configurations.

6. In the Manage Configurations dialog, select StoreServiceAMLocalWeb in the
Names list, and then click Edit. Figure 3–9 provides details.

db.demoUser.tablespace The tablespace name for the Fusion Order Demo users. For
example:

USERS

Table 3–5 (Cont.) Properties Required to Install the Fusion Order Demo Application

Field Description

Deploying Fusion Order Demo

Introduction to the SOA Sample Application 3-17

Figure 3–9 StoreServiceAMLocalWeb

7. In the Edit Business Components Configuration dialog, select the Properties tab
and the fod.application.issoaenabled property. This property specifies whether
the application is being deployed to a SOA environment.

8. Change the value of the fod.application.issoaenabled property to true, and then
click OK. Figure 3–10 provides details.

Figure 3–10 fod.application.issoenabled

Deploying Fusion Order Demo

3-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9. Click OK.

10. In the Manage Configurations dialog, click OK.

3.5.5 Task 5: Edit the Database Connection
Edit the database connection details to point to the correct host name and database
SID.

1. In the Application Navigator, expand StoreFrontService > Application Sources.

2. Double-click StoreFrontService.jpx.

3. To the right of the Connection field, click the Edit icon, as shown in Figure 3–11.

Figure 3–11 Connection

4. Edit the connect string for the FOD database connection by replacing the values in
the Host Name and SID fields with the correct host and SID. Figure 3–12 provides
details.

Figure 3–12 Host Name and SID Fields Modifications

Deploying Fusion Order Demo

Introduction to the SOA Sample Application 3-19

3.5.6 Task 6: Deploy the Store Front Module
To deploy the Store Front module, you first deploy services and then to deploy the
application itself.

During deployment, Oracle JDeveloper creates the .jar and .war files and then
assembles the .ear file, as specified in the deployment profiles. After the file is
assembled, Oracle JDeveloper deploys the .ear file and unpacks it in a directory on
the application server. The directory that is used is dependent on the target
environment.

To deploy the Store Front module:
1. Deploy the services used by the Store Front module to send orders to the

OrderBookingComposite composite.

a. From the Application menu, choose Deploy > StoreFrontModule_
SDOServices. Figure 3–13 provides details.

Figure 3–13 StoreFrontService_SDOServices

b. In the Deployment Action page of the Deploy StoreFrontService_SDOServices
dialog, select Deploy to Application Server, and then click Next.

c. In the Select Server page, select MyAppServerConnection.You created this
connection in Section 3.5.1, "Task 1: Create a Connection to an Oracle
WebLogic Server."

d. Deselect option Deploy to all server instances in the domain, and then click
Next.

e. In the Server Instances page, select the Managed Server for the Oracle
WebLogic Server, such as soa_server, and click OK.

f. In the Summary page, click Finish.

g. View the messages that display in the Deployment log window at the bottom
of Oracle JDeveloper to ensure deployment was successful.

2. Deploy the Store Front module. From the Application menu, select Deploy >
StoreFrontModule > to > MyAppServerConnection.

a. From the Application menu, choose Deploy > StoreFrontModule.

Deploying Fusion Order Demo

3-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

b. In the Deployment Action page of the Deploy StoreFrontModule dialog, select
Deploy to Application Server, and then click Next.

c. In the Select Server page, select MyAppServerConnection.

d. Deselect option Deploy to all server instances in the domain, and then click
Next.

e. In the Server Instances page, select the Managed Server for the Oracle
WebLogic Server, such as soa_server, and click Next.

f. In the Summary page, click Finish.

g. View the messages that display in the Deployment log window at the bottom
of Oracle JDeveloper to ensure that deployment was successful.

3.5.7 Task 7: Deploy the WebLogic Fusion Order Demo Application
In this task, you deploy the WebLogic Fusion Order Demo application to an Oracle
SOA Suite installation, containing an Oracle WebLogic Server domain with an
Administration Server and a Managed Server.

To deploy the WebLogic Fusion Order Demo application:
1. In the Application Navigator, select WebLogicFusionOrderDemo.

2. If you configured an Oracle BAM server during installation, perform the following
steps:

a. From the Application Navigator, expand OrderBookingComposite, then SOA
Content, and then bin. Double-click sca-build.properties. Figure 3–14
provides details.

Figure 3–14 Navigating to sca-build.properties

b. In the editor, modify the following properties shown in Table 3–6 for the
Oracle BAM environment.

Table 3–6 Properties Required for Oracle BAM

Field Description

enable.bam.sensors true

Set to true to enable sensors for Oracle BAM.

Deploying Fusion Order Demo

Introduction to the SOA Sample Application 3-21

c. From the Oracle JDeveloper main menu, choose File > Save All. Keep the
sca-build.properties tab open, so you can modify the seed.bam.do
parameter to false after deployment.

3. In the editor, perform the following steps for the WebLogicFusionOrderDemo
application:

a. From the Application Navigator, expand bin, and then Resources.
Double-click build.properties. Figure 3–15 provides details.

Figure 3–15 Navigating to build.properties

b. In the editor, modify the following properties shown in Table 3–7 for the
WebLogicFusionOrderDemo application.

seed.bam.do true

Set to true to seed data objects, alerts, and reports for Oracle
BAM.

After deployment is done, set this value back to false. If this
parameter is set to true after initial deployment and you
redeploy at a later time, then the data objects, alerts, and
reports reseed. Therefore, after initial deployment, set this
parameter to false.

bam.server.host The DNS name or IP address of the Managed Server for
Oracle BAM. For example:

soahost

bam.server.port The port of the Managed Server for Oracle BAM. For example:

9001

bam.server.username The Oracle WebLogic Server administrator. For example:

weblogic

bam.server.password The password of the Oracle WebLogic Server administrator.
For example:

welcome1

Table 3–6 (Cont.) Properties Required for Oracle BAM

Field Description

Deploying Fusion Order Demo

3-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. From the JDeveloper main menu, choose File > Save All.

5. In the Application Navigator, under the Resources node, right-click build.xml and
choose Run Ant Target and select the following ant targets in the specified
sequential order shown in Table 3–8.

Table 3–7 Properties Required for the WebLogic Fusion Order Demo Application

Field Description

oracle.home The root directory in which you have Oracle JDeveloper 11g
installed. For example:

 C:\\Oracle\\Middleware\\jdeveloper\\

soa.only.deployment false

You set this property to true if you are using the
OrderSDOComposite composite to place orders. This guide
assumes you are using the Store Front Module to place orders.
Therefore, you must modify this property to false.

admin.server.host The DNS name or IP address of the Administration Server for
Oracle SOA Suite for hosting applications. For example:

soahost

admin.server.port The port of the Administration Server. For example:

8001

managed.server The DNS name or IP address of the Managed Server for
Oracle SOA Suite for hosting applications. For example:

soahost

managed.server.port The port of the Managed Server for Oracle SOA Suite for
hosting applications. For example:

8001

server.user The Oracle WebLogic Server administrator. For example:

weblogic

server.password The password of the Oracle WebLogic Server administrator.
For example:

welcome1

server.targets The name of the Managed Server. For example:

soa_server

soa.server.oracle.home The location of where to store the deployment plans for the
adapters. For example:

C:\\AS11gR1SOA

foreign.mds.type The location of the Oracle Metadata Repository.

Leave the value to db and supply values for the
mds.db.userid, mds.db.password, and mds.db.url
parameters to specify the location of the MDS Repository.

Set the value to leave the default value to jdev. You do not
have to specify the values for the following parameters:

soa.partition.name The partition in which to deploy the composites. For example:

soaFusionOrderDemo

Running Fusion Order Demo

Introduction to the SOA Sample Application 3-23

In the Apache Ant - Log, you should see the following message when the target
successfully completes:

BUILD SUCCESSFUL
Total time: nn minutes nn seconds

If you set up Oracle BAM after you run target
server-setup-seed-deploy-test, you can still configure Oracle BAM for
Fusion Order Demo by running one of these targets:

■ Rerun target server-setup-seed-deploy-test.

■ From the Application Navigator, right-click build_sca_composite.xml,
(OrderBookingComposite > SOA Content) choose Run Ant Target, and then
select seedBAMServerObjects.

6. Go back to the sca-build.properties tab and modify the seed.bam.do parameter
to false.

7. From the JDeveloper main menu, choose File > Save All.

3.6 Running Fusion Order Demo
You begin the ordering process in the storefront user interface, where you submit an
orders.

When an order is submitted, the Application Development Framework Business
Component writes the order to the database and raises an NewOrderSubmitted
business event using the Events Delivery Network (EDN). The OrderPendingEvent
mediator subscribes this event, and initiates the main BPEL process, OrderProcessor,
to process the order.

After you submit an order, you use Oracle Enterprise Manager Fusion Middleware
Control Console for the Oracle SOA Suite installation to monitor how the
OrderProcessor BPEL process orchestrated the orders. If you submit an order for more
than $2,000, you can monitor how it requires human approval.

The instructions for placing orders and monitoring them in detail with Fusion
Middleware Control are available from Oracle Technology Network:

http://download.oracle.com/otn_hosted_doc/jdeveloper/doc/11/runningfod_
notes.pdf

Table 3–8 ant Targets to Deploy the WebLogic Fusion Order Demo Application

Target Description

1. validateFodConfigSettings This script validates the server settings, checks if the
servers are up, and also validates the MDS settings. If this
script returns without error, proceed with target
server-setup-seed-deploy-test.

2. server-setup-seed-deploy-test This script calls the following targets:

■ compile-deploy-all compiles, builds, and deploys
all the SOA composites to the Managed Server.

■ seedFodJmsResources populates the JMS resources
for the Fulfillment mediator.

■ seedDemoUsers adds jstein as the user to approve
orders for over $2,000. When you run the demo, you
place an order for $2,000 and log in to Oracle BPM
Worklist as jstein and approve the order.

Viewing Data Sent to Oracle BAM Server

3-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3.7 Viewing Data Sent to Oracle BAM Server
If you configured an Oracle BAM server and a Managed Server for it, you can use the
Oracle BAM Architect to view data sent to the server. For more information about
using Oracle BAM applications, including Oracle BAM Architect, see Oracle Fusion
Middleware User's Guide for Oracle Business Activity Monitoring.

3.8 Undeploying the Composites for the WebLogic Fusion Order Demo
Application

To undeploy the WebLogic Fusion Order Demo composite applications:

1. Access the Undeploy SOA Composite wizard in Fusion Middleware Control
through the options described in Table 3–9.

The Confirmation page appears.

2. Click Undeploy. Note that you are warned if you are about to undeploy the last
remaining revision of a deployed composite application.

Processing messages display.

3. When undeployment has completed, click Close.

Table 3–9 Options to Access Undeploy SOA Composite Wizard

From the SOA
Infrastructure Menu...

From the SOA Folder in
the Navigator...

From the SOA
Infrastructure Home
Page...

From the SOA Composite
Menu...

1. Select SOA
Deployment >
Undeploy.

The Select
Composite page
appears.

2. In the SOA
Composite
Deployments
section, select
OrderBookingCo
mposite and
PartnerSupplierCo
mposite to
undeploy them,
and click Next.

1. Right-click soa-infra.

2. Select SOA
Deployment >
Undeploy.

The Select Composite
page appears.

3. In the SOA
Composite
Deployments section,
select
OrderBookingCompo
site and
PartnerSupplierComp
osite to undeploy, and
click Next.

1. Click the Deployed
Composites tab.

2. In the Composite
table, select both
OrderBookingCompo
site and
PartnerSupplierComp
osite.

3. Above the Composite
table, click Undeploy.

Select SOA Deployment >
Undeploy.

Part II
Part II Using the BPEL Process Service

Component

This part describes the BPEL process service component.

This part contains the following chapters:

■ Chapter 4, "Getting Started with Oracle BPEL Process Manager"

■ Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

■ Chapter 6, "Manipulating XML Data in a BPEL Process"

■ Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process"

■ Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process"

■ Chapter 9, "Using Parallel Flow in a BPEL Process"

■ Chapter 10, "Using Conditional Branching in a BPEL Process"

■ Chapter 11, "Using Fault Handling in a BPEL Process"

■ Chapter 12, "Transaction and Fault Propagation Semantics in BPEL Processes"

■ Chapter 13, "Incorporating Java and Java EE Code in a BPEL Process"

■ Chapter 14, "Using Events and Timeouts in BPEL Processes"

■ Chapter 15, "Coordinating Master and Detail Processes"

■ Chapter 16, "Customizing SOA Composite Applications"

■ Chapter 17, "Using the Notification Service"

■ Chapter 18, "Using Oracle BPEL Process Manager Sensors"

4

Getting Started with Oracle BPEL Process Manager 4-1

4 Getting Started with Oracle BPEL Process
Manager

This chapter describes how to get started with Oracle BPEL Process Manager. Key
BPEL design features such as activities, partner links, and adapters are also described.

This chapter includes the following sections:

■ Section 4.1, "Introduction to the BPEL Process Service Component"

■ Section 4.2, "Introduction to Activities"

■ Section 4.3, "Introduction to Partner Links"

■ Section 4.4, "Creating a Partner Link"

■ Section 4.5, "Introduction to Technology Adapters"

■ Section 4.6, "Introduction to BPEL Process Monitors"

4.1 Introduction to the BPEL Process Service Component
This section provides an introduction to the BPEL process service component in the
design environment.

4.1.1 How to Add a BPEL Process Service Component
You add BPEL process service components in the SOA Composite Editor.

To add a BPEL process service component:
1. Follow the instructions in Table 4–1 to start Oracle JDeveloper.

2. Add a BPEL process service component through one of the following methods:

As a service component in an existing SOA composite application:

a. From the Component Palette, drag a BPEL Process service component into the
SOA Composite Editor.

In a new application:

Table 4–1 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper Click JDev_Oracle_
Home\jdeveloper\JDev\bin\jdev.
exe or create a shortcut

$ORACLE_HOME/jdev/bin/jdev

Introduction to the BPEL Process Service Component

4-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. From the Application Navigator, select File > New > Applications > SOA
Application.

This starts the Create SOA Application wizard.

b. In the Application Name dialog, enter an application name in the Application
Name field.

c. In the Directory field, enter a directory path in which to create the SOA
composite application and project.

d. Click Next.

e. In the Project Name dialog, enter a name in the Project Name field.

f. Click Next.

g. In the Project SOA Settings dialog, select Composite With BPEL Process.

h. Click Finish.

Each method causes the Create BPEL Process dialog shown in Figure 4–1 to
appear.

3. Provide the required details (including BPEL process name and whether you want
to create a BPEL project that supports the BPEL 1.1 or BPEL 2.0 specification).
Click Help for details about the types of BPEL processes you can create.

Figure 4–1 Create BPEL Process Dialog

Always use completely unique names when creating BPEL processes. Do not
create:

■ A process name that begins with a number (for example, 1SayHello)

■ A process name that includes a dash (for example, Say-Hello)

Note: You cannot use BPEL 1.1 and BPEL 2.0 syntax in the same
.bpel file. However, you can include BPEL 1.1 and BPEL 2.0 projects
in the same SOA composite application.

Introduction to the BPEL Process Service Component

Getting Started with Oracle BPEL Process Manager 4-3

■ Two processes with the same name, but with different capitalization (for
example, SayHello and sayhello).

This is particularly important for business intelligence (BI) data object names,
which are generated on the Oracle BAM server in all upper case format. For
example, if you create a BPEL process named BPELProcess1, a BI name of
BI_DEFAULT_PROJECT1_BPELPROCESS1 is generated for the Oracle BAM
BI data object after deployment. If you create two BPEL processes,
BPELProcess1 and BPELPRocess1, the same BI data object name is
generated.

■ A process name that exceeds 500 characters.

■ A non-ASCII process name. The BPEL process name is used in directory and
file names of the SOA project, which can cause problems.

4. Click OK.

Oracle BPEL Designer displays the sections shown in Figure 4–2.

Figure 4–2 Oracle BPEL Designer Sections

Each section of this view enables you to perform specific design and deployment
tasks. Table 4–2 identifies the sections listed in Figure 4–2.

Introduction to the BPEL Process Service Component

4-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 4–2 Oracle JDeveloper Sections

Element Description

Application Navigator Displays the process files of a SOA project. Key files include the
following:

■ composite.xml

Describes the entire SOA composite application. For more
information about this file, see Section 2.1.2, "What Happens
When You Create a SOA Application and Project."

■ .bpel

Depending upon the process type you selected, initially
contains a minimal set of activities (if you selected to create an
asynchronous process, then receive and invoke activities
appear). You add syntax to this file when you drag activities,
create variables, create partner links, and so on.

■ .componentType

Describes the services and references for the BPEL process
service component.

■ .wsdl

The Web Services Description Language (WSDL) client
interface, which defines the input and output messages for
this BPEL process flow, the supported client interface and
operations, and other features. This functionality enables the
BPEL process flow to be called as a service.

■ monitor.config

Defines runtime and deployment properties needed to connect
with Oracle BAM Server to create the Oracle BAM data objects
and dashboards.

Designer Provides a visual view of the BPEL process service component that
you design. This view displays when you perform one of the
following actions:

■ Double-click the .bpel file name in the Application Navigator.

■ Click the Design tab at the bottom of the window with the
.bpel file selected.

■ Double-click the BPEL process component in the SOA
Composite Editor.

As you design the BPEL process service component by dragging
activities, creating partner links, and so on, the Design window
changes.

Component Palette Displays the available activities to add to the BPEL process service
component. Activities are the building blocks. The BPEL
Constructs and Oracle Extensions selections of the Component
Palette display a set of activities that you drag into the designer of
the BPEL process service component. The Component Palette
displays only those pages relevant to the state of the designer.
BPEL Constructs or Oracle Extensions are nearly always visible.
However, if you are designing a transformation in a transform
activity, the Component Palette only displays selections relevant to
that activity, such as String Functions, Mathematical Functions,
and Node-set Functions.

Introduction to the BPEL Process Service Component

Getting Started with Oracle BPEL Process Manager 4-5

5. Click the icon above the Oracle BPEL Designer to view the BPEL project version
(either 1.1 or 2.0). Figure 4–3 provides details.

Figure 4–3 BPEL Project Version

Structure window Provides a structural view of the data in the BPEL process service
component currently selected in the designer. You can perform a
variety of tasks from this section, including:

■ Importing schemas

■ Defining message types

■ Managing (creating, editing, and deleting) elements such as
variables, aliases, correlation sets, and partner links.

■ Editing activities in the BPEL process flow sequence that
displays in the designer

Log window Displays messages about the status of validation and compilation.
To ensure that a BPEL process service component validates
correctly, you must ensure that the following information is correct:

■ The BPEL process service component must have an input
variable.

■ A partner link must be selected.

■ A partner role must be selected.

■ The operation must not be empty.

■ The input variable type must match the partner link operation
type.

If deployment is unsuccessful, messages appear that describe the
type and location of the error.

Source window View the syntax inside the BPEL process service component files.
As you drag activities and partner links, and perform other tasks,
the syntax in these source files is immediately updated to reflect
these changes.

History window Displays the revision history of a file and read-only and editable
versions of a file side-by-side.

Property Inspector Displays details about an activity. Single-click an activity in the
Design window to display details.

Note: To learn more about these sections, you can also place the
cursor in the appropriate section and press F1 to display online Help.

Table 4–2 (Cont.) Oracle JDeveloper Sections

Element Description

Introduction to Activities

4-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4.2 Introduction to Activities
Activities are the building blocks of a BPEL process service component. Oracle BPEL
Designer includes a set of activities that you drag into a BPEL process service
component. You then double-click an activity to define its attributes (property values).
Activities enable you to perform specific tasks within a BPEL process service
component. For example, here are several key activities:

■ An assign activity enables you to manipulate data, such as copying the contents of
one variable to another. Figure 4–4 shows an assign activity.

Figure 4–4 Assign Activity

■ An invoke activity enables you to invoke a service (identified by its partner link)
and specify an operation for this service to perform. Figure 4–5 shows an invoke
activity.

Figure 4–5 Invoke Activity

■ A receive activity waits for an asynchronous callback response message from a
service. Figure 4–6 shows a receive activity. A receive activity is also used when a
process is started asynchronously through a partner link.

Figure 4–6 Receive Activity

Figure 4–7 shows an example of a property window (for this example, an invoke
activity). In this example, you invoke a partner link named StoreFrontService and
define its attributes.

Introduction to Partner Links

Getting Started with Oracle BPEL Process Manager 4-7

Figure 4–7 Invoke Activity Example

The invoke activity enables you to specify an operation you want to invoke for the
service (identified by its partner link). The operation can be one-way or
request-response on a port provided by the service. You can also automatically create
variables in an invoke activity. An invoke activity invokes a synchronous service or
initiates an asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and the receive functions.

For more information about activities, see Appendix A, "BPEL Process Activities and
Services."

4.3 Introduction to Partner Links
A partner link enables you to define the external services with which the BPEL process
service component is to interact. You can define partner links as services or references
(for example, through a JCA adapter) in the SOA Composite Editor or within a BPEL
process service component in Oracle BPEL Designer. Figure 4–8 shows the partner link
icon (in this example, named CreditCardAuthorizationService).

Figure 4–8 PartnerLink Icon

A partner link type characterizes the conversational relationship between two services
by defining the roles played by each service in the conversation and specifying the
port type provided by each service to receive messages within the conversation.

Figure 4–9 shows an example of the attributes of a partner link for a service.

Introduction to Partner Links

4-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 4–9 Partner Link Dialog

Table 4–3 describes the fields of this dialog.

Table 4–3 Create Partner Link Dialog Fields

Field Description

Name A unique and recognizable name you provide for the partner link.

Process Displays the BPEL process service component name.

WSDL URL The name and location of the WSDL file or Java interface that you
select for the partner link. Click the SOA Service Explorer icon
(second icon from the left above the WSDL URL field) to access a
window for selecting the WSDL file or Java interface to use.

Java interfaces display for selection under the References folder with a
name of javaEJB. If the component with which you are wiring this
partner link uses WSDL files and you select a Java interface and click
OK, a message displays indicating that this component requires a
WSDL interface. If you click Yes, a compatible WSDL file is created
based on the Java interface.

For more information about integrating components that use Java
interfaces into SOA composite applications, see Chapter 49,
"Integrating the Spring Framework in SOA Composite Applications."

Partner Link Type The partner link defined in the WSDL file.

Partner Role The role performed by the partner link.

My Role The role performed by the BPEL process service component. In this
case, the BPEL process service component does not have a role because
it is a synchronous process.

Note: The Partner Link Type, Partner Role, and My Role fields in
the Create Partner Link dialog are defined and required by the BPEL
standard.

Creating a Partner Link

Getting Started with Oracle BPEL Process Manager 4-9

4.4 Creating a Partner Link
The method by which you create partner links within the BPEL process in Oracle BPEL
Designer impacts how the partner link displays above in the SOA Composite Editor.
This section describes this impact. The WSDL file can be on the local operating system
or hosted remotely (in which case you need a URL for the WSDL).

Likewise, creating and wiring a service or reference binding component to a BPEL
process service component in the SOA Composite Editor causes a partner link to
display in Oracle BPEL Designer.

4.4.1 How to Create a Partner Link

To create a partner link:
1. In the SOA Composite Editor, double-click the BPEL process service component.

Oracle BPEL Designer is displayed.

2. In the Component Palette, expand BPEL Constructs.

3. Drag a Partner Link into the appropriate Partner Links swimlane, as shown in
Figure 4–10.

Best Practice: As a best practice, always create and wire Oracle
Mediator and BPEL process service components in the SOA
Composite Editor, instead of in Oracle BPEL Designer.

If you add an Oracle Mediator or BPEL process partner link to your
BPEL process in Oracle BPEL Designer and connect either partner link
to your BPEL process through an invoke activity, the wiring is not
automatically reflected above in the SOA Composite Editor. You must
explicitly wire the Oracle Mediator or BPEL process service
component to your BPEL process again in the SOA Composite Editor.

Note that this is not an issue with human task or business rule partner
links in Oracle BPEL Designer; both are also automatically wired in
the SOA Composite Editor.

Creating a Partner Link

4-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 4–10 Partner Link Creation in Oracle BPEL Designer

The Create Partner Link dialog appears.

4. Complete the fields for this dialog, as described in Table 4–3.

The following sections describe the impact of partner link creation on the SOA
Composite Editor.

4.4.1.1 Partner Links for an Outbound Adapter
Table 4–4 describes the impact on the SOA Composite Editor.

Figure 4–11 shows how this method of creation appears in the SOA Composite Editor.

Figure 4–11 SOA Composite Editor Impact

Table 4–4 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link for an outbound adapter ■ A reference handle for the BPEL service component

■ A reference representing the outbound adapter in the
composite

■ A wire connecting the BPEL service component to the
adapter reference

Creating a Partner Link

Getting Started with Oracle BPEL Process Manager 4-11

4.4.1.2 Partner Links for an Inbound Adapter
Table 4–5 describes the impact on the SOA Composite Editor.

Figure 4–12 shows how this method of creation appears in the SOA Composite Editor.

Figure 4–12 SOA Composite Editor Impact

4.4.1.3 Partner Links from an Abstract WSDL to Call a Service
Table 4–6 describes the impact on the SOA Composite Editor.

4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
Table 4–7 describes the impact on the SOA Composite Editor.

Figure 4–13 shows how this method of creation appears in the SOA Composite Editor.

Table 4–5 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link for an inbound adapter ■ A service for the BPEL service component

■ A service representing the inbound adapter in the
composite

■ A wire connecting the inbound adapter service to the
BPEL service component

Table 4–6 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link from an abstract WSDL to call a
service

A reference handle with an interface and callback interface
defined for the BPEL service component

Table 4–7 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link is created from an abstract WSDL to
implement a service

A service with an interface and callback interface for the
BPEL service component is created.

Note: If an external Simple Object Access Protocol (SOAP)
reference with the specified interface and callback interface
exists in the SOA Composite Editor, you can either create a
new external SOAP reference and wire to it or wire to the
existing external SOAP reference.

Creating a Partner Link

4-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 4–13 SOA Composite Editor Impact

4.4.1.5 Partner Links and Human Tasks or Business Rules
Table 4–8 describes the impact on the SOA Composite Editor.

Figure 4–14 shows how this method of creation appears in the SOA Composite Editor.

Figure 4–14 SOA Composite Editor Impact

4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle
Mediator
Table 4–9 describes the impact on the SOA Composite Editor.

Figure 4–15 shows how this method of creation appears in the SOA Composite Editor.

Figure 4–15 SOA Composite Editor Impact

Table 4–8 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A human task or business rule is created ■ A human task or business rule in the composite

■ A reference for the BPEL service component

■ A wire connecting the BPEL service component to the
new human task or business rule

Table 4–9 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link by dragging an existing human task,
business rule, or mediator service component into
the BPEL process

■ A reference for the BPEL service component

■ A wire connecting the BPEL service component to the
existing human task, business rule, or mediator

Introduction to Technology Adapters

Getting Started with Oracle BPEL Process Manager 4-13

4.5 Introduction to Technology Adapters
The Partner Link dialog shown in Figure 4–9 also enables you to take advantage of
another key feature that Oracle BPEL Process Manager and Oracle JDeveloper provide.
Click the Service Wizard icon shown in Figure 4–16 to access the Adapter
Configuration wizard.

Figure 4–16 Defining an Adapter

Adapters enable you to integrate the BPEL process service component (and, therefore,
the SOA composite application as a whole) with access to file systems, FTP servers,
database tables, database queues, sockets, Java Message Services (JMS), MQ, and
Oracle E-Business Suite. You can also integrate with services such as HTTP binding,
direct binding, EJB, and others. This wizard enables you to configure the types of
services and adapters shown in Figure 4–17 for use with the BPEL process service
component:

Figure 4–17 Service and Adapter Types

For information about the service and adapter types, see Chapter 35, "Getting Started
with Binding Components."

When you select an adapter type, the Service Name window shown in Figure 4–18
prompts you to enter a name. For this example, File Adapter was selected in
Figure 4–17. When the wizard completes, a WSDL file by this service name appears in
the Application Navigator for the BPEL process service component (for this example,
named USPSShipment.wsdl). The service name must be unique within the project.
This file includes the adapter configuration settings you specify with this wizard.
Other configuration files (such as header files and files specific to the adapter) are also
created and display in the Application Navigator.

Introduction to BPEL Process Monitors

4-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 4–18 Adapter Service Name

The Adapter Configuration wizard windows that appear after the Service Name
window are based on the adapter type you selected.

You can also add adapters to your SOA composite application as services or references
in the SOA Composite Editor.

For more information about technology adapters, see Oracle Fusion Middleware User's
Guide for Technology Adapters.

4.6 Introduction to BPEL Process Monitors
You can configure BPEL process monitors in Oracle BPEL Designer by selecting
Monitor at the top of Oracle BPEL Designer. Figure 4–19 provides details. BPEL
process monitors can send data to Oracle BAM for analysis and graphical display
through the Oracle BAM adapter.

Figure 4–19 BPEL Process Monitors

For more information, see Section 50.3, "Using Oracle BAM Monitor Express With
BPEL Processes."

5

Introduction to Interaction Patterns in a BPEL Process 5-1

5 Introduction to Interaction Patterns in a
BPEL Process

This chapter describes common interaction patterns between a BPEL process service
component and an external service, and shows the best use practices for each.

This chapter includes the following sections:

■ Section 5.1, "Introduction to One-Way Messages"

■ Section 5.2, "Introduction to Synchronous Interactions"

■ Section 5.3, "Introduction to Asynchronous Interactions"

■ Section 5.4, "Introduction to Asynchronous Interactions with a Timeout"

■ Section 5.5, "Introduction to Asynchronous Interactions with a Notification Timer"

■ Section 5.6, "Introduction to One Request, Multiple Responses"

■ Section 5.7, "Introduction to One Request, One of Two Possible Responses"

■ Section 5.8, "Introduction to One Request, a Mandatory Response, and an Optional
Response"

■ Section 5.9, "Introduction to Partial Processing"

■ Section 5.10, "Introduction to Multiple Application Interactions"

5.1 Introduction to One-Way Messages
In a one-way message, or fire and forget, the client sends a message to the service (d1
in Figure 5–1), and the service is not required to reply. The client sending the message
does not wait for a response, but continues executing immediately. Example 5–1 shows
the portType and operation part of the BPEL process WSDL file for this
environment.

Example 5–1 One-Way WSDL File

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 </wsdl:operation>
</wsdl:portType>
. . .

Figure 5–1 provides an overview.

Introduction to Synchronous Interactions

5-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 5–1 One-Way Message

BPEL Process Service Component as the Client
As the client, the BPEL process service component needs a valid partner link and an
invoke activity with the target service and the message. As with all partner activities,
the Web Services Description Language (WSDL) file defines the interaction.

BPEL Process Service Component as the Service
To accept a message from the client, the BPEL process service component needs a
receive activity.

5.2 Introduction to Synchronous Interactions
In a synchronous interaction, a client sends a request to a service (d1 in Figure 5–2),
and receives an immediate reply (d2 in Figure 5–2). A BPEL process service
component can be at either end of this interaction, and must be coded based on its role
as either the client or the service. For example, a user requests a subscription to an
online newspaper and immediately receives email confirmation that their request has
been accepted. Example 5–2 shows the portType and operation part of the BPEL
process WSDL file for this environment.

Example 5–2 Synchronous WSDL File

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 <wsdl:output message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 5–2 provides an overview.

Client BPEL Process
WSDL

PartnerLink

Service BPEL Process

<receive>d1<invoke>

Introduction to Asynchronous Interactions

Introduction to Interaction Patterns in a BPEL Process 5-3

Figure 5–2 Synchronous Interaction

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of a synchronous
transaction, it needs an invoke activity. The port on the client side both sends the
request and receives the reply. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service
When the BPEL process service component is on the service side of a synchronous
transaction, it needs a receive activity to accept the incoming request, and a reply
activity to return either the requested information or an error message (a fault; f1 in
Figure 5–2) defined in the WSDL.

For more information about synchronous interactions, see Chapter 7, "Invoking a
Synchronous Web Service from a BPEL Process."

5.3 Introduction to Asynchronous Interactions
In an asynchronous interaction, a client sends a request to a service and waits until the
service replies. Example 5–3 shows the portType and operation part of the BPEL
process WSDL file for this environment.

Example 5–3 Asynchronous WSDL File

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage"/>
 </wsdl:operation>
</wsdl:portType>

. . .
<wsdl:portType name="BPELProcess1Callback">
 <wsdl:operation name="processResponse">
 <wsdl:input message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

BPEL Process
WSDL
Client

PartnerLink
d1

d2

f1

Call
service

<invoke>

BPEL Process

<receive>

<reply>
OR

Introduction to Asynchronous Interactions with a Timeout

5-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 5–3 provides an overview.

Figure 5–3 Asynchronous Interaction

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction, it needs an invoke activity to send the request and a receive activity to
receive the reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service
As with a synchronous transaction, when the BPEL process service component is on
the service side of an asynchronous transaction, it needs a receive activity to accept the
incoming request and an invoke activity to return either the requested information or a
fault. Note the difference between this and responding from a synchronous BPEL
process: a synchronous BPEL process uses a reply activity to respond to the client and
an asynchronous service uses an invoke activity.

For more information about asynchronous interactions, see Chapter 8, "Invoking an
Asynchronous Web Service from a BPEL Process."

5.4 Introduction to Asynchronous Interactions with a Timeout
In an asynchronous interaction with a timeout (which you perform in BPEL with a
pick activity), a client sends a request to a service and waits until it receives a reply, or
until a certain time limit is reached, whichever comes first. For example, a client
requests a loan offer. If the client does not receive a loan offer reply within a specified
amount of time, the request is canceled. Figure 5–4 provides an overview.

Client BPEL Process
WSDL

PartnerLink

d2

Service BPEL Process

<invoke>
Get

response
<receive>

<receive>d1
Call

service
<invoke>

Introduction to Asynchronous Interactions with a Notification Timer

Introduction to Interaction Patterns in a BPEL Process 5-5

Figure 5–4 Asynchronous Interaction with Timeout

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction with a timeout, it needs an invoke activity to send the request and a pick
activity with two branches: an onMessage branch and an onAlarm branch. If the reply
comes after the time limit has expired, the message goes to the dead letter queue. As
with all partner activities, the WSDL file defines the interaction.

For more information about asynchronous interactions with a timeout, see
Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or
Waiting."

BPEL Process Service Component as the Service
The behavior of the BPEL process service component as a service matches the behavior
with the asynchronous interaction with the BPEL process service component as the
service.

5.5 Introduction to Asynchronous Interactions with a Notification Timer
In an asynchronous interaction with a notification time, a client sends a request to a
service and waits for a reply, although a notification is sent after a timer expires. The
client continues to wait for the reply from the service even after the timer has expired.
Figure 5–5 provides an overview.

Wait for
callback

<onMessage>

Logic
Post

Callback

Logic
Post

Timeout

Time out
in 1M

<onAlarm>

<pick>

Client BPEL Process

WSDL
PartnerLink

d1

d2

Call
service

<invoke>

Service BPEL Process

<receive>

<invoke>

Introduction to One Request, Multiple Responses

5-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 5–5 Asynchronous Interaction with a Notification Time

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing an invoke activity to send the request, and a receive
activity to accept the reply. The onAlarm handler of the scope activity has a time limit
and instructions on what to do when the timer expires. For example, wait 30 minutes,
then send a warning indicating that the process is taking longer than expected. As
with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service
The behavior for the BPEL process service component as the service matches the
behavior with the asynchronous interaction with the BPEL process service component
as the service.

5.6 Introduction to One Request, Multiple Responses
In this interaction type, the client sends a single request to a service and receives
multiple responses in return. For example, the request can be to order a product
online, and the first response can be the estimated delivery time, the second response a
payment confirmation, and the third response a notification that the product has
shipped. In this example, the number and types of responses are expected. Figure 5–6
provides an overview.

BPEL Process

WSDL
PartnerLink

d1

d2

Service BPEL Process

<receive>

<invoke>

<scope>

Call
service

<invoke>

<onAlarm>

Notify
Someone

Wait for
Callback
<receive>

Introduction to One Request, One of Two Possible Responses

Introduction to Interaction Patterns in a BPEL Process 5-7

Figure 5–6 One Request, Multiple Responses

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs an invoke activity to send the request, and a sequence activity with three receive
activities, one for each reply. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

5.7 Introduction to One Request, One of Two Possible Responses
In an interaction using one request and one of two possible responses, the client sends
a single request to a service and receives one of two possible responses. For example,
the request can be to order a product online, and the first response can be either an
in-stock message or an out-of-stock message. Figure 5–7 provides an overview.

Client BPEL Process

Call
service

<invoke>

<sequence>

<receive>

<receive>

d1

d3

d2

d4

<receive>

Service BPEL Process

<receive>

<sequence>

</sequence> </sequence>

<invoke>

<invoke>

<invoke>

WSDL
Client

PartnerLink

Introduction to One Request, a Mandatory Response, and an Optional Response

5-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 5–7 One Request, One of Two Possible Responses

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs the following:

■ An invoke activity to send the request

■ A pick activity with two branches: one onMessage for the in-stock response and
instructions on what to do if an in-stock message is received

■ A second onMessage for the out-of-stock response and instructions on what to do
if an out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

For more information about interactions using one request and one of two possible
responses, see Section 14.2, "Creating a Pick Activity to Select Between Continuing a
Process or Waiting."

BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
switch activity with two branches, one with an invoke activity sending the in-stock
message if the item is available, and a second branch with an invoke activity sending
the out-of-stock message if the item is not available.

5.8 Introduction to One Request, a Mandatory Response, and an Optional
Response

In this type of interaction, the client sends a single request to a service and receives one
or two responses. Here, the request is to order a product online. If the product is
delayed, the service sends a message letting the customer know. In any case, the
service always sends a notification when the item ships. Figure 5–8 provides an
overview.

<onMessage A>

Logic A Logic B

<onMessage B>

<pick>

Client BPEL Process

WSDL
PartnerLink

d1
Call

service
<invoke>

Service BPEL Process

Item in stock?

<invoke>
Msg A

<invoke>
Msg B

<otherwise>

<switch>

<receive>

Msg A
or

Msg B

Introduction to Partial Processing

Introduction to Interaction Patterns in a BPEL Process 5-9

Figure 5–8 One Request, a Mandatory Response, and an Optional Response

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing the invoke activity to send the request, and a receive
activity to accept the mandatory reply. The onMessage handler of the scope activity is
set to accept the optional message and instructions on what to do if the optional
message is received (for example, notify you that the product has been delayed). The
client BPEL process service component waits to receive the mandatory reply. If the
mandatory reply is received first, the BPEL process service component continues
without waiting for the optional reply. As with all partner activities, the WSDL file
defines the interaction.

BPEL Process Service Component as the Service
The BPEL service needs a scope activity containing the receive activity and an invoke
activity to send the mandatory shipping message, and the scope’s onAlarm handler to
send the optional delayed message if a timer expires (for example, send the delayed
message if the item is not shipped in 24 hours).

5.9 Introduction to Partial Processing
In partial processing, the client sends a request to a service and receives an immediate
response, but processing continues on the service side. For example, the client sends a
request to purchase a vacation package, and the service sends an immediate reply
confirming the purchase, then continues on to book the hotel, the flight, the rental car,

Client BPEL Process

WSDL
PartnerLink

d1

<scope>

Call
service

<invoke>

<onMessage A>

Notify User
of Delay

Wait for
Callback

<receive Msg B>

Msg B

Msg A
(maybe)

Service BPEL Process

<receive>

When
product
ships...

<invokes>
Msg B

Delay?

<invoke>
Msg A

<otherwise>

<switch>

Introduction to Multiple Application Interactions

5-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

and so on. This pattern can also include multiple shot callbacks, followed by
longer-term processing. Figure 5–9 provides an overview.

Figure 5–9 Partial Processing

BPEL Process Service Component as the Client
In this case, the BPEL client is simple; it needs an invoke activity for each request and a
receive activity for each reply for asynchronous transactions, or just an invoke activity
for each synchronous transaction. Once those transactions are complete, the remaining
work is handled by the service. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service
The BPEL service needs a receive activity for each request from the client, and an
invoke activity for each response. Once the responses are finished, the BPEL process
service component as the service can continue with its processing, using the
information gathered in the interaction to perform the necessary tasks without any
further input from the client.

5.10 Introduction to Multiple Application Interactions
In some cases, there are more than two applications involved in a transaction, for
example, a buyer, seller, and shipper. In this case, the buyer sends a request to the
seller, the seller sends a request to the shipper, and the shipper sends a notification to
the buyer. This A-to-B-to-C-to-A transaction pattern can handle many transactions at
the same time. Therefore, a mechanism is required for keeping track of which message
goes where. Figure 5–10 provides an overview.

As with all partner activities, the WSDL file defines the interaction.

<receive>
<receive>

<receive>
<receive>

Client BPEL Process
WSDL

PartnerLink

d2

d4

Service BPEL Process

<receive>

<receive>d1
Call

service
<invoke>

<receive>

d3<invoke>

<receive>

<receive>

<invoke>

<receive>

Introduction to Multiple Application Interactions

Introduction to Interaction Patterns in a BPEL Process 5-11

Figure 5–10 Multiple Party Interactions

This kind of coordination can be managed using WS-Addressing or correlation sets.
For more information about both, see Chapter 8, "Invoking an Asynchronous Web
Service from a BPEL Process."

BPEL Process A
Buyer WSDL

PartnerLink

WSDL
PartnerLink

WSDL
PartnerLink

BPEL Process B
Seller

<receive>
C

d1<invoke>
B

<invoke>
C

<receive>
A

BPEL Process C
Shipper

<invoke>
A

<receive>
BC

d3 d2

Introduction to Multiple Application Interactions

5-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6

Manipulating XML Data in a BPEL Process 6-1

6 Manipulating XML Data in a BPEL Process

This chapter describes how to manipulate XML data in a BPEL process service
component. This chapter provides a variety of examples. Topics include how to work
with variables, sequences, and arrays; use XPath expressions; and perform tasks such
as mathematical calculations. Supported specifications are also referenced.

This chapter includes the following sections:

■ Section 6.1, "Introduction to Manipulating XML Data in BPEL Processes"

■ Section 6.2, "Delegating XML Data Operations to Data Provider Services"

■ Section 6.3, "Using Standalone SDO-based Variables"

■ Section 6.4, "Initializing a Variable with Expression Constants or Literal XML"

■ Section 6.5, "Copying Between Variables"

■ Section 6.6, "Accessing Fields in Element and Message Type Variables"

■ Section 6.7, "Assigning Numeric Values"

■ Section 6.8, "Using Mathematical Calculations with XPath Standards"

■ Section 6.9, "Assigning String Literals"

■ Section 6.10, "Concatenating Strings"

■ Section 6.11, "Assigning Boolean Values"

■ Section 6.12, "Assigning a Date or Time"

■ Section 6.13, "Manipulating Attributes"

■ Section 6.14, "Manipulating XML Data with bpelx Extensions"

■ Section 6.15, "Validating XML Data"

■ Section 6.16, "Using Element Variables in Message Exchange Activities in BPEL
2.0"

■ Section 6.17, "Mapping WSDL Message Parts in BPEL 2.0"

■ Section 6.18, "Importing Process Definitions in BPEL 2.0"

■ Section 6.19, "Manipulating XML Data Sequences That Resemble Arrays"

■ Section 6.20, "Converting from a String to an XML Element"

■ Section 6.21, "Understanding Document-Style and RPC-Style WSDL Differences"

■ Section 6.22, "Manipulating SOAP Headers in BPEL"

■ Section 6.23, "Declaring Extension Namespaces in BPEL 2.0"

Introduction to Manipulating XML Data in BPEL Processes

6-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For Oracle BPEL Process Manager samples, visit the following URL:

https://soasamples.samplecode.oracle.com

6.1 Introduction to Manipulating XML Data in BPEL Processes
This section provides an introduction to using XML data in BPEL processes.

6.1.1 XML Data in BPEL
In a BPEL process service component, most pieces of data are in XML format. This
includes the messages passed to and from the BPEL process service component, the
messages exchanged with external services, and the local variables used by the
process. You define the types for these messages and variables with the XML schema,
usually in one of the following:

■ Web Services Description Language (WSDL) file for the flow

■ WSDL files for the services it invokes

■ XSD file referenced by those WSDL files

Therefore, most variables in BPEL are XML data, and any BPEL process service
component uses much of its code to manipulate these XML variables. This typically
includes performing data transformation between representations required for
different services, and local manipulation of data (for example, to combine the results
from several service invocations).

BPEL also supports service data object (SDO) variables, which are not in an XML
format, but rather in a memory structure format.

6.1.2 Data Manipulation and XPath Standards
The starting point for data manipulation in BPEL is the assign activity, which builds on
the XPath standard. XPath queries, expressions, and functions play a large part in this
type of manipulation.

In addition, more advanced methods are available that involve using XQuery, XSLT, or
Java, usually to do more complex data transformation or manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It
summarizes the key building blocks used in various combinations and provides
examples. The remaining sections in this chapter discuss and illustrate how to apply
these building blocks to perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to
calculate the value of an expression and store it in a variable. A copy element within
the activity specifies the source and target of the assignment (what to copy from and
to), which must be of compatible types.

Note: Most of the examples in this chapter assume that the WSDL
file defining the associated message types is document-literal style
rather than the RPC style. There is a difference in how XPath query
strings are formed for RPC-style WSDL definitions. If you are working
with a type defined in an RPC WSDL file, see Section 6.21,
"Understanding Document-Style and RPC-Style WSDL Differences."

Introduction to Manipulating XML Data in BPEL Processes

Manipulating XML Data in a BPEL Process 6-3

Example 6–1 shows the formal syntax for BPEL version 1.1, as described in the
Business Process Execution Language for Web Services Specification Version 1.1:

Example 6–1 Assign Activity for BPEL 1.1

<assign standard-attributes>
 standard-elements
 <copy>
 from-spec
 to-spec
 </copy>
</assign>

Example 6–2 shows the formal syntax for BPEL version 2.0, as described in the Web
Services Business Process Execution Language Specification Version 2.0. The
keepSrcElementName attribute specifies whether the element name of the
destination (as selected by the to-spec) is replaced by the element name of the source
(as selected by the from-spec) during the copy operation. When
keepSrcElementName is set to no (the default value), the name (that is, the
namespace name and local name properties) of the original destination element is
used as the name of the resulting element. When keepSrcElementName is set to yes,
the source element name is used as the name of the resulting destination element.

Example 6–2 Assign Activity for BPEL 2.0

<assign validate="yes|no"? standard-attributes>
 standard-elements
 (
 <copy keepSrcElementName="yes|no"? ignoreMissingFromData="yes|no"?>
 from-spec
 to-spec
 </copy>
 . . .
 . . .
</assign>

This syntax is described in detail in both specifications. The from-spec and to-spec
typically specify a variable or variable part, as shown in Example 6–3:

Example 6–3 from-spec and to-spec Attributes

<assign>
 <copy>
 <from variable="c1" part="address"/>
 <to variable="c3"/>
 </copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy Rules
dialog that includes a From section and a To section. This reflects the preceding BPEL
source code syntax.

XPath standards play a key role in the assign activity. Brief examples are shown here
as an introduction; examples with more context and explanation are provided in the
sections that follow.

■ XPath queries

Introduction to Manipulating XML Data in BPEL Processes

6-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

An XPath query selects a field within a source or target variable part. The from or
to clause can include a query attribute whose value is an XPath query string.
Example 6–4 provides an example:

Example 6–4 query Attribute

<from variable="input" part="payload"
 query="/p:CreditFlowRequest/p:ssn"/>

The value of the query attribute must be a location path that selects exactly one
node. You can find further details about the query attribute and XPath standards
syntax in the Business Process Execution Language for Web Services Specification
Version 1.1 (section 14.3) or Web Services Business Process Execution Language
Specification Version 2.0 (section 8.4), and the XML Path Language (XPath)
Specification, respectively.

■ XPath expressions

You use an XPath expression (specified in an expression attribute in the from
clause) to indicate a value to be stored in a variable. For example:

<from expression="100"/>

The expression can be any general expression (that is, an XPath expression that
evaluates to any XPath value type). Similarly, the value of an expression attribute
must return exactly one node or one object only when it is used in the from clause
within a copy operation. For more information about XPath expressions, see
section 9.1.4 of the XML Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:

■ Core XPath functions

XPath supports a large number of built-in functions, including functions for string
manipulation (such as concat), numeric functions (like sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the
XML Path Language (XPath) Specification.

■ BPEL XPath extension functions

BPEL adds several extension functions to the core XPath core functions, enabling
XPath expressions to access information from a process.

– For BPEL 1.1, the extensions are defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/
and indicated by the prefix bpws:

<from expression= "bpws:getVariableData('input', 'payload', '/p:value') +
1"/>

For more information, see sections 9.1 and 14.1 of the Business Process Execution
Language for Web Services Specification Version 1.1. For more information about
getVariableData, see Section B.2.56.2, "getVariableData."

– For BPEL 2.0, the extensions are also defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/.
However, the prefix is bpel:

<from>bpel:getVariableProperty('input', 'propertyName')</from>

Delegating XML Data Operations to Data Provider Services

Manipulating XML Data in a BPEL Process 6-5

For more information, see section 8.3 of the Web Services Business Process
Execution Language Specification Version 2.0. For more information about
getVariableProperty, see Section B.2.56.4, "getVariableProperty (For
BPEL 2.0)."

■ Oracle BPEL XPath extension functions

Oracle provides some additional XPath functions that use the capabilities built
into BPEL and XPath standards for adding new functions.

These functions are defined in the namespace
http://schemas.oracle.com/xpath/extension and indicated by the
prefix ora:.

■ Custom functions

Oracle BPEL Process Manager functions are defined in the
bpel-xpath-functions-config.xml and placed inside the orabpel.jar
file. For more information, see Section B.7, "Creating User-Defined XPath
Extension Functions" and Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite and Oracle BPM Suite.

Sophisticated data manipulation can be difficult to perform with the BPEL assign
activity and the core XPath functions. However, you can perform complex data
manipulation and transformation by using XSLT, Java, or a bpelx operation under an
assign activity (See Section 6.14, "Manipulating XML Data with bpelx Extensions") or
as a web service. For XSLT, Oracle BPEL Process Manager includes XPath functions
that execute these transformations.

For more information about XPath and XQuery transformation code examples, see
Chapter 38, "Creating Transformations with the XSLT Mapper."

6.2 Delegating XML Data Operations to Data Provider Services
You can specify BPEL data operations to be performed by an underlying data provider
service through use of the entity variable. The data provider service performs the data
operations in a data store behind the scenes and without use of other data store-related
features provided by Oracle SOA Suite (for example, the database adapter). This action
enhances Oracle SOA Suite runtime performance and incorporates native features of
the underlying data provider service during compilation and runtime.

The entity variable can be used with an Oracle Application Development Framework
(ADF) Business Component data provider service using SDO-based data.

In releases before 11g, variables and messages exchanged within a BPEL business
process were a disconnected payload (a snapshot of data returned by a web service)
placed into an XML structure. In some cases, the user required this type of fit. In other
cases, this fit presented challenges.

Note: Passing large schemas through an assign activity can cause
Oracle JDeveloper to freeze up and run low on memory if you
right-click the target or source payload node in the Edit Assign dialog
and select Expand All Child Nodes. As a workaround, manually
expand the payload elements.

Note: This feature is only supported in BPEL 1.1 projects.

Delegating XML Data Operations to Data Provider Services

6-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The entity variable addresses the following challenges of previous releases:

■ Extensive data conversion

If the underlying data was not in XML form, data conversion (for example,
translating delimited text to XML) was required. If the underlying size of the data
was large, the processing potentially impacted performance.

■ Stale snapshot data

Variables (including WSDL messages) in BPEL processes were disconnected
payload. In some cases, this was required. In other cases, you wanted a variable to
represent the most recent data being modified by other applications outside Oracle
BPEL Process Manager. This meant the disconnected data model provided a stale
data set that did not fit all needs. The snapshot also duplicated data, which
impacted performance when the data size was large.

■ Loss of native data behavior

Some data conversion implementation required data structure enforcement or
business data logic beyond the XML schema. For example, the start date needed to
be smaller than the end date. When the variable was a disconnected payload,
validation occurred only during related web service invocation. Optionally
performing the extra business data logic after certain operations, but before web
service invocation, was sometimes preferred.

To address these challenges with Release 11g, you create an entity variable during
variable declaration. An entity variable acts as a data handle to access and plug in
different data provider service technologies behind the scenes. During compilation
and runtime, Oracle BPEL Process Manager delegates data operations to the
underlying data provider service.

Table 6–1 provides an example of how data conversion was performed in previous
releases (using the database adapter as an example) and in release 11g with the entity
variable.

Table 6–1 Data Manipulation Capabilities in Previous and Current Releases

10.1.x Releases 11g Release When Using the Entity Variable

Data operations such as explicitly loading and
saving data were performed by the database
adapter in Oracle BPEL Process Manager. All
data (for example, of a purchase order) was
saved in the database dehydration store.

Data operations such as loading and saving
data are performed automatically by the data
provider service (the Oracle ADF Business
Component application), without asking you
to code any service invocation.

Oracle BPEL Process Manager stores a key (for
example, purchase order ID (POID)) that
points to this data. Oracle BPEL Process
Manager fetches the key when access to data
is requested (the bind entity activity does this).
You must explicitly request the data to be
bound using the key. Any data changes are
persisted by the data provider service in a
database that can be different from the
dehydration store database. This prevents data
duplication.

Data in variables was in document object
model (DOM) form

Data in variables is in SDO form, which
provides for a simpler conversion process than
DOM, especially when the data provider
service understands SDO forms.

Delegating XML Data Operations to Data Provider Services

Manipulating XML Data in a BPEL Process 6-7

The WebLogic Fusion Order Demo application describes use of the entity variable.

6.2.1 How to Create an Entity Variable
This section describes how to create an entity variable and a binding key in Oracle
JDeveloper.

In 10.1.x releases of Oracle BPEL Process Manager, all variable data was in DOM form.
With release 11g, variable data in SDO form is also supported. DOM and SDO
variables in BPEL process service components are implicitly converted to the required
forms. For example, an Oracle BPEL process service component using DOM-based
variables can automatically convert these variables as required to SDO-based variables
in an assign activity, and vice versa. Both form types are defined in the XSD schema
file. No user intervention is required.

Entity variables also support SDO-formed data. However, unlike the DOM and SDO
variables, the entity variable with SDO-based data enables you to bind a unique key
value to data (for example, a purchase order). Only the key is stored in the
dehydration store; the data requiring conversion is stored with the service of the
Oracle ADF Business Component application. The key points to the data stored in the
service. When the data is required, it is fetched from the data provider service and
placed into memory. The process occurs in two places: the bind entity activity and the
dehydration store. For example, when Oracle BPEL Process Manager rehydrates, it
stores only the key for the entity variable; when it wakes up, it does an implicit bind to
get the current data.

6.2.1.1 Understanding How SDO Works in the Inbound Direction
The SDO binding component service provides the outside world with an entry point
to the composite application, as shown in Figure 6–1.

Figure 6–1 Inbound Direction

You use the SOA Composite Editor and Oracle BPEL Designer to perform the
following tasks:

Note: Only BPEL process service components currently allow the
use of SDO-formed variables. If your composite application has an
Oracle Mediator service component wired with an SDO-based Java
binding component reference, the data form of the variable defaults to
DOM. In addition, the features described for 10.1.x releases in
Table 6–1 are still supported in release 11g.

SOA Composite Application

BPEL
Process Service

Component

SDO
Binding

Component
Service

Wire
ADF BC Application

Using
SDO-Formed

Data

Delegating XML Data Operations to Data Provider Services

6-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Define an SDO binding component service and a BPEL process service component
in the composite application.

■ Connect (wire) the SDO service and BPEL process service component.

■ Define the details of the BPEL process service component.

For more information about using the SOA Composite Editor, see Chapter 2,
"Developing SOA Composite Applications with Oracle SOA Suite."

6.2.1.2 Understanding How SDO Works in the Outbound Direction
The SDO binding component reference enables messages to be sent from the
composite application to Oracle ADF Business Component application external
partners in the outside world, as shown in Figure 6–2.

Figure 6–2 Outbound Direction

When the Oracle ADF Business Component application is the external partner link to
the outside world, there is no SDO binding component reference in the SOA
Composite Editor that you drag into the composite application to create outbound
communication. Instead, communication between the composite application and the
Oracle ADF Business Component application occurs as follows:

■ The Oracle ADF Business Component application is deployed and automatically
registered as an SDO service in the Service Infrastructure

■ Oracle JDeveloper is used to browse for and discover this application as an
ADF-BC service and create a partner link connection.

■ The composite.xml file is automatically updated with reference details (the
binding.adf property) when the Oracle ADF Business Component application
service is discovered.

6.2.1.3 Creating an Entity Variable and Choosing a Partner Link
You now create an entity variable and select a partner link for the Oracle ADF Business
Component application. The following example describes how the OrderProcessor
BPEL process service component receives an ID for an order by using a bind entity
activity to point to order data in an Oracle ADF Business Component data provider
service in the WebLogic Fusion Order Demo application.

To create an entity variable and choose a partner link:
1. Go to the Structure window of the BPEL process service component in Oracle

JDeveloper.

SOA Composite Application

ADF BC Application
Using

SDO-Formed
Data

SDO Binding
Component
Reference

BPEL
Process Service

Component
(using entity

variable)

Wire

Pass key to
fetch data

Delegating XML Data Operations to Data Provider Services

Manipulating XML Data in a BPEL Process 6-9

2. Right-click the Variables folder and select Expand All Child Nodes.

3. In the second Variables folder, right-click and select Create Variable.

The Create Variable dialog appears.

4. In the Name field, enter a name.

5. Click the Entity Variable checkbox and select the Search icon to the right of the
Partner Link field.

The Partner Link Chooser dialog appears with a list of available services,
including the SDO service called ADF-BC Service.

6. Browse for and select the service for the Oracle ADF Business Component
application.

7. Click OK to close the Partner Link Chooser and Create Variable dialogs.

The dialog looks as shown in Figure 6–3.

Figure 6–3 Create Variable Dialog

6.2.1.4 Creating a Binding Key
You now create a key to point to the order data in the Oracle ADF Business
Component data provider service.

To create a binding key:
1. In the Component Palette for a BPEL 1.1 project, expand Oracle Extensions.

2. Drag a Bind Entity activity into your BPEL process service component.

The Bind Entity dialog appears.

3. In the Name field, enter a name.

4. To the right of the Entity Variable field, click the Search icon.

The Variable Chooser dialog appears.

5. Select the entity variable created in Section 6.2.1.3, "Creating an Entity Variable
and Choosing a Partner Link" and click OK.

6. In the Unique Keys section, click the Add icon.

The Specify Key dialog appears. You use this dialog to create a key for retrieving
the order ID from the Oracle ADF Business Component data provider service.

7. Enter the details described in Table 6–2 to define the binding key:

Delegating XML Data Operations to Data Provider Services

6-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 6–4 shows the Specify Key dialog after completion.

Figure 6–4 Specify Key Dialog

8. Click OK to close the Specify Key dialog.

A name-pair value appears in the Unique Keys table, as shown in Figure 6–5.
Design is now complete.

Figure 6–5 Bind Entity Dialog

Table 6–2 Specify Key Dialog Fields and Values

Field Value

Key Local Part Enter the local part of the key.

Key Namespace URI Enter the namespace URI for the key.

Key Value Enter the key value expression. This expression must match the
type of a key. The following examples show expression value
keys for a POID key:

■ $inputMsg.payload/tns:poid

■ bpws:getVariableData(’inputmsg’,’payload’,’tns:
poid’)

The POID key for an entity variable typically comes from
another message. If the type of POID key is an integer and the
expression result is a string of ABC, the string-to-integer fails and
the bind entity activity also fails at runtime.

Using Standalone SDO-based Variables

Manipulating XML Data in a BPEL Process 6-11

9. Click OK to close the Bind Entity dialog.

After the Bind Entity activity is executed at runtime, the entity variable is ready to
be used.

For more information about using SDOs, see Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework. This guide describes
how to expose application modules as web services and publish rows of view data
objects as SDOs. The application module is the ADF framework component that
encapsulates business logic as a set of related business functions.

6.3 Using Standalone SDO-based Variables
Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based
variables. The major difference is that the underlying data form is SDO-based, instead
of DOM-based. Therefore, SDO-based variables can use some SDO features such as
Java API access, an easier-to-use update API, and the change summary. However, SDO
usage is also subject to some restrictions that do not exist with XML-DOM-based
variables. The most noticeable restriction is that SDO only supports a small subset of
XPath expressions.

6.3.1 How to Declare SDO-based Variables
The syntax for declaring an SDO-based variable is similar to that for declaring BPEL
variables. Example 6–5 provides details.

Example 6–5 SDO-based Variable Declaration

<variable name="deptVar_s" element="hrtypes:dept" />
<variable name="deptVar_v" element="hrtypes:dept" bpelx:sdoCapable="false" />

If you want to override the automatic detection, use the
bpelx:sdoCapable="true|false" switch. For example, variable deptVar_v
described in Example 6–5 is a regular DOM-based variable. Example 6–6 provides an
example of the schema.

Example 6–6 XSD Sample

<xsd:element name="dept" type="Dept"/>
 <xsd:complexType name="Dept"
 sdoJava:instanceClass="sdo.sample.service.types.Dept">
 <xsd:annotation>
 <xsd:appinfo source="Key"
 xmlns="http://xmlns.oracle.com/bc4j/service/metadata/">
 <key>
 <attribute>Deptno</attribute>
 </key>
 <fetchMode>minimal</fetchMode>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Deptno" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="Dname" type="xsd:string" minOccurs="0"
 nillable="true"/>
 <xsd:element name="Loc" type="xsd:string" minOccurs="0" nillable="true"/>
 <xsd:element name="Emp" type="Emp" minOccurs="0" maxOccurs="unbounded"
 nillable="true"/>
 </xsd:sequence>
 </xsd:complexType>

Using Standalone SDO-based Variables

6-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6.3.2 How to Convert from XML to SDO
Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can
interchange the usage of DOM-based and SDO-based variables within the same
business process, even within the same expression. The Oracle BPEL Process Manager
data framework automatically converts back and forth between DOM and SDO forms.

By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager
enables some XPath features (for example, variable reference and function calls) that
the basic SDO specification does not support. However, there are other limitations on
the XPath used with SDO-based variables (for example, there is no support for and,
or, and not).

Example 6–7 provides a simple example of converting from XML to SDO.

Example 6–7 XML-to-SDO Conversion

<assign>
 <copy>
 <from>
 <ns0:dept xmlns:ns0="http://sdo.sample.service/types/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ns0:Deptno>10</ns0:Deptno>
 <ns0:Dname>ACCOUNTING</ns0:Dname>
 <ns0:Loc>NEW YORK</ns0:Loc>
 <ns0:Emp>
 <ns0:Empno>7782</ns0:Empno>
 <ns0:Ename>CLARK</ns0:Ename>
 <ns0:Job>MANAGER</ns0:Job>
 <ns0:Mgr>7839</ns0:Mgr>
 <ns0:Hiredate>1981-06-09</ns0:Hiredate>
 <ns0:Sal>2450</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7839</ns0:Empno>
 <ns0:Ename>KING</ns0:Ename>
 <ns0:Job>PRESIDENT</ns0:Job>
 <ns0:Hiredate>1981-11-17</ns0:Hiredate>
 <ns0:Sal>5000</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7934</ns0:Empno>
 <ns0:Ename>MILLER</ns0:Ename>
 <ns0:Job>CLERK</ns0:Job>
 <ns0:Mgr>7782</ns0:Mgr>
 <ns0:Hiredate>1982-01-23</ns0:Hiredate>
 <ns0:Sal>1300</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 </ns0:dept>
 </from>
 <to variable="deptVar_s" />
 </copy>
</assign>

Example 6–8 provides an example of copying from an XPath expression of an SDO
variable to a DOM variable.

Initializing a Variable with Expression Constants or Literal XML

Manipulating XML Data in a BPEL Process 6-13

Example 6–8 Copy from an XPath Expression of an SDO Variable to a DOM Variable

<assign>
 <!-- copy from an XPath expression of an SDO variable to DOM variable -->
 <copy>
 <from expression="$deptVar_s/hrtypes:Emp[2]" />
 <to variable="empVar_v" />
 </copy>
 <!-- copy from an XPath expression of an DOM variable to SDO variable -->
 <copy>
 <from expression="$deptVar_v/hrtypes:Emp[2]" />
 <to variable="empVar_s" />
 </copy>
 <!-- insert a DOM based data into an SDO variable -->
 <bpelx:insertAfter>
 <bpelx:from variable="empVar_v" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp" />
 </bpelx:insertAfter>
 <!-- insert a SDO based data into an SDO variable at particular location,
 no XML conversion is needed -->
 <bpelx:insertBefore>
 <bpelx:from expression="$deptVar_s/hrtypes:Emp[hrtypes:Sal = 1300]" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp[6]" />
 </bpelx:insertBefore>
</assign>

Example 6–9 provides an example of removing a portion of SDO data.

Example 6–9 SDO Data Removal

<assign>
 <bpelx:remove>
 <bpelx:target variable="deptVar_s" query="hrtypes:Emp[2]" />
 </bpelx:remove>
</assign>

6.4 Initializing a Variable with Expression Constants or Literal XML
It is often useful to assign literal XML to a variable in BPEL, for example, to initialize a
variable before copying dynamic data into a specific field within the XML data content
for the variable. This is also useful for testing purposes when you want to hard code
XML data values into the process.

6.4.1 How To Assign a Literal XML Element
Example 6–10 assigns a literal result element to the payload part of the output
variable:

Note: The bpelx:append operation is not supported for
SDO-based variables for the following reasons:

■ The <copy> operation on an SDO-based variable has smart
update capabilities (for example, you do not have to perform a
<bpelx:append> before the <copy> operation).

■ The SDO data object is metadata driven and does not generally
support adding a new property arbitrarily.

Copying Between Variables

6-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 6–10 Literal Element Assignment

<assign>
 <!-- copy from literal xml to the variable -->
 <copy>
 <from>
 <result xmlns="http://samples.otn.com">
 <name/>
 <symbol/>
 <price>12.3</price>
 <quantity>0</quantity>
 <approved/>
 <message/>
 </result>
 </from>
 <to variable="output" part="payload"/>
 </copy>
</assign>

6.5 Copying Between Variables
When you copy between variables, you copy directly from one variable (or part) to
another variable of a compatible type, without needing to specify a particular field
within either variable. In other words, you do not need to specify an XPath query.

6.5.1 How to Copy Between Variables
Example 6–11 shows two assignments being performed, first copying between two
variables of the same type and then copying a variable part to another variable with
the same type as that part.

Example 6–11 Copying Between Variables

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part = "address"/>
 <to variable="c3"/>
 </copy>
</assign>

The BPEL file defines the variables shown in Example 6–12:

Example 6–12 Variable Definition

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="y:address"/>

The WSDL file defines the person message type shown in Example 6–13:

Example 6–13 Message Type Definition

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

Accessing Fields in Element and Message Type Variables

Manipulating XML Data in a BPEL Process 6-15

For more information about this code example, see Section 9.3.2 of the Business Process
Execution Language for Web Services Specification Version 1.1. For BPEL 2.0, see Section
8.4.4 of Web Services Business Process Execution Language Specification Version 2.0 for a
similar example.

For more information, see Section A.2.2, "Assign Activity."

6.5.2 Initializing Variables with an Inline from-spec in BPEL 2.0
A variable can optionally be initialized by using an inline from-spec. Click the
Initialize tab in the Create Variable dialog in a BPEL 2.0 project to create this type of
variable.

Inline variable initializations are conceptually designed as a virtual sequence activity
that includes a series of virtual assign activities, one for each variable being initialized,
in the order in which they appear in the variable declarations. Each virtual assign
activity contains a single virtual copy operation whose from-spec is as given in the
variable initialization. The to-spec points to the variable being created.
Example 6–14 provides details.

Example 6–14 Variable Initialization with an Inline from-spec

<variables>
 <variable name="tmp" element="tns:output">
 <from>
 <literal>
 <output xmlns="http://samples.otn.com/bpel2.0/ch8.1">
 <value>1000</value>
 </output>
 </literal>
 </from>
 </variable>
</variables>

For more information, see section 8.1 of Web Services Business Process Execution
Language Specification Version 2.0.

6.6 Accessing Fields in Element and Message Type Variables
Given the types of definitions present in most WSDL and XSD files, you must go down
to the level of copying from or to a field within part of a variable based on the element
and message type. This in turn uses XML schema complex types. To perform this
action, you specify an XPath query in the from or to clause of the assign activity.

6.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables
In Example 6–15, the ssn field is copied from the CreditFlow process’s input
message into the ssn field of the credit rating service’s input message.

Example 6–15 Field Copying Levels

<assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:CreditFlowRequest/tns:ssn"/>
 <to variable="crInput" part="payload" query="/tns:ssn"/>
 </copy>

Accessing Fields in Element and Message Type Variables

6-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

</assign>

Example 6–16 shows how the BPEL file defines message type-based variables involved
in this assignment:

Example 6–16 BPEL File Definition - Message Type-Based Variables in BPEL 1.1

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>
<variable name="crInput"
 messageType="services:CreditRatingServiceRequestMessage"/>

The crInput variable is used as an input message to a credit rating service. Its
message type, CreditFlowRequestMessage, is defined in the
CreditFlowService.wsdl file, as shown in Example 6–17:

Example 6–17 CreditFlowRequestMessage Definition

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in the
CreditRatingService.wsdl file, as shown in Example 6–18:

Example 6–18 CreditRatingServiceRequestMessage Definition

<message name="CreditRatingServiceRequestMessage">
 <part name="payload" element="tns:ssn"/>
</message>

Example 6–19 shows the BPEL 2.0 syntax for how the BPEL file defines message
type-based variables involved in the assignment in Example 6–15. Note that
/tns:CreditFlowRequest is not required.

Example 6–19 BPEL File Definition - Message Type-Based Variables in BPEL 2.0

<copy>
 <from>$input.payload/tns:ssn</from>
 <to>$crInput.payload</to>
</copy>

A BPEL process can also use element-based variables. Example 6–20 shows how to use
element-based variables in BPEL 1.1. The autoloan field is copied from the loan
application process’s input message into the customer field of a web service’s input
message.

Example 6–20 Field Copying Levels in BPEL 1.1

 <assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:
 application/autoloan:customer"/>
 <to variable="customer"/>
 </copy>
</assign>

Example 6–21 shows how to use element-based variables in BPEL 2.0.

Using Mathematical Calculations with XPath Standards

Manipulating XML Data in a BPEL Process 6-17

Example 6–21 Field Copying Levels in BPEL 2.0

<assign>
 <copy>
 <from>$input.payload/autoloan:application/autoloan:customer</from>
 <to>$customer</to>
 </copy>
</assign>

Example 6–22 shows how the BPEL file defines element-based variables involved in an
assignment:

Example 6–22 BPEL File Definition - Element-Based Variables

 <variable name="customer" element="tns:customerProfile"/>

6.7 Assigning Numeric Values
You can assign numeric values in XPath expressions.

6.7.1 How to Assign Numeric Values
Example 6–23 shows how to assign an XPath expression with the integer value of 100.

Example 6–23 XPath Expression Assignment

<assign>
 <!-- copy from integer expression to the variable -->
 <copy>
 <from expression="100"/>
 <to variable="output" part="payload" query="/p:result/p:quantity"/>
 </copy>
</assign>

6.8 Using Mathematical Calculations with XPath Standards
You can use simple mathematical expressions like the one in Section 6.8.1, "How To
Use Mathematical Calculations with XPath Standards," which increment a numeric
value.

6.8.1 How To Use Mathematical Calculations with XPath Standards
In Example 6–24, the BPEL XPath function getVariableData retrieves the value
being incremented. The arguments to getVariableData are equivalent to the
variable, part, and query attributes of the from clause (including the last two
arguments, which are optional).

Example 6–24 XPath Function getVariableData Retrieval of a Value

<assign>
 <copy>
 <from expression="bpws:getVariableData('input', 'payload',
 '/p:value') + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

You can also use $variable syntax in BPEL 1.1, as shown in Example 6–25:

Assigning String Literals

6-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 6–25 $variable Syntax Use in BPEL 1.1

<assign>
 <copy>
 <from expression="$input.payload + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

Example 6–26 shows how to use $variable syntax in BPEL 2.0.

Example 6–26 $variable Syntax Use in BPEL 2.0

<assign>
 <copy>
 <from>$input.payload + 1</from>
 <to>$output.payload</to>
 </copy>
</assign>

6.9 Assigning String Literals
You can assign string literals to a variable in BPEL.

6.9.1 How to Assign String Literals
The code in Example 6–27 copies a BPEL 1.1 expression evaluating from the string
literal 'GE' to the symbol field within the indicated variable part. (Note the use of the
double and single quotes.)

Example 6–27 Expression Copy in BPEL 1.1

<assign>
 <!-- copy from string expression to the variable -->
 <copy>
 <from expression="'GE'"/>
 <to variable="output" part="payload" query="/p:result/p:symbol"/>
 </copy>
</assign>

Example 6–28 shows how to perform this expression in BPEL 2.0.

Example 6–28 Expression Copy in BPEL 2.0

<assign>
 <copy>
 <from>'GE'</from>
 <to>$output.payload/p:symbol</from>
 </copy>
</assign>

6.10 Concatenating Strings
Rather than copying the value of one string variable (or variable part or field) to
another, you can first perform string manipulation, such as concatenating several
strings.

Assigning Boolean Values

Manipulating XML Data in a BPEL Process 6-19

6.10.1 How to Concatenate Strings
The concatenation is accomplished with the core XPath function named concat; in
addition, the variable value involved in the concatenation is retrieved with the BPEL
XPath function getVariableData. In Example 6–29, getVariableData fetches the
value of the name field from the input variable’s payload part. The string literal
'Hello ' is then concatenated to the beginning of this value.

Example 6–29 XPath Function getVariableData Fetch of Data

<assign>
 <!-- copy from XPath expression to the variable -->
 <copy>
 <from expression="concat('Hello ',
 bpws:getVariableData('input', 'payload', '/p:name'))"/>
 <to variable="output" part="payload" query="/p:result/p:message"/>
 </copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the
XML Path Language (XPath) Specification.

6.11 Assigning Boolean Values
You can assign boolean values with the XPath boolean function.

6.11.1 How to Assign Boolean Values
Example 6–30 provides an example of assigning boolean values in BPEL 1.1. The
XPath expression in the from clause is a call to XPath’s boolean function true, and
the specified approved field is set to true. The function false is also available.

Example 6–30 Boolean Value Assignment in BPEL 1.1

<assign>
 <!-- copy from boolean expression function to the variable -->
 <copy>
 <from expression="true()"/>
 <to variable="output" part="payload" query="/result/approved"/>
 </copy>
</assign>

Example 6–31 provides an example of assigning boolean values in BPEL 2.0.

Example 6–31 Boolean Value Assignment in BPEL 2.0

<assign>
 <copy>
 <from>true()</from>
 <to>$output.payload/approved</to>
 </copy>
</assign>

The XPath specification recommends that you use the "true()" and "false()"
functions as a method for returning boolean constant values.

If you instead use "boolean(true)" or "boolean(false)", the true or false
inside the boolean function is interpreted as a relative element step, and not as any
true or false constant. It attempts to select a child node named true under the

Assigning a Date or Time

6-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

current XPath context node. In most cases, the true node does not exist. Therefore, an
empty result node set is returned and the boolean() function in XPath 1.0 converts
an empty node set into a false result. This result can be potentially confusing.

6.12 Assigning a Date or Time
You can assign the current value of a date or time field by using the Oracle BPEL
XPath function getCurrentDate, getCurrentTime, or getCurrentDateTime,
respectively. In addition, if you have a date-time value in the standard XSD format,
you can convert it to characters more suitable for output by calling the Oracle BPEL
XPath function formatDate.

For related information, see section 9.1.2 of the Business Process Execution Language for
Web Services Specification Version 1.1 and section 8.3.2 of the Web Services Business
Process Execution Language Specification Version 2.0.

6.12.1 How to Assign a Date or Time
Example 6–32 shows an example that uses the function getCurrentDate in BPEL
1.1.

Example 6–32 Date or Time Assignment in BPEL 1.1

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
 <copy>
 <from expression="xpath20:getCurrentDate()"/>
 <to variable="output" part="payload"
 query="/invoice/invoiceDate"/>
 </copy>
</assign>

Example 6–33 shows an example that uses the function getCurrentDate in BPEL
2.0.

Example 6–33 Date or Time Assignment in BPEL 2.0

<assign>
 <copy>
 <from>xpath20:getCurrentDate()</from>
 <to>$output.payload/invoiceDate</to>
 </copy>
</assign>

In Example 6–34, the formatDate function converts the date-time value provided in
XSD format to the string 'Jun 10, 2005' (and assigns it to the string field
formattedDate).

Example 6–34 formatDate Function in BPEL 1.1

<!-- execute the XPath extension function formatDate() -->
<assign>
 <copy>
 <from expression="ora:formatDate('2005-06-10T15:56:00',
 'MMM dd, yyyy')"/>
 <to variable="output" part="payload"
 query="/invoice/formattedDate"/>
 </copy>
</assign>

Manipulating Attributes

Manipulating XML Data in a BPEL Process 6-21

Example 6–35 shows how the formatDate function works in BPEL 2.0.

Example 6–35 formatDate Function in BPEL 2.0

<assign>
 <copy>
 <from>ora:formatDate('2005-06-10T15:56:00','MMM dd, yyyy')</from>
 <to>$output.payload/formattedDate</to>
 </copy>
</assign>

6.13 Manipulating Attributes
You can copy to or from something defined as an XML attribute. An at sign (@) in
XPath query syntax refers to an attribute instead of a child element.

6.13.1 How to Manipulate Attributes
The code in Example 6–36 fetches and copies the custId attribute from this XML
data:

Example 6–36 custId Attribute Fetch and Copy Operations

 <invalidLoanApplication xmlns="http://samples.otn.com">
 <application xmlns = "http://samples.otn.com/XPath/autoloan">
 <customer custId = "111" >
 <name>
 Mike Olive
 </name>
 ...
 </customer>
 ...
 </application>
 </invalidLoanApplication>

The BPEL 1.1 code in Example 6–37 selects the custId attribute of the customer field
and assigns it to the variable custId:

Example 6–37 custId Attribute Select and Assign Operations in BPEL 1.1

<assign>
 <!-- get the custId attribute and assign to variable custId -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/@custId"/>
 <to variable="custId"/>
 </copy>
</assign>

Example 6–38 shows the equivalent syntax in BPEL 2.0 for selecting the custId
attribute of the customer field and assigning it to the variable custId:

Example 6–38 custId Attribute Select and Assign Operations in BPEL 2.0

<assign>
<copy>
<from>$input.payload/autoloan:application/autoloan:customer/@custId</from>

Manipulating XML Data with bpelx Extensions

6-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<to>$custId</to>
</copy>
</assign>
The namespace prefixes in this example are not integral to the example.

The WSDL file defines a customer to have a type in which custId is defined as an
attribute, as shown in Example 6–39:

Example 6–39 custId Attribute Definition

<complexType name="CustomerProfileType">
 <sequence>
 <element name="name" type="string"/>
 ...
 </sequence>
 <attribute name="custId" type="string"/>
</complexType>

6.14 Manipulating XML Data with bpelx Extensions
You can perform various operations on XML data in assign activities. The bpelx
extension types described in this section provide this functionality. In Oracle BPEL
Designer, you can add bpelx extension types at the bottom of the Copy Rules tab of
an Assign dialog. After creating a copy rule, you select it and then choose a bpelx
extension type from the dropdown list in BPEL 1.1 or the context menu in BPEL 2.0.
This changes the copy rule to the selected extension type.

In BPEL 1.1, you select an extension type from the dropdown list, as shown in
Figure 6–6.

Figure 6–6 Copy Rule Converted to bpelx Extension in BPEL 1.1

In BPEL 2.0, you select an extension type by right-clicking the copy rule, selecting
Change rule type, and then selecting the extension type, as shown in Figure 6–7.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-23

Figure 6–7 Copy Rule Converted to bpelx Extension in BPEL 2.0

For more information, see the online Help for this dialog and Section A.2.2, "Assign
Activity."

6.14.1 How to Use bpelx:append
The bpelx:append extension in an assign activity enables a BPEL process service
component to append the contents of one variable, expression, or XML fragment to
another variable’s contents. To use this extension, you select a copy rule at the bottom
of the Copy Rules tab, then select Append from the dropdown list, as shown in
Figure 6–6.

6.14.1.1 bpelx:append in BPEL 1.1
Example 6–40 provides an example of bpelx:append in a BPEL project that supports
BPEL version 1.1.

Example 6–40 bpelx:append Extension in BPEL 1.1

<bpel:assign>
 <bpelx:append>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node
list is appended as child nodes to the target node specified by the to-spec query.

Note: The bpelx:append extension is not supported with SDO
variables and causes an error.

Manipulating XML Data with bpelx Extensions

6-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The to-spec query must yield one single L-Value element node. Otherwise, a
bpel:selectionFailure fault is generated. The to-spec query cannot refer to a
partner link.

Example 6–41 consolidates multiple bills of material into one single bill of material
(BOM) by appending multiple b:parts for one BOM to b:parts of the consolidated
BOM.

Example 6–41 Consolidation of Multiple Bills of Material

<bpel:assign>
 <bpelx:append>
 <bpelx:from variable="billOfMaterialVar"
 query="/b:bom/b:parts/b:part" />
 <bpelx:to variable="consolidatedBillOfMaterialVar"
 query="/b:bom/b:parts" />
 </bpelx:append>
</bpel:assign>

6.14.1.2 bpelx:append in BPEL 2.0
Example 6–42 provides an example of bpelx:append syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
Section 6.14.1.1, "bpelx:append in BPEL 1.1," but the syntax is slightly different.

Example 6–42 bpelx:append Extension in BPEL 2.0

<bpel:assign>
 <bpelx:append>
 <bpelx:from>$billOfMaterialVar/b:parts/b:part</bpelx:from>
 <bpelx:to>$consolidatedBillOfMaterialVar/b:parts</bpelx:from>
 </bpelx:append>
</bpel:assign>

6.14.2 How to Use bpelx:insertBefore

The bpelx:insertBefore extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
before another variable’s contents. To use this extension, you select a copy rule at the
bottom of the Copy Rules tab, then select InsertBefore from the dropdown list, as
shown in Figure 6–6.

6.14.2.1 bpelx:insertBefore in BPEL 1.1
Example 6–43 provides an example of bpelx:insertBefore in a BPEL project that
supports BPEL version 1.1.

Example 6–43 bpelx:insertBefore Extension in BPEL 1.1

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from ... />
 <bpelx:to ... />

Note: The bpelx:insertBefore extension works with SDO
variables, but the target must be the variable attribute into which the
copied data must go.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-25

 </bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx:insertBefore yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

The to-spec query of the insertBefore operation points to one or more single
L-Value nodes. If multiple nodes are returned, the first node is used as the reference
node. The reference node must be an element node. The parent of the reference node
must also be an element node. Otherwise, a bpel:selectionFailure fault is
generated. The node list generated by the from-spec query selection is inserted
before the reference node. The to-spec query cannot refer to a partner link.

Example 6–44 shows the syntax before the execution of <insertBefore>. The value
of addrVar is:

Example 6–44 Presyntax Execution

<a:usAddress>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

Example 6–45 shows the syntax after the execution:

Example 6–45 Postsyntax Execution

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from>
 <a:city>Redwood Shore></a:city>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:state" />
 </bpelx:insertBefore>
</bpel:assign>

Example 6–46 shows the value of addrVar:

Example 6–46 addrVar Value

<a:usAddress>
 <a:city>Redwood Shore</a:city>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

6.14.2.2 bpelx:insertBefore in BPEL 2.0
Example 6–47 provides an example of bpelx:insertBefore syntax in a BPEL
project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as
described in Section 6.14.2.1, "bpelx:insertBefore in BPEL 1.1," but the syntax is slightly
different. An extensionAssignOperation element wraps the
bpelx:insertBefore extension.

Example 6–47 bpelx:insertBefore Extension in BPEL 2.0

<assign>
 <extensionAssignOperation>
 <bpelx:insertBefore>

Manipulating XML Data with bpelx Extensions

6-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <bpelx:from>
 <bpelx:literal>
 <a:city>Redwood Shore></a:city>
 </bpelx:literal>
 </bpelx:from>
 <bpelx:to>$addrVar/a:state</bpelx:to>
 </bpelx:insertBefore>
 </extensionAssignOperation>
</assign>

6.14.3 How to Use bpelx:insertAfter

The bpelx:insertAfter extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
after another variable’s contents. To use this extension, you select a copy rule at the
bottom of the Copy Rules tab, then select InsertAfter from the dropdown list, as
shown in Figure 6–6.

6.14.3.1 bpelx:insertAfter in BPEL 1.1
Example 6–48 provides an example of bpelx:insertAfter in a BPEL project that
supports BPEL version 1.1.

Example 6–48 bpelx:insertAfter Extension in BPEL 1.1

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for Section 6.14.2, "How to Use
bpelx:insertBefore," except for the following:

■ If multiple L-Value nodes are returned by the to-spec query, the last node is
used as the reference node.

■ Instead of inserting nodes before the reference node, the source nodes are inserted
after the reference node.

This operation can also be considered a macro of conditional-switch + (append
or insertBefore).

Example 6–49 shows the syntax before the execution of <insertAfter>. The value of
addrVar is:

Example 6–49 Presyntax Execution

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

Note: The bpelx:insertAfter extension works with SDO
variables, but the target must be the variable attribute into which the
copied data must go.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-27

Example 6–50 shows the syntax after the execution:

Example 6–50 Postsyntax Execution

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:addressLine[1]" />
 </bpelx:insertAfter>
</bpel:assign>

Example 6–51 shows the value of addrVar:

Example 6–51 addrVar Value

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

6.14.3.2 bpelx:insertAfter in BPEL 2.0
Example 6–52 provides an example of bpelx:insertAfter syntax in a BPEL project
that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described
in Section 6.14.3.1, "bpelx:insertAfter in BPEL 1.1," but the syntax is slightly different.
An extensionAssignOperation element wraps the bpelx:insertAfter
extension.

Example 6–52 bpelx:insertAfter Extension in BPEL 2.0

<assign>
 <extensionAssignOperation>
 <bpelx:insertAfter>
 <bpelx:from>
 <bpelx:literal>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:literal>
 </bpelx:from>
<bpelx:to>$addrVar/a:addressLine[1]</bpelx:to>
 </bpelx:insertAfter>
 </extensionAssignOperation>
</assign>

6.14.4 How to Use bpelx:remove
The bpelx:remove extension in an assign activity enables a BPEL process service
component to remove a variable. In Oracle BPEL Designer, you add the
bpelx:remove extension by dragging the remove icon in the upper right corner of
the Copy Rules tab to the target variable you want to remove, and releasing the cursor.
Figure 6–8 provides details.

Manipulating XML Data with bpelx Extensions

6-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 6–8 Remove Icon in Copy Rules Tab of an Assign Activity

After releasing the cursor, the bpelx:remove extension is applied to the target
variable. Figure 6–9 provides details.

Figure 6–9 bpelx:remove Extension Applied to a Target Variable

6.14.4.1 bpelx:remove in BPEL 1.1
Example 6–53 provides an example of bpelx:remove in a BPEL project that supports
BPEL version 1.1.

Example 6–53 bpelx:remove Extension in BPEL 1.1

<bpel:assign>
 <bpelx:remove>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:remove>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the
XPath expression can be multiple, but must be L-Values. Nodes being removed from
this parent can be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns
zero nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation.

Example 6–54 shows addrVar with the following value:

Example 6–54 addrVar

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

After executing the syntax shown in Example 6–55 in the BPEL process service
component file, the second address line of Mailstop is removed:

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-29

Example 6–55 Removal of Second Address Line

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine[2]" />
 </bpelx:remove>
</bpel:assign>

After executing the syntax shown in Example 6–56 in the BPEL process service
component file, both address lines are removed:

Example 6–56 Removal of Both Address Lines

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine" />
 </bpelx:remove>
</bpel:assign>

6.14.4.2 bpelx:remove in BPEL 2.0
Example 6–57 provides an example of bpelx:remove syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
Section 6.14.4.1, "bpelx:remove in BPEL 1.1," but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:remove.

Example 6–57 bpelx:remove Extension in BPEL 2.0

<assign>
 <extensionAssignOperation>
 <bpelx:remove>
 <bpelx:target>$ncname.ncname/xpath_str</bpelx:target>
 </bpelx:remove>
 </extensionAssignOperation>
</assign>

6.14.5 How to Use bpelx:rename and XSD Type Casting
The bpelx:rename extension in an assign activity enables a BPEL process service
component to rename an element through use of XSD type casting. In Oracle BPEL
Designer, you add the bpelx:rename extension by dragging the rename icon in the
upper right corner of the Copy Rules tab to the target variable you want to remove,
and releasing the cursor. The rename icon displays to the right of the remove icon
shown in Figure 6–8. After releasing the cursor, the Rename dialog is displayed for
renaming the target variable.

6.14.5.1 bpelx:rename in BPEL 1.1
Example 6–58 provides an example of bpelx:rename in a BPEL project that supports
BPEL version 1.1.

Example 6–58 bpelx:rename Extension in BPEL 1.1

<bpel:assign>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:rename>
</bpel:assign>

Manipulating XML Data with bpelx Extensions

6-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation. The target must return a list of one more element nodes. Otherwise, a
bpel:selectionFailure fault is generated. The element nodes specified in the
from-spec are renamed to the QName specified by the elementTo attribute. The
xsi:type attribute is added to those element nodes to cast those elements to the
QName type specified by the typeCastTo attribute.

Assume you have the employee list shown in Example 6–59:

Example 6–59 xsi:type Attribute

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp>
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

Promotion changes are now applied to Peter Smith in the employee list in
Example 6–60:

Example 6–60 Application of Promotion Changes

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
</bpel:assign>

After executing the above casting (renaming), the data looks as shown in
Example 6–61 with xsi:type info added to Peter Smith:

Example 6–61 Data Output

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-31

 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvalLimit> and
<managing> are missing. Therefore, <append> is used to add that information.
Example 6–62 provides an example.

Example 6–62 Use of append Extension to Add Information

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
 <bpelx:append>
 <bpelx:from>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
 </bpelx:from>
 <bpelx:to variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as
shown in Example 6–63:

Example 6–63 rename and append Execution

<e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
<e:emp>

6.14.5.2 bpelx:rename in BPEL 2.0
Example 6–64 provides an example of bpelx:rename syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
Section 6.14.5.1, "bpelx:rename in BPEL 1.1," but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:rename.

Example 6–64 bpelx:rename Extension in BPEL 2.0

 <bpel:assign>
 <extensionAssignOperation>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target>$ncname[.ncname][/xpath_str]</bpelx:target>
 </bpelx:rename>
 </extensionAssignOperation>
</bpel:assign>

6.14.6 How to Use bpelx:copyList
The bpelx:copyList extension in an assign activity enables a BPEL process service
component to perform a copyList operation of the contents of one variable,
expression, or XML fragment to another variable.

Manipulating XML Data with bpelx Extensions

6-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To use this extension in BPEL 1.1, you select a copy rule at the bottom of the Copy
Rules tab, then select copyList from the dropdown list, as shown in Figure 6–6. To use
this extension in BPEL 2.0, you right-click a copy rule, select Change rule type, and
select CopyList, as shown in Figure 6–7.

6.14.6.1 bpelx:copyList in BPEL 1.1
Example 6–65 provides an example of bpelx:copyList in a BPEL project that
supports BPEL version 1.1.

Example 6–65 bpelx:copyList Extension in BPEL 1.1

<bpel:assign>
 <bpelx:copyList>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes.
The to-spec query can yield a list of L-value nodes: either all attribute nodes or all
element nodes.

All the element nodes returned by the to-spec query must have the same parent
element. If the to-spec query returns a list of element nodes, all element nodes must
be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return
attribute nodes. Likewise, if the from-spec query returns element nodes, then the
to-spec query must return element nodes. Otherwise, a
bpws:mismatchedAssignmentFailure fault is thrown.

The from-spec query can return zero nodes, while the to-spec query must return
at least one node. If the from-spec query returns zero nodes, the effect of the
copyList operation is similar to the remove operation.

The copylist operation provides the following features:

■ Removes all the nodes pointed to by the to-spec query.

■ If the to-spec query returns a list of element nodes and there are leftover child
nodes after removal of those nodes, the nodes returned by the from-spec query
are inserted before the next sibling of the last element specified by the to-spec
query. If there are no leftover child nodes, an append operation is performed.

■ If the to-spec query returns a list of attribute nodes, those attributes are removed
from the parent element. The attributes returned by the from-spec query are
then appended to the parent element.

For example, assume a schema is defined as shown in Example 6–66.

Example 6–66 Schema

<schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/Event_jws/Event/EventTest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="process">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 6-33

 </sequence>
 </complexType>
 </element>
 <element name="processResponse">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
</schema>

The from variable contains the content shown in Example 6–67.

Example 6–67 Variable Content

<ns1:process xmlns:ns1="http://xmlns.oracle.com/Event_jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

The to variable contains the content shown in Example 6–68.

Example 6–68 Variable Content

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >c</ns1: payload >
</ns1:process>

The bpelx:copyList operation looks as shown in Example 6–69.

Example 6–69 bpelx:copyList

<assign>
 <bpelx:copyList>
 <bpelx:from variable="inputVariable" part="payload"
 query="/client:process/client:payload"/>
 <bpelx:to variable="outputVariable" part="payload"
 query="/client:processResponse/client:payload"/>
 </bpelx:copyList>
</assign>

This makes the to variable as shown in Example 6–70.

Example 6–70 Variable Content

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

6.14.6.2 bpelx:copyList in BPEL 2.0
Example 6–71 provides an example of bpelx:copyList syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
Section 6.14.6.1, "bpelx:copyList in BPEL 1.1," but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:copyList extension.

Manipulating XML Data with bpelx Extensions

6-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 6–71 bpelx:copyList Extension in BPEL 2.0

<assign>
 <extensionAssignOperation>
 <bpelx:copyList>
 <bpelx:from>$inputVariable.payload/client:payload</bpelx:from>
 <bpelx:to>$outputVariable.payload/client:payload</bpelx:to>
 </bpelx:copyList>
 </extensionAssignOperation>
</assign>

6.14.7 How to Use Assign Extension Attributes
You can assign the following attributes to copy rules in an assign activity.

■ ignoreMissingFromData

■ insertMissingToData

■ keepSrcElementName

At the bottom of the Copy Rules tab of an assign activity, you right-click a selected
copy rule to display a menu for choosing the appropriate attribute. Figure 6–10
provides details.

Figure 6–10 Assign Extension Attributes

6.14.7.1 ignoreMissingFromData Attribute
The ignoreMissingFromData attribute suppresses any bpel:selectionFailure
standard faults. Table 6–3 describes the syntax differences between BPEL versions 1.1
and 2.0.

6.14.7.2 insertMissingToData Attribute
The insertMissingToData attribute instructs runtime to complete the (XPath)
L-value specified by the to-spec, if no items were selected. Table 6–4 describes the
syntax differences between BPEL versions 1.1 and 2.0.

Table 6–3 ignoreMissingFromData Attribute Syntax

BPEL 1.1 BPEL 2.0

<copy
bpelx:ignoreMissingFromData="yes|no"/>

<copy ignoreMissingFromData="yes|no"/>

Table 6–4 insertMissingToData Attribute Syntax

BPEL 1.1 BPEL 2.0

<copy
bpelx:insertMissingToData="yes|no"/>

<copy bpelx:insertMissingToData="yes|no"/>

Validating XML Data

Manipulating XML Data in a BPEL Process 6-35

6.14.7.3 keepSrcElementName Attribute
The keepSrcElementName attribute enables you to replace the element name of the
destination (as selected by the to-spec) with the element name of the source. This
attribute was not implemented in BPEL 1.1. Table 6–5 describes the syntax supported
in BPEL version 2.0.

6.15 Validating XML Data
You can verify code and identify invalid XML data in a BPEL project.

6.15.1 How to Validate XML Data in BPEL 1.1
■ In an assign activity in Oracle BPEL Designer:

1. From the BPEL Constructs section of the Component Palette, drag an Assign
activity into the designer.

2. Double-click the Assign activity.

3. In the General tab, enter a name for the activity and select the Validate
checkbox.

4. Click Apply, then OK.

5. Click the Source tab to view the syntax.

<assign name=Assign1" bpelx:validate="yes"
 . . .
</assign>

■ In a standalone, extended validate activity in Oracle BPEL Designer that can be
used without an assign activity:

1. From the Oracle Extensions section of the Component Palette, drag a Validate
activity into the designer.

2. Double-click the Validate icon.

3. Enter a name for the activity.

4. Click the Add icon to select the variable to validate.

5. Select the variable, then click OK.

6. Click Apply, then OK.

7. Click the Source tab to view the syntax.

<bpelx:validate name=Validate1" variables="inputVariable"/>

6.15.2 How to Validate XML Data in BPEL 2.0
■ In an assign activity in Oracle BPEL Designer:

1. From the BPEL Constructs section of the Component Palette, drag an Assign
activity into the designer.

2. Double-click the Assign activity.

Table 6–5 keepSrcElementName Attribute Syntax

BPEL 1.1 BPEL 2.0

Not implemented <copy keepSrcElementName="yes|no"/>

Using Element Variables in Message Exchange Activities in BPEL 2.0

6-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. In the General tab, enter a name for the activity and select the Validate
checkbox.

4. Click Apply, then OK.

5. Click the Source tab to view the syntax. Note that the syntax for validating
XML data with the assign activity is slightly different between BPEL versions
1.1 and 2.0.

<assign name="Assign1" validate="yes">
 . . .
</assign>

■ In a standalone, extended validate activity in Oracle BPEL Designer that can be
used without an assign activity:

1. From the BPEL Constructs section of the Component Palette, drag a Validate
activity into the designer.

2. Double-click the Validate icon.

3. Enter a name for the activity.

4. Click the Add icon to select the variable to validate.

5. Select the variable, then click OK.

6. Click Apply, then OK.

7. Click the Source tab to view the syntax. Note that the syntax for validating
XML data with the validate activity is slightly different between BPEL
versions 1.1 and 2.0.

<validate name="Validate1" variables="inputVariable"/>

6.16 Using Element Variables in Message Exchange Activities in BPEL
2.0

You can specify variables in the following message exchange activities:

■ The Input field (for an inputVariable attribute) and Output field (for an
outputVariable attribute) of an invoke dialog

■ The Input field (for a variable attribute) of a receive activity

■ The Output field (for a variable attribute) of a reply activity

The variables referenced by these fields typically must be message type variables in
which the QName matches the QName of the input and output message types used in
the operation, respectively.

The one exception is if the WSDL operation in the activity uses a message containing
exactly one part that is defined using an element. In this case, a variable of the same
element type used to define the part can be referenced by the inputVariable and
outputVariable attributes, respectively, in the invoke activity or the variable
attribute of the receive or reply activity.

Using a variable in this situation must be the same as declaring an anonymous,
temporary WSDL message variable based on the associated WSDL message type.

Copying element data between the anonymous, temporary WSDL message variable
and the element variable acts as a single virtual assign with one copy operation whose
keepSrcElementName attribute is set to yes. The virtual assign must follow the
same rules and use the same faults as a real assign activity. Table 6–6 provides details.

Mapping WSDL Message Parts in BPEL 2.0

Manipulating XML Data in a BPEL Process 6-37

For more information about the keepSrcElementName attribute, see Section 6.14.7.3,
"keepSrcElementName Attribute."

6.17 Mapping WSDL Message Parts in BPEL 2.0
The toParts element in invoke and reply activities provides an alternative to
explicitly creating multipart WSDL messages from the contents of BPEL variables.

When you use the toParts element, as shown in Example 6–72, an anonymous,
temporary WSDL variable is defined based on the type specified by the input message
of the appropriate WSDL operation.

Example 6–72 toParts Element

<toParts>
 <toPart part="payload" fromVariable="request"/>
</toParts>

The toParts element acts as a single, virtual assign activity. Each toPart acts as a
copy operation. One toPart at most exists for each part in the WSDL message
definition. Each copy operation copies data from the variable specified in the
fromVariable attribute into the part of the anonymous, temporary WSDL variable
referenced in the part attribute of the toParts element.

The fromParts element in receive activities and the onMessage branch of pick
activities is similar to the toParts element. The fromParts element, as shown in
Example 6–73, retrieves data from an incoming multipart WSDL message and places
the data into individual variables.

Example 6–73 fromParts Element

<fromParts>
 <fromPart part="payload" toVariable="request"/>
</fromParts>

When a WSDL message is received on an invoke activity that uses fromParts
elements, the message is placed in an anonymous, temporary WSDL variable of the
type specified by the output message of the appropriate WSDL operation.

As with the toParts element, the fromParts element acts as a single virtual assign
activity. Each fromPart acts as a copy operation. Each copy operation copies the data
at the part of the anonymous, temporary WSDL variable referenced in the part
attribute of the fromPart into the variable indicated in the toVariable attribute.

Table 6–6 Mapping WSDL Message Parts

For The... The...

inputVariable attribute Value of the variable referenced by the attribute sets the value of
the part in the anonymous temporary WSDL message variable.

outputVariable attribute Value of the received part in the temporary WSDL message
variable sets the value of the variable referenced by the attribute.

Receive activity Incoming part’s value sets the value of the variable referenced
by the variable attribute.

Reply activity Value of the variable referenced by the variable attribute sets the
value of the part in the anonymous, temporary WSDL message
variable that is sent out. For a reply activity sending a fault, the
same scenario applies.

Mapping WSDL Message Parts in BPEL 2.0

6-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For both the toParts and fromParts elements, the virtual assign activity must
follow the same semantics and generate the same faults as a real assign activity.

The presence of a fromParts element in an invoke activity does not require it to have
a fromPart for every part in the WSDL message definition. Parts not explicitly
represented by fromParts elements are not copied from the anonymous WSDL
variable to the variable.

For more information about mapping WSDL message parts with the toParts and
fromParts elements, see the Web Services Business Process Execution Language Version
2.0 Specification located at the following URL:

http://www.oasis-open.org

6.17.1 How to Map WSDL Message Parts
This section provides an overview of a simple BPEL process in which a reply activity
uses the toParts elements to copy variable contents. The WSDL and BPEL files used
in this example are shown later in Example 6–74 and Example 6–75 of Section 6.17.2,
"What Happens When You Map WSDL Message Parts."

How to map WSDL message parts in BPEL 2.0
1. Note the receive activity in Figure 6–11 includes a standard inputVariable variable

from the client.

Figure 6–11 Receive Activity

2. Note the assign activity in Figure 6–12 copies the test-type-variable contents to
Var1.

Mapping WSDL Message Parts in BPEL 2.0

Manipulating XML Data in a BPEL Process 6-39

Figure 6–12 Assign Activity

3. Note that the To Parts button at the bottom of the reply activity is enabled in
Figure 6–13, instead of the Variable button. You create information for this section
by clicking the Add icon. The copy operation copies data from the variable
indicated in the From Variable attribute, Var1, into the part of the anonymous,
temporary WSDL variable referenced in the Part attribute.

Figure 6–13 To Parts Section Defined at Bottom of Reply Activity

6.17.2 What Happens When You Map WSDL Message Parts
Example 6–74 shows a .bpel file for a synchronous request with toPart elements
defined in a reply activity. This maps to the operation defined in the WSDL file shown
in Example 6–75. The copy operation copies data from the variable indicated in the
fromVariable attribute into the part of the anonymous, temporary WSDL variable,
Var1.

Example 6–74 BPEL File with ToParts Elements

<sequence name="main">
 <!-- Receive input from requestor. This maps to operation defined in WSDL -->
 <receive name="receiveInput" partnerLink="test_client"
 portType="client:Test" operation="process" variable="inputVariable"
 createInstance="yes"/>
 <!-- Generate reply to synchronous request -->

Mapping WSDL Message Parts in BPEL 2.0

6-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <assign name="Assign_1">
 <copy>
 <from>"test-type-variable"</from>
 <to>$Var1</to>
 </copy>
 </assign>
 <reply name="replyOutput" partnerLink="test_client" portType="client:Test"
 operation="process">
 <toParts>
 <toPart part="payload" fromVariable="Var1"/>
 </toParts>
 </reply>
 </sequence>

Example 6–75 WSDL File that Defines the Operation

 <wsdl:types>
 <schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/RT_Validate_P_02_jws/ch10_
3toParts_1/Test"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="process">
 <complexType>
 <sequence>
 <element name="input" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="processResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>
 <!-- ~~~
MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
 <wsdl:message name="TestRequestMessage">
  <wsdl:part name="payload" element="client:process"/>
 </wsdl:message>
 <wsdl:message name="TestResponseMessage">
  <wsdl:part name="payload" type="xsd:string"/>
 </wsdl:message>
 <!-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-->
 <!-- portType implemented by the Test BPEL process -->
 <wsdl:portType name="Test">
 <wsdl:operation name="process">
 <wsdl:input message="client:TestRequestMessage"/>
 <wsdl:output message="client:TestResponseMessage"/>
 </wsdl:operation>
 </wsdl:portType>
 <!-- ~~~
PARTNER LINK TYPE DEFINITION

Mapping WSDL Message Parts in BPEL 2.0

Manipulating XML Data in a BPEL Process 6-41

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-->
 <plnk:partnerLinkType name="Test">
  <plnk:role name="TestProvider">
   <plnk:portType name="client:Test"/>
  </plnk:role>
 </plnk:partnerLinkType>
</wsdl:definitions>

Example 6–76 shows a .bpel file with toPart elements defined in invoke and reply 
activities. This maps to the operation defined in the WSDL file shown in 
Example 6–77. The copy operation in the invoke activity copies data from the variable 
indicated in the fromVariable attribute into the part of the anonymous, temporary 
WSDL variable, request. The copy operation in the reply activity copies data from 
the variable indicated in the fromVariable attribute into the part of the anonymous, 
temporary WSDL variable, output.

Example 6–76 BPEL File with ToParts Elements

 <sequence>
    <!-- receive input from requestor -->
    <receive name="receiveInput" partnerLink="client" portType="tns:Test"
      operation="process" variable="input" createInstance="yes"/>
    <assign>
      <copy>
        <from>$input.payload</from>
        <to>$request</to>
      </copy>
    </assign>
    <invoke name="invokeDummyService" partnerLink="DummyService"
        portType="tns:DummyPortType"
        operation="process" outputVariable="response">
      <toParts>
        <toPart part="payload" fromVariable="request"/>
      </toParts>
    </invoke>
    <assign>
      <copy>
        <from>$response</from>
        <to>$output</to>
      </copy>
    </assign>
    <!-- respond output to requestor -->
    <reply name="replyOutput" partnerLink="client"
       portType="tns:Test" operation="process">
      <toParts>
        <toPart part="payload" fromVariable="output"/>
      </toParts>
    </reply>
  </sequence>

Example 6–77 WSDL File that Defines the Operation

<?xml version="1.0"?>
<definitions name="ch10.3toParts"
        targetNamespace="http://samples.otn.com/bpel2.0/ch10.3"
        xmlns:tns="http://samples.otn.com/bpel2.0/ch10.3"
        xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
        xmlns="http://schemas.xmlsoap.org/wsdl/"
        >
        



Mapping WSDL Message Parts in BPEL 2.0

6-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  <types>  
    <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://samples.otn.com/bpel2.0/ch10.3"
 xmlns="http://www.w3.org/2001/XMLSchema">
      <element name="input" type="string"/>
      <element name="output" type="string"/>
    </schema>
  </types>
  
  <message name="TestRequestMessage">
    <part name="payload" element="tns:input"/>
  </message>
  <message name="TestResultMessage">
    <part name="payload" element="tns:output"/>
  </message>
  <portType name="Test">
    <operation name="process">
      <input message="tns:TestRequestMessage"/>
      <output message="tns:TestResultMessage"/>
    </operation>
  </portType>
  
  <plnk:partnerLinkType name="Test">
    <plnk:role name="TestProvider" portType="tns:Test"/>
  </plnk:partnerLinkType>   
 
</definitions>

Example 6–78 shows a .bpel file with fromParts elements defined in pick and 
invoke activities. This maps to the operation defined in the WSDL file shown in 
Example 6–79. The copy operation in the pick activity retrieves data from the variable 
indicated in the toVariable attribute into the part of the anonymous, temporary 
WSDL variable, request. The copy operation in the invoke activities retrieves data 
from the variable indicated in the toVariable attribute into the part of the 
anonymous, temporary WSDL variable, response.

Example 6–78 BPEL File with FromParts Elements

<sequence>
  <!-- receive input from requestor -->
  <pick createInstance="yes">
    <onMessage partnerLink="client" portType="tns:Test"
        operation="process">
      <fromParts>
        <fromPart part="payload" toVariable="request"/>
      </fromParts>
      <empty/>
    </onMessage>
  </pick>
  <invoke name="invokeDummyService" partnerLink="DummyService"
      portType="tns:DummyPortType"
      operation="process" inputVariable="request">
    <fromParts>
      <fromPart part="payload" toVariable="response"/>
    </fromParts>
  </invoke>
  <assign>
    <copy>
      <from>concat($response, " ", $response)</from>
      <to>$request</to>



Mapping WSDL Message Parts in BPEL 2.0

Manipulating XML Data in a BPEL Process 6-43

    </copy>
  </assign>
  <invoke name="invokeDummyService" partnerLink="DummyService"
      portType="tns:DummyPortType"
      operation="process2" inputVariable="request">
    <fromParts>
      <fromPart part="payload" toVariable="response"/>
    </fromParts>
  </invoke>
  <assign>
    <copy>
      <from>$response</from>
      <to>$output.payload</to>
    </copy>
  </assign>
  <!-- respond output to requestor -->
  <reply name="replyOutput" partnerLink="client"
     portType="tns:Test" operation="process" variable="output"/>
</sequence>

Example 6–79 WSDL File that Defines the Operation

<?xml version="1.0"?>
<definitions name="BPEL20TestCh10.4"
        targetNamespace="http://samples.otn.com/bpel2.0/ch10.4"
        xmlns:tns="http://samples.otn.com/bpel2.0/ch10.4"
        xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
        xmlns="http://schemas.xmlsoap.org/wsdl/"
        >
        
  <types>  
    <schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://samples.otn.com/bpel2.0/ch10.4"
 xmlns="http://www.w3.org/2001/XMLSchema">
      <element name="input" type="string"/>
      <element name="output" type="string"/>
    </schema>
  </types>
  
  <message name="TestRequestMessage">
    <part name="payload" element="tns:input"/>
  </message>
  <message name="TestResultMessage">
    <part name="payload" element="tns:output"/>
  </message>
  <portType name="Test">
    <operation name="process">
      <input message="tns:TestRequestMessage"/>
      <output message="tns:TestResultMessage"/>
    </operation>
  </portType>
  
  <plnk:partnerLinkType name="Test">
    <plnk:role name="TestProvider" portType="tns:Test"/>
  </plnk:partnerLinkType>   
 
</definitions>



Importing Process Definitions in BPEL 2.0

6-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6.18 Importing Process Definitions in BPEL 2.0
You can use the import element to specify the definitions on which your BPEL 
process is dependent. When you create a version 2.0 BPEL process, an import 
element is added to the .bpel file, as shown in Example 6–80.

Example 6–80 Import Element

<process name="Loan Flow"
   . . .
   . . .
   <import namespace="http://xmlns.oracle.com/SOAApplication/SOAProject/LoanFlow"
     location="LoanFlow.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"/> 

You can also use the import element to import a schema without a namespace, as 
shown in Example 6–81.

Example 6–81 Schema Import Without Namespace

<process name="Loan Flow"
   . . .
   . . .
<import location="xsd/NoNamespaceSchema.xsd"
 importType="http://www.w3.org/2001/XMLSchema"/>

You can also use the import element to import a schema with a namespace, as shown 
in Example 6–82.

Example 6–82 Schema Import With Namespace

<process name="Loan Flow"
   . . .
   . . .
<import namespace="http://www.example.org" location="xsd/TestSchema.xsd"
 importType="http://www.w3.org/2001/XMLSchema"/>

The import element is provided to declare a dependency on external XML schema or 
WSDL definitions. Any number of import elements can appear as children of the 
process element. Each import element can contain the following attributes.

■ namespace: Identifies an absolute URI that specifies the imported definitions. 
This is an optional attribute. If a namespace is specified, then the imported 
definitions must be in that namespace. If a namespace is not specified, this 
indicates that external definitions are in use that are not namespace-qualified. The 
imported definitions must not contain a targetNamespace specification.

■ location: Identifies a URI that specifies the location of a document containing 
important definitions. This is an optional attribute. This can be a relative URI. If no 
location attribute is specified, the process uses external definitions. However, 
there is no statement provided indicating where to locate these definitions.

■ importType: Identifies the document type to import. This must be an absolute 
URI that specifies the encoding language used in the document. This is a required 
attribute.

– If importing XML schema 1.0 documents, this attribute’s value must be set to 
"http://www.w3.org/2001/XMLSchema".

– If importing WSDL 1.1 documents, the value must be set to 
"http://schemas.xmlsoap.org/wsdl/". You can also specify other 
values for this attribute.



Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data in a BPEL Process 6-45

For more information, see section 5.4 of the Web Services Business Process Execution 
Language Specification Version 2.0.

6.19 Manipulating XML Data Sequences That Resemble Arrays
Data sequences are one of the most basic data models used in XML. However, 
manipulating them can be nontrivial. One of the most common data sequence patterns 
used in BPEL process service components are arrays. Based on the XML schema, the 
way you can identify a data sequence definition is by its attribute maxOccurs being 
set to a value greater than one or marked as unbounded. See the XML Schema 
Specification at http://www.w3.org/TR for more information. 

The examples in this section illustrate several basic ways of manipulating data 
sequences in BPEL. However, there are other associated requirements, such as 
performing looping or dynamic referencing of endpoints. The following sections 
describe a particular requirement for data sequence manipulation.

6.19.1 How to Statically Index into an XML Data Sequence That Uses Arrays
The following two examples illustrate how to use XPath functionality to select a data 
sequence element when the index of the element you want is known at design time. In 
these cases, it is the first element.

In Example 6–83, addresses[1] selects the first element of the addresses data 
sequence:

Example 6–83  Data Sequence Element Selection

<assign>
   <!-- get the first address and assign to variable address -->
   <copy>
      <from variable="input" part="payload"
         query="/tns:invalidLoanApplication/autoloan:application
                /autoloan:customer/autoloan:addresses[1]"/>
      <to variable="address"/>
   </copy>
</assign>

In this query, addresses[1] is equivalent to addresses[position()=1], where 
position is one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path 
Language (XPath) Specification). The query in Example 6–84 calls the position 
function explicitly to select the first element of the addresses data sequence. It then 
selects that address’s street element (which the activity assigns to the variable 
street1).

Example 6–84 position Function Use

<assign>
   <!-- get the first address's street and assign to street1 -->
   <copy>
      <from variable="input" part="payload"
         query="/tns:invalidLoanApplication/autoloan:application
                /autoloan:customer/autoloan:addresses[position()=1]
                /autoloan:street"/>
      <to variable="street1"/>
   </copy>
</assign>



Manipulating XML Data Sequences That Resemble Arrays

6-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

If you review the definition of the input variable and its payload part in the WSDL file, 
you go several levels down before coming to the definition of the addresses field. 
There you see the maxOccurs="unbounded" attribute. The two XPath indexing 
methods are functionally identical; you can use whichever method you prefer.

6.19.2 How to Use SOAP-Encoded Arrays
Oracle SOA Suite provides support for SOAP RPC-encoded arrays. This support 
enables Oracle BPEL Process Manager to operate as a client calling a SOAP web 
service (RPC-encoded) that uses a SOAP 1.1 array.

Example 6–85 provides an example of a SOAP array payload named 
myFavoriteNumbers.

Example 6–85 SOAP Array Payload

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int2">
<number>3</number>
<number>4</number>
</myFavoriteNumbers>

In addition, ensure that the schema element attributes attributeFormDefault and 
elementFormDefault are set to "unqualified" in your schema. Example 6–86 
provides details:

Example 6–86 Schema Element Attributes

attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="java:services" xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

The following features are not supported:

■ A service published by BPEL that uses a SOAP array 

■ Partially-transmitted arrays

■ Sparse arrays 

■ Multidimensional arrays

To use a SOAP-encoded array:
Example 6–87 shows how to prepare SOAP arrays with the bpelx:append tag in a 
BPEL project.

1. Create a BPEL process in Oracle JDeveloper.

2. Prepare the payload for the invocation. Note that bpelx:append in Example 6–87 
is used to add items into the SOAP array. 

Example 6–87 SOAP Array

<bpws:assign> 
   <bpws:copy>
      <bpws:from variable="input" part="payload" query="/tns:value"/>
      <bpws:to variable="request" part="strArray"
      query="/strArray/JavaLangstring"/>
   </bpws:copy>
</bpws:assign>
<bpws:assign>
   <bpelx:append>



Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data in a BPEL Process 6-47

   <bpelx:from variable="request" part="strArray"
   query="/strArray/JavaLangstring1"/>
   <bpelx:to variable="request" part="strArray" query="/strArray"/>
   </bpelx:append>
</bpws:assign>

3. Import the following namespace in your WSDL file. Oracle JDeveloper does not 
understand the SOAP-ENC tag if the import statement is missing in the WSDL 
schema element.

<xs:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />

6.19.2.1 SOAP-Encoded Arrays in BPEL 2.0
SOAP-encoded arrays are supported in BPEL projects that use version 2.0 of the BPEL 
specification. Example 6–88 shows a sample assign activity with a SOAP-encoded 
array in a BPEL 2.0 project.

Example 6–88 SOAP-Encoded Array in an Assign Activity in BPEL 2.0

<assign name="Assign_1">
   <copy>
      <from>$inputVariable.payload</from>
      <to>$Invoke_1_echoArray_InputVariable.strArray/JavaLangstring[1]</to>
   </copy>
   <extensionAssignOperation>
      <bpelx:append>
         <bpelx:from variable="Invoke_1_echoArray_InputVariable"
            part="strArray">
            <bpelx:query>
               JavaLangstring[1]
            </bpelx:query>
         </bpelx:from>
         <bpelx:to variable="Invoke_1_echoArray_InputVariable"
            part="strArray">
         </bpelx:to>
         </bpelx:append>
    </extensionAssignOperation>
   </assign>

Example 6–89 shows a sample invoke activity with a SOAP-encoded array in a BPEL 
2.0 project.

Example 6–89 SOAP-Encoded Array in an Invoke Activity in BPEL 2.0

<invoke name="Invoke1" partnerLink="FileOut"
   portType="ns3:Write_ptt" operation="Write"
   bpelx:invokeAsDetail="no">
   <toParts>
      <toPart part="body" fromVariable="ArrayVariable"/>
   </toParts>
</invoke>

6.19.3 How to Determine Sequence Size
If you must know the runtime size of a data sequence (that is, the number of nodes or 
data items in the sequence), you can get it by using the combination of the XPath 
built-in count() function and the BPEL built-in getVariableData() function.



Manipulating XML Data Sequences That Resemble Arrays

6-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The code in Example 6–90 calculates the number of elements in the item sequence and 
assigns it to the integer variable lineItemSize.

Example 6–90 Sequence Size Determination

<assign>
   <copy>
      <from expression="count(bpws:getVariableData(’outpoint’, ’payload’,
                        '/p:invoice/p:lineItems/p:item')"/>
      <to variable="lineItemSize"/>
   </copy>
</assign>

6.19.4 How to Dynamically Index by Applying a Trailing XPath to an Expression
Often a dynamic value is needed to index into a data sequence; that is, you must get 
the nth node out of a sequence, where the value of n is defined at runtime. This 
section covers the methods for dynamically indexing by applying a trailing XPath into 
expressions.

6.19.4.1 Applying a Trailing XPath to the Result of getVariableData 
The dynamic indexing method shown in Example 6–91 applies a trailing XPath to the 
result of bwps:getVariableData(), instead of using an XPath as the last argument 
of bpws:getVariableData(). The trailing XPath references to an integer-based 
index variable within the position predicate (that is, [...]).

Example 6–91 Dynamic Indexing

<variable name="idx" type="xsd:integer"/>
...
<assign>
  <copy>
    <from expression="bpws:getVariableData('input','payload'
       )/p:line-item[bpws:getVariableData('idx')]/p:line-total" />
    <to variable="lineTotalVar" />
  </copy>
</assign> 

Assume at runtime that the idx integer variable holds 2 as its value. The preceding 
expression within the from is equivalent to that shown in Example 6–92.

Example 6–92 Equivalent Format

<from expression="bpws:getVariableData('input','payload'
       )/p:line-item[2]/p:line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind 
the bwps:getVariableData() function is compared with the one used inside the 
function.

Using the same example (where payload is the message part of element 
"p:invoice"), if the XPath is used within the getVariableData() function, the 
root element name ("/p:invoice") must be specified at the beginning of the XPath.

Example 6–93 provides details.

Example 6–93 Root Element Name Specification

bpws:getVariableData('input', 'payload',



Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data in a BPEL Process 6-49

'/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps:getVariableData()function, the root 
element name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getVariableData() function is the root 
element. Specifying the root element name again in the XPath is redundant and is 
incorrect according to standard XPath semantics.

6.19.4.2 Using the bpelx:append Extension to Append New Items to a Sequence
The bpelx:append extension in an assign activity enables BPEL process service 
components to append new elements to an existing parent element. Example 6–94 
provides an example.

Example 6–94 bpelx:append Extension

    <assign name="assign-3">
        <copy>
            <from expression="bpws:getVariableData('idx')+1" />
            <to variable="idx"/>
        </copy>
        <bpelx:append>
            <bpelx:from variable="partInfoResultVar" part="payload" />
            <bpelx:to variable="output" part="payload" />
        </bpelx:append>
        ...
    </assign>

The bpelx:append logic in this example appends the payload element of the 
partInfoResultVar variable as a child to the payload element of the output 
variable. In other words, the payload element of the output variable is used as the 
parent element.

6.19.4.3 Merging Data Sequences
You can merge two sequences into a single data sequence. This pattern is common 
when the data sequences are in an array (that is, the sequence of data items of 
compatible types).

The two append operations shown in Example 6–95 under assign demonstrate how 
to merge data sequences:

Example 6–95 Data Sequences Merges with append Operations

<assign>
    <!-- initialize "mergedLineItems" variable
         to an empty element -->
    <copy>
        <from> <p:lineItems /> </from>
        <to variable="mergedLineItems" />
    </copy>
    <bpelx:append>
          <bpelx:from variable="input" part="payload"
                query="/p:invoice/p:lineItems/p:lineitem" />
          <bpelx:to variable="mergedLineItems" />
    </bpelx:append>



Manipulating XML Data Sequences That Resemble Arrays

6-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    <bpelx:append>
          <bpelx:from variable="literalLineItems"
                query="/p:lineItems/p:lineitem" />
          <bpelx:to variable="mergedLineItems" />
    </bpelx:append>
</assign>

6.19.4.4 Generating Functionality Equivalent to an Array of an Empty Element
The genEmptyElem function generates functionality equivalent to an array of an 
empty element to an XML structure. This function takes the following arguments:

genEmptyElem('ElemQName',int?, 'TypeQName'?, boolean?)

Note the following issues:

■ The first argument specifies the QName of the empty elements.

■ The optional second integer argument specifies the number of empty elements. If 
missing, the default size is 1.

■ The third optional argument specifies the QName, which is the xsi:type of the 
generated empty name. This xsi:type pattern matches the SOAPENC:Array. If 
it is missing or is an empty string, the xsi:type attribute is not generated. 

■ The fourth optional boolean argument specifies whether the generated empty 
elements are XSI - nil, provided the element is XSD-nillable. The default value 
is false. If missing or false, xsi:nil is not generated.

Example 6–96 shows an append statement initializing a purchase order (PO) 
document with 10 empty <lineItem> elements under po:

Example 6–96 append Statement

<bpelx:assign> 
    <bpelx:append>
        <bpelx:from expression="ora:genEmptyElem('p:lineItem',10)" />
        <bpelx:to variable="poVar" query="/p:po" /> 
    </bpelx:append>
</bpelx:assign>

The genEmptyElem function in Example 6–96 can be replaced with an embedded 
XQuery expression, as shown in Example 6–97.

Example 6–97 Embedded XQuery Expression

ora:genEmptyElem('p:lineItem',10) 
== for $i in (1 to 10) return <p:lineItem />

The empty elements generated by this function are typically invalid XML data. You 
perform further data initialization after the empty elements are created. Using the 
same example above, you can perform the following:

■ Add attribute and child elements to those empty lineItem elements.

■ Perform copy operations to replace the empty elements. For example, copy from a 
web service result to an individual entry in this equivalent array under a flowN 
activity.



Converting from a String to an XML Element

Manipulating XML Data in a BPEL Process 6-51

6.19.5 What You May Need to Know About Using the Array Identifier
For processing in Native Format Builder array identifier environments, information is 
required about the parent node of a node. Because the reportSAXEvents API is 
used, this information is typically not available for outbound message scenarios. 
Setting nxsd:useArrayIdentifiers to true in the native schema enables 
DOM-parsing to be used for outbound message scenarios. Use this setting cautiously, 
as it can lead to slower performance for very large payloads. Example 6–98 provides 
details.

Example 6–98 Array Identifier

<?xml version="1.0" ?> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
            xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd" 
            targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv" 
            xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv" 
            elementFormDefault="qualified" 
            attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"   
nxsd:stream="chars" nxsd:version="NXSD" nxsd:useArrayIdentifiers="true"> 
  <xsd:element name="Root-Element"> 
  .... 
  </xsd:element> 
</xsd:schema> 

6.20 Converting from a String to an XML Element
Sometimes a service is defined to return a string, but the content of the string is 
actually XML data. The problem is that, although BPEL provides support for 
manipulating XML data (using XPath queries, expressions, and so on), this 
functionality is not available if the variable or field is a string type. With Java, you use 
DOM functions to convert the string to a structured XML object type. You can use the 
BPEL XPath function parseEscapedXML to do the same thing. 

For information about parseEscapedXML, see Section B.2.47, "parseEscapedXML."

6.20.1 How To Convert from a String to an XML Element
The parseEscapedXML function takes XML data, parses it through DOM, and 
returns structured XML data that can be assigned to a typed BPEL variable. 
Example 6–99 provides an example:

Example 6–99 String to XML Element Conversion

<!-- execute the XPath extension function
parseEscapedXML('&lt;item&gt;') and assign to a variable
-->
<assign>
   <copy>
      <from expression="oratext:parseEscapedXML(
         '&lt;item xmlns=&quot;http://samples.otn.com&quot;
                   sku=&quot;006&quot;&gt;
          &lt;description&gt;sun ultra sparc VI server
          &lt;/description&gt;
          &lt;price&gt;1000
          &lt;/price&gt;
          &lt;quantity&gt;2
          &lt;/quantity&gt;



Understanding Document-Style and RPC-Style WSDL Differences

6-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

          &lt;lineTotal&gt;2000
          &lt;/lineTotal&gt;
          &lt;/item&gt;')"/>
      <to variable="escapedLineItem"/>
   </copy>
</assign>

6.21 Understanding Document-Style and RPC-Style WSDL Differences
The examples shown up to this point have been for document-style WSDL files in 
which a message is defined with an XML schema element, as shown in 
Example 6–100:

Example 6–100 XML Schema element Definition

<message name="LoanFlowRequestMessage">
<part name="payload" element="s1:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an 
XML schema type, as shown in Example 6–101:

Example 6–101 RPC-Style type Definition

<message name="LoanFlowRequestMessage">
<part name="payload" type="s1:LoanApplicationType"/>
</message>

6.21.1 How To Use RPC-Style Files
This impacts the material in this chapter because there is a difference in how XPath 
queries are constructed for the two WSDL message styles. For an RPC-style message, 
the top-level element (and therefore the first node in an XPath query string) is the part 
name (payload in Example 6–101). In document-style, the top-level node is the 
element name (for example, loanApplication).

Example 6–102 and Example 6–103 show what an XPath query string looks like if an 
application named LoanServices were in RPC style.

Example 6–102 RPC-Style WSDL File

<message name="LoanServiceResultMessage">
   <part name="payload" type="s1:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
   <sequence>
      <element name="providerName" type="string"/>
      <element name="selected" type="boolean"/>
      <element name="approved" type="boolean"/>
      <element name="APR" type="double"/>
   </sequence>
</complexType>

Example 6–103 RPC-Style BPEL File

<variable name="output"
          messageType="tns:LoanServiceResultMessage"/>
...



Manipulating SOAP Headers in BPEL

Manipulating XML Data in a BPEL Process 6-53

<assign>
   <copy>
      <from expression="9.9"/>
      <to variable="output" part="payload" query="/payload/APR"/>
   </copy>
</assign>

6.22 Manipulating SOAP Headers in BPEL
BPEL's communication activities (invoke, receive, reply, and onMessage) receive and 
send messages through specified message variables. These default activities permit 
one variable to operate in each direction. For example, the invoke activity has 
inputVariable and outputVariable attributes. You can specify one variable for 
each of the two attributes. This is enough if the particular operation involved uses only 
one payload message in each direction.

However, WSDL supports multiple messages in an operation. In the case of SOAP, 
multiple messages can be sent along the main payload message as SOAP headers. 
However, BPEL's default communication activities cannot accommodate the 
additional header messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL 
communication activities with the bpelx:headerVariable extension. The extension 
syntax is as shown in Example 6–104:

Example 6–104 bpelx:headerVariable Extension

<invoke bpelx:inputHeaderVariable="inHeader1 inHeader2 ..."
  bpelx:outputHeaderVariable="outHeader1 outHeader2 ..."
  .../>

<receive bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeader1 inHeader2 ..." .../>

6.22.1 How to Receive SOAP Headers in BPEL
This section provides an example of how to create BPEL and WSDL files to receive 
SOAP headers.

To receive SOAP headers in BPEL:
1. Create a WSDL file that declares header messages and the SOAP binding that 

binds them to the SOAP request. Example 6–105 provides an example.

Example 6–105 WSDL File Contents

  <!-- custom header -->
  <message name="CustomHeaderMessage">
    <part name="header1" element="tns:header1"/>
    <part name="header2" element="tns:header2"/>
  </message>

  <binding name="HeaderServiceBinding" type="tns:HeaderService">
    <soap:binding style="document"
      transport="http://schemas.xmlsoap.org/soap/http"/>
    <operation name="initiate">
      <soap:operation style="document" soapAction="initiate"/>
        <input>
          <soap:header message="tns:CustomHeaderMessage"



Manipulating SOAP Headers in BPEL

6-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

            part="header1" use="literal"/>
          <soap:header message="tns:CustomHeaderMessage"
            part="header2" use="literal"/>
          <soap:body use="literal"/>
        </input>
    </operation>
  </binding>

2. Create a BPEL source file that declares the header message variables and uses 
bpelx:headerVariable to receive the headers, as shown in Example 6–106.

Example 6–106 bpelx:headerVariable Use

<variables>  <variable name="input"
             messageType="tns:HeaderServiceRequestMessage"/>
  <variable name="event"
             messageType="tns:HeaderServiceEventMessage"/>
  <variable name="output"
             messageType="tns:HeaderServiceResultMessage"/>
  <variable name="customHeader"
             messageType="tns:CustomHeaderMessage"/>
</variables>

<sequence>
  <!-- receive input from requester -->
  <receive name="receiveInput" partnerLink="client" 
    portType="tns:HeaderService" operation="initiate" 
    variable="input"
    bpelx:headerVariable="customHeader"
 createInstance="yes"/>

6.22.2 How to Send SOAP Headers in BPEL
This section provides an example of how to send SOAP headers.

To send SOAP headers in BPEL:
1. Define an SCA reference in the composite.xml to refer to the HeaderService.

2. Define the custom header variable, manipulate it, and send it using 
bpelx:inputHeaderVariable, as shown in Example 6–107.

Example 6–107 bpelx:inputHeaderVariable Use

<variables>
  <variable name="input" messageType="tns:HeaderTestRequestMessage"/>
  <variable name="output" messageType="tns:HeaderTestResultMessage"/>
  <variable name="request" messageType="services:HeaderServiceRequestMessage"/>
  <variable name="response" messageType="services:HeaderServiceResultMessage"/>
  <variable name="customHeader"messageType="services:CustomHeaderMessage"/>
    </variables>
...
<!-- initiate the remote process -->
  <invoke name="invokeAsyncService"
    partnerLink="HeaderService"
    portType="services:HeaderService" 
    bpelx:inputHeaderVariable="customHeader"
    operation="initiate"
    inputVariable="request"/>



Declaring Extension Namespaces in BPEL 2.0

Manipulating XML Data in a BPEL Process 6-55

6.23 Declaring Extension Namespaces in BPEL 2.0
You can extend a version 2.0 BPEL process to add custom extension namespace 
declarations. With the mustUnderstand attribute, you can indicate whether the 
custom namespaces carry semantics that must be understood by the BPEL process. 

If a BPEL process does not support one or more of the extensions with 
mustUnderstand set to yes, the process definition is rejected.

Extensions are defined in the extensions element. Example 6–108 provides details. 

Example 6–108 Extension Namespace Declaration Syntax

<process ...>
  ...
  <extensions>?
    <extension namespace="myURI" mustUnderstand="yes|no" />+
  </extensions>
...
</process>

The contents of an extension element must be a single element qualified with a 
namespace different from the standard BPEL namespace. 

For more information about extension declarations, see the Web Services Business 
Process Execution Language Version 2.0 Specification located at the following URL:

http://www.oasis-open.org

6.23.1 How to Declare Extension Namespaces

To declare extension namespaces:
1. In a BPEL 2.0 process, click the Extensions icon above Oracle BPEL Designer.

The Extensions dialog is displayed. 

2. Select the Extensions folder, then click the Add icon.

The Extension dialog is displayed. 

3. In the Namespace field, enter the extension namespace to declare. This namespace 
must be different from the standard BPEL namespace.

4. If you want the extensions to be recognized by the BPEL process, select the Must 
Understand checkbox.

5. Click OK.

6. Click Close.

6.23.2 What Happens When You Create an Extension
After you complete your design, the .bpel process looks as shown in Example 6–109.

Example 6–109 Extension with Custom Namespace

<extensions>
   <extension namespace="http://xmlns.mycompany.com/myNamespace"
    mustUnderstand="yes"/>
</extensions>



Declaring Extension Namespaces in BPEL 2.0

6-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



7

Invoking a Synchronous Web Service from a BPEL Process 7-1

7 Invoking a Synchronous Web Service from a
BPEL Process

This chapter describes how to invoke a synchronous web service from a BPEL process. 
This chapter demonstrates how to set up the components necessary to perform a 
synchronous invocation. This chapter also examines how these components are coded.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Invoking a Synchronous Web Service"

■ Section 7.2, "Invoking a Synchronous Web Service"

■ Section 7.3, "Specifying Timeout Values"

■ Section 7.4, "Calling a One-Way Mediator with a Synchronous BPEL Process"

For a simple Hello World sample (bpel-101-HelloWorld) that takes an input 
string, adds a prefix of "Hello " to the string, and returns it, visit the following URL:

https://soasamples.samplecode.oracle.com/

7.1 Introduction to Invoking a Synchronous Web Service
Synchronous web services provide an immediate response to an invocation. BPEL can 
connect to synchronous web services through a partner link, send data, and then 
receive the reply in the same synchronous invocation.

A synchronous invocation requires the following components: 

■ Partner link

Defines the location and the role of the web services with which the BPEL process 
service component connects to perform tasks, and the variables used to carry 
information between the web service and the BPEL process service component. A 
partner link is required for each web service that the BPEL process service 
component calls. You can create partner links in several ways, including the 
following: 

– In the SOA Composite Editor, when you drag a Web Service from the Service 
Adapters section of the Component Palette into the Exposed Services or 
External References swimlane. For more information, see Section 2.3, "Adding 
Service Binding Components" or Section 2.4, "Adding Reference Binding 
Components."

– In the Oracle BPEL Designer, when you drag a Partner Link from the BPEL 
Constructs section of the Component Palette into the Partner Links swimlane. 
This method is described in this chapter.



Invoking a Synchronous Web Service

7-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Invoke activity

Opens a port in the BPEL process service component to send and receive data. For 
example, this port is used to retrieve information verifying that a customer has 
acceptable credit using a credit card authorization service. For synchronous 
callbacks, only one port is needed for both the send and receive functions.

7.2 Invoking a Synchronous Web Service
This section examines a synchronous invocation operation using the 
OrderProcessor.bpel file in the WebLogic Fusion Order Demo application as an 
example.

7.2.1 How to Invoke a Synchronous Web Service

To invoke a synchronous web service:
1. In the Component Palette in Oracle BPEL Designer, expand BPEL Constructs.

2. Drag the necessary partner link, invoke activity, scope activity, and assign activity 
into the designer.

3. Edit their dialogs.

Figure 7–1 shows the diagram for the Scope_AuthorizeCreditCard scope activity 
of the OrderProcessor.bpel file in the Fusion Order Demo, which defines a simple 
set of actions.

Figure 7–1 Diagram of OrderProcessor.bpel

The following actions take place:

1. The Assign_CreditCheckInput assign activity packages the data from the client. 
The assign activity provides a method for copying the contents of one variable to 
another. In this case, it takes the credit card type, credit card number, and purchase 
amount and assigns them to the input variable for the 
CreditAuthorizationService service.

2. The InvokeCheckCreditCard activity calls the CreditCardAuthorization service. 
Figure 7–2 shows the CreditCardAuthorizationService web service, which is 
defined as a partner link. 



Invoking a Synchronous Web Service

Invoking a Synchronous Web Service from a BPEL Process 7-3

Figure 7–2 CreditCardAuthorizationService Partner Link

Figure 7–3 shows the InvokeCheckCreditCard invoke activity.

Figure 7–3 InvokeCheckCreditCard Invoke Activity

3. The Switch_EvaluateCCResult switch activity in Figure 7–1 checks the results of 
the credit card validation. For information about switch activities, see 
Section 10.2.1, "Defining Conditional Branching with the Switch Activity in BPEL 
1.1."

Note: The switch activity is replaced by the if activity in BPEL 2.0.



Invoking a Synchronous Web Service

7-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7.2.2 What Happens When You Invoke a Synchronous Web Service
When you create a partner link and invoke activity, the necessary BPEL code for 
invoking a synchronous web service is added to the appropriate BPEL and Web 
Services Description Language (WSDL) files.

7.2.2.1 Partner Link in the BPEL Code
In the OrderProcessor.bpel code, the partner link defines the link name and type, 
and the role of the BPEL process service component in interacting with the partner 
service.

From the BPEL source code, the CreditCardAuthorizationService partner link 
definition is shown in Example 7–1:

Example 7–1 Partner Link Definition

<partnerLink name="CreditCardAuthorizationService"
    partnerRole="CreditAuthorizationPort"
    partnerLinkType="ns2:CreditCardAuthorizationService"/>

Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard 
scope are shown in Example 7–2. The types for these variables are defined in the 
WSDL for the process itself.

Example 7–2 Variable Definition

<variable name="lCreditCardInput"
          messageType="ns2:CreditAuthorizationRequestMessage"/>
<variable name="lCreditCardOutput"
          messageType="ns2:CreditAuthorizationResponseMessage"/>

The WSDL file defines the interface to your BPEL process service component: the 
messages that it accepts and returns, the operations that are supported, and other 
parameters.

7.2.2.2 Partner Link Type and Port Type in the BPEL Code
The web service’s CreditCardAuthorizationService.wsdl file contains two 
sections that enable the web service to work with BPEL process service components:

■ partnerLinkType:

Defines the following characteristics of the conversion between a BPEL process 
service component and the credit card authorization web service: 

– The role (operation) played by each

– The portType provided by each for receiving messages within the 
conversation

■ portType:

A collection of related operations implemented by a participant in a conversation. 
A port type defines which information is passed back and forth, the form of that 
information, and so on. A synchronous invocation requires only one port type that 
both initiates the synchronous process and calls back the client with the response. 
An asynchronous callback (one in which the reply is not immediate) requires two 
port types, one to send the request, and another to receive the reply when it 
arrives.



Invoking a Synchronous Web Service

Invoking a Synchronous Web Service from a BPEL Process 7-5

In this example, the portType CreditAuthorizationPort receives the credit 
card type, credit card number, and purchase amount, and returns the status 
results.

Example 7–3 provides an example of partnerLinkType and portType.

Example 7–3 partnerLinkType and portType Definitions

<plnk:partnerLinkType name="CreditCardAuthorizationService">
     <plnk:role name="CreditAuthorizationPort">
         <plnk:portType name="tns:CreditAuthorizationPort"/>
     </plnk:role>
</plnk:partnerLinkType>

7.2.2.3 Invoke Activity for Performing a Request
The invoke activity includes the lCreditCardInput local input variable. The credit 
card authorization web service uses the lCreditCardInput input variable. This 
variable contains the customer’s credit card type, credit card number, and purchase 
amount. The lCreditCardOutput variable returns status results from the 
CreditAuthorizationService service. Example 7–4 provides an example.

Example 7–4 Invoke Activity

<invoke name="InvokeCheckCreditCard"
    inputVariable="lCreditCardInput"
    outputVariable="lCreditCardOutput"
    partnerLink="CreditCardAuthorizationService"
    portType="ns2:CreditAuthorizationPort"
    operation="AuthorizeCredit"/>

7.2.2.4 Synchronous Invocation in BPEL Code
The BPEL code shown in Example 7–5 performs the synchronous invocation:

Example 7–5 Synchronous Invocation

<assign name="Assign_CreditCheckInput">
    <copy>
        <from variable="gOrderInfoVariable"
            query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
        <to variable="lCreditCardInput" part="Authorization"
            query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
    </copy>
    <copy>
        <from variable="gOrderInfoVariable"
            query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
        <to variable="lCreditCardInput" part="Authorization"
            query="/ns8:AuthInformation/ns8:CCType"/>
    </copy>
    <copy>
        <from variable="gOrderInfoVariable"
            query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
        <to variable="lCreditCardInput" part="Authorization"
            query="/ns8:AuthInformation/ns8:CCNumber"/>
    </copy>
</assign>
<invoke name="InvokeCheckCreditCard"
    inputVariable="lCreditCardInput"
    outputVariable="lCreditCardOutput"
    partnerLink="CreditCardAuthorizationService"



Specifying Timeout Values

7-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    portType="ns2:CreditAuthorizationPort"
    operation="AuthorizeCredit"/>

7.3 Specifying Timeout Values
You can specify timeout values with the property SyncMaxWaitTime in the System 
MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console. 
This property defines the maximum time a request and response operation takes 
before timing out. If the BPEL process service component does not receive a reply 
within the specified time, then the activity fails.

7.3.1 How To Specify Timeout Values

To specify timeout values:
1. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

2. From the SOA Infrastructure menu, select SOA Administration > BPEL 
Properties.

3. At the bottom of the BPEL Service Engine Properties page, click More BPEL 
Configuration Properties.

4. Click SyncMaxWaitTime.

5. In the Value field, specify a value in seconds.

6. Click Apply.

7. Click Return.

7.3.2 What You May Need to Know About SyncMaxWaitTime and Synchronous 
Requests Not Timing Out

The SyncMaxWaitTime property applies to durable processes that are called in an 
asynchronous manner.

Assume you have a BPEL process with the definition shown in Example 7–6. The 
process is not durable because there are no breakpoint activities.

Example 7–6 Process with No Breakpoint Activities

<receive name="receiveInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>
...
</assign>
<reply name="replyOutput" partnerLink="client" variable="output" />

If a Java client or another BPEL process calls this process, the assign activity is 
performed and the reply activity sets the output message into a HashMap for the client 
(actually the delivery service) to retrieve. Since the reply is the last activity, the thread 
returns to the client side and tries to pick up the reply message. Since the reply 
message was previously inserted, the client does not wait and returns with the reply.

Assume you have a BPEL process with a breakpoint activity, as shown in Example 7–7.

Example 7–7 Process with Breakpoint Activities

<receive name="receiveInput" partnerLink="client" variable="input"



Calling a One-Way Mediator with a Synchronous BPEL Process

Invoking a Synchronous Web Service from a BPEL Process 7-7

createInstance="yes" />
<assign>
...
</assign>
<wait for="'PT10S'" />
<reply name="replyOutput" partnerLink="client" variable="output" />

While it is not recommended to have asynchronous activities inside a synchronous 
process, BPEL does not prevent this type of design.

When the client (or another BPEL process) calls the process, the wait (breakpoint) 
activity is executed. However, since the wait is processed after some time by an 
asynchronous thread in the background, the executing thread returns to the client side. 
The client (actually the delivery service) tries to pick up the reply message, but it is not 
there since the reply activity in the process has not yet executed. Therefore, the client 
thread waits for the SyncMaxWaitTime seconds value. If this time is exceeded, then 
the client thread returns to the caller with a timeout exception.

If the wait is less than the SyncMaxWaitTime value, the asynchronous background 
thread then resumes at the wait and executes the reply. The reply is placed in the 
HashMap and the waiter (the client thread) is notified. The client thread picks up the 
reply message and returns.

Therefore, SyncMaxWaitTime only applies to synchronous process invocations when 
the process has a breakpoint in the middle. If there is no breakpoint, the entire process 
is executed by the client thread and returns the reply message.

7.4 Calling a One-Way Mediator with a Synchronous BPEL Process
You can expose a synchronous interface in the front end while using an asynchronous 
callback in the back end to simulate a synchronous reply. This is the default behavior 
in BPEL processes with the automatic setting of the configuration.transaction 
property to requiresNew in the composite.xml file. Example 7–8 provides details.

Example 7–8 configuration.transaction Property

<component name="BPELProcess1"> 
@ <implementation.bpel src="BPELProcess1.bpel"/> 
@ <property name="configuration.transaction" type="xs:string" 
@ many="false">requiresNew</property> 
@ </component> 

RequiresNew is the recommended value. If you want to participate in the client's 
transaction, you must set the configuration.transaction property to 
Required.



Calling a One-Way Mediator with a Synchronous BPEL Process

7-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



8

Invoking an Asynchronous Web Service from a BPEL Process 8-1

8Invoking an Asynchronous Web Service from
a BPEL Process

This chapter describes how to call an asynchronous web service. Asynchronous 
messaging styles are useful for environments in which a service, such as a loan 
processor, can take a long time to process a client request. Asynchronous services also 
provide a more reliable fault-tolerant and scalable architecture than synchronous 
services.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Invoking an Asynchronous Web Service"

■ Section 8.2, "Invoking an Asynchronous Web Service"

■ Section 8.3, "Using a Dynamic Partner Link at Runtime"

■ Section 8.4, "Using WS-Addressing in an Asynchronous Service"

■ Section 8.5, "Using Correlation Sets in an Asynchronous Service"

8.1 Introduction to Invoking an Asynchronous Web Service
This section introduces asynchronous web service invocation with a company called 
United Loan. United Loan publishes an asynchronous web service that processes a 
client’s loan application request and then returns a loan offer. This use case discusses 
how to integrate a BPEL process service component with this asynchronous loan 
application approver web service.

This use case illustrates the key design concepts for requesting information from an 
asynchronous service, and then receiving the response. The asynchronous United Loan 
service in this example is another BPEL process service component. However, the 
same BPEL call can interact with any properly designed web service. The target web 
service WSDL file contains the information necessary to request and receive the 
necessary information.

For the asynchronous web service, the following actions take place (in order of 
priority):

1. An assign activity prepares the loan application.

2. An invoke activity initiates the loan request. The contents of this request are put 
into a request variable. This request variable is sent to the asynchronous loan 
processor web service. 

When the loan request is initiated, a correlation ID unique to the client and partner 
link initiating the request is also sent to the loan processor web service. The 



Invoking an Asynchronous Web Service

8-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

correlation ID ensures that the correct loan offer response is returned to the 
corresponding loan application requester. 

3. The loan processor web service then sends the correct response to the receive 
activity, which has been tracked by the correlation ID. 

4. An assign activity reads the loan application offer. 

The remaining sections in this chapter provide specific details about the asynchronous 
functionality.

8.2 Invoking an Asynchronous Web Service
This section provides an overview of the tasks for adding asynchronous functionality 
to a BPEL process service component.

8.2.1 How to Invoke an Asynchronous Web Service
You perform the following steps to asynchronously invoke a web service:

■ Add a partner link

■ Add an invoke activity

■ Add a receive activity

■ Create assign activities

8.2.1.1 Adding a Partner Link for an Asynchronous Service
These instructions describe how to create a partner link in a BPEL process (for this 
example, named LoanService) for the loan application approver web service.

To add a partner link for an asynchronous service:
1. In the SOA Composite Editor, drag a BPEL process from the Service Components 

section of the Component Palette into the designer.

The Create BPEL Process dialog appears.

2. Follow the instructions in the dialog to create a BPEL process service component. 

3. Click OK when complete.

4. In the SOA composite application in the SOA Composite Editor, double-click the 
BPEL process service component (for this example, the component is named 
LoanBroker).

The Oracle BPEL Designer appears.

5. In the Component Palette, expand BPEL Constructs.

6. Drag a Partner Link icon into the right Partner Links swimlane.

The Create Partner Link dialog appears.

7. Enter the following details to create a partner link and select the loan application 
approver web service:

■ Name

Enter a name for the partner link (for this example, LoanService is entered).

■ Process



Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 8-3

Displays the BPEL process service component name (for this example, 
LoanBroker appears).

■ WSDL URL

Enter the name of the Web Services Description Language (WSDL) file to use. 
Click the SOA Resource Lookup icon above this field to locate the correct 
WSDL.

■ Partner Link Type

Refers to the external service with which the BPEL process service component 
is to interface. Select from the list (for this example, LoanService is selected). 

■ Partner Role

Refers to the role of the external source, for example, provider. Select from the 
list (for this example, LoanServiceProvider is selected). 

■ My Role

Refers to the role of the BPEL process service component in this interaction. 
Select from the list (for this example, LoanServiceRequester is selected). 

8. Click OK. 

A new partner link for the loan application approver web service (United Loan) 
appears in the swimlane of the designer. 

8.2.1.2 Adding an Invoke Activity
Follow these instructions to create an invoke activity and a global input variable 
named request. This activity initiates the asynchronous BPEL process service 
component activity with the loan application approver web service (United Loan). The 
loan application approver web service uses the request input variable to receive the 
loan request from the client.

To add an invoke activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag an Invoke activity to beneath the Receive activity.

3. Go to the Structure window. Note that while this example describes variable 
creation from the Structure window, you can also create variables by clicking the 
Add icons to the right of the Input and Output fields of the Invoke dialog.

4. Right-click Variables and select Expand All Child Nodes.

5. In the second Variables folder in the tree, right-click and select Create Variable.

The Create Variable dialog appears.

6. Enter the variable name and select Message Type from the options provided:

■ Type 

This option lets you select an XML schema simple type (for example, string, 
boolean, and so on). 

■ Message Type

This option enables you to select a WSDL message file definition of a partner 
link or of the project WSDL file of the current BPEL process service component 
(for example, a response message or a request message). You can specify 



Invoking an Asynchronous Web Service

8-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

variables associated with message types as input or output variables for 
invoke, receive, or reply activities. 

To display the message type, select the Message Type option, and then select 
its Browse icon to display the Type Chooser dialog. From here, expand the 
Message Types tree to make your selection. For this example, Message Types 
> Partner Links > Loan Service > LoanService.wsdl > Message Types > 
LoanServiceRequestMessage is selected.

■ Element

This option lets you select an XML schema element of the project schema file 
or project WSDL file of the current BPEL process service component, or of a 
partner link. 

Figure 8–1 shows the Create Variable dialog.

Figure 8–1 Create Variable Dialog

7. Click OK.

8. Double-click the invoke activity to display the Invoke dialog.

9. In the Invoke dialog, select the partner link from the Partner Link list (for this 
example, LoanService is selected) and initiate from the Operation list.

10. To the right of the Input field, click the second icon and select the input variable 
you created in Step 6.

The Variable Chooser dialog appears, where you can select the variable. 

There is no output variable specified because the output variable is returned in the 
receive operation. The invoke activity is created.

For more information about the invoke activity, see Section 8.2.2.5, "Invoke and 
Receive Activities."

11. Click OK. 

8.2.1.3 Adding a Receive Activity
Follow these steps to create a receive activity and a global output variable named 
response. This activity waits for the loan application approver web service’s callback 
operation. The loan application approver web service uses this output variable to send 
the loan offer result to the client.



Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 8-5

To add a receive activity:
1. From the Component Palette, drag a Receive activity to the location right after the 

Invoke activity you created in Section 8.2.1.2, "Adding an Invoke Activity."

2. Create a variable to hold the receive information by invoking the Create Variable 
dialog, as you did in Step 3 through Step 7 of Section 8.2.1.2, "Adding an Invoke 
Activity."

Figure 8–2 shows the Create Variable dialog in BPEL 1.1.

Figure 8–2 Create Variable Dialog

3. Double-click the receive activity and change its name to receive_invoke.

4. From the Partner Link list, select the partner link (for this example, LoanService is 
selected).

5. From the Operation list, select onResult. Do not select the Create Instance 
checkbox.

6. Select the variable you created in Step 3 through Step 7 of Section 8.2.1.2, "Adding 
an Invoke Activity."

7. Click OK.

The receive activity and the output variable are created. Because the initial receive 
activity in the BPEL file (for this example, LoanBroker.bpel) created the initial 
BPEL process service component instance, a second instance does not need to be 
created.

8.2.1.4 Performing Additional Activities
In addition to the asynchronous-specific tasks, you must perform the following tasks.

■ Create an initial assign activity for data manipulation in front of the invoke 
activity that copies the client’s input variable loan application request document 

Not : In BPEL projects that support version 2.0 of the BPEL 
specification, the Create Variable dialog includes an Initialize tab that 
enables you to initialize the variable type inline (for example, as a 
variable, expression, literal, partner link, or property). For more 
information, see Section 6.5.2, "Initializing Variables with an Inline 
from-spec in BPEL 2.0." 



Invoking an Asynchronous Web Service

8-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

payload into the loan application approver web service’s request variable 
payload.

■ Create a second assign activity for data manipulation after the receive activity that 
copies the loan application approver web service’s response variable loan 
application results payload into the output variable for the client to receive.

8.2.2 What Happens When You Invoke an Asynchronous Web Service
This section describes what happens when you invoke an asynchronous web service.

8.2.2.1 portType Section of the WSDL File
The portType section of the WSDL file (in this example, for LoanService) defines 
the ports to be used for the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way 
operation. In this example, one port type responds to the asynchronous process and 
the other calls back the client with the asynchronous response. In the example shown 
in Example 8–1, the portType LoanServiceCallback receives the client’s loan 
application request and the portType LoanService asynchronously calls back the 
client with the loan offer response.

Example 8–1 portType Definition

<!-- portType implemented by the LoanService BPEL process -->
   <portType name="LoanService">
      <operation name="initiate">
         <input message="tns:LoanServiceRequestMessage"/>
      </operation>
   </portType>
<!-- portType implemented by the requester of LoanService BPEL process
for asynchronous callback purposes
-->
   <portType name="LoanServiceCallback">
      <operation name="onResult">
         <input message="tns:LoanServiceResultMessage"/>
      </operation>
   </portType>

8.2.2.2 partnerLinkType Section of the WSDL File
The partnerLinkType section of the WSDL file (in this example, for LoanService) 
defines the following characteristics of the BPEL process service component:

■ The role (operation) played

■ The portType provided for receiving messages within the conversation

Partner link types in asynchronous services have two roles: one for the web service 
provider and one for the client requester.

In the conversation shown in Example 8–2, the LoanServiceProvider role and 
LoanService portType are used for client request messages and the 
LoanServiceRequester role and LoanServiceCallback portType are used for 
asynchronously returning (calling back) response messages to the client. 

Example 8–2 partnerLinkType Definition

<plnk:partnerLinkType name="LoanService">
        <plnk:role name="LoanServiceProvider">



Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 8-7

            <plnk:portType name="client:LoanService"/>
        </plnk:role>
        <plnk:role name="LoanServiceRequester">
            <plnk:portType name="client:LoanServiceCallback"/>
        </plnk:role>
    </plnk:partnerLinkType>

Two port types are combined into this single asynchronous BPEL process service 
component: portType="services:LoanService" of the invoke activity and 
portType="services:LoanServiceCallback" of the receive activity. Port 
types are essentially a collection of operations to be performed. For this BPEL process 
service component, there are two operations to perform: initiate in the invoke 
activity and onResult in the receive activity.

8.2.2.3 Partner Links Section in the BPEL File
To call the service from BPEL, you use the BPEL file to define how the process 
interfaces with the web service. View the partnerLinks section. The services with 
which a process interacts are designed as partner links. Each partner link is 
characterized by a partnerLinkType. 

Each partner link is named. This name is used for all service interactions through that 
partner link. This is critical in correlating responses to different partner links for 
simultaneous requests of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this 
example, the second partner link, LoanService, is used by the loan application 
approver web service. Example 8–3 provides an example.

Example 8–3 partnerLink Definition

  <!-- This process invokes the asynchronous LoanService. -->

    <partnerLink name="LoanService"
             partnerLinkType="services:LoanService"
             myRole="LoanServiceRequester"
             partnerRole="LoanServiceProvider"/>
  </partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role 
indicates the role of the partner in this conversation. Each partnerLinkType has a 
myRole and partnerRole attribute in asynchronous processes.

8.2.2.4 Composite Application File
In the composite.xml file, the loan application approver web service appears, as 
shown in Example 8–4. 

Example 8–4 Loan Application Approver Web Service

<component name="LoanBroker">
    <implementation.bpel process="LoanBroker.bpel"/>
</component>

For more information, see Section 8.2.1.1, "Adding a Partner Link for an Asynchronous 
Service" for instructions on creating a partner link.



Invoking an Asynchronous Web Service

8-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8.2.2.5 Invoke and Receive Activities
View the variables and sequence sections. Two areas of particular interest concern 
the invoke and receive activities:

■ An invoke activity invokes a synchronous web service (as discussed in Chapter 7, 
"Invoking a Synchronous Web Service from a BPEL Process") or initiates an 
asynchronous service. 

The invoke activity includes the request global input variable defined in the 
variables section. The request global input variable is used by the loan 
application approver web service. This variable contains the contents of the initial 
loan application request document.

■ A receive activity that waits for the asynchronous callback from the loan 
application approver web service. The receive activity includes the response 
global output variable defined in the variables section. This variable contains 
the loan offer response. The receive activity asynchronously waits for a callback 
message from a service. While the BPEL process service component is waiting, it is 
dehydrated, or compressed and stored, until the callback message arrives.

Example 8–5 provides an example.

Example 8–5 Invoke and Receive Activities

  <variables>

    <variable name="request"
               messageType="services:LoanServiceRequestMessage"/>
    <variable name="response"
               messageType="services:LoanServiceResultMessage"/>
  </variables>

<sequence>

    <!-- initialize the input of LoanService -->
    <assign>
    <!--  initiate the remote process -->
    <invoke name="invoke" partnerLink="LoanService"
        portType="services:LoanService"
        operation="initiate" inputVariable="request"/>

    <!--  receive the result of the remote process -->
    <receive name="receive_invoke" partnerLink="LoanService"
        portType="services:LoanServiceCallback"
        operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID 
unique to the client request is also sent, using Web Services Addressing 
(WS-Addressing) (described in Section 8.4, "Using WS-Addressing in an 
Asynchronous Service"). Because multiple processes may be waiting for service 
callbacks, the server must know which BPEL process service component instance is 
waiting for a callback message from the loan application approver web service. The 
correlation ID enables the server to correlate the response with the appropriate 
requesting instance.

8.2.2.6 createInstance Attribute for Starting a New Instance
You may notice a createInstance attribute in the initial receive activity. In this 
initial receive activity, the createInstance element is set to yes. This starts a new 



Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 8-9

instance of the BPEL process service component. At least one instance startup is 
required for a conversation. For this reason, you set the createInstance variable to 
no in the second receive activity.

Example 8–6 shows the source code for the createInstance attribute:

Example 8–6 createInstance Attribute

    <!-- receive input from requester -->
    <receive name="receiveInput" partnerLink="client"
             portType="tns:LoanBroker"
             operation="initiate" variable="input"
             createInstance="yes"/>

8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous 
Processes
To automatically maintain long-running asynchronous processes and their current 
state information in a database while they wait for asynchronous callbacks, you use a 
database as a dehydration store. Storing the process in a database preserves the 
process and prevents any loss of state or reliability if a system shuts down or a 
network problem occurs. This feature increases both BPEL process service component 
reliability and scalability. You can also use it to support clustering and failover.

You insert this point between the invoke activity and receive activity. You can also 
explicitly specify a dehydration point with a dehydrate activity. For more information, 
see Section A.2.8, "Dehydrate Activity."

8.2.2.8 Multiple Runtime Endpoint Locations
Oracle SOA Suite provides support for specifying multiple partner link endpoint 
locations. This capability is useful for failover purposes if the first endpoint is down. 
To provide an alternate partner link endpoint location, add the location attribute to 
the composite.xml file. Example 8–7 provides an example.

Example 8–7 Alternate Runtime Endpoint Location

<reference name="HeaderService ...>
<binding.ws port="http://services.otn.com/HelloWorldApp#wsdl.endpoint(client/
  HelloWorldService_pt)"
location="http://server:port/soa-infra/services/default/ 
 HelloWorldService!1.0/client?WSDL">
<property name="endpointURI">http://jsmith.us.oracle.com:80/a.jsp 
@http://myhost.us.oracle.com:8888/soa-infra/services/HelloWorldApp/HelloWorld!
1.0*2007-10-22_14-33-04_195/client
 </property>
</binding.ws>
</reference>

8.2.3 What You May Need to Know About Limitations on BPEL 2.0 IMA Support 
Receive activities are a type of inbound message activity (IMA). Other examples of 
IMAs are as follows:

■ onMessage branches of a scope activity (in BPEL 1.1) or a pick activity

■ onEvent branches of a scope activity in BPEL 2.0

The BPEL 2.0 specification allows multiple IMAs to work with each other or with other 
IMAs derived from extension activities. To provide for consistent runtime behavior, 



Invoking an Asynchronous Web Service

8-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

the BPEL 2.0 specification allows for correlation sets with the initiate attribute set 
to join.

However, Oracle BPEL Process Manager’s implementation of the BPEL 2.0 
specification does not support this behavior. The only way to support multiple IMAs is 
by coding them as onMessage branches for a pick activity (that is, setting 
createInstance to yes).

Oracle BPEL Process Manager also does not support other forms of multiple IMAs, 
such as a flow activity with two branches, each with a receive activity and with 
createInstance set to yes and correlation sets with initiate set to join. 

As a workaround, you must design two different BPEL processes with the two receive 
activities in alternating order, as follows: 

■ Process1 with receive1 followed by receive2, and only receive1 having 
createInstance set to yes 

■ Process2 with receive2 followed by receive1, and only receive2 having 
createInstance set to yes.

The same also applies for any other combination of IMAs, such as a receive activity 
and pick activity, or two pick activities.

8.2.4 What Happens When You Specify a Conversation ID
You can also enter an optional conversation ID value in the Conversation ID field of 
an invoke activity (and other activities such as a receive activity and the onMessage 
branch of a pick or scope activity).

The conversation ID identifies a process instance during an asynchronous 
conversation. By default, the BPEL process service engine generates a unique ID for 
each conversation (which can span multiple invoke and receive activities), as specified 
by WSA addressing. If you want, you can specify your own value for the service 
engine to use. Conversation IDs are implemented with the bpelx:conversationId 
extension.

8.2.4.1 bpelx:conversationId in BPEL 1.1
Example 8–8 provides an example of the bpelx:conversationId extension in a 
BPEL project that supports BPEL version 1.1. The bpelx:conversationId 
extension takes an XPath expression.

Example 8–8 bpelx:conversationId Conversation ID in BPEL 1.1

<invoke ... bpelx:conversationId="$convId2">
</invoke>

<receive ... bpelx:conversationId="$convId2">
</receive>

<onMessage... bpelx:conversationId="$convId2">
</onMessage>

8.2.4.2 bpelx:conversationId in BPEL 2.0
Example 8–9 provides an example of the bpelx:conversationId extension in a 
BPEL project that supports BPEL version 2.0. The bpelx:conversationId 
extension takes a BPEL 2.0 XPath expression.



Using a Dynamic Partner Link at Runtime

Invoking an Asynchronous Web Service from a BPEL Process 8-11

Example 8–9 bpelx:conversationId Conversation ID in BPEL 2.0

<invoke ...>
  <bpelx:conversationId>$convId1</bpelx:conversationId>
</invoke>

<receive ...>
  <bpelx:conversationId>$convId1</bpelx:conversationId>
</receive>

<onMessage ...>
  <bpelx:conversationId>$convId2</bpelx:conversationId>
</onMessage>

8.3 Using a Dynamic Partner Link at Runtime
You can dynamically configure a partner link at runtime in BPEL. This is useful for 
scenarios in which the target service that BPEL wants to invoke is not known until 
runtime.

8.3.1 How To Add and Use a Dynamic Partner Link at Runtime
1. Create a WSDL file that contains multiple services that use the same portType. 

2. Create a reference binding component entry in the composite.xml file that uses 
the WSDL:

<reference name="loanService">
  <interface.wsdl 
interface="http://services.otn.com#wsdl.interface(LoanService)"
callbackInterface="http://services.otn.com#wsdl.interface(LoanServiceCallback)"
/>
    <binding.ws port=
       "http://services.otn.com#wsdl.endpoint(AmericanLoan/LoanService_pt)"/>
  </reference>

3. In the BPEL file, programmatically assign the partner link. For this example, 
UnitedLoan is one of the services defined in the WSDL.

<copy>
   <from>
     <EndpointReference
        xmlns="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<Address>http://myhost.us.oracle.com:9700/orabpel/default/UnitedLoan</Address>
    </EndpointReference>

Note: Dynamic partner links are only supported in BPEL 1.1 
projects.

Notes:

■ Adding the binding.ws port setting is optional. This is 
because the port is overridden at runtime by properties passed 
from BPEL. 

■ If there is no port setting, and there is no composite import of the 
concrete WSDL associated with this reference, you must specify 
the location of the concrete WSDL with a location attribute.



Using WS-Addressing in an Asynchronous Service

8-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

   </from>
   <to partnerLink="LoanService"/>
</copy> 

8.4 Using WS-Addressing in an Asynchronous Service
Because there can be many active instances at any time, the server must be able to 
direct web service responses to the correct BPEL process service component instance. 
You can use WS-Addressing to identify asynchronous messages to ensure that 
asynchronous callbacks locate the appropriate client.

Figure 8–3 provides an overview of WS-Addressing. WS-Addressing uses Simple 
Object Access Protocol (SOAP) headers for asynchronous message correlation. 
Messages are independent of the transport or application used.

Figure 8–3 Callback with WS-Addressing Headers

Figure 8–3 shows how messages are passed along with WS headers so that the 
response can be sent to the correct destination. 

The example in this chapter uses WS-Addressing for correlation. To view the 
messages, you can use TCP tunneling, which is described in Section 8.4.1.1, "Using 
TCP Tunneling to See Messages Exchanged Between Programs."

WS-Addressing defines the following information typically provided by transport 
protocols and messaging systems. This information is processed independently of the 
transport or application:

■ Endpoint location (reply-to address)

The reply-to address specifies the location at which a BPEL client is listening for a 
callback message.

■ Conversation ID

Initiate
service

<invoke>

Wait for
callback

<receive>

Async
Loan

Processor
Service

BPEL Process
HelloWorld.bpel

WSDL
LoanService
PartnerLink

d3

loanApp
<variable>

d3

loanOffer
<variable>

WS-Addressing Header:
· callback location
· correlation id (relatesTo)

d4

WS-Addressing Header:
· correlation id (relatesTo)

Note 1: the correlation id allows 
the BPEL server to know which 
instance of the process is 
waiting for this callback 
messages.

Note 2: The alternative 
approach is to use 
content-based correlation 
using <correlationSet>

d3

[2.05] receive
[2.06] process
[2.22] callback

Initiate Port

Callback Port



Using WS-Addressing in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 8-13

Use TCP tunneling to view SOAP messages exchanged between the BPEL process 
service component flow and the web service (including those containing the 
correlation ID). You can see the exact SOAP messages that are sent to, or received 
from, services with which a BPEL process service component flow communicates.

You insert a software listener between your BPEL process service component flow 
and the web service. Your BPEL process service component flow communicates 
with the listener (called a TCP tunnel). The listener forwards your messages to the 
web service, and also displays them. Responses from the web service are returned 
to the tunnel, which displays and forwards them back to the BPEL process service 
component.

8.4.1 How to Use WS-Addressing in an Asynchronous Service
WS-Addressing is a public specification and is the default correlation method 
supported by Oracle BPEL Process Manager. You do not need to edit the .bpel and 
.wsdl files to use WS-Addressing. 

8.4.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs
The messages that are exchanged between programs and services can be seen through 
TCP tunneling. This is particularly useful when you want to see the exact SOAP 
messages exchanged between the BPEL process service component flow and web 
services.

To monitor the SOAP messages, insert a software listener between your flow and the 
service. Your flow communicates with the listener (called a TCP tunnel) and the 
listener forwards your messages to the service, and displays them. Likewise, responses 
from the service are returned to the tunnel, which displays them and then forwards 
them back to the flow.

To see all the messages exchanged between the server and a web service, you need 
only a single TCP tunnel for synchronous services because all the pertinent messages 
are communicated in a single request and reply interaction with the service. For 
asynchronous services, you must set up two tunnels, one for the invocation of the 
service and another for the callback port of the flow.

8.4.1.1.1 Setting Up a TCP Listener for Synchronous Services  Follow these steps to set up a 
TCP listener for synchronous services initiated by an Oracle BPEL Process Manager 
process: 

1. Visit the following URL for instructions on how to download and install Axis TCP 
Monitor (tcpmon)

http://ws.apache.org/commons/tcpmon/

2. Visit the following URL for instructions on how to use tcpmon:

http://ws.apache.org/axis/java/user-guide.html

3. Place axis.jar in your class path.

4. Start tcpmon:

C:\...\> java org.apache.axis.utils.tcpmon localport remoteHost
port_on_which_remote_server_is_running

5. In the composite.xml file, add the endpointURI property under binding.ws 
for your flow to override the endpoint of the service. 



Using WS-Addressing in an Asynchronous Service

8-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. From the operating system command prompt, compile and deploy the process 
with ant.

Note that the same technique can see the SOAP messages passed to invoke a BPEL 
process service component as a web service from another tool kit such as Axis or 
.NET.

8.4.1.1.2 Setting Up a TCP Listener for Asynchronous Services  Follow these steps to set up 
a TCP listener to display the SOAP messages for callbacks from asynchronous services:

1. Start a TCP listener to listen on a port and to send the Oracle BPEL Process 
Manager port.

a. Open Oracle Enterprise Manager Fusion Middleware Control Console.

b. From the SOA Infrastructure menu, select SOA Administration > Common 
Properties. 

c. Specify the value for Callback Server URL. This URL is sent by the server as 
part of the asynchronous callback address to the invoker. 

2. From the SOA Infrastructure menu, select Administration > System MBean 
Browser. 

3. Expand Application Defined MBeans > oracle.soa.config > Server : soa_server > 
SCAComposite.

where soa_server is the specific server instance name (for example, AdminServer).

All the SOA composite applications deployed on the server appear.

4. Follow these steps to set this property on a composite application. This action 
enables it to apply to all bindings in the composite application.

a. Click your composite.

b. Ensure the Attributes tab is selected.

c. In the Name column, click Properties.

d. Click the Add icon.

e. Expand the newly added Element_number (appears at the end of the list).

where number is the next sequential number beyond the last property. For 
example, if the property list contains twelve elements, adding a new property 
causes Element_13 to be displayed.

f. In the name field, enter oracle.webservices.local.optimization. 

g. In the value field, enter false.

h. In the many field, enter false.

i. Click Apply, and then click Return.

j. In the Name column on the Operations tab, click save. 

k. Click Invoke to execute the operation.

l. Click Return or click a node in the System MBean Browser pane. 

Note: After adding, deleting, or updating a property, you can click 
the Refresh cached tree data icon in the upper right corner of the 
System MBean Browser page to see the new data.



Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 8-15

5. Follow these steps to set this property on a specific binding. 

a. Expand your composite application. and drill down to the specific 
SCAComposite.SCAReference.SCABinding folder.

b.  Click WSBinding.

c. Perform steps 4b through 4l.

6. Initiate any flow that invokes asynchronous web services. You can combine this 
with the synchronous TCP tunneling configuration to send a service initiation 
request through your first TCP tunnel. 

The callbacks from the asynchronous services are shown in the TCP listener. 

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to 
see SOAP messages for both synchronous and asynchronous services.

8.5 Using Correlation Sets in an Asynchronous Service
Correlation sets provide another method for directing web service responses to the 
correct BPEL process service component instance. You can use correlation sets to 
identify asynchronous messages to ensure that asynchronous callbacks locate the 
appropriate client.

Correlation sets are a BPEL mechanism that provides for the correlation of 
asynchronous messages based on message body contents. To use this method, define 
the correlation sets in your .bpel file. This method is designed for services that do not 
support WS-Addressing or for certain sophisticated conversation patterns, for 
example, when the conversation is in the form  A > B > C > A instead of A > B > 
A.

This section describes how to use correlation sets in an asynchronous service with 
Oracle JDeveloper. Correlation sets enable you to correlate asynchronous messages 
based on message body contents. You define correlation sets when interactions are not 
simple invoke-receive activities. This example illustrates how to use correlation sets 
for a process having three receive activities with no associated invoke activities.

8.5.1 How to Use Correlation Sets in an Asynchronous Service
This section describes the steps to perform to use correlation sets in an asynchronous 
service.

8.5.1.1 Step 1: Creating a Project

To create a project:
1. Start Oracle JDeveloper.

2. From the File main menu, select New > Applications.

3. Select SOA Application, and click OK.

The Create SOA Application Wizard appears. 

4. In the Application Name field, enter MyCorrelationSetApp.

5. Accept the default values for all remaining settings, and click Next.

6. In the Project Name field, enter MyCorrelationSetComposite.

7. Accept the default values for all remaining settings, and click Next.



Using Correlation Sets in an Asynchronous Service

8-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8. In the Composite Template section, select Composite With BPEL Process, and 
click Finish.

The Create BPEL Process dialog appears.

9. Enter the values shown in Table 8–1.

10. Accept the default values for all remaining settings, and click OK.

8.5.1.2 Step 2: Configuring Partner Links and File Adapter Services
You now create three partner links that use the SOAP service.

This section contains these topics:

■ You create an initial partner link with an adapter service for reading a loan 
application.

■ You create a second partner link with an adapter service for reading an application 
response.

■ You create a third partner link with an adapter service for reading a customer 
response.

8.5.1.2.1 Creating an Initial Partner Link and File Adapter Service  

To create an initial partner link and file adapter service:
1. Double-click the MyCorrelationSet BPEL process.

2. In the Component Palette, expand BPEL Constructs.

3. Drag an initial Partner Link activity into the right swimlane of the designer.

4. Click the third icon at the top (the Service Wizard icon). This starts the Adapter 
Configuration Wizard, as shown in Figure 8–4.

Figure 8–4 Adapter Configuration Wizard Startup

5. In the Configure Service or Adapter dialog, select File Adapter and click OK.

6. In the Welcome dialog, click Next.

7. In the Service Name field of the Service Name dialog, enter FirstReceive and 
click Next.

8. In the Adapter Interface dialog, accept the default settings and click Next.

Table 8–1 Create BPEL Process Dialog Fields and Values

Field Value

Name Enter MyCorrelationSet.

Template Select Asynchronous BPEL Process.

Expose as a SOAP Service Select the checkbox. After process creation, note the SOAP 
service that appears in the Exposed Services swimlane. This 
service provides the entry point to the composite application 
from the outside world.



Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 8-17

9. In the Operation dialog, select Read File as the Operation Type and click Next. 
The Operation Name field is automatically filled in with Read. 

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example, 
C:\files\receiveprocess\FirstInputDir is selected).

12. Click Select.

13. Click Next.

14. In the File Filtering dialog, enter appropriate file filtering parameters.

15. Click Next.

16. In the File Polling dialog, enter appropriate file polling parameters.

17.  Click Next.

18. In the Messages dialog, click Browse next to the URL field to display the Type 
Chooser dialog.

19. Select an appropriate XSD schema file. For this example, Book1_4.xsd is the 
schema and LoanAppl is the schema element selected.

20. Click OK. 

The URL field (Book1_4.xsd for this example) and the Schema Element field 
(LoanAppl for this example) are filled in.

21. Click Next.

22. Click Finish. 

You are returned to the Partner Link dialog. All other fields are automatically 
completed. The dialog looks as shown in Table 8–2:

23. Click OK.

8.5.1.2.2 Creating a Second Partner Link and File Adapter Service  

To create a second partner link and file adapter service:
1. Drag a second PartnerLink activity beneath the FirstReceive partner link activity.

2. At the top, click the third icon (the Service Wizard icon).

3. In the Configure Service or Adapter dialog, select File Adapter and click OK.

4. In the Welcome dialog, click Next.

5. In the Adapter Type dialog, select File Adapter and click Next.

Table 8–2 Partner Link Dialog Fields and Values

Field Value

Name FirstReceive

WSDL URL directory_path/FirstReceive.wsdl

Partner Link Type Read_plt

Partner Role Leave unspecified.

My Role Read_role



Using Correlation Sets in an Asynchronous Service

8-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. In the Service Name field of the Service Name dialog, enter SecondFileRead 
and click Next. This name must be unique from the one you entered in Step 7 of 
Section 8.5.1.2.1, "Creating an Initial Partner Link and File Adapter Service."

7. In the Adapter Interface dialog, accept the default settings and click Next.

8. In the Operation dialog, select Read File as the Operation Type.

9. In the Operation Name field, change the name to Read1. 

10. Click Next.

11. Select Directory Names are Specified as Physical Path.

12. Above the Directory for Incoming Files (physical path) field, click Browse.

13. Select a directory from which to read files (for this example, 
C:\files\receiveprocess\SecondInputDir is entered).

14. Click Select.

15. Click Next.

16. Enter appropriate file filtering parameters in the File Filtering dialog. 

17. Click Next.

18. Enter appropriate file polling parameters in the File Polling dialog.

19.  Click Next.

20. Next to the URL field in the Messages dialog, click Browse to display the Type 
Chooser dialog.

21. Select an appropriate XSD schema file. For this example, Book1_5.xsd is the 
schema and LoanAppResponse is the schema element selected.

22. Click OK. 

The URL field (Book1_5.xsd for this example) and the Schema Element field 
(LoanAppResponse for this example) are filled in.

23. Click Next.

24. Click Finish. 

You are returned to the Partner Link dialog. All other fields are automatically 
completed. The dialog looks as shown in Table 8–3:

25. Click OK.

8.5.1.2.3 Creating a Third Partner Link and File Adapter Service  

Table 8–3 Partner Link Dialog Fields and Values

Field Value

Name SecondReceive

WSDL URL directory_path/SecondFileRead.wsdl

Partner Link Type Read1_plt

Partner Role Leave unspecified.

My Role Read1_role



Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 8-19

To create a third partner link and file adapter service:
1. Drag a third PartnerLink activity beneath the SecondReceive partner link 

activity.

2. At the top, click the third icon (the Service Wizard icon).

3. In the Configure Service or Adapter dialog, select File Adapter and click OK.

4. In the Welcome dialog, click Next.

5. In the Adapter Type dialog, select File Adapter and click Next.

6. In the Service Name field of the Service Name dialog, enter ThirdFileRead and 
click Next. This name must be unique from the one you entered in Step 7 on 
page 8-16 and Step 6 of Section 8.5.1.2.2, "Creating a Second Partner Link and File 
Adapter Service."

7. In the Adapter Interface dialog, accept the default settings and click Next.

8. In the Operation dialog, select Read File as the Operation Type.

9. In the Operation Name field, change the name to Read2. This name must be 
unique.

10. Click Next.

11. Select Directory Names are Specified as Physical Path.

12. Above the Directory for Incoming Files (physical path) field, click Browse.

13. Select a directory from which to read files (for this example, 
C:\files\receiveprocess\ThirdInputDir is entered).

14. Click Select.

15. Click Next.

16. Enter appropriate file filtering parameters in the File Filtering dialog. 

17. Click Next.

18. Enter appropriate file polling parameters in the File Polling dialog.

19.  Click Next.

20. Next to the URL field in the Messages dialog, click Browse to display the Type 
Chooser dialog.

21. Select an appropriate XSD schema file. For this example, Book1_6.xsd is the 
schema and CustResponse is the schema element selected.

22. Click OK. 

The URL field (Book1_6.xsd for this example) and the Schema Element field 
(CustResponse for this example) are filled in.

23. Click Next.

24. Click Finish. 

You are returned to the Partner Link dialog. All other fields are automatically 
completed. The dialog looks as shown in Table 8–4:

Table 8–4 Partner Link Dialog Fields and Values

Field Value

Name ThirdReceive



Using Correlation Sets in an Asynchronous Service

8-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25. Click OK.

8.5.1.3 Step 3: Creating Three Receive Activities
You now create three receive activities; one for each partner link. The receive activities 
specify the partner link from which to receive information. 

8.5.1.3.1 Creating an Initial Receive Activity  

To create an initial receive activity:
1. Expand BPEL Constructs in the Component Palette.

2. Drag a Receive activity beneath the receiveInput receive activity in the designer.

3. Double-click the receive icon to display the Receive dialog.

4. Enter the details described in Table 8–5 to associate the first partner link 
(FirstReceive) with the first receive activity:

The Operation (Read) field is automatically filled in.

5. To the right of the Variable field, click the first icon. This is the automatic variable 
creation icon.

6. In the Create Variable dialog, click OK.

A variable named receiveFirst_Read_InputVariable is automatically created in 
the Variable field.

7. Ensure that you selected the Create Instance checkbox, as mentioned in Step 4.

8. Click OK.

8.5.1.3.2 Creating a Second Receive Activity  

To create a second receive activity:
1. From the Component Palette, drag a second Receive activity beneath the 

receiveFirst receive activity.

2. Double-click the receive icon to display the Receive dialog.

WSDL URL directory_path/ThirdFileRead.wsdl

Partner Link Type Read2_plt

Partner Role Leave unspecified.

My Role Read2_role

Table 8–5 Receive Dialog Fields and Values

Field Value

Name receiveFirst

Partner Link FirstReceive

Create Instance Select this checkbox.

Table 8–4 (Cont.) Partner Link Dialog Fields and Values

Field Value



Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 8-21

3. Enter the details described in Table 8–6 to associate the second partner link 
(SecondReceive) with the second receive activity:

The Operation (Read1) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveSecond_Read1_InputVariable is automatically created 
in the Variable field.

6. Click OK.

8.5.1.3.3 Creating a Third Receive Activity  

To create a third receive activity:
1. From the Component Palette, drag a third Receive activity beneath the 

receiveSecond receive activity.

2. Double-click the receive icon to display the Receive dialog.

3. Enter the details described in Table 8–7 to associate the third partner link 
(ThirdReceive) with the third receive activity:

The Operation (Read2) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveThird_Read2_InputVariable is automatically created in 
the Variable field.

6. Click OK.

Each receive activity is now associated with a specific partner link.

8.5.1.4 Step 4: Creating Correlation Sets
You now create correlation sets. A set of correlation tokens is a set of properties shared 
by all messages in the correlated group.

8.5.1.4.1 Creating an Initial Correlation Set  

Table 8–6 Receive Dialog Fields and Values

Field Value

Name receiveSecond

Partner Link SecondFileRead

Create Instance Do not select this checkbox.

Table 8–7 Receive Dialog Fields and Values

Field Value

Name receiveThird

Partner Link ThirdFileRead

Create Instance Do not select this checkbox.



Using Correlation Sets in an Asynchronous Service

8-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To create an initial correlation set:
1. In the Structure window of Oracle JDeveloper, right-click Correlation Sets and 

select Expand All Child Nodes.

2. In the second Correlation Sets folder, right-click and select Create Correlation Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet1.

4. In the Properties section, click the Add icon to display the Property Chooser 
dialog.

5. Select Properties, then click the Add icon (first icon at the top) to display the 
Create Property dialog.

6. In the Name field, enter NameCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select string and click OK.

9. Click OK to close the Create Property dialog, the Property Chooser dialog, and the 
Create Correlation Set dialog.

8.5.1.4.2 Creating a Second Correlation Set  

To create a second correlation set:
1. Return to the Correlation Sets section in the Structure window of Oracle 

JDeveloper.

2. Right-click the Correlation Sets folder and select Create Correlation Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet2.

4. In the Properties section, click the Add icon to display the Property Chooser 
dialog.

5. Select Properties, then click the Add icon to display the Create Property dialog.

6. In the Name field, enter IDCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select double and click OK.

9. Click OK to close the Create Property dialog, the Property Chooser dialog, and the 
Create Correlation Set dialog.

8.5.1.5 Step 5: Associating Correlation Sets with Receive Activities
You now associate the correlation sets with the receive activities. You perform the 
following correlation set tasks: 

■ For the first correlated group, the first and second receive activities are correlated 
with the CorrelationSet1 correlation set.

■ For the second correlated group, the second and third receive activities are 
correlated with the CorrelationSet2 correlation set.

8.5.1.5.1 Associating the First Correlation Set with a Receive Activity  

To associate the first correlation set with a receive activity:
1. Double-click the receiveFirst receive activity to display the Receive dialog.

2. Click the Correlations tab.



Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 8-23

3. Click the Add icon to display the correlation set dropdown list.

4. Select CorrelationSet1.

5. Click the Initiate column to display a dropdown list, and select yes. When set to 
yes, the set is initiated with the values of the properties occurring in the message 
being exchanged.

6. Click OK.

8.5.1.5.2 Associating the Second Correlation Set with a Receive Activity  

To associate the second correlation set with a receive activity:
1. Double-click the receiveSecond receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon to display the correlation set dropdown list.

4. Select CorrelationSet2, then click OK.

5. Click the Initiate column to display a dropdown list, and select yes.

6. Click Add again and select CorrelationSet1.

7. Click OK.

8. Click the Initiate column to display a dropdown list, and select no for 
CorrelationSet1.

9. Click OK.

This groups the first and second receive activities into a correlated group.

8.5.1.5.3 Associating the Third Correlation Set with a Receive Activity  

To associate the third correlation set with a receive activity:
1. Double-click the receiveThird receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the Add icon.

4. Select CorrelationSet2.

5. Set the Initiate column to no for CorrelationSet2.

6. Click OK.

This groups the second and third receive activities into a second correlated group.

8.5.1.6 Step 6: Creating Property Aliases
Property aliases enable you to map a global property to a field in a specific message 
part. This action enables the property name to become an alias for the message part 
and location. The alias can be used in XPath expressions.

8.5.1.6.1 Creating Property Aliases for NameCorr  You create the following two property 
aliases for the NameCorr correlation set:

■ Map NameCorr to the LoanAppl message type part of the receiveFirst receive 
activity. This receive activity is associated with the FirstReceive partner link 
(defined by the FirstReceive.wsdl file).



Using Correlation Sets in an Asynchronous Service

8-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Map NameCorr to the incoming LoanAppResponse message type part of the 
receiveSecond receive activity. This receive activity is associated with the 
SecondReceive partner link (defined by the SecondFileRead.wsdl file).

To create property aliases for NameCorr:
1. In the Structure window of Oracle JDeveloper, right-click Property Aliases.

2. Select Create Property Alias.

3. From the Property list, select NameCorr.

4. Expand and select Message Types > Partner Link > FirstReceive > 
FirstReceive.wsdl > Message Types > LoanAppl_msg > Part - LoanAppl.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns2:LoanAppl/ns2:Name

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

8. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl 
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR

10. Click OK.

8.5.1.6.2 Creating Property Aliases for IDCorr  

You create the following two property aliases for the IDCorr correlation set:

■ Map IDCorr to the LoanAppResponse message type part of the receiveSecond 
receive activity. This receive activity is associated with the SecondReceive partner 
link (defined by the SecondFileRead.wsdl file).

■ Map IDCorr to the CustResponse message type part of the receiveThird receive 
activity. This receive activity is associated with the ThirdReceive partner link 
(defined by the ThirdFileRead.wsdl file).

To create property aliases for IDCorr:
1. In the Structure window, right-click Property Aliases.

2. Select Create Property Alias.

3. In the Property list, select IDCorr.

4. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl 
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

8. Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl > 
Message Types > CustResponse_msg > Part - CustResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:



Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 8-25

/ns6:CustResponse/ns6:APR

Design is now complete.

10. Click OK.

8.5.1.7 Step 7: Reviewing WSDL File Content

To review WSDL file content:
1. Refresh the Application Navigator.

The NameCorr and IDCorr correlation set properties are defined in the 
MyCorrelationSet_Properties.wsdl file in the Application Navigator. 
Example 8–10 provides an example.

Example 8–10 Correlation Set Properties

<definitions
     name="properties"
     targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/correlationset"
     xmlns="http://schemas.xmlsoap.org/wsdl/"
     xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
     xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
     xmlns:xsd="http://www.w3.org/2001/XMLSchema">
    <bpws:property name="NameCorr" type="xsd:string"/>
    <bpws:property name="IDCorr" type="xsd:double"/>
</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file, as shown 
in Example 8–11:

Example 8–11 Property Aliases 

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns3:LoanAppl_msg"
 part="LoanAppl" query="/ns2:LoanAppl/ns2:Name"/>

<bpws:propertyAlias propertyName="ns1:NameCorr" 
 messageType="ns5:LoanAppResponse_msg" 
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr" 
 messageType="ns5:LoanAppResponse_msg" 
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr" 
 messageType="ns7:CustResponse_msg" 
 part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process service component is not created as a web services 
provider in this example, the MyCorrelationSet.wsdl file is not referenced in 
the BPEL process service component. Therefore, you must import the 
MyCorrelationSet.wsdl file inside the FirstReceive.wsdl file to reference 
the correlation sets defined in the former WSDL. Example 8–12 provides an 
example.

Example 8–12 WSDL File Import

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"



Using Correlation Sets in an Asynchronous Service

8-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 location="MyCorrelationSet.wsdl"/>

8.5.2 What You May Need to Know About Setting Correlations for an IMA Using a 
fromParts Element With Multiple Parts

Assume you have the following scenario:

■ A BPEL 2.0 process with a WSDL message type that has multiple parts that are 
identical in type. 

■ A property alias has been defined based on the element type of the above part. 

For a process that has an inbound message activity (IMA) (for example, a receive 
activity, onMessage branch of a scope or pick activity, or onEvent branch of a scope 
activity in BPEL 2.0) that uses the fromParts element with fromPart defined for 
each part, correlations cannot be defined because the runtime environment cannot 
determine the part to which to apply the property alias. 

For more information about mapping WSDL message parts with the toParts and 
fromParts elements, see Section 6.17, "Mapping WSDL Message Parts in BPEL 2.0."



9

Using Parallel Flow in a BPEL Process 9-1

9 Using Parallel Flow in a BPEL Process

This chapter describes how to use parallel flow in a BPEL process service component. 
Parallel flows enable a BPEL process service component to perform multiple tasks at 
the same time. Parallel flow is especially useful when you must perform several 
time-consuming and independent tasks.

This chapter includes the following sections:

■ Section 9.1, "Introduction to Parallel Flows in BPEL Processes"

■ Section 9.2, "Creating a Parallel Flow"

■ Section 9.3, "Customizing the Number of Parallel Branches"

For additional information on creating parallel flows in a SOA composite application, 
see the Fusion Order Demo application, which is described in Chapter 3, "Introduction 
to the SOA Sample Application."

9.1 Introduction to Parallel Flows in BPEL Processes
A BPEL process service component must sometimes gather information from multiple 
asynchronous sources. Because each callback can take an undefined amount of time 
(hours or days), it may take too long to call each service one at a time. By breaking the 
calls into a parallel flow, a BPEL process service component can invoke multiple web 
services at the same time, and receive the responses as they come in. This method is 
much more time efficient.

Figure 9–1 shows the Retrieve_QuotesFromSuppliers flow activity of the Fusion Order 
Demo application. The Retrieve_QuotesFromSuppliers flow activity sends order 
information to two suppliers in parallel: an internal warehouse 
(InternalWarehouseService) and an external partner warehouse 
(PartnerSupplierMediator). The two warehouses return their bids for the order to the 
flow activity. Here, two asynchronous callbacks execute in parallel. One callback does 
not have to wait for the other to complete first. Each response is stored in a different 
global variable.



Creating a Parallel Flow

9-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 9–1 Parallel Flow Invocation

9.2 Creating a Parallel Flow
You can create a parallel flow in a BPEL process service component with the flow 
activity. The flow activity enables you to specify one or more activities to be performed 
concurrently. The flow activity also provides synchronization. The flow activity 
completes when all activities in the flow have finished processing. Completion of this 
activity includes the possibility that it can be skipped if its enabling condition is false.

9.2.1 How to Create a Parallel Flow

To create a parallel flow:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Flow activity into the designer.

3. Click the + sign to expand the flow activity, as shown in Figure 9–2.

Figure 9–2 Flow Activity

The flow activity initially includes two branches, each with a box for functional 
elements. Populate these boxes as you do a scope activity, either by building a 
function or dragging activities into the boxes. You can add additional branches by 
highlighting the flow activity and clicking the Add Sequence icon.

4. Drag and define additional activities onto each side of the flow to invoke multiple 
services at the same time. Figure 9–3 provides details.

InternalWarehouseServicePartnerSupplierMediator

Initiate
service

<invoke>

Wait for
callback

<receive>

Wait for
callback

<receive>

<flow>

<sequence> <sequence>

BPEL
Process

WSDLWSDL

Initiate
service

<invoke>



Creating a Parallel Flow

Using Parallel Flow in a BPEL Process 9-3

Figure 9–3 Expanded Flow Activity

When complete, flow activity design can look as shown in Figure 9–4. This 
example shows the Retrieve_QuotesFromSuppliers flow activity of the Fusion 
Order Demo application. Two branches are defined for receiving bids: one for 
InternalWarehouseService and the other for PartnerSupplierMediator.

Figure 9–4 Flow Activity After Design Completion

9.2.2 What Happens When You Create a Parallel Flow
A flow activity typically contains many sequence activities. Each sequence is 
performed in parallel. Example 9–1 shows the syntax for two sequences of the 
Retrieve_QuotesFromSuppliers flow activity in the OrderProcessor.bpel 
file after design completion. However, a flow activity can have many sequences. A 
flow activity can also contain other activities. In Example 9–1, each sequence in the 
flow contains assign, invoke, and receive activities.

Example 9–1 Flow Activity

<flow name="Retrieve_QuotesFromSuppliers">
    <sequence name="Sequence_4">
        <assign name="Assign_InternalWarehouseRequest">
            <copy>
                <from variable="gOrderInfoVariable"



Creating a Parallel Flow

9-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

                    query="/ns4:orderInfoVOSDO/ns4:OrderId"/>
                <to variable="lInternalWarehouseInputVariable"
                    part="payload"
                    query="/ns1:WarehouseRequest/ns1:orderId"/>
            </copy>
        </assign>
        <invoke name="Invoke_InternalWarehouse"
            inputVariable="lInternalWarehouseInputVariable"
            partnerLink="InternalWarehouseService"
            portType="ns1:InternalWarehouseService"
            operation="process"/>
        <receive name="Receive_InternalWarehouse"
            createInstance="no"
            variable="lInternalWarehouseResponseVariable"
            partnerLink="InternalWarehouseService"
            portType="ns1:InternalWarehouseServiceCallback"
            operation="processResponse"/>
        <assign name="Assign_InterWHResponse">
            <bpelx:append>
                <bpelx:from variable="lInternalWarehouseResponseVariable"
                       part="payload"
                       query="/ns1:WarehouseResponse"/>
                <bpelx:to variable="gWarehouseQuotes"
                       query="/ns1:WarehouseList"/>
            </bpelx:append>
        </assign>
    </sequence>
    <sequence name="Sequence_4">
        <assign name="Assign_PartnerRequest">
            <copy>
                <from variable="gOrderInfoVariable"
                    query="/ns4:orderInfoVOSDO"/>
                <to variable="lPartnerSupplierInputVariable"
                    part="request" query="/ns4:orderInfoVOSDO"/>
            </copy>
        </assign>
        <invoke name="Invoke_PartnerSupplier"
            partnerLink="PartnerSupplierMediator"
            portType="ns15:execute_ptt" operation="execute"
            inputVariable="lPartnerSupplierInputVariable"/>
        <receive name="Receive_PartnerResponse"
            createInstance="no"
            variable="lPartnerResponseVariable"
            partnerLink="PartnerSupplierMediator"
            portType="ns15:callback_ptt" operation="callback"/>
            <assign name="Assign_PartnerWHResponse">
                <bpelx:append>
                    <bpelx:from variable="lPartnerResponseVariable"
                           part="callback"
                           query="/ns1:WarehouseResponse"/>
                           <bpelx:to variable="gWarehouseQuotes"
                           query="/ns1:WarehouseList"/>
                    </bpelx:append>
            </assign>
    </sequence>
</flow>



Creating a Parallel Flow

Using Parallel Flow in a BPEL Process 9-5

9.2.3 Synchronizing the Execution of Activities in a Flow Activity
You can synchronize the execution of activities within a flow activity to ensure that 
certain activities only execute after other activities have completed. For example, 
assume you have an invoke activity, verifyFlight, that is executed in parallel with 
other invoke activities (verifyHotel, verifyCarRental, and scheduleFlight) 
when the flow activity begins. However, scheduling a flight is necessary only after 
verifying that a flight is available. Therefore, you can add a link between the 
verifyFlight and scheduleFlight invoke activities. Links provide a level of 
dependency indicating that the activity that is the target of the link 
(scheduleFlight) is only executed if the activity that is the source of the link 
(verifyFlight) has completed. 

Example 9–2 provides details. The link name verifyFlight-To-scheduleFlight 
is assigned to the source verifyFlight and target scheduleFlight invoke 
activities. If the source verifyFlight completes execution, the target 
scheduleFlight is then executed.

Example 9–2 Link Between Source and Target Activities

<flow ...>
   <links>
      <link name="verifyFlight-To-scheduleFlight" />
   </links>
   <documentation>
      Verify the availability of a flight, hotel, and rental car in parallel
   </documentation>
   <invoke name="verifyFlight" ...>
      <sources>
         <source linkName="verifyFlight-To-scheduleFlight" />
      </sources>
   </invoke>
   <invoke name="verifyHotel" ... />
   <invoke name="verifyCarRental" ... />
   <invoke name="scheduleFlight" ...>
      <targets>
         <target linkName="verifyFlight-To-scheduleFlight" />
      </targets>
   </invoke>
</flow>

9.2.4 How to Create Synchronization Between Activities Within a Flow Activity

To create synchronization between activities within a flow activity:
1. Create a flow activity. For information, see Section 9.2.1, "How to Create a Parallel 

Flow."

2. In the General tab of the Flow activity, click the Add icon.

3. Enter a name for the link, as shown in Figure 9–5.



Creating a Parallel Flow

9-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 9–5 Link Name Creation

4. Click Apply, then OK.

5. Drag appropriate activities into the flow activity to define as the source with the 
same link name as defined in Step 3. The value of the link name of the source and 
target must be the same as the link name declared in the flow activity. For this 
example, an assign activity named A is defined as the source in Figure 9–6.

Figure 9–6 Source Activity

Note that each source activity can specify an optional Transition Condition as a 
safe guard for following the specified link. Click the row in this column to invoke 
the Browser icon for accessing the Expression Builder dialog for creating a 
condition. If the Transition Condition column is left blank, it is assumed to 
evaluate to true.

6. Define appropriate copy rules for the assign activity.



Creating a Parallel Flow

Using Parallel Flow in a BPEL Process 9-7

7. Click Apply, then OK.

8. Drag an additional activity into the flow activity to define as the target with the 
same link name as defined in Step 3. For this example, another assign activity 
named B is defined as the target in Figure 9–7.

Figure 9–7 Target Activity

9. Define appropriate copy rules for the assign activity.

10. Click Apply, then OK.

11. Continue design of your BPEL process.

When complete, design can appear similar to that shown in Figure 9–8.



Creating a Parallel Flow

9-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 9–8 Three Flow Activities Synchronized with Links

9.2.5 What Happens When You Create Synchronization Between Activities Within a 
Flow Activity

Example 9–3 shows the .bpel file after design is complete for three flow activities 
with links for synchronizing activity execution.

■ Flow_1 shows a link between simple activities.

Flow_1 includes a link named AtoB. The activity that is the target of the link, 
assign activity B, is only executed if the activity that is the source of the link, assign 
activity A, has completed.

■ Flow_2 shows a link between simple activity and composite activity.

Flow_2 also includes the link named AtoB. The activity that is the target of the 
link, assign activity B, is only executed if the activity that is the source of the link, 
scope activity scope1, has completed.

■ Flow_3 shows a link between composite activities.

Flow_3 also includes the link named AtoB. The activity that is the target of the 
link, sequence activity Sequence_1, is only executed if the activity that is the 
source of the link, scope activity scope2, has completed.

Example 9–3 Flow Activities with Links

<!-- link between simple activities -->
<flow name=Flow_1>
      <links>
        <link name="AtoB"/>
      </links>
      <assign name="A">
        <sources>
          <source linkName="AtoB"/>
        </sources>
        <copy>
          <from>concat($output.payload, 'A')</from>
          <to>$output.payload</to>



Creating a Parallel Flow

Using Parallel Flow in a BPEL Process 9-9

        </copy>
      </assign>
      <assign name="B">
        <targets>
          <target linkName="AtoB"/>
        </targets>
        <copy>
          <from>concat($output.payload, 'B')</from>
          <to>$output.payload</to>
        </copy>
      </assign>
    </flow>

    <!-- link between simple activity and composite activity -->
    <flow name=Flow_2>
      <links>
        <link name="AtoB"/>
      </links>
      <scope name="scope1">
        <sources>
          <source linkName="AtoB"/>
        </sources>
        <assign name="A">
          <copy>
            <from>concat($output.payload, 'A')</from>
            <to>$output.payload</to>
          </copy>
        </assign>
      </scope>
      <assign name="B">
        <targets>
         <target linkName="AtoB"/>
        </targets>
        <copy>
          <from>concat($output.payload, 'B')</from>
          <to>$output.payload</to>
        </copy>
      </assign>
    </flow>

    <!-- link between composite activities -->
    <flow name=Flow_3>
      <links>
        <link name="AtoB"/>
      </links>
      <scope name="scope2">
        <sources>
          <source linkName="AtoB"/>
        </sources>
        <assign name="A">
          <copy>
            <from>concat($output.payload, 'A')</from>
            <to>$output.payload</to>
          </copy>
        </assign>
      </scope>
      <sequence name="Sequence_1>
        <targets>
          <target linkName="AtoB"/>
        </targets>



Customizing the Number of Parallel Branches

9-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        <assign name="B">
          <copy>
            <from>concat($output.payload, 'B')</from>
            <to>$output.payload</to>
          </copy>
        </assign>
      </sequence>
    </flow>
  </sequence>

9.2.6 What You May Need to Know About Join Conditions in Target Activities
You can specify an optional join condition in target activities. The value of the join 
condition is a boolean expression. If a join condition is not specified, the join condition 
is the disjunction (that is, a logical OR operation) of the link status of all incoming links 
of this activity.

Oracle BPEL Designer does not provide design support for adding join conditions. To 
add a join condition, you must manually add the condition to the .bpel file in Source 
view in Oracle BPEL Designer. 

Example 9–4 provides an example of a join condition.

Example 9–4 Join Condition in Target Activity

<flow>
   <links>
      <link name="linkStatus2"/>
   </links>
   <empty name="E2">
      <sources>
         <source linkName="linkStatus2">
            <transitionCondition>false()</transitionCondition>
         </source>
      </sources>
   </empty>
   <empty name="E2">
      <targets> 
         <joinCondition>bpws:getLinkStatus('linkStatus2')=true()</joinCondition>
         <target linkName="linkStatus2"/>
      </targets>
   </empty>
</flow>

9.3 Customizing the Number of Parallel Branches
This section describes how to customize the number of parallel branches with the 
following activities:

■ A FlowN activity in a BPEL version 1.1 project

■ A forEach activity in a BPEL version 2.0 project

9.3.1 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1
In the flow activity, the BPEL code determines the number of parallel branches. 
However, often the number of branches required is different depending on the 
available information. The flowN activity creates multiple flows equal to the value of 
N, which is defined at runtime based on the data available and logic within the 



Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 9-11

process. An index variable increments each time a new branch is created, until the 
index variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the 
number of elements changes, the BPEL process service component adjusts accordingly.

The branches created by flowN perform the same activities, but use different data. 
Each branch uses the index variable to look up input variables. The index variable can 
be used in the XPath expression to acquire the data specific for that branch. 

For example, suppose there is an array of data. The BPEL process service component 
uses a count function to determine the number of elements in the array. The process 
then sets N to be the number of elements. The index variable starts at a preset value 
(zero is the default), and flowN creates branches to retrieve each element of the array 
and perform activities using data contained in that element. These branches are 
generated and performed in parallel, using all the values between the initial index 
value and N. flowN terminates when the index variable reaches the value of N. For 
example, if the array contains 3 elements, N is set to 3. Assuming the index variable 
begins at 1, the flowN activity creates three parallel branches with indexes 1, 2, and 3.

The flowN activity can use data from other sources as well, including data obtained 
from web services.

Figure 9–9 shows the runtime flow of a flowN activity in Oracle Enterprise Manager 
Fusion Middleware Control Console that looks up three hotels. This is different from 
the view, because instead of showing the BPEL process service component, it shows 
how the process has actually executed. In this case, there are three hotels, but the 
number of branches changes to match the number of hotels available.



Customizing the Number of Parallel Branches

9-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 9–9 Oracle Enterprise Manager Fusion Middleware Control Console View of the 
Execution of a flowN activity

9.3.1.1 How to Create a flowN Activity

To create a flowN activity:
1. In the Component Palette, expand Oracle Extensions.

2. Drag a FlowN activity into the designer.

3. Click the + sign to expand the FlowN activity.

4. Double-click the FlowN activity.

Figure 9–10 shows the flowN dialog.



Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 9-13

Figure 9–10 FlowN Dialog

The flowN dialog enables you to:

■ Name the activity

■ Enter a value or an expression for calculating the value of N (the number of 
branches to create)

■ Define the index variable (the time to wait in each branch)

5. Drag and define additional activities in the flowN activity.

Figure 9–11 shows how a FlowN activity appears with additional activities.

Figure 9–11 FlowN Activity with Additional Activities 

9.3.1.2 What Happens When You Create a FlowN Activity
The following code shows the .bpel file that uses the flowN activity to look up 
information on an arbitrary number of hotels. The following actions take place.

Example 9–5 shows the sequence name.

Example 9–5 Sequence Name

  <sequence name="main">
  <!-- Received input from requester. 
    Note: This maps to operation defined in NflowHotels.wsdl



Customizing the Number of Parallel Branches

9-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    The requester sends a set of hotels names wrapped into the "inputVariable"
    -->

A receive activity calls the client partner link to get the information that the flowN 
activity must define N times and look up the hotel information. Example 9–6 provides 
an example.

Example 9–6 Receive Activity

    <receive name="receiveInput" partnerLink="client"
 portType="client:NflowHotels" operation="initiate" variable="inputVariable"
 createInstance="yes"/>
    <!-- 
       The 'count()' Xpath function is used to get the number of hotelName
       noded passed in.
       An intermediate variable called "NbParallelFlow" is
       used to store the number of N flows being executed
       -->
    <assign name="getHotelsN">
      <copy>
        <from 
expression="count($InputVariable.payload/client:HotelName);"/>
        <to variable="NbParallelFlow"/>
      </copy>
    </assign>
    <!-- Initiating the FlowN activity
        The N value is initialized with the value stored in the
 "NbParallelFlow" variable
        The variable call "Index" is defined as the index variable
        NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
        -->

The flowN activity begins next. After defining a name for the activity of flowN, N is 
defined as a value from the inputVariable, which is the number of hotel entries. 
The activity also assigns index as the index variable. Example 9–7 provides an 
example. 

Example 9–7 FlowN Activity

<bpelx:flowN name="FlowN" N="bpws:getVariableData('NbParallelFlow')
indexVariable="Index’>
      <sequence name="Sequence_1">
        <!-- Fetching each hotelName by indexing the "inputVariable" with the
 "Index" variable.
            Note the usage of the  "concat()" Xpath function to create the
 expression accessing the array element.
            -->

The copy rule shown in Example 9–8 then uses the index variable to concatenate the 
hotel entries into a list:

Example 9–8 Assign Activity

<assign name="setHotelId">
  <copy>
    <from expression=
"bpws:getVariableData('inputVariable','payload',concat('/client:Nflo
wHotelsProcessRequest/client:ListOfHotels/client:HotelName[',
bpws:getVariableData('Index'),']'))"/>
            <to variable="InvokeHotelDetailInputVariable" part="payload"



Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 9-15

 query="/ns2:hotelInfoRequest/ns2:id"/>
          </copy>
        </assign>

Using the hotel information, an invoke activity looks up detailed information for 
each hotel through a web service. Example 9–9 provides an example.

Example 9–9 Invoke Activity

 <!-- For each hotel, invoke the web service giving detailed information
 on the hotel -->
        <invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
 portType="ns2:getHotelDetail" operation="process"
 inputVariable="InvokeHotelDetailInputVariable"
 outputVariable="InvokeHotelDetailOutputVariable"/>
        <!-- This procees does not do anything with the retrieved information.
        In real life, it could then be used to continue the process.
        Note: Meanwhile an indexing variable is used. Unlike a while loop, the
 activities are executed in parallel, not sequentially.
        -->
      </sequence>
    </bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client partner 
link. Example 9–10 provides an example.

Example 9–10 Invoke Activity

    <invoke name="callbackClient" partnerLink="client"
 portType="client:NflowHotelsCallback" operation="onResult"
 inputVariable="outputVariable"/>
  </sequence>
  </sequence>

9.3.2 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0
You can use a forEach activity to process multiple sets of activities sequentially or in 
parallel. The forEach activity executes a contained (child) scope activity exactly N+1 
times, where N equals a final counter value minus a starting counter value that you 
specify in the Counter Values tab of the For Each dialog. While other structured 
activities such as a flow activity can have any type of activity as its contained activity, 
the forEach activity can only include a scope activity.

When the forEach activity is started, the expressions you specify for the starting 
counter and final counter values are evaluated. Once the two values are returned, they 
remain constant for the lifecycle of the activity. Both expressions must return a value 
containing at least one character. If these expressions do not return valid values, a fault 
is thrown. If the starting counter value is greater than the final counter value, the 
contained scope activity is not performed and the forEach activity is considered 
complete.

During each iteration, the variable specified in the Counter Name field on the General 
tab is implicitly declared in the forEach activity's contained scope. During the first 
iteration of the scope, the counter variable is initialized with the starting counter value. 
The next iteration causes the counter variable to be initialized with the starting counter 
value, plus one. Each subsequent iteration increments the previously initialized 
counter variable value by one until the final iteration, where the counter is set to the 
final counter value. The counter variable is local to the enclosed scope activity. 
Although its value can be changed during an iteration, that value is lost after each 



Customizing the Number of Parallel Branches

9-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

iteration. Therefore, the counter variable value does not impact the value of the next 
iteration's counter.

The forEach activity supports the following looping iterations:

■ Sequential (default)

The forEach activity performs looping iterations sequentially N times over a given 
set of activities defined within a scope activity. As an example, the forEach activity 
iterates over an incoming purchase order message where the purchase order 
message consists of N order items. The enclosed scope activity must be executed 
N+1 times, with each instance starting only after the previous iteration has 
completed.

■ Parallel

All looping iterations are started at the same time and processed in parallel. 
Parallel iterations are useful in environments in which sets of independent data 
are processed or independent interaction with different partners is performed in 
parallel. To enable parallel looping, you select the Parallel Execution checkbox on 
the General tab. In these scenarios, execution of the N+1 instances of the contained 
scope activity occurs in parallel. Each copy of the scope activity has the same 
counter variable that you specify in the Counter Name field of the General tab 
declared in the same way as specified for a sequential forEach activity. Each 
instance's counter variable must be uniquely initialized in parallel with one of the 
integer values beginning with the starting counter value and proceeding up to and 
including the final counter value.

Unlike a flow activity, the number of parallel branches is not known at design time 
with the forEach activity. The specified counter variable iterates through the 
number of parallel branches, controlled by the starting counter value and final 
counter value.

You can also specify a completion condition on the Completion tab. This condition 
enables the forEach activity to execute the condition and complete without executing 
or finishing all the branches specified. As an example, you send out parallel requests 
and a sufficient subset of the recipients have responded. A completion condition is 
optionally specified to prevent the following:

■ Some children from executing (in the sequential case)

■ To force early termination of some of the children (in the parallel case)

If you do not specify a completion condition, the forEach activity completes when the 
contained scope has completed. 

If a premature termination occurs (due to a fault or the completion condition 
evaluating to true), then the N+1 requirement does not apply. 

Example 9–11 shows the forEach activity syntax.

Example 9–11 forEach Activity

<forEach counterName="MyVariableName" parallel="yes|no"
   standard-attributes>
   standard-elements
   <startCounterValue expressionLanguage="anyURI"?>
      unsigned-integer-expression
   </startCounterValue>
   <finalCounterValue expressionLanguage="anyURI"?>
      unsigned-integer-expression
   </finalCounterValue>



Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 9-17

   <completionCondition>?
      <branches expressionLanguage="anyURI"?
         successfulBranchesOnly="yes|no"?>?
         unsigned-integer-expression
      </branches>
   </completionCondition>
   <scope ..>...</scope>
</forEach>

9.3.2.1 How to Create a forEach Activity

To create a forEach activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a For Each activity into the designer, as shown in Figure 9–12. 

Note the contained scope activity in the forEach activity.

Figure 9–12 Contained Scope Activity in a forEach Activity

3. Double-click the ForEach activity.

4. In the Counter Name field of the General tab, enter a counter value name, as 
shown in Figure 9–13.

Note the Parallel Execution checkbox. If this checkbox is selected, all looping 
iterations are started at the same time and processed in parallel.

Note: The successfulBranchesOnly attribute is not supported 
for this release.



Customizing the Number of Parallel Branches

9-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 9–13 General Tab of the forEach Activity

5. Click the Counter Values tab.

6. Enter the starting counter value and final counter value, as shown in Figure 9–14.

Figure 9–14 Counter Values Tab of the forEach Activity

7. Click the Completion tab.

8. If you want to specify a completion condition that enables the forEach activity to 
execute the condition and complete without executing or finishing all the branches 
specified, click the XPath Expression Builder icon in the Expression field to enter 
a condition. Figure 9–15 provides details.



Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 9-19

Figure 9–15 Completion Tab of the forEach Activity

9. Click Apply, then OK.

10. Expand the contained Scope activity of the ForEach activity.

11. Design the enclosed Scope activity.

When complete, the forEach and contained scope activity can appear similar in 
structure to that shown in Figure 9–16.

Figure 9–16 forEach Activity with Contained and Expanded Scope Activity

9.3.2.2 What Happens When You Create a forEach Activity
Example 9–12 shows the .bpel file after design is complete for a sequential forEach 
activity.



Customizing the Number of Parallel Branches

9-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 9–12 forEach Activity - Sequential 

<faultHandlers>
    <catch faultName="bpel:invalidBranchCondition">
<sequence>
  <assign>
    <copy>
      <from>'invalidBranchCondition happened'</from>
      <to>$output.payload</to>
    </copy>
  </assign>

  <reply name="replyOutput" partnerLink="client"
      portType="tns:Test" operation="process" variable="output"/>
</sequence>
    </catch>
  </faultHandlers>
  <sequence>
    <!-- pick input from requestor -->
    <receive name="receive" createInstance="yes"
             partnerLink="client" portType="tns:Test"
             operation="process" variable="input"/>
    <assign>
      <copy>
        <from>3</from>
        <to>$request.payload</to>
      </copy>
      <copy>
        <from>''</from>
        <to>$output.payload</to>
      </copy>
    </assign>

    <forEach counterName="i" parallel="no">
      <startCounterValue>$input.payload/tns:startCounter+1</startCounterValue>
      <finalCounterValue>$input.payload/tns:finalCounter+1</finalCounterValue>
      <completionCondition>
        <branches>$input.payload/tns:branches+1</branches>
      </completionCondition>
      <scope name="scope1">
        <partnerLinks>
          <partnerLink name="DummyService" partnerLinkType="tns:DummyService"
              myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
        </partnerLinks>
        <sequence>
          <assign>
            <copy>
              <from>concat($output.payload, $i, 'A')</from>
              <to>$output.payload</to>
            </copy>
          </assign>
          <invoke name="invokeDummyService" partnerLink="DummyService"
              portType="tns:DummyPortType"
              operation="initiate" inputVariable="request"/>
          <receive name="receiveFromDummyService" partnerLink="DummyService"
              portType="tns:DummyCallbackPortType"
              operation="onResult" variable="response"/>
          <assign>
            <copy>
              <from>concat($output.payload, $i, 'B')</from>
              <to>$output.payload</to>



Customizing the Number of Parallel Branches

Using Parallel Flow in a BPEL Process 9-21

            </copy>
          </assign>
        </sequence>
      </scope>
    </forEach>

    <!-- respond output to requestor -->
    <reply name="replyOutput" partnerLink="client"
        portType="tns:Test" operation="process" variable="output"/>
  </sequence>

Example 9–13 shows the .bpel file after design is complete for a parallel forEach 
activity.

Example 9–13 forEach Activity - Parallel 

<sequence>
    <!-- pick input from requestor -->
    <receive name="receive" createInstance="yes"
             partnerLink="client" portType="tns:Test"
             operation="process" variable="input"/>
    <assign>
      <copy>
        <from>$input.payload/tns:value1</from>
        <to>$request.payload</to>
      </copy>
      <copy>
        <from>''</from>
        <to>$output.payload</to>
      </copy>
    </assign>
    <forEach counterName="i" parallel="yes">
      <startCounterValue>($input.payload/tns:value1 + 1)</startCounterValue>
      <finalCounterValue>($input.payload/tns:value2 + 2)</finalCounterValue>
      <scope name="scope1">
        <partnerLinks>
          <partnerLink name="DummyService" partnerLinkType="tns:DummyService"
              myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
        </partnerLinks>
        <sequence>
          <assign>
            <copy>
              <from>concat($output.payload, 'A')</from>
              <to>$output.payload</to>
            </copy>
          </assign>
          <invoke name="invokeDummyService" partnerLink="DummyService"
              portType="tns:DummyPortType"
              operation="initiate" inputVariable="request"/>
          <receive name="receiveFromDummyService" partnerLink="DummyService"
              portType="tns:DummyCallbackPortType"
              operation="onResult" variable="response"/>
          <assign>
            <copy>
              <from>concat($output.payload, 'B')</from>
              <to>$output.payload</to>
            </copy>
          </assign>
        </sequence>
      </scope>



Customizing the Number of Parallel Branches

9-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    </forEach>
    <!-- respond output to requestor -->
    <reply name="replyOutput" partnerLink="client"
        portType="tns:Test" operation="process" variable="output"/>
  </sequence>



10

Using Conditional Branching in a BPEL Process 10-1

10 Using Conditional Branching in a BPEL
Process

This chapter describes how to use conditional branching in a BPEL process service 
component. Conditional branching introduces decision points to control the flow of 
execution of a BPEL process service component.

This chapter includes the following sections:

■ Section 10.1, "Introduction to Conditional Branching"

■ Section 10.2, "Defining Conditional Branching"

■ Section 10.3, "Creating a While Activity to Define Conditional Branching"

■ Section 10.4, "Creating a repeatUntil Activity to Define Conditional Branching"

■ Section 10.5, "Specifying XPath Expressions to Bypass Activity Execution"

For additional information on creating conditional branching in a SOA composite 
application, see the Fusion Order Demo application.

10.1 Introduction to Conditional Branching
BPEL applies logic to make choices through conditional branching. You can use the 
following activities to design your code to select different actions based on conditional 
branching: 

■ Switch activity (in a BPEL version 1.1 project)

Enables you to set up two or more branches, with each branch in the form of an 
XPath expression. If the expression is true, then the branch is executed. If the 
expression is false, then the BPEL process service component moves to the next 
branch condition, until it either finds a valid branch condition, encounters an 
otherwise branch, or runs out of branches. If multiple branch conditions are true, 
then BPEL executes the first true branch. For information about how to create 
switch activities, see Section 10.2.1, "Defining Conditional Branching with the 
Switch Activity in BPEL 1.1."

■ If activity (in a BPEL version 2.0 project)

Enables you to use an if activity when conditional behavior is required for specific 
activities to decide between two or more branches. The if activity replaces the 
switch activity that appeared in BPEL 1.1 processes. For information about how to 
create if activities, see Section 10.2.2, "Defining Conditional Branching with the If 
Activity in BPEL 2.0."

■ While activity



Defining Conditional Branching

10-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Enables you to create a while loop to select between two actions. Section 10.3, 
"Creating a While Activity to Define Conditional Branching" describes while 
activities. 

Many branches are set up, and each branch has a condition in the form of an XPath 
expression. 

You can program a conditional branch to have a timeout. That is, if a response cannot 
be generated in a specified period, the BPEL flow can stop waiting and resume its 
activities. Chapter 14, "Using Events and Timeouts in BPEL Processes" explains this 
feature in detail. 

10.2 Defining Conditional Branching
This section describes how to define conditional branching with the following 
activities:

■ Switch activity in a BPEL version 1.1 project

■ If activity in a BPEL version 2.0 project

10.2.1 Defining Conditional Branching with the Switch Activity in BPEL 1.1 
Assume you designed a flow activity in the BPEL process service component that 
gathered loan offers from two companies at the same time, but did not compare either 
of the offers. Each offer was stored in its own global variable. To compare the two bids 
and make decisions based on that comparison, you can use a switch activity.

Figure 10–1 provides an overview of a BPEL conditional branching process that has 
been defined in a switch activity. 

Figure 10–1 Conditional Branching

Note: You can also define conditional branching logic with business 
rules. See Oracle Fusion Middleware User's Guide for Oracle Business 
Rules and the WebLogic Fusion Order Demo application for details.

Select
starLoan
<assign>

<switch>

<case 
conditon 1>

<otherwise>

BPEL
Process

condition 1 Boolean XPATH Expression

Select
unitedLoan
<assign>

?



Defining Conditional Branching

Using Conditional Branching in a BPEL Process 10-3

10.2.1.1 How to Create a Switch Activity

To create a switch activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Switch activity into the designer, as shown in Figure 10–2.

The Switch activity has two switch case branches by default, each with a box for 
functional elements. If you want to add more branches, select the entire switch 
activity, right-click, and select Add Switch Case from the menu.

Figure 10–2 Switch Activity

3. In the first branch, double-click the condition box.

A dialog for entering a condition is displayed, as shown in Figure 10–3.

Figure 10–3 Condition Dialog

4. In the Label field, enter a name for the condition branch. When complete, this 
name is displayed in Oracle BPEL Designer.

5. In the Description field, enter a description of the capabilities of this condition 
branch.

6. In the Condition field, click the Expression Builder icon to access the Expression 
Builder dialog.

7. Create your expression.

bpws:getVariableDate(’loanOffer1’,’payload’,’/loanOffer/APR’) >
bpws:getVariableData(’loanOffer2’,’payload’,’/loanOffer/APR’)

In this example, two loan offers from completing loan companies are stored in the 
global variables loanOffer1 and loanOffer2. Each loan offer variable contains 
the loan offer’s APR. The BPEL flow must choose the loan with the lower APR. 
One of the following switch activities takes place:

■ If loanOffer1 has the higher APR, then the first branch selects loanOffer2 
by assigning the loanOffer2 payload to the selectedLoanOffer payload.



Defining Conditional Branching

10-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ If loanOffer1 does not have the lower APR than loanOffer2, the 
otherwise case assigns the loanOffer1 payload to the 
selectedLoanOffer payload.

8. Click OK.

The expression is displayed. The value you entered in the Label field of the dialog 
becomes the name of the condition branch. Figure 10–4 provides details.

Figure 10–4 Completed Condition Dialog

9. Click OK.

10. Add and configure additional activities as needed. Figure 10–5 provides details.

Figure 10–5 Switch Activity Design

10.2.1.2 What Happens When You Create a Switch Activity
A switch activity, like a flow activity, has multiple branches. In Example 10–1, there are 
only two branches shown in the .bpel file after design completion. The first branch, 
which selects a loan offer from a company named United Loan, is executed if a case 
condition containing an XPath boolean expression is met. Otherwise, the second 
branch, which selects the offer from a company named Star Loan, is executed. By 
default, the switch activity provides two switch cases, but you can add more if you 
want. 

Example 10–1 Switch Activity

<switch name="switch-1">
     <case condition="bpws:getVariableData('loanOffer1','payload',
     '/autoloan:loanOffer/autoloan:APR') >
     bpws:getVariableData('loanOffer2','payload','/autoloan:loanOffer/autoloan:APR
     ')">



Defining Conditional Branching

Using Conditional Branching in a BPEL Process 10-5

" name="Choose_the_Loan_with_the_Lower_APR">
               <bpelx:annotation>
                   <bpelx:general>
                       <bpelx:property name="userLabel">Choose the Loan with
                        the Lower APR</bpelx:property>
                   </bpelx:general>
               </bpelx:annotation> 
          <assign name="selectUnitedLoan">
            <copy>
               <from variable="loanOffer1" part="payload">
               </from>
               <to variable="selectedLoanOffer" part="payload"/>
            </copy>
         </assign>
     </case>
     <otherwise>
         <assign name="selectStarLoan">
          <copy>
            <from variable="loanOffer2" part="payload">
            </from>
            <to variable="selectedLoanOffer" part="payload"/>
          </copy>
         </assign>
     </otherwise>
</switch>

10.2.2 Defining Conditional Branching with the If Activity in BPEL 2.0
You can use an if activity when conditional behavior is required for specific activities 
to decide between two or more branches. Only one activity is selected for execution 
from a set of branches. The if activity consists of a list of one or more conditional 
branches that are considered for execution in the following order:

■ The if branch

■ Optional elseif branches

■ An optional else branch

The first branch whose condition evaluates to true is taken, and its contained activity 
is performed. If no branch with a condition is taken, then the else branch is taken (if 
present). The if activity is complete when the contained activity of the selected branch 
completes, or immediately when no condition evaluates to true and no else branch is 
specified.

The if activity is a BPEL version 2.0 feature that replaces the switch activity that was 
included in BPEL version 1.1.

Example 10–2 shows the if activity syntax.

Example 10–2 If Activity

<if standard-attributes>
   standard-elements
   <condition>some conditon expression</condition>
   activity
   <elseif>*
      <condition>some condition expression</condition>
      some activity
   </elseif>
   <else>?
      some activity



Defining Conditional Branching

10-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

   </else>
</if>

10.2.2.1 How to Create an If Activity

To create an If activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag an If activity into the designer.

The if and else conditions are displayed, as shown in Figure 10–6.

Figure 10–6 If Activity

3. If you want to add elseif conditions, highlight the If activity, and select the Add 
icon to invoke a menu.

4. Click the if branch.

5. In the Condition field, enter a condition, as shown in Figure 10–7. You can also 
click the XPath Expression Builder icon to invoke the Expression Builder dialog.

Figure 10–7 if Branch of the If Activity

6. Click OK.

7. Drag and define additional activities into the if condition, as needed. These 
activities are executed if the if condition evaluates to true.

8. Click the elseif branch (if you added this branch).

9. In the Condition field, enter a condition, as shown in Figure 10–8.



Defining Conditional Branching

Using Conditional Branching in a BPEL Process 10-7

Figure 10–8 elseif Branch of the If Activity

10. Click OK.

11. Drag and define additional activities into the elseif condition, as needed. These 
activities are executed if the if branch did not evaluate to true, and this elseif 
branch evaluates to true.

12. Click the else label.

13. Enter a condition or drag and define additional activities into the else condition, 
as needed. These activities are executed if the if and any elseif branches did not 
evaluate to true, and this else branch evaluates to true.

Figure 10–9 shows a completed if activity in which each branch includes contained 
activities.

Figure 10–9 Completed If Activity

10.2.2.2 What Happens When You Create an If Activity
Example 10–3 provides an example of the .bpel file after design completion. The if 
activity has if, elseif, and else branches defined. The first branch to evaluate to true is 
executed.

Example 10–3 If Activity

<sequence>
  <!-- receive input from requestor -->
    <receive name="receiveInput" partnerLink="client" portType="tns:Test"
        operation="process" variable="input" createInstance="yes"/>
    <!-- assign default value -->
    <assign>
      <copy>



Creating a While Activity to Define Conditional Branching

10-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        <from>'Value is greater than zero'</from>
        <to>$output.payload</to>
      </copy>
    <assign>
      <copy>
        <from>'Value is greater than zero'</from>
        <to>$output.payload</to>
      </copy>
    </assign>
    <!-- switch depends on the input value field -->
    <if>
      <condition>$input.payload > 0</condition>
      <extensionActivity>
        <bpelx:exec name="Java_Embedding" version="1.5" language="java">
          System.out.println("if condition is true.\n");
        </bpelx:exec>
      </extensionActivity>
      <elseif>
        <condition>bpws:getVariableData('input', 'payload') &lt; 0</condition>
        <assign>
          <copy>
            <from>'Value is less than zero'</from>
            <to>$output.payload</to>
          </copy>
        </assign>
      </elseif>
      <else>
        <assign>
          <copy>
            <from>'Value is equal to zero'</from>
            <to>$output.payload</to>
          </copy>
        </assign>
      </else>
    </if>
    
    <!-- respond output to requestor -->
    <reply name="replyOutput" partnerLink="client"
       portType="tns:Test" operation="process" variable="output"/>
  </sequence>

10.3 Creating a While Activity to Define Conditional Branching
Another way to design your BPEL code to select between multiple actions is to use a 
while activity to create a while loop. The while loop repeats an activity until a 
specified success criteria is met. For example, if a critical web service is returning a 
service busy message in response to requests, you can use the while activity to keep 
polling the service until it becomes available. The condition for the while activity is 
that the latest message received from the service is busy, and the operation within the 
while activity is to check the service again. Once the web service returns a message 
other than service busy, the while activity terminates and the BPEL process service 
component continues, ideally with a valid response from the web service.

10.3.1 How To Create a While Activity

To create a while activity: 
1. In the Component Palette, expand BPEL Constructs.



Creating a While Activity to Define Conditional Branching

Using Conditional Branching in a BPEL Process 10-9

2. Drag a While activity into the designer.

3. Click the + sign to expand the while activity.

The while activity has icons to allow you to build condition expressions and to 
validate the while definition. It also provides an area for you to drag an activity to 
define the while loop. 

4. Drag and define additional activities for using the while condition into the Drop 
Activity Here area of the While activity (for example, a Scope activity). 

The activities can be existing or new activities.

5. Press Ctrl+Space to invoke the XPath Building Assistant or click the XPath 
Expression Builder icon to open the Expression Builder dialog.

6. Enter an expression to perform repeatedly, as shown in Figure 10–10. This action is 
performed until the given boolean while condition is no longer true. In this 
example, this activity is set to loop while less than 5.

Figure 10–10 While Activity with an Expression

7. Click OK when complete.

10.3.2 What Happens When You Create a While Activity
Example 10–4 provides an example of the .bpel file after design completion. The 
while activity includes a scope activity. The scope activity includes invoke, assign, and 
wait activities. Database exception handling tasks are performed by creating a local 
variable and placing the invoke activity inside the scope activity. The local variable is 
set to false (represented by 0). You attempt to call the external partner service in the 
while loop activity until the local variable is satisfied (set to 1). The while activity is set 
to loop a maximum of five times. In the case of an exception, you reset the flag to false 
(0).

Example 10–4 While Activity

<while name="While_1" condition="bpws:getVariableData('dbStatus') > 5">
      <scope name="Scope_1">
<faultHandlers>
          <catchAll>



Creating a repeatUntil Activity to Define Conditional Branching

10-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

            <sequence name="Sequence_2">
              <assign name="assign_DB_retry">
                <copy>
                  <from expression="bpws:getVariableData('dbStatus') + 1"/>
                  <to variable="dbStatus"/>
                </copy>
              </assign>
              <wait name="Wait_30_sec" for="'PT31S'"/>
            </sequence>
          </catchAll>
        </faultHandlers>
        <sequence name="Sequence_1">
          <invoke name="Write_DBWrite" partnerLink="WriteDBRecord"
                  portType="ns2:WriteDBRecord_ptt" operation="insert"
                  inputVariable="Invoke_DBWrite_merge_InputVariable"/>
          <assign name="Assign_dbComplete">
            <copy>
              <from expression="'10'"/>
              <to variable="dbStatus"/>
            </copy>
          </assign>
        </sequence>
      </scope>
    </while>

10.4 Creating a repeatUntil Activity to Define Conditional Branching
If the body of an activity must be performed at least once, use a repeatUntil activity 
instead of a while activity. The XPath expression condition in the repeatUntil activity is 
evaluated after the body of the activity completes. The condition is evaluated 
repeatedly (and the body of the activity processed) until the provided boolean 
condition is true.

10.4.1 How to Create a repeatUntil Activity

To create a repeatUntil activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Repeat Until activity into the designer.

3. Double-click the Repeat Until activity.

4. Enter a name or accept the default value.

5. In the Condition field, click the XPath Expression Builder icon to enter an XPath 
expression condition.

The Expression Builder dialog is displayed. 

6. Enter a boolean XPath expression condition, and click OK.

The condition you entered is displayed in the Repeat Until dialog, as shown in 
Figure 10–11.

Note: This activity is supported in BPEL version 2.0 projects.



Creating a repeatUntil Activity to Define Conditional Branching

Using Conditional Branching in a BPEL Process 10-11

Figure 10–11 Completed Repeat Until Dialog

7. Click Apply, then OK.

8. Expand the Repeat Until activity, as shown in Figure 10–12.

Figure 10–12 repeatUntil Activity Being Expanded

9. Design the body of the activity by dragging in activities from the Component 
Palette and defining their property values. These activities are evaluated until the 
XPath expression condition is evaluated to true.

10.4.2 What Happens When You Create a repeatUntil Activity
Example 10–5 provides an example of the .bpel file after design completion. In this 
scenario, purchase order validation must be performed at least once, then repeatedly, 
based on evaluating the completion status until the status is updated to 5.

Example 10–5 repeatUntil Activity

<repeatUntil>
   <sequence>
      <invoke name="PurchaseOrderValidation" ... />
      <receive name="receiveValidation"
         partnerLink="PurchaseOrderValidation"
         operation="returnPurchaseOrderValidation"
         variable="PurchaseOrderStatusResponse" />
   </sequence>
   <condition>
      bpel:getVariableProperty(
      "PurchaseOrderStatusResponse","tst:completionStatus") < 5
   </condition>
</repeatUntil>



Specifying XPath Expressions to Bypass Activity Execution

10-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

10.5 Specifying XPath Expressions to Bypass Activity Execution
You can specify an XPath expression in an activity that, when evaluated to true, causes 
that activity to be skipped. This functionality provides an alternative to using a switch 
activity for conditionally executing activities. The skip condition for activities is 
specified as follows:

<activity bpelx:skipCondition="boolean-expr"/>

The bpelx:skipCondition attribute causes an XPath expression to be evaluated 
immediately upon creation of the activity instance. If the skip expression returns a 
false boolean value, the activity is executed. If the skip expression returns a true 
boolean value, the activity is completed immediately and execution moves to the 
activity immediately following that one.

This construct is equivalent to a switch/case structured activity with a single case 
element with a condition that is the opposite of the skip condition. 

Example 10–6 provides an example of bpelx:skipCondition attribute use. If 
myvalue is 0, the expression evaluates to true, and the assign activity is skipped. If 
myvalue is 10, the expression evaluates to false, and the copy operation of the assign 
activity is executed.

Example 10–6 Use of bpelx:skipCondition Attribute

<assign bpelx:skipCondition="bpws:getVariableData('input',
 'payload','/tns:inputMsg/tns:myvalue') <= 0">
    <copy>
        <from expression="'Value is greater than zero'"/>
        <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
    </copy>
</assign>

The equivalent functionality used with a switch activity is shown in Example 10–7.

Example 10–7 Equivalent Functionality with a Switch Activity

<switch>
    <case condition="bpws:getVariableData('input',
 'payload','/tns:inputMsg/tns:value') > 0">
        <assign>
            <copy>
                <from expression="'Value is greater than zero'"/>
                <to variable="output" part="payload"
 query="/tns:resultMsg/tns:valueResult"/>
            </copy>
        </assign>
    </case>
</switch>

You can also use built-in and custom XPath functions and $variable references 
within the skip condition expression. Example 10–8 provides several examples:

Note: The skip condition is only available in BPEL projects that 
support BPEL version 1.1.



Specifying XPath Expressions to Bypass Activity Execution

Using Conditional Branching in a BPEL Process 10-13

Example 10–8 Built-in and Custom XPath Functions and $variable References

<assign bpelx:skipCondition="bpws:getVariableData( 'crOutput', 'payload',
 '/tns:rating' ) > 0">

<assign bpelx:skipCondition="custom:validateRating()" ... />

<assign xmlns:fn='http://www.w3.org/2005/xpath-functions'
 bpelx:skipCondition="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a 
BPEL fault and thrown from the activity.

An event is added to the BPEL instance audit trail for activities that are bypassed due 
to the skip condition expression evaluating to true. Even if the skip condition 
evaluates to false (meaning the activity is performed), the fact that a skip condition 
expression was evaluated is still logged to the audit trail for debugging purposes.

If the XPath engine fails to evaluate the boolean value, bpws:subLanguageFault is 
thrown. This is the same fault thrown when a switch/case condition does not evaluate 
to a boolean value. This is also logged to the audit trail for debugging purposes.

10.5.1 How to Specify XPath Expressions to Bypass Activity Execution

To specify XPath expressions to bypass activity execution:
1. In the Component Palette, expand BPEL Constructs.

2. Drag the activity into the designer in which to create the skip condition.

3. Click the Skip Condition tab.

4. Specify an XPath expression that, when evaluated to true, causes an activity to be 
skipped. Figure 10–13 provides details.

Figure 10–13 Skip Condition XPath Expression



Specifying XPath Expressions to Bypass Activity Execution

10-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Click Apply, then OK.

10.5.2 What Happens When You Specify XPath Expressions to Bypass Activity 
Execution

The code segment in the .bpel file defines the specific operation after design 
completion.

For example, the XPath expression shown in Example 10–9, when evaluated to true 
(for example, input is 20), causes the assign activity to be skipped. 

Example 10–9 skipCondition Attribute For Bypassing Activity Execution

<sequence name="main">
. . .
. . .
<assign name="Assign_1"
                
bpelx:skipCondition="number(bpws:getVariableData('inputVariable','payload','/clien
t:
 process/client:input')) > 10">
    <copy>
       <from expression="'Assign Block is not Skipped'"/>
          <to variable="inputVariable" part="payload"
             query="/client:process/client:input"/>
    </copy>
</assign>
. . .
. . .
</sequence>



11

Using Fault Handling in a BPEL Process 11-1

11 Using Fault Handling in a BPEL Process

This chapter describes how to use fault handling in a BPEL process. Fault handling 
allows a BPEL process service component to handle error messages or other exceptions 
returned by outside web services, and to generate error messages in response to 
business or runtime faults. You can also define a fault management framework to 
catch faults and perform user-specified actions defined in a fault policy file.

This chapter includes the following sections:

■ Section 11.1, "Introduction to a Fault Handler"

■ Section 11.2, "Introduction to BPEL Standard Faults"

■ Section 11.3, "Introduction to Categories of BPEL Faults"

■ Section 11.4, "Using the Fault Management Framework"

■ Section 11.5, "Catching BPEL Runtime Faults"

■ Section 11.6, "Getting Fault Details with the getFaultAsString XPath Extension 
Function"

■ Section 11.7, "Throwing Internal Faults"

■ Section 11.8, "Rethrowing Faults with the Rethrow Activity"

■ Section 11.9, "Returning External Faults"

■ Section 11.10, "Using a Scope Activity to Manage a Group of Activities"

■ Section 11.11, "Re-executing Activities in a Scope Activity with the Replay 
Activity"

■ Section 11.12, "Using Compensation After Undoing a Series of Operations"

■ Section 11.13, "Stopping a Business Process Instance"

■ Section 11.14, "Throwing Faults with Assertion Conditions"

For additional information on creating fault handling in a SOA composite application, 
see the Fusion Order Demo application.

11.1 Introduction to a Fault Handler
Fault handlers define how the BPEL process service component responds when web 
services return data other than what is normally expected (for example, returning an 
error message instead of a number). An example of a fault handler is where the web 
service normally returns a credit rating number, but instead returns a negative credit 
message. 



Introduction to a Fault Handler

11-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 11–1 provides an example of how a fault handler sets a credit rating variable to 
-1000.

Figure 11–1 Fault Handling

The code segment in Example 11–1 defines the fault handler for this operation in the 
BPEL file:

Example 11–1 Fault Handler Definition

<faultHandlers>
     <catch faultName="services:NegativeCredit" faultVariable="crError">
      <assign name="crin">
         <copy>
           <from expression="-1000">
           </from>
           <to variable="input" part="payload"
               query="/autoloan:loanApplication/autoloan:creditRating"/>
         </copy>
       </assign>
     </catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is 
a catch activity, which defines the fault name and variable, and the copy instruction 
that sets the creditRating variable to -1000.

BPEL
Process

<receive>

Credit
Rating
Service

Negative
Credit

<scope>

WSDL

prepare
crin

<assign>

<scope>

credit to
-1000

<assign>

Read
crOut

<assign>

WSDL

d1

d3

f1

<reply>d2

call
service

<invoke>



Introduction to BPEL Standard Faults

Using Fault Handling in a BPEL Process 11-3

When you select web services for the BPEL process service component, determine the 
possible faults that may be returned and set up a fault handler for each one.

11.2 Introduction to BPEL Standard Faults
This section identifies the standard faults for BPEL 1.1 and BPEL 2.0.

11.2.1 BPEL 1.1 Standard Faults
This section identifies the standard faults for BPEL 1.1. Unless otherwise noted below, 
the Business Process Execution Language for Web Services Specification defines the 
following standard faults in the namespace of 
http://schemas.xmlsoap.org/ws/2003/03/business-process/: 

■ bindingFault (BPEL extension fault defined in 
http://schemas.oracle.com/bpel/extension)

■ conflictingReceive 

■ conflictingRequest 

■ correlationViolation 

■ forcedTermination 

■ invalidReply 

■ joinFailure 

■ mismatchedAssignmentFailure 

■ remoteFault (BPEL extension fault defined in 
http://schemas.oracle.com/bpel/extension)

■ repeatedCompensation 

■ selectionFailure 

■ uninitializedVariable 

Standard faults are defined as follows:

■ Typeless, meaning they do not have associated messageTypes

■ Not associated with any Web Services Description Language (WSDL) message

■ Caught without a fault variable:

<catch faultName="bpws:selectionFailure">

11.2.2 BPEL 2.0 Standard Faults
The following list specifies the standard faults defined within the WS-BPEL 
specification. All standard fault names are qualified with the standard WS-BPEL 
namespace.

■ ambiguousReceive

■ completionConditionFailure

■ conflictingReceive

■ conflictingRequest

■ correlationViolation

■ invalidBranchCondition



Introduction to BPEL Standard Faults

11-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ invalidExpressionValue

■ invalidVariables

■ joinFailure

■ mismatchedAssignmentFailure

■ missingReply

■ missingRequest

■ scopeInitializationFailure

■ selectionFailure

■ subLanguageExecutionFault

■ uninitializedPartnerRole

■ uninitializedVariable

■ unsupportedReference

■ xsltInvalidSource

■ xsltStylesheetNotFound

11.2.2.1 Fault Handling Order of Precedence in BPEL 2.0
In BPEL 2.0, the order of precedence for catching faults thrown without associated 
data is as follows:

■ If there is a catch activity with a matching faultName value that does not specify 
a faultVariable attribute, the fault is sent to the identified catch activity.

■ Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault 
handler.

■ Otherwise, the fault is processed by the default fault handler.

In BPEL 2.0, the order of precedence for catching faults thrown with associated data is 
as follows:

■ If there is a catch activity with a matching faultName value that does not specify 
a faultVariable attribute, the fault is sent to the identified catch activity.

■ If the fault data is a WSDL message type in which the following exists:

– The message contains a single part defined by an element.

– There exists a catch activity with a matching faultName value that has a 
faultVariable whose associated faultElement QName matches the 
QName of the runtime element data of the single WSDL message part.

Then, the fault is sent to the identified catch activity with the faultVariable 
initialized to the value in the single part’s element.

■ Otherwise, if there is a catch activity with a matching faultName value that does 
not specify a faultVariable attribute, the fault is sent to the identified catch 
activity. In this case, the fault value is not available from within the fault handler, 
but is available to the rethrow activity.

■ Otherwise, if there is a catch construct without a faultName attribute that has a 
faultVariable whose type matches the type of the runtime fault data, then the 
fault is sent to the identified catch activity.



Introduction to Categories of BPEL Faults

Using Fault Handling in a BPEL Process 11-5

■ Otherwise, if the fault data is a WSDL message type in which the message contains 
a single part defined by an element and there exists a catch activity without a 
faultName attribute that has a faultVariable whose associated faultElement’s 
QName matches the QName of the runtime element data of the single WSDL 
message part, the fault is sent to the identified catch activity with the 
faultVariable initialized to the value in the single part’s element.

■ Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault 
handler.

■ Otherwise, the fault is handled by the default fault handler.

11.3 Introduction to Categories of BPEL Faults
A BPEL fault has a fault name called a Qname (name qualified with a namespace) and 
a possible messageType. There are two categories of BPEL faults:

■ Business faults

■ Runtime faults

11.3.1 Business Faults
Business faults are application-specific faults that are generated when there is a 
problem with the information being processed (for example, when a social security 
number is not found in the database). A business fault occurs when an application 
executes a throw activity or when an invoke activity receives a fault as a response. The 
fault name of a business fault is specified by the BPEL process service component. The 
messageType, if applicable, is defined in the WSDL. A business fault can be caught 
with a faultHandler using the faultName and a faultVariable.

<catch faultName="ns1:faultName" faultVariable="varName">

11.3.2 Runtime Faults
Runtime faults are the result of problems within the running of the BPEL process 
service component or web service (for example, data cannot be copied properly 
because the variable name is incorrect). These faults are not user-defined, and are 
thrown by the system. They are generated if the process tries to use a value incorrectly, 
a logic error occurs (such as an endless loop), a Simple Object Access Protocol (SOAP) 
fault occurs in a SOAP call, an exception is thrown by the server, and so on.

Several runtime faults are automatically provided. These faults are included in the 
http://schemas.oracle.com/bpel/extension namespace. These faults are 
associated with the messageType RuntimeFaultMessage. The WSDL file shown in 
Example 11–2 defines the messageType:

Example 11–2 messageType Definition

<?xml version="1.0" encoding="UTF-8" ?> 
<definitions name="RuntimeFault"
  targetNamespace="http://schemas.oracle.com/bpel/extension"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns="http://schemas.xmlsoap.org/wsdl/">

  <message name="RuntimeFaultMessage">
   <part name="code" type="xsd:string" /> 
   <part name="summary" type="xsd:string" /> 
   <part name="detail" type="xsd:string" /> 



Using the Fault Management Framework

11-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  </message>
</definitions>

If a faultVariable (of messageType RuntimeFaultMessage) is used when 
catching the fault, the fault code can be queried from the faultVariable, along with 
the fault summary and detail.

11.3.2.1 bindingFault
A bindingFault is thrown inside an activity if the preparation of the invocation 
fails. For example, the WSDL of the process fails to load. A bindingFault is not 
retryable. This type of fault usually must be fixed by human intervention. 

11.3.2.2 remoteFault
A remoteFault is also thrown inside an activity. It is thrown because the invocation 
fails. For example, a SOAP fault is returned by the remote service. 

11.3.2.3 replayFault
A replayFault replays the activity inside a scope. At any point inside a scope, this 
fault is migrated up to the scope. The server then re-executes the scope from the 
beginning.

11.4 Using the Fault Management Framework
Oracle SOA Suite provides a generic fault management framework for handling faults 
in BPEL processes. If a fault occurs during runtime in an invoke activity in a process, 
the framework catches the fault and performs a user-specified action defined in a fault 
policy file associated with the activity. If a fault results in a condition in which human 
intervention is the prescribed action, you perform recovery actions from Oracle 
Enterprise Manager Fusion Middleware Control Console. The fault management 
framework provides an alternative to designing a BPEL process with catch activities in 
scope activities.

This section provides an overview of the components that comprise the fault 
management framework.

■ The fault management framework catches all faults (business and runtime) for an 
invoke activity.

■ A fault policy file defines fault conditions and their corresponding fault recovery 
actions. Each fault condition specifies a particular fault or group of faults, which it 
attempts to handle, and the corresponding action for it. A set of actions is 
identified by an ID in the fault policy file. 

■ A set of conditions invokes an action (known as fault policy).

■ A fault policy bindings file associates the policies defined in the fault policy file 
with the following:

– SOA composite applications

– BPEL process and Oracle Mediator service components

– Reference binding components for BPEL process and Oracle Mediator service 
components

The framework looks for fault policy bindings in the same directory as the 
composite.xml file of the SOA composite application or in a remote location 
identified by two properties that you set.



Using the Fault Management Framework

Using Fault Handling in a BPEL Process 11-7

■ The fault policy file (fault-policies.xml) and fault policy bindings file 
(fault-bindings.xml) are placed in either of the following locations:

– In the same directory as the composite.xml file of the SOA composite 
application.

– In a different location that is specified with two properties that you add to the 
composite.xml file. This option is useful if a fault policy must be used by 
multiple SOA composite applications. This option overrides any fault policy 
files that are included in the same directory as the composite.xml file. 
Example 11–3 provides details about these two properties. In this example, the 
fault policy files are placed into the SOA Metadata Service (MDS) shared area.

Example 11–3 Fault Policies used by Multiple SOA Composite Applications

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

See Chapter 22, "Using Oracle Mediator Error Handling" for details about Oracle 
Mediator fault handling capabilities.

11.4.1 How to Design a Fault Policy
This section describes how to design a fault policy.

11.4.1.1 Understanding How Fault Policy Binding Resolution Works
A fault policy bindings file associates the policies defined in a fault policy file with the 
SOA composite application or the component (service component or reference binding 
component). The framework attempts to identify a fault policy binding in the 
following order:

■ Reference binding component defined in the composite.xml file.

■ BPEL process or Oracle Mediator service component defined in the 
composite.xml file.

■ SOA composite application defined in the composite.xml file.

Note: A fault policy configured with the fault management 
framework overrides any fault handling defined in catch activities of 
scope activities in the BPEL process. The fault management 
framework can be configured to rethrow the fault handling back to the 
catch activities.

Note: The Facades API enables you to programmatically perform the 
abort, retry (with a success action), continue, rethrow, and replay 
recovery options. For information, see Oracle Fusion Middleware 
Infrastructure Management Java API Reference for Oracle SOA Suite.



Using the Fault Management Framework

11-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

During the resolution process, if no action is found that matches the condition, the 
framework assumes that resolution failed and moves to the next resolution level.

For example, assume an invoke activity faults with faultname="abc". There is a 
policy binding specified in the fault-binding.xml file:

■ SOA composite application binds to policy-id-1

■ BPEL process or Oracle Mediator service component or reference binding 
component binds to policy-id-2

In the fault-bindings.xml file, the following bindings are also specified: 

■ SOA composite application binds to policy-id-3

■ Reference binding component or service component binds to policy-id-4

The fault management framework behaves as follows:

■ First match the resolve binding (in this case, policy-id-2).

■ If the fault resolution fails, go to the next possible match (policy-id-4).

■ If the fault resolution fails, go to the next possible match (policy-id-3).

■ If the fault resolution fails, go to the next possible match (in this case, 
policy-id-1).

■ If the fault resolution still fails, the fault is sent to the BPEL fault catch activity.

11.4.1.2 Creating a Fault Policy File for Automated Fault Recovery
1. Create a fault policy file (for example, named fault-policies.xml). This file 

includes condition and action sections for performing specific tasks.

2. Place the file in the same directory as the composite.xml file or place it in a 
different location and define the oracle.composite.faultPolicyFile 
property. Example 11–4 provides details.

Example 11–4 Defining Properties

<property
 name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
 fault-bindings.xml
</property>

3. Define the condition section of the fault policy file.

■ Note the following details about the condition section:

– This section provides a condition based on faultName.

– Multiple conditions may be configured for a faultName.

– Each condition has one test section (an XPath expression) and one 
action section.

– The test section (XPath expression) is evaluated for the fault variable 
available in the fault.

– The action section has a reference to the action defined in the same file.

– You can only query the fault variable available in the fault.



Using the Fault Management Framework

Using Fault Handling in a BPEL Process 11-9

– The order of condition evaluation is determined by the sequential order in 
the document.

Table 11–1 provides examples of condition section use in the fault policy 
file. All actions defined in the condition section must be associated with an 
action in the action section.

4. Define the action section of the fault policy file. Note that validation of fault 
policy files is done during deployment. If you change the fault policy, you must 
redeploy the SOA composite application that includes the fault policy.

Table 11–2 provides several examples of action section use in the fault policy file. 
You can provide automated recovery actions for some faults. In all recovery 
actions except retry and human intervention, the framework performs the actions 
synchronously.

Table 11–1 Use of the condition Section in the Fault Policy File

Condition Example Fault Policy File Syntax

This condition is checking a fault 
variable for code = 
"WSDLFailure"

An action of ora-terminate is 
specified.

<condition>
  <test>$fault.code="WSDLReading Error"
  </test>
  <action ref="ora-terminate"/>
</condition>

No test condition is provided. This 
is a catchAll condition for a given 
faultName.

<condition>
   <action ref="ora-rethrow"/>
</condition>

If the faultName name attribute is 
missing, this indicates a catchAll 
activity for faults that have any 
QName.

<faultName > . . . </faultName>



Using the Fault Management Framework

11-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 11–2 Use of action Section in the Fault Policy File

Recovery Actions Fault Policy File Syntax

Retry: Provides the following actions 
for retrying the activity.

■ Retry a specified number of 
times.

■ Provide a delay between retries 
(in seconds).

■ Increase the interval with an 
exponential back off.

■ Chain to a retry failure action if 
retry N times fails.

■ Chain to a retry success action if 
a retry is successful.

Note: Exponential back off indicates 
the next retry attempt is scheduled at 
2 x the delay, where delay is the 
current retry interval. For example, if 
the current retry interval is 2 
seconds, the next retry attempt is 
scheduled at 4, the next at 8, and the 
next at 16 seconds until the 
retryCount value is reached.

<Action id="ora-retry">
   <Retry>
      <retryCount>3</retryCount>
      <retryInterval>2</retryInterval>
      <exponentialBackoff/>
      <retryFailureAction ref="ora-java"/>
      <retrySuccessAction ref="ora-java"/>
   </Retry>
</Action>

Note the following details:

■ The framework chains to the retry success action if the retry attempt is 
successful.

■ If all retry attempts fail, the framework chains to the retry failure 
action.

Human Intervention: Causes the 
current activity to stop processing. 
You can now go to Oracle Enterprise 
Manager Fusion Middleware Control 
Console and perform manual 
recovery actions on this instance.

<Action id="ora-human-intervention">
 <humanIntervention/></Action>

Terminate Process: Terminates the 
process

<Action id="ora-terminate"><abort/></Action>

Java Code: Enables you to execute an 
external Java class.

returnValue: The implemented 
Java class must implement a method 
that returns a string. The policy can 
chain to a new action based on the 
returned string.

For additional information, see 
Section 11.4.3, "How to Use a Java 
Action Fault Policy."

<Action id="ora-java">
<!-- this is user provided custom java
 class-->
<javaAction className="mypackage.myClass"
 defaultAction="ora-terminate">
   <returnValue value="REPLAY"
    ref="ora-terminate"/>
   <returnValue value="RETRHOW"
    ref="ora-rethrow-fault"/>
   <returnValue value="ABORT"
    ref="ora-terminate"/>
   <returnValue value="RETRY" ref="ora-retry"/>
   <returnValue value="MANUAL"
    ref="ora-human-intervention"/>
</javaAction>
</Action>

Rethrow Fault: The framework sends 
the fault to the BPEL fault handlers 
(catch activities in scope activities). If 
none are available, the fault is sent 
up.

<Action id="ora-rethrow-fault"><rethrowFault/></Action>

Replay Scope: Raises a replay fault. <Action id="ora-replay-scope"><replayScope/></Action>



Using the Fault Management Framework

Using Fault Handling in a BPEL Process 11-11

Example 11–5 shows a fault policy file with fully-defined condition and action 
sections.

Example 11–5 Fault Policy File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
  <faultPolicy version="0.0.1" id="FusionMidFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <Conditions>
      <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
        <condition>
          <action ref="MediatorJavaAction"/>
        </condition>
      </faultName>
      <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
        <condition>
          <action ref="BPELJavaAction"/>
        </condition>
      </faultName>
      <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
        <condition>
          <action ref="BPELJavaAction"/>
        </condition>
      </faultName>
      <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:runtimeFault">
        <condition>
          <action ref="BPELJavaAction"/>
        </condition>
      </faultName>
    </Conditions>
    <Actions>
      <!-- Generics -->

Note: The preseeded recovery action tag names (ora-retry, 
ora-human-intervention, ora-terminate, and so on) are only 
samples. You can substitute these names with ones appropriate to 
your environment.

Notes:

■ Fault policy file names are not restricted to one specific name. 
However, they must conform to the fault-policy.xsd schema 
file.

■ Example 11–5 provides an example of catching faults based on 
fault names. You can also catch faults based on message types, or 
on both:

<fault name="myfault" type="fault:faultType"> 



Using the Fault Management Framework

11-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

      <Action id="default-terminate">
        <abort/>
      </Action>
      <Action id="default-replay-scope">
        <replayScope/>
      </Action>
      <Action id="default-rethrow-fault">
        <rethrowFault/>
      </Action>
      <Action id="default-human-intervention">
        <humanIntervention/>
      </Action>
      <Action id="MediatorJavaAction">
        <!-- this is user provided class-->
        <javaAction className="MediatorJavaAction.myClass"
 defaultAction="default-terminate">
          <returnValue value="MANUAL" ref="default-human-intervention"/>
        </javaAction>
      </Action>
      <Action id="BPELJavaAction">
        <!-- this is user provided class-->
        <javaAction className="BPELJavaAction.myAnotherClass"
 defaultAction="default-terminate">
          <returnValue value="MANUAL" ref="default-human-intervention"/>
        </javaAction>
      </Action>
    </Actions>
  </faultPolicy>
</faultPolicies>

11.4.1.3 Associating a Fault Policy with Fault Policy Binding

1. Create a fault policy binding file (fault-bindings.xml) that associates the 
policies defined in the fault policy file with the level of fault policy binding you 
are using (either a SOA composite application or a component (reference binding 
component or BPEL process or Oracle Mediator service component).

2. Place the file in the same directory as the composite.xml file or place it in a 
remote location and define the oracle.composite.faultBindingFile 
property as shown in Step 2 of Section 11.4.1.2, "Creating a Fault Policy File for 
Automated Fault Recovery."

Example 11–6 shows a fault policy bindings file that associates the fault policies 
defined in the fault-policies.xml file with the FusionMidFaults SOA 
composite application.

Example 11–6 fault-buildings.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <composite faultPolicy="FusionMidFaults"/>
    <!--<composite faultPolicy="ServiceExceptionFaults"/>-->

Note: The fault policy file binding file must be named 
fault-bindings.xml. This conforms to the 
fault-bindings.xsd schema file.



Using the Fault Management Framework

Using Fault Handling in a BPEL Process 11-13

    <!--<composite faultPolicy="GenericSystemFaults"/>-->
</faultPolicyBindings>

11.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples
This section provides additional samples of fault policy and fault policy binding files. 
Example 11–7 shows the fault-policies.xml file contents.

Example 11–7 fault-policies.xml File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1" 
                   id="CRM_ServiceFaults" 
                   xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" 
                   xmlns:xs="http://www.w3.org/2001/XMLSchema"
                   xmlns="http://schemas.oracle.com/bpel/faultpolicy" 
                   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
                       <Conditions>
        <!-- Fault if wsdlRuntimeLocation is not reachable -->
        <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
            <condition>
                <test>$fault.code="WSDLReadingError"</test>
                <action ref="ora-terminate"/>
            </condition>
            <condition>
                <action ref="ora-java"/>
            </condition>
        </faultName>
        <!-- Fault if location port is not reachable-->
        <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
            <!--ORA-00001: unique constraint violated on insert-->
            <condition>
                <test>$fault.code="1"</test>
                <action ref="ora-java"/>
            </condition>
            <!--ORA-01400: cannot insert NULL -->
            <condition>
                <test xmlns:test="http://test">$fault.code="1400"</test>
                <action ref="ora-terminate"/>
            </condition>
            <!--ORA-03220: required parameter is NULL or missing -->
            <condition>
                <test>$fault.code="3220"</test>
                <action ref="ora-terminate"/>
            </condition>
            <condition>
                <action ref="ora-retry-crm-endpoint"/>
            </condition>
        </faultName>
        <!-- Business faults -->
        <!-- Fault comes with a payload of error, make sure the name space is
 provided here or at root level -->
        <faultName xmlns:credit="http://services.otn.com"
 name="credit:NegativeCredit">
            <!-- you get this fault when SSN starts with 0-->
            <condition>



Using the Fault Management Framework

11-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

                <test>$fault.payload="Bankruptcy Report"</test>
                <action ref="ora-human-intervention"/>
                <!--action ref="ora-retry"/-->
            </condition>
            <!-- you get this fault when SSN starts with 1-->
            <condition>
                <test>$fault.payload="Bankruptcy Report-abort"</test>
                <action ref="ora-terminate"/>
            </condition>
            <!-- you get this fault when SSN starts with 2-->
            <condition>
                <test>$fault.payload="Bankruptcy Report-rethrow"</test>
                <action ref="ora-rethrow-fault"/>
            </condition>
            <!-- you get this fault when SSN starts with 3-->
            <condition>
                <test>$fault.payload="Bankruptcy Report-replay"</test>
                <action ref="ora-replay-scope"/>
            </condition>
            <!-- you get this fault when SSN starts with 4-->
            <condition>
                <test
 xmlns:myError="http://services.otn.com">$fault.payload="Bankruptcy
 Report-human"</test>
                <action ref="ora-human-intervention"/>
            </condition>
            <!-- you get this fault when SSN starts with 5-->
            <condition>
                <test>$fault.payload="Bankruptcy Report-java"</test>
                <action ref="ora-java"/>
            </condition>
        </faultName>
                       
                       </Conditions>
                       <Actions>
                           <Action id="ora-retry">
            <retry>
                <retryCount>3</retryCount>
                <retryInterval>2</retryInterval>
                <exponentialBackoff/>
                <retryFailureAction ref="ora-java"/>
                <retrySuccessAction ref="ora-java"/>
            </retry>
        </Action>
        <Action id="ora-retry-crm-endpoint">
            <retry>
                <retryCount>5</retryCount>
                <retryFailureAction ref="ora-java"/>
                <retryInterval>5</retryInterval>
                <retrySuccessAction ref="ora-java"/>
            </retry>
        </Action>
        <Action id="ora-replay-scope">
            <replayScope/>
        </Action>
        <Action id="ora-rethrow-fault">
            <rethrowFault/>
        </Action>
        <Action id="ora-human-intervention">
            <humanIntervention/>



Using the Fault Management Framework

Using Fault Handling in a BPEL Process 11-15

        </Action>
        <Action id="ora-terminate">
            <abort/>
        </Action>
        <Action id="ora-java">
            <!-- this is user provided class-->
            <javaAction
 className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"
 defaultAction="ora-terminate" propertySet="prop-for-billing">
                <returnValue value="REPLAY" ref="ora-terminate"/>
                <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
                <returnValue value="ABORT" ref="ora-terminate"/>
                <returnValue value="RETRY" ref="ora-retry"/>
                <returnValue value="MANUAL" ref="ora-human-intervention"/>
            </javaAction>
        </Action>
                       
                       </Actions>
                   <Properties>
                           <propertySet name="prop-for-billing">
            <property name="user_email_recipient">bpeladmin</property>
            <property name="email_recipient">joe@abc.com</property>
            <property name="email_recipient">mike@xyz.com</property>
            <property name="email_threshold">10</property>
            <property name="sms_recipient">+429876547</property>
            <property name="sms_recipient">+4212345</property>
            <property name="sms_threshold">20</property>
            <property name="user_email_recipient">john</property>
        </propertySet>
        <propertySet name="prop-for-order">
            <property name="email_recipient">john@abc.com</property>
            <property name="email_recipient">jill@xyz.com</property>
            <property name="email_threshold">10</property>
            <property name="sms_recipient">+42222</property>
            <property name="sms_recipient">+423335</property>
            <property name="sms_threshold">20</property>
        </propertySet>
                   
                   </Properties>                   
</faultPolicy>
<faultPolicy version="2.0.1" 
                   id="Billing_ServiceFaults" 
                   xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" 
                   xmlns:xs="http://www.w3.org/2001/XMLSchema"
        
                   xmlns="http://schemas.oracle.com/bpel/faultpolicy" 
                   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Conditions>
    <faultName>
    <condition>
       <action ref="ora-manual"/>
    </condition>
    </faultName>
</Conditions>
<Actions>
        <Action id="ora-manual">
            <humanIntervention/>
        </Action>
</Actions>
</faultPolicy>



Using the Fault Management Framework

11-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

</faultPolicies>

Example 11–8 shows the fault-buildings.xml file that associates the fault policies 
defined in fault-policies.xml.

Example 11–8 Fault Policy Bindings File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <composite faultPolicy="ConnectionFaults"/>
    <component faultPolicy="ServiceFaults">
        <name>Component1</name>
        <name>Component2</name>
    </component>
    <!-- Below listed component names use polic CRM_SeriveFaults --> 
    <component faultPolicy="CRM_ServiceFaults">
        <name>HelloWorld</name>
        <name>ShippingComponent</name>
        <name>AnotherComponent"</name>
    </component>
    <!-- Below listed reference names and port types use polic CRM_ServiceFaults
 --> 
    <reference faultPolicy="CRM_ServiceFaults">
        <name>creditRatingService</name>
        <name>anotherReference</name>
        <portType
 xmlns:credit="http://services.otn.com">credit:CreditRatingService</portType>
        <portType
 xmlns:db="http://xmlns.oracle.com/pcbpel/adapter/db/insert/">db:insert_
plt</portType>
    </reference>
    <reference faultPolicy="test1">
        <name>CreditRating3</name>
    </reference>
</faultPolicyBindings>

11.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers
If you design a fault policy that uses the action handler for rejected messages, note that 
only one write action can be performed. Multiple write actions cannot be performed, 
even if you define multiple rejection handlers, as shown in Example 11–9. In this case, 
only the first rejection handler defined (for this example, ora-queue) is executed.

Example 11–9 Fault Policy with Multiple Rejection Handlers

<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages" 
name="rjm:FileIn"> 
        <condition> 
           <action ref="ora-queue"/> 
           
        </condition> 
       </faultName> 
        <faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages" 
name="rjm:FileIn"> 
        <condition> 
           <action ref="ora-file"/> 
           
        </condition> 



Using the Fault Management Framework

Using Fault Handling in a BPEL Process 11-17

       </faultName>

11.4.2 How to Execute a Fault Policy
You deploy a fault policy as part of a SOA composite application. After deployment, 
you can perform the following fault recovery actions from Oracle Enterprise Manager 
Fusion Middleware Control Console:

■ Retry the activity

■ Modify a variable (available to the faulted activity)

■ Continue the instance (mark the activity as a success)

■ Rethrow the exception

■ Abort the instance

■ Throw a replay scope exception

For additional information, see Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite for the following:

■ Instructions on executing a fault policy in Oracle Enterprise Manager Fusion 
Middleware Control Console

■ Use cases in which you define a fault policy that uses human intervention

11.4.3 How to Use a Java Action Fault Policy
Note the following details when using the Java action fault policy:

■ The Java class provided follows a specific interface. This interface returns a string. 
Multiple values can be provided for output and fault policy to take after execution.

■ Additional fault policy can be executed by providing a mapping from the output 
value (return value) of implemented methods to a fault policy.

■ If no ReturnValue is specified, the default fault policy is executed, as shown in 
Example 11–10.

Example 11–10 Java Action Fault Policy

<Action id="ora-java">
  <javaAction className="mypackage.myclass"
    defaultAction="ora-human-intervention" propertySet="prop-for-billing">
   <!--defaultAction is a required attribute, but propertySet is optional-->
   <!-- attribute-->
     <ReturnValue value="RETRY" ref="ora-retry"/>   
     <!--value is not nilable attribute & cannot be empty-->
     <ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>
  </javaAction>
</Action>

Table 11–3 provides an example of ReturnValue use.

Table 11–3 System Interpretation of Java Action Fault Policy

Code Description

<ReturnValue value="RETRY"
 ref="ora-retry"/>

Execute the ora-retry action if the method 
returns a string of RETRY.



Using the Fault Management Framework

11-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To invoke a Java class, you can provide a class that implements the 
IFaultRecoveryJavaClass interface. IFaultRecoveryJavaClass is included 
in the fabric-runtime.jar file. The package name is 
oracle.integration.platform.faultpolicy.

The IFaultRecoveryJavaClass interface has two methods, as shown in 
Example 11–11.

Example 11–11 implementation of IFaultRecoveryJavaClass

public interface IFaultRecoveryJavaClass
{
public void handleRetrySuccess( IFaultRecoveryContext ctx );
public String handleFault( IFaultRecoveryContext ctx );
}

Note the following details:

■ handleRetrySuccess is invoked upon a successful retry attempt. The retry 
policy chains to a Java action on retrySuccessAction.

■ handleFault is invoked to execute a policy of type javaAction.

Example 11–12 shows the data available with IFaultRecoveryContext:

Example 11–12 Data Available with IFaultRecoveryContext

public interface IFaultRecoveryContext {

/**
 * Gets implementation type of the fault.
 * @return
 */
public String getType();

/**
 * @return Get property set of the fault policy action being executed.
 */
public Map getProperties();

<ReturnValue value="”
  ref=”ora-rethrow”/>

Fails in validation.

<javaAction
 className="mypackage.myclass"
 
defaultAction="ora-human-intervention
">

Execute ora-human-intervention after Java 
code execution. This attribute is used if the return 
from the method does not match any provided 
ReturnValue.

<ReturnValue value="RETRY"
 ref="ora-retry"/>
<ReturnValue value="” ref=””/>   

Fails in validation.

<javaAction
 className="mypackage.myclass"
 defaultAction=" 
ora-human-intervention">
<ReturnValue></ReturnValue>

Fails in validation.

Table 11–3 (Cont.) System Interpretation of Java Action Fault Policy

Code Description



Using the Fault Management Framework

Using Fault Handling in a BPEL Process 11-19

/**
 * @return Get fault policy id of the fault policy being executed.
 */
public String getPolicyId();

/**
 * @return Name of the faulted partner link.
 */
public String getReferenceName();

/**
 * @return Port type of the faulted reference .
 */
public QName getPortType();
}

The service engine implementation of this interface provides more information (for 
example, Oracle BPEL Process Manager). Example 11–13 provides details.

Example 11–13 Service Engine Implementation of IFaultRecoveryContext

public class BPELFaultRecoveryContextImpl extends BPELXExecLetUtil implements
IBPELFaultRecoveryContext,  IFaultRecoveryContext{
...
}

Oracle BPEL Process Manager-specific data is available with 
IBPELFaultRecoveryContext, as shown in Example 11–14.

Example 11–14 Oracle BPEL Process Manager-Specific Data

public interface IBPELFaultRecoveryContext {
public void addAuditTrailEntry(String message);

public void addAuditTrailEntry(String message, Object detail);

public void addAuditTrailEntry(Throwable t);
/**
 * @return Get action id of the fault policy action being executed.
 */
public String getActionId();

/**
 * @return Type of the faulted activity.
 */
public String getActivityId();

/**
 * @return Name of the faulted activity.
 */
public String getActivityName();

/**
 * @return Type of the faulted activity.
 */
public String getActivityType();

/**
 * @return Correleation id of the faulted activity.
 */



Using the Fault Management Framework

11-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

public String getCorrelationId();

/**
 * @return BPEL fault that caused the invoke to fault.
 */
public BPELFault getFault();

/**
 * @return Get index value of the instance
 */
public String getIndex(int i);

/**
 * @return get Instance Id of the current process instance of the faulted
 *         activity.
 */
public long getInstanceId();

/**
 * @return Get priority of the current process instance of the faulted
 *         activity.
 */
public int getPriority();

/**
 * @return Process DN.
 */
public ComponentDN getProcessDN();

/**
 * @return Get status of the current process instance of the faulted
 *         activity.
 */
public String getStatus();

/**
 * @return Get title of the current process instance of the faulted
 *         activity.
 */
public String getTitle();

public Object getVariableData(String name) throws BPELFault;

public Object getVariableData(String name, String partOrQuery)
throws BPELFault;

public Object getVariableData(String name, String part, String query)
throws BPELFault;

/**
 * @param priority
 *            Set priority of the current process instance of the faulted
 *            activity.
 * @return
 */
public void setPriority(int priority);

/**
 * @param status
 *            Set status of the current process instance of the faulted



Using the Fault Management Framework

Using Fault Handling in a BPEL Process 11-21

 *            activity.
 */
public void setStatus(String status);

/**
 * @param title
 *            Set title of the current process instance of the faulted
 *            activity.
 * @return
 */
public String setTitle(String title);

public void setVariableData(String name, Object value) throws BPELFault;

public void setVariableData(String name, String partOrQuery, Object value)
throws BPELFault;

public void setVariableData(String name, String part, String query,
Object value) throws BPELFault;
}

Example 11–15 provides an example of javaAction implementation.

Example 11–15 Implementation of a javaAction

public class TestJavaAction implements IFaultRecoveryJavaClass {
public void handleRetrySuccess(IFaultRecoveryContext ctx) {
System.out.println("This is for retry success");
handleFault(ctx);
}
public String handleFault(IFaultRecoveryContext ctx) {
System.out.println("-----Inside handleFault-----\n" + ctx.toString());

                dumpProperties(ctx.getProperties());
/* Get BPEL specific context here */
BPELFaultRecoveryContextImpl bpelCtx = (BPELFaultRecoveryContextImpl) ctx;
bpelCtx.addAuditTrailEntry("hi there");
System.out.println("Policy Id" + ctx.getPolicyId());
         ...
        }

11.4.4 What You May Need to Know About Fault Management Behavior When the 
Number of Instance Retries is Exceeded

When you configure a fault policy to recover instances with the ora-retry action 
and the number of specified instance retries is exceeded, the instance is marked as 
open.faulted (in-flight state). The instance remains active.

Marking instances as open.faulted ensures that no instances are lost. You can then 
configure another fault handling action following the ora-retry action in the fault 
policy file, such as the following:

■ Configure an ora-human-intervention action to manually perform instance 
recovery from Oracle Enterprise Manager Fusion Middleware Control Console.

■ Configure an ora-terminate action to close the instance (mark it as 
closed.faulted) and never retry again.



Using the Fault Management Framework

11-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

However, if you do not set an action to be performed after an ora-retry action in the 
fault policy file and the number of instance retries is exceeded, the instance remains 
marked as open.faulted, and recovery attempts to handle the instance.

For example, if no action is defined in the fault policy file shown in Example 11–16 
after ora-retry:

Example 11–16 No Action Defined

<Action id="ora-retry">
       <retry>
          <retryCount>2</retryCount>
          <retryInterval>2</retryInterval>
          <exponentialBackoff/>
       </retry>
  </Action>

The following actions are performed:

■ The invoke activity is attempted (using the above-mentioned fault policy code to 
handle the fault).

■ Two retries are attempted at increasing intervals (after two seconds, then after four 
seconds).

■ If all retry attempts fail, the following actions are performed:

– A detailed fault error message is logged in the audit trail.

– The instance is marked as open.faulted (in-flight state).

– The instance is picked up and the invoke activity is re-attempted.

■ Recovery may also fail. In that case, the invoke activity is re-executed. Additional 
audit messages are logged.

11.4.5 What You May Need to Know Executing the Retry Action with Multiple Faults in 
the Same Flow

The fault policy retry action may not execute with multiple faults in the same flow. 
This may be because the retry count has already been reached for any of the previous 
faults.

For example, assume you define a fault policy with two fault conditions: fault1 and 
fault2. For both fault conditions, the retry action is specified with a retry count of 
three. Assume fault1 occurs and the retry action executes three times. You correct 
the problem for fault1 by modifying the payload, but ensure that fault2 is to be 
raised when the instance is resubmitted. You then resubmit the faulted instance using 
Oracle Enterprise Manager Fusion Middleware Control Console. You expect the 
second fault condition, fault2, to retry three times according to the fault policy 
specification. However, this does not occur because the maximum number of retries 
was already executed for the previous fault1 fault condition.

11.4.6 What You May Need to Know About Binding Level Retry Execution Within Fault 
Policy Retries

If you are testing retry actions on adapters with both JCA-level retries for the 
outbound direction and a retry action in the fault policy file for outbound failures, the 
JCA-level (or binding level) retries are executed within the fault policy retries. For 
example, assume you have designed the application shown in Figure 11–2:



Using the Fault Management Framework

Using Fault Handling in a BPEL Process 11-23

Figure 11–2 SOA Composite Application

You specify the retry parameters shown in Example 11–17 in the composite.xml file:

Example 11–17 Retry Parameters

<property name="jca.retry.count" type="xs:int" many="false"
  override="may">2</property>
<property name="jca.retry.interval" type="xs:int" many="false"
  override="may">2</property>
<property name="jca.retry.backoff" type="xs:int" many="false"
  override="may">2</property>

In the fault policy file for the EQ reference binding component for the outbound 
direction, you specify the actions shown in Example 11–18.

Example 11–18 Retry Actions

<retryCount>3</retryCount>
<retryInterval>3</retryInterval>

If an outbound failure occurs, the expected behavior is for the JCA retries to occur 
within the fault policy retries. When the first retry of the fault policy is executed, the 
JCA retry is called. In this example, a JCA retry of 2 with an interval of 2 seconds and 
exponential back off of 2 is executed for every retry of the fault policy:

■ Fault policy retry 1:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

■ Fault policy retry 2:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

■ Fault policy retry 3:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

11.4.7 What You May Need to Know About Defining the ora-java Option
Assume you invoke a SOA composite application with a fault policy/binding defined 
and see a recoverable fault in Oracle Enterprise Manager Fusion Middleware Control 
Console. After you perform a successful fault recovery retry, note that there is no 
ora-java option available for selection by default in the After Successful Retry list of 
the Faults tab of the Instance of process_name page.

This is the expected behavior. For the ora-java option to display, you must explicitly 
define it in the fault-policies.xml file during design-time. For example, perform 
the following steps.



Catching BPEL Runtime Faults

11-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. Create a fault-policies.xml file in which you explicitly add 
retrySuccessAction ref="ora-java"/> to the fault-policies.xml 
file.

<Action id="ora-retry">
   <Retry>
      <retryCount>3</retryCount>
      <retryInterval>2</retryInterval>
      <exponentialBackoff/>
      <retryFailureAction ref="ora-java"/>
      <retrySuccessAction ref="ora-java"/>
   </Retry>
</Action> 

2. Deploy the composite and create an instance.

3. Click the composite instance to invoke the instance trace of the composite.

4. Click the component in which there is a recoverable fault (for example, Oracle 
BPEL Process Manager, Oracle Mediator, or Oracle BPM).

5. Go to the Faults tab.

6. Select the Retry option to successfully retry the fault.

If fault recovery is successful, the After Successful Retry list is displayed.

7. Select the list and note that the ora-java option is now listed.

For more information about recovering from faults in Oracle Enterprise Manager 
Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite.

11.5 Catching BPEL Runtime Faults 
BPEL runtime faults can be caught as a named BPEL fault. The bindingFault and 
remoteFault can be associated with a message. This action enables the 
faultHandler to get details about the faults.

11.5.1 How to Catch BPEL Runtime Faults
The following procedure shows how to use the provided examples to generate a fault 
and define a fault handler to catch it. In this case, you modify a WSDL file to generate 
a fault, and create a catch attribute to catch it.

To catch BPEL runtime faults:
1. Import RuntimeFault.wsdl into your process WSDL. RuntimeFault.wsdl is 

seeded into the MDS from soa.mar inside soa-infra-wls.ear during its 
deployment.

You may see a copy of soa.mar in the deployed SOA Infrastructure in the Oracle 
WebLogic Server domain, which is a JAR/ZIP file containing 
RuntimeFault.wsdl.

2. Declare a variable with messageType bpelx:RuntimeFaultMessage.

3. Catch it using the following syntax:

 <catch faultName="bpelx:remoteFault"  | "bpelx:bindingFault" 
faultName="varName">



Throwing Internal Faults

Using Fault Handling in a BPEL Process 11-25

11.6 Getting Fault Details with the getFaultAsString XPath Extension 
Function

The catchAll activity is provided to catch possible faults. However, BPEL does not 
provide a method for obtaining additional information about the captured fault. Use 
the getFaultAsString() XPath extension function to obtain additional 
information. 

11.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function
Example 11–19 shows how to use this function.

Example 11–19 getFaultAsString() XPath Extension Function

<catchAll>
   <sequence>
      <assign>
         <from expression="bpelx:getFaultAsString()"/>
         <to variable="faultVar" part="message"/>
      </assign>
      <reply faultName="ns1:myFault" variable="faultVar" .../>
   </sequence>
</catchAll>

11.7 Throwing Internal Faults
A BPEL application can generate and receive fault messages. The throw activity has 
three elements: its name, the name of the fault, and the fault variable. The fault thrown 
by a throw activity is internal to BPEL. You cannot use a throw activity on an 
asynchronous process to communicate with a client. Throw activity syntax includes 
the throw name, fault name, and fault variable:

<throw name="delay" faultName="nsPrefix:fault-1" faultVariable="fVar"/>

11.7.1 How to Create a Throw Activity

To create a throw activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Throw activity into the designer.

3. Double-click and define the Throw activity.

4. Optionally enter a name or accept the default value.

5. To the right of the Namespace URI field, click the Search icon to select the fault to 
monitor.

6. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field. 
Your fault selection also automatically displays in the Local Part field.

Figure 11–3 provides an example of a completed Throw dialog. This example 
shows the Throw_Fault_CC_Denied throw activity of the Scope_
AuthorizeCreditCard scope activity in the Fusion Order Demo application. This 
activity throws a fault for orders that are not approved.



Rethrowing Faults with the Rethrow Activity

11-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 11–3 Throw Dialog

7. Click Apply, then OK.

11.7.2 What Happens When You Create a Throw Activity
Example 11–20 shows the throw activity in the .bpel file after design completion. The 
OrderProcessor process terminates after executing this throw activity.

Example 11–20 Throw Activity

<throw name="Throw_Fault_CC_Denied"
    faultName="client:OrderProcessorFault"/>

11.8 Rethrowing Faults with the Rethrow Activity
The rethrow activity rethrows faults originally captured by the immediately enclosing 
fault handler. Only use the rethrow activity within a fault handler (for example, within 
catch and catchAll activities). The rethrow activity is used in fault handlers to rethrow 
the captured fault (that is, the fault name and the fault data (if present) of the original 
fault). The rethrow activity must ignore modifications to fault data. For example:

■ If the fault handler modifies fault data and then calls a rethrow activity, the 
original fault data is rethrown, and not the modified fault data. 

■ If a fault is captured using the functionality that enables message type faults with 
one part defined using an element to be caught by fault handlers looking for the 
same element type, then the rethrow activity rethrows the original message type 
data.

11.8.1 How to Create a Rethrow Activity

To create a rethrow activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Rethrow activity into the designer.

Note: This activity is supported in BPEL version 2.0 projects.



Rethrowing Faults with the Rethrow Activity

Using Fault Handling in a BPEL Process 11-27

3. Double-click and define the Rethrow activity.

4. Optionally enter a name or accept the default value, as shown in Figure 11–4.

Figure 11–4 Rethrow Dialog

5. Click Apply, then OK.

When complete, design can look similar to that shown in Figure 11–5.

Figure 11–5 Throw Activity in BPEL Process

11.8.2 What Happens When You Rethrow Faults
Example 11–21 shows the .bpel file after design is complete for a rethrow activity. 
The rethrow activity is inside a fault handler (catch activity).

Example 11–21 Rethrow Activity

<scope name="scope1">
  <faultHandlers>
    <catch faultName="tns:error" faultVariable="tmpVar"
 faultElement="tns:fault">
      <sequence>



Returning External Faults

11-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        <assign>
          <copy>
            <from>concat('caught fault: ', $tmpVar)</from>
            <to>$output.payload</to>
          </copy>
        </assign>
        <rethrow name="Rethrow_1"/>
      </sequence>
    </catch>
  </faultHandlers>
  <throw faultName="tns:error" faultVariable="fault"/>
</scope>

11.9 Returning External Faults
A BPEL process service component can send a fault to another application to indicate a 
problem, as opposed to throwing an internal fault. In a synchronous operation, the 
reply activity can return the fault. In an asynchronous operation, the invoke activity 
performs this function.

11.9.1 How to Return a Fault in a Synchronous Interaction
The syntax of a reply activity that returns a fault in a synchronous interaction is shown 
in Example 11–22:

Example 11–22 Reply Activity

<reply partnerlinke="partner-link-name"
       portType="port-type-name"
       operation="operation-name"
       variable="variable-name" (optional)
       faultName="fault-name">
</reply>

Always returning a fault in response to a synchronous request is not very useful. It is 
better to make the activity part of a conditional branch, in which the first branch is 
executed if the data requested is available. If the requested data is not available, then 
the BPEL process service component returns a fault with this information.

For more information, see the following chapters:

■ Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process" for 
synchronous interactions

■ Chapter 10, "Using Conditional Branching in a BPEL Process" for setting up the 
conditional structure

11.9.2 How to Return a Fault in an Asynchronous Interaction
In an asynchronous interaction, the client does not wait for a reply. The reply activity is 
not used to return a fault. Instead, the BPEL process service component returns a fault 
using a callback operation on the same port type that normally receives the requested 
information, with an invoke activity.

For more information about asynchronous interactions, see Chapter 8, "Invoking an 
Asynchronous Web Service from a BPEL Process."



Using a Scope Activity to Manage a Group of Activities

Using Fault Handling in a BPEL Process 11-29

11.10 Using a Scope Activity to Manage a Group of Activities
A scope activity provides a container and a context for other activities. A scope 
provides handlers for faults, events, compensation, data variables, and correlation sets. 
Using a scope activity simplifies a BPEL flow by grouping functional structures. This 
grouping enables you to collapse them into what appears to be a single element in 
Oracle BPEL Designer.

Example 11–23 shows a scope named Scope_FulfillOrder from the WebLogic 
Fusion Order Demo application. This scope invokes the FulfillOrder Oracle 
Mediator component, which determines the shipping method for the order.

Example 11–23 Scope Activity

<scope name="Scope_FulfillOrder">
    <variables>
        <variable name="lFulfillOrder_InputVariable"
        messageType="ns17:requestMessage"/>
    </variables>
    <sequence>
        <assign name="Assign_OrderData">
            <copy>
                <from variable="gOrderInfoVariable"
                    query="/ns4:orderInfoVOSDO"/>
                <to variable="lFulfillOrder_InputVariable"
                    part="request" query="/ns4:orderInfoVOSDO"/>
            </copy>
        </assign>
        <invoke name="Invoke_FulfillOrder"
            inputVariable="lFulfillOrder_InputVariable"
            partnerLink="FulfillOrder.FulfillOrder"
            portType="ns17:execute_ptt" operation="execute"/>
    </sequence>
</scope>

11.10.1 How to Create a Scope Activity

To create a scope activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Scope activity into the designer.

3. Open the scope activity by double-clicking it or by single-clicking the Expand 
icon.

4. From the Component Palette, drag and define activities to build the functionality 
within the scope. Figure 11–6 provides details.



Using a Scope Activity to Manage a Group of Activities

11-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 11–6 Expanded Scope Activity

5.  Click OK.

When complete, scope activity design can look as shown in Figure 11–7. This 
example shows the Scope_AuthorizeCreditCard scope activity of the Fusion 
Order Demo application. 

Figure 11–7 Scope Activity After Design Completion

11.10.2 How to Add Descriptive Notes and Images to a Scope Activity
You can add descriptive notes to scope activities that provide simple descriptions of 
the functionality of the scope. You can also change the graphical image of scopes. The 
notes and images display in Oracle BPEL Designer. This helps to make a scope easier 
to understand.

To add descriptive notes and images to a scope activity:
1. Perform one of the following steps:

■ Right-click the scope and select User Documentation.

■ Double-click the scope and select the User Documentation tab.

The Documentation dialog appears.

2. In the Comment field, enter a brief description of the functionality of the scope.



Using a Scope Activity to Manage a Group of Activities

Using Fault Handling in a BPEL Process 11-31

3. In the Image field, click the Search icon to optionally change the graphical image 
for the scope.

4. Click OK.

Your changes display in Oracle BPEL Designer, as shown in Figure 11–8.

Figure 11–8 Scope with Descriptive Note and Modified Image

5. To edit the note, double-click it.

11.10.3 What Happens After You Create a Scope Activity
Example 11–24 shows the scope activity in the .bpel file after design completion. The 
Scope_AuthorizeCreditCard scope activity consists of activities that perform the 
following actions:

■ A catch activity for catching faulted orders in which the credit card number is not 
provided or the credit type is not valid.

■ A throw activity that throws a fault for orders that are not approved.

■ An assign activity that takes the credit card type, credit card number, and purchase 
amount, and assigns this information to the input variable for the 
CreditCardAuthorizationService service.

■ An invoke activity that calls a CreditCardAuthorizationService service to 
retrieve customer information.

■ A switch activity that checks the results of the credit card validation.

Example 11–24 Scope Activity

<scope name="Scope_AuthorizeCreditCard">
    <variables>
        <variable name="lCreditCardInput"
            messageType="ns2:CreditAuthorizationRequestMessage"/>
        <variable name="lCreditCardOutput"
            messageType="ns2:CreditAuthorizationResponseMessage"/>



Using a Scope Activity to Manage a Group of Activities

11-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    </variables>
    <faultHandlers>
        <catch faultName="bpws:selectionFailure">
            <sequence>
                 <assign name="Assign_noCCNumber">
                     <copy>
                         <from expression="string('CreditCardCheck - NO
                             CreditCard')"/>
                         <to variable="gOrderProcessorFaultVariable"
                             part="code"/>
                     </copy>
                 </assign>
                 <throw name ="Throw_NoCreditCard"
                     faultVariable="gOrderProcessorFaultVariable"
                     faultName="ns9:OrderProcessingFault"/>
            </sequence>
        </catch>
        <catch faultName="ns2:InvalidCredit">
            <sequence>
                <assign name="Assign_InvalidCreditFault">
                    <copy>
                        <from expression="concat(bpws:getVariableData
                             ('gOrderInfoVariable','/ns4:orderInfoVOSDO/
                             ns4:CardTypeCode'), ' is not a valid 
                             creditcard type')"/>
                        <to variable="gOrderProcessorFaultVariable"
                            part="summary"/>
                    </copy>
                    <copy>
                        <from expression="string('CreditCardCheck - NOT VALID')"/>
                        <to variable="gOrderProcessorFaultVariable"
                            part="code"/>
                    </copy>
                </assign>
                <throw name="Throw_OrderProcessingFault"
                    faultName="ns9:OrderProcessingFault"
                    faultVariable="gOrderProcessorFaultVariable"/>
            </sequence>
        </catch>
    </faultHandlers>
    <sequence>
        <assign name="Assign_CreditCheckInput">
            <copy>
                <from variable="gOrderInfoVariable"
                    query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
                <to variable="lCreditCardInput" part="Authorization"
                    query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
            </copy>
            <copy>
                <from variable="gOrderInfoVariable"
                    query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
                        <to variable="lCreditCardInput" part="Authorization"
                             query="/ns8:AuthInformation/ns8:CCType"/>
            </copy>
            <copy>
                <from variable="gOrderInfoVariable"
                    query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
                <to variable="lCreditCardInput" part="Authorization"
                    query="/ns8:AuthInformation/ns8:CCNumber"/>
                    </copy>



Using a Scope Activity to Manage a Group of Activities

Using Fault Handling in a BPEL Process 11-33

        </assign>
        <invoke name="InvokeCheckCreditCard"
            inputVariable="lCreditCardInput"
            outputVariable="lCreditCardOutput"
            partnerLink="CreditCardAuthorizationService"
            portType="ns2:CreditAuthorizationPort"
            operation="AuthorizeCredit"/>
        <switch name="Switch_EvaluateCCResult">
            <case condition="bpws:getVariableData('lCreditCardOutput','status','
                /ns8:status') != 'APPROVED'">
                <bpelx:annotation>
                    <bpelx:pattern>status &lt;&gt; approved</bpelx:pattern>
                </bpelx:annotation>
                <throw name="Throw_Fault_CC_Denied"
                    faultName="client:OrderProcessorFault"/>
            </case>
        /switch>
    </sequence>
</scope>

11.10.4 What You May Need to Know About Scopes
Scopes can use a significant amount of CPU and memory and should not be overused. 
Sequence activities use less CPU and memory and can make large BPEL flows more 
readable.

11.10.5 How to Use a Fault Handler Within a Scope
If a fault is not handled, it creates a faulted state that migrates up through the 
application and can throw the entire process into a faulted state. To prevent this from 
occurring, place the parts of the process that have the potential to receive faults within 
a scope. The scope activity includes the following fault handling capabilities:

■ The catch activity works within a scope to catch faults and exceptions before they 
can throw the entire process into a faulted state. You can use specific fault names 
in the catch activity to respond in a specific way to an individual fault. 

■ The catchAll activity catches any faults that are not handled by name-specific 
catch activities.

Example 11–25 shows the syntax for catch and catchAll activities. Assume that a fault 
named x:foo is thrown. The first catch is selected if the fault carries no fault data. If 
there is fault data associated with the fault, the third catch is selected if the type of the 
fault's data matches the type of variable bar. Otherwise, the default catchAll handler 
is selected. Finally, a fault with a fault variable whose type matches the type of bar 
and whose name is not x:foo is processed by the second catch. All other faults are 
processed by the default catchAll handler.

Example 11–25 Catch and CatchAll Activities

<faulthandlers>
   <catch faultName="x:foo">
         <empty/>
      </catch>
   <catch faultVariable="bar">
         <empty/>
      </catch>
   <catch faultName="x:foo" faultVariable="bar">
         <empty/>
      </catch>



Using a Scope Activity to Manage a Group of Activities

11-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

   <catchAll>
         <empty/>
      </catchAll>
</faulthandlers>

11.10.6 How to Create a Catch Activity in a Scope

To create a catch activity in a scope:
1. In the expanded Scope activity, click Add Catch. Figure 11–9 provides details.

Figure 11–9 Add Catch

This creates a catch activity in the right side of the scope activity.

2. Double-click the Catch activity.

3. Optionally enter a name.

4. To the right of the Namespace URI field, click the Search icon to select the fault.

5. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field. 
Your fault selection also automatically displays in the Local Part field. 

Figure 11–10 provides an example of a Catch dialog. This example shows the 
selectionFailure catch activity of the Scope_AuthorizeCreditCard scope activity 
in the Fusion Order Demo application. This catch activity catches orders in which 
the credit card number is not provided.



Using a Scope Activity to Manage a Group of Activities

Using Fault Handling in a BPEL Process 11-35

Figure 11–10 Catch Dialog

6. Design additional fault handling functionality.

7. Click OK.

Figure 11–11 provides an example of two catch activities for the Scope_
AuthorizeCreditCard scope activity. The second catch activity catches credit types 
that are not valid.

Figure 11–11 Catch Activities in the Designer

11.10.7 What Happens When You Create a Catch Activity in a Scope
Example 11–26 shows the catch activity in the .bpel file after design completion. 
The selectionFailure catch activity catches orders in which the credit card 
number is not provided and the InvalidCredit catch activity catches credit types 
that are not valid.

Example 11–26 Catch Branch

<faultHandlers>
    <catch faultName="bpws:selectionFailure">
        <sequence>
            <assign name="Assign_noCCNumber">
                <copy>
                    <from expression="string('CreditCardCheck - NO CreditCard')"/>
                    <to variable="gOrderProcessorFaultVariable"
                        part="code"/>
                </copy>
            </assign>
            <throw name ="Throw_NoCreditCard"



Using a Scope Activity to Manage a Group of Activities

11-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

               faultVariable="gOrderProcessorFaultVariable"
               faultName="ns9:OrderProcessingFault"/>
    </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
    <sequence>
        <assign name="Assign_InvalidCreditFault">
           <copy>
              <from expression="concat(bpws:getVariableData
                 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/ns4:CardTypeCode'), '
                 is not a valid creditcard type')"/>
              <to variable="gOrderProcessorFaultVariable"
                 part="summary"/>
           </copy>
           <copy>
               <from expression="string('CreditCardCheck - NOT VALID')"/>
               <to variable="gOrderProcessorFaultVariable"
                   part="code"/>
           </copy>
        </assign>
        <throw name="Throw_OrderProcessingFault"
           faultName="ns9:OrderProcessingFault"
           faultVariable="gOrderProcessorFaultVariable"/>
    </sequence>
  </catch>
</faultHandlers>

11.10.8 How to Create an Empty Activity to Insert No-Op Instructions into a Business 
Process

There is often a need to use an activity that does nothing. An example is when a fault 
must be caught and suppressed. In this case, you can use the empty activity to insert a 
no-op instruction into a business process. 

To create an empty activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag an Empty activity into the designer.

3. Double-click the Empty activity.

The Empty dialog appears, as shown in Figure 11–12.



Re-executing Activities in a Scope Activity with the Replay Activity

Using Fault Handling in a BPEL Process 11-37

Figure 11–12 Empty Activity

4. Optionally enter a name.

5. Click OK.

11.10.9 What Happens When You Create an Empty Activity
The syntax for an empty activity is shown in Example 11–27.

Example 11–27 Empty Activity

 <empty standard-attributes>
    standard-elements
  </empty>

If no catch or catchAll is selected, the fault is not caught by the current scope and 
is rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown 
to) the global process scope, and there is no matching fault handler for the fault at the 
global level, the process terminates abnormally. This is as though a terminate activity 
(described in Section 11.13.1, "Stopping a Business Process Instance with the Terminate 
Activity in BPEL 1.1") had been performed.

11.11 Re-executing Activities in a Scope Activity with the Replay Activity
You can create a replay activity inside a scope activity to re-execute all of the activities 
inside the scope.

11.11.1 How to Create a Replay Activity

To create a replay activity:
1. In the Component Palette, expand Oracle Extensions.

2. Drag a Replay activity into the designer.

3. Double-click the Replay activity.

4. Enter an optional name.

5. Select the scope to re-execute, as shown in Figure 11–13.



Re-executing Activities in a Scope Activity with the Replay Activity

11-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 11–13 Replay Dialog

6. Click Apply, then click OK.

7. Continue with the design of your scope activity.

When complete, design of the scope activity can look similar to that shown in 
Figure 11–14. 

Figure 11–14 Replay Activity in a Scope Activity

11.11.2 What Happens When You Create a Replay Activity
Example 11–28 shows the .bpel file after design is complete for a replay activity in a 
BPEL project that supports BPEL version 2.0. In BPEL 2.0, the replay activity is 
wrapped in an extensionActivity element. 

Example 11–28 Replay Activity

<scope name="scope2">
     <sequence>
       <assign>



Using Compensation After Undoing a Series of Operations

Using Fault Handling in a BPEL Process 11-39

         <copy>
           <from>$counter2 + 1</from>
           <to>$counter2</to>
         </copy>
       </assign>
       <scope name="scope3">
         <sequence>
           <assign>
             <copy>
               <from>$counter + 1</from>
               <to>$counter</to>
             </copy>
           </assign>
           <if>
             <condition>$counter = 3</condition>
             <empty/>
             <else>
               <extensionActivity>
                 <bpelx:replay name="ReplayScope" scope="scope2"/>
               </extensionActivity>
             </else>
           </if>
         </sequence>
       </scope> 
     </sequence>
   </scope>

In BPEL 1.1, the replay activity is coded as a bpelx extension. 

<bpelx:replay name="ReplayScope" scope="Scope2"/>

11.12 Using Compensation After Undoing a Series of Operations
Compensation occurs when the BPEL process service component cannot complete a 
series of operations after some have completed, and the BPEL process service 
component must backtrack and undo the previously completed transactions. For 
example, if a BPEL process service component is designed to book a rental car, a hotel, 
and a flight, it may book the car and the hotel and then be unable to book a flight for 
the right day. In this case, the BPEL flow performs compensation by going back and 
unbooking the car and the hotel.

In a scope activity, the compensation handler can reverse previously completed 
process steps. The compensation handler can be invoked after successful completion 
of its associated scope with either of the following activities.

■ Compensate activity (in BPEL version 1.1 and 2.0 projects)

This activity causes the compensation handler of all successfully completed and 
not yet compensated child scopes to be executed in default order.

■ compensateScope activity (in a BPEL version 2.0 project)

This activity causes the compensation handler of one specific successfully 
completed scope to be executed.

11.12.1 Using a Compensate Activity
You can invoke a compensation handler by using the compensate activity, which 
names the scope for which the compensation is to be performed (that is, the scope 
whose compensation handler is to be invoked). A compensation handler for a scope is 



Using Compensation After Undoing a Series of Operations

11-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

available for invocation only when the scope completes normally. Invoking a 
compensation handler that has not been installed is equivalent to using the empty 
activity (it is a no-op). This ensures that fault handlers do not have to rely on state to 
determine which nested scopes have completed successfully. The semantics of a 
process in which an installed compensation handler is invoked multiple times are 
undefined.

The ability to explicitly invoke the compensate activity is the underpinning of the 
application-controlled error-handling framework of Business Process Execution 
Language for Web Services Specification. You can use this activity only in the following 
parts of a business process: 

■ In a fault handler of the scope that immediately encloses the scope for which 
compensation is to be performed.

■ In the compensation handler of the scope that immediately encloses the scope for 
which compensation is to be performed.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process service 
component invokes the instances of the compensation handlers in the successive 
iterations in reverse order.

If the compensation handler for a scope is absent, the default compensation handler 
invokes the compensation handlers for the immediately enclosed scopes in the reverse 
order of the completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity, 
explicitly invokes this default behavior. This is useful when an enclosing fault or 
compensation handler must perform additional work, such as updating variables or 
sending external notifications, in addition to performing default compensation for 
inner scopes. The compensate activity in a fault or compensation handler attached to 
the outer scope invokes the default order of compensation handlers for completed 
scopes directly nested within the outer scope. You can mix this activity with any other 
user-specified behavior except for the explicit invocation of the nested scope within 
the outer scope. Explicitly invoking compensation for such a scope nested within the 
outer scope disables the availability of default-order compensation.

11.12.2 How to Create a Compensate Activity

To create a compensate activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Compensate activity into the designer

3. Double-click the Compensate activity.

4. Select a scope activity in which to invoke the compensation handler, as shown in 
Figure 11–15.



Using Compensation After Undoing a Series of Operations

Using Fault Handling in a BPEL Process 11-41

Figure 11–15 Compensate Activity

5. Click Apply, then OK.

11.12.3 What Happens When You Create a compensate Activity
If an invoke activity has a compensation handler defined inline, then the name of the 
activity is the name of the scope to be used in the compensate activity. The syntax is 
shown in Example 11–29:

Example 11–29 Compensation Handler

<compensate scope="ncname"? standard-attributes>
    standard-elements
  </compensate>

11.12.4 Using a compensateScope Activity in BPEL 2.0
The compensateScope activity is used to start compensation on a specified inner scope 
that has already completed successfully. This activity must only be used from within a 
fault handler, another compensation handler, or a termination handler.

When you create a compensateScope activity, you select a target that must refer to the 
immediately-enclosed scope. The scope must include a fault handler or compensation 
handler. 

11.12.5 How to Create a compensateScope Activity

To create a compensateScope activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a CompensateScope activity into the designer

3. Double-click the CompensateScope activity.

Note: This activity is supported in BPEL 2.0 projects.



Stopping a Business Process Instance

11-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Select a specific scope activity in which to invoke the compensation handler. 
Figure 11–16 provides details.

Figure 11–16 CompensateScope Activity

5. Click Apply, then OK.

11.12.6 What Happens When You Create a compensateScope Activity
Example 11–30 shows the .bpel file after design is complete for a compensateScope 
activity. The compensateScope activity is defined in a catchall fault handler. The scope 
in which to invoke the compensation handler is defined.

Example 11–30 compensateScope Activity

<scope name="ScopeAssignCreditRating">
   <faultHandlers>
      <catchAll>
         <compensateScope target="ScopeAssignScreditRating2" />
      </catchAll>
   </faultHandlers>
   <sequence>
      <scope name="ScopeAssignScreditRating2">
         <compensationHandler>
            <!-- undo work -->
         </compensationHandler>
         <!-- do some work -->
      </scope>
      <!-- do more work -->
      <!-- a fault is thrown here; results of ScopeAssignScreditRating2 must be 
undone -->
   </sequence>
</scope>

11.13 Stopping a Business Process Instance
You can stop a business process instance with either of the following activities: 

■ Terminate activity (in a BPEL version 1.1 project)



Stopping a Business Process Instance

Using Fault Handling in a BPEL Process 11-43

■ Exit activity (in a BPEL version 2.0 project)

11.13.1 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1
The terminate activity immediately terminates the behavior of a business process 
instance within which the terminate activity is performed. All currently running 
activities must be terminated as soon as possible without any fault handling or 
compensation behavior. The terminate activity does not send any notifications of the 
status of a BPEL process service component. If you are going to use the terminate 
activity, first program notifications to the interested parties.

11.13.1.1 How to Create a Terminate Activity

To create a terminate activity:
1. In the Component Palette in Oracle JDeveloper, expand BPEL Constructs.

2. Drag a Terminate activity into the designer. Figure 11–17 provides an example.

Figure 11–17 Terminate Activity

3. Double-click the terminate activity.

4. Optionally enter a name.

5. Click OK.

11.13.1.2 What Happens When You Create a Terminate Activity
The syntax for the terminate activity is shown in Example 11–31. This stops the 
business process instance.

Example 11–31 Terminate Activity

<terminate standard-attributes>
    standard-elements
</terminate>

11.13.2 Immediately Ending a Business Process Instance with the Exit Activity in BPEL 
2.0

You can use the exit activity to immediately end all currently running activities on all 
parallel branches without involving any termination handling, fault handling, or 
compensation handling mechanisms. This activity is useful for environments in which 
there may not be a reasonable way for dealing with unexpected, severe failures.

Note: Any open conversations are also impacted by the exit activity. 
For example, other partners interacting with the process may wait for 
a response that never arrives.



Stopping a Business Process Instance

11-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

11.13.2.1 How to Create an Exit Activity

To create an exit activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag an Exit activity into the section of your BPEL process in which you want to 
execute the exit activity.

3. Double-click the Exit activity, as shown in Figure 11–18.

Figure 11–18 Exit Activity

4. Optionally enter a name.

5. Click Apply, then OK.

When complete, the exit activity in a BPEL process appears similar to that shown 
in Figure 11–19.

Figure 11–19 Exit Activity in a BPEL Process

11.13.2.2 What Happens When You Create an Exit Activity
Example 11–32 shows the .bpel file after design is complete for an exit activity.



Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 11-45

Example 11–32 Exit Activity

<sequence>
    <!-- receive input from requestor -->
    <receive name="receiveInput" partnerLink="client" portType="tns:Test"
        operation="process" variable="input" createInstance="yes"/>
    <assign>
      <copy>
        <from>$input.payload</from>
        <to>$output.payload</to>
      </copy>
    </assign>
    <!-- respond output to requestor -->
    <reply name="replyOutput" partnerLink="client"
       portType="tns:Test" operation="process" variable="output"/>
    <exit/>
  </sequence>

11.14 Throwing Faults with Assertion Conditions
You can specify an assertion condition that is executed upon receipt of a callback 
message in request-response invoke activities, receive activities, reply activities, and 
onMessage branches of pick and scope activities. The assertion specifies an XPath 
expression that, when evaluated to false, causes a BPEL fault to be thrown from the 
activity. This condition provides an alternative to creating a potentially large number 
of switch, assign, and throw activities after a partner callback.

The assertion condition is specified as a nested extension element. Example 11–33 
provides details.

Example 11–33 Assertion Condition

<invoke | receive | onMessage>
    standard-elements
    <bpelx:postAssert name="ncname"? expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/> *
</invoke | receive | onMessage>

The bpelx:postAssert extension specifies the XPath expression to evaluate upon 
receipt of a callback message from a partner. If the assertion expression returns a false 
boolean value, the specified fault is thrown from the activity. If the assertion 
expression returns a true boolean value, no fault is thrown and the activities following 
the invoke activity, receive activity, or the onMessage branch of pick and scope 
activities are executed as in a normal BPEL process flow.

The bpelx:preAssert or bpelx:postAssert extension is similar to the Java 
assert statement. In Java, if the assert expression does not evaluate to true, an 
error is reported by the JVM. Similarly, the expression in the bpelx:preAssert or 
bpelx:postAssert extension must evaluate to true; otherwise, the specified fault is 
thrown.

For example, with the invoke activity shown in Example 11–34, if the XPath expression 
specified in the assertion condition returns false, the NegativeCredit fault is 
thrown.

Note: The assertion condition is only available in BPEL projects that 
support BPEL version 1.1



Throwing Faults with Assertion Conditions

11-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 11–34 Invoke Activity

<scope>
    <faultHandlers>
        <catch faultName="services:NegativeCredit" faultVariable="crError">
            <empty/>
        </catch>
    </faultHandlers>
    <sequence>
        <invoke name="invokeCR" partnerLink="creditRatingService"
                portType="services:CreditRatingService" operation="process"
                inputVariable="crInput" outputVariable="crOutput">
            <bpelx:postAssert name="negativeCredit"
 expression="$crOutput.payload/tns:rating > 0"
                          faultName="services:NegativeCredit" message="'Negative
 Credit'" />
        </invoke>
    </sequence>
</scope>

The optional name attribute for bpelx:preAssert or bpelx:postAssert is used 
while creating the audit trail event message. The name in this instance enables you to 
identify the assertion element in case multiple assertions are specified. If no name 
attribute is specified, the line number of the assertion element in the BPEL file may be 
used.

11.14.1 bpelx:postAssert and bpelx:preAssert Extensions
Depending upon the activity, you can specify when to execute a condition by clicking 
the Add icon in the Assertions tab of invoke, receive, reply, and onMessage branches 
of pick and scope activities, and selecting either Pre Assert or Post Assert. Based on 
your selection, the following bpelx extensions are used:

■ bpelx:preAssert: If you select Pre Assert, the condition is executed before the 
invoke or reply activity send out the outbound message. 

■ bpelx:postAssert: If you select Post Assert, the condition is executed after an 
invoke activity, receive activity, or onMessage branch receives the inbound 
message.

Example 11–35 shows multiple bpelx:postAssert extensions in a receive activity:

Example 11–35 bpelx:postAssert Extension in a Receive Activity

       <receive name="Receive_1" createInstance="no"
            variable="Receive_1_processResponse_InputVariable"
            partnerLink="AsyncBPELService"
            portType="ns1:AsyncBPELServiceCallback"
            bpelx:for="'PT10S'"
            operation="processResponse">
         <bpelx:postAssert name="assert1" expression="true()" message="'assert
 true failed'" faultName="client:fault1"/>
         <bpelx:postAssert name="assert2" expression="false()" message="'assert
 false failed'" faultName="client:fault2"/>
       </receive> 

Example 11–36 shows multiple bpelx:preAssert extensions in an invoke activity:

Example 11–36 bpelx:preAssert Extension in a Invoke Activity

<invoke name="Invoke_1" inputVariable="Invoke_1_process_InputVariable"



Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 11-47

           outputVariable="Receive_1_processResponse_InputVariable"
           partnerLink="SyncBPELService" portType="ns1:SyncBPELService"
           operation="process">
         <bpelx:preAssert name="assert1" expression="true()" message="'assert true
 failed'"/>
         <bpelx:preAssert name="assert2"
 expression="bpws:getVariableData('counter') = 3" message="concat('The value of
 counter is ', $counter)"/> 

For information on using the Assertions tab, see Section 11.14.8, "How to Create 
Assertion Conditions."

11.14.2 Use of faultName and message Attributes 
You can specify the faultName and message attributes of the bpelx:postAssert 
element, as shown in Example 11–37. 

Example 11–37 faultName and message Attributes

<invoke | receive | onMessage>
    standard-elements
    <bpelx:postAssert name="ncname"? expression="boolean-expr" faultName="QName"+
 message="generic-expr"+/> *
</invoke | receive | onMessage>

If you do not specify the faultName attribute, the fault defaults to 
bpelx:postAssertFailure. If the message attribute is not specified, the message 
value defaults to the name of the activity.

<bpelx:postAssert expression="boolean-expr" />

The specified fault is thrown whenever the assertion condition evaluates to false. 
Analysis is performed on the faultName QName to ensure that it properly resolves to 
a fault that has been defined in the partner WSDL portType. The message expression 
is a general expression that can evaluate to any XPath value type (string, number, or 
boolean). If a nonstring value is returned, the string equivalent of the value is used.

11.14.3 Multiple Assertions
You can nest multiple assertions in receive activities, invoke activities, and the 
onMessage branch of pick and scope activities, with evaluation of the assertions 
continuing in the order in which they were declared until an expression evaluates to 
false. Example 11–38 provides details.

Example 11–38 Nesting Multiple Assertions

<invoke name="invokeCR" partnerLink="creditRatingService"
        portType="services:CreditRatingService" operation="process"
        inputVariable="crInput" outputVariable="crOutput">
    <bpelx:postAssert name="negativeCredit" 
expression="$crOutput.payload/tns:rating >
 0"
                  faultName="services:NegativeCredit" message="'Negative Credit'"
 />
    <bpelx:postAssert name="insufficientCredit"
 expression="$crOutput.payload/tns:rating > 600"
                  faultName="services:InsufficientCredit" message="'Insufficient
 Credit'" />
</invoke>



Throwing Faults with Assertion Conditions

11-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

In Example 11–38, the assertion with the expression that checks that the response 
credit rating is greater than zero is evaluated first. Table 11–4 describes the assertion 
behavior.

Any number of assertions can be nested. For no fault to be thrown from the activity, all 
assertions specified must evaluate to true.

This construct enables you to apply multiple levels of validation on an incoming 
payload, similar to if...else if...else statements in Java.

To enable a fault to always be thrown regardless of validation logic, the assertion 
expression can be specified as false(). This is similar to the else construct in Java.

11.14.4 Use of Built-in and Custom XPath Functions and $variable References 
You can also use built-in and custom XPath functions and $variable references 
within the assertion condition. Example 11–39 provides several examples.

Example 11–39 Built-in and Custom XPath Functions

<bpelx:postAssert expression="bpws:getVariableData( 'crOutput', 'payload',
 '/tns:rating' ) > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a 
BPEL fault and thrown from the activity.

Faults that are thrown from a request-response invoke activity, receive activity, or 
onMessage branch of a pick or scope activity because of a failed assertion evaluation 
can be caught and handled by BPEL's fault policy framework. The fault policy 
framework enables you to specify the action to take whenever a fault (business or 
system) is thrown from an invoke activity. For example:

■ Retry of the invocation with exponential backoff

■ Execution of custom Java classes

■ Replay of the immediate scope containing the invoke activity

■ Review of the activity by an administrator and the permitting of manual editing of 
variables

Faults that are not caught and handled within a BPEL process flow are thrown from a 
BPEL component if the component WSDL declares the fault on the operation. If the 

Table 11–4 Assertion Behavior

If The Credit Rating For The 
Returned Response Is... Then...

Less than zero The services:NegativeCredit fault is thrown.

Greater than or equal to zero The assertion is correct and the second assertion is evaluated.

Less than 600 The services:InsufficientCredit fault is thrown.

Greater than or equal to 600 The assertion is correct and no fault is thrown from the invoke 
activity.



Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 11-49

fault is not declared on the operation, the fault is converted into a 
FabricInvocationException, which is a runtime fault. This fault can be caught 
by any caller components (including BPEL components), but the fault type is no longer 
the one originally thrown (however, the fault message string still retains traces of the 
original fault message).

For more information about fault policies, see Section 11.4, "Using the Fault 
Management Framework."

11.14.5 Assertion Condition Evaluation Logging of Events to the Instance Audit Trail
Each assertion condition that is evaluated causes an event to be logged to the instance 
audit trail. The event indicates whether the assertion passed or failed (for failure, the 
fault name and message are printed). The event also includes the name attribute 
specified in the assertion element; if no name attribute is provided, the line number of 
the assertion element in the BPEL process flow is used. The assertion condition printed 
in the audit event helps identify the assertion and better enables debugging of the 
flow.

11.14.6  Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault
If the assertion condition XPath expression does not evaluate to an XML schema 
boolean type, a bpelx:postAssertFailure fault is thrown from the activity. An 
event in the instance audit trail is also logged indicating the error. Example 11–40 
provides details.

Example 11–40 Throwing a bpelx:assertFailure Fault

<bpelx:postAssert expression="bpws:getVariableData( 'crOutput', 'payload',
 '/tns:rating' ) > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.org/2005/xpath-functions'
 expression="fn:false()" ... />

Analysis of the assertion expression is performed by the BPEL compiler and errors are 
reported if an expression does not evaluate to an XML schema boolean type. For 
custom XPath functions, this type of analysis is not performed.

11.14.7 Assertion Conditions in a Standalone Assert Activity
You can also create assertion conditions in a standalone assert activity in BPEL 1.1. The 
assertion specifies an XPath expression that, when evaluated to false, causes a BPEL 
fault to be thrown from the activity.

The bpelx:assert extension implements assertions in the standalone assert activity:

<bpelx:assert name="Assert1" expression="string" message="string"/>

For information on using the standalone assert activity, see Section 11.14.8, "How to 
Create Assertion Conditions."

11.14.8 How to Create Assertion Conditions
You can create assertion conditions in the following activities:

■ In invoke activities, receive activities, reply activities, and OnMessage branches



Throwing Faults with Assertion Conditions

11-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ In standalone assert activities

To create assertion conditions in invoke activities, receive activities, reply 
activities, and OnMessage branches:
1. In the SOA Composite Editor, double-click the version 1.1 BPEL process service 

component.

2. In the Component Palette, expand BPEL Constructs.

3. Drag a Receive activity, Invoke activity, Pick activity, or Scope activity into the 
designer.

4. Expand the Receive, Invoke, or onMessage branch of the Pick or Scope activity. 

5. Click the Assertions tab.

6. Click the Add icon.

7. Select when to execute the condition.

■ Pre Assert: If selected, the condition is executed before the invoke or reply 
activity send out the outbound message.

■ Post Assert: If selected, the condition is executed after an invoke activity, 
receive activity, or onMessage branch receives the inbound message.

Based on your selection, the Pre Assert or Post Assert dialog is displayed. 

8. Specify values for the assertion condition, as shown in Figure 11–20. For this 
example, Post Assert was selected for an assertion condition on a receive activity.

a. Select the Fault QName to be thrown by clicking the Search icon and selecting 
an existing fault from the Fault Chooser dialog. You can also provide your 
own values for the Namespace URI and Local Part fields of the fault. If you 
do not specify anything for the Fault QName, then a 
bpelx:assertFailure fault is thrown.

Figure 11–20 Assertion Condition Values

9. When complete, click OK to return to the Assertions tab of the activity. The 
completed assertion condition is displayed, as shown in Figure 11–21.



Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 11-51

Figure 11–21 Assertions Tab with Data

10. Click Apply, then OK.

To create an assertion condition in standalone assert activities:
1. In the SOA Composite Editor, double-click the version 1.1 BPEL process service 

component.

2. In the Component Palette, expand BPEL Constructs.

3. Drag an Assert activity into the designer.

4. Expand the Assert activity. 

5. To the right of the Expression field, click the XPath Expression Builder icon.

6. Create an expression.

7. When complete, click OK.

The Assert dialog looks as shown in Figure 11–22.



Throwing Faults with Assertion Conditions

11-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 11–22 Assert Dialog

8. Click Apply, then OK.

11.14.9 How to Disable Assertions
You can disable assertions in either of two ways:

■ By setting the System MBean Browser property DisableAsserts to true in Oracle 
Enterprise Manager Fusion Middleware Control Console.

■ By setting bpel.config.disableAsserts to true in the composite.xml file 
of the SOA composite application, as shown in Example 11–41. 

Example 11–41 Disable Assertions

  <component name="AsyncBPELClient">
    <implementation.bpel src="AsyncBPELClient.bpel"/>
    <property name="bpel.config.disableAsserts">true</property>
  </component>

For more information about setting System MBean Browser properties, see Oracle 
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

11.14.10 What Happens When You Create Assertion Conditions
The code segment in the .bpel file defines the specific operation after design 
completion. 

For Example 11–42, the bpelx:assert condition in the invoke activity, when 
evaluated to false (for example, a credit rating of 0 is submitted), returns a Negative 
Credit message. If the condition evaluates to true, no fault is thrown from the invoke 
activity and the remaining activities in the BPEL process flow are executed normally.

Example 11–42 Assertion Condition in an Invoke Activity

<invoke name="callbackClient" partnerLink="internalwarehouseservice_client"
 portType="client:InternalWarehouseServiceCallback" operation="processResponse"
 inputVariable="outputVariable">
           <bpelx:assert name="negativeCredit"
                         expression="$crOutput.payload/tns:rating > 0"



Throwing Faults with Assertion Conditions

Using Fault Handling in a BPEL Process 11-53

                         message="Negative Credit"/>
</invoke>

In Example 11–43, the bpelx:assert condition in the standalone assert activity, 
when evaluated to false, returns a got assertion failure on true 
expression message. If the condition evaluates to true, no fault is thrown from the 
assert activity and the remaining activities in the BPEL process flow are executed 
normally.

Example 11–43 Assertion Condition in a Standalone Assert Activity

<bpelx:assert expression="true()bpws:getLinkStatus()" message="'got assertion
failure on true expression'" 



Throwing Faults with Assertion Conditions

11-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



12

Transaction and Fault Propagation Semantics in BPEL Processes 12-1

12Transaction and Fault Propagation
Semantics in BPEL Processes

This chapter describes transaction and fault propagation semantics in Oracle BPEL 
Process Manager.

This chapter includes the following sections:

■ Section 12.1, "Introduction to Transaction Semantics"

■ Section 12.2, "Introduction to Execution of One-way Invocations"

12.1 Introduction to Transaction Semantics
Transaction semantics in release 11g enable you to use the underlying Java Transaction 
API (JTA) infrastructure used in the execution of components. This section describes 
transaction semantics for Oracle BPEL Process Manager

12.1.1 Oracle BPEL Process Manager Transaction Semantics
As with previous releases, Oracle BPEL Process Manager by default creates a new 
transaction on a request basis. That is, if a transaction exists, it is suspended, and a 
new transaction is created. Upon completion of the child (new) transaction, the master 
(suspended) transaction resumes. 

However, if the request is asynchronous (that is, one-way), the transaction is either:

■ Inherited for insertion into the dehydration store (table dlv_message).

■ Enlisted transparently into the transaction (if one exists). 

There is no message loss. Either the invocation message is inserted into the 
dehydration store for processing or the consumer is notified through a fault.

In release 10.1.3.x, there were several properties to set on the consuming process (that 
is, on the partner link) and the providing process. This enabled you to chain an 
execution into a single global transaction. On the consuming side, you set 
transaction=participate on the partner link binding in the bpel.xml file. On 
the providing side, you set transaction=participate in the 
<configurations> section of bpel.xml.

In release 11g, you only must set a new transaction property on the BPEL 
component being called (known as the callee process). You add 
bpel.config.transaction into a BPEL process service component section in the 
composite.xml file (note the required prefix of bpel.config.). This property 
configures the transaction behavior for BPEL instances with initiating calls. 



Introduction to Transaction Semantics

12-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 12–1 provides details.

Example 12–1 Setting a New Transaction

<component name="InternalWarehouseService">
    <implementation.bpel src="InternalWarehouseService.bpel"/>
    <property name="bpel.config.transaction" 
         many="false" type="xs:string">required | requiresNew</property>
  </component>

There are two possible values: required and requiresNew. Table 12–1 describes 
these values and summarizes the behavior of the BPEL instance based on the settings.

For additional information about setting the bpel.config.transaction property, 
see Section C.1.1, "How to Define Deployment Descriptor Properties."

The following sections describe the transaction and fault behavior of setting 
bpel.config.transaction to either required or requiresNew.

12.1.1.1 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to 
requiresNew
In Table 12–2, the BPELCaller process calls the BPELCallee process. The BPELCallee 
process has the property bpel.config.transaction set to requiresNew. 
Table 12–2 describes fault propagation and transaction behavior when 
bpel.config.transaction is set to this value.

Table 12–1 bpel.config.transaction Property Behavior

For...
With bpel.config.transaction 
Set to required...

With bpel.config.transaction 
Set to requiresNew...

Request/response 
(initiating) invocations

The caller’s transaction is 
joined (if there is one) or a new 
transaction is created (if there 
is not one). 

A new transaction is always 
created and an existing 
transaction (if there is one) is 
suspended.

One-way initiating 
invocations in which 
bpel.config.oneWayDel
iveryPolicy is set to 
sync.

Invoked messages are 
processed using the same 
thread in the same transaction.

A new transaction is always 
created and an existing 
transaction (if there is one) is 
suspended.

Note: The bpel.config.transaction property does not apply 
for midprocess receive activities. In those cases, another thread in 
another transaction is used to process the message. This is because 
correlation is needed and it is always done asynchronously.

Table 12–2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to 
requiresNew

If The BPELCallee...
Then The BPELCallee 
Transaction... And The BPELCaller...

Replies with a fault (that is, it uses 
<reply>).

Is saved. Gets the fault and can catch 
it.

Throws a fault that is not handled 
(that is, it uses <throw>).

Is rolled back. Gets the fault and can catch 
it.



Introduction to Transaction Semantics

Transaction and Fault Propagation Semantics in BPEL Processes 12-3

12.1.1.2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to 
required
In Table 12–3, the BPELCaller process calls the BPELCallee process. The BPELCallee 
process has the property bpel.config.transaction set to required. Table 12–3 
describes fault propagation and transaction behavior when 
bpel.config.transaction is set to this value.

As an example, assume you create two synchronous processes (BPELMaster and 
BPELChild) that each use the same database adapter reference to insert the same 
record (and therefore, causes a permission key (PK) violation). The 
xADatasourceName is set for both.

Without bpel.config.transaction set, after the fault occurs, and it is not 
handled, BPELChild is rolled back. If BPELMaster has a catch block, its transaction is 
committed. Therefore, you end up with the record from BPELMaster in the database.

If you do not catch the fault in BPELMaster as well, you get a second rollback 
(however, in two different transactions). 

If bpel.config.transaction is set to required for the same test case and no 
fault handlers are in place, the entire transaction is rolled back based on BPELMaster's 
unhandled fault. 

If you add a fault handler in BPELMaster to catch the fault from BPELChild and throw 
a rollback fault, the transaction is globally rolled back. 

This feature enables you to control transaction boundaries and model end-to-end 
transactional flows (if your sources and targets are also transactional).

Replies back with a fault (FaultOne), 
and then throws a fault (FaultTwo).

Is rolled back. Gets FaultTwo.

Throws a bpelx:rollback fault 
(that is, it uses <throw>).

Is rolled back. Gets a remote fault.

Table 12–3 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to 
required

If The BPELCallee... Then The BPELCaller...

Replies with a fault (that is, it uses 
<reply>). 

Gets the fault and can catch it. The BPELCaller owns 
the transaction. Therefore, if it catches it, the 
transaction is committed. If the BPELCaller does not 
handle it, a global rollback occurs.

Throws a fault (that is, it uses 
<throw>).

Gets the fault and can catch it.

Replies back with a fault (FaultOne), 
and then throws a fault (FaultTwo). 

Gets FaultTwo.

Throws (that is, it uses <throw>) a 
bpelx:rollback fault. 

Gets its transaction rolled back; there is no way to 
catch it. This fault cannot be handled.

Table 12–2 (Cont.) BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to 
requiresNew

If The BPELCallee...
Then The BPELCallee 
Transaction... And The BPELCaller...



Introduction to Execution of One-way Invocations

12-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

12.2 Introduction to Execution of One-way Invocations
A one-way invocation (with a possible callback) is typically exposed in a WSDL as 
shown in Example 12–2.

Example 12–2 WSDL Exposure

<wsdl:operation name="process">
        <wsdl:input message="client:OrderProcessorRequestMessage"/>
    </wsdl:operation>

This causes the BPEL process service engine to split the execution into two parts: 

■ For the first part, and always inside the caller transaction, the insertion into the 
dlv_message table of the dehydration store occurs (in release 10.1.3.x, it was 
inserted into the inv_message table).

■ For the second part, the transaction and the new thread executes the work items, 
and a new instance is created.

This has several advantages in terms of scalability, because the service engine’s thread 
pool (invoker threads) executes when a thread is available. However, the disadvantage 
is that there is no guarantee that it executes immediately. 

If you require a synchronous-type call based on a one-way operation, then you can use 
the onewayDeliveryPolicy property, which is similar to the 
deliveryPersistPolicy property of release 10.1.3.x. 

Specify bpel.config.oneWayDeliveryPolicy in the BPEL process service 
component section of the composite.xml file. If this value is not set in 
composite.xml, the value for oneWayDeliveryPolicy in the System MBean 
Browser in Oracle Enterprise Manager Fusion Middleware Control Console is used. 
The following values are possible.

■ async.persist: Messages are persisted in the database hash map.

■ sync.cache: Messages are stored in memory.

■ sync: Direct invocation occurs on the same thread.

For more information about setting the bpel.config.oneWayDeliveryPolicy 
property, see Section C.1.1, "How to Define Deployment Descriptor Properties."

Table 12–4 describes the behavior when the main process calls the subprocess 
asynchronously. Table 12–4 is based on the use cases described in Section 12.1.1.1, 
"BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew" 
and Section 12.1.1.2, "BPELCaller Calls BPELCallee That Has bpel.config.transaction 
Set to required."

Table 12–4 Main Process Calls the Subprocess Asynchronously

If...
If The Subprocess Throws 
Any Fault...

If The Subprocess Throws 
a bpelx:rollback...

onewayDeliveryPolicy=async
.persist 

(The BPELCallee process runs in a 
separate thread/transaction.)

The BPELCaller does not 
get a response because the 
message is saved in the 
delivery service. The 
BPELCallee transaction is 
rolled back if the fault is not 
handled. 

The BPELCaller does not 
get a response because the 
message is saved in the 
delivery service. The 
BPELCallee instance is 
rolled back on the 
unhandled fault.



Introduction to Execution of One-way Invocations

Transaction and Fault Propagation Semantics in BPEL Processes 12-5

onewayDeliveryPolicy=sync 

and

 transaction=requiresNew 

(The BPELCallee runs in the same 
thread, but a different transaction.)

The BPELCaller receives a 
FabricInvocationExce
ption. The BPELCallee 
transaction rolls back if the 
fault is not handled. 

The BPELCaller receives a 
FabricInvocationExce
ption. The BPELCallee 
transaction is rolled back.

onewayDeliveryPolicy=sync 

and 

transaction=required 

(The BPELCallee runs in the same 
thread and the same transaction.)

The BPELCallee faulted. 
The BPELCaller receives a 
FabricInvocationExce
ption. The BPELCaller has 
a chance to handle the fault. 

The whole transaction is 
rolled back. 

Table 12–4 (Cont.) Main Process Calls the Subprocess Asynchronously

If...
If The Subprocess Throws 
Any Fault...

If The Subprocess Throws 
a bpelx:rollback...



Introduction to Execution of One-way Invocations

12-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



13

Incorporating Java and Java EE Code in a BPEL Process 13-1

13 Incorporating Java and Java EE Code in a
BPEL Process

This chapter describes how to incorporate sections of Java code into BPEL process 
service components in SOA composite applications.

This chapter includes the following sections:

■ Section 13.1, "Introduction to Java and Java EE Code in BPEL Processes"

■ Section 13.2, "Incorporating Java and Java EE Code in BPEL Processes"

■ Section 13.3, "Adding Custom Classes and JAR Files"

■ Section 13.4, "Using Java Embedding in a BPEL Process in Oracle JDeveloper"

■ Section 13.5, "Embedding Service Data Objects with bpelx:exec"

■ Section 13.6, "Sharing a Custom Implementation of a Class with Oracle BPEL 
Process Manager"

13.1 Introduction to Java and Java EE Code in BPEL Processes
This chapter explains how to incorporate sections of Java code into a BPEL process. 
This is particularly useful when there is Enterprise JavaBeans Java code that can 
perform the necessary function, and you want to use the existing code rather than start 
over with BPEL.

13.2 Incorporating Java and Java EE Code in BPEL Processes
There are several methods for incorporating Java and Java EE code in BPEL processes:

■ Wrap as a Simple Object Access Protocol (SOAP) service

■ Embed Java code snippets into a BPEL process with the bpelx:exec tag

■ Use an XML facade to simplify DOM manipulation

■ Use bpelx:exec built-in methods

■ Use Java code wrapped in a service interface

13.2.1 How to Wrap Java Code as a SOAP Service
You can wrap the Java code as a SOAP service. This method requires that the Java 
application have a BPEL-compatible interface. A Java application wrapped as a SOAP 
service appears as any other web service, which can be used by many different kinds 
of applications. There are also tools available for writing SOAP wrappers. 



Incorporating Java and Java EE Code in BPEL Processes

13-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service
A Java application wrapped as a SOAP service has the following drawbacks:

■ There may be reduced performance due to the nature of converting between Java 
and SOAP, and back and forth.

■ Since SOAP inherently has no support for transactions, this method loses atomic 
transactionality, that is, the ability to perform several operations in an all-or-none 
mode (such as debiting one bank account while crediting another, where either 
both transactions must be completed, or neither of them).

13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
You can embed Java code snippets directly into the BPEL process using the Java BPEL 
exec extension bpelx:exec. The benefits of this approach are speed and 
transactionality. It is recommended that you incorporate only small segments of code. 
BPEL is about separation of business logic from implementation. If you remove a lot of 
Java code in your process, you lose that separation. Java embedding is recommended 
for short utility-like operations, rather than business code. Place the business logic 
elsewhere and call it from BPEL.

The server executes any snippet of Java code contained within a bpelx:exec activity, 
within its Java Transaction API (JTA) transaction context.

The BPEL tag bpelx:exec converts Java exceptions into BPEL faults and then adds 
them into the BPEL process.

The Java snippet can propagate its JTA transaction to session and entity beans that it 
calls. 

For example, a SessionBeanSample.bpel file uses the bpelx:exec tag shown in 
Example 13–1 to embed the invokeSessionBean Java bean:

Example 13–1 bpelx:exec Extension

 <bpelx:exec name="invokeSessionBean" language="java" version="1.5">
    <![CDATA[
        try {
            Object homeObj = lookup("ejb/session/CreditRating");
            Class cls = Class.forName(
                "com.otn.samples.sessionbean.CreditRatingServiceHome");
            CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
                        PortableRemoteObject.narrow(homeObj,cls);
            if (ratingHome == null) {
                addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
                                   + ". Ensure that the bean has been"
                                   + " successfully deployed");
                return;
            }
            CreditRatingService ratingService = ratingHome.create();
 
            // Retrieve ssn from scope
            Element ssn =
                (Element)getVariableData("input","payload","/ssn");
 
            int rating = ratingService.getRating( ssn.getNodeValue() );
            addAuditTrailEntry("Rating is: " + rating);
 
            setVariableData("output", "payload",
                "/tns:rating", new Integer(rating));



Incorporating Java and Java EE Code in BPEL Processes

Incorporating Java and Java EE Code in a BPEL Process 13-3

        } catch (NamingException ne) {
            addAuditTrailEntry(ne);
        } catch (ClassNotFoundException cnfe) {
            addAuditTrailEntry(cnfe);
        } catch (CreateException ce) {
            addAuditTrailEntry(ce);
        } catch (RemoteException re) {
            addAuditTrailEntry(re);
        }
    ]]>
    </bpelx:exec>

13.2.4 How to Embed Java Code Snippets in a BPEL Process in BPEL 2.0
The examples in this chapter focus primarily on how to embed Java code snippets 
with the bpelx:exec extension. For BPEL projects that support version 2.0 of the 
BPEL specification, the syntax is slightly different. The bpelx:exec extension and 
Java code are wrapped in an <extensionActivity> element. Example 13–2 
provides details.

Example 13–2 bpelx:exec Extension in BPEL 2.0

<extensionActivity>
  <bpelx:exec language="java">
  <![CDATA[
    java code
  ]]>
  </bpelx:exec>
</extensionActivity>

When you drag a Java Embedding activity into a BPEL process in Oracle BPEL 
Designer, the <extensionActivity> element and bpelx:exec tag are 
automatically added. 

Example 13–3 shows the import syntax for BPEL 2.0:

Example 13–3 Import Syntax in BPEL 2.0

<import location="class/package name"
 importType="http://schemas.oracle.com/bpel/extension/java"/>

Example 13–4 shows a BPEL file with two Java embedding activities for a project that 
supports BPEL version 2.0.

Example 13–4 Java Embedding Activities in a BPEL File for Version 2.0

<process name="Test" targetNamespace="http://samples.otn.com/bpel2.0/ch10.9"
     . . .
     . . .
 <import location="oracle.xml.parser.v2.XMLElement"
     importType="http://schemas.oracle.com/bpel/extension/java"/>
. . . 
 <sequence>   
 . . .
<extensionActivity>
     <bpelx:exec language="java">
         XMLElement elem = (XMLElement) getVariableData("output", "payload");
         elem.setTextContent("set by java exec");
     </bpelx:exec>
   </extensionActivity>



Incorporating Java and Java EE Code in BPEL Processes

13-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

   <extensionActivity>
     <bpelx:exec language="java">
         <![CDATA[XMLElement elem = (XMLElement) getVariableData("output",
          "payload");
         String t = elem.getTextContent();
         elem.setTextContent(t + ", set by java exec 2");]]>
     </bpelx:exec>
   </extensionActivity>
  . . .
 </sequence>
</process>

For information on using this activity, see Section 13.4, "Using Java Embedding in a 
BPEL Process in Oracle JDeveloper."

13.2.5 How to Use an XML Facade to Simplify DOM Manipulation
You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process 
Manager provides a lightweight Java Architecture for XML Binding (JAXB)-like Java 
object model on top of XML (called a facade). An XML facade provides a Java 
bean-like front end for an XML document or element that has a schema. Facade classes 
can provide easy manipulation of the XML document and element in Java programs.

You add the XML facade by using a createFacade method within the bpelx:exec 
statement in the .bpel file. Example 13–5 provides an example:

Example 13–5 Addition of XML facade

 <bpelx:exec name= ...
    <![CDATA
     ...
    Element element = ...
         (Element)getVariableData("input","payload","/loanApplication/"):
    //Create an XMLFacade for the Loan Application Document
    LoanApplication xmlLoanApp=
         LoanApplicationFactory.createFacade(element);
 ...

13.2.6 How to Use bpelx:exec Built-in Methods
Table 13–1 lists a set of bpelx:exec built-in methods that you can use to read and 
update scope variables, instance metadata, and audit trails. 

Table 13–1 Built in Methods for bpelx:exec

Method Name Description

Object lookup( String name ) JNDI access

long getInstanceId( ) Unique ID associated with each instance

String setTitle( String title ) / 
String getTitle()

Title of this instance

String setStatus( String status ) / 
String getStatus()

Status of this instance

void 
setCompositeInstanceTitle(String 
title)

Set the composite instance title



Incorporating Java and Java EE Code in BPEL Processes

Incorporating Java and Java EE Code in a BPEL Process 13-5

13.2.7 How to Use Java Code Wrapped in a Service Interface
Not all applications expose a service interface. You may have a scenario in which a 
business process must use custom Java code. For this scenario, you can:

■ Write custom Java code.

■ Create a service interface in which to embed the code.

■ Invoke the Java code as a web service over SOAP.

For example, assume you create a BPEL process service component in a SOA 
composite application that invokes a service interface through a SOAP reference 
binding component. For this example, the service interface used is an Oracle 
Application Development Framework (ADF) Business Component.

The high-level instructions for this scenario are as follows.

To use Java code wrapped in a service interface:
1. Create an Oracle ADF Business Component service in Oracle JDeveloper.

This action generates a WSDL file and XSD file for the service. 

2. Create a SOA application that includes a BPEL process service component. Ensure 
that the BPEL process service component is exposed as a composite service. This 

void setIndex( int i, String value ) 
/ String getIndex( int i )

Six indexes can be used for a search

void setCreator( String creator ) / 
String getCreator()

Who initiated this instance

void setCustomKey( String customKey 
) / String getCustomKey()

Second primary key

void setMetadata( String metadata ) 
/ String getMetadata ()

Metadata for generating lists

String getPreference( String key ) Access preference

void addAuditTrailEntry(String 
message, Object detail)

Add an entry to the audit trail

void addAuditTrailEntry(Throwable t) Access file stored in the suitcase

Object getVariableData(String name) 
throws BPELFault

Access and update variables stored in the 
scope

Object getVariableData(String name, 
String partOrQuery) throws BPELFault

Access and update variables

Object getVariableData(String name, 
String part, String query)

Access and update variables

void setVariableData(String name, 
Object value)

Set variable data

void setVariableData(String name, 
String part, Object value)

Set variable data

void setVariableData(String name, 
String part, String query, Object 
value)

Set variable data

Table 13–1 (Cont.) Built in Methods for bpelx:exec

Method Name Description



Adding Custom Classes and JAR Files

13-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

automatically connects the BPEL process to an inbound SOAP service binding 
component.

3. Import the Oracle ADF Business Component service WSDL into the SOA 
composite application.

4. Create a web service binding to the Oracle ADF Business Component service 
interface.

5. Design a BPEL process in which you perform the following tasks:

a. Create a partner link for the Oracle ADF Business Component service 
portType.

b. Create an assign activity. For this example, this step copies data (for example, a 
static XML fragment) into a variable that is passed to the Oracle ADF Business 
Component service.

c. Create an invoke activity and connect to the partner link you created in Step 
5a.

6. Connect (wire) the partner link reference to the composite reference binding 
component. This reference uses a web service binding to enable the Oracle ADF 
Business Component service to be remotely deployed.

7. Deploy the SOA application.

8. Invoke the SOA application from the Test Web Service page in Oracle Enterprise 
Manager Fusion Middleware Control Console.

For more information on creating Oracle ADF Business Components, see Oracle Fusion 
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

For more information on invoking a SOA composite application, see Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

13.3 Adding Custom Classes and JAR Files
You can add custom classes and JAR files to a SOA composite application. A SOA 
extension library for adding extension classes and JARs to a SOA composite 
application is available in the $ORACLE_HOME/soa/modules/oracle.soa.ext_
11.1.1 directory. For Oracle JDeveloper, custom classes and JARs are added to the 
application_name/project/sca-inf/lib directory.

13.3.1 How to Add Custom Classes and JAR Files
If the classes are used in bpelx:exec, you must also add the JARs with the 
BpelcClasspath property in the System MBean Browser of Oracle Enterprise Manager 
Fusion Middleware Control Console.

To add JARs to BpelcClasspath:
1. From the SOA Infrastructure menu, select SOA Administration > BPEL 

Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL 
Configuration Properties.

3. Click BpelcClasspath.

4. In the Value field, specify the class path.

5. Click Apply.



Using Java Embedding in a BPEL Process in Oracle JDeveloper

Incorporating Java and Java EE Code in a BPEL Process 13-7

6. Click Return.

In addition, ensure that the JARs are loaded by the SOA composite application.

To add custom classes:
1. Copy the classes to the classes directory.

2. Restart Oracle WebLogic Server.

To add custom JARs:
1. Copy the JAR files to this directory or its subdirectory.

2. Run ant.

3. Restart Oracle WebLogic Server.

13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper
In Oracle JDeveloper, you can add the bpelx:exec activity and copy the code 
snippet into a dialog.

13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper

To use Java embedding in a BPEL process in Oracle JDeveloper:
1. From the Component Palette, expand Oracle Extensions.

2. Drag the Java Embedding activity into the designer.

3. Double-click the Java Embedding activity to display the Java Embedding dialog.

4. In the Name field, enter a name.

5. In the Code Snippet field, enter (or cut and paste) the Java code. Figure 13–1 
provides details.

Note: For custom classes, you must include any JAR files required 
for embedded Java code in the BpelcClasspath property in the System 
MBean Browser of Oracle Enterprise Manager Fusion Middleware 
Control Console. See Section 13.3.1, "How to Add Custom Classes and 
JAR Files" for instructions. The JAR files are then added to the class 
path of the BPEL loader. If multiple JAR files are included, they must 
be separated by a colon (:) on UNIX and a semicolon (;) on Windows. 



Embedding Service Data Objects with bpelx:exec

13-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 13–1 bpel:exec Code Example

13.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding 
Activity

If you create and deploy a BPEL process that uses thread.sleep() in a Java 
Embedding activity, the executing thread is blocked and the transaction associated 
with that thread is prevented from committing. This causes BPEL instances to appear 
only after the wait is over, which is the expected behavior. 

Instead, use a wait activity, which releases the resource upon entering the activity and 
enables the ongoing transaction to commit and the BPEL instance data to hydrate into 
the data store. 

13.5 Embedding Service Data Objects with bpelx:exec
You can embed service data object (SDO) code in the .bpel file with the bpelx:exec 
tag. In the syntax provided in Example 13–6, mytest.apps.SDOHelper is a Java 
class that modifies SDOs. 

Example 13–6 Embedding SDO Objects with the bpelx:exec tag

</bpelx:exec>
<bpelx:exec name="ModifyInternalSDO" version="1.5" language="java">
     <![CDATA[try{
     Object o = getVariableData("VarSDO");
     Object out = getVariableData("ExtSDO");

Note: As an alternative to writing Java code in the Java Embedding 
activity, you can place your Java code in a JAR file, put it in the class 
path, and call your methods from within the Java Embedding activity.



Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

Incorporating Java and Java EE Code in a BPEL Process 13-9

      System.out.println("BPEL:Modify VarSDO... " + o + " ExtSDO: " + out);
     mytest.apps.SDOHelper.print(o);
     mytest.apps.SDOHelper.print(out);
     mytest.apps.SDOHelper.modifySDO(o);
      System.out.println("BPEL:After Modify VarSDO... " + o + " ExtSDO: " + out);
     mytest.apps.SDOHelper.print(o);
     mytest.apps.SDOHelper.print(out);
  }catch(Exception e)
  {
  e.printStackTrace();
}]]>
   </bpelx:exec> 

Example 13–7 provides an example of the Java classes modifySDO(o) and print(o) 
that are embedded in the BPEL file.

Example 13–7 Java Classes

public static  void modifySDO(Object o){
       if(o instanceof commonj.sdo.DataObject)
       {
           ((DataObject)o).getChangeSummary().beginLogging();
          SDOType type = (SDOType)((DataObject)o).getType();
          HelperContext hCtx = type.getHelperContext();
           List<DataObject>  lines =
            (List<DataObject>)((DataObject)o).get("line");
           for (DataObject  line: lines) {
               line.set("eligibilityStatus", "Y");
           }
       } else {
           System.out.println("SDOHelper.modifySDO(): " + o + " is not a
           DataObject!");
       }
   }
. . .
. . .
   public static  void print(Object o)    {
       try{
         if(o instanceof commonj.sdo.DataObject)
        {
           DataObject sdo = (commonj.sdo.DataObject)o;
            SDOType type = (SDOType) sdo.getType();
            HelperContext hCtx = type.getHelperContext();
            System.out.println(hCtx.getXMLHelper().save(sdo, type.getURI(),
             type.getName()));
         } else {
             System.out.println("SDOHelper.print(): Not a sdo " + o);
         }
       }catch(Exception e)
       {
       e.printStackTrace();
       }          } 

13.6 Sharing a Custom Implementation of a Class with Oracle BPEL 
Process Manager

When you implement a custom Connection Manager class with the same name as a 
class used by Oracle BPEL Process Manager, you must ensure that the custom class 
does not override the class used by Oracle BPEL Process Manager. 



Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

13-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For example, assume the following is occurring:

■ You are using embedded Java in a BPEL project.

■ The Connection Manager custom class is overriding the BPEL Connection 
Manager class.

■ A java.lang.NoClassDefFoundError is occurring at runtime.

13.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence

To configure the BPEL Connection Manager class to take precedence:
1. Start Oracle JDeveloper.

2. Highlight the BPEL project.

3. From the Edit main menu, select Properties.

4. Select Libraries and Classpath.

5. Click Add JAR/Directory.

6. Navigate to the location of the custom JAR file and click Select.

This adds the custom Connection Manager JAR file to the classpath.

7. Click OK.

8. Redeploy the BPEL project and retest.



14

Using Events and Timeouts in BPEL Processes 14-1

14 Using Events and Timeouts in BPEL
Processes

This chapter describes how to use events and timeouts. Because web services can take 
a long time to return a response, a BPEL process service component must be able to 
time out and continue with the rest of the flow after a period of time.

This chapter includes the following sections:

■ Section 14.1, "Introduction to Event and Timeout Concepts"

■ Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or 
Waiting"

■ Section 14.3, "Setting Timeouts for Request-Response Operations in Receive 
Activities"

■ Section 14.4, "Creating a Wait Activity to Set an Expiration Time"

■ Section 14.5, "Specifying Events to Wait for Message Arrival with an OnEvent 
Branch in BPEL 2.0"

■ Section 14.6, "Setting Timeouts for Synchronous Processes"

14.1 Introduction to Event and Timeout Concepts
This chapter provides an example of how to program a BPEL process service 
component to wait one minute for a response from a web service named Star Loan that 
provides loan offers. If Star Loan does not respond in one minute, then the BPEL 
process service component automatically selects an offer from another web service 
named United Loan. In the real world, the time limit is more like 48 hours. However, 
for this example, you do not want to wait that long to see if your BPEL process service 
component is working properly.

Because asynchronous web services can take a long time to return a response, a BPEL 
process service component must be able to time out, or give up waiting, and continue 
with the rest of the flow after a certain amount of time. 

You can use a pick activity to configure a BPEL flow to either wait a specified amount 
of time or to continue performing its duties. To set an expiration period for the time, 
you can use the wait activity. 



Creating a Pick Activity to Select Between Continuing a Process or Waiting

14-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

14.2 Creating a Pick Activity to Select Between Continuing a Process or 
Waiting

The pick activity provides two branches, each one with a condition. The branch that 
has its condition satisfied first is executed. In the following example, one branch’s 
condition is to receive a loan offer, and the other branch’s condition is to wait a 
specified amount of time. 

Figure 14–1 provides an overview. The following activities take place (in order of 
priority): 

1. An invoke activity initiates a service, in this case, a request for a loan offer from 
Star Loan. 

2. The pick activity begins next. It has the following conditions:

■ onMessage

This condition has code for receiving a reply in the form of a loan offer from 
the Star Loan web service. The onMessage code matches the code for receiving 
a response from the Star Loan web service before a timeout was added. 

■ onAlarm

This condition has code for a timeout of one minute. This time is defined as 
PT1M, which means to wait one minute before timing out. In this timeout 
setting:

– S stands for seconds

– M for one minute

– H for hour

– D for day

– Y for year

In the unlikely event that you want a time limit of 1 year, 3 days, and 15 
seconds, you enter it as PT1Y3D15S. The remainder of the code sets the loan 
variables selected and approved to false, sets the annual percentage rate 
(APR) at 0.0, and copies this information into the loanOffer variable. 

The time duration format is specified by the BPEL standard. For more detailed 
information on the time duration format, see the duration section of the most 
current XML Schema Part 2: Datatypes document at:

http://www.w3.org/TR/xmlschema-2/#duration

3. The pick activity condition that completes first is the one that the BPEL process 
service component executes. The other branch then is not executed. 



Creating a Pick Activity to Select Between Continuing a Process or Waiting

Using Events and Timeouts in BPEL Processes 14-3

Figure 14–1 Overview of the Pick Activity

An onMessage branch is similar to a receive activity in that it receives operations. 
However, you can define a pick activity with multiple onMessage branches that can 
wait for similar partner links and port types, but have different operations. Therefore, 
separate threads and parallel processes can be invoked for each operation. This differs 
from the receive activity in which there is only one operation. Another difference is 
that you can create a new instance of a business process with a receive activity (by 
selecting the Create Instance checkbox), but you cannot do this with a pick activity. 

14.2.1 How To Create a Pick Activity

To create a pick activity:
1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Component Palette, expand BPEL Constructs.

3. Drag a Pick activity into the designer.

The Pick activity includes an onMessage branch. Figure 14–2 provides an 
example.

Note: You can also create onMessage branches in BPEL 1.1 scope 
activities and onAlarm branches in BPEL 1.1 and 2.0 scope activities. 
Expand the Scope activity in Oracle JDeveloper, and browse the icons 
on the left side to find the branch you want to add.

Initiate
service

<invoke>

Wait for
callback

<onMessage>

Logic
Post

Callback

Star
Loan

Logic
Post

Timeout

Time out
in 1M

<onAlarm>

<pick>

BPEL
Process

WSDL



Creating a Pick Activity to Select Between Continuing a Process or Waiting

14-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 14–2 Pick Activity

4. Double-click the onMessage branch. Figure 14–3 provides an example.

Figure 14–3 onMessage Branch

5. Edit its attributes to receive the response from the loan service.

6. Select the Pick activity.

Icons for adding additional onMessage branches and an OnAlarm branch are 
displayed. 

7. Click Add onAlarm, as shown in Figure 14–4.



Creating a Pick Activity to Select Between Continuing a Process or Waiting

Using Events and Timeouts in BPEL Processes 14-5

Figure 14–4 onAlarm Branch Creation

An OnAlarm branch is displayed.

8. Double-click the OnAlarm branch of the pick activity and set its time limit to 1 
minute. Figure 14–5 provides an example.

Figure 14–5 OnAlarm Branch

9. Click OK.

14.2.2 What Happens When You Create a Pick Activity
The code segment in Example 14–1 defines the pick activity for this operation after 
design completion:

Example 14–1 Pick Activity

  <pick>
        <!--  receive the result of the remote process -->
        <onMessage partnerLink="LoanService"
            portType="services:LoanServiceCallback"
            operation="onResult" variable="loanOffer">
            
        <assign>



Creating a Pick Activity to Select Between Continuing a Process or Waiting

14-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        <copy>
            <from variable="loanOffer" part="payload"/>
            <to variable="output" part="payload"/>
        </copy>
        </assign> 
        
       </onMessage>
       <!--  wait for one minute, then timesout -->
       <onAlarm for="PT1M">
            <assign>
                <copy>
                    <from>
                        <loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
                            <providerName>Expired</providerName> 
                            <selected type="boolean">false</selected> 
                            <approved type="boolean">false</approved> 
                            <APR type="double">0.0</APR> 
                        </loanOffer>
                    </from> 
                    <to variable="loanOffer" part="payload"/>
                </copy>
            </assign>
       </onAlarm>
</pick>

14.2.3 What You May Need to Know About Simultaneous onMessage Branches in BPEL 
2.0

Oracle BPEL Process Manager’s implementation of BPEL 2.0 does not support 
simultaneous onMessage branches of a pick activity.

When a process has a pick activity with two onMessage branches as its starting 
activity (both with initiate set to join in their correlation definitions) and an 
invoking process that posts the invocations one after the other, it is assumed that both 
invocations reach the same instance of the invoked process. However, in Oracle BPEL 
Process Manager’s implementation of BPEL 2.0, two instances of the invoked process 
are created for each invocation.

This is the expected behavior, but it differs from what is described in the BPEL 2.0 
specification.

For example, assume you have synchronous BPEL process A, which has a flow activity 
with two parallel branches:

■ Branch one invokes operation processMessage1 on asynchronous BPEL process B.

■ Branch two invokes operation processMessage2 on asynchronous BPEL process B. 
The invocation occurs after a five second wait. BPEL process A then waits on a 
callback from BPEL process B and returns the output back to the client. 

The idea is to create one instance of the invoked process and ensure that the second 
invocation happens after the first instance is already active and running.

BPEL process B has a pick activity with createInstance set to yes. The pick 
activity has two onMessage branches within it:

■ One branch is for the processMessage1 operation. For this operation, it goes to 
sleep for about 10 seconds.

■ The other branch is for the processMessage2 operation. For this operation, it waits 
for five seconds.



Setting Timeouts for Request-Response Operations in Receive Activities

Using Events and Timeouts in BPEL Processes 14-7

Both operations have the same input message type and correlation is defined with 
initiate set to join.

The expectation is that the processMessage1 invocation is invoked immediately and 
the BPEL process B instance is created, which should sleep for ten seconds. After five 
seconds, the invoking process should then post the processMessage2 invocation to 
BPEL process B and this invocation should go to the already existing instance instead 
of creating a new one (since the correlation ID is the same and initiate is set to 
join).

However, for each invocation, a new instance of BPEL process B is created and the 
result cannot be predicted. 

■ If the processMessage2 operation branch finishes first, then the subsequent assign 
operation fails because the input variable from processMessage1 is assumed to be 
null (for that instance).

■ If the processMessage1 operation branch finishes first, then the process returns 
callback data with only partial information (does not include the input from 
processMessage2).

In Oracle BPEL Process Manager’s implementation, either one of the two operations 
(processMessage1 or processMessage2) creates a new instance. This is implemented so 
that database queries do not need to be made to see if there are already instances 
created. 

The workaround is to create two processes that are initiated by the two different 
operations.

14.3 Setting Timeouts for Request-Response Operations in Receive 
Activities

You can provide a timeout setting for request-response operations in receive activities. 
This provides an alternative to using the onMessage and onAlarm branches of a pick 
activity to specify a timeout duration for partner callbacks.

The following sections provide an overview of this functionality:

■ Timeout settings relative from activity invocation

■ Timeout settings as an absolute date time

■ Timeout settings computed dynamically with an XPath expression

■ bpelx:timeout fault thrown during an activity timeout

■ Events added to the BPEL instance audit trail during an activity timeout

■ Recoverable timeout activities during a server restart

14.3.1 Timeout Settings Relative from When the Activity is Invoked
You can specify a timeout setting relative from when the activity is invoked. This 
setting is specified as a relative duration using the syntax shown in Example 14–2.

Example 14–2 Timeout Settings Relative from When the Activity is Invoked

<receive | bpelx:for="duration-expr">

Note: The timeout setting for request-response operations is not 
available in BPEL projects that support BPEL version 2.0.



Setting Timeouts for Request-Response Operations in Receive Activities

14-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    standard-elements
</receive>

This type uses the bpelx:for attribute to specify a static value or an XPath 
expression that must evaluate to an XML schema type duration. Only one of the 
bpelx:for or bpelx:until attributes is permitted for an activity.

If the XPath expression evaluates to a negative duration, the timeout is ignored and an 
event is logged to the instance audit trail indicating that the duration value is invalid.

Once a valid duration value is retrieved, the expiration date for the activity is set to the 
current node time (or cluster time after this is available), plus the duration value. For 
example, the duration value bpelx:for="'PT5M'" specifies that the activity expects 
an inbound message to arrive no later than five minutes after the activity has started 
execution.

Timeout durations can only be specified on the following:

■ Midprocess receive activities

■ Receive activities that do not specify createInstance="true"

A receive activity can only time out after it has been instantiated, which is not the case 
with entry receive activities.

14.3.2 Timeout Settings as an Absolute Date Time
You can specify a timeout setting as an absolute deadline for request-response receive 
activities. This type uses the syntax shown in Example 14–3.

Example 14–3 Timeout Settings as an Absolute Date Time

<receive bpelx:until="deadline-expr">
    standard-elements
</receive>

The expected expiration time for the bpelx:until attribute must be at least two 
seconds ahead of the current time. Otherwise, the timer scheduling is ignored and 
skipped, just as if the timer was never specified.

The bpelx:until attribute specifies a static value or an XPath expression that must 
evaluate to an XML schema type datetime or date. Only one of the bpelx:for or 
bpelx:until attributes is permitted for an activity.

XPath version 1.0 is not XML schema-aware. Therefore, none of the built-in functions 
of XPath version 1.0 can create or manipulate dateTime or date values. However, it 
is possible to perform one of the following:

■ Write a constant (literal) that conforms to XML schema definitions and use that as 
a deadline value

■ Extract a field from a variable (part) of one of these types and use that as a 
deadline value

 XPath version 1.0 treats that literal as a string literal, but the result can be interpreted 
as a lexical representation of a dateTime or date value.

Note: The timeout setting attribute does not apply to the onMessage 
branch of a pick activity because the same functionality currently 
exists with the onMessage and onAlarm branches of that activity.



Setting Timeouts for Request-Response Operations in Receive Activities

Using Events and Timeouts in BPEL Processes 14-9

Once a valid datetime or date value has been retrieved, the expiration date for the 
activity is set to the specified date. For example, the datetime value 
bpelx:until="'2009-12-24T18:00+01:00'" specifies that the activity expects 
an inbound message to arrive no later than Dec 24, 2009 6:00 pm UTC+1 after the 
activity has started execution.

Timeout dates can only be specified on the following activities:

■ Midprocess receives

■ Receive activities that do not specify createInstance="true"

A receive activity can only time out after it has been instantiated, which is not the case 
with entry receive activities.

14.3.3 Timeout Settings Computed Dynamically with an XPath Expression
The timeout setting for request-response receive and onMessage branches of pick 
activities can be set using an XPath expression instead of entering a static duration or 
datetime value. In this case, the value of the expression must return either:

■ A string that can be interpreted as a static XML duration or datetime value

■ An XML schema duration or datetime type

Example 14–4 shows the syntax for using XPath expressions.

Example 14–4 Timeout Settings Computed Dynamically with an XPath Expression

<bpelx:for="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:for')"/>

<bpelx:until="bpws:getVariableData('input', 'payload',
 '/tns:waitValue/tns:until')"/>

If the returned expression value cannot be interpreted as an XML schema duration or 
datetime type, an event is logged in the instance audit trail indicating that an invalid 
duration and datetime value was specified, and no activity expiration time can be 
set.

14.3.4 bpelx:timeout Fault Thrown During an Activity Timeout
If a valid XML schema duration or datetime value is returned from the bpelx:for 
or bpelx:until attribute, a bpelx:timeout fault is thrown from the timed-out 
activity. This fault can be caught by any catch or catchAll block and handled like a 
regular BPEL fault. The message of the fault is the name of the activity. In addition, an 
event is logged to the instance audit trail indicating that the activity has timed out 
because the expected callback message failed to be received before the timeout 
duration.

If the activity receives a callback from the partner before the timeout period, no fault is 
thrown. If a callback is received while the activity is being timed out, the callback 
message is not delivered to the activity and it is marked as canceled in the delivery 
message table. If a timeout action is attempted at the same time that a callback 

Note: The timeout setting attribute does not apply to the onMessage 
branch of a pick activity because the same functionality currently 
exists with the onMessage and onAlarm branches of the pick activity.



Setting Timeouts for Request-Response Operations in Receive Activities

14-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

message is handled, the timeout action is ignored. As of 11g Release 1, instances are 
locked optimistically (as opposed to pessimistic locking in Release 10g). Therefore, the 
second action in line is still performed. However, the instance version check fails upon 
dehydration of the instance.

The bpelx:timeout fault can be thrown from a BPEL component if the component 
WSDL declares the fault on the operation. If the fault is not declared on the operation, 
the fault is converted into a FabricInvocationException, which is a runtime 
fault. This fault can be caught by any caller components (including BPEL components), 
but the fault type is no longer bpelx:timeout (however, the fault message string still 
indicates that the fault was originally a timeout fault).

14.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout
Once a bpelx:timeout fault is thrown from a timed-out activity, an event is logged 
to the instance audit trail indicating that the activity has timed out, as opposed to 
having received the expected callback message from its partner. 

14.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration 
Alarm Table)

Activities that specify a valid timeout duration or datetime are likely implemented 
in a similar manner to wait and onAlarm activities with an expiration date for the 
underlying work item object. If the node that scheduled these activities with the 
scheduler goes down (either through graceful shutdown or abrupt termination), all 
these activities must be rescheduled with the scheduler upon server restart.

It is not possible to have a single node (the master node) in the cluster be responsible 
for rescheduling these activities upon node shutdown. 

14.3.7 How to Set Timeouts for Request-Response Operations in Receive Activities

To set timeouts for request-response operations in receive activities:
1. In the SOA Composite Editor, double-click the version 1.1 BPEL process service 

component.

2. In the Component Palette, expand BPEL Constructs.

3. Drag a Receive activity into the designer.

4. Expand the activity. 

5. Click the Timeout tab.

This tab enables you to set a timeout for request-response operations, as shown in 
Figure 14–6.



Setting Timeouts for Request-Response Operations in Receive Activities

Using Events and Timeouts in BPEL Processes 14-11

Figure 14–6 Timeout Tab

6. Specify appropriate values, and click Apply. For example:

■ To specify a timeout setting relative from when the activity is invoked, click 
the For button and enter a value or click the Expression button and specify an 
XPath expression.

■ To specify a timeout setting as an absolute deadline for a request-response 
operation, click the Until button and enter a value or click the Expression 
button and specify an XPath expression.

7. Click Apply, then OK.

14.3.8 What Happens When You Set Timeouts for Request-Response Operations in 
Receive Activities

The code segment in the .bpel file defines the specific operation after design 
completion.

For example, if you specified that the activity expects an inbound message to arrive no 
later than five minutes after the activity has started execution, the syntax displays as 
shown in Example 14–5.

Example 14–5 Static Duration

bpelx:for="'PT5M'"/>

For example, if you specified that the activity expects an inbound message to arrive no 
later than January 24, 2010 11:00 AM UTC+1 after the activity has started execution, 
the syntax displays as shown in Example 14–6.

Example 14–6 datetime Value

bpelx:until="'2010-01-24T11:00:00-08:00'"/> 



Creating a Wait Activity to Set an Expiration Time

14-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For example, if you specified an XPath expression to obtain a value for a timeout 
relative from when the activity is invoked, syntax similar to that shown in 
Example 14–7 can display.

Example 14–7 XPath Expression 

bpelx:for="bpws:getVariableData('inputVariable','payload','/tns:waitValue/tns:for'
)"/>

14.4 Creating a Wait Activity to Set an Expiration Time
The wait activity allows a process to wait for a given time period or until a time limit 
has been reached. Exactly one of the expiration criteria must be specified. A typical use 
of this activity is to invoke an operation at a certain time. You typically enter an 
expression that is dependent on the state of a process.

When specifying a time period for waiting, note the following:

■ Wait times cannot be guaranteed if they are scheduled with other events that 
require processing. Due to this additional processing, the actual wait time can be 
greater than the wait time specified in the BPEL process.

■ Wait times of less than two seconds are ignored by the server. Wait times above 
two seconds, but less than one minute, may not get executed in the exact, specified 
time. However, wait times in minutes do execute in the specified time. 

■ The default value of 2 seconds for wait times is specified with the MinBPELWait 
property in the System MBean Browser of Oracle Enterprise Manager Fusion 
Middleware Control Console. You can set this property to any value and the wait 
delay is bypassed for any waits less than MinBPELWait.

14.4.1 How To Specify the Minimum Wait Time
You can specify the minimum time duration for a BPEL process to perform a wait that 
involves a dehydration. If the wait duration is less than or equal to the value, BPEL 
continues executing activities in the same thread and transaction.

1. From the SOA Infrastructure menu, select SOA Administration > BPEL 
Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL 
Configuration Properties.

3. Click MinBPELWait.

4. In the Value field, specify a value in seconds.

5. Click Apply.

6. Click Return.

14.4.2 How to Create a Wait Activity

To create a wait activity:
1. In the Component Palette, expand BPEL Constructs.

Note: Quartz version 1.6 is supported for scheduling expiration 
events on wait activities.



Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

Using Events and Timeouts in BPEL Processes 14-13

2. Drag a Wait activity into the designer.

3. Double-click the Wait activity to display the Wait dialog.

4. In the For section, enter the amount of time for which to wait.

5. In the Until section, select the deadline for which to wait, as shown in Figure 14–7.

Figure 14–7 Wait Dialog

14.4.3 What Happens When You Create a Wait Activity
Exactly one of the expiration criteria must be specified, as shown in Example 14–8.

Example 14–8 Wait Activity

<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
    standard-elements
  </wait>

14.5 Specifying Events to Wait for Message Arrival with an OnEvent 
Branch in BPEL 2.0

You can create an onEvent branch in a scope activity that causes a specified event to 
wait for a message to arrive. For example, assume you have a credit request process 
that is initiated by a customer’s credit request message. The request may be 
completely processed without the need for further interaction, and the results 
submitted to the customer. In some cases, however, the customer may want to inquire 
about the status of the credit request, modify the request content, or cancel the request 
entirely while it is being processed. You cannot expect these interactions to occur only 
at specific points in the business order processing. An event handler such as an 
onEvent branch enables the business process to accept requests (such as status request, 
modification request, or cancellation request) to arrive in parallel to the primary 
business logic flow.

The onEvent event handlers are associated with an enclosed scope. The onEvent event 
handlers are enabled when their scope is initialized and disabled when their scope 



Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

14-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

ends. When enabled, any number of events can occur. They are processed in parallel to 
the scope’s primary activity and in parallel to each other. Message events also 
represent services operations exposed by a process and modeled as onEvent elements. 
Event handlers cannot create new process instances. Therefore, message events are 
always received by a process instance that is already active.

14.5.1 How to Create an onEvent Branch in a Scope Activity

To create an onEvent branch in a scope activity:
1. In the expanded Scope activity, click Add OnEvent, as shown in Figure 14–8.

Figure 14–8 Add OnEvent Icon

This creates an OnEvent branch and an enclosed scope activity. 

2. Double-click the OnEvent branch.

The OnEvent dialog is displayed, as shown in Figure 14–9.

Figure 14–9 OnEvent Dialog

3. In the Partner Link field, click the Search icon to select the partner link that 
contains the endpoint reference on which the message is expected to arrive.

The Port Type and Operation fields define the port type and operation invoked by 
the partner in order to cause the event. 



Setting Timeouts for Synchronous Processes

Using Events and Timeouts in BPEL Processes 14-15

4. Specify a method for receiving the message from the partner through use of a 
variable or From Parts elements.

5. Click Apply, then click OK.

6. Continue the design of your BPEL process.

14.5.2 What Happens When You Create an OnEvent Branch
Example 14–9 provides an overview of onEvent branches in the .bpel file after 
design completion. The onEvent branches inquire about the status of the credit 
request, modify the request content, or cancel the request entirely while it is being 
processed

Example 14–9 onEvent Branch

<process name="creditRequestProcess" . . .>
   . . .
   <eventHandlers>
      <onEvent partnerLink="requestCreditScore"
         operation="queryCreditRequestStatus" ...>
         <scope name="scopeStatus">...</scope>
      </onEvent>
      <onEvent partnerLink="requestCreditScore"
         operation="modifyCreditRequest" ...>
         <scope name="scopeRequest">...</scope>
      </onEvent>
      <onEvent partnerLink="requestCreditScore"
         operation="cancelCreditRequest" ...>
         <scope name="scopeCancel">...</scope>
      </onEvent>
   </eventHandlers>
   . . .
</process>

14.6 Setting Timeouts for Synchronous Processes
For synchronous processes that connect to a remote database, you must increase the 
SyncMaxWaitTime timeout property in the System MBean Browser of Oracle 
Enterprise Manager Fusion Middleware Control Console.

For information on setting this property, see Section 7.3, "Specifying Timeout Values."



Setting Timeouts for Synchronous Processes

14-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



15

Coordinating Master and Detail Processes 15-1

15 Coordinating Master and Detail Processes

This chapter describes how to coordinate master and detail processes in a BPEL 
process. This coordination enables you to specify the tasks performed by a master 
BPEL process and its related detail BPEL processes. This is sometimes referred to as a 
parent and child relationship.

This chapter includes the following sections:

■ Section 15.1, "Introduction to Master and Detail Process Coordinations"

■ Section 15.2, "Defining Master and Detail Process Coordination in Oracle 
JDeveloper"

15.1 Introduction to Master and Detail Process Coordinations
Master and detail coordinations consist of a one-to-many relationship between a single 
master process and multiple detail processes.

For example, assume a business process imports sales orders into an application. Each 
sales order consists of a header (customer information, ship-to address, and so on) and 
multiple lines (item name, item number, item quantity, price, and so on).

The following tasks are performed to execute the order:

■ Validate the header. If the header is invalid, processing stops.

■ Validate each line. If any lines are invalid, they are marked as invalid and 
processing stops.

■ Perform inventory checks for each item. If an item is not available, a work order is 
created to assemble it.

■ Stage items at the shipping dock after items for each line are available.

■ Ship the order to the customer.

To perform these tasks, create a master process to check and validate each header and 
multiple BPEL processes to check and validate each line item. 

Potential coordination points are as follows:

■ The master process must signal the detail processes that header validation is 
successful and to continue processing.

■ Each detail process must signal the master process after line item validation is 
complete.

■ Each detail process must signal the master process after the line item is available in 
inventory. 



Introduction to Master and Detail Process Coordinations

15-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ After all line items are available, the master must signal each detail process to 
move its line item to the shipping dock (the dock may become too crowded if 
items are simply moved as soon as they are available).

■ After all lines have been moved, the master process must execute logic to ship the 
fulfilled order to the customer.

Figure 15–1 provides an overview of the header and line item validation coordination 
points between one master process and two detail processes.

Figure 15–1 Master and Detail Coordination Overview (One BPEL Process to Two Detail Processes)

The following BPEL process activities coordinate actions between the master and 
detail processes:

■ signal: notifies the other processes (master or detail) to continue processing

■ receive signal: waits until it receives the proper notification signal from the other 
process (master or detail) before continuing its processing

Both activities are coordinated with label attributes defined in the BPEL process files. 
Labels are declared per master process definition.

Figure 15–2 provides an overview of the BPEL process flow coordination.

Validates Header Validates Header
Header
· Customer Information
· Ship-To Address

Line Items
· Item Names
· Item Number
· Price
· Quantity

Sales Order 1
Header
· Customer Information
· Ship-To Address

Line Items
· Item Names
· Item Number
· Price
· Quantity

Sales Order 2
Master BPEL

Process

Completes Header 
Validation and 
Signals Detail 
Process to 
Continue Completes 

LineValidation 
and Signals 
Master 
Process

Completes 
Line Validation 
and Signals 
Master 
Process

Detail BPEL
Process 1

Detail BPEL
Process 2

Completes 
Header 
Validation and 
Signals Detail 
Process to 
Continue

Validates Line Items



Introduction to Master and Detail Process Coordinations

Coordinating Master and Detail Processes 15-3

Figure 15–2 Master and Detail Syntax Overview (One BPEL Process to One Detail Process)

As shown in Figure 15–2, each master and detail process includes a signal and receive 
signal activity. Table 15–1 describes activity responsibilities based on the type of 
process in which they are defined.

If the signal activity executes before the receive signal activity, the state set by the 
signal activity is persisted and still effective for a later receive signal activity to read.

15.1.1 BPEL File Definition for the Master Process
The BPEL file for the master process defines coordination with the detail processes. 
The BPEL file shows that the master process interacts with the partner links of several 
detail processes. Example 15–1 provides an example.

Example 15–1 BPEL File Definition for the Master Process

<process name="MasterProcess"
. . .
. . .
  <partnerLinks>
    <partnerLink name="client"
             partnerLinkType="tns:MasterProcess"

Table 15–1 Master and Detail Process Coordination Responsibilities

If A... Contains A... Then...

Master process Signal activity The master process signals all of its associated 
detail processes at runtime.

Detail process Receive signal activity The detail process waits until it receives the signal 
executed by its master process.

Detail process Signal activity The detail process signals its associated master 
process at runtime that processing is complete.

Master process Receive signal activity The master process waits until it receives the 
signal executed by all of its detail processes.

Signal Activity
label="startDetailProcess"
to="details"

Invoke Activity
partnerlink="DetailProcess"
. . .
. . .
bpelx:invokeAsDetail="true"

Receive Signal Activity
label="CompleteDetailProcess"
from="details"

Receive Signal Activity
label="StartDetailProcess"
from="master"

Signal Activity
label="CompleteDetailProcess"
to="master"

Master Process Detail Process



Introduction to Master and Detail Process Coordinations

15-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

             myRole="MasterProcessProvider"
             partnerRole="MasterProcessRequester"/>
    <partnerLink name="DetailProcess"
             partnerLinkType="dp:DetailProcess"
             myRole="DetailProcessRequester"
             partnerRole="DetailProcessProvider"/>
    <partnerLink name="DetailProcess1"
             partnerLinkType="dp1:DetailProcess1"
             myRole="DetailProcess1Requester"
             partnerRole="DetailProcess1Provider"/>
    <partnerLink name="DetailProcess2"
             partnerLinkType="dp2:DetailProcess2"
             myRole="DetailProcess2Requester"
             partnerRole="DetailProcess2Provider"/>
  </partnerLinks>

A signal activity shows the label value and the detail process coordinated with this 
master process. The label value (startDetailProcess) matches with the label value 
in the receive signal activity of all detail processes. This ensures that the signal is 
delivered to the correct process. There is one signal process per receive signal process. 
The master process signals all detail processes at runtime. This syntax shows a signal 
activity in a BPEL process that supports BPEL version 1.1.

<bpelx:signal name="notifyDetailProcess" label="startDetailProcess" to="details"/>

Assign, invoke, and receive activities describe the interaction between the master and 
detail processes. This example shows interaction between the master process and one 
of the detail processes (DetailProcess). Similar interaction is defined in this BPEL 
file for all detail processes. 

In the invoke activity, ensure that the Invoke As Detail checkbox is selected. 
Figure 15–3 provides details.

Figure 15–3 Invoke As Detail Checkbox

This selection creates the partner process instance (DetailProcess) as a detail 
instance. You must select this checkbox in the invoke activity of the master process for 
each detail process with which to interact. Example 15–2 provides an example of the 
BPEL file contents after you select the Invoke As Detail checkbox.

Example 15–2 bpelx:invokeAsDetail Attribute

<assign>
   <copy>
     <from variable="input" part="payload" query="/tns:processInfo/tns:value"/>
     <to variable="detail_input" part="payload" query="/dp:input/dp:number"/>

Note: In BPEL 2.0, the signal activity syntax is slightly different. The 
signal activity is wrapped in an extensionActivity element. 

<extensionActivity>
   <bpelx:signal name="notifyDetailProcess" 
                 label="startDetailProcess" to="details"/>
</extensionActivity>



Introduction to Master and Detail Process Coordinations

Coordinating Master and Detail Processes 15-5

   </copy>
</assign

<invoke name="receiveInput" partnerLink="DetailProcess"
        portType="dp:DetailProcess"
        operation="initiate" 
        inputVariable="detail_input" 
        bpelx:invokeAsDetail="true"/>

<!--  receive the result of the remote process -->
<receive name="receive_DetailProcess" partnerLink="DetailProcess"
            portType="dp:DetailProcessCallback"
            operation="onResult" variable="detail_output"/>

The master BPEL process includes a receive signal activity. This activity indicates that 
the master process waits until it receives a signal from all of its detail processes. The 
label value (detailProcessComplete) matches with the label value in the signal 
activity of each detail process. This ensures that the signal is delivered to the correct 
process. Example 15–3 provides an example. This syntax shows a receive signal 
activity in a BPEL process that supports BPEL version 1.1.

Example 15–3 Receive Signal Activity

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess" 
                     label="detailProcessComplete" 
                     from="details"/>

15.1.1.1 Correlating a Master Process with Multiple Detail Processes
For environments in which you have one master and multiple detail processes, use the 
bpelx:detailLabel attribute for signal correlation. Example 15–4 shows how to 
use this attribute.

The first invoke activity invokes the DetailsProcess detail process and associates it 
with a label of detailProcessComplete0.

Example 15–4 First Invoke Activity

<invoke name="invokeDetailProcess" partnerLink="DetailProcess"
        portType="dp:DetailProcess"
        operation="initiate" 
        inputVariable="detail_input" 
        bpelx:detailLabel="detailProcessComplete0"
        bpelx:invokeAsDetail="true"/>

The second invoke activity invokes the DetailsProcess1 detail process and 
associates it with a label of detailProcessComplete1. Example 15–5 provides an 
example.

Note: In BPEL 2.0, the receive signal activity syntax is slightly 
different. The receive signal activity is wrapped in an 
extensionActivity element. 

<extensionActivity>
   <bpelx:receiveSignal name="waitForNotifyFromDetailProcess" 
   label="detailProcessComplete" from="details"/>
</extensionActivity>



Introduction to Master and Detail Process Coordinations

15-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 15–5 Second Invoke Activity

<invoke name="invokeDetailProcess1" partnerLink="DetailProcess1"
        portType="dp1:DetailProcess1"
        operation="initiate" 
        inputVariable="detail_input1" 
        bpelx:detailLabel="detailProcessComplete1-2"
        bpelx:invokeAsDetail="true"/>

The third invoke activity invokes the DetailsProcess2 detail process again through 
a different port and with a different input variable. It associates the 
DetailsProcess2 detail process with a label of detailProcessComplete1-2, as 
shown in Example 15–6.

Example 15–6 Third Invoke Activity

<invoke name="invokeDetailProcess2" partnerLink="DetailProcess2"
        portType="dp2:DetailProcess2"
        operation="initiate" 
        inputVariable="detail_input2" 
        bpelx:detailLabel="detailProcessComplete1-2"
        bpelx:invokeAsDetail="true"/>

The receive signal activity of the master process shown in Example 15–7 waits for a 
return signal from detail process DetailProcess0.

Example 15–7 Receive Signal Activity

<!-- This is a receiveSignal waiting for 1 child to signal back -->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0"
label="detailProcessComplete0" from="details"/>

The second receive signal activity of the master process shown in Example 15–8 also 
waits for a return signal from DetailProcess1 and DetailProcess2.

Example 15–8 Second Receive Signal Activity

<!-- This is a receiveSignal waiting for 2 child (detail) processes to signal back 
-->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess1-2"
   label="detailProcessComplete1-2" from="details"/>

15.1.2 BPEL File Definition for Detail Processes
The BPEL process file of each detail process defines coordination with the master 
process.

A receive signal activity indicates that the detail process shown in Example 15–9 waits 
until it receives a signal executed by its master process. The label value 
(startDetailProcess) matches with the label value in the signal activity of the 
master process.

Note: If there is only one receive signal activity in the BPEL process, 
do not specify the bpelx:detailLabel attribute in the invoke 
activity. In these situations, a default bpelx:detailLabel attribute 
is assumed and does not need to be specified. 



Defining Master and Detail Process Coordination in Oracle JDeveloper

Coordinating Master and Detail Processes 15-7

Example 15–9 startDetailProcess Label Value

<bpelx:receiveSignal name="waitForNotifyFromMasterProcess"
   label="startDetailProcess" from="master"/>

A signal activity indicates that the detail process shown in Example 15–10 signals its 
associated master process at runtime that processing is complete. The label value 
(detailProcessComplete) matches with the label value in the receive signal 
activity of each master process.

Example 15–10 Signal Activity

<bpelx:signal name="notifyMAsterProcess" label="detailProcessComplete"
   to="master"/>

15.2 Defining Master and Detail Process Coordination in Oracle 
JDeveloper

This section provides an overview of how to define master and detail process 
coordination in Oracle BPEL Designer. In this example, one master process and one 
detail process are defined.

15.2.1 How to Create a Master Process

To create a master process:
1. In the SOA Composite Editor, create a BPEL process service component. For this 

example, the process is named MasterProcess.

2. Double-click the MasterProcess BPEL process.

3. In the Component Palette, expand Oracle Extensions.

4. Drag a Signal activity into the designer.

5. Double-click the Signal activity.

This activity signals the detail process to perform processing at runtime. 

6. Enter the details described in Table 15–2:

Figure 15–4 shows the Signal dialog.

Note: This section only describes the tasks specific to master and 
detail process coordination. It does not describe the standard activities 
that you define in a BPEL process, such as creating variables, creating 
assign activities, and so on. 

Table 15–2 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactDetailProcess).

Label Enter a label name (for this example, beginDetailProcess). 
This label must match the receive signal activity label you set in 
the detail process in Step 6 on page 15-9.

To Select details as the type of process to receive this signal.



Defining Master and Detail Process Coordination in Oracle JDeveloper

15-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 15–4 Signal Dialog

7. Click OK.

8. Drag a Receive Signal activity into the designer.

9. Double-click the Receive Signal activity.

This activity enables the master process to wait until it receives the signal executed 
by all of its detail processes.

10. Enter the details shown in Table 15–3:

Figure 15–5 shows the Receive Signal dialog.

Table 15–3 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, waitForDetailProcess).

Label Enter a label name (for this example, 
completeDetailProcess). This label must match the signal 
activity label you set in the detail process in Step 10 on 
page 15-10.

To Select details as the type of process from which to receive the 
signal.



Defining Master and Detail Process Coordination in Oracle JDeveloper

Coordinating Master and Detail Processes 15-9

Figure 15–5 Receive Signal Dialog

11. Click OK.

The master process has now been designed to: 

■ Signal the detail process to perform processing at runtime. 

■ Wait until it receives the signal executed by the detail process.

15.2.2 How to Create a Detail Process

To create a detail process:
1. In the SOA Composite Editor, create a second BPEL process service component. 

For this example, the process is named DetailProcess.

2. Double-click the DetailProcess BPEL process.

3. In the Component Palette, expand Oracle Extensions.

4. Drag a Receive Signal activity into your BPEL process service component.

5. Double-click the Receive Signal activity.

This activity enables the detail process to wait until it receives the signal executed 
by its master process.

6. Enter the details shown in Table 15–4:

Figure 15–6 shows the Receive Signal dialog.

Table 15–4 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, 
WaitForContactFromMasterProcess).

Label Enter a label name (for this example, beginDetailProcess). 
This label must match the signal activity label you set in the 
master process in Step 6 on page 15-7.

To Select master as the type of process from which to receive the 
signal.



Defining Master and Detail Process Coordination in Oracle JDeveloper

15-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 15–6 Receive Signal Dialog

7. Click OK.

8. Drag a Signal activity into the designer.

9. Double-click the Signal activity.

This activity enables the detail process to signal its associated master process at 
runtime that processing is complete.

10. Enter the details described in Table 15–5:

Figure 15–7 shows the Signal dialog.

Table 15–5 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactMasterProcess).

Label Enter a label name (for this example, 
completeDetailProcess). This label must match the receive 
signal activity label you set in the master process in Step 10 on 
page 15-8.

To Select master as the destination.



Defining Master and Detail Process Coordination in Oracle JDeveloper

Coordinating Master and Detail Processes 15-11

Figure 15–7 Signal Dialog

11. Click OK.

The detail process has now been designed to: 

■ Wait until it receives the signal executed by its master process.

■ Signal the master process at runtime that processing is complete. 

15.2.3 How to Create an Invoke Activity

To create an invoke activity:
1. Return to the MasterProcess master process.

2. In the Component Palette, expand BPEL Constructs.

3. Drag an Invoke activity into your BPEL process service component.

4. Double-click the Invoke activity.

5. Select the DetailProcess BPEL process you created in Step 1 on page 15-9 as the 
partner link.

6. Complete all remaining fields in the Invoke dialog, and click OK.

7. In the designer, click Source.

8. Select the Invoke As Detail checkbox in the invoke activity. The BPEL file appears 
as shown in Example 15–11.

Example 15–11  bpelx:invokeAsdetail Attribute

<invoke name="MyInvoke" partnerLink="DetailProcess"
   portType="dp:DetailProcess" 
   operation="initiate"
   inputVariable="detail_input"
   bpelx:invokeAsDetail name="true"/>

This attribute creates the partner process (DetailProcess) as a detail instance.

9. If this is an environment in which one master process is interacting with multiple 
detail processes, perform the following tasks:



Defining Master and Detail Process Coordination in Oracle JDeveloper

15-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. Specify the bpelx:detailLabel attribute for correlating with the receive 
signal activity, as shown in Example 15–12.

Example 15–12 bpelx:detailLabel Attribute

<invoke name="MyInvoke" partnerLink="DetailProcess"
   portType="dp:DetailProcess" 
   operation="initiate"
   inputVariable="detail_input"/>
   bpelx:detailLabel="detailProcessComplete0"
   <bpelx:invokeAsdetail name="true"/>

b. Specify the same label value of detailProcessComplete0 in the receive 
signal activity of the master process, as shown in Example 15–13.

Example 15–13 detailProcessComplete0 Label Value

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0-1"
label="detailProcessComplete0" from="details"/>

c. Repeat these steps as necessary for additional detail processes, ensuring that 
you specify a different label value.

10. From the File main menu, select Save All.

Master and detail coordination design is now complete. 



16

Customizing SOA Composite Applications 16-1

16Customizing SOA Composite Applications

This chapter describes how to customize SOA composite applications with the 
customization feature available with a BPEL process service component.

This chapter includes the following section:

■ Section 16.1, "Introduction to Customizing SOA Composite Applications"

16.1 Introduction to Customizing SOA Composite Applications
This section describes the life cycle for customizing SOA composite applications. For 
example, assume the following organizations require use of the same composite, but 
with slight modifications:

■ A core applications development team

■ A vertical applications team

■ A customer

The core applications development team creates a base customizable composite and 
delivers it to a vertical applications team that customizes it for a certain industry (for 
example, telecommunications). The tailored solution is then sold to a 
telecommunications customer that further customizes the composite for their specific 
geographic business needs. Essentially, there is a base composite and several layers of 
customized composites. At a later time in the composite life cycle, the core 
applications development team creates the next version of the base composite, 
triggering an upgrade cycle for the vertical applications team and the customer.

16.1.1 How To Create the Customizable Composite
This section provides an overview of the steps required for creating the customizable, 
base SOA composite application.

To create the customizable composite:
1. Start Oracle JDeveloper and select the Default Role.

Note: Do not customize the same SOA composite application for 
different layer values. Only a single layer value for customization is 
supported. If you must support another layer value, always import 
the base composite into a different project and change the composite 
name to be specific to the layer value you want to customize. This 
approach is also useful for deployments in which you do not want to 
deploy different layer values with the same composite name.



Introduction to Customizing SOA Composite Applications

16-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. From the File menu, select New > Applications > SOA Application, and click 
OK.

3. Follow the steps in the Create SOA Application wizard.

4. On the Create SOA Application dialog, select both Composite With BPEL Process 
and the Customizable checkbox.

5. Design the BPEL process.

6. Customize the BPEL process by creating a scope activity. This action is required 
because by default the BPEL process is not customizable.

7. Right-click the scope and select Customizable.

8. In the Application Navigator, expand Application Resources > Descriptors > 
ADF META_INF.

9. Open the adf-config.xml file and select the MDS Configuration tab.

10. Click the Add icon to add the required customization classes, as shown in 
Figure 16–1.

In real environments, the customization classes are provided by the core 
applications team. When you use your own customization classes, you must add 
your customization class JAR file to your project to make the classes available for 
the adf-config.xml file.

Figure 16–1 Customization Classes

Note: You can only customize the composite.xml file, .bpel file 
(for Oracle BPEL Process Manager), .mplan file (for Oracle Mediator), 
and .componentType file when using Oracle JDeveloper in the 
Customization Developer role.



Introduction to Customizing SOA Composite Applications

Customizing SOA Composite Applications 16-3

11. Right-click the SOA project and select Deploy. This creates a JAR file package. 
This JAR is also known as a SOA archive (SAR). 

12. Check the application into a source code control system. The file is now ready for 
delivery to the vertical applications team.

For information on how to write customization classes, see Oracle Fusion Middleware 
Fusion Developer's Guide for Oracle Application Development Framework.

16.1.2 How To Customize the Vertical Application
This section provides an overview of the steps required for customizing the vertical 
SOA composite application.

To customize the vertical application:
1. Add the layer values for the customization layers through either of the following 

methods:

a. To add application-specific layer values, click the Configure Design Time 
Customization Layer Values link, as shown in Figure 16–2.

Figure 16–2 Configure Design Time Customization Layer Values Link

b. Add the layer values.

After you specify the values and save the file, the 
CustomizationLayerValues.xml file is displayed in the MDS DT folder under 
Application Resources. You can double-click the file in this location to open an 
editor for making additional modifications.

or

a. To add global values applicable to all applications, open the 
CustomizationLayerValues.xml file in $JDEV_
HOME/jdeveloper/jdev and add the layer values for the customization 
layers. For example, add the value Communications to the industry layer. 

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
  <cust-layer name="industry">
    <cust-layer-value value="communications" 
display-name="Communications"/>
  </cust-layer>
</cust-layers>

2. Start Oracle JDeveloper and select the Default Role.

3. Create a new SOA application with a different name than the core application.

4. From the File menu, select Import > SOA Archive Into SOA Project.



Introduction to Customizing SOA Composite Applications

16-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Click Browse to select the composite archive JAR file created by the core 
application team in Section 16.1.1, "How To Create the Customizable Composite."

6. In the Composite Name field, enter a different name than the core SOA project.

7. Select the Import for Customization checkbox.

8. From the Tools menu, select Preferences -> Roles > Customization Developer.

9. Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and 
layer values.

10. Select a layer and value to customize, as shown in Figure 16–3 (for this example, 
layer industry and value Communications are selected).

Figure 16–3 Customization Context

11. In the SOA Composite Editor, double-click the BPEL process to access Oracle 
BPEL Designer.

You can only edit scope activities that have been set to customizable. In the 
example shown in Figure 16–4, the core applications team set only one scope to be 
customizable. The other activities in the BPEL process are disabled and cannot be 
edited.

Note: Do not select any SOA project. You must create a new SOA 
project for the JAR file that you import.



Introduction to Customizing SOA Composite Applications

Customizing SOA Composite Applications 16-5

Figure 16–4 One Customizable Scope

12. Right-click the SOA project in the Application Navigator and select Deploy to 
create a JAR file of the customized composite (SAR). 

Since deployment is invoked with the customization role enabled, the base 
composite with the appropriate layers based on the current customization context 
is automatically merged. 

13. Check in the application to a source code control system. 

The JAR file contains a merged composite that in turn acts as a base process for the 
next level of customization. The JAR file can now be delivered to the customer.

16.1.3 How to Customize the Customer Version
This section provides an overview of the steps required for customizing the customer 
version of the SOA composite application.

How to customize the customer version:
1. Add the layer values for the customization layers through either of the following 

methods:

a. To add application-specific layer values, click the Configure Design Time 
Customization Layer Values link, as shown in Step 1 of Section 16.1.2, "How 
To Customize the Vertical Application."

b. Add the layer values.

After you specify the values and save the file, the 
CustomizationLayerValues.xml file is displayed in the MDS DT folder under 

Note: You can create WSDL and XSD files while running Oracle 
JDeveloper in the Customization Developer role. In the Application 
Navigator, right-click the project name and select SOA > Create 
WSDL or SOA > Create XSD.



Introduction to Customizing SOA Composite Applications

16-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Application Resources. You can double-click the file in this location to open an 
editor for making additional modifications.

or

a. To add global values applicable to all applications, open the 
CustomizationLayerValues.xml file in $JDEV_
HOME/jdeveloper/jdev and add the layer values for the customization 
layers. For example, add the values North America and Asia Pacific to 
the site layer. 

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
  <cust-layer name="site">
    <cust-layer-value value="communications" display-name="North America"/>
    <cust-layer-value value="communications" display-name="Asia Pacific"/>
  </cust-layer>
</cust-layers>

2. Start Oracle JDeveloper and select the Default Role.

3. Create a new SOA application with a different name than the core application or 
customized application.

4. From the File menu, select Import > SOA Archive Into SOA Project.

5. Click Browse to select the composite archive JAR file created by the vertical 
applications team in Section 16.1.2, "How To Customize the Vertical Application."

6. Select the Import for Customization checkbox.

7. From the Tools menu, select Preferences -> Roles > Customization Developer.

8. Restart Oracle JDeveloper.

The Customization Context dialog displays the available customization layers and 
layer values.

9. Select a layer and value to customize, as shown in Figure 16–5 (for this example, 
layer site and value North America are selected).

Figure 16–5 Customization Context

10. Customize the BPEL process.

11. Right-click the SOA project and select Deploy to create a JAR file (SAR) for the 
North American region.

12. Check the application into a source code control system.

16.1.4 How to Create Customization Classes
This section describes how to create customization classes. In this example, you create 
a class for a customization layer named MyCustomizationLayer.



Introduction to Customizing SOA Composite Applications

Customizing SOA Composite Applications 16-7

1. Invoke the Create Java Class Wizard in Oracle JDeveloper by selecting File > New 
> General > Java > Java Class. If this selection does not appear, ensure that the All 
Technologies tab is selected at the top of the New Gallery dialog.

2. Create a Java class extending from the following class:

oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass

3. Provide the following content for the customization class.

package myCustomizationPackage;

import oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass;

public class MyCustomizationClass extends GenericSOACustomizationClass {

    public MyCustomizationClass() {
        super();

        // set the customization layer name
        setName("MyCustomizationLayer");
    }
}

Note that the Create Java Class Wizard automatically generates the following 
content:

package myCustomizationPackage;

import oracle.tip.tools.ide.fabric.custom.GenericSOACustomizationClass;

public class MyCustomizationClass extends GenericSOACustomizationClass {
    public MyCustomizationClass(String string, String string1) {
        super(string, string1);
    }

    public MyCustomizationClass() {
        super();
    }
}

4. For the customization class to have the correct customization layer, set the 
customization layer name by adding the following to the constructor without 
parameters.

 // set the customization layer name        
        setName("MyCustomizationLayer");

You can also optionally remove the constructor with parameters.

5. To make the customization class effective, compile the customization class by 
building/making the SOA project. 

6. Ensure that the build succeeds.

16.1.5 How to Upgrade the Composite
This section provides an overview of the steps required for upgrading the SOA 
composite application to the next version.



Introduction to Customizing SOA Composite Applications

16-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To upgrade the composite:

16.1.5.1 Core Application Team
The core application team fixes bugs, makes product enhancements. and creates the 
next version of the composite.

1. Check out the application created in Section 16.1.1, "How To Create the 
Customizable Composite" from source control.

2. Start Oracle JDeveloper and select the Default Role.

3. Make bug fixes and product enhancements.

4. Deploy the composite to create the next revision of the JAR file.

5. Deliver the JAR file to the vertical applications team.

16.1.5.2 The Vertical Application Team
The vertical applications team customizes the new base composite to create a version 
of the JAR file.

1. Check out the application created in Section 16.1.2, "How To Customize the 
Vertical Application" from source control.

2. Start Oracle JDeveloper and select the Default Role.

3. Open the checked-out application.

4. Select the project node in the Application Navigator to set the current project 
context. This is important because the import command in the next step imports 
the SOA archive into the selected project to upgrade the base.

5. From the File menu in Oracle JDeveloper, import the new revision of the JAR file 
created in Section 16.1.5.1, "Core Application Team."

6. From the Tools menu, select Preferences -> Roles > Customization Developer.

7. Restart Oracle JDeveloper.

8. In the Customization Context dialog, select a layer and value to customize (for 
example, select layer industry and value Communications).

9. Open the BPEL process to see if the new base composite can be merged with layers 
for the above selected context. 

10. Review the log window for potential warnings and errors.

11. If required, fix errors and warnings by modifying the process. This edits the layers 
behind the scenes.

12. Deploy the composite to create the next revision of the customized JAR file and 
deliver it to the customer for an upgrade.

16.1.5.3 The Customer
The customer follows the same procedures as the vertical applications team in 
Section 16.1.5.2, "The Vertical Application Team" to apply their layers to the new base 
composite.

16.1.6 Searching for Customized Activities in a BPEL Process
You can search for customized activities in a BPEL process in Oracle JDeveloper.

1. Access Oracle JDeveloper using the Customization Developer role.



Introduction to Customizing SOA Composite Applications

Customizing SOA Composite Applications 16-9

2. In the Search menu for the BPEL process at the top of the designer, select 
Customization Search, as shown in Figure 16–6.

Figure 16–6 Customization Search Option

The search results display in the Search for Customizations tab of the Log 
window at the bottom of the designer.

16.1.7 What You May Need to Know About Editing Artifacts in a Customized Composite
The source of any artifact in Oracle JDeveloper (except for new artifacts created in the 
Customization Developer role) is editable in the Customization Developer role of 
another application. 

For example:

1. Create a SOA composite application with the Customization Developer option 
selected.

2. Edit a composite.xml property in the composite (as an example, add the 
passThroughHeader property for an Oracle Mediator service component 
included in the composite).

3. Deploy the composite to a SAR file, and import the SAR file into another new 
composite.

4. Restart Oracle JDeveloper and open the new composite using the Customization 
Developer role.

5. Go to the Source view of the composite.xml file, and from the Property 
Inspector attempt to modify the passThroughHeader property value.

Note that the property is editable.

16.1.8 What You May Need to Know About Resolving Validation Errors in Oracle 
JDeveloper

In the customization role, the metadata repository (MDS) merges customizations with 
the base metadata. The merging can result in an invalid XML document against its 
schema. MDS merging does not invoke a schema validation to ensure that the merging 
always creates a valid XML document. This can cause a problem for MDS clients that 
rely on the validity of the metadata to render their metadata UI editors.

Whenever a SOA file such as composite.xml becomes invalid, you must switch to 
Source view in Oracle JDeveloper to directly fix the XML source. If Source view is not 
editable (for example, you have accessed Oracle JDeveloper using the Customization 
Developer role), you must use the Structure window in Oracle JDeveloper to fix the 
XML source. 



Introduction to Customizing SOA Composite Applications

16-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For example, assume you created a base SOA composite application with a BPEL 
process that included a customized scope. The SAR file for the base application was 
then imported into a new application in which the following components were added 
when accessing Oracle JDeveloper with the Customization Developer role:

■ An outbound file adapter

■ An invoke activity (added to the customizable scope) for invoking the file adapter

When version two of the base SOA composite application was created, a synchronous 
Oracle Mediator service component was added, which caused the routing rules to the 
BPEL process service component to be updated.

The SAR file for version two of the base application was then imported into the 
customized application. When the user accessed Oracle JDeveloper with the 
Customization Developer role, an invalid composite error was displayed. The 
composite.xml file in the Structure window showed the following invalid structure 
for the sequence of service components and reference binding components.

<component> </component>
<reference> </reference>
<component> </component>

The <reference> component (in this case, the outbound file adapter added when 
the user accessed Oracle JDeveloper with the Customization Developer role in 
version one of the base application) should have displayed last. 

<component> </component>
<component> </component>
<reference> </reference>

To resolve this error, go to the Structure window and copy and paste these components 
into the correct order. This action resolves the composite validation error.

16.1.9 What You May Need to Know About Resolving a Sequence Conflict
Assume you perform the following steps.

1. Customize version 1 of a SOA composite application. 

For example, while using Oracle JDeveloper in the Customization Developer role, 
you add new activities into a customizable scope activity of the BPEL process. The 
BPEL process creates a sequence activity into which the new activities are added.

2. Create version 2 of the SOA composite application.

In the version 2 composite, if new activities are added into the same customizable 
scope, a new sequence activity is created.

3. Import version 2 of the SOA composite application into a customized application.

4. Open Oracle JDeveloper in Customization Developer role.

The following error is displayed:

Sequence element is not expected

Perform the following steps to resolve the conflict:

1. Go to the Structure window.

2. Expand the sequence.

3. Copy each component and paste it into another sequence.



Introduction to Customizing SOA Composite Applications

Customizing SOA Composite Applications 16-11

4. Delete the components in the sequence from which they were copied.

5. Delete the sequence when it is empty.

16.1.10 What You May Need to Know About Compiling and Deploying a Customized 
Application

When you deploy or compile a customized application at the core application, vertical 
application, or customer level, warning messages describing unexpected ID attributes 
are displayed, as shown in Example 16–1. You can safely ignore these messages. These 
messages display because the schema definition does not include these simple-type 
elements, which is expected behavior. These messages do not prevent the customized 
composite from being successfully deployed. 

Example 16–1 Deployment or Compilation Errors

[scac] warning: in
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml(22,32): 
 Schema validation failed for
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml<Line 22,
 Column 32>: XML-24535: (Error) Attribute
 'http://www.w3.org/XML/1998/namespace:id' not expected.
    [scac] warning: in
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml(23,32): 
 Schema validation failed for
 /scratch/qizhong/my-jdev/mywork/CompositeTestApp2/Project2/composite.xml<Line 23,
 Column 32>: XML-24535: (Error) Attribute
 'http://www.w3.org/XML/1998/namespace:id' not expected. 



Introduction to Customizing SOA Composite Applications

16-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



17

Using the Notification Service 17-1

17 Using the Notification Service

This chapter describes how to send notifications from a BPEL process using a variety 
of channels. A BPEL process can be designed to send email, voice message, instant 
messaging (IM), or short message service (SMS) notifications. A BPEL process can also 
be designed to consider an end user's channel preference at runtime for selecting the 
notification channel.

This chapter includes the following sections:

■ Section 17.1, "Introduction to the Notification Service"

■ Section 17.2, "Introduction to Notification Channel Setup"

■ Section 17.3, "Selecting Notification Channels During BPEL Process Design"

■ Section 17.4, "Allowing the End User to Select Notification Channels"

17.1 Introduction to the Notification Service
Various scenarios may require sending email messages or other types of notifications 
to users as part of the process flow. For example, certain types of exceptions that 
cannot be handled automatically may require manual intervention. In this case, a 
BPEL process can use the notification service to alert users by voice, IM, SMS, or email. 

The contact information (email address, phone number, and so on) of the recipient is 
either static (such as admin@yourcompany.com) or obtained dynamically during 
runtime. To obtain the contact information dynamically, XPath expressions can retrieve 
it from the identity store (LDAP) or extract it from the BPEL payload. 

This chapter uses the following terms:

■ Notification

An asynchronous message sent to a user by a specific channel. The message can be 
sent as an email, voice, IM, or SMS message.

■ Actionable notification

A notification to which the user can respond. For example, workflow sends an 
email to a manager to approve or reject a purchase order. The manager approves 
or rejects the request by replying to the email with appropriate content.

■ Human task email notification layer

Note: The fax and pager notification channels are not supported in 
11g Release 1 (11.1.1).



Introduction to the Notification Service

17-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Sends email notifications directly from a BPEL process or implicitly from the 
human task part of a BPEL process. Implicit notifications are modeled from the 
Human Task Editor.

For sending email notifications directly from a BPEL process, you must explicitly 
specify the user information in the BPEL process and can be inside or outside of a 
human task scope.

For sending email notifications implicitly from the human task part of a BPEL 
process, you only specify the recipient based on the relationship of the user with 
regards to the task (that is, the creator, assignee, and so on).

■ Oracle User Messaging Service

Oracle User Messaging Service is a new feature for release 11g. The BPEL 
notification service uses the underlying infrastructure provided by Oracle User 
Messaging Service to send notifications. 

Oracle User Messaging Service also provides the user preference infrastructure for 
getting the end user's preferred channel during runtime.

For more information on the Oracle User Messaging Service, see Appendix 59, 
"Oracle User Messaging Service." 

Figure 17–1 shows the Oracle User Messaging Service interfaces and supported 
service types.

Figure 17–1 Service Interfaces and Supported Service Types

For more information about notifications, see the following section:

■ Section 32.2, "Notifications from Human Workflow"

■ Section 28.3.10, "How to Specify Participant Notification Preferences" for 
instructions on specifying email notifications in the Human Task Editor

■ Part XI, "Using Oracle User Messaging Service"

Note: Implicit notifications are processed through more layers of 
code than explicit notifications. If explicit notifications are functioning 
correctly, it does not mean that implicit notifications also function 
correctly.

Oracle User 
Messaging 
Service

Java
Interface

Web Services
Interface
(WSIF binding)

Java
Call

BPEL
Process

Human
Workflow

Task

Email Server

SMS Server

Voice Gateway

IM Server



Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-3

17.2 Introduction to Notification Channel Setup
Notification setup is a multiple-step process that involves three user interface tools. 
Table 17–1 provides an overview of this process, including the task to perform, the tool 
to use, and the documentation to which to refer for more specific details.

17.3 Selecting Notification Channels During BPEL Process Design
Oracle JDeveloper includes the email, IM, SMS, and voice channel notification 
channels in the Component Palette. You can set the exact notification channels to use 
during design time. For example, a BPEL process can be designed to use the following 
notification channels:

■ If an expense report amount is less than $1000, an email notification channel is 
used.

Table 17–1 Notification Tasks

Task Description User Interface Described In...

Select a channel for 
sending notifications in 
a SOA composite 
application.

Select a method for sending 
notifications:

■ Explicitly select and configure 
an email, IM, SMS, or voice 
channel.

or 

■ Do not explicitly select a 
notification channel, but simply 
select that a notification must be 
sent. Channel selection occurs 
later in the User Messaging 
Preferences user interface.

Selected and 
configured by the 
BPEL process designer 
in Oracle BPEL 
Designer

Section 17.3, "Selecting 
Notification Channels 
During BPEL Process 
Design"

or

Section 17.4, "Allowing 
the End User to Select 
Notification Channels"

Configure the driver for 
the notification channel

You configure drivers on the same 
Oracle WebLogic Server on which 
you deploy the SOA composite 
application. This action enables 
participants to receive and forward 
notifications. Driver support is 
provided for email, IM, SMS, and 
voice channels.

Configured by the 
administrator in 
Oracle Enterprise 
Manager Fusion 
Middleware Control 
Console

Oracle Fusion Middleware 
Administrator's Guide for 
Oracle SOA Suite and 
Oracle BPM Suite

Configure the 
notification mode and 
actionable accounts for 
human workflows

If you are using notifications with 
human workflow, you configure the 
notification mode and actionable 
account for email.

Configured by the 
administrator in 
Oracle Enterprise 
Manager Fusion 
Middleware Control 
Console

Oracle Fusion Middleware 
Administrator's Guide for 
Oracle SOA Suite and 
Oracle BPM Suite

Register the devices 
used to access messages 
by specifying user 
preferences

This action enables workflow 
participants to receive notification 
messages. For example, the end user 
registers email clients and specifies 
the message content to receive and 
the channel to use for receiving 
messages. 

If no channel is specified, email is 
used by default. Note that the 
preferences set in this application 
are applicable only to that specific 
end user, and not to other users.

Registered by the end 
user in the User 
Messaging Preferences 
user interface. You can 
access this interface by 
selecting Preferences > 
Notification in Oracle 
BPM Worklist.

Part XI, "Using Oracle 
User Messaging Service"



Selecting Notification Channels During BPEL Process Design

17-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ If an expense report amount is between $1000 and $2000, an SMS notification 
channel is used.

■ If an expense report amount is more than $2000, a voice notification channel is 
used.

To select the notification channel during BPEL process design:
1. In the Component Palette, expand Oracle Extensions.

2. Drag a notification channel into the designer:

■ Email

■ IM

■ SMS

■ Voice

3. See the section in Table 17–2 based on the notification channel you selected.

17.3.1 How To Configure the Email Notification Channel
When you select Email from the Component Palette, the Email dialog appears. 
Figure 17–2 shows the required email notification parameters.

Table 17–2 Notification Channels

If You 
Selected... See...

Email Section 17.3.1, "How To Configure the Email Notification Channel" to configure 
email notification

IM Section 17.3.2, "How to Configure the IM Notification Channel" to configure IM 
notification

SMS Section 17.3.3, "How to Configure the SMS Notification Channel" to configure 
SMS notification

Voice Section 17.3.4, "How to Configure the Voice Notification Channel" to configure 
voice message notification

Note: If you delete an email, voice, SMS, or IM activity, any partner 
link with which it is integrated is not automatically deleted.



Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-5

Figure 17–2 Email Dialog

To configure the email notification channel:
1. Enter information for each field as described in Table 17–3.

Note: For the To, CC, and Bcc fields, separate multiple addresses 
with a semicolon (;).

Table 17–3 Email Notification Parameters

Name Description

From Account The name of the account used to send this message. The default 
account is named Default and is editable from the Workflow 
Notification Properties page in Oracle Enterprise Manager 
Fusion Middleware Control Console. To add additional 
accounts, you must use the System MBean Browser in Oracle 
Enterprise Manager Fusion Middleware Control Console.

For information on editing this property in Oracle Enterprise 
Manager Fusion Middleware Control Console, see Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle 
BPM Suite.

To The email address to which the message is to be delivered. This 
can be one of the following:

■ A static email address entered at the time the message is 
created

■ An email address retrieved using the identity service

■ A dynamic address from the payload

The XPath Expression Builder can get the dynamic email 
address from the input. See Section 17.3.5, "How to Select Email 
Addresses and Telephone Numbers Dynamically."

CC and Bcc The email addresses to which the message is copied and blind 
copied. This can be a static or dynamic address, as described for 
the To address.

Reply To The email address to use for replies. This can be a static or 
dynamic address, as described for the To address.



Selecting Notification Channels During BPEL Process Design

17-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Click OK.

The BPEL fragment that invokes the notification service to send the email message 
is created.

3. See Table 17–1 on page 17-3 for additional configuration procedures to perform.

The WebLogic Fusion Order Demo application uses an email activity in the Scope_
NotifyCustomerofCompletion scope. The Oracle User Messaging Service sends 
the email to a customer when an order is fulfilled. The following details are 
specified in the Email dialog:

■ An XPath expression specifies the customer’s email address.

bpws:getVariableData('gCustomerInfoVariable','parameters','/ns3:findCustome
rInfoVO1CustomerInfoVOCriteriaResponse/ns3:result/ns2:ConfirmedEmail')

■ A combination of manually-entered text and an XPath expression specifies the 
ID of the order:

Order with id
<%bpws:getVariableData('gOrderInfoVariable','/ns2:orderInfoVOSDO/ns2:OrderI
d')%> shipped!

■ A combination of manually-entered text and an XPath expression specifies the 
body of the email message:

Dear
<%bpws:getVariableData('gCustomerInfoVariable','parameters','/ns6:findCusto
merInfoVO1CustomerInfoVOCriteriaResponse/ns6:result/ns4:FirstName')%>,
your order has been shipped.

Figure 17–3 provides details.

Subject The subject of the email message. This can be plain text or 
dynamic text. The XPath Expression Builder can set dynamic 
text based on data from process variables that you specify. 

Body The message body of the email message. This can be plain text, 
HTML, or dynamic text, as described for the Subject parameter.

Multipart message with n 
attachments

Select to specify email attachments. See Section 17.3.1.1, "Setting 
Email Attachments."

The number of attachments if Multipart message is selected. 
The number does not include the body. For example, if you have 
a body and one attachment, specify 1.

Table 17–3 (Cont.) Email Notification Parameters

Name Description



Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-7

Figure 17–3 Email Dialog

17.3.1.1 Setting Email Attachments
You can send attachments with an email activity. Each attachment has three elements: 
name, MIME type, and value. All three elements must be set for each attachment.

To add an attachment to an email message:
1. From the Component Palette, select Email as the notification channel.

2. Specify values for To, Subject, and Body.

3. Click the Attachments tab.

4. Click the Add icon to add as many attachments as you require. (Note that the 
number of attachments does not need to include the body part.)

5. In the Name field, change the name or accept the default value of 
Attachmentnumber.

6. In the Mime Type field, click the Browse icon to invoke the Expression Builder 
dialog for adding MIME type contents. 

7. When complete, click OK to return to the Attachments tab.

8. In the Value field, click the Browse icon to invoke the Expression Builder dialog 
for adding the contents of the attachment. 

9. When complete, click OK to return to the Attachments tab.

The BPEL fragment with an assign activity with multiple copy rules is generated. 
One of the copy rules copies the attachment.

10. Click OK.

11. Expand the email activity. 

Note that an assign activity named EmailParamsAssign appears.

12. Double-click EmailParamsAssign.

Note the settings in EmailParamsAssign, as shown in Figure 17–4.



Selecting Notification Channels During BPEL Process Design

17-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 17–4 EmailParamsAssign Assign Activity

For more information about sending attachments using email, see the following 
documentation:

■ Appendix J, "Oracle User Messaging Service Applications"

■ The notification-101 sample, which is available at the following URL:

https://soasamples.samplecode.oracle.com/ 

17.3.1.2 Formatting the Body of an Email Message as HTML
You can format the body of an email message as HTML rather than as straight text. To 
perform this action, apply an XSLT transform to generate the email body. Add in the 
XSLT tag you want to use. Tools such as XMLSpy can provide assistance in writing 
and testing the XSLT. The MIME type should be 
string(’text/html;charset=UTF-8’).

The email notification assignment looks as shown in Example 17–1:



Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-9

Example 17–1 Email Notification Assignment

<copy>
 <from
expression="ora:processXSLT('TransformPositionSummary7.xslt',bpws: 
getVariableData('ClientPositionSummary'))"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns9:Content/ns9:ContentBody"/>
</copy>

17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function
If the HTML for the message content of an email activity is generated dynamically, (as 
with XSLT, file read, and so on), it must be wrapped in a CDATA function. This 
prevents conflicts between the XML/HTML content of the message body and BPEL's 
internal XML data structures.

For example, assume you use the append operation shown in Example 17–2 for the 
message content inside the email activity: 

Example 17–2 Message Content Inside an Email Activity

<bpelx:append> 
  <bpelx:from 
    expression="ora:processXSLT('xsl/email.xslt',bpws:getVariableData('Variable_1'
    ))"/> 
  <bpelx:to variable="varNotificationReq" part="EmailPayload"
    query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[1]
    /ns1:ContentBody"/>
</bpelx:append>

For this to work correctly, you must pass the output of the processXSLT() function 
to the CDATA() function, as shown in Example 17–3.

Example 17–3 CDATA() Function

<%ora:toCDATA(xdk:processXSLT('xsl/email.xslt', 
 bpws:getVariableData('inputVariable','payload','/client:process/client:input') 
 ))%> 

17.3.2 How to Configure the IM Notification Channel
When you drag IM from the Component Palette, the IM dialog appears. Figure 17–5 
shows the required IM notification parameters.



Selecting Notification Channels During BPEL Process Design

17-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 17–5 IM Dialog

To configure the IM notification channel:
1. Enter information for each field as described in Table 17–4.

2. Click OK.

The BPEL fragment that invokes the notification service for IM notification is 
created.

3. See Table 17–1 on page 17-3 for additional configuration procedures to perform.

17.3.3 How to Configure the SMS Notification Channel
When you select SMS from the Component Palette, the SMS dialog appears. 
Figure 17–6 shows the required SMS notification parameters.

Table 17–4 IM Notification Parameters

Name Description

To The IM address to which the message is to be delivered. Enter 
the address manually or click the XPath Expression Builder icon 
to display the Expression Builder dialog to dynamically enter an 
account.

Body The IM message body. This can be plain text or dynamic text. 
The XPath Expression Builder can set dynamic text based on 
data from process variables that you specify.



Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-11

Figure 17–6 SMS Dialog

To configure the SMS notification channel:
1. Enter information for each field as described in Table 17–5.

2. Click OK. 

The BPEL fragment that invokes the notification service for SMS notification is 
created.

3. See Table 17–1 on page 17-3 for additional configuration procedures to perform.

Table 17–5 SMS Notification Parameters

Name Description

From Number The telephone number from which to send the SMS notification. 
This can be a static telephone number entered at the time the 
message is created or a dynamic telephone number from the 
payload. The XPath Expression Builder can get the dynamic 
telephone number from the input. See Section 17.3.5, "How to 
Select Email Addresses and Telephone Numbers Dynamically."

Telephone Number Select a method for specifying the telephone number to which to 
deliver the message:

■ A static telephone number entered at the time the message 
is created.

■ A telephone number retrieved using the identity service.

■ A dynamic telephone number from the payload. The XPath 
Expression Builder can get the dynamic telephone number 
from the input.

Subject The subject of the SMS message. This can be plain text or 
dynamic text. The XPath Expression Builder can set dynamic 
text based on data from process variables that you specify.

Body The SMS message body. This must be plain text. This can be 
plain text or dynamic text as described for the Subject 
parameter.



Selecting Notification Channels During BPEL Process Design

17-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

17.3.4 How to Configure the Voice Notification Channel
When you select Voice from the Component Palette, the Voice dialog appears. 
Figure 17–7 shows the required voice notification parameters.

Figure 17–7 Voice Dialog

To configure the voice notification channel:
1. Enter information for each field as described in Table 17–6.

2. Click OK.

The BPEL fragment that invokes the notification service for voice notification is 
created.

3. See Table 17–1 on page 17-3 for additional configuration procedures to perform.

17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically
You may need to set email addresses or telephone numbers dynamically based on 
certain process variables. You can also look up contact information for a specific user 
using the built-in XPath functions for the identity service:

Table 17–6 Voice Notification Parameters 

Name Description

Telephone Number The telephone number to which the message is to be delivered. 
Specify the number through one of the following methods:

■ A static telephone number entered at the time the message 
is created

■ A telephone number retrieved using the identity service

■ A dynamic telephone number from the payload

The XPath Expression Builder can retrieve the dynamic 
telephone number from the input.

Body The message body. This can be plain text, XML, or dynamic text. 
The XPath Expression Builder can set dynamic text based on 
data from process variables that you specify.



Selecting Notification Channels During BPEL Process Design

Using the Notification Service 17-13

■ To get the email address or telephone number directly from the payload, use the 
following XPath expression:

bpws:getVariableData('<variable name>', '<part>','input_xpath_to_get_an_
address')

For example, to get the email address from variable inputVariable and part 
payload based on XPath /client/BPELProcessRequest/client/mail:

<%bpws:getVariableData('inputVariable','payload','/client:BPELProcessRequest/
client:email')%>

You can use the XPath Expression Builder to select the function and enter the 
XPath expression to get an address from the input variable.

■ To get the email address or telephone number dynamically from the underlying 
identity store (LDAP) use the following XPath expression:

ids:getUserProperty(userName, attributeName[, realmName])

The first argument evaluates to the user ID. The second argument is the property 
name. The third argument is the realm name. Table 17–7 lists the property names 
that can be used in this XPath function.

The following example gets the email address of the user identified by the variable 
inputVariable, part payload, and queries 
/client:BPELProcessRequest/client:userID:

ids:getUserProperty(bpws:getVariableData(‘inputVariable’,
‘payload’,‘/client:BPELProcessRequest/client:userid’), ‘mail’)

If realmName is not specified, then the default realm name is used. For example, if 
the default realm name is jazn.com, the following XPath expression searches for 
the user in the jazn.com realm:

ids:getUserProperty('jcooper', 'mail');

The following XPath expression provides the same functionality as the one above. 
In this case, however, the realm name of jazn.com is explicitly specified:

ids:getUserProperty('jcooper', 'mail', 'jazn.com');

17.3.6 How to Select Notification Recipients by Browsing the User Directory
You can select users or groups in Oracle JDeveloper to whom you want to send 
notifications by browsing the user directory (for example, Oracle Internet Directory) 
that is configured for use with Oracle BPEL Process Manager. Click the Search icon to 
the right of the following fields to open the Identity Lookup dialog:

■ To field on the Email and IM dialogs

Table 17–7 Properties for the Dynamic User XPath Function

Property Name Description

mail Look up a user’s email address.

telephoneNumber Look up a user’s telephone number.

mobile Look up a user’s mobile telephone number.

homephone Look up a user’s home telephone number.



Allowing the End User to Select Notification Channels

17-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Telephone Number field on the SMS and Voice dialogs

For more information about using the Identity Lookup dialog, see Chapter 32, 
"Introduction to Human Workflow Services"

17.4 Allowing the End User to Select Notification Channels
You can design a BPEL process in which you do not explicitly select a notification 
channel during design time, but simply indicate that a notification must be sent. The 
channel to use for sending notifications is resolved at runtime based on preferences 
defined by the end user in the User Messaging Preferences user interface of the Oracle 
User Messaging Service. This moves the responsibility of notification channel selection 
from the BPEL process designer in Oracle BPEL Designer to the end user. If the end 
user does not select a preferred channel or rule, email is used by default for sending 
notifications to that user. Regardless of who selects the channel to use, channel use is 
still based on the driver installation and configuration performed in the Oracle User 
Messaging Service section of Oracle Enterprise Manager Fusion Middleware Control 
Console by the administrator.

For example, an end user may set their preferences as follows:

■ If an expense report amount is less than $153, they receive an email notification.

■ If an expense report amount is between $153 and $3678, they receive an SMS 
notification.

■ If an expense report amount is more than $3678, they receive a voice notification.

For more information about the User Messaging Preferences user interface, see 
Chapter 64, "User Messaging Preferences."

17.4.1 How to Allow the End User to Select Notification Channels

To allow the end user to select notification channels:
1. From the Component Palette list, select BPEL.

2. Expand BPEL Activities and Components.

3. From the Component Palette, drag the User Notification activity into the designer. 
Figure 17–8 shows the required user notification parameters.

Note: You can also set user preferences for sending notifications in 
human workflows in the Human Task Editor. Set these preferences in 
the Notification Filters part of the Notification Settings section. 
These preferences are used to evaluate rules in the task. For more 
information, see Section 28.3.10.8, "Sending Task Attachments with 
Email Notifications."



Allowing the End User to Select Notification Channels

Using the Notification Service 17-15

Figure 17–8 User Notification Dialog

4. Enter information for each field as described in Table 17–8.

5. Click Apply.

17.4.1.1 How to Create and Send Headers for Notifications
The Advanced tab of the User Notification dialog enables you to create and send 
header and name information that may be useful to an end user in creating their own 
preference rules for receiving notifications. For example:

■ The BPEL designer creates specifies the users named jcooper and jstein in the 
General tab.

Table 17–8 User Notification Parameters 

Name Description

To Enter a valid user for the recipient of this notification message 
through one of the following methods:

■ Enter the user manually

■ Click the Search icon to display a dialog for selecting a user 
configured through the identity service. The identity service 
enables the lookup of user properties, roles, and group 
memberships.

■ Click the XPath Expression Builder icon to display the 
Expression Builder dialog to dynamically enter a user.

Note: You must specify a user name (for example, jcooper) 
instead of an address.

Subject Enter a message name or click the XPath Expression Builder 
icon to display the Expression Builder dialog to dynamically 
enter a subject. If notification is sent through email, this field is 
used during runtime. This field is ignored if notifications are 
sent through the voice, SMS, or IM channels.

Notification Message Enter the notification message or click the XPath Expression 
Builder icon to display the Expression Builder dialog to 
dynamically enter a message to send.



Allowing the End User to Select Notification Channels

17-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The BPEL designer creates the following header and name information in the 
Advanced tab:

– Amount = payload->salary

– Application = HR-Application

■ The administrator deploys the process and configures various channel drivers in 
Oracle Enterprise Manager Fusion Middleware Control Console.

■ The end user jcooper creates the following preference rules in the User 
Messaging Preferences user interface:

’Email if Amount < 30000" and "SMS if Amount is between 30000 and 100000’ and
"Voice if Amount > 100000"

■ The end user jstein creates the following preference rule in the User Messaging 
Preferences user interface:

If "Application == HR-Application" and Amount > 2000000" send Voice 

1. If you want to create and send header and name information to an end user for 
creating their own preference rules, click Advanced. 

Figure 17–9 shows the Advanced tab of the User Notification dialog.

Figure 17–9 User Notification Advanced Parameters 

2. Click the Add icon to add a row to the Header and Name columns.

3. In the Header column, click the field to display a list for selecting a value. 
Otherwise, manually enter a value.

4. In the Name column, enter a value.

5. Click OK.



18

Using Oracle BPEL Process Manager Sensors 18-1

18     Using Oracle BPEL Process Manager
Sensors

This chapter describes how to use sensors to select BPEL activities, variables, and 
faults to monitor during runtime. This chapter describes how to use and set up sensors 
for a BPEL process. 

This chapter includes the following sections:

■ Section 18.1, "Introduction to Sensors"

■ Section 18.2, "Configuring Sensors and Sensor Actions in Oracle JDeveloper"

■ Section 18.3, "Viewing Sensors and Sensor Action Definitions in Oracle Enterprise 
Manager Fusion Middleware Control Console"

For more information about sensors, see the following sections:

■ Section 50.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action" for how 
to create sensor actions in Oracle BPEL Process Manager to publish sensor data as 
data objects in an Oracle BAM Server

■ Appendix D, "Understanding Sensor Public Views and the Sensor Actions XSD"

18.1 Introduction to Sensors
Sensors are used to declare interest in specific events throughout the life cycle of a 
BPEL process instance. In a business process, that can be the activation and completion 
of a specific activity or the modification of a variable value in the business process.

When a sensor is triggered, a specific sensor value is created. For example, if a sensor 
declares interest in the completion of a BPEL scope, the sensor value consists of the 
name of the BPEL scope and a time stamp value of when the activity was completed. If 
a sensor value declares interest in a BPEL process variable, then the sensor value 
consists of the value of the variable at the moment it was modified, a time stamp when 
the variable was modified, and the activity name and type that modified the BPEL 
variable.

The data format for sensor values is normalized and well-defined using XML schema.

A sensor action is an instruction on how to process sensor values. When a sensor is 
triggered by Oracle BPEL Process Manager, a new sensor value for that sensor is 
created. After that, all the sensor actions associated with that sensor are performed. A 
sensor action typically persists the sensor value in a database or sends the normalized 
sensor value data to a JMS queue or topic. For integration with Oracle Business 
Activity Monitoring, the sensor value can be sent to the BAM adapter.



Introduction to Sensors

18-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

You can define the following types of sensors, either through Oracle JDeveloper or 
manually by providing sensor configuration files.

■ Activity sensors

Activity sensors are used to monitor the execution of activities within a BPEL 
process. For example, they can monitor the execution time of an invoke activity or 
how long it takes to complete a scope. Along with the activity sensor, you can also 
monitor variables of the activity.

■ Variable sensors

Variable sensors are used to monitor variables (or parts of a variable) of a BPEL 
process. For example, variable sensors can monitor the input and output data of a 
BPEL process.

■ Fault sensors

Fault sensors are used to monitor BPEL faults.

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and 
variables. 

These sensors are exposed through the following public SQL views:

■ BPEL_ACTIVITY_SENSOR_VALUES

■ BPEL_FAULT_SENSOR_VALUES

■ BPEL_VARIABLE_SENSOR_VALUES

These views can be joined with the BPEL_PROCESS_INSTANCES view to associate the 
sensor value with the BPEL process instance that created the sensor values. For more 
information, see Appendix D, "Understanding Sensor Public Views and the Sensor 
Actions XSD."

When you model sensors in Oracle JDeveloper, two new files are created as part of the 
BPEL process archive:

■ bpel_process_name_sensor.xml

Contains the sensor definitions of a BPEL process

■ bpel_process_name_sensorAction.xml

Contains the sensor action definitions of a BPEL process

See Section 18.2.2, "How to Configure Sensors" and Section 18.2.3, "How to Configure 
Sensor Actions" for how these files are created.

After you define sensors for a BPEL process, you must configure sensor actions to 
publish the sensor data to a specified destination. If no sensor action is defined for a 
sensor, then nothing happens at runtime.

The following information is required for a sensor action:

■ Name

■ Publish type

The publish type specifies the destination in which the sensor data must be 
presented. You can publish sensor data to the following destination types. 

– Database

Publishes the sensor data to the reports schema in the database. The sensor 
data can then be queried using SQL.



Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 18-3

– JMS queue

Publishes the sensor data to a JMS queue. The XML data is posted in 
accordance with the Sensor.xsd file. This file is included with Oracle 
JDeveloper in the JDEV_
HOME\jdeveloper\integration\seed\soa\shared\bpel directory.

– JMS topic

Publishes the sensor data to a JMS topic. The XML data is posted in 
accordance with the same Sensor.xsd file used with JMS queues.

– Custom

Publishes the data to a custom Java class.

– JMS Adapter

Uses the JMS adapter to publish to remote queues or topics and a variety of 
different JMS providers. The JMS queue and JMS topic publish types only 
publish to local JMS destinations.

■ List of sensors

The sensors for a sensor action.

Oracle BAM sensors publish information and events from Oracle BPEL Process 
Manager to Oracle BAM. Oracle BAM can display the data in rich real-time 
dashboards for end-to-end monitoring of an application. For more information, see 
Section 50.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action."

18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper
In Oracle JDeveloper, sensor actions and sensors are displayed as part of Monitor 
view.

18.2.1 How to Access Sensors and Sensor Actions

To access sensors and sensor actions:
1. Select Monitor at the top of Oracle BPEL Designer, as shown in Figure 18–1.

Figure 18–1 Monitor View

Figure 18–2 shows the sensor actions and sensors in the Structure window.



Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–2 Sensors and Sensor Actions Displayed in Oracle JDeveloper

You typically add or edit sensors as part of the BPEL modeling of activities, faults, 
and variables.

2. Add sensor actions by right-clicking the Sensor Actions folders and selecting 
Create > Sensor Action.

3. Add activity sensors, variable sensors, or fault sensors as follows:

a. Expand the Sensors folder.

b. Right-click the appropriate Activity, Variable, or Fault subfolder.

c. Click Create.

4. Add sensors to individual activities by right-clicking an activity and selecting 
Create > Sensor. Figure 18–3 provides details.

Figure 18–3 Creating an Activity Sensor

The following sections describe how to configure sensors and sensor actions.

18.2.2 How to Configure Sensors
This section describes how to configure activity, variable, and fault sensors.

To configure an activity sensor:
Assume you are monitoring a loan flow application, and want to know the following:

■ When a scope named GetCreditRating is initiated

■ When it is completed

■ At completion, what is the credit rating for the customer



Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 18-5

The solution is to create an activity sensor for the GetCreditRating scope in Oracle 
BPEL Designer, as shown in Figure 18–4. 

1. Select Monitor at the top of Oracle BPEL Designer.

2. In the Structure window, expand the Sensors folder.

3. Right-click Activity, and select Create.

4. To the right of the Activity Name field, click the Browse icon to select the activity 
for which to create the sensor. This is a required field.

Figure 18–4 Creating an Activity Sensor

Activities that have sensors associated with them are identified with a magnifying 
glass in Oracle BPEL Designer.

The Evaluation Time list shown in Figure 18–4 controls the point at which the 
sensor is fired. 

5. Select from the following:

■ All: 

The sensor monitors during the activation, completion, fault, compensation, 
and retry phases.

■ Activation

The sensor is fired just before the activity is executed.

■ Completion

The sensor is fired just after the activity is executed.

■ Fault

The sensor is fired if a fault occurs during the execution of the activity. Select 
this value only for sensors that monitor simple activities.



Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Compensation

The sensor is fired when the associated scope activity is compensated. Select 
this value only for sensors that monitor scopes.

■ Retry

The sensor is fired when the associated invoke activity is retried. 

A new entry is created in the bpel_process_name_sensor.xml file, as shown 
in Example 18–1:

Example 18–1 bpel_process_name_sensor.xml file

<sensor sensorName="CreditRatingSensor"

classname="oracle.tip.pc.services.reports.dca.agents.BpelActivitySensorAgent"
          kind="activity" 
          target="GetCreditRating">

  <activityConfig evalTime="all">
    <variable outputNamespace="http://www.w3.org/2001/XMLSchema"
              outputDataType="int" 
              target="$crOutput/payload//services:rating"/>
  </activityConfig> 
</sensor>

6. If you want to create a variable sensor on the activity, then in the Activity Variable 
Sensors section, click the Add icon. This is an optional field.

To configure a variable sensor:
If you want to record all the incoming loan requests, you can create a variable sensor.

1. In the Structure window, expand the Sensors folder.

2. Right-click Variable, and select Create.

3. Click the Edit icon to the right of the Target field to create a variable sensor for a 
variable (for this example, named input), as shown in Figure 18–5. 



Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 18-7

Figure 18–5 Creating a Variable Sensor

Based on your selection for the Target field, the Output Namespace and Output 
Datatype fields are automatically filled in.

A new entry is created in the bpel_process_name_sensor.xml file, as shown 
in Example 18–2:

Example 18–2 bpel_process_name_sensor.xml file

<sensor sensorName="LoanApplicationSensor" 
    classname="oracle.tip.pc.services.reports.dca.agents.BpelVariableSensorAgent"
    kind="variable" 
    target="$input/payload">
  <variableConfig outputNamespace="http://www.autoloan.com/ns/autoloan"
                  outputDataType="loanApplication"/> 
</sensor>

To configure a fault sensor:
If you want to monitor faults (for this example, from the identity service), you can 
create a fault sensor.

1. In the Structure window, expand the Sensors folder.

2. Right-click Fault, and select Create.

3. Click the Browse icon above the Namespace field to select to create a fault sensor, 
as shown in Figure 18–6.



Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–6 Creating a Fault Sensor

Based on your selection, the Namespace and Local Parts fields are automatically filled 
in.

A new entry is created in the bpel_process_name_sensor.xml file, as shown in 
Example 18–3:

Example 18–3 bpel_process_name_sensor.xml file

<sensor sensorName="IdentityServiceFault"
        classname="oracle.tip.pc.services.reports.dca.agents.BpelFaultSensorAgent"
        kind="fault" 
        target="is:identityServiceFault">
    <faultConfig/>
</sensor>

18.2.3 How to Configure Sensor Actions
When you create sensors, you identify the activities, variables, and faults you want to 
monitor during runtime. If you want to publish the values of the sensors to an 
endpoint (for example, you want to publish the data of the LoanApplicationSensor 
variable sensor created in Figure 18–5 to a JMS queue), then create a sensor action, as 
shown in Figure 18–7, and associate it with the LoanApplicationSensor variable.

To configure a sensor action:
1. In the Structure window, right-click the Sensor Actions folder.

2. Select Create > Sensor Action.

3. Enter the details described in Table 18–1.

Table 18–1 Sensor Actions Dialog

Field Description

Name Enter a name or accept the default name.

Publish Type Select the destination to which to publish sensor data. For more 
information, see section Section 18.1, "Introduction to Sensors."

JMS Connection Factory If your publish type is JMS Queue, JMS Topic, or JMS Adapter, 
specify the connection factory.



Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 18-9

Figure 18–7 Creating a Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file, as 
shown in Example 18–4:

Example 18–4 bpel_process_name_sensorAction.xml file

<action name="BAMFeed"
        enabled="true"
        publishType="JMSQueue"
        publishTarget="jms/bamTopic"> 
  <sensorName>LoanApplicationSensor</sensorName>
  <property name=“JMSConnectionFactory“> 
    weblogic.jms.ConnectionFactory
  </property>
</action>

Publish Target If your publish type is JMS Queue, JMS Topic, Custom, or JMS 
Adapter, specify the publish target. The publish target 
represents different things depending on the publish type 
specified: 

■ If the publish type is a database, this field is left blank.

■ If the publish type is JMS Queue, JMS Topic, or JMS 
Adapter, this represents the JMS destination's JNDI name.

■ If the publish type is Custom, this represents the 
fully-qualified Java class name.

Filter Enter filter logic as a boolean expression. A filter enables you to 
monitor sensor data within a specific range. For an example of a 
configured filter, see Figure 18–9 and Example 18–6.

Enable Deselect this checkbox to disable a sensor action. By default, 
sensor actions are enabled. If you disable a sensor action by 
deselecting this checkbox, the action does not publish data. 

Note: You cannot specify a < (less than) sign in the Filter field of the 
Sensor Action dialog. If you do, Oracle JDeveloper translates the < 
sign to &lt; in the bpel_process_name_sensorAction.xml file. 
In addition, you cannot specify a < sign by directly editing the 
filename_sensorAction.xml file. This action causes an error. 

Table 18–1 (Cont.) Sensor Actions Dialog

Field Description



Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

If you want to publish the values of LoanApplicationSensor and CreditRatingSensor 
to the reports schema in the database, create an additional sensor action, as shown in 
Figure 18–8, and associate it with both CreditRatingSensor and 
LoanApplicationSensor.

Figure 18–8 Creating an Additional Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file, as 
shown in Example 18–5:

Example 18–5 bpel_process_name_sensorAction.xml file

<action name="PersistingAction"
     enabled="true" 
     publishType="BPELReportsSchema">
  <sensorName>LoanApplicationSensor</sensorName> 
  <sensorName>CreditRatingSensor</sensorName>
</action

The data of one sensor can be published to multiple endpoints. In the two preceding 
code samples, the data of LoanApplicationSensor was published to a JMS queue and 
to the reports schema in the database.

If you want to monitor loan requests for which the loan amount is greater than 
$100,000, you can create a sensor action with a filter, as shown in Figure 18–9. There is 
no design-time validation of the filter query. You must ensure the query is correct. 

Figure 18–9 Creating a Sensor Action with a Filter

A new entry is created in the bpel_process_name_sensorAction.xml file, as 
shown in Example 18–6:



Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 18-11

Example 18–6 bpel_process_name_sensorAction.xml file

<action name="BigMoneyBAMAction"
        enabled='true' 
        filter="boolean(/s:actionData/s:payload
                        /s:variableData/s:data
                        /autoloan:loanAmount > 100000)"
        publishType="JMSQueue" 
        publishTarget="jms/bigMoneyQueue">
  <sensorName>LoanApplicationSensor</sensorName> 
  <property name=“JMSConnectionFactory“>
    weblogic.jms.ConnectionFactory 
  </property>
</action>   

If you have special requirements for a sensor action that cannot be accomplished by 
using the built-in publish types (database, JMS queue, JMS topic, and JMS Adapter), 
then you can create a sensor action with the custom publish type, as shown in 
Figure 18–10. The name in the Publish Target field denotes a fully qualified Java class 
name that must be implemented. For more information, see Section 18.2.5, "How to 
Create a Custom Data Publisher."

Figure 18–10 Using the Custom Publish Type

18.2.4 How to Publish to Remote Topics and Queues
The JMS queue and JMS topic publish types only publish to local JMS destinations. If 
you want to publish sensor data to remote topics and queues, use the JMS adapter 
publish type, as shown in Figure 18–11.

Notes:

■ You must specify all the namespaces that are required to configure 
an action filter in the bpel_process_name_
sensorAction.xml configuration file. For example, assume you 
have a customer XML-schema element with namespace 
"http://myCustomer" and you want to create a filter on the 
customer age element. Therefore, you must manually declare 
the namespace for "http:/myCustomer" in the file before you 
can use it in your filter. Otherwise, it is not possible to create a 
valid query. Add xmlns:ns1="http://myCustomer" in the 
attribute declaration part of the file. You can then use 
..../ns1:customer/ns1:age/... in your query.

■ You must specify the filter as a boolean XPath expression.



Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–11 Using the JMS Adapter Publish Type

In addition to enabling you to publish sensor data to remote topics and queues, the 
JMS adapter supports a variety of different JMS providers, including:

■ Third-party JMS providers such as Tibco JMS, IBM WebSphere MQ JMS, and 
SonicMQ

■ Oracle Enterprise Messaging Service (OEMS) providers such as memory/file and 
database

If you select the JMS Adapter publish type, you must create an entry in the 
weblogic-ra.xml file, which is updated through editing in the Oracle WebLogic 
Server Administration Console. Each JMS connection factory (pool) entry created in 
this console corresponds to one JNDI entry in weblogic-ra.xml. Update the Sensor 
Actions dialog with the chosen JNDI name selected during the creation of the JMS 
connection factory (pool).

For more information about the JMS adapter, see Oracle Fusion Middleware User's Guide 
for Technology Adapters.

18.2.5 How to Create a Custom Data Publisher
To create a custom data publisher, perform the following steps:

To create a custom data publisher:
1. In the Application Navigator, double-click the BPEL project.

The Project Properties dialog appears. 

2. Click Libraries and Classpath.

3. Browse and select the following:

SOA_ORACLE_HOME\lib\java\shared\oracle.soainfra.common\11.1.1\orabpel.jar

Figure 18–12 provides details.



Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 18-13

Figure 18–12 Project Properties Dialog

4. Create a new Java class.

The package and class name must match the publish target name of the sensor 
action.

5. Implement the com.oracle.bpel.sensor.DataPublisher interface.

This updates the source file and fills in the methods and import statements of the 
DataPublisher interface.

6. Using the Oracle JDeveloper editor, implement the publish method of the 
DataPublisher interface, as shown in the sample custom data publisher class in 
Figure 18–13.



Configuring Sensors and Sensor Actions in Oracle JDeveloper

18-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–13 Custom Data Publisher Class

7. Ensure that the class compiles successfully.

The next time that you deploy the BPEL process, the Java class is added to the 
SOA archive (SAR) and deployed.

18.2.6 How to Register the Sensors and Sensor Actions in composite.xml
Oracle JDeveloper automatically updates the composite.xml file to include 
appropriate properties for sensors and sensor actions, as shown in Example 18–7:

Example 18–7 composite.xml File

<composite name="JMSQFComposite" applicationName="JMSQueueFilterApp"
   revision="1.0" label="2007-04-02_14-41-31_553" mode="active" state="on">
  <import namespace="http://xmlns.oracle.com/JMSQueueFilter"
  location="JMSQueueFilter.wsdl" importType="wsdl"/>
    <service name="client">          
      <interface.wsdl interface="http://xmlns.oracle.com/
         JMSQueueFilter#wsdl.interface(JMSQueueFilter)"/>
      <binding.ws

Note: Ensure that additional Java libraries needed to implement the 
data publisher are in the class path. 

Oracle BPEL Process Manager can execute multiple process instances 
simultaneously, so ensure that the code in your data publisher is 
thread safe, or add appropriate synchronization blocks. To guarantee 
high throughput, do not use shared data objects that require 
synchronization.



Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control Console

Using Oracle BPEL Process Manager Sensors 18-15

      port="http://xmlns.oracle.com/JMSQueueFilter#wsdl.endpoint(client/
         JMSQueueFilter_pt)"/>
    </service>
    <component name="JMSQueueFilter">
    <implementation.bpel src="JMSQueueFilter.bpel"/>
    <property name="configuration.sensorLocation" type="xs:string"
    many="false">JMSQueueFilter_sensor.xml</property>
    <property name="configuration.sensorActionLocation" type="xs:string"
    many="false">JMSQueueFilter_sensorAction.xml</property>
</component>
<wire>
   <source.uri>client</source.uri>
   <target.uri>JMSQueueFilter/client</target.uri>
</wire>
</composite>

You can specify additional properties with <property name= ...>, as shown in 
Example 18–7.

18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise 
Manager Fusion Middleware Control Console

The Oracle Enterprise Manager Fusion Middleware Control Console provides support 
for viewing the metadata of sensors, sensor actions, and the sensor data created as part 
of the process execution. 

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite.

Notes:

■ For this release, BAM sensor actions are not shown in Oracle 
Enterprise Manager Fusion Middleware Control Console.

■ Only sensors with an associated database sensor action are 
displayed in Oracle Enterprise Manager Fusion Middleware 
Control Console. Sensors associated with a JMS queue, JMS topic, 
remote JMS, or custom sensor action are not displayed.



Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control Console

18-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Part III
Part III  Using the Oracle Mediator Service

Component

This part describes the components that comprise the Oracle Mediator service 
component.

This part contains the following chapters:

■ Chapter 19, "Getting Started with Oracle Mediator"

■ Chapter 20, "Creating Oracle Mediator Routing Rules"

■ Chapter 21, "Working with Multiple Part Messages in Oracle Mediator"

■ Chapter 22, "Using Oracle Mediator Error Handling"

■ Chapter 23, "Resequencing in Oracle Mediator"

■ Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator"





19

Getting Started with Oracle Mediator 19-1

19Getting Started with Oracle Mediator

This chapter provides an overview of Oracle Mediator and also describes how to 
create an Oracle Mediator service component.

This chapter includes the following sections: 

■ Section 19.1, "Introduction to Oracle Mediator"

■ Section 19.2, "Introduction to the Mediator Editor Environment"

■ Section 19.4, "Configuring the Oracle Mediator Interface Definition"

■ Section 19.5, "Generating a WSDL File"

■ Section 19.6, "Specifying Operation or Event Subscription Properties"

■ Section 19.7, "Modifying an Oracle Mediator Service Component"

19.1 Introduction to Oracle Mediator
Oracle Mediator is a service component of the Oracle SOA Suite that provides 
mediation capabilities such as selective routing, transformation, and validation 
capabilities, along with various message exchange patterns, such as synchronous, 
asynchronous, and event publishing or subscriptions.

Oracle Mediator provides a lightweight framework to mediate between various 
components within a composite application. Oracle Mediator converts data to 
facilitate communication between different interfaces exposed by different 
components that are wired to build a SOA composite application. For example, Oracle 
Mediator can accept data contained in a text file from an application or service, 
transform it into a format appropriate for updating a database that serves as a 
customer repository, and then route and deliver the data to that database.

Oracle Mediator facilitates integration between events and services, where service 
invocations and events can be mixed and matched. You can use an Oracle Mediator 
service component to consume a business event or receive a service invocation. An 
Oracle Mediator service component can evaluate routing rules, perform 
transformations, validate, and either invoke another service or raise another business 
event. You can use an Oracle Mediator service component to handle returned 
responses, callbacks, faults, and timeouts.

Oracle Mediator provides the following features:

■ Content-Based and Header-Based Routing

Oracle Mediator provides support for setting rules based on message payload or 
message headers. You can select elements or attributes from the message payload 
or the message header and, based on the values in those elements or attributes, 



Introduction to Oracle Mediator

19-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

you can specify an action. For example, Oracle Mediator receives a file from an 
application or service containing data about new customers. Based on the country 
mentioned in the customer’s address, you can route and deliver data to the 
database storing data for that particular country. Similarly, you can route a 
message based on the message header.

For more information about header-based routing, see Section 20.2.2.11, "How to 
Access Headers for Filters and Assignments."

■ Synchronous and Asynchronous Interactions

Oracle Mediator provides support for synchronous and asynchronous request and 
response interactions. In a synchronous interaction, the client requests a service 
and then waits for a response to the request. In an asynchronous interaction, the 
client invokes the service, but does not wait for the response. You can specify a 
timeout period for an asynchronous interaction and you can specify an action to 
perform after the timeout period, such as raise an event or start a process.

For more information about synchronous and asynchronous interactions, see 
Section 20.2.2.4, "How to Configure Response Messages" and Chapter 24, 
"Understanding Message Exchange Patterns of an Oracle Mediator."

■ Sequential and Parallel Routing of Messages

A routing rule can be either executed in parallel or sequentially. You can configure 
the execution type from the Routing Rules section of the Mediator Editor.

For more information about sequential and parallel routing of messages, see 
Section 20.2.2.3, "How to Specify Sequential or Parallel Execution."

■ Transformations

Oracle Mediator supports data transformation from one XML schema to another. 
This feature enables data interchange among applications using different schemas. 
For example, you can transform a comma-delimited file to a database table 
structure.

For more information about transformations, see Section 20.2.2.8, "How to Create 
Transformations."

■ Validations

Oracle Mediator provides support for validating the incoming message payload 
using a Schematron or an XSD file. You can specify Schematron files for each 
inbound message part and Oracle Mediator can execute Schematron file 
validations for those parts.

For more information about validations, see Section 20.2.2.12, "How to Use 
Semantic Validation" and http://www.schematron.com/.

■ Java Callouts

Oracle Mediator lets you add Java callouts to the routing rules. Java callouts are a 
way of using of Java code with regular expressions.

For more information about Java callouts, see Section 20.2.2.13, "How to Use Java 
Callouts."

■ Event Handling

An event is a message sent because an activity occurred in a business 
environment. Oracle Mediator supports subscribing to business events and raising 
business events. You can subscribe to a business event that is generated when a 
situation of interest occurs. For example, you can subscribe to an event that is 



Introduction to the Mediator Editor Environment

Getting Started with Oracle Mediator 19-3

generated when a new customer is created and then use this event to start a 
business process, such as sending a confirmation email. Similarly, you can 
generate business events when a situation of interest occurs. For example, after a 
new customer profile is created, you can generate a customer-created event.

For more information about event handling, see Chapter 39, "Using Business 
Events and the Event Delivery Network."

■ Dynamic Routing

Dynamic routing separates the control logic of a process from the execution of the 
process. The control logic determines the path taken by the process. You can create 
a dynamic routing rule from the Mediator Editor.

For more information about dynamic routing, see Section 20.2.3, "How to Create 
Dynamic Routing Rules."

■ Error Handling

Oracle Mediator supports both manual error handling and error handling based 
on a fault policy. A fault policy consists of conditions and actions, where the 
conditions specify the action to be carried out for a particular error condition.

For more information about error handling, see Chapter 22, "Using Oracle 
Mediator Error Handling."

■ Echo

Oracle Mediator supports echoing source messages back to the initial caller after 
any transformations, validations, assignments, or sequencing operations are 
performed.

For more information about Oracle Mediator echo support, see "To echo a service:" 
of Section 20.2.2.1, "How to Specify Oracle Mediator Services or Events."

■ Multiple Part Messages

Oracle Mediator an process messages consisting of multiple parts. Some Remote 
Procedure Call (RPC) web services contain multiple parts in the SOAP message.

For more information about multiple part message support, see Chapter 21, 
"Working with Multiple Part Messages in Oracle Mediator."

19.2 Introduction to the Mediator Editor Environment
You can create an Oracle Mediator service component in a SOA composite application 
of Oracle JDeveloper and then configure it using the Mediator Editor. To display the 
Mediator Editor, double-click the Oracle Mediator service component in the SOA 
Composite Editor. For information about the SOA Composite Editor, see Chapter 2, 
"Developing SOA Composite Applications with Oracle SOA Suite."

Figure 19–1 shows the Mediator Editor along with the Application Navigator, 
Structure, and Messages windows.



Introduction to the Mediator Editor Environment

19-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–1 Mediator Editor Window

Each section of the view shown in Figure 19–1 lets you perform specific design and 
deployment tasks. The sections in this view include the following:

■ Application Navigator

The Application Navigator, shown in the upper left section of Figure 19–1, 
displays the Oracle Mediator file structure. These files appear under the SOA 
Content folder of the project where you created an Oracle Mediator.

A SOA composite application consists of the following Oracle Mediator files:

– composite.xml: This file describes the entire SOA composite application. 
For information about the composite.xml file, see Chapter 2, "Developing 
SOA Composite Applications with Oracle SOA Suite."

– .componentType: This file describes the services and references for a service 
component.

– .mplan: This file contains Oracle Mediator metadata.

– .wsdl: The Web Services Description Language (WSDL) file specifies how 
other services call an Oracle Mediator. A WSDL file defines the input and 
output messages and operations of an Oracle Mediator.

■ Mediator Editor

The Mediator Editor, shown in the middle of Figure 19–1, provides a visual view 
of the Oracle Mediator component. This view appears when you perform one of 
the following actions:

– Double-click an Oracle Mediator icon in the SOA Composite Editor.

– Double-click the.mplan file for the Oracle Mediator in the Application 
Navigator.



Introduction to the Mediator Editor Environment

Getting Started with Oracle Mediator 19-5

■ Source View

The Source view displays the source code of an Oracle Mediator. Click Source at 
the bottom of the Mediator Editor shown in Figure 19–1 to view the source code. 
The code in Source view is immediately updated to reflect any changes to an 
Oracle Mediator. 

Example 19–1 shows sample Oracle Mediator source code:

Example 19–1 Oracle Mediator Source Code

<?xml version = '1.0' encoding = 'UTF-8'?>
<!--Generated by Oracle SCA Modeler version 1.0 at [4/16/07 10:05 PM].-->
<Mediator name="CustomerDataRouter" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/sca/1.0/mediator"/>

■ History Window

The History window displays history information about the Oracle Mediator file, 
including a revision history and side-by-side comparisons of read-only and 
editable versions of a file. Click History at the bottom of the Design window 
shown in Figure 19–1 to open the History window. Figure 19–2 shows the History 
view for an Oracle Mediator file.

Figure 19–2 History Window

■ Property Inspector

The Property Inspector, shown at the bottom of Figure 19–1, displays details about 
Oracle Mediator properties.

■ Structure Window

The Structure Window, shown in the lower left section of Figure 19–1, displays a 
structural view of the data of an Oracle Mediator.

■ Log Window

The Log Window displays messages about the validation and compilation status.



Creating an Oracle Mediator

19-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

19.3 Creating an Oracle Mediator
You can create an Oracle Mediator in multiple ways, depending on where you are in 
your application development process. 

19.3.1 How to Create an Oracle Mediator
You can create an Oracle Mediator in a SOA composite application of Oracle 
JDeveloper using one of the following methods:

■ When you create a composite application

■ From within an existing composite application

■ When you create a project

■ From within an existing project

When you create an Oracle Mediator using any of these methods, the Create Mediator 
dialog appears so you can name the Oracle Mediator component and select a template 
for the interface.

To create an Oracle Mediator when creating a composite application:
1. Create and Name the SOA application and project using the Create SOA 

Application wizard.

2. When you reach the Configure SOA Settings page, select Composite with 
Mediator in the Composite Template list, as shown in Figure 19–3.

Figure 19–3 Composite with Oracle Mediator Selection in Create SOA Project Wizard

3. Click Finish.

The Create Mediator dialog appears.

4. Configure the Oracle Mediator interface, as described in Section 19.4, "Configuring 
the Oracle Mediator Interface Definition".



Creating an Oracle Mediator

Getting Started with Oracle Mediator 19-7

To create an Oracle Mediator within a composite application:
1. Open the composite application to which you are adding an Oracle Mediator in 

the SOA Composite Editor.

2. Drag and drop an Oracle Mediator from the Component Palette (shown in 
Figure 19–4) to the Components section of the editor.

Figure 19–4 Component Palette with an Oracle Mediator Service Component

The Create Mediator dialog appears.

3. Configure the Oracle Mediator interface, as described in Section 19.4, "Configuring 
the Oracle Mediator Interface Definition".

To create an Oracle Mediator when creating a new project:
1. Using the New Gallery wizard, create and name a new SOA project in the SOA 

Tier category.

2. On the Configure SOA Settings page of the New Gallery dialog, select Composite 
With Mediator from the Composite Template list, shown in Figure 19–5.

Tip: The Component Palette is to the right of the SOA Composite 
Editor.

Tip: The New Gallery wizard appears when you select New Project 
from the Application menu to the right of the application name in the 
Application Navigator. You can also right-click in the Application 
Navigator and select New.



Creating an Oracle Mediator

19-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–5 Create SOA Project Wizard with Composite With Mediator Template Shown

3. Click Finish.

The Create Mediator dialog appears.

4. Configure the Oracle Mediator interface, as described in Section 19.4, "Configuring 
the Oracle Mediator Interface Definition".

To create an Oracle Mediator within an existing project:
1. In the Application Navigator, select the project to which you want to add an 

Oracle Mediator.

2. Right-click in the navigator pane and select New.

3. Under Categories, select Service Components, and then select Mediator from the 
Items list, as shown in Figure 19–6.



Configuring the Oracle Mediator Interface Definition

Getting Started with Oracle Mediator 19-9

Figure 19–6 New Gallery Dialog with Oracle Mediator Service Component

4. Click OK.

The Create Mediator dialog appears.

5. Configure the Oracle Mediator interface, as described in Section 19.4, "Configuring 
the Oracle Mediator Interface Definition".

19.4 Configuring the Oracle Mediator Interface Definition
When you create a new Oracle Mediator, you can specify an interface template that 
generates a basic set of default files in the Oracle Mediator project. These files provide 
a framework from which you can design and configure the Oracle Mediator. You can 
create an Oracle Mediator with the following interface options:

■ Oracle Mediator with no interface definition

■ Oracle Mediator with the interface defined by a WSDL file

■ Oracle Mediator with a one-way interface

■ Oracle Mediator with a synchronous interface

■ Oracle Mediator with an asynchronous interface

■ Oracle Mediator that subscribes to events

19.4.1 Creating an Oracle Mediator Without an Interface Definition
You can create an empty Oracle Mediator with no interface definition. This process 
does not create a WSDL file, and it provides you with the flexibility to create the SOA 
components in the order you want. After you create an Oracle Mediator without an 
interface definition, you must create a service or an event that starts the Oracle 
Mediator. 



Configuring the Oracle Mediator Interface Definition

19-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

19.4.1.1 How to Create an Oracle Mediator Without an Interface Definition
The Define Interface Later template in the Create Mediator dialog creates an Oracle 
Mediator with no interface definition.

To create an Oracle Mediator without an interface definition:
1. Create an Oracle Mediator using one of the methods described in Section 19.3, 

"Creating an Oracle Mediator".

The Create Mediator dialog appears.

2. In the Name field, enter a name for the Oracle Mediator service component.

3. From the Template list, select Define Interface Later and click OK.

Figure 19–7 Define Interface Later Template Selection on the Create Mediator Dialog

19.4.1.2 What Happens When You Create an Oracle Mediator Without an Interface 
Definition
The Oracle Mediator files are generated under the specified application and project in 
the Application Navigator, and the new Oracle Mediator appears in the Mediator 
Editor in Design view.

The Oracle Mediator has no associated WSDL file, port types, or operations. You must 
define these as described in the following sections. Figure 19–8 shows how an Oracle 
Mediator created with no interface definition appears in the Mediator Editor.



Configuring the Oracle Mediator Interface Definition

Getting Started with Oracle Mediator 19-11

Figure 19–8 Oracle Mediator with no Interface Definition in the Mediator Editor

19.4.1.3 How to Define an Interface for an Oracle Mediator
After you create an Oracle Mediator without an interface definition, you must define 
the interface by subscribing to events or by defining services.

To subscribe to events:
To subscribe to events, the events must be defined in an Event Definition (EDL) file.

1. Open the Oracle Mediator you want to edit in the Mediator Editor.

2. In the Routing Rules section, click Add Event Subscription.

The Subscribed Events dialog appears.

3. Click Add.

The Event Chooser dialog appears.

4. To the right of the Event Definition File field, click Search and then browse to and 
select an EDL file.

The Event field is populated with the events defined in the EDL file.

5. Select one or more events and click OK.

6. In the Consistency list, select a level of delivery consistency for the event.

7. In the Run as publisher field, either leave the default value of yes or select no.

8. Double-click the Filter field to open the Expression Builder and define an 
expression for filtering the event.

9. Click OK.

For more information about the Consistency, Run as publisher, and Filter fields 
of an event, see Section 19.4.6, "Creating an Oracle Mediator for an Event 
Subscription."

To define services:
You can define service for an Oracle Mediator with no interface definition in the 
following two ways:

■ Connect the Oracle Mediator to a service through a wire in the SOA Composite 
Editor. 

■ Use the Define Service option in the Mediator Editor.



Configuring the Oracle Mediator Interface Definition

19-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To define services for an Oracle Mediator through a wire:
■ In the SOA Composite Editor, drag a wire from an Oracle Mediator to a service.

For more information about wires and how to wire a service component to a 
service, see Section 2.5.1, "How to Wire a Service and a Service Component."

The service for an Oracle Mediator is automatically defined using the WSDL file 
from the wire source. For example, if you connect the ReadFile service shown in 
Figure 19–9 to the CustomerDataRouter Oracle Mediator, the 
CustomerDataRouter Oracle Mediator automatically inherits the service definition 
of the ReadFile service.

Figure 19–9 Connecting Oracle Mediator to a Service

To define services for an Oracle Mediator in the Mediator Editor:
1. Display the Oracle Mediator you want to edit in the Mediator Editor.

2. To the right of the WSDL URL field, click Define Service.

The Define Service dialog appears, as shown in Figure 19–10.

Note: You can also connect an Oracle Mediator with a defined 
interface and defined reference to a service through a wire. However, 
to connect Oracle Mediator to a service, the interface of the Oracle 
Mediator and of the service must match.



Configuring the Oracle Mediator Interface Definition

Getting Started with Oracle Mediator 19-13

Figure 19–10 Define Service Dialog

3. Do one of the following:

■ To use an existing WSDL file, click Find existing WSDLs to the right of the 
WSDL URL field.

■ To create a WSDL file, click Generate WSDL from schema(s) to the right of 
the WSDL URL field.

For information about how to generate a WSDL file, see Section 19.5, "Generating 
a WSDL File."

4. From the Port Type list, select a port.

5. From the Callback Port Type list, select a port for the response message in an 
asynchronous interaction. 

6. Click OK.

19.4.2 Creating an Oracle Mediator Based on a WSDL File
When you create an Oracle Mediator, you can base the interface definition on a WSDL 
file, which describes the interfaces of an Oracle Mediator, such as port types, 
operations, services, and schemas.

19.4.2.1 How to Create an Oracle Mediator Based on a WSDL File
The Interface Definition from WSDL template on the Create Mediator dialog box 
creates an Oracle Mediator based on a WSDL file that has already been created or that 
can be generated from a schema.

To create an Oracle Mediator based on a WSDL file:
1. Create an Oracle Mediator as described in Section 19.3, "Creating an Oracle 

Mediator".

The Create Mediator dialog appears.

2. In the Name field, enter a name for the Oracle Mediator service component.

3. From the Template list, select Interface Definition from WSDL, as shown in 
Figure 19–11.



Configuring the Oracle Mediator Interface Definition

19-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–11 Interface Definition from WSDL Template Selection on the Create Mediator 
Dialog

4. If you do not want to create an exposed service with SOAP bindings that is 
automatically connected to your Oracle Mediator, deselect the Create Composite 
Service with SOAP Bindings option.

5. In the WSDL URL field, do one of the following:

■ To use an existing WSDL file, enter the name of the file or click Find existing 
WSDL files to browse for the file.

■ To create a new WSDL file, click Generate WSDL from schema(s).

For more information about these options, see Section 19.5, "Generating a WSDL 
File."

6. From the Port Type list, select a port. 

This parses the WSDL file that you specify in the WSDL URL field to display the 
list of port types.

7. From the Callback Port Type list, select a callback port. 

A callback port is the one to which the response message is sent in an 
asynchronous communication.

8. Click OK.

19.4.2.2 What Happens When You Create an Oracle Mediator from a WSDL File
The Oracle Mediator files are generated under the specified application and project in 
the Application Navigator, and the new Oracle Mediator appears in the Mediator 
Editor in Design view. If the WSDL file you specify is located in a different directory 
from the project files, the file and its associated schema files are copied to the Oracle 
Mediator project.

The appearance and source code of the Oracle Mediator varies depending on the name 
of the WSDL file and the port types and operations defined by the WSDL file. 
Figure 19–12 shows a sample Oracle Mediator created from a WSDL file. 



Configuring the Oracle Mediator Interface Definition

Getting Started with Oracle Mediator 19-15

Figure 19–12 Oracle Mediator from WSDL in the Mediator Editor

19.4.3 Creating an Oracle Mediator With a One-Way Interface Definition
 In a one-way interaction, the client sends a message to a service and the service does 
not need to reply.

19.4.3.1 How to Create an Oracle Mediator with a One-Way Interface Definition
The One-Way Interface template in the Create Mediator dialog creates an Oracle 
Mediator for a one-way interaction.

To create an Oracle Mediator with a one-way interface definition:
1. Create an Oracle Mediator as described in Section 19.3, "Creating an Oracle 

Mediator".

The Create Mediator dialog appears.

2. In the Name field, enter a name for the Oracle Mediator service component.

3. From the Template list, select One-Way Interface, as shown in Figure 19–13.

Figure 19–13 One-Way Interface Template Selection on the Create Mediator Dialog



Configuring the Oracle Mediator Interface Definition

19-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. If you do not want to create an exposed service with SOAP bindings that is 
automatically connected to your Oracle Mediator service component, deselect the 
Create Composite Service with SOAP Bindings option.

5. To the right of the Input field, click Search to select a schema element for the input 
message. 

By default, the singleString schema element is selected for the input message.

6. Click OK. 

19.4.3.2 What Happens When You Create an Oracle Mediator with a One-Way 
Interface Definition
The Oracle Mediator files that define a one-way interaction are generated under the 
specified application and project in the Application Navigator, and the new Oracle 
Mediator appears in the Mediator Editor in Design view. A WSDL file is also 
generated with the same name as the Oracle Mediator.

Figure 19–14 shows how an Oracle Mediator created with a one-way interface appears 
in the Mediator Editor. The arrow to the left of the execute operation in Figure 19–16 
represents a one-way operation.

Figure 19–14 One-Way Interface Oracle Mediator in the Mediator Editor

19.4.4 Creating an Oracle Mediator with a Synchronous Interface Definition
Oracle Mediator supports synchronous request-response interactions. In a 
synchronous interaction, a client sends a request to a service and receives an 
immediate response. The client does not proceed further until the response arrives.

Note: You can use any XSD schema to specify the format of the input 
document that Oracle Mediator processes. Here is a sample schema:

<xsd:schema attributeFormDefault="qualified"
            elementFormDefault="qualified"
            targetNamespace="http://samples.otn.com/helloworld"
            xmlns:xsd="http://www.w3.org/2001/XMLSchema"
            xmlns="http://samples.otn.com/helloworld">
         <include namespace="http://samples.otn.com/helloworld"
            schemaLocation="helloworld.xsd" />
         <xsd:element name="name1" type="xsd:string" />
         <xsd:element name="result1" type="xsd:string"/>
</xsd:schema>



Configuring the Oracle Mediator Interface Definition

Getting Started with Oracle Mediator 19-17

19.4.4.1 How to Create an Oracle Mediator with a Synchronous Interface Definition
The Synchronous Interface template in the Create Mediator dialog creates an Oracle 
Mediator for a synchronous interaction.

To create an Oracle Mediator with a synchronous interface definition:
1. Create an Oracle Mediator as described in Section 19.3, "Creating an Oracle 

Mediator".

The Create Mediator dialog appears.

2. In the Name field, enter a name for the Oracle Mediator.

3. From the Template list, select Synchronous Interface, as shown in Figure 19–15.

Figure 19–15 Synchronous Interface Template Selection on the Create Mediator Dialog

4. If you do not want to create an exposed service with SOAP bindings that is 
automatically connected to your Oracle Mediator, deselect the Create Composite 
Service with SOAP Bindings option.

5. To the right of the Input field, click Search to select a schema element for the input 
message. 

By default, the singleString schema element is selected for the input message.

6. Click Search to the right of the Output field to select a schema element for the 
output message. 

By default, the singleString schema element is selected for the output message.

7. Click OK.

19.4.4.2 What Happens When You Create an Oracle Mediator with a Synchronous 
Interface Definition
The Oracle Mediator files that define a synchronous interaction are generated under 
the specified application and project in the Application Navigator, and the new Oracle 
Mediator appears in the Mediator Editor in Design view. A WSDL file is also 
generated with the same name as the Oracle Mediator.

In a synchronous interaction, only one port is defined because the response is sent to 
the same port as the request. Figure 19–16 shows how an Oracle Mediator created with 



Configuring the Oracle Mediator Interface Definition

19-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a synchronous interface appears in the Mediator Editor. The arrows to the left of the 
execute operation in Figure 19–16 represent a synchronous operation.

Figure 19–16 Synchronous Oracle Mediator Component in the Mediator Editor

19.4.5 Creating an Oracle Mediator with an Asynchronous Interface Definition
Oracle Mediator supports asynchronous request-response interactions. In an 
asynchronous interaction, a client sends a request to a service, but does not block and 
wait for a reply.

19.4.5.1 How to Create an Oracle Mediator with an Asynchronous Interface 
Definition
The Asynchronous Interface template in the Create Mediator dialog creates an Oracle 
Mediator for asynchronous interaction.

To create an Oracle Mediator with an asynchronous interface definition:
1. Create an Oracle Mediator as described in Section 19.3, "Creating an Oracle 

Mediator".

The Create Mediator dialog appears.

2. In the Name field, enter a name for the Oracle Mediator.

3. From the Template list, select Asynchronous Interface, as shown in Figure 19–17.



Configuring the Oracle Mediator Interface Definition

Getting Started with Oracle Mediator 19-19

Figure 19–17 Asynchronous Interface Template Selection on the Create Mediator Dialog

4.  If you do not want to create an exposed service with SOAP bindings that is 
automatically connected to your Oracle Mediator service component, deselect the 
Create Composite Service with SOAP Bindings option.

5. To the right of the Input field, click Search to select a schema element for the input 
message. 

By default, the singleString schema element is selected for the input message.

6. To the right of the Output field, click Search to select a schema element for the 
output message. 

By default, the singleString schema element is selected for the output message.

7. Click OK. 

19.4.5.2 What Happens When You Create an Oracle Mediator with an 
Asynchronous Interface Definition
The Oracle Mediator files that define an asynchronous interaction are generated under 
the specified application and project in the Application Navigator, and the new Oracle 
Mediator appears in the Mediator Editor in Design view. A WSDL file is also 
generated with the same name as the Oracle Mediator.

Figure 19–18 shows how an Oracle Mediator created with an asynchronous interface 
appears in the Mediator Editor. The Port Type field displays the port on which the 
request message is sent. The Callback Port Type field displays the port to which the 
response is sent. The arrows to the left of the execute operation in Figure 19–18 
represent an asynchronous operation. 



Configuring the Oracle Mediator Interface Definition

19-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–18 Asynchronous Oracle Mediator in the Mediator Editor

19.4.6 Creating an Oracle Mediator for an Event Subscription
You can create an Oracle Mediator for subscribing to a business event that is generated 
when a situation of interest occurs. A business event consists of message data sent as 
the result of an occurrence in a business environment. For information about business 
events, see Chapter 39, "Using Business Events and the Event Delivery Network."

19.4.6.1 How to Create an Oracle Mediator for an Event Subscription
The Subscribe to Events template in the Create Mediator dialog creates an Oracle 
Mediator that subscribes to events. To subscribe to events, the events must be defined 
in an Event Definition (EDL) file.

To create an Oracle Mediator for an event subscription:
1. Create an Oracle Mediator as described in Section 19.3, "Creating an Oracle 

Mediator".

The Create Mediator dialog appears.

2. In the Name field, enter a name for the Oracle Mediator service component.

3. From the Template list, select Subscribe to Events, as shown in Figure 19–19.



Configuring the Oracle Mediator Interface Definition

Getting Started with Oracle Mediator 19-21

Figure 19–19 Subscribe to Events Template Selection in Create Mediator Dialog

4. Click Add.

The Event Chooser dialog appears.

5. To the right of the Event Definition field, click Search.

The SOA Resource Browser dialog appears.

6. Select an event definition file (.edl) and click OK.

The Event field is populated with the events described in the.edl file that you 
selected. For more information about creating.edl files, see Chapter 39, "Using 
Business Events and the Event Delivery Network."

7. Select one or more events in the Event field, as shown in Figure 19–20, and click 
OK.

Figure 19–20 Event Chooser Dialog

8. Select a level of delivery consistency for the event.

■ one and only one: A global (JTA) transaction is used for event delivery. If the 
event call fails, the transaction is rolled back and the call is retried a 
configurable number of times.

■ guaranteed: A local transaction is used to guarantee delivery. There are no 
retries upon failure.



Configuring the Oracle Mediator Interface Definition

19-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ immediate: Events are delivered on the same thread and on the same 
transaction as the caller.

9. In the Run as publisher field, select whether to run the event subscription under 
the security of the event publisher. 

By default, event subscription run under the security of the event publisher. 

10. To filter the event, perform any of the following:

■ Double-click the Filter column of the selected event.

■ Select the event and then click the filter icon (first icon).

The Expression Builder dialog appears.

11. In the Expression field, enter an XPath expression and click OK.

Figure 19–21 shows a sample Expression Builder dialog.

Figure 19–21 Business Event Filter

The expression you created appears in the Filter column of the Create Mediator 
dialog.

12. Click OK. 

19.4.6.2 What Happens When You Create an Oracle Mediator for an Event 
Subscription
The Oracle Mediator files that define an event subscription interaction are generated 
under the specified application and project in the Application Navigator, and the new 
Oracle Mediator appears in the Mediator Editor in Design view. A WSDL file is also 
generated with the same name as the Oracle Mediator.



Configuring the Oracle Mediator Interface Definition

Getting Started with Oracle Mediator 19-23

When you view the Oracle Mediator component in the SOA Composite Editor, the 
icon on the left side of the Oracle Mediator indicates that this Oracle Mediator is 
configured for an event subscription, as shown in Figure 19–22.

Figure 19–22 Oracle Mediator Component Created with the Subscribe to Events 
Template

When you double-click the Oracle Mediator, the Mediator Editor appears, as shown in 
Figure 19–23.

Figure 19–23 Event Subscription Oracle Mediator in the Mediator Editor

19.4.7 What You May Need to Know About the Mediator Editor
This section provides information you should know about creating an Oracle Mediator 
service component.

19.4.7.1 Resequencing
The resequencing feature of the Oracle Mediator reorders sets of messages that might 
arrive to the Oracle Mediator in the wrong sequence. You can define resequencing for 
all operations in an Oracle Mediator or for a specific operation. The resequencer 
provides three resequencing strategies that reorder incoming messages based on the 
type of sequencing information they contain.

For more information about resequencing in Oracle Mediator, see Chapter 19, "Getting 
Started with Oracle Mediator."



Configuring the Oracle Mediator Interface Definition

19-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

19.4.7.2 Routing Rules
Routing rules are mediation logic or execution logic that you define to achieve the 
requisite mediation. Below is an overview of the routing rule features; for more 
information about defining routing rules, see Section 20.2, "Defining Routing Rules."

You can specify the following to create a routing rule:

■ Operation or Event

A routing rule can be triggered either by a service operation or an event 
subscription. The service operation can be synchronous, asynchronous, or 
one-way.

■ Java Callouts

Java callouts perform external Java logic at various points in the execution of the 
Oracle Mediator.

■ Static Routing Rule

A static routing rule is not expected to change depending on the invocation 
context. In this case, the routing can be an echo, a routing to another service, or a 
publishing of an event.

Static routing rules include the following information:

– Request Handler

This defines how Oracle Mediator handles incoming requests.

– Reply Handler

This defines how the synchronous response from the called service is handled 
by Oracle Mediator.

– Fault Handler

This defines how the named or declared faults from the called service are 
handled by Oracle Mediator.

– Callback Handler

This defines how the asynchronous response and callback from the called 
service are handled by Oracle Mediator.

– Timeout Handler in Callback

This defines how long Oracle Mediator waits for the asynchronous response 
and callback before performing timeout handling for the particular 
asynchronous request.

– Event Publishing and Service Invocation

This calls other services or publishes an event depending on the configuration 
of the handlers.

– Sequential or Parallel Execution

Each routing rule execution can be configured to be either sequential (that is, 
running in the same thread) or parallel (that is, running in different threads).

– Filter Expression

Note: For synchronous service invocations, the routing rule should 
always be sequential.



Generating a WSDL File

Getting Started with Oracle Mediator 19-25

This defines a filter to be applied to the message before a rule is executed. 
Filters use XPath standards and enable selective execution of Oracle Mediator 
routing rules.

– Semantic Validation

This uses the Schematron validation standard to define semantic validation of 
incoming requests. Semantic validation also verifies that the data is correct. 

– Transformation

This transforms incoming data to a format that is compliant with the called 
services or published events. Transformation is based on XSL transformation 
standards.

– Assign

This manipulates headers and properties for a message to meet the 
requirements of the called service.

■ Dynamic Routing Rule

A dynamic routing rule lets you externalize the routing logic to an Oracle Rules 
Dictionary, which in turn enables dynamic modification of the routing logic in a 
routing rule. This feature depends on a decision service and Oracle Rules to obtain 
the routing logic at runtime.

19.5 Generating a WSDL File
You can generate the WSDL file for a message using an XML schema definition (XSD) 
file or using a sample file. When working with Oracle Mediator, you can generate a 
WSDL file at either of the following times: 

■ When you are creating an Oracle Mediator and you select the Interface Definition 
from WSDL template in the Create Mediator dialog, selecting Generate WSDL 
from Schema(s) next to the WSDL URL field opens the Create WSDL dialog.

■ When you have an Oracle Mediator with no interface defined and you click 
Define Service next to the WSDL URL field in the Mediator Editor, selecting 
Generate WSDL from Schema(s) next to the WSDL URL field opens the Create 
WSDL dialog.

The Create WSDL dialog populates standard fields, such as the file name, directory, 
and namespace; and the dialog changes depending on the interface type you select. 
You can specify the same or different schema files for the message inputs. 

19.5.1 How to Generate a WSDL File
The way you configure a WSDL file depends on the type of interface being defined by 
the WSDL file. You can define a one-way interface, a synchronous interface, or an 
asynchronous interface.

Note: Oracle recommends using a Unicode database with AL32UTF8 
as the database character set for full globalization support in Oracle 
Mediator.



Generating a WSDL File

19-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To generate a WSDL file for a one-way interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating an 
Oracle Mediator component or when you are defining a service for an Oracle Mediator 
component.

1. On the Create WSDL dialog, accept the default values or enter the following 
information for the WSDL file:

■ File Name: A unique name for the WSDL file.

■ Directory: The directory where you want to store the WSDL file. By default, it 
is stored in the same location as the Oracle Mediator file. This must be the 
current project directory or one of its subdirectories. If the specified directory 
does not exist, Oracle JDeveloper creates it.

■ Namespace: A namespace address for the WSDL file; for example, 
http://oracle.com/esb/namespaces/Mediator. 

The namespace that you specify is defined as the tns namespace in the WSDL 
file.

■ Port Type: The name of the port type in the WSDL file that contains the 
operation to use.

■ Operation: The name of the action to perform; for example, executeQuery.

2. In the Interface Type field, select One-Way Interface.

The Input field appears, as shown in Figure 19–24.

Figure 19–24 Create WSDL Dialog for a One-Way Interface

3. To the upper right of the Input field, click Add a new message part.

Note: Spaces and special characters are not allowed in an operation 
name or port type. Only alphabetic and numeric characters are 
supported, and the first character cannot be a number.



Generating a WSDL File

Getting Started with Oracle Mediator 19-27

The Add Message Part dialog appears, as shown in Figure 19–25.

Figure 19–25 Add Message Part Dialog

4. In the Part Name field, enter a name for the message part.

5. To the right of the URL field, click the browse for schema file icon to browse for 
the URL.

The Type Chooser dialog appears and contains a list of the schema files (XSD 
files), as shown in Figure 19–26.

Figure 19–26 Type Chooser Dialog

6. Expand the Type Explorer tree to locate and select the schema element to use.

If the schema you want to use is not located in the project in which you are 
working, you can import a schema XSD file or WSDL file into the project using the 
Import Schema File or Import WSDL icon in the upper right corner of the dialog. 

After you specify a file, Oracle JDeveloper parses it to determine the defined 
schema elements and displays them in a list from which you select.

7. Select the root element of the XSD file and click OK.

Note: If you want to use a schema XSD file that resides on your local 
file system, ensure that the XSD file and any XSD files that it imports 
all reside in the Oracle JDeveloper project directory. This ensures that 
the schema is deployed with the project and is made available at 
runtime.



Generating a WSDL File

19-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Add Message Part dialog reappears with the URL and Schema Element fields 
populated from the Type Chooser dialog. If you selected an XSD simple type, 
these fields are replaced by a Simple Type field.

8.  Click OK on the Add Message Part dialog. 

The input information appears in the Input field of the Create WSDL dialog.

9. If needed, repeat the above steps to define additional message parts.

10. Click OK.

To generate a WSDL file for a synchronous interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating an 
Oracle Mediator component or when you are defining a service for an Oracle Mediator 
component.

1. On the Create WSDL dialog, enter the following information for the WSDL file:

■ File Name: A unique name for the WSDL file.

■ Directory: The directory where you want to store the WSDL file. By default, it 
is stored in the same location as the Oracle Mediator file.

■ Namespace: A namespace address for the WSDL file; for example, 
http://oracle.com/esb/namespaces/Mediator. 

The namespace that you specify is defined as the tns namespace in the WSDL 
file.

■ Port Type: The name of the port type in the WSDL file that contains the 
operation to use.

■ Operation: The name of the action to perform; for example, executeQuery.

2. In the Interface Type field, select Synchronous Interface.

The Input, Output, and Fault fields appear, as shown in Figure 19–27.

Note: Partner link types are generally used in BPEL, so you do not 
need to select Generate partnerlinkType extension for Oracle 
Mediator.

Note: Spaces and special characters are not allowed in an operation 
name or port type. Only alphabetic and numeric characters are 
supported, and the first character cannot be a number.



Generating a WSDL File

Getting Started with Oracle Mediator 19-29

Figure 19–27 Create WSDL Dialog for a Synchronous Interface

3. To the upper right of the Input field, click Add a new message part.

The Add Message Part dialog appears, as shown in Figure 19–28.

Figure 19–28 Add Message Part Dialog

4. In the Part Name field, enter a name for the message part.

5. To the right of the URL field, click the browse for schema file icon to browse for 
the URL.

The Type Chooser dialog appears and contains a list of the schema files (XSD 
files), as shown in Figure 19–29.



Generating a WSDL File

19-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–29 Type Chooser Dialog

6. Expand the Type Explorer tree to locate and select the schema element to use.

If the schema you want to use is not located in the project in which you are 
working, you can import a schema XSD file or WSDL file into the project using the 
Import Schema File or Import WSDL icon in the upper right corner of the dialog. 

After you specify a file, Oracle JDeveloper parses it to determine the defined 
schema elements and displays them in a list from which you can make a selection.

7. Select the root element of the XSD file and click OK.

The Add Message Part dialog reappears with the URL and Schema Element fields 
populated from the Type Chooser dialog. If you selected an XSD simple type, 
these fields are replaced by a Simple Type element.

8.  Click OK on the Add Message Part dialog. 

The input information appears in the Input field of the Create WSDL dialog.

9. Repeat the above steps to define message parts for the Output and Fault fields.

The output represents the response message and is required in synchronous 
transactions. Faults are optional.

10. Click OK.

To generate a WSDL file for an asynchronous interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating an 
Oracle Mediator component or when you are defining a service for an Oracle Mediator 
component.

Note: If you want to use a schema XSD file that resides on your local 
file system, ensure that the XSD file and any XSD files that it imports 
all reside in the Oracle JDeveloper project directory. This ensures that 
the schema is deployed with the project and is made available at 
runtime.

Note: Partner link types are generally used in BPEL, so you do not 
need to select Generate partnerlinkType extension for Oracle 
Mediator.



Generating a WSDL File

Getting Started with Oracle Mediator 19-31

1. On the Create WSDL dialog, enter the following information for the WSDL file:

■ File Name: A unique name for the WSDL file.

■ Directory: The directory where you want to store the WSDL file. By default, it 
is stored in the same location as the Oracle Mediator file.

■ Namespace: A namespace address for the WSDL file; for example, 
http://oracle.com/esb/namespaces/Mediator. 

The namespace that you specify is defined as the tns namespace in the WSDL 
file.

■ Port Type: The name of the port type in the WSDL file that contains the 
operation to use.

■ Operation: The name of the action to perform; for example, executeQuery.

2. In the Interface Type field, select Asynchronous Interface.

The Input field and Callback section appear, as shown in Figure 19–30.

Figure 19–30 Create WSDL Dialog for an Asynchronous Interface

3. To the upper right of the first Input field, click Add a new message part.

The Add Message Part dialog appears, as shown in Figure 19–31.

Note: Spaces and special characters are not allowed in an operation 
name or port type. Only alphabetic and numeric characters are 
supported, and the first character cannot be a number.



Generating a WSDL File

19-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–31 Add Message Part Dialog

4. In the Part Name field, enter a name for the message part.

5. To the right of the URL field, click the browse for schema file icon to browse for 
the URL.

The Type Chooser dialog appears and contains a list of the schema files (XSD 
files), as shown in Figure 19–32.

Figure 19–32 Type Chooser Dialog

6. Expand the Type Explorer tree to locate and select the schema element to use.

If the schema you want to use is not located in the project in which you are 
working, you can import a schema XSD file or WSDL file into the project using the 
Import Schema File or Import WSDL icon in the upper right corner of the dialog. 

After you specify a file, Oracle JDeveloper parses it to determine the defined 
schema elements and displays them in a list from which you can make a selection.

7. Select the root element of the XSD file and click OK.

The Add Message Part dialog reappears with the URL and Schema Element fields 
populated from the Type Chooser dialog. If you selected an XSD simple type, 
these fields are replaced by a Simple Type element.

8.  Click OK on the Add Message Part dialog. 

Note: If you want to use a schema XSD file that resides on your local 
file system, ensure that the XSD file and any XSD files that it imports 
all reside in the Oracle JDeveloper project directory. This ensures that 
the schema is deployed with the project and is made available at 
runtime.



Modifying an Oracle Mediator Service Component

Getting Started with Oracle Mediator 19-33

The input information appears in the Input field of the Create WSDL dialog.

9. Repeat the above steps to define the input message parts for the Callback section.

10. In the Callback section, specify the following information for the response 
message:

■ Port Type: The name of the port type in the WSDL file that contains the 
operation to use.

■ Operation: The name of the action to perform; for example, 
executeResponse.

11. Click OK.

To generate the WSDL file based on a sample file:
You can generate a WSDL file from a file in a native format such as a comma-separated 
value (CSV) file, a fixed-length file, a document type definition (DTD) file, or a COBOL 
copybook file. Use the Native Format Builder wizard to generate a WSDL file based on 
a sample file. The Native Format Builder wizard appears when you click Define 
Schema for Native Format in the Request, Response, Fault, and Callback tabs of the 
Create WSDL dialog. A WSDL file is generated after you complete the wizard.

For information about the Native Format Builder wizard, see the Oracle Fusion 
Middleware User's Guide for Technology Adapters.

19.6 Specifying Operation or Event Subscription Properties
After creating an Oracle Mediator, you can use the Mediator Editor to select the 
Validate Syntax (XSD) checkbox for an operation or event subscription. You can select 
this option to validate the schemas of the inbound messages. By default, this checkbox 
is not selected.

19.7 Modifying an Oracle Mediator Service Component
You can modify the operations or event subscriptions of an Oracle Mediator using the 
Mediator Editor.

Note: The callback input represents the response message and is 
required in asynchronous transactions.

Note: Spaces and special characters are not allowed in an operation 
name or port type. Only alphabetic and numeric characters are 
supported, and the first character cannot be a number. Both of these 
fields are required.

Note: Partner link types are generally used in BPEL, so you do not 
need to select Generate partnerlinkType extension for Oracle 
Mediator.



Modifying an Oracle Mediator Service Component

19-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

19.7.1 How To Modify Operations of an Oracle Mediator
You can modify an Oracle Mediator WSDL file by adding or deleting operations. After 
modifying the WSDL file, use the Refresh WSDL dialog to synchronize the changes.

To modify the operations of an Oracle Mediator:
1. In the Mediator Editor, click the Refresh operations From WSDL icon to the right 

of the WSDL URL field.

The Refresh WSDL dialog appears. If you have made any modifications to the 
WSDL file, the Refresh WSDL dialog lists all the operations to delete or add. The 
Refresh will delete Mediator operation field lists all the operations that have 
been removed from the WSDL file. The Refresh will add Mediator operation field 
lists all the new operations that have been added in the WSDL file. Figure 19–33 
shows the Refresh WSDL dialog.

Figure 19–33 Refresh WSDL Dialog

2. To specify a different WSDL file, click Find existing WSDLs to the right of the 
WSDL URL field to use an existing WSDL file or Generate WSDL From 
schema(s) to create a new WSDL file.

The Refresh WSDL dialog is updated based on the operations defined in the 
specified WSDL file.

3. Click OK.

4. From the File menu, select Save All.

19.7.2 How To Modify Event Subscriptions of an Oracle Mediator
You can subscribe to new events, modify existing event subscriptions, and unsubscribe 
from subscribed events using the Manage Event Subscriptions option in the Mediator 
Editor.

To modify event subscriptions of an Oracle Mediator:
1. In the Mediator Editor, click the Manage Event Subscriptions icon to the right of 

Event Subscriptions.

The Subscribed Events dialog appears, as shown in Figure 19–34.



Modifying an Oracle Mediator Service Component

Getting Started with Oracle Mediator 19-35

Figure 19–34 The Subscribed Events Dialog

2. You can perform any of the following functions:

■ Subscribe to a new event.

■ Unsubscribe from an event.

■ Modify or specify the filter criteria for an event.

■ Modify the Consistency or Run as Roles properties of an event subscription.

For more information about the Consistency, Run as Roles, and Filter fields 
of an event, see Section 19.4.6, "Creating an Oracle Mediator for an Event 
Subscription."

3. Click OK.

4. From the File menu, select Save All.



Modifying an Oracle Mediator Service Component

19-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



20

Creating Oracle Mediator Routing Rules 20-1

20Creating Oracle Mediator Routing Rules

This chapter provides an overview of routing rules and describes how to specify 
routing rules for an Oracle Mediator service component.

This chapter includes the following sections:

■ Section 20.1, "Introduction to Routing Rules"

■ Section 20.2, "Defining Routing Rules"

■ Section 20.3, "Creating an Oracle Mediator for Routing Messages"

■ Section 20.4, "Creating an Asynchronous Request and Response Using Oracle 
Mediator"

20.1 Introduction to Routing Rules
Oracle Mediator lets you route data between service consumers and service providers. 
As the data flows from service to service, it must be transformed. These two tasks, 
routing and transformation, are the core responsibilities of Oracle Mediator. You can 
use routing rules to specify how a message processed by an Oracle Mediator reaches 
its next destination. Routing rules specify where an Oracle Mediator sends the 
message, how it sends the message, and what changes should be made to the message 
structure before sending it to the target service.

Routing rules can be of the following two types:

■ Static Routing Rules

Static rules do not change depending on the invocation context and are applied 
consistently.

■ Dynamic Routing Rules

Dynamic rules let you externalize the routing logic to an Oracle Rules Dictionary, 
which in turn enables dynamic modification of the routing logic.

For more information about creating routing rules, see Section 20.2.2, "How to Create 
Static Routing Rules" and Section 20.2.3, "How to Create Dynamic Routing Rules."

20.2 Defining Routing Rules
Routing rules can only be defined for an Oracle Mediator with a defined interface. For 
more information on how to define an interface, see Section 19.4.1.3, "How to Define 
an Interface for an Oracle Mediator."



Defining Routing Rules

20-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

20.2.1 How To Access the Routing Rules Section
You define the routing rules in the Routing Rules section of the Mediator Editor. 

To access the routing rules section:
You can access the Routing Rules section of the Mediator Editor using one of the 
following methods:

■ From the SOA Composite Editor:

a. Double-click the icon that represents the Oracle Mediator for which you want 
to specify the routing rules.

b. If the Routing Rules section is not visible, click the Plus (+) icon next to 
Routing Rules.

■ From the Application Navigator:

a. In the Application Navigator, expand the SOA project and then expand the 
SOA Content folder.

b. In the SOA Content folder, double-click the name of the Oracle Mediator file 
in which you want to specify the routing rules. 

The Oracle Mediator file has an MPLAN extension.

c. If the Routing Rules section is not visible, click the Plus (+) icon next to 
Routing Rules.

Figure 20–1 shows the Routing Rules section of the Mediator Editor.

Figure 20–1 Mediator Editor- Routing Rules Section



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-3

Figure 20–2 lists and describes the icons in the Routing Rules section.

Figure 20–2 Routing Rule Section Icons

20.2.2 How to Create Static Routing Rules
When you define static routing rules, you can configure the following information and 
types of rules:

■ Target service

Oracle Mediator sends messages to the target service you specify. This service can 
either be defined as a WSDL interface or a Java interface. For information about 
invoking a target service, see Section 20.2.2.1, "How to Specify Oracle Mediator 
Services or Events".

■ Execution type

Oracle Mediator executes routing rules either sequentially or in parallel. For 
information about specifying an execution type, see Section 20.2.2.3, "How to 
Specify Sequential or Parallel Execution".

■ Reply, callback, and fault handlers

You can define how Oracle Mediator handles synchronous reply, callback, and 
fault messages. For information about handlers, see Section 20.2.2.4, "How to 
Configure Response Messages" and Section 20.2.2.6, "How to Handle Faults".

■ Filter expression

You can define a filter expression that is applied to the message content (payload 
or headers). When you define a filter, the contents are analyzed before any service 
is invoked. For example, you might apply a filter expression that specifies that a 
service be invoked only if the message includes a customer ID, or if the value for 
that customer ID matches a certain pattern. For information about specifying filter 
expressions, see Section 20.2.2.7, "How to Specify an Expression for Filtering 
Messages".

■ Transformations



Defining Routing Rules

20-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Oracle Mediator can transform message data before forwarding the message to a 
service. You can define transformations to set a value on the target payload by 
mapping data or by assigning values.

The XSLT Mapper lets you to define transformations that apply to the whole 
message body to convert messages from one XML schema to another. The Assign 
Values function works on individual fields. Using this dialog, you can assign 
values from the message (for example, payload and headers), from a constant, or 
from various system properties, such as the properties of an adapter present in the 
data path. For information about defining transformations, see Section 20.2.2.8, 
"How to Create Transformations" and Section 20.2.2.9, "How to Assign Values".

■ Accessing header variables from expressions

Oracle Mediator can detect any SOAP headers that are used in building the 
expression for the current routing rule operation. For information about accessing 
headers, see Section 20.2.2.11, "How to Access Headers for Filters and 
Assignments" and Section 20.2.2.11.2, "Manual Expression Building for Accessing 
Properties for Filters and Assignments".

■ Schematron-based validations

You can specify the Schematron files that Oracle Mediator should use to validate 
different parts of an inbound message. For information about performing 
Schematron-based validations, see Section 20.2.2.12, "How to Use Semantic 
Validation".

■ Java callout

Custom Java class callouts let you use regular expressions with Java code, when 
regular expressions alone do not suffice. For information about using Java 
callouts, see Section 20.2.2.13, "How to Use Java Callouts".

■ User-defined extension functions

These are your own set of functions that can be used by the XSLT Mapper. For 
information about using user-defined extension functions, see "To add 
user-defined extension functions:".

20.2.2.1 How to Specify Oracle Mediator Services or Events
After creating an Oracle Mediator component, you associate it with inbound service 
operations or event subscriptions and with outbound targets. Targets are outbound 
service operations or event publishing. A target specifies the next service or event to 
which an Oracle Mediator sends messages and also specifies which service operation 
to invoke. You can specify a service or an event as a target type.

You can also echo source messages back to the initial caller after any transformation, 
validations, assignments, or sequencing operations are performed. An echo can only 
be specified if the Oracle Mediator component has a synchronous or asynchronous 
interface. Whether the echo is synchronous or asynchronous depends on the WSDL 
file of the caller. The echo option is only available for inbound service operations and 
is not available for event subscriptions.

The purpose of the echo option is to expose all the Oracle Mediator functionality as a 
callable service without having to route it to any other service. For example, you can 
call an Oracle Mediator to perform a transformation, a validation, or an assignment, 
and then echo the Oracle Mediator back to your application without routing it 
anywhere else.

You can specify multiple routings for an inbound operation or event. Each routing is 
mapped to one target service invocation or event. Therefore, to specify multiple 



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-5

service invocations or raise multiple events, you must specify one routing rule for each 
target. For example, you can invoke an operation based on a message payload from 
the following operations defined in a service:

■ insert

■ update

■ updateid

■ delete

To do this action, you must create four routing rules, one for each operation. Later, 
when you specify a filter expression for each rule, you can specify which target and 
operation is applied to each message instance based on the message payload, as 
shown in Figure 20–3. 

Figure 20–3 Multiple Routings for an Inbound Operation

To invoke a service:
To perform this step, the target service must be defined in a WSDL document or a Java 
interface.

1. In the Routing Rules section, click Add next to the operation for which you are 
defining routing rules, and then select static routing rule.

The Target Type dialog appears, as shown in Figure 20–4.



Defining Routing Rules

20-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–4 Target Type Dialog

2. Click Service. 

The Target Services dialog appears, as shown in Figure 20–5.

Figure 20–5 Target Services Dialog

3. In the Target Services dialog, navigate to and then select an operation provided by 
a service.

4. Click OK. 

5. If you selected a target service defined by a Java interface, the Interface Required 
dialog appears. Click Yes to create the required WSDL file, and then click OK on 
the confirmation dialog.

A new Static Routing section appears where you can define the routing rule.

6. Configure the routing rule as described the remaining sections of this chapter.

Note: You can select a service defined by a WSDL file or a Java 
interface. A service can consist of multiple operations, as shown in 
Figure 20–5.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-7

To trigger an event:
1. In the Routing Rules section, click Add next to the operation for which you are 

defining routing rules, and then select static routing rule.

The Target Type dialog appears, as shown in Figure 20–4.

2. Click Event.

 The Event Chooser dialog appears.

3. To the right of the Event Definition field, click Search.

 The SOA Resource Browser dialog appears.

4. Select an event (.edl) file and click OK.

The Event field is populated with the events defined in the selected file, as shown 
in Figure 20–6.

Figure 20–6 Event Chooser Dialog

5. Select an event.

6. Click OK. 

A new Static Routing section appears where you can define the routing rule.

7. Configure the routing rule as described the remaining sections of this chapter.

To echo a service:
1. In the Routing Rules section, click Add next to the operation for which you are 

defining routing rules, and then select static routing rule.

The Target Type dialog is displayed, as shown in Figure 20–7.

Note: Instead of browsing for an existing event definition file, you 
can create a new file by clicking Create new event definition (edl) file 
and completing the fields in the Create Event Definition File dialog. 



Defining Routing Rules

20-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–7 Target Type Dialog

2. Click Echo.

Figure 20–8 shows a routing rule with a synchronous echo. An asynchronous echo 
has an icon with a dotted line on the return.

Figure 20–8 Sample Oracle Mediator Supporting Echo Operation

20.2.2.2 What You May Need to Know About Echoing a Service
The echo option has the following limitations:

■ Echoing a service is supported only with Oracle Mediator interfaces having the 
following types of WSDL files:

– Request/reply

– Request/reply/fault

– Request/callback

■ The echo option is available for synchronous operations like request/reply and 
request/reply/fault.

Note: The Echo button only appears on the Target Type dialog if the 
interface is synchronous or asynchronous.

Note: The echo option is not available for Oracle Mediator interfaces 
having request/reply/fault/callback WSDL files or for one-way 
WSDL files.

Note: The echo option is only available for synchronous operations 
when the routing rule is sequential because parallel routing rules are 
not supported for Oracle Mediators with synchronous operations.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-9

■ For synchronous operations with a conditional filter, the echo option does not 
return a response to the caller when the filter condition is set to false. Instead, it 
returns a null response.

■ The echo option is available for asynchronous operations only if the Oracle 
Mediator interface has a callback operation. In this case, the echo is run on a 
separate thread.

20.2.2.3 How to Specify Sequential or Parallel Execution
A routing rule can be executed either in parallel or sequentially. To specify an 
execution type for a routing rule, select the Sequential or Parallel execution type in 
the Routing Rules section.

Basic Principles of Sequential Routing Rules
Oracle Mediator processes sequential routing rules based on the following principles:

■ Oracle Mediator evaluates routings and performs the resulting actions 
sequentially. Sequential routings are evaluated in the same thread and transaction 
as the caller.

■ Oracle Mediator always enlists itself into the global transaction propagated 
through the thread that is processing the incoming message. For example, if an 
inbound JCA adapter invokes an Oracle Mediator, the Oracle Mediator enlists 
itself with the transaction that the JCA adapter has initiated.

■ Oracle Mediator propagates the transaction through the same thread as the target 
components while executing the sequential routing rules.

■ Oracle Mediator never commits or rolls back transactions propagated by external 
entities.

■ Oracle Mediator manages the transaction only if the thread-invoking Oracle 
Mediator does not already have an active transaction. For example, if Oracle 
Mediator is invoked from inbound SOAP services, Oracle Mediator starts a 
transaction and commits or rolls back the transaction depending on success and 
failure.

Basic Principles of Parallel Routing Rules
Oracle Mediator processes routing rules in parallel based on the following principles:

■ Oracle Mediator queues and evaluates routings in parallel in different threads.

The messages of each Oracle Mediator service component are retrieved in a 
weighted, round-robin fashion to ensure that all Oracle Mediator service 
components receive parallel processing cycles. This is true even if one or more 
Oracle Mediator service components produce a higher number of messages 
compared to other components. The weight used is the message priority set when 
designing an Oracle Mediator service component. Higher numbers of parallel 
processing cycles are allocated to the components that have higher message 
priority.

Note: The asynchronous echo option is available only when the 
routing rule is parallel. If you use the echo option, then sequential 
routing rules are not supported for Oracle Mediators with 
asynchronous operations.



Defining Routing Rules

20-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

You can set the Priority field in the Mediator Editor to indicate the priority of an 
Oracle Mediator service component. Priorities can range from zero to nine, with 
nine being the highest priority. The default priority is four.

■ Oracle Mediator initiates a new transaction for processing each parallel rule. The 
initiated transaction ends with an enqueue to the Oracle Mediator parallel 
message dehydration store.

For example, if an Oracle Mediator service component has one parallel routing 
rule, one message is enqueued on the Oracle Mediator parallel message 
dehydration store. The parallel message dispatcher to the store then initiates a 
transaction, reads the message from the database store, and invokes the target 
component or service of this routing rule. The transaction initiated by the listener 
thread is a completely new transaction and is propagated to the target 
components.

■ Oracle Mediator commits or rolls back transactions because it is the initiator of 
these transactions.

If an operation or event has both sequential and parallel routing rules, first sequential 
routing rules are evaluated and actions are performed, and then parallel routings are 
queued for parallel execution.

20.2.2.4 How to Configure Response Messages
In the Oracle Mediator routing rules, you can specify how to handle the response 
messages in synchronous and asynchronous interactions. For synchronous 
interactions, you can specify the transformations and assignments for the response 
and the fault message. You can forward the response and the fault message to another 
service or event, or you can send them back to the initial caller, if the initial caller is 
expecting responses and faults.

For asynchronous interactions, you can specify transformations and assignments, and 
a timeout period for receiving the response. The timeout period can be specified in 
seconds, hours, days, months, or years. By default, the timeout period is infinite. If a 
callback response does not come within the specified timeout period, a timeout 
response can be forwarded to another service, to another event, or back to the initial 
caller.

Note: The Priority property is applicable only to parallel routing 
rules.

Note: Dehydrating of messages means storing the incoming 
messages in a database for parallel routing rules so they can be 
processed later by worker threads.

Note: If an Oracle Mediator service component with a 
request-response interface has only parallel routing rules, the Oracle 
Mediator service component does not send a response back to the 
caller. Though you can create this type of Oracle Mediator service 
component, the caller of the Oracle Mediator service component does 
not receive a response at runtime.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-11

You cannot route an Oracle Mediator response to a two-way service. If you want to 
route a response to a two-way service, you should use a one-way Oracle Mediator 
between the first Oracle Mediator and the two-way service. The response should first 
be forwarded to the one-way Oracle Mediator, which in turn should call the two-way 
service.

To specify a timeout period for asynchronous processing:
The following steps are performed in the Routing Rules section of the Mediator Editor.

1. Next to the <<Target Operation>> field by the Timeout in field in the Callback 
section, click the Browse for target service operation icon.

The Target Type dialog appears.

2. Select Service, Event, or Initial Caller.

If you selected Service or Event, the Target Service or the Event Chooser appears 
depending on your selection.

3. Select an event or service.

4. Click OK

5. In the Timeout in field, enter the number of units for the timeout period, and then 
select the unit of time from the dropdown list.

The timeout response is forwarded to the specified service or event.

20.2.2.5 How to Handle Multiple Callbacks
A single Oracle Mediator cannot handle multiple callbacks. If you have a composite 
application with an Oracle Mediator that receives multiple callbacks, the behavior of 
the composite application is undetermined. For example, in the scenario shown in 
Figure 20–9, AsyncMediator forwards the callback response from 
AsyncEchoMediator1 and AsyncEchoMediator2 to FileInMediator. In such a flow, 
the AsyncMediator might return the callback from both AsyncEchoMediator1 and 

Notes:

■ Zero is an unsupported value to be specified as a timeout period.

■ If the callback is received and processing of the callback fails, by 
default the timeout handler is invoked for processing the action 
specified in the timeout handler.

■ Typically, the caller receives the callback after waiting for 100 
milliseconds. However, if you have a bridge Oracle Mediator with 
a sequential routing rule and a connection to a synchronous 
interface service, then due to the complex flow of the program 
with all sequential routing rules, the caller may take longer to get 
ready to receive the callback. You can work around this issue by 
changing the routing rule of the bridge Oracle Mediator to 
parallel.

Note: If the number of routing rules is larger and the time taken to 
execute the routing rules exceeds the transaction timeout, you must 
set the transaction timeout to a value that is greater than the time 
taken to execute all the routing rules.



Defining Routing Rules

20-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

AsyncEchoMediator2, or from either one of them. The exact behavior is random and 
unpredictable.

Figure 20–9 Sample Oracle Mediator Handling Multiple Callback

20.2.2.6 How to Handle Faults
If you create a new routing rule in which the target service operation has one or more 
faults, you still see a single fault routing section in the Mediator Editor. If the source 
Oracle Mediator service component supports one or more faults, then the fault is 
routed back to the caller by default. You can choose the source and target fault names 
to be routed. You can also use the service browser to route the fault to another target.

To define an additional fault routing:
The following steps are performed in the Routing Rules section of the Mediator Editor.

1. In the Faults section, click the Add another fault routing button shown in 
Figure 20–10.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-13

Figure 20–10 Adding a Second Fault

Another fault section appears in the routing rule box.

2. Configure the target service, transformations, and assign values for the new fault.

Figure 20–11 shows a second fault being routed to a file adapter service.

Figure 20–11 Second Fault Added to Routing Rules



Defining Routing Rules

20-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To remove a fault routing section:
The following steps are performed in the Routing Rules section of the Mediator Editor.

■ Highlight the fault routing you want to remove by clicking in the target service 
field, and then click Delete the selected fault routing, as shown in Figure 20–12.

Figure 20–12 Deleting a Fault Routing

20.2.2.7 How to Specify an Expression for Filtering Messages
The filter expression routing rule lets you filter messages based on their payload. If the 
filter expression for a given message instance evaluates to true, the message is 
delivered to the target service or event specified within the routing rule.

For example, you route your data to customers in two different countries, such as US 
and Canada, but you only want notices regarding the MOBILE product line to be sent 
to US customers and the LANDLINE product line to customers in Canada. To 
implement this routing, you must define a routing rule for each component and 
operation pair that sends messages to the target customers. In addition, you specify 
filter expressions for the routing rules that send messages to the customers in the US 
or Canada.

You can also define filter expression message properties or message headers.

Note: You can route the same fault to multiple targets using 
different transformations.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-15

Filter Expression Message Properties
Two examples of filter expression message properties are shown in Example 20–1.

Example 20–1 Filter Expression Message Properties

$in.property.custom.Priority = '1'

$in.property.tracking.ecid = '2'

Filter Expression Message Headers
Two examples of filter expression message headers are shown in Example 20–2.

Example 20–2 Filter Expression Message Headers

$in.header.wsse_Security/wsse:Security/Priority = '234'

$in.header.wsse_Security/wsse:Security/Priority = '234'

For the preceding filter expression message headers to work, you must add the 
attribute shown in Example 20–3 to the root element of the .mplan file.

Example 20–3 Attribute to Add

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
 secext-1.0.xsd"

To specify an expression for filtering messages:
You can use the Expression Builder to graphically create a filter expression. The 
Expression Builder dialog contains the components and controls that assist you in 
designing a filter expression. 

1. To the right of the Filter Expression field in the Routing Rules section, click the 
Invoke Expression Builder icon.

The Expression Builder dialog appears, as shown in Figure 20–13.



Defining Routing Rules

20-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–13 Expression Builder Dialog

2. Double-click a value in the Variables field or the Functions palette to add the 
value to the Expression field. Using a combination of variable elements, functions, 
and manually entered text, you can build an expression by which you want 
message payloads to be filtered for a given routing rule.

The following list describes each of the fields in the Expression Builder dialog:

■ Expression

This field contains the actual expression used to filter messages. You can enter 
the filter expression either manually or by using the Variable field and the 
Functions palette.

Using the icons on the upper right side of this field, you can undo the last edit 
made, redo the last edit made, or clear the entire Expression field. 

■ Variables

This field contains the message defined for an Oracle Mediator component. 
Oracle JDeveloper parses the Oracle Mediator WSDL file and presents the 
message definition in the Variables field. The input message is stored in the 
$in variable, and you can use the $in.properties to access the properties 
of an input message.

If the input message consists of multiple parts, then you can use 
$in.partname to access a part of an input message.

■ Functions Palette

This list provides a list of functions that you can include in an expression. 
When you select a function, a preview of how that function appears when 



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-17

added to the Expression field appears in the Content Preview field, and a 
description of the function appears in the Description field.

■ Content Preview

This field indicates how a value selected from the Variables field or Functions 
palette appears when it is inserted into the Expression field.

■ Description field

This field describes the value selected from the Variables field or Functions 
Palette.

To specify a filter expression on a message payload:
1. To the right of the Filter Expression field in the Routing Rules section, click the 

Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

2. In the Variables field, expand the message definition and select the message 
element on which you want to base the expression. 

For example, the CustomerId element is shown selected in Figure 20–14.

Figure 20–14 Expression Builder Dialog – Variables Element Selected

3. Click Insert Into Expression.

The expression is added in the Expression field, as shown in Figure 20–15.



Defining Routing Rules

20-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–15 Expression Builder Dialog – Variables Element Inserted

4. From the Functions list, select the function to apply to the message payload. For 
example, equals.

Functions are grouped in categories that are listed when you click the down arrow 
in the Functions list. For example, if you click the down arrow and select Logical 
Functions, the list appears as shown in Figure 20–15. 

5. Click Insert Into Expression.

The XPath expression for the selected function is inserted into the Expression 
field. 

6. Complete the expression. 

In this example, the Customer ID must equal1001 to evaluate to true, as shown in 
Figure 20–16.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-19

Figure 20–16 Sample Expression Builder Dialog – Value Entered

7. If there are any errors, you can edit the expression manually, or use the expression 
editing icons, which are summarized in Figure 20–17.

Figure 20–17 Expression Editing Icons

8. Click OK.

The expression is added to the Routing Rules section.

To modify or delete a filter expression, double-click the Add Filter Expression icon, 
and then modify or delete the expression in the Expression field of the Expression 
Builder.

20.2.2.8 How to Create Transformations
Oracle JDeveloper provides an XSLT Mapper that lets you specify a mapper file (XSL 
file) to transform data from one XML schema (expressed as an XSD file) to another. 
The XSLT Mapper enables data interchange among applications using different 
schemas. For example, you can map an incoming purchase order schema to an 
outgoing invoice schema. After you define an XSL file, you can reuse it in multiple 
routing rule specifications.

To create a transformation:
1. In the Routing Rules section, click the Select an existing mapper file or create a 

new one icon to the right of the Transform Using field.



Defining Routing Rules

20-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Request Transformation Map dialog appears. You can select an existing XSL 
file or create a new XSL file with the XSLT Mapper to perform the required 
transformation.

2. Do one of the following:

■ If the mapping file exists, select Use Existing Mapper File and then click 
Browse to find and select the mapper file to use.

■ To create a mapper file, select Create New Mapper File, and then enter the 
input information.

3. Repeat the above steps for any synchronous reply, callback, response, or fault 
messages.

 In case of synchronous reply or fault message, the Reply Transformation Map 
dialog or the Fault Transformation Map dialog contains an Include Request in the 
Reply Payload option, as shown in Figure 20–18.

Figure 20–18 Reply Transformation Map Dialog

4. To create an $initial variable that contains the original message of a 
synchronous interaction, select the Include Request in the Reply Payload option.

The variable is created, as shown in Figure 20–19.

Figure 20–19 Initial Variable in XSL File

Note: An initial message can also consist of multiple parts. You can 
use $initial.partname to access a part of the initial message.

If the parts of the inbound and outbound messages are identical, then 
no transformation is required for data interchange.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-21

For information about the XSLT Mapper, see Chapter 38, "Creating Transformations 
with the XSLT Mapper."

To add user-defined extension functions:
You can use the Expression Builder to include user-defined extension functions. 

1. Create an XPath function.

2. Register the Jaxen XPath function with an Oracle Mediator service component in 
the xpath-function.xml file on the server.

3. Start Oracle JDeveloper.

4. Use the Expression Builder to customize the expression.

5. Deploy the Oracle JDeveloper project to Oracle WebLogic Server.

6. Copy the JAR file containing the user-defined extension functions to the 
$BEAHOME/user_
projects/domains/soainfra/autodeploy/soa-infra/APP-INF/lib 
directory.

7. Modify the .mplan file of the project as follows:

■ Add the function namespace you defined for the extension functions under 
the Mediator element.

■ Add the function names under the Expression element.

This is shown in Figure 20–20.

Figure 20–20 Project .mplan file – Modified to Use User-Defined Extension Functions

8. Invoke the test page with a suitable payload.

20.2.2.9 How to Assign Values
You can use the Assign Values field to propagate the headers, payload, and properties 
of a message from source to target. Figure 20–21 shows the Assign Values dialog that is 
displayed when you click the Assign Values icon in the Routing Rules section.



Defining Routing Rules

20-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–21 Assign Values Dialog

To set the properties of the target message:
1. Click Add in the Assign Values dialog.

The Assign Value dialog is displayed, as shown in Figure 20–22.

Figure 20–22 Assign Value Dialog

2. In the From section, select any of the following options from the Type list:

■ Property: Select this option to assign a value of a property to the target 
message. The property list contains a list of predefined message properties. 
You can also enter any user-defined property name.

■ Expression: Select this option to assign a value of an expression to the target 
message. When you click the Invoke Expression Builder icon to the right of 



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-23

the Expression field, the Expression Builder dialog similar to the one shown in 
Figure 20–13 is displayed.

For more information about the Expression Builder dialog, see Section 20.2.2.7, 
"How to Specify an Expression for Filtering Messages."

■ Constant: Select this option to assign a constant value to the target message.

3. In the To section, select any of the following options:

■ Property: Select this option to copy the value to a message property. The 
Variable field of the Expression Builder dialog contains an $out variable that 
contains the output message. You can use $out.property to access properties 
of an output message.

■ Expression: Select this option to copy the value to an expression. When you 
click the Invoke Expression Builder icon to the right of the Expression field, 
the Expression Builder dialog is displayed. The Variable field of the 
Expression Builder dialog contains an $out variable that contains the output 
message. You can use $out.partname to access a complete output message or 
part of an output message.

Figure 20–23 shows a sample Assign Value dialog in which a constant value is 
specified as an expression.

Figure 20–23 Populated Assign Value Dialog

4. Click OK in the Assign Value dialog.

5. Click OK. The expression is added to Assign Values field of the Routing Rules 
section.



Defining Routing Rules

20-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 20–1 through Table 20–3 list the various possibilities of assignment on constants 
and properties, payloads, and headers of a message from source to target.

Notes:

■ When you assign values to a particular Oracle Mediator property 
during event publishing, the assigned value does not get 
propagated to the subscribing event.

You can work around this issue by using transformations to 
include the property as part of the event body.

■ You cannot assign values to the jca.db.userName and 
jca.db.password properties on Oracle WebLogic Server 
because their data sources do not support setting the user name or 
password dynamically to the getConnection method.

Table 20–1 Possibilities on Constants and Properties

Source Target Example

Property Property <copy 
expression="$in.property.jca.file.FileName" 
target="$out.property.jca.file.FileName"/>

Constant Property <copy value="ConstantNameAssigned.xml" 
target="$out.property.jca.file.FileName"/>

Table 20–2 Possibilities on Payload

Source Target Example

XPath 
Expression

Property <copy 
expression="concat('ExprPropMed','-',oraext
:generate-guid())" 
target="$out.property.jca.file.FileName" 
xmlns:oraext="http://www.oracle.com/XSL/Tra
nsform/java/oracle.tip.pc.services.function
s.ExtFunc"/>

XPath 
Expression 
(below part 
level)

Property <copy 
expression="$in.body/imp1:request/ProductRe
q/Make" 
target="$out.property.jca.file.FileName" 
xmlns:imp1="http://xmlns.oracle.com/psft"/>

Property XPath 
Expression 
(below part 
level)

<copy 
value="$in.property.jca.file.FileName"  
target="$out.request/inp1:request/ProductRe
q/Model" 
xmlns:inp1="http://xmlns.oracle.com/psft"/>

Constant XPath 
Expression 
(below part 
level)

<copy value="ConstantModel" 
target="$out.request/inp1:request/ProductRe
q/Model" 
xmlns:inp1="http://xmlns.oracle.com/psft"/>

XPath 
Expression

XPath 
Expression

<copy expression="$in.body" 
target="$out.request"/>



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-25

20.2.2.10 What You May Need to Know About the Assign Activity
Note the following issues about the assign activity.

■ The assign activity is executed in the order that is present in the Oracle Mediator 
<copy> element.

■ A source XPath expression should always refer to a leaf node while the source is 
assigned to a target property. Otherwise, all the values of the child nodes in the 
source get concatenated and are assigned to the target property. Example 20–4 
provides details.

Example 20–4 XPath Expression Referring to a Leaf Node

<copy target="$out.property.jca.file.FileName"
 expression="$in.body/imp1:request/ProductReq/Make"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

XPath 
Expression 
(below part 
level)

XPath 
Expression 
(below part 
level)

<copy 
expression="$in.body/imp1:request/ProductRe
q/Make" 
target="$out.request/imp1:request/ProductRe
q/Model" 
xmlns:imp1="http://xmlns.oracle.com/psft"/>

Table 20–3 Possibilities on Header

Source Target Example

XPath 
Expression 
(below part 
level)

Property <copy expression="$in.header.inp1_
header/inp1:header/Name" 
target="$out.property.jca.file.FileName" 
xmlns:inp1="http://xmlns.oracle.com/psft"/>

Property XPath 
Expression 
(below part 
level)

<copy 
value="$in.property.jca.file.FileName" 
target="$out.header.inp1_
header/inp1:header/Name" 
xmlns:inp1="http://xmlns.oracle.com/psft"/>

Constant XPath 
Expression 
(below part 
level)

<copy value="NewID.xml" 
target="$out.header.inp1_
header/inp1:header/Id" 
xmlns:inp1="http://xmlns.oracle.com/psft"/>

Constant XPath 
Expression 
(below part 
level)

<copy value="sampleusername" 
xmlns:wsse1="http://docs.oasis-open.org/wss
/2004/01/oasis-200401-wss-wssecurity-secext
-1.0.xsd" target="$out.header.wsse1_
Security/wsse1:Security/wsse1:UsernameToken
/wsse1:Username"/>

XPath 
Expression

XPath 
Expression

<copy target="$out.header.inp1_header" 
expression="$in.header.inp1_header" 
xmlns:inp1="http://xmlns.oracle.com/psft"/>

XPath 
Expression 
(below part 
level)

XPath 
Expression 
(below part 
level)

<copy target="$out.header.inp1_
header/inp1:header/Name" 
expression="$in.header.inp1_
header/inp1:header/Id" 
xmlns:inp1="http://xmlns.oracle.com/psft"/>

Table 20–2 (Cont.) Possibilities on Payload

Source Target Example



Defining Routing Rules

20-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ While assigning a constant or a property to a target XPath expression, the target 
XPath expression should always point to a leaf node. Otherwise, nonleaf nodes 
contain only a string value that may generate nonvalid XML according to the 
.xsd file. Example 20–5 provides details.

Example 20–5 Target XPath Expression Pointing to a Leaf Node

<copy target="$out.request/inp1:request/ProductReq/Make" value="NewMakeValue"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

In this example, $out.request/inp1:request/ProductReq/Make refers to 
the leaf node.

■ If a transformation is available, then while assigning a source part to a target part, 
the target is overwritten because the assign activity occurs on top of the 
transformation. If the transformation is not available, then the assign activity 
creates the target. Example 20–6 provides details.

Example 20–6 Transformation Availability and Assign Activity

<copy target="$out.request" expression="$in.body"/>

<copy target="$out.header.inp1_header" expression="$in.header.inp1_header"
  xmlns:inp1="http://xmlns.oracle.com/psft"/>

■ If one of the child nodes in the target payload has to be modified, then there are 
the following two use cases:

– If a transformation is available, then directly assign a source expression to a 
target XPath expression that is pointing to that child node in the target. 
Example 20–7 provides details.

Example 20–7 Direct Assignment of a Source Expression to a Target XPath Expression

<copy value="ConstantModel"
target="$out.request/inp1:request/ProductReq/Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

– If a transformation is not available, then there are two steps involved. First, 
assign the source part to the target part, and then assign the source expression 
to a target XPath expression that is pointing to the child node in the target. 
Example 20–8 provides details.

Example 20–8 Assignments if Transformations are Unavailable

<copy target="$out.request" expression="$in.body"/> and <copy
 value="ConstantModel" target="$out.request/inp1:request/ProductReq/Model"
 xmlns:inp1="http://xmlns.oracle.com/psft"/>

■ When only one of the child nodes of the source has to be propagated into a target, 
then first ensure that there is no transformation invoked. Then, assign the source 
XPath expression to point to the required child node. Example 20–9 provides 
details.

Note: A leaf node is a node with no child nodes.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-27

Example 20–9 One Child Node of the Source is Propagated into a Target

<copy target="$out.request/imp1:ProductReq"
 expression="$in.body/imp1:request/ProductReq"
 xmlns:imp1="http://xmlns.oracle.com/psft"/>

In this case, the source element evaluated from 
$in.body/imp1:request/ProductReq does not contain a complete tree 
structure that starts from the root element, but contains only a child node. 
Example 20–10 provides details.

Example 20–10 Structure Starting from the Root Element that Contains Only a Child 
Node

<ProductReq>
        <Make>MAKE</Make>
        <Model>MODEL</Model>
</ProductReq>

■ If there are multiple assign activities in an Oracle Mediator and each source XPath 
expression points to a different child node, then there are the following two use 
cases:

– If a transformation is available, then the corresponding child node in the 
target is updated.

– If a transformation is not available, then the target should be a multiple part 
target with each part referring to the source child node.

■ With headers, if the passThroughHeader property is set, then

– Any header manipulation in a transformation is updated in the target headers.

– The part level assign activity overwrites the target header part.

– The below part level node assign activity updates the corresponding node in 
the target.

■ If multiple source nodes (below part level) are assigned to the same target node 
(below part level), then the target node contains the value of the last copy element 
in the assign activity. Example 20–11 provides details.

Example 20–11 Multiple Source Nodes Assigned to the Same Target Node

<copy target="$out.request/imp1:request/ProductReq/Make"
 expression="$in.body/imp1:request/ProductReq/Model"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

<copy target="$out.request/imp1:request/ProductReq/Make"
 expression="$in.body/imp1:request/Description"
xmlns:imp1="http://xmlns.oracle.com/psft"/>

In Example 20–11, the first copy element does not have any effect because the 
second copy element overwrites it.

■ If the XPath expression results in a list (multiple occurrences), then there are the 
following two use cases:

– If the list contains a single element, then the XPath expression is propagated.

– If the list contains multiple elements, then the XPath expression is not 
supported.



Defining Routing Rules

20-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The following activities happen while assigning a source child node to a target 
child node:

1. The source child node name and namespace are overwritten by the target 
node name and namespace, respectively.

2. The target child node is replaced by the source child node in the parent node 
of the target node.

20.2.2.11 How to Access Headers for Filters and Assignments
When the Expression Builder is invoked from an Oracle Mediator, either for defining a 
filter or for defining an assignment source or target, the WSDL file is parsed. This 
automatically detects any SOAP headers for the current routing rule operation and 
makes them visible as variables under the in or out folder as header./ns_
elementName/, as shown in Figure 20–24. Here, ns is the namespace prefix and 
elementName is the root element name for the header schema.

The following examples provide details.

Example 1: Namespace Prefixes wsse and ns1 Are Already Defined
Assume the namespace prefixes wsse and ns1 are already defined in the WSDL file or 
the .mplan file. You can then write an XPath expression as follows:

$in.header.wsse_Security/wsse:Security/ns1:Foo/Priority

Example 2: Schema Without a Namespace Predefined in the WSDL File
Assume you want to use a schema that does not have a namespace predefined in the 
WSDL file. The Expression Builder is then enhanced to allow you to enter {full_
namespace} instead of a prefix. The Expression Builder then generates a unique 
prefix and the prefix definition is added to the .mplan file.

For example, enter the expression in the Expression Builder shown in Example 20–12:

Example 20–12 Expression

$in.header.{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd}_Security/
{"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xs
d"}:
Security/{"http://www.globalcompany.com/ns/OrderBooking"}:Foo/Priority

The .mplan file contains the content shown in Example 20–13.

Example 20–13 Contents of .mplan File

xmlns:ns1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
xmlns:ns2="http://www.globalcompany.com/ns/OrderBooking"
...
expression="$in.header.ns1_Security/ns1:Security/ns2:Foo/Priority"



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-29

Figure 20–24 Expression Builder Dialog - Automatic Header Detection

By default, SOAP headers are not passed through by Oracle Mediator. You must add 
the passThroughHeader endpoint property to the corresponding Oracle Mediator 
routing service:

<property name="passThroughHeader">true</property>

For example, to add this property, you can modify the composite.xml file, as shown 
in Example 20–14.

Example 20–14 passThroughHeader Property

<component name="Mediator1"> 
     <implementation.mediator src="Mediator1.mplan"/>
     <property name="passThroughHeader">true</property>
</component>

For the headers to pass through, the source and the target must have the same QName 
(name and namespace). If the source and the target have different QNames, then 
either a transformation or part-level assignment must be performed.

It is important to note that, with a passthrough Oracle Mediator (without a 
transformation or assign), if the source and target part QNames are not identical, then 
Oracle Mediator passes through the message payloads to the target service without 
any error. However, this can result in an error in the target service because the 
message payloads are not reconstructed according to the message structure of the 
target service.



Defining Routing Rules

20-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

20.2.2.11.1 Manual Expression Building for Accessing Headers for Filters and Assignments  
There are use cases in which the header schemas cannot be determined from the 
WSDL files. For example, security headers that are appended to a message, or the 
headers for an Oracle Mediator that are created using an abstract WSDL file. To access 
these headers, you must manually enter the XPath expression into the Expression 
Builder.

The syntax for header expressions is shown in Example 20–15.

Example 20–15 Header Expressions Syntax

$in.header.<header root element namespace prefix>_<header root element 
name>/<xpath>

Therefore, for the header shown in Example 20–16.

Example 20–16 Header Syntax

<wsse:Security 
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd">
<Priority>234</Priority>
</wsse:Security>

The filter expression is as follows:

$in.header.wsse_Security/wsse:Security/Priority = '234'

The assignment expression is as shown in Example 20–17.

Example 20–17 Assignment Expression

<copy target="$out.property.jca.jms.priority"
 expression="$in.header.wsse_Security/wsse:Security/Priority"/>

For the preceding expressions to work, you must add the attribute shown in 
Example 20–18 to the root element of the .mplan file.

Example 20–18 Addition of Attribute to .mplan File

wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"

20.2.2.11.2 Manual Expression Building for Accessing Properties for Filters and Assignments  
An example of a filter expression is as follows.

$in.property.tracking.ecid = '2'

An example of an assignment expression is as follows.

Notes:

■ The user interface supports both SOAP 1.1 and SOAP 1.2.

■ For automatic header detection, a concrete WSDL file must be 
used when creating the Oracle Mediator service component.

■ Assignments execute after filters. Therefore, if you are assigning a 
value in a custom header, then the particular assignment is not 
visible to the filter.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-31

<copy target="$out.property.tracking.ecid"  value="$in.property.tracking.ecid"/>

20.2.2.12 How to Use Semantic Validation
You can specify Schematron files for validating an inbound message and its various 
parts. Schematron version 1.5 is the supported version.

Perform the following steps for specifying a Schematron schema to validate an 
inbound message and its various parts.

To use semantic validation:
1. To the right of the Validate Semantic field, click the Select Validation File icon.

The Validations dialog is displayed.

2. Click Add.

The Add Validation dialog is displayed.

3. From the Part list, select a message part.

4. To the right of the File field, click Search.

The SOA Resource Browser dialog is displayed.

5. Select a Schematron file and click OK.

The Add Validation dialog is updated, as shown in Figure 20–25.

Figure 20–25 Add Validation Dialog

6. Click OK.

The Validation dialog is updated, as shown in Figure 20–26.

Notes:

■ Schematron files usually have a .sch extension.

■ No error message or warning is displayed if the selected 
Schematron file is empty.



Defining Routing Rules

20-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–26 Validation Dialog

7. Click Add to specify a Schematron file for another message part or click OK.

For more information about building a Schematron schema, see the resources 
available at

http://www.schematron.com

20.2.2.13 How to Use Java Callouts
Java callouts enable you to use external Java classes to manipulate messages flowing 
through the Oracle Mediator. Only one Java callout is supported per operation or 
event subscription. The callout class must implement the 
oracle.tip.mediator.common.api.IjavaCallout interface. Callouts are 
available for both static and dynamic routings. Figure 20–27 shows a sample Oracle 
Mediator with two operations, in which both the operations have one routing rule 
each and the first operation has a callout class.

Note: In semantic validation, if you check for the length of each 
element name, then the element name may change for a different set 
of inputs. This happens when there are white spaces between nodes 
because the parser treats the white spaces as test nodes.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-33

Figure 20–27 Sample Oracle Mediator Supporting Java Callout

To make Java callout classes available:
You must ensure that the Java callout class is available on the server. You can use any 
of the following methods for this:

■ Copy the Java class to the SCA-INF/classes folder.

■ Copy the JAR file containing the Java class to the SCA-INF/lib folder.

■ Copy the JAR file containing the Java class to the $DOMAIN_HOME/lib folder.

If you want to make the Java callout class available to multiple Oracle Mediators, copy 
the JAR file containing the Java class to the $DOMAIN_HOME/lib folder.

To enter the Java class for the callout:
You can either manually enter the Java class or select a class from the Class Browser.

■ To manually enter the name of the Java callout class, start typing the class name in 
the Callout To field, as shown in Figure 20–28. The auto-completion feature of 
Oracle JDeveloper completes the address and the classes in the current project.

Figure 20–28 Callout To Field



Defining Routing Rules

20-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ To select from a list of available classes, click the Select Java Callout Class icon.

The standard Oracle JDeveloper class browser appears, as shown in Figure 20–29.

Figure 20–29 Class Browser Dialog

The class browser is filtered so it only displays classes that implement the 
oracle.tip.mediator.common.api.IjavaCallout interface.

To set the payload root element (when using a filter expression):
If you have a Java callout in Oracle Mediator and use a filter expression in the same 
Oracle Mediator, you must set the root element for the payload, as shown in 
Example 20–19.

Example 20–19 Setting the Root Element for the Payload

changexmldoc = XmlUtils.getXmlDocument(ChangedDoc);
String mykey = "request";
message.addPayload(mykey,changexmldoc.getDocumentElement());

To enable domain value map and cross reference functions:
To use domain value map functions or cross reference functions in a Java callout, you 
must add the soa-xpath-exts.jar file to the project and import the necessary Java 
classes into your code.

1. In the Oracle JDeveloper Projects Explorer, right-click the name of the project 
containing the Java callout.

2. Select Project Properties.

The Project Properties dialog appears.

3. In the left panel, select Libraries and Classpath, as shown in Figure 20–30.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-35

Figure 20–30 Libraries and Classes on the Project Properties Dialog

4. Click Add JAR/Directory.

The Add Archive or Directory dialog appears, as shown in Figure 20–31.

Figure 20–31 Add Archive or Directory Dialog

5. In the explorer tree, expand the directories to select <JDEV_
HOME>/jdeveloper/soa/modules/oracle.soa.fabric_
11.1.1/soa-xpath-exts.jar, and then click Select.

The JAR file appears in the Classpath Entries list.



Defining Routing Rules

20-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. Click OK.

Oracle Mediator Java Callout API
The Java callout API defines two interfaces: 
oracle.tip.mediator.common.api.IjavaCallout and 
oracle.tip.mediator.common.api.CalloutMediatorMessage.

Table 20–4 lists and describes the methods in the 
oracle.tip.mediator.common.api.IjavaCallout interface.

Notes: When using domain value map functions, import the 
following into your Java class:

■ oracle.tip.dvm.LookupValue

■ oracle.tip.dvm.exception.DVMException

When using cross reference (xref) functions, import the following into 
your Java class:

■ oracle.tip.xref.xpath.XRefXPathFunctions

■ oracle.tip.xref.exception.XRefException

Table 20–4 Description of Methods in the IjavaCallout Interface

Method Description

initialize This method is invoked when the callout implementation class is 
instantiated for the first time.

preRouting This method is called before Oracle Mediator starts executing 
the cases. You can customize this method to include validations 
and enhancements.

preRoutingRule This method is called before Oracle Mediator starts executing 
any particular case. You can customize this method to include 
case-specific validations and enhancements.

preCallbackRouting This method is called before Oracle Mediator finishes executing 
callback handling. You can customize this method to perform 
callback auditing and custom fault tracking.

postRouting This method is called after Oracle Mediator finishes executing 
the cases. You can customize this method to perform response 
auditing and custom fault tracking.

postRoutingRule This method is called after Oracle Mediator starts executing the 
cases. You can customize this method to perform response 
auditing and custom fault tracking.

postCallbackRouting This method is called after Oracle Mediator finishes executing 
callback handling. You can customize this method to perform 
callback auditing and custom fault tracking.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-37

Table 20–5 discusses the methods in the CalloutMediatorMessage interface.

Note: If you change the message properties of an Oracle Mediator by 
using a Java callout in the preRoutingRule method or the 
preRouting method, then you must explicitly copy the changed 
property to the outbound message by using Oracle Mediator 
assignment functionality. For example, if you are changing the 
jca.file.FileName property in a Java callout, then you must 
update the Oracle Mediator assignment statement as follows:

<assign>
<copy target="$out.property.jca.file.FileName"
expression="$in.property.jca.file.FileName"/>
</assign>

Table 20–5 Description of Methods in the CalloutMediatorMessage Interface

Method Description

addPayload This method sets a payload of the Oracle Mediator messages.

addProperty This method adds a property to the Oracle Mediator messages.

addHeader This method adds a header to the Oracle Mediator messages.

getProperty This method retrieves Oracle Mediator message properties by 
providing the property name.

getProperties This method retrieves Oracle Mediator message properties.

getId This method retrieves the instance ID of the Oracle Mediator 
messages. This instance ID is the Oracle Mediator instance ID 
created for that particular message.

getPayload This method retrieves a payload of the Oracle Mediator 
messages.

getHeaders This method retrieves a header of the Oracle Mediator messages.

getComponentDN This method retrieves a componentDN for the Oracle Mediator 
service component.

Notes:

■ The 
oracle.tip.mediator.common.api.AbstractJavaCallou
tImpl class is a dummy implementation1 of the IJavaCallout 
interface. This class defines all the methods present in the 
IJavaCallout interface. Therefore, you can extend this class to 
override only a few specific methods of the IJavaCallout 
interface.

■ Details of the processing occurring within the Java callout are not 
displayed in the Oracle Mediator audit trail screen.

1 Dummy implementation of an interface means that the implementation class 
provides definitions for all the methods declared in the particular interface, but one 
or more defined methods may have an empty method body. Extending a dummy 
implementation class is much easier because you can choose to override only a subset 
of the methods, unlike implementing an interface and defining all the methods.



Defining Routing Rules

20-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Sample Java Callout Class
Example 20–20 shows a sample Java callout class:

Example 20–20  Sample Java Callout Class

package qa.as11tests.javacallout;
 
import com.collaxa.cube.persistence.dto.XmlDocument;
 
import com.oracle.bpel.client.NormalizedMessage;
 
import java.util.logging.Logger;
import java.util.Map;
import java.util.Iterator;
 
import oracle.tip.mediator.common.api.CalloutMediatorMessage;
import oracle.tip.mediator.common.api.ExternalMediatorMessage;
import oracle.tip.mediator.common.api.IJavaCallout;
import oracle.tip.mediator.common.api.MediatorCalloutException;
import oracle.tip.mediator.metadata.CaseType;
import oracle.tip.mediator.utils.XmlUtils;
 
import oracle.tip.pc.services.functions.ExtFunc;
 
import oracle.xml.parser.v2.XMLDocument;
 
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
 
public class JavaCalloutSanity implements IJavaCallout {
    Logger logger = Logger.getLogger("Callout");
    public JavaCalloutSanity() {    }    
    
    public void initialize(Logger logger) throws MediatorCalloutException {
        this.logger = logger;
        this.logger.info("Initializing...");
    }
    public boolean preRouting(CalloutMediatorMessage calloutMediatorMessage) {
        System.out.println("Pre routing...");
        String sPayload = "null";
        String sPayload_org = "null";        
        for (Iterator msgIt = 
calloutMediatorMessage.getPayload().entrySet().iterator();
             msgIt.hasNext(); ) {
            Map.Entry msgEntry = (Map.Entry)msgIt.next();
            Object msgKey = msgEntry.getKey();
            Object msgValue = msgEntry.getValue();
            if (msgKey.equals("request"))
                sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);           
       }
        sPayload_org = sPayload;
        String tobeReplaced = "CHANGE_THIS";
        String replaceWith = "JAVA_CALLOUT_||_PRE_ROUTING";
        int start = sPayload.indexOf(tobeReplaced);
        StringBuffer sb = new StringBuffer();
        sb.append(sPayload.substring(0, start));
        sb.append(replaceWith);
        sb.append(sPayload.substring(start + tobeReplaced.length()));
        String changedPayload = sb.toString();        



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-39

        String uid;
        try {
            uid = ExtFunc.generateGuid();            
        } catch (Exception e) {
        }
              XMLDocument changedoc;        
        try {
            changedoc = XmlUtils.getXmlDocument(changedPayload);
            String mykey = "request";
            calloutMediatorMessage.addPayload(mykey,changedoc);
            //calloutMediatorMessage.getPayload().put(mykey, changedoc);
        } catch (Exception e) {
        }
        System.out.println("Changed from : \n"+sPayload_
org+"\nTo\n"+changedPayload);
        System.out.println("End Pre routing...\n\n");
        return false;
    }
    public boolean postRouting(CalloutMediatorMessage calloutMediatorMessage,
                               CalloutMediatorMessage calloutMediatorMessage1,
                               Throwable throwable) throws 
MediatorCalloutException {
        System.out.println("Start Post routing...");
        String sPayload = "null";
        String sPayload_org = "null";        
        for (Iterator msgIt = 
calloutMediatorMessage1.getPayload().entrySet().iterator();
             msgIt.hasNext(); ) {
            Map.Entry msgEntry = (Map.Entry)msgIt.next();
            Object msgKey = msgEntry.getKey();
            Object msgValue = msgEntry.getValue();
            if(msgKey.equals("reply"))
                sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);          
        }
        
        sPayload_org = sPayload;        
        String tobeReplaced = "POST_ROUTING_RULE_REQUEST_REPLY";
        String replaceWith = "POST_ROUTING_RULE_REQUEST_REPLY_||_POSTROUTING_||_
JAVA_CALLOUT_WORKING";
        int start = sPayload.indexOf(tobeReplaced);
        StringBuffer sb = new StringBuffer();
        sb.append(sPayload.substring(0, start));
        sb.append(replaceWith);
        sb.append(sPayload.substring(start + tobeReplaced.length()));
        String changedPayload = sb.toString();
        XMLDocument changedoc;
        try {
            changedoc = XmlUtils.getXmlDocument(changedPayload);
            String mykey = "reply";
            
calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
            // calloutMediatorMessage1.getPayload().put(mykey, 
changedoc.getDocumentElement());
        } catch (Exception f) {
        }
        System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+
                changedPayload);
        System.out.println("End Post routing...\n\n");
        return false;
    }



Defining Routing Rules

20-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    public boolean preRoutingRule(CaseType caseType,
                                  CalloutMediatorMessage calloutMediatorMessage) {
        System.out.println("\nStart PreRoutingRule.\n");
        String sPayload = "null";
        String sPayload_org = "null";
        for (Iterator msgIt =
             calloutMediatorMessage.getPayload().entrySet().iterator();
             msgIt.hasNext(); ) {
 
            Map.Entry msgEntry = (Map.Entry)msgIt.next();
            Object msgKey = msgEntry.getKey();
            Object msgValue = msgEntry.getValue();
            if(msgKey.equals("request"))
                sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);            
        }        
        sPayload_org = sPayload;
        String tobeReplaced = "PRE_ROUTING";
        String replaceWith = "PRE_ROUTING_||_PRE_ROUTING_RULE";
        int start = sPayload.indexOf(tobeReplaced);
        StringBuffer sb = new StringBuffer();
        sb.append(sPayload.substring(0, start));
        sb.append(replaceWith);
        sb.append(sPayload.substring(start + tobeReplaced.length()));
        String changedPayload = sb.toString();
        XMLDocument changedoc;
        try {
            changedoc = XmlUtils.getXmlDocument(changedPayload);
            String mykey = "request";
            calloutMediatorMessage.addPayload(mykey,changedoc);
            // calloutMediatorMessage.getPayload().put(mykey, changedoc);
        } catch (Exception e) {
        }
        System.out.println("Changed from : \n"+sPayload_
org+"\nTo\n"+changedPayload);
        System.out.println("End PreRoutingRule.\n\n");
        return true;
    }
    public boolean postRoutingRule(CaseType caseType,
                                   CalloutMediatorMessage calloutMediatorMessage,
                                   CalloutMediatorMessage calloutMediatorMessage1,
                                   Throwable throwable) {
        System.out.println("Start PostRoutingRule.");
        String req_sPayload = "null";
        String req_sPayload_org = "null";
        String rep_sPayload = "null";
        String rep_sPayload_org = "null";
        for (Iterator msgIt =
             calloutMediatorMessage.getPayload().entrySet().iterator();
             msgIt.hasNext(); ) {
            Map.Entry msgEntry = (Map.Entry)msgIt.next();
            Object msgKey = msgEntry.getKey();
            Object msgValue = msgEntry.getValue();
            if(msgKey.equals("request"))
                req_sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);            
        }
        req_sPayload_org = req_sPayload;
        String tobeReplaced = "PRE_ROUTING_RULE";
        String replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST";
        int start = req_sPayload.indexOf(tobeReplaced);
        StringBuffer sb = new StringBuffer();



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-41

        sb.append(req_sPayload.substring(0, start));
        sb.append(replaceWith);
        sb.append(req_sPayload.substring(start + tobeReplaced.length()));
        String changedPayload = sb.toString();
        XMLDocument changedoc;
        try {
            changedoc = XmlUtils.getXmlDocument(changedPayload);
            String mykey = "request";
            calloutMediatorMessage.addPayload(mykey,changedoc);
            // calloutMediatorMessage.getPayload().put(mykey, changedoc);
        } catch (Exception e) {
        }
        for (Iterator msgIt =
             calloutMediatorMessage1.getPayload().entrySet().iterator();
             msgIt.hasNext(); ) {
            Map.Entry msgEntry = (Map.Entry)msgIt.next();
            Object msgKey = msgEntry.getKey();
            Object msgValue = msgEntry.getValue();
            if(msgKey.equals("reply"))
                rep_sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);            
        }
        rep_sPayload_org = rep_sPayload;        
        tobeReplaced = "PRE_ROUTING_RULE";
        replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST_REPLY";
        start = rep_sPayload.indexOf(tobeReplaced);
        sb = new StringBuffer();
        sb.append(rep_sPayload.substring(0, start));
        sb.append(replaceWith);
        sb.append(rep_sPayload.substring(start + tobeReplaced.length()));
        changedPayload = sb.toString();
        try {
            changedoc = XmlUtils.getXmlDocument(changedPayload);
            String mykey = "reply";
            
calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
            // calloutMediatorMessage1.getPayload().put(mykey, 
changedoc.getDocumentElement());
        } catch (Exception e) {
        }
        System.out.println("Changed from : \n"+req_sPayload_
org+"\nTo\n"+changedPayload);
        System.out.println("End postRoutingRule\n\n");
        return true;
    }
}

20.2.3 How to Create Dynamic Routing Rules
The basic idea behind dynamic routing is to separate the control logic, which 
determines the path taken by the process, from the execution of the process. In the 
dynamic routing scenario, a decision matrix determines the type of Level-2 service to 
be chosen for each routing. The factors that affect the decision on the type of Level-2 
service are channel, customer type, and so on. The solution allows this decision matrix 
to be modified externally by business analysts without changing the routing. The 
decision matrix must be evaluated to determine the outbound service.

How to create dynamic routing rules:
1. Use the dynamic routing rule option of the Mediator Editor, as shown in 

Figure 20–32:



Defining Routing Rules

20-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–32 Mediator Editor Displaying Dynamic Routing Rule Option

This creates a new business rule service component that is wired to the Oracle 
Mediator service component within the SOA composite of the Oracle Mediator 
service component. The wire links between the business rule service component 
and the Oracle Mediator service component are considered implementation details 
and are shown as dotted lines in the SOA Composite Editor, as shown in 
Figure 20–33.

Figure 20–33 SOA Composite Editor with Wire Links Between the Business Rule and 
Oracle Mediator Service Components

The business rule service component includes a rule dictionary. The rule 
dictionary is a metadata container for the rule engine artifacts, such as fact types, 
rulesets, rules, decision tables and so on. As part of creating the business rule 
service component, the rule dictionary is preinitialized with the following data.

■ Fact Type Model

The fact type model is the data model that can be used for modeling rules. The 
rule dictionary is populated with a fact type model that corresponds to the 
input of a phase activity in a BPEL process, and some fixed data model that is 
required as part of the contract between the Oracle Mediator service 
component and the business rule service component.

■ Ruleset

A ruleset is a container of rules used as a kind of grouping mechanism for 
rules. A ruleset can be exposed as a service. As part of creating the business 
rule service component, one ruleset is created within the rule dictionary.



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-43

■ Decision Table (or matrix)

From a rule engine perspective, a decision table is a collection of rules with the 
same fact type model elements in the condition and action part of the rules. 
The decision table enables you to visualize rules in a tabular format. As part of 
creating the business rule service component, a new decision table is created 
within the ruleset.

■ Decision Service

As part of creating the business rule service component, a decision service is 
created to expose the ruleset as a service of the business rule service 
component. The service interface is used by the Oracle Mediator service 
component to evaluate the decision table.

After all the required artifacts of the phase activity are created, the wizard starts 
modeling the phase decision matrix (PDM). The wizard launches the Business 
Rules Designer of Oracle JDeveloper and enables you to edit the phase decision 
matrix. Figure 20–34 shows a sample decision table within the Business Rules 
Designer.

Figure 20–34 Sample Decision Table Within the Rule Designer

2. Once the dynamic routing is created, you can modify the associated decision 
matrix by clicking Edit Dynamic Rules. This launches the Business Rules 
Designer and enables modification of the associated decision table of the business 
rule service component. After you create dynamic routing for the Oracle Mediator 
service component, you cannot return to static routing without deleting the 
dynamic routing. Currently, there is no option for mixing these two types of 
routing.

The Mediator Editor looks as shown in Figure 20–35 after the dynamic routing 
option is chosen.



Defining Routing Rules

20-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–35 Mediator Editor with a Dynamic Routing Rule

The changes in Source view are as follows.

<Mediator name="Shipment" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
          xmlns="http://xmlns.oracle.com/sca/1.0/mediator">
 <operation name="execute" deliveryPolicy="AllOrNothing" priority="0">
  <switch decisionServiceRef="Phase1DecisionService"
          decisionServiceOperation="executeFunction"></switch>
 </operation>
</Mediator>

The switch element contains the decision service reference and operation details 
to enable the Oracle Mediator service component to invoke the decision service in 
runtime for obtaining the dynamic routing decisions. Dynamic decisions are 
returned by the business rule service engine user configuration at runtime.

External service invocation contains an extra attribute called bindingInfo, which 
contains binding information to make the invocation dynamic.

20.2.4 What You May Need to Know About Using Dynamic Routing Rules
Note the following limitations on using dynamic routing rules with Oracle Mediator:

■ As of now, only SOAP bindings are supported. There is a dummy SOAP binding 
in the composite.xml file. This endpoint is overridden by Oracle Mediator in 
runtime through an NM property. Therefore, outbound services can be called only 
over SOAP.

■ Payload manipulation is limited for dynamic routing rules. No assignment, 
transformation, or validation can be performed.

■ The reference WSDL file (layer 2 or called references) should have the same 
abstract WSDL file as the phase reference that gets automatically created.

■ Dynamic routing is not possible for Oracle Mediators with a synchronous or 
one-way interface.

20.2.5 How to Define Default Routing Rules
Oracle Mediator processes messages depending on the conditions specified in the 
routing rules. In some cases, an Oracle Mediator may not process an incoming 
message because the message does not satisfy any of the conditions specified in the 
routing rules. You can define a default routing rule for such messages. The default 
routing rule is executed when none of the conditions of other routing rules are 
satisfied. 



Defining Routing Rules

Creating Oracle Mediator Routing Rules 20-45

A default routing rule is the same as the routing rules discussed in Section 20.2.2, 
"How to Create Static Routing Rules." The only difference between a default routing 
rule and other routing rules is that a default routing rule does not have any condition 
associated with it. Otherwise, a default routing rule is the same as other routing rules 
in every other aspect, such as target service, response handling, fault handling, and so 
on.

20.2.5.1 Default Rule Scenarios
A default routing rule can be either a sequential rule or a parallel rule. A default 
routing rule, whether sequential or parallel, is guaranteed to be executed when no 
other routing rule condition is satisfied. When the default rule is executed, the Oracle 
Mediator audit trail shows that the filter conditions of all the routing rules failed, and 
the filter condition of the default routing rule passed and was executed. 
Example 20–21 provides details.

Example 20–21 Default Rule Scenarios

ActivityJan 7, 2010 4:35:15 PM 
Message onCase "fileout2.Write" 
Jan 7, 2010 4:35:15 PM 
Message Evaluation of xpath condition " No Filter (DEFAULT CASE) " resulted 
true

You can define all routing rules, including default routing rules, as either sequential or 
parallel routing rules, so the expected behavior of routing rules varies. The following 
sections discuss each combination and the expected behavior:

Sequential Default Routing Rule
You can have the following possible scenarios with a sequential default routing rule:

■ All the other routing rules of the Oracle Mediator are sequential: This is the 
simplest case in which all the routing rules, including the default routing rule, are 
of a sequential type. Runtime evaluates the filter conditions of all routing rules 
and, if none of the filter conditions are matched, then the default sequential 
routing rule is executed. Default sequential routing rule execution happens in the 
same transaction as the incoming message. After the default rule is executed, a 
post Java callout occurs.

■ At Least One of the Routing Rules of the Oracle Mediator are parallel: This is a 
complex case in which the default routing rule is sequential and at least one of the 
other routing rules is parallel. The default behavior at runtime is to execute all 
sequential routing rules first and then execute parallel routing rules. Therefore, 
this is a tricky situation because a default rule should be executed only after all 
other routing rules are evaluated to be false.

In this case, the server first evaluates the filter condition of parallel rules before 
evaluating the default routing rule filter condition. If none of the other filter 
conditions are matched, then the default sequential routing rule is executed.

Notes:

■ Default rules are available only for static routing rules.

■ You cannot specify a default routing rule for an Oracle Mediator 
service component with dynamic routing rules because you 
cannot define both static and dynamic routing rules in the same 
Oracle Mediator service component.



Defining Routing Rules

20-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Parallel Default Routing Rule
You can have the following possible scenarios with a parallel default routing rule:

■ All the other routing rules of the Oracle Mediator are parallel: This is a 
straightforward case. The default routing rule is not executed if any of the filter 
conditions specified in the other routing rules are matched. If none of the filter 
conditions are matched, then the default routing rule is executed asynchronously.

■ Other Routing Rules of the Oracle Mediator are sequential or parallel: This is a 
complex but common use case in which there are other sequential or parallel 
routing rules available, and the default routing rule is parallel. The default routing 
rule is not executed if any of the other sequential or parallel routing rule criteria is 
matched. If none of the conditions are matched, then the default routing rule is 
executed asynchronously.

20.2.5.2 Default Rule Target
The target of the default routing rule is the same as the supported targets of any other 
existing routing rule. This indicates that the target can be a service, an event, or an 
echo. Similarly, the response from the default routing rule target service can be 
forwarded or returned to the original caller. If the target service returns a fault, then 
the fault is handled in the same way as it is handled in any other routing rule.

20.2.5.3 Default Rule: Validation, Transformation, and Assign Functionality
Schematron validation, transformation, and assign functionality for the default routing 
rule works in the same way as other routing rules.

20.2.5.4 Default Rule: Java Callouts
The current behavior of a pre-Java callout or post-Java callout works in the same way 
as for other routing rules. For the purpose of Java callouts, the default routing rule is 
considered another routing rule. Therefore, for the scenarios in which the default 
routing rule is executed, the postRouting() callback method occurs only after the 
default routing rule is executed.

Note: The fact that the default routing rule is executed automatically 
implies that the default routing rule is the only case that was executed 
for the given Oracle Mediator service component. Similarly, if an 
Oracle Mediator service component has one routing rule without any 
filter condition and also has a default routing rule, then the default 
routing rule is never executed.

Note: If exceptions occur while evaluating or executing other routing 
rules, then the default routing rule is not executed.

Note: The post-Java callouts occur after the execution of sequential 
rules and do not wait for the parallel rules to complete execution. 
Therefore, if the default routing rule is sequential, then the 
postRouting() callback method occurs after executing the default 
routing rule. If the default routing rule is parallel, then the 
postRouting() callback occurs after all sequential rules are 
executed and does not wait for the execution of the parallel default 
routing rule.



Creating an Oracle Mediator for Routing Messages

Creating Oracle Mediator Routing Rules 20-47

20.2.5.5 Default Rule: Oracle Mediator .mplan File
To set a routing rule as the default one, click the Set as Default Routing Rule icon 
shown on Figure 20–2. The .mplan file changes, as shown in Figure 20–36.

Figure 20–36 .mplan File of an Oracle Mediator with a Default Routing Rule

20.3 Creating an Oracle Mediator for Routing Messages
The CustomerRouter use case provides an overview of how to use an Oracle Mediator 
in a SOA composite sample application to route messages. For downloading the 
sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com

The files are provided in the Basic Routing Sample for Oracle Mediator.

The CustomerRouter use case consists of the following steps:

1. Legacy customer files are retrieved from a directory by an adapter service named 
ReadCust. 

2. The ReadCust adapter service sends the file data to the CustomerRouter Oracle 
Mediator.

3. The CustomerRouter Oracle Mediator applies a filter to the XML message payload 
to determine whether the message should be routed to the USCustomer reference 
or CanadaCustomer reference.

4. The CustomerRouter Oracle Mediator then transforms the message to the 
structure required by the adapter reference.



Creating an Oracle Mediator for Routing Messages

20-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. The external reference delivers the message to its associated external application.

Figure 20–37 provides an overview of the CustomerRouter use case.

Figure 20–37 Overview of CustomerRouter Use Case

20.3.1 How to Create the CustomerRouter Use Case
This section provides the design-time tasks for creating, building, and deploying the 
use case. 

20.3.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications 
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter CustomerRouter and then click Next.

The Name your project page appears.

5. In the Project Name field, enter CustomerRouterProject and click Next.

The Configure SOA settings page appears.

6. From the Composite Template list, select Empty Composite and then click Finish.



Creating an Oracle Mediator for Routing Messages

Creating Oracle Mediator Routing Rules 20-49

The Application Navigator of Oracle JDeveloper is populated with the new 
application and the project, and the SOA Composite Editor contains a blank 
palette.

7. From the File menu, select Save All.

20.3.1.2 Task 2: How to Create the CustomerRouter Oracle Mediator Service 
Component

To create the CustomerRouter Oracle Mediator service component:
1. From the Component Palette, select SOA.

2. Drag and drop a Mediator icon in the Components section.

The Create Mediator dialog is displayed.

3. In the Name field, enter CustomerRouter.

4. From the Templates list, select Define Interface Later. 

5. Click OK.

A Oracle Mediator with name CustomerRouter is created.

20.3.1.3 Task 3: How to Create a File Adapter Service
You must create a file adapter service named ReadCust to read the XML files from a 
directory.

To create a file adapter service:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter ReadCust.

5. Click Next.

The Adapter Interface page is displayed.

6. Select Define from operation and schema (specified later) and click Next.

The Operation page is displayed.

7. In the Operation Type field, select Read File.

8. In the Operation Name field, replace Read with ReadFile.

9. Click Next.

The File Directories page is displayed.

Note: Oracle Mediator may process the same file twice when run 
against Oracle Real Application Clusters (Oracle RAC) planned 
outages. This is because a file adapter is a non-XA compliant adapter. 
Therefore, when it participates in a global transaction, it may not 
follow the XA interface specification of processing each file only once.



Creating an Oracle Mediator for Routing Messages

20-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

10. In the Directory for Incoming Files (physical path) field, enter the directory from 
which you want to read the files. For example, enter C:\Customer\In.

11. Click Next.

The File Filtering page is displayed.

12. In the Include Files with Name Pattern field, enter *.xml, and then click Next.

The File Polling page is displayed.

13. Change the Polling Frequency field value to 10 seconds, and then click Next.

The Messages page is displayed.

14. To the right of the URL field, click Search.

The Type Chooser dialog is displayed.

15. Click Import Schema File. 

The Import Schema File dialog is displayed.

16. To the right of the URL field, click Search and select the LegacyCustomer.xsd file 
present in the Samples folder.

17. Click OK.

18. Expand the navigation tree to Type Explorer\Imported 
Schemas\LegacyCustomer.xsd and select CustomerData, as shown in 
Figure 20–38.

Figure 20–38 Type Chooser - CustomerData

19. Click OK.

The Adapter Configuration wizard appears, as shown in Figure 20–39.



Creating an Oracle Mediator for Routing Messages

Creating Oracle Mediator Routing Rules 20-51

Figure 20–39 Adapter Configuration Wizard – Messages page

20. Click Next.

The Finish page is displayed.

21. Click Finish.

22. From the File menu, select Save All.

20.3.1.4 Task 4: How to Create a File Adapter Reference
You must create a USCustomer file adapter reference.

To create a file adapter reference:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next. 

The Service Name page is displayed.

4. In the Service Name field, enter USCustomer.

5. Click Next.

The Adapter Interface page is displayed.

6. Select Define from operation and schema (specified later) and click Next.

The Operation page is displayed.

7. Click Next.

The Operation page is displayed.

8. In the Operation Type field, select Write File.



Creating an Oracle Mediator for Routing Messages

20-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9. In the Operation Name field, enter WriteFile.

10. Click Next.

The File Configuration page is displayed.

11. In the Directory for Outgoing Files (physical path) field, enter the name of the 
directory in which you want to write the files.

For example, C:\Customer\out.

12. In the File Naming Convention field, enter customer_%SEQ%.xml and click 
Next.

The Messages page is displayed.

13. To the right of the URL field, click Search. 

The Type Chooser dialog is displayed.

14. Click Import Schema File. 

The Import Schema File dialog is displayed.

15. To the right of the URL field, click Search and select the USCustomer.xsd file 
present in the Samples folder.

16. Click OK.

17. Expand the navigation tree to Type Explorer\Imported 
Schemas\USCustomer.xsd, and then select Customer.

18. Click OK.

19. Click Next.

The Finish page is displayed.

20. Click Finish.

21. From the File menu, click Save All.

Create another file adapter reference named CanadaCustomer in a similar way by 
using the CanCustomer.xsd file.

Figure 20–40 shows how the SOA Composite Editor appears after performing this 
task.



Creating an Oracle Mediator for Routing Messages

Creating Oracle Mediator Routing Rules 20-53

Figure 20–40 Oracle Mediator Service Component with Adapter Services and 
References

20.3.1.5 Task 5: How to Specify Routing Rules
You must specify the path that messages take from the ReadCust adapter service to 
external references.

To specify routing rules:
1. Connect the ReadCust service to the CustomerRouter Oracle Mediator, as shown 

in Figure 20–41.

This specifies the file adapter service to invoke the CustomerRouter Oracle 
Mediator while reading a file from the input directory.



Creating an Oracle Mediator for Routing Messages

20-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–41 Connecting the ReadCust Service to the CustomerRouter Oracle Mediator

2. Double-click the CustomerRouter Oracle Mediator in the Mediator Editor.

3. In the Routing Rules section, click Add to the extreme right side of ReadFile, and 
then click static routing rule.

The Target Type dialog is displayed.

4. Click Service.

The Target Services dialog is displayed.

5. Navigate to CustomerRouterProject > References > USCustomer and select 
WriteFile, as shown in Figure 20–42.

Figure 20–42 Target Services Dialog

6. Click OK.

The Routing Rules section is displayed.

7. Next to the <<Filter Expression>> field, click the filter icon to create a filter 
expression for this routing rule.

The Expression Builder dialog is displayed.



Creating an Oracle Mediator for Routing Messages

Creating Oracle Mediator Routing Rules 20-55

8. In the Variables field, navigate to Variables> in > body > imp1:CustomerData, 
and then select Country. 

9. Double-click Country. 

The Country node is added in the Expression field, as shown in Figure 20–43.

Figure 20–43 Expression Builder Dialog

10. Modify the expression as follows: 

$in.CustomerData/imp1:CustomerData/Country=’US’

11. Click OK. 

The <<Filter Expression>> field of the Routing Rules section is populated with 
the expression.

12. To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog is displayed, as shown in Figure 20–44.

Figure 20–44 Request Transformation Map



Creating an Oracle Mediator for Routing Messages

20-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

13. Select Create New Mapper File and click OK.

A CustomerData_To_Customer.xsl file is added, as shown in Figure 20–45.

Figure 20–45 CustomerData_To_Customer.xsl File – Initially

14. Drag and drop the imp1:CustomerData source element to the imp1:Customer 
target element.

The Auto Map Preferences dialog is displayed.

15. From the During Auto Map options, deselect Match Elements Considering their 
Ancestor Names.

The Auto Map Preferences dialog is shown in Figure 20–46.

Figure 20–46 Auto Map Preferences Dialog



Creating an Oracle Mediator for Routing Messages

Creating Oracle Mediator Routing Rules 20-57

16. Click OK.

The CustomerData_To_Customer.xsl file appears, as shown in Figure 20–47. 

Figure 20–47 CustomerData_To_Customer.xsl Tab – Auto Mapped Connections

17. From the File menu, select Save All.

18. Repeat the procedures mentioned in Step 3 through Step 17 to create a 
CanadaCustomer reference as the target service. In the Expression Builder dialog, 
specify the following expression:

$in.CustomerData/imp1:CustomerData/Country=’CA’

After performing all the steps described in this section, the SOA Composite Editor 
appears, as shown in Figure 20–37.

20.3.1.6 Task 6: How to Create an Application Server Connection
An application server connection is required for deploying your SOA composite 
application. For information about creating an application server connection, see 
Section 41.7.1.1.1, "Creating an Application Server Connection."

20.3.1.7 Task 7: How to Deploy the CustomerRouterProject
Deploying the CustomerRouterProject composite application to an application server 
consists of following steps:

■ Creating an application deployment profile

■ Deploying the application deployment profile to an application server

Note: For repeating the steps, you must re-enter the Mediator Editor 
by closing it or by clicking the CustomerRouter.mplan tab above the 
editor.



Creating an Asynchronous Request and Response Using Oracle Mediator

20-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA 
Composite in Oracle JDeveloper."

20.3.2 Running and Monitoring the CustomerRouterProject Application
After deploying the CustomerRouterProject application, you can run it by 
copying the input XML files to the input folder. The payload files are written to the 
specified output directories.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion 
Middleware Control Console at the following URL:

http://hostname:port_number/em

where hostname is the host on which you installed the Oracle SOA Suite 
infrastructure and port_number is the port of the server on which Oracle Enterprise 
Manager Fusion Middleware Control Console is installed.

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA 
Composite in Oracle JDeveloper."

20.4 Creating an Asynchronous Request and Response Using Oracle 
Mediator

This sample demonstrates an asynchronous request response scenario using Oracle 
Mediator. This composite has a client BPEL process invoking an Oracle Mediator, 
which invokes a server BPEL process. All the invocations are done as an asynchronous 
request response.

Figure 20–48 provides an overview of the AsyncMediator use case.

Figure 20–48 Overview of AsyncMediator Use Case

For downloading the sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com



Creating an Asynchronous Request and Response Using Oracle Mediator

Creating Oracle Mediator Routing Rules 20-59

20.4.1 How to Create the AsyncMediator Use Case
This section provides the design-time tasks for creating, building, and deploying the 
use case. These tasks should be performed in the order in which they are presented.

20.4.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project

To create an Oracle JDeveloper application and a project:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications 
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter AsyncMediator and then click Next.

The Name your project page appears.

5. In the Project Name field, enter AsyncMediatorSample and click Next.

The Configure SOA settings page appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new 
application and the project, and the SOA Composite Editor contains a blank 
palette.

7. From the File menu, click Save All.

20.4.1.2 Task 2: How to Create a Server BPEL Process

To create a server BPEL process:
1. In the Application Navigator, double-click composite.xml. The SOA Composite 

Editor is displayed.

2. From the Component Palette, select SOA.

3. Drag and drop a BPEL Process into the Components section. 

The Create BPEL Process dialog is displayed.

4. In the Name field, enter ServerBPELProcess.

5. From the Template list, select Asynchronous BPEL Process.

6. Deselect Expose as a SOAP service and click OK. The ServerBPELProcess is 
created in the SOA Composite Editor.

20.4.1.3 Task 3: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component named Mediator:
1. From the Component Palette, select SOA.

2. Drag and drop a Mediator into the Components section.

The Create Mediator dialog is displayed.

3. In the Name field, enter Mediator.



Creating an Asynchronous Request and Response Using Oracle Mediator

20-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. From the Template list, select Asynchronous Interface.

5. Deselect Create Composite Service with SOAP Bindings.

6. Click OK.

An Oracle Mediator with name Mediator is created, as shown in Figure 20–49.

Figure 20–49 Oracle Mediator and ServerBPELProcess in the Composite Window

7. Double-click the Mediator Oracle Mediator. 

The Mediator Editor is displayed.

8. In the Routing Rules section, click Add to the far right side of execute and then 
select static routing rule.

The Target Type dialog is displayed.

9. Select Service.

The Target Services dialog is displayed.

10. Navigate to AsyncMediatorSample > BPEL Processes > ServerBPELProcess > 
Services > serverbpelprocess_client > process, as shown in Figure 20–50.



Creating an Asynchronous Request and Response Using Oracle Mediator

Creating Oracle Mediator Routing Rules 20-61

Figure 20–50 Target Services Dialog

11. Click OK.

12. Below the <<Filter Expression>> field, click the icon to the right of the Transform 
Using field.

The Request Transformation Map dialog is displayed.

13. Select Create New Mapper File and click OK.

The XSLT Mapper is displayed and a target file named singleString_To_
process.xsl is added.

14. Drag and drop the cb1:input source element to the client:input target element. 

The Auto Map Preferences dialog is displayed.

15. From the During Auto Map options, deselect Match Elements Considering their 
Ancestor Names and click OK.

The XSLT Mapper displays, as shown in Figure 20–51.



Creating an Asynchronous Request and Response Using Oracle Mediator

20-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–51 singleString_To_process.xsl Window

16. In the Routing Rules section, under Callback, click the icon to the right of the 
Transform Using field.

The Request Transformation Map dialog is displayed.

17. Select Create New Mapper File and click OK.

The XSLT Mapper is displayed and a target file named processResponse_To_
singleString.xsl is added.

18. Drag and drop the client:processResponse source element to the cb1:singleString 
target element.

The Auto Map Preferences dialog is displayed.

19. From the During Auto Map options, deselect Match Elements Considering their 
Ancestor Names and click OK. 

20.4.1.4 Task 4: How to Create a Client BPEL Process

To create a client BPEL process:
1. In the Application Navigator, double-click composite.xml. The SOA Composite 

Editor is displayed.

2. From the Component Palette, select SOA.

3. Drag and drop a BPEL Process to the Components section. 

The Create BPEL Process dialog is displayed.

4. In the Name field, enter ClientBPELProcess.

5. From the Template list, select Asynchronous BPEL Process.

6. Click OK.

ClientBPELProcess is created in the SOA Composite Editor.

7. Drag and drop the ClientBPELProcess BPEL process to the Mediator Oracle 
Mediator. The SOA Composite Editor appears, as shown in Figure 20–48.



Creating an Asynchronous Request and Response Using Oracle Mediator

Creating Oracle Mediator Routing Rules 20-63

20.4.1.5 Task 5: How to Create the Invoke, Receive, and Assign Activities

To create the invoke activity:
1. Double-click ClientBPELProcess. The Oracle BPEL Designer is displayed.

2. Drag and drop an Invoke activity from the Component Palette to the design area.

3. Double-click the Invoke activity. The Invoke dialog is displayed.

4. In the Name field, enter InvokeMediator.

5. Next to the Partner Link field, click Browse Partner Links. The Partner Link 
Chooser dialog is displayed.

6. Select Operation - execute, and click OK.

7. To the right of the Variable field in the Invoke dialog, click the Auto-Create 
Variable icon. The Create Variable dialog is displayed.

8. In the Variable field, enter InvokeMediator_execute_InputVariable_1 
and click OK. The Invoke dialog is displayed.

9. Click OK. The Oracle BPEL Designer appears.

To create the receive activity:
1. Drag and drop a Receive activity from the Component Palette to the design area.

2. Double-click the Receive activity. The Receive dialog is displayed.

3. In the Name field, enter ReceiveFromMediator. 

4. Next to the Partner Link field, click Browse Partner Links. The Partner Link 
Chooser dialog is displayed.

5. Select Operation - callback, and click OK. 

6. To the right of the Variable field in the Receive dialog, click the Auto-Create 
Variable icon. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated 
with the default variable name.

8. Check Create Instance, and click OK. The Oracle BPEL Designer appears.

To create the assign activity:
1. Drag and drop an Assign activity from the Component Palette between the 

ReceiveFromMediator and InvokeMediator activities in the design area.

2. Double-click the Assign activity. The Assign dialog is displayed.

3. In the Name field, enter AssignRequest.

4. Click the Copy Operation tab. The Assign dialog is displayed.

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

6. Create the copy operation between the triggers file name and the file variable, as 
shown in Figure 20–52.



Creating an Asynchronous Request and Response Using Oracle Mediator

20-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–52 The Create Copy Operation Dialog

7. Click OK in the Create Copy Operation dialog.

8. Click OK to return to the Oracle BPEL Designer, as shown in Figure 20–53.



Creating an Asynchronous Request and Response Using Oracle Mediator

Creating Oracle Mediator Routing Rules 20-65

Figure 20–53 The Oracle JDeveloper - ClientBPELProcess.bpel

9. From the File menu, select Save All. 

To create an assign activity in the ServerBPELProcess
1. Double-click the ServerBPELProcess BPEL process. The Oracle BPEL Designer is 

displayed.

2. Drag and drop an Assign activity from the Component Palette between the 
receiveInput and callbackClient activities in the design area.

3. Double-click the Assign activity. The Assign dialog is displayed.

4. Click the Copy Operation tab. 

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

6. Create the copy operation between the triggers file name and the file variable, as 
shown in Figure 20–54.



Creating an Asynchronous Request and Response Using Oracle Mediator

20-66 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 20–54 The Create Copy Operation Dialog 

7. Click OK in the Create Copy Operation dialog.

8. Click OK to return to the Oracle BPEL Designer, as shown in Figure 20–55.

Figure 20–55 The Oracle JDeveloper - ServerBPELProcess.bpel

9. From the File menu, select Save All.



Creating an Asynchronous Request and Response Using Oracle Mediator

Creating Oracle Mediator Routing Rules 20-67

20.4.1.6 Task 6: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite 
application. For information on creating an application server connection, see 
Section 41.7.1.1.1, "Creating an Application Server Connection."

20.4.1.7 Task 7: How to Deploy the SOA Composite Application
Deploying the EventMediatorApp composite application to Oracle WebLogic Server 
consists of following steps:

■ Creating an application deployment profile

■ Deploying the application to an application server

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA 
Composite in Oracle JDeveloper."



Creating an Asynchronous Request and Response Using Oracle Mediator

20-68 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



21

Working with Multiple Part Messages in Oracle Mediator 21-1

21Working with Multiple Part Messages in
Oracle Mediator

This chapter describes how to use multiple part (multipart) messages with the Oracle 
Mediator service component.

This chapter includes the following sections:

■ Section 21.1, "Introduction to Oracle Mediator Multipart Message Support"

■ Section 21.2, "Working with Multipart Request Messages"

21.1 Introduction to Oracle Mediator Multipart Message Support
Oracle Mediator includes support for importing multipart WSDL files in the Mediator 
Editor.

Oracle Mediator supports working with multipart source and target messages, which 
include multipart filter expression building, multipart schema validation, and 
transformations between multipart source and target messages for requests, replies, 
faults, and callbacks.

The Mediator Editor with a multipart source appears as shown in Figure 21–1.

Figure 21–1 Mediator Editor for a Multipart Source



Working with Multipart Request Messages

21-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

21.2 Working with Multipart Request Messages
This section describes how to work with different types of multipart messages.

21.2.1 How to Work with Multipart Request Messages
This section describes multipart request messages. 

21.2.1.1 How to Specify Filter Expressions
If you specify a filter expression for a multipart message, then the Expression Builder 
displays all message parts under the in variable, as shown in Figure 21–2:

Figure 21–2 Expression Builder for a Multipart Request Source

21.2.1.2 How to Add Validations
If you add a validation for a multiple part message, then the Add Validation dialog 
displays a list of parts from which you can choose one part, as shown in Figure 21–3. 
You specify a Schematron file for each request message part. Oracle Mediator then 
processes the Schematron files for the parts.



Working with Multipart Request Messages

Working with Multiple Part Messages in Oracle Mediator 21-3

Figure 21–3 Add Validation Dialog for a Multipart Request Source

21.2.1.3 How to Create Transformations
If you create a new mapper file for a multipart message, then the generated mapper 
file shows multiple source parts in the XSLT Mapper, as shown in Figure 21–4:

Figure 21–4  XSLT Mapper for a Multipart Request Source

21.2.1.4 How to Assign Values
If you assign values using a source expression, then the Expression Builder shows an 
in variable for each message part. This is the same as specifying filter expressions.

21.2.2 How to Work with Multipart Reply, Fault, and Callback Source Messages
The method to create transformations and assign values to multipart reply, fault, and 
callback source messages is the same as working with request source messages.



Working with Multipart Request Messages

21-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

21.2.3 How to Work with Multipart Target Messages
If a routing target (that is, a request, reply, fault, or callback) has a multipart message, 
then the transformation is handled in a slightly different way. This is because the XSLT 
Mapper does not support multipart targets. In such a case, the Oracle Mediator creates 
and coordinates a separate mapper file for each target part, as shown in Figure 21–5:

Figure 21–5 Request Transformation Map for a Multipart Routing Target

Note: You cannot specify filter expressions or add validations for 
reply, fault, and callback messages.



22

Using Oracle Mediator Error Handling 22-1

22Using Oracle Mediator Error Handling

This chapter describes how to handle errors with Oracle Mediator.

This chapter includes the following sections:

■ Section 22.1, "Introduction to Oracle Mediator Error Handling"

■ Section 22.2, "Using Error Handling with Oracle Mediator"

■ Section 22.3, "Fault Recovery Using Oracle Enterprise Manager Fusion 
Middleware Control Console"

■ Section 22.4, "Error Handling XML Schema Definition Files"

22.1 Introduction to Oracle Mediator Error Handling
Oracle Mediator provides sophisticated error handling capabilities that enable you to 
configure an Oracle Mediator service component for error occurrences and 
corresponding corrective actions. Error handling enables an Oracle Mediator to handle 
errors that occur during the processing of messages and also the exceptions returned 
by outside web services. You can handle both business faults and system faults with 
Oracle Mediator.

Business faults are application-specific and are explicitly defined in the service WSDL 
file. You can handle business faults by defining the fault handlers in Oracle JDeveloper 
at design time. System faults occur because of some problem in the underlying system 
such as a network not being available. Oracle Mediator provides fault policy-based 
error handling for system faults.

Fault policies enable you to handle errors automatically or through human 
intervention. Oracle Mediator fault policy-based error handling consists of the 
following three components:

■ Fault policies

■ Fault bindings

■ Error groups

22.1.1 Fault Policies
A fault policy defines error conditions and corresponding actions. Fault policies are 
defined in the fault-policies.xml file. The fault-policies.xml file should be 
created based on the XML schema defined in Section 22.4.1, "Schema Definition File 
for fault-policies.xml."



Introduction to Oracle Mediator Error Handling

22-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A sample fault policy file is shown in Example 22–1:

Example 22–1 Sample Fault Policy File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies>
  <faultPolicy version="2.0.1" id="CRM_ServiceFaults">
    <Conditions>
      <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
        <condition>
         <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
          <action ref="ora-retry"/>
        </condition>
      </faultName>
     </Conditions>
    <Actions>
        <Action id="ora-retry">
          <retry>
            <retryCount>3</retryCount>
            <retryInterval>2</retryInterval>
            <exponentialBackoff/>
            <retryFailureAction ref="ora-java"/>
            <retrySuccessAction ref="ora-terminate"/>
          </retry>
        </Action>
    </Actions>
  </faultPolicy>
</faultPolicies>

The two components of the fault policy (conditions and actions) are described in the 
following sections.

22.1.1.1 Conditions
Conditions identify error or fault conditions along with a reference to the actions to be 
taken. You can use conditions to identify the action to be taken when a particular error 
or fault condition occurs. For example, for a particular error occurring because of a 
service not being available, you can perform an action such as a retry. Similarly, for 
another error occurring because of the failure of Schematron validation, you can 
perform the action of human intervention. This fault can be recovered manually by 
editing the payload and then resubmitting it through Oracle Enterprise Manager 
Fusion Middleware Control Console.

Conditions are defined in the fault-policies.xml file, as shown in Example 22–2:

Example 22–2 Conditions

<Conditions>
      <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"

Note: Fault policies are applicable to parallel routing rules only. For 
sequential routing rules, the fault goes back to the caller. It is the 
responsibility of the caller to handle the fault. If the caller is an 
adapter, then you can define rejection handlers on the inbound 
adapter to take care of the messages that error out (that is, the rejected 
messages). For more information about rejection handlers, see the 
Oracle Fusion Middleware User's Guide for Technology Adapters.



Introduction to Oracle Mediator Error Handling

Using Oracle Mediator Error Handling 22-3

       name="medns:mediatorFault">
          <condition>
            <test>contains($fault.mediatorErrorCode,"TYPE_DATA_
TRANSFORMATION")</test>
             <action ref="ora-java"/>
          </condition>
      </faultName>
      <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
        <condition>
         <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
          <action ref="ora-retry"/>
        </condition>
      </faultName>
      <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
        <condition>
         <test>contains($fault.mediatorErrorCode,"TYPE_DATA_ASSIGN")</test>
          <action ref="ora-retry-crm-endpoint"/>
        </condition>
      </faultName>
</Conditions>

Identifying Fault Types Using Conditions
You can categorize the faults that can be captured using conditions into the following 
types:

■ Oracle Mediator-specific faults

For all Oracle Mediator-specific faults, the Oracle Mediator service engine throws 
only one fault, namely 
{http://schemas.oracle.com/mediator/faults}mediatorFault. 
Every Oracle Mediator fault is wrapped into this fault. The errors or faults 
generated by an Oracle Mediator can be captured by using the format shown in 
Example 22–3:

Example 22–3 Oracle Mediator-Specific Faults

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults" 
name="medns:mediatorFault">
<!-- mediatorFault is a bucket for all the mediator faults -->
     <condition>
       <test>
 contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")
 </test> 
<!-- Captures TYPE_FATAL_MESH errors -->
       <action ref="ora-retry"/>
     </condition>
   </faultName>

■ Business faults and SOAP faults

These errors or faults can be captured by defining an XPath condition, which is 
based on the fault payload. Example 22–4 provides details.

Example 22–4 Business Faults and SOAP Faults

<faultName xmlns:ns1="http://xmlns.oracle.com/Customer"
 name="ns1:InvalidCustomer"> <!-- Qname of Business/SOAP fault -->
       <condition>



Introduction to Oracle Mediator Error Handling

22-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

         <test>
contains($fault.<PART_NAME>/custid, 1011)
 </test>
<!-- xpath condition based on fault payload -->
         <action ref="ora-retry"/>
       </condition>
   </faultName>

When a reference service returns a business fault, the fault can be handled in the 
Oracle Mediator service component. The returned fault can be forwarded to 
another component, redirected to an adapter service such as a file adapter, or an 
event can be raised. However, if both a fault policy and fault handler are defined 
for a business fault, then the fault policy takes precedence over the fault handler. 
In such a case, the fault handlers in the Oracle Mediator service component are 
ignored, if the fault policy is successfully executed.

■ Adapter-specific fault

The errors or faults generated by an adapter can be captured by using the format 
shown in Example 22–5:

Example 22–5 Capturing Errors or Faults Generated by an Adapter

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults" 
name="medns:mediatorFault">
   <condition>
     <test>$fault.faultCode = "1"</test> <!-- unique constraint violation in DB 
adapter-->
     <action ref="ora-retry"/>
   </condition>
 </faultName>

22.1.1.2 Actions
Actions specify the tasks to perform when an error occurs. Oracle Mediator provides a 
list of actions that you can use in a fault policy. These predefined actions are described 
in the following list:

■ Retry: Retry actions such as enqueueing a message to a JMS queue that is stopped, 
inserting a record with a unique key constraint error, and so on, enable you to 
retry a task that caused the error. A new thread is started with every retry action. 
Therefore, with every retry action, a new transaction starts. Table 22–1 describes 
the options available with the retry action.

Table 22–1 Retry Action Options

Option Description

Retry Count Retry N times.

Retry Interval Delay in seconds for a retry.

Exponential Backoff Retry interval increase with an exponential backoff.

Retry Failure Action Chain to this action if a retry N times fails.

Retry Success Action Chain to this action if a retry succeeds.



Introduction to Oracle Mediator Error Handling

Using Oracle Mediator Error Handling 22-5

Example 22–6 shows how to specify the retry action:

Example 22–6 Retry Action

 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>

If you set the retry Interval in the fault policy to a duration of less than 30 seconds, 
then the retry may not happen within the specified intervals. This is because the 
default value of the org.quartz.scheduler.idleWaitTime property is 30 
seconds, and the scheduler waits for 30 seconds before retrying for available 
triggers, when the scheduler is otherwise idle. If the retry interval is set to a value 
of less than 30 seconds, then latency is expected.

If you want the system to use a retry interval that is less than 30 seconds, add the 
following property under the section <property 
name="quartzProperties"> in the fabric-config-core.xml file:

org.quartz.scheduler.idleWaitTime=<value>

■ Human intervention: You can specify this action in the following way:

<Action id="ora-human-intervention"><humanIntervention/></Action>

■ Abort: This action enables you to abort the flow. You can specify this action in the 
following way:

<Action id="ora-terminate"><abort/></Action>

■ Java code: This action enables you to call a customized Java class that implements 
the 
oracle.integration.platform.faultpolicy.IFaultRecoveryJavaCla
ss interface. You can specify this action as shown in Example 22–7:

Example 22–7 Customized Java Class Calling

 <Action id="ora-java">
        <javaAction className="mypackage.myClass" defaultAction="ora-terminate">
          <returnValue value="ABORT" ref="ora-terminate"/>
          <returnValue value="RETRY" ref="ora-retry"/>

Note: Exponential backoff indicates that the next retry attempt is 
scheduled at 2 x the delay, where delay is the current retry interval. For 
example, if the current retry interval is 2 seconds, the next retry 
attempt is scheduled at 4, the next at 8, and the next at 16 seconds 
until the retryCount value is reached.

Note: The implemented Java class must implement a method that 
returns a string. The policy can be chained to a new action based on 
the returned string.



Introduction to Oracle Mediator Error Handling

22-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

          <returnValue value="MANUAL" ref="ora-human-intervention"/>
        </javaAction>
      </Action>

For more information, see Example 22–8 and Example 22–9.

Example 22–8 oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass Interface

oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass {
 
    public void handleRetrySuccess(IFaultRecoveryContext ctx);   
    public String handleFault(IFaultRecoveryContext ctx);
 
}

Example 22–9 oracle.integration.platform.faultpolicy.IFaultRecoveryContext Interface

public interface IFaultRecoveryContext {
   
    /**
     * Gets implementation type of the fault. 
     * @return
     */
    public String getType();
   
    /**
     * @return Get property set of the fault policy action being executed.
     */
    public Map getProperties();
 
    /**
     * @return Get fault policy id of the fault policy being executed.
     */
    public String getPolicyId();
 
    /**
     * @return Name of the faulted reference.
     */
    public String getReferenceName();
 
    /**
     * @return Port type of the faulted reference link.
     */
    public QName getPortType();
}

Oracle Mediator Service Engine Implementation
Example 22–10 shows the Oracle Mediator service engine implementation of the 
IFaultRecoveryContext interface.

Example 22–10 IFaultRecoveryContext Interface Implementation

package oracle.tip.mediator.common.error.recovery;
public class MediatorRecoveryContext implements IFaultRecoveryContext{
   ... 
}

You can use the methods shown in Example 22–11 to retrieve additional Oracle 
Mediator-specific data available with the MediatorRecoveryContext class:



Introduction to Oracle Mediator Error Handling

Using Oracle Mediator Error Handling 22-7

Example 22–11 Methods for Retrieving Data

public Fault getFault()
public CalloutMediatorMessage getMediatorMessage()

Example 22–12 shows how to retrieve data using the CalloutMediatorMessage 
interface:

Example 22–12 Data Retrieval Using the CalloutMediatorMessage Interface

 /**
     * Accessing Mediator Message properties by providing the property name
     * @param propertyName
     * @return
     * @throws MediatorException
     */
    public Object getProperty(String propertyName);
   
    /**
     * Accessing Mediator Message properties
     * @return
     * @throws MediatorException
     */
    public Map getProperties();
 
    /**
     * Accessing instance id of the mediator message
     * This will be the mediator instance id created for that particular message
     * object
     * @return
     * @throws MediatorException
     */
    public String getId() throws MediatorException;
   
    /**
     * Accessing payload of the mediator message
     * object
     * @return
     * @throws MediatorException
     */
    public Map getPayload();
   
    /**
     * Accessing header of the mediator message
     * object
     * @return
     * @throws MediatorException
     */
    public List<Element> getHeaders();
   
    /**
     * Accessing componentDN for mediator component
     * @return
     * @throws MediatorException
     */
    public String getComponentDN( 
    /**
     * Setting payload to the mediator message
     * @return
     * @throws MediatorCalloutException
     */



Introduction to Oracle Mediator Error Handling

22-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    public void addPayload(String partName,Object payload) throws 
MediatorCalloutException;
   
    /**
     * Adding property to the mediator message
     * @return
     * @throws MediatorCalloutException
     */
    public void addProperty(String name,Object value) throws 
MediatorCalloutException;
   
    /**
     * Adding header to the mediator message
     * @return
     * @throws MediatorCalloutException
     */
    public void addHeader(Object header) throws MediatorCalloutException;

22.1.2 Fault Bindings
Fault bindings associate fault policies with composites or components, and are defined 
in the fault-bindings.xml file. Create the fault-bindings.xml file based on 
the XML schema defined in Section 22.4.2, "Schema Definition File for 
fault-bindings.xml."

Fault policies can be created at the following levels:

■ Composite: You can define one fault policy for all Oracle Mediator components in 
a composite. You can specify this level in the following way:

<composite faultPolicy="ConnectionFaults"/>

■ Component: You can define a fault policy exclusively for an Oracle Mediator 
service component. A component-level fault policy overrides the composite-level 
fault policy. You can specify this level as shown in Example 22–13.

Example 22–13 Definition of a Fault Policy for an Oracle Mediator

<component faultPolicy="ConnectionFaults">
        <name>Component1</name>
        <name>Component2</name>
</component>

■ Reference: You can define a fault policy for the references of an Oracle Mediator 
component. You can specify this level as shown in Example 22–14.

Example 22–14 Definition of a Fault Policy for a Reference

<reference faultPolicy="policy1">
    <name>DBAdapter3</name>
  </reference>

A sample fault binding file is shown in Example 22–15.

Note: Human intervention is the default action for errors that do not 
have a fault policy defined.



Introduction to Oracle Mediator Error Handling

Using Oracle Mediator Error Handling 22-9

Example 22–15 Sample Fault Binding File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
    <composite faultPolicy="ConnectionFaults"/>
</faultPolicyBindings>

22.1.3 Error Groups in Oracle Mediator
You can specify an action for an error type or error group while defining the 
conditions in a fault policy. In the previous examples, medns:mediatorFault 
indicates that the error is an Oracle Mediator error, whereas medns:TYPE_FATAL_
MESH refers to an error group. An error group consists of one or more child error types. 
TYPE_ALL is an error group that contains all Oracle Mediator errors.

The following list describes various error groups contained in the TYPE_ALL error 
group: 

■ TYPE_DATA: Contains errors related to data handling.

– TYPE_DATA_ASSIGN: Contains errors related to data assignment.

– TYPE_DATA_FILTERING: Contains errors related to data filtering.

– TYPE_DATA_TRANSFORMATION: Contains errors that occur during a 
transformation.

– TYPE_DATA_VALIDATION: Contains errors that occur during payload 
validation.

■ TYPE_METADATA: Contains errors related to Oracle Mediator metadata.

– TYPE_METADATA_FILTERING: Contains errors that occur while processing 
the filtering conditions.

– TYPE_METADATA_TRANSFORMATION: Contains errors that occur while 
getting the metadata for a transformation.

– TYPE_METADATA_VALIDATION: Contains errors that occur during validation 
of metadata for Oracle Mediator (.mplan file).

– TYPE_METADATA_COMMON: Contains other errors that occur during the 
handling of metadata.

■ TYPE_FATAL: Contains fatal errors that are not easily recoverable.

– TYPE_FATAL_DB: Contains database-related fatal errors, such as a 
Datasource not found error.

– TYPE_FATAL_CACHE: Contains Oracle Mediator cache-related fatal errors.

– TYPE_FATAL_ERRORHANDLING: Contains fatal errors that occur during error 
handling such as Resubmission queues not available.

– TYPE_FATAL_MESH: Contains fatal errors from the Service Infrastructure such 
as Invoke service not available.

– TYPE_FATAL_MESSAGING: Contains fatal messaging errors arising from the 
Service Infrastructure.

– TYPE_FATAL_TRANSACTION: Contains fatal errors related to transactions 
such as Commit can't be called on a transaction which is 
marked for rollback.



Using Error Handling with Oracle Mediator

22-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– TYPE_FATAL_TRANSFORMATION: Contains fatal transformation errors such 
as an error occurring because of the XPath functions used in a transformation.

■ TYPE_TRANSIENT: Contains transient errors that can be recovered on a retry.

– TYPE_TRANSIENT_MESH: Contains errors related to the Service 
Infrastructure.

– TYPE_TRANSIENT_MESSAGING: Contains errors related to JMS such as 
enqueuing and dequeuing.

■ TYPE_INTERNAL: Contains internal errors.

22.2 Using Error Handling with Oracle Mediator
You can enable error handling for an Oracle Mediator by using the 
fault-policies.xml and fault-bindings.xml files.

22.2.1 How to Use Error Handling for an Oracle Mediator Service Component

To use error handling for an Oracle Mediator service component:
1. Create a fault-policies.xml file based on the schema defined in 

Section 22.4.1, "Schema Definition File for fault-policies.xml."

2. Create a fault-bindings.xml file based on the schema defined in 
Section 22.4.2, "Schema Definition File for fault-bindings.xml."

3. Copy the fault-policies.xml and the fault-bindings.xml file to your 
SOA composite application project directory.

4. Deploy the SOA composite application project.

22.2.2 What Happens at Runtime
All the fault policies for a composite are loaded when the first error occurs. At 
runtime, Oracle Mediator checks whether there is any policy defined for the current 
error. If a fault policy is defined, then Oracle Mediator performs the action according 
to the configuration in the fault policies file. If there is no fault policy defined, then the 
default action of human intervention is performed.

22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware 
Control Console

Apart from policy-based recovery using the fault policy file, you can also perform fault 
recovery actions on Oracle Mediator faults identified as recoverable in Oracle 
Enterprise Manager Fusion Middleware Control Console. This can be performed in the 
following ways:

■ Manual recovery by modifying the payload using Oracle Enterprise Manager 
Fusion Middleware Control Console 

■ Bulk recovery without modifying the payload using Oracle Enterprise Manager 
Fusion Middleware Control Console

■ Aborting a faulted instance using Oracle Enterprise Manager Fusion Middleware 
Control Console, if you do not want to do any more processing on the instance.



Error Handling XML Schema Definition Files

Using Oracle Mediator Error Handling 22-11

For more information about fault recovery using Oracle Enterprise Manager 
Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite.

22.4 Error Handling XML Schema Definition Files
This section describes the schema files for the fault-policies.xml and 
fault-bindings.xml files.

22.4.1 Schema Definition File for fault-policies.xml 
The fault-policies.xml file should be based on the XSD file shown in 
Example 22–16.

Example 22–16 XSD File for fault-policies.xml

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <!-- Conditions contain a list of fault names -->
    <xs:element name="Conditions">
        <xs:complexType>
            <xs:sequence>
                <xs:element name="faultName" type="tns:faultNameType"
 maxOccurs="unbounded"/>
            </xs:sequence>
        </xs:complexType>
    </xs:element>
    <!-- action Ref must exist in the same file -->
    <xs:complexType name="actionRefType">
        <xs:attribute name="ref" type="xs:string" use="required"/>
    </xs:complexType>
    <!-- one condition has a test and action, if test is missing, this is the
 catch all condition -->
    <xs:complexType name="conditionType">
        <xs:all>
            <xs:element name="test" type="tns:idType" minOccurs="0"/>
            <xs:element name="action" type="tns:actionRefType"/>
        </xs:all>
    </xs:complexType>
    <!-- One fault name match contains several conditions -->
    <xs:complexType name="faultNameType">
        <xs:sequence>
            <xs:element name="condition" type="tns:conditionType"
 maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="name" type="xs:QName"/>
    </xs:complexType>
    <xs:complexType name="ActionType">
        <xs:choice>
            <xs:element name="retry" type="tns:RetryType"/>
            <xs:element ref="tns:rethrowFault"/>
            <xs:element ref="tns:humanIntervention"/>
            <xs:element ref="tns:abort"/>
            <xs:element ref="tns:replayScope"/>
            <xs:element name="javaAction" type="tns:JavaActionType">
                <xs:key name="UniqueReturnValue">
                    <xs:selector xpath="tns:returnValue"/>



Error Handling XML Schema Definition Files

22-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

                    <xs:field xpath="@value"/>
                </xs:key>
            </xs:element>
        </xs:choice>
        <xs:attribute name="id" type="tns:idType" use="required"/>
    </xs:complexType>
    <xs:element name="Actions">
        <xs:annotation>
            <xs:documentation>Fault Recovery Actions</xs:documentation>
        </xs:annotation>
        <xs:complexType>
            <xs:sequence>
                <xs:element name="Action" type="tns:ActionType"
 maxOccurs="unbounded"/>
            </xs:sequence>
        </xs:complexType>
    </xs:element>
    <xs:complexType name="JavaActionType">
        <xs:annotation>
            <xs:documentation>This action invokes java code
 provided</xs:documentation>
        </xs:annotation>
        <xs:sequence>
            <xs:element name="returnValue" type="tns:ReturnValueType"
 minOccurs="0" maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="className" type="tns:idType" use="required"/>
        <xs:attribute name="defaultAction" type="tns:idType" use="required"/>
        <xs:attribute name="propertySet" type="tns:idType"/>
    </xs:complexType>
    <xs:complexType name="RetryType">
        <xs:annotation>
            <xs:documentation>This action attempts retry of activity
 execution</xs:documentation>
        </xs:annotation>
        <xs:all>
            <xs:element ref="tns:retryCount"/>
            <xs:element ref="tns:retryInterval"/>
            <xs:element ref="tns:exponentialBackoff" minOccurs="0"/>
            <xs:element name="retryFailureAction"
 type="tns:retryFailureActionType" minOccurs="0"/>
            <xs:element name="retrySuccessAction"
 type="tns:retrySuccessActionType" minOccurs="0"/>
        </xs:all>
    </xs:complexType>
    <xs:simpleType name="idType">
        <xs:restriction base="xs:string">
            <xs:minLength value="1"/>
        </xs:restriction>
    </xs:simpleType>
    <xs:complexType name="ReturnValueType">
        <xs:annotation>
            <xs:documentation>Return value from java code can chain another action
 using
                     return values</xs:documentation>
        </xs:annotation>
        <xs:attribute name="value" type="tns:idType" use="required"/>
        <xs:attribute name="ref" type="xs:string" use="required"/>
    </xs:complexType>
    <xs:element name="exponentialBackoff">



Error Handling XML Schema Definition Files

Using Oracle Mediator Error Handling 22-13

        <xs:annotation>
            <xs:documentation>Setting this will cause retry attempts to use
                     exponentialBackoff algorithm</xs:documentation>
        </xs:annotation>
        <xs:complexType/>
    </xs:element>
    <xs:element name="humanIntervention">
        <xs:annotation>
            <xs:documentation>This action causes the activity to
 freeze</xs:documentation>
        </xs:annotation>
        <xs:complexType/>
    </xs:element>
    <xs:element name="replayScope">
        <xs:annotation>
            <xs:documentation>This action replays the immediate enclosing
 scope</xs:documentation>
        </xs:annotation>
        <xs:complexType/>
    </xs:element>
    <xs:element name="rethrowFault">
        <xs:annotation>
            <xs:documentation>This action will rethrow the
 fault</xs:documentation>
        </xs:annotation>
        <xs:complexType/>
    </xs:element>
    <xs:element name="retryCount" type="xs:positiveInteger">
        <xs:annotation>
            <xs:documentation>This value is used to identify number of
 retries</xs:documentation>
        </xs:annotation>
    </xs:element>
    <xs:complexType name="retryFailureActionType">
        <xs:annotation>
            <xs:documentation>This is the action to be chained if retry attempts
 fail</xs:documentation>
        </xs:annotation>
        <xs:attribute name="ref" type="xs:string" use="required"/>
    </xs:complexType>
    <xs:complexType name="retrySuccessActionType">
        <xs:annotation>
            <xs:documentation>This is the action to be chained if retry attempts
 is successful</xs:documentation>
        </xs:annotation>
        <xs:attribute name="ref" type="xs:string" use="required"/>
    </xs:complexType>
    <xs:element name="retryInterval" type="xs:unsignedLong">
        <xs:annotation>
            <xs:documentation>This is the delay in milliseconds of retry
 attempts</xs:documentation>
        </xs:annotation>
    </xs:element>
    <xs:element name="abort">
        <xs:annotation>
            <xs:documentation>This action terminates the
 process</xs:documentation>
        </xs:annotation>
        <xs:complexType/>
    </xs:element>



Error Handling XML Schema Definition Files

22-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    <xs:element name="Properties">
        <xs:annotation>
            <xs:documentation>Properties that can be passes to a custom java
 class</xs:documentation>
        </xs:annotation>
        <xs:complexType>
            <xs:sequence>
                <xs:element name="propertySet" type="tns:PropertySetType"
 maxOccurs="unbounded"/>
            </xs:sequence>
        </xs:complexType>
    </xs:element>
    <xs:complexType name="PropertySetType">
        <xs:sequence>
            <xs:element name="property" type="tns:PropertyValueType"
 maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="name" type="tns:idType" use="required"/>
    </xs:complexType>
    <xs:complexType name="PropertyValueType">
        <xs:simpleContent>
            <xs:extension base="tns:idType">
                <xs:attribute name="name" type="tns:idType" use="required"/>
            </xs:extension>
        </xs:simpleContent>
    </xs:complexType>
    <xs:element name="faultPolicy">
        <xs:complexType>
            <xs:sequence>
                <xs:element ref="tns:Conditions"/>
                <xs:element ref="tns:Actions"/>
                <xs:element ref="tns:Properties" minOccurs="0"/>
                <!--Every policy has on Conditions and and one Actions, however,
 Properties is optional -->
            </xs:sequence>
            <xs:attribute name="id" type="tns:idType" use="required"/>
            <xs:attribute name="version" type="xs:string" default="2.0.1"/>
        </xs:complexType>
        <xs:key name="UniqueActionId">
            <xs:selector xpath="tns:Actions/tns:Action"/>
            <xs:field xpath="@id"/>
        </xs:key>
        <xs:key name="UniquePropertySetId">
            <xs:selector xpath="tns:Properties/tns:property_set"/>
            <xs:field xpath="@id"/>
        </xs:key>
        <xs:keyref name="RetryActionRef" refer="tns:UniqueActionId">
            <xs:selector 
xpath="tns:Actions/tns:Action/tns:retry/tns:retryFailureAction"/>
            <xs:field xpath="@ref"/>
        </xs:keyref>
        <xs:keyref name="RetrySuccessActionRef" refer="tns:UniqueActionId">
            <xs:selector
 xpath="tns:Actions/tns:Action/tns:retry/tns:retrySuccessAction"/>
            <xs:field xpath="@ref"/>
        </xs:keyref>
        <xs:keyref name="JavaActionRef" refer="tns:UniqueActionId">
            <xs:selector
 xpath="tns:Actions/tns:Action/tns:javaAction/tns:returnValue"/>
            <xs:field xpath="@ref"/>



Error Handling XML Schema Definition Files

Using Oracle Mediator Error Handling 22-15

        </xs:keyref>
        <xs:keyref name="ConditionActionRef" refer="tns:UniqueActionId">
            <xs:selector
 xpath="tns:Conditions/tns:faultName/tns:condition/tns:action"/>
            <xs:field xpath="@ref"/>
        </xs:keyref>
        <xs:keyref name="JavaDefaultActionRef" refer="tns:UniqueActionId">
            <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
            <xs:field xpath="@defaultAction"/>
        </xs:keyref>
        <xs:keyref name="JavaPropertySetRef" refer="tns:UniquePropertySetId">
            <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
            <xs:field xpath="@property_set"/>
        </xs:keyref>
    </xs:element>
    <xs:element name="faultPolicies">
        <xs:complexType>
            <xs:sequence>
                <xs:element ref="tns:faultPolicy" maxOccurs="unbounded"/>
            </xs:sequence>
        </xs:complexType>
    </xs:element>
</xs:schema>

22.4.2 Schema Definition File for fault-bindings.xml 
The fault-bindings.xml file should be based on the XSD file shown in 
Example 22–17.

Example 22–17 XSD File for fault-bindings.xml

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
    <xs:element name="faultPolicyBindings">
        <xs:annotation>
            <xs:documentation>Bindings to a specific fault policy
 </xs:documentation>
        </xs:annotation>
        <xs:complexType>
            <xs:sequence>
                <xs:element name="composite" type="tns:compositeType"
 minOccurs="0" maxOccurs="1"/>
                <xs:element name="component" type="tns:componentType"
 minOccurs="0" maxOccurs="unbounded"/>
                <xs:element name="reference" type="tns:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
            </xs:sequence>
            <xs:attribute name="version" type="xs:string" default="2.0.1"/>
        </xs:complexType>
        <xs:key name="UniquePartnerLinkName">
            <xs:selector xpath="tns:reference/tns:name"/>
            <xs:field xpath="."/>
        </xs:key>
        <xs:key name="UniquePortType">
            <xs:selector xpath="tns:reference/tns:portType"/>
            <xs:field xpath="."/>
        </xs:key>
        <xs:key name="UniquePolicyName">



Error Handling XML Schema Definition Files

22-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

            <xs:selector xpath="tns:reference"/>
            <xs:field xpath="@faultPolicy"/>
        </xs:key>
    </xs:element>
    <xs:simpleType name="nameType">
        <xs:restriction base="xs:string">
            <xs:minLength value="1"/>
        </xs:restriction>
    </xs:simpleType>
    <xs:complexType name="propertyType">
        <xs:simpleContent>
            <xs:extension base="tns:nameType">
                <xs:attribute name="name" type="xs:string" use="required"
 fixed="faultPolicy"/>
            </xs:extension>
        </xs:simpleContent>
    </xs:complexType>
 
    <xs:complexType name="referenceType">
        <xs:annotation>
            <xs:documentation>Bindings for a partner link. Overrides composite
 level binding.</xs:documentation>
        </xs:annotation>
        <xs:sequence>
            <xs:annotation>
                <xs:documentation>Specification at partner link name overrides
 specification for a port type</xs:documentation>
            </xs:annotation>
            <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
            <xs:element name="portType" type="xs:QName" minOccurs="0"
 maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
    </xs:complexType>
 
    <xs:complexType name="componentType">
        <xs:annotation>
            <xs:documentation>Binding for a component </xs:documentation>
        </xs:annotation>
        <xs:sequence>
            <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
        </xs:sequence>
        <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
    </xs:complexType>
    <xs:complexType name="compositeType">
        <xs:annotation>
            <xs:documentation>Binding for the entire composite</xs:documentation>
        </xs:annotation>
        <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
    </xs:complexType>
</xs:schema>



23

Resequencing in Oracle Mediator 23-1

23Resequencing in Oracle Mediator

This chapter describes support for message resequencing in Oracle Mediator. It 
contains the following sections:

■ Section 23.1, "Introduction to the Resequencer"

■ Section 23.2, "Resequencing Order"

■ Section 23.3, "Configuring the Resequencer"

■ Section 23.4, "Limitations in the Resequencer"

23.1 Introduction to the Resequencer
The resequencer in Oracle Mediator rearranges a stream of related but out-of-sequence 
messages into a sequential order. When incoming messages arrive, they may be in a 
random order. The resequencer orders the messages based on sequential or 
chronological information, and then sends the message to the target services in an 
orderly manner. The sequencing is performed based on the sequencing strategy 
selected.

23.1.1 Groups and Sequence IDs
The resequencer works with two central concepts: groups and sequence IDs. The 
sequence ID is an identifying part of the message, and messages are rearranged based 
on this identifier. The messages arriving for resequencing are split into groups and the 
messages within a group are sequenced according to the sequence ID. Sequencing 
within a group is independent of the sequencing of messages in any other group. 
Groups in themselves are not dependent on each other and can be processed 
independently of each other.

As an example, messages attached to certain groups arrive to an Oracle Mediator 
service component in the following order:

msg9(a), msg8(b), msg7(a), msg6(c), msg5(a), msg4(b), msg3(c), msg2(b), msg1(a)

Table 23–1 shows how the Oracle Mediator sorts the messages into groups. The order 
of the messages in each group depends on the type of resequencer used.

Table 23–1 Messages Sorted into Groups

Group c Group b Group a

msg6(c), msg3(c) msg8(b), msg4(b), msg2(b) msg9(a), msg7(a), msg5(a), 
msg1(a)



Resequencing Order

23-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

All the groups are processed independently of each other and any error occurring in 
ones group does not affect the processing of other groups.

23.1.2 Identification of Groups and Sequence IDs
Groups and sequence IDs are identified through XPath expressions in the payload. 
You specify XPath expressions that point to the elements in the message payload on 
which grouping is done and on which sequencing is done.

In the message payload shown in Figure 23–1, CustomerId is the field on which to 
base instance sequencing and CustomerName is the field on which to base grouping.

Figure 23–1 Message Payload

23.2 Resequencing Order
Oracle Mediator can resequence the incoming messages in a user-specified order. This 
implementation enables you to specify three types of resequencing orders:

■ Standard Resequencer

■ FIFO Resequencer

■ Best Effort Resequencer

Note: Resequencing is supported only for Oracle Mediator 
components that have a request operation and a request-callback 
operation in the WSDL file. In other words, resequencing is not 
allowed by the user interface if the WSDL operation has a 
synchronous reply element. For more information about these 
operations, see Chapter 24, "Understanding Message Exchange 
Patterns of an Oracle Mediator."



Resequencing Order

Resequencing in Oracle Mediator 23-3

23.2.1 Standard Resequencer
The standard resequencer supports a standard resequencer pattern. The following 
sections describe the standard resequencer and how it processes messages.

23.2.1.1 Overview of the Standard Resequencer
The standard resequencer is useful for applications that use identifiers from a simple 
numeric identifier sequence in their messages. The standard resequencer receives a 
stream of messages that might not arrive in order; it then stores the out-of-sequence 
messages until a complete sequence based on the sequence IDs is received. The 
in-sequence messages are then processed asynchronously based on their sequence ID.

It is important to note that the messages to outbound services of the standard 
resequencer Oracle Mediator service component are guaranteed to arrive in sequence. 
The standard resequencer does not modify the message contents; it just orders them.

23.2.1.2 Information Required for Standard Resequencing
When using the standard resequencer in Oracle Mediator, you must always specify a 
group XPath expression and a sequence ID XPath expression. These specify where the 
Oracle Mediator resequencer can find the group and the sequence ID in the messages. 
You must also supply the sequence numbering in terms of the start sequence ID and 
the sequence ID incremental delta. This numbering is used to form each group. In 
addition to the group, sequence ID, and increment properties, you can also specify a 
time period, in seconds, to wait for the expected messages.

23.2.1.3 Example of the Standard Resequencer
Table 23–2 shows how groups are formed differently for two different values of the 
incremental delta.

Table 23–2 Groups Formed Differently for Two Different Values

Start SequenceID
Incremental 
Delta Group1 Group2 ... Groupn

1 1 1,2,3,4,5,... 1,2,3,4,5,... ... 1,2,3,4,5,...n

1 5 1,5,10,15,... 1,5,10,15,... ... 1,5,10,15,...

Notes:

■ If the sequence numbering is different for various groups (for 
example, if the groups do not have the same incremental delta or 
start sequence ID) and the messages do not arrive in order, then 
you can use the best effort resequencer to rearrange the messages.

■ The Oracle Mediator standard resequencer holds back messages 
in the Oracle Mediator resequencer database until it can produce 
the right sequence for different groups. This means that if for a 
given group, the message with a particular sequence ID does not 
arrive within the timeout period1, the consecutive messages for 
that group are held back forever. In such a case, you must 
manually unlock the group through Oracle Enterprise Manager 
Fusion Middleware Control Console and go to the next available 
message, skipping the pending message.

1 The timeout period is the time period in seconds to wait for an expected message.



Resequencing Order

23-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

23.2.2 FIFO Resequencer
The FIFO resequencer supports a standard first in, first out (FIFO) pattern. The 
following sections describe the FIFO resequencer and how it processes messages.

23.2.2.1 Overview of the FIFO Resequencer
The FIFO resequencer is useful for applications that need sequencing based on the 
time the messages arrive to the Oracle Mediator. The FIFO resequencer receives a 
stream of messages that are in order and processes them in sequence for each group 
based on the arrival time of the messages.

It is important to note that the messages to outbound services of the Oracle Mediator 
acting as a FIFO resequencer are guaranteed to arrive in order based on arrival time. 
Therefore, the messages are delivered in the order they were stored in the resequencer 
data store.

23.2.2.2 Information Required for FIFO Resequencing
When using the FIFO resequencer, you must always specify a group XPath expression. 
However, you do not need to specify a sequence ID because the messages are 
processed according to the time of arrival to the Oracle Mediator service component 
that is configured for FIFO resequencing. The group XPath expression specifies where 
the FIFO resequencer should find the group information in the message to group the 
messages. No further configuration is needed for a FIFO pattern.

23.2.2.3 Example of the FIFO Resequencer
Table 23–3 illustrates the behavior of the FIFO resequencer where msgX(Y,Z) 
indicates that the message arrives as message number X to the Oracle Mediator service 
component and the message contains sequenceID Y and group Z.

As shown in Table 23–3, the messages are sequenced based on their time of arrival and 
the sequenceID is not used for sequencing.

Table 23–3 FIFO Resequencer Behavior

Incoming Messages Sequenced Messages

msg03(2,c)

msg06(1,c)

msg07(5,a)

msg10(3,a)

msg10(3,c)

msg02(7,a)

msg05(9,a)

msg12(4,c)

msg12(4,c),msg10(3,c),msg06(1,c),msg03(2,c)

msg05(9,a), msg02(7,a), msg10(3,a), msg07(5,a)



Resequencing Order

Resequencing in Oracle Mediator 23-5

23.2.3 Best Effort Resequencer
The Oracle Mediator resequencer supports a best effort pattern. The following sections 
describe the best effort resequencer and how it processes messages.

23.2.3.1 Overview of the Best Effort Resequencer
The best effort pattern is useful for applications that produce a large number of 
messages in a short period of time and cannot provide information to the resequencer 
about the identifier to use for sequencing. Typically, the identifier used for sequencing 
in such scenarios is of a dateTime type or numeric type. Using the dateTime field 
as the sequence ID XPath enables you to control the sequencing. The messages are 
expected to be sent in sequence by the applications, thus the date and time the 
messages are sent can be used for sequencing. The Oracle Mediator makes the best 
effort to ensure that the messages are delivered in sequence.

The best effort resequencer can reorder messages based on no knowledge about the 
increment of the sequence ID. This means that unlike the standard resequencer, you 
do not need to define the increment of the sequence ID for the best effort resequencer 
in advance. When the messages are processed, they are processed in sequence based 
on the specified sequence ID and the messages that have arrived, whether a true 
sequence is received. The sequence IDs are either numeric or dateTime. Therefore, 
sequencing occurs on the numeric order or the dateTime order of the sequence IDs.

23.2.3.1.1 Best Effort Resequencer Message Selection Strategies  
The best effort resequencer processes messages asynchronously based on one of two 
message selection strategies: Maximum rows selected or time window. The messages 
selected and processed at any one time are based either on the maximum number of 
rows you specify or on a window of time in which they arrive. 

Maximum Rows Selected
When the best effort resequencer is configured to use a maximum number of rows, it 
performs the following steps whenever new messages are available in the resequencer 
database:

1. The resequencer orders the messages according to the specified sequence ID 
(typically a date and time stamp).

2. The resequencer locks and selects the number of messages equal to the value of 
the maxRowsRetrieved parameter from the ordered messages above.

3. The resequencer processes the selected messages one after another in its own 
transaction in sequence.

Note: When using the FIFO resequencer, use a single-threaded 
inbound adapter to avoid unpredictable results. For example, when 
you use the file/FTP adapter, the database adapter, or the AQ adapter 
in front of an Oracle Mediator service component that is configured as 
a FIFO resequencer, configure the adapter for single-threaded 
processing. Otherwise, unpredictable results occur because the arrival 
time of each message is calculated when the message arrives to the 
Oracle Mediator service component instead when it arrives to the 
adapter service.



Resequencing Order

23-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Time Window
When the best effort resequencer is configured to use a time window instead of a 
maximum number rows, the messages to select and process at one time are based on a 
period of time you specify plus an optional buffer time. Each message belongs to a 
specific time window, and messages that are part of one time window are processed 
separately from messages belonging to a different time window. 

In addition to the time window, you can specify a buffer time, which is an overlap 
between two sequential time windows that allows messages that arrive a little late to 
be associated with the first time window. By default, the buffer time is 10% of the time 
window you specify. 

When the best effort resequencer is configured to use a time window, groups are 
processed in an iterative manner and messages are processed in the following steps:

1. The first message arrives and the time window begins.

2. The buffer is added to the time window, and processing begins after the buffer 
time.

3. The resequencer retrieves the messages that arrived within the time window, and 
identifies the maximum sequence ID (typically a date and time stamp) from all the 
messages.

4. The resequencer retrieves any messages that arrive within the buffer time and that 
have a sequence ID that is less than the maximum sequence ID identified above.

5. The resequencer sorts all messages retrieved in the above steps in ascending order 
of the sequence IDs and processes the messages.

23.2.3.1.2 Best Effort Resequencer Message Delivery  
It is important to note that the messages to outbound services of the Oracle Mediator 
service component configured for best effort resequencing are not guaranteed to arrive 
in order of a sequence ID. At any given time, a snapshot of the available messages is 
taken and sequencing is performed only on those messages. Therefore, unlike a 
standard resequencer, it is not guaranteed that a message with a lesser sequence ID 
value is sent before a message that ha a greater sequence ID value but that arrived 
earlier. Messages with a lesser sequence ID value that arrive later might be processed 
in the following cycle when a snapshot of available messages is taken again and the 
messages are reordered.

23.2.3.2 Information Required for Best Effort Resequencing
When using the best effort resequencer, you must specify a group XPath expression, a 
sequence ID XPath expression, and the date type of the sequence ID (numeric or 
dateTime). These specify where the resequencer should find the group and the 
sequence ID in the messages and how to handle the sequence ID. In addition, you 
must specify either a maximum number of rows to select for each resequencing batch 
or a time window during which the messages included in one batch arrive. 

Unlike the standard resequencer, the best effort resequencer has no knowledge about 
how the sequence is built. No further information is used by the best effort 
resequencer to perform its responsibilities.

23.2.3.3 Example of Best Effort Resequencing Based on Maximum Rows
Table 23–4 illustrates the behavior of the best effort resequencer when it is configured 
to use the maximum number of rows to determine which messages to process. In this 
example, msgX(Y,Z) indicates that the message arrives as message number X to the 



Resequencing Order

Resequencing in Oracle Mediator 23-7

Oracle Mediator service component and the message contains sequenceID Y and 
group Z.

23.2.3.4 Example of Best Effort Resequencing Based on a Time Window
Table 23–5 illustrates the behavior of the best effort resequencer when it is configured 
to process messages based on the time period in which they arrive. In this example, 
the time window is 10 minutes, the buffer is 10% (one minute), and msgX(Y) indicates 
that the message arrives as message number X to the Oracle Mediator service 
component and the message contains the sequence ID Y. The first message arrives at 
2:00:00, which starts the time window. The time window lasts until 2:10:00, but with 
the addition of the buffer time, messages that arrived until 2:11:00 are processed. 

Table 23–4 Best Effort Resequencer Behavior Based on Maximum Rows

Group C Sequenced Messages

msg03(1,c)

msg06(2,c)

msg10(3,c)

msg12(4,c)

msg12(4,c),msg10(3,c),msg06(2,c),msg03(1,c)

Note: For the best effort resequencer to work correctly, the messages 
must arrive in sequence or nearly in sequence. Otherwise, they are not 
resequenced correctly. If the messages do not arrive close together, set 
the value of the maxRowsRetrieved parameter to 1 so the next 
message in the sequence has enough time to arrive and be picked up 
by the next processing loop (and therefore be delivered in sequence).

Table 23–5 Best Effort Resequencer Behavior Based on a Time Window

Group C

Message/Time Sequenced Messages

msg01(04)/2:00:00

msg02(05)/2:00:20

msg03(01)/2:00:30

msg04(03)/2:00:50

msg05(07)/2:04:20

msg06(02)/2:04:45

msg07(13)/2:05:10

msg08(08)/2:05:40

msg09(06)/2:08:40

msg10(12)/2:09:20

msg11(10)/2:10:30

msg12(09)/2:10:40

msg13(14)/2:10:50

msg14(11)/2:13:00

msg03(01), msg06(02), msg04(03), msg01(04), msg02(05), 
msg09(06), msg05(07), msg08(08), msg12(09), msg11(10), 
msg10(12), msg07(13)



Configuring the Resequencer

23-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

23.3 Configuring the Resequencer
You can configure the resequencer using Oracle JDeveloper. This section describes 
how to configure the resequencer in Oracle JDeveloper. 

23.3.1 How to Specify the Resequencing Level
You can define resequencing at either the service component level or the operation 
level. For Oracle Mediator service components with only one operation, configuring 
resequencing at the operation or service component level results in the same behavior. 
For Oracle Mediator service components having multiple operations, specifying the 
resequencing at the service component level applies the same resequencing rules to all 
the operations, and messages arriving at any operation are resequenced. By default, 
the resequencing level is operations.

To specify the resequencing level:
1. On the Mediator Editor, select the resequencing level from the Resequence Level 

dropdown list, as shown in Figure 23–2. 

Figure 23–2 Mediator Editor with Resequence Level Field

If you choose component, the Resequence field under each operation no longer 
appears and the Resequence Mode field appears under the Resequence Level 
field so you can set the resequencing mode for the service component. By default, 
the resequencing mode is set to off.

When you select a resequencing mode, the Resequence Options box appears 
under the service component or operation, as shown in Figure 23–3. If the 
Resequence Mode field for an operation is set to off, the Resequence Options box 
disappears.

Note: In the above example, the resequencer identified the 
maximum sequence ID for the time window as 13 (from message 7). 
Message 13 arrived within the buffer time, but has a sequence ID of 
14. It is not processed with the original group, but instead begins a 
new time window at its arrival time of 2:10:50. Message 14 arrived too 
late and is included in the second time window.



Configuring the Resequencer

Resequencing in Oracle Mediator 23-9

Figure 23–3 Mediator Editor with Resequence Options Section

The options in the Resequence Options section change depending on the 
resequencing mode you select.

23.3.2 How to Configure the Resequencing Strategy
This section provides instructions on how to configure the three different types of 
resequencing strategies. 

To configure a standard resequencer:
1. Set the resequence level as described in Section 23.3.1, "How to Specify the 

Resequencing Level".

2. On the Mediator Editor under either the Oracle Mediator component or the 
operation you want to configure, select Standard from the Resequence Mode 
dropdown list.

The Resequence Options box appears and includes the options for the standard 
resequencer, as shown in Figure 23–4.

Figure 23–4 Oracle Mediator with Resequence Mode set to Standard

3. Fill in the fields listed inTable 23–6.

Note: You can either enter the XPath expressions directly in the 
Group and ID fields or you can click Invoke Expression Builder to the 
right of each field. This launches the Expression Builder, which 
provides graphical assistance in creating field expressions and adding 
functions.



Configuring the Resequencer

23-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To configure a FIFO resequencer:
1. Set the resequence level as described in Section 23.3.1, "How to Specify the 

Resequencing Level".

2. On the Mediator Editor under either the Oracle Mediator component or the 
operation you want to configure, select FIFO from the Resequence Mode 
dropdown list.

The Resequence Options box appears and includes the option for the standard 
resequencer, as shown in Table 23–5.

Figure 23–5 Oracle Mediator with Resequence Mode set to FIFO

3. In the Group field, enter the XPath expression pointing to the field in the incoming 
message on which grouping is performed.

Table 23–6 Standard Resequencing Options

 Field Name Description Default Value Mandatory

Group The XPath that points to the field in the 
incoming message on which grouping is 
done. If you are editing the MPLAN file 
directly, the corresponding element is 
named groupIDExpression. 

N/A N

ID The XPath that points to the field in the 
incoming message on which resequencing 
is done. If you are editing the MPLAN file 
directly, the corresponding element is 
named sequenceIDExpression. 

N/A Y

Timeout The time period in seconds to wait for an 
expected message. The resequencer locks 
the group as timed-out if a time out occurs. 
If you are editing the MPLAN file directly, 
the corresponding element is named 
timeOutDuration. 

01

1 This default value means that the timeout never happens for a group by default.

N

Start The starting number of the ID sequence. If 
you are editing the MPLAN file directly, 
the corresponding element is named 
sequenceStart. 

1 N

Increment The increment of the ID sequence. If you 
are editing the MPLAN file directly, the 
corresponding element is named 
sequenceIncrement. 

1 N

Notes: If you are modifying the MPLAN file directly, the name of the 
XML element is groupIDExpression. There is no default value, and 
the field is not mandatory.



Configuring the Resequencer

Resequencing in Oracle Mediator 23-11

To configure a best effort resequencer:
1. Set the resequence level as described in Section 23.3.1, "How to Specify the 

Resequencing Level".

2. On the Mediator Editor under either the Oracle Mediator component or the 
operation you want to configure, select Best Effort from the Resequence Mode 
dropdown list.

The Resequence Options box appears and includes the option for the standard 
resequencer, as shown in Figure 23–6.

Figure 23–6 Oracle Mediator with Resequence Mode set to Best Effort

3. Fill in the fields listed in Table 23–7 to configure the best effort resequencer.

4. If needed, you can change the percent of the time window that is added as a 
buffer. You configure the buffer using the Oracle Enterprise Manager Fusion 
Middleware Control Console.

For instructions, see “Configuring Resequenced Messages” in the Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

Tip: You can specify either a maximum number of rows to process at 
one time or a time window for the messages. You cannot specify both.

Table 23–7 Best Effort Resequencing Options

Field Name Description Default Value Mandatory

Group The XPath that points to the field in the 
incoming message on which grouping is 
performed. If you are editing the MPLAN 
file directly, the corresponding element is 
named groupIDExpression.

N/A N

ID The XPath that points to the field in the 
incoming message that contains the ID on 
which resequencing is performed. If you 
are editing the MPLAN file directly, the 
corresponding element is named 
sequenceIDExpression.

N/A Y

Datatype The data type of the sequence ID. The 
ordering process is based on the data type. 
Supported values are datetime and 
numeric. If you are editing the MPLAN file 
directly, the corresponding element is 
named sequenceIDDataType.

Numeric Y



Limitations in the Resequencer

23-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

23.4 Limitations in the Resequencer
The following limitation of resequencer has been noted in this release:

Resequencer Fails If XSD File Contains Multibyte Characters That the Server 
Locale Encoding Does Not Support
If the XSD file contains multibyte characters that the server locale encoding does not 
support, then the resequencer execution fails after triggering the project flow.

Time Window The length of time in minutes to wait after 
a message arrives to select messages from 
the data store for resequencing. You must 
specify a time window or the maximum 
rows (described below), but not both. If 
you are editing the MPLAN file directly, 
the corresponding element is named 
timeWindow.

0 N

Max Rows Number of in-sequence messages that the 
resequencer should pick from the data 
store at a time. If you are editing the 
MPLAN file directly, the corresponding 
element is named maxRowsRetrieved.

5 N

Table 23–7 (Cont.) Best Effort Resequencing Options

Field Name Description Default Value Mandatory



24

Understanding Message Exchange Patterns of an Oracle Mediator 24-1

24Understanding Message Exchange Patterns
of an Oracle Mediator

This chapter describes common message exchange patterns between an Oracle 
Mediator service component and other applications.

This chapter includes the following sections:

■ Section 24.1, "Understanding a One-way Message Exchange Pattern"

■ Section 24.2, "Understanding a Request-Reply Message Exchange Pattern"

■ Section 24.3, "Understanding a Request-Reply-Fault Message Exchange Pattern"

■ Section 24.4, "Understanding a Request-Callback Message Exchange Pattern"

■ Section 24.5, "Understanding a Request-Reply-Callback Message Exchange 
Pattern"

■ Section 24.6, "Understanding a Request-Reply-Fault-Callback Message Exchange 
Pattern"

Notes: The following exchange patterns show the default handling 
of responses, faults, and callbacks by Oracle JDeveloper when a 
routing rule is created. Keep in mind the following points for all the 
cases:

■ When a response, fault, or callback is sent back to the caller, it is 
also possible to route the same message to a different target 
service or event by clicking the button next to the target and 
selecting a different target.

■ When the caller of the Oracle Mediator expects a response, one or 
more routing rules may route the request to a target that does not 
return a response, but there should be at least one sequential 
routing rule that returns a response.

■ If you have multiple routing rules involved in a request-response 
interaction, then the routing rules that send the response back to 
the initial caller should precede other routing rules, if any, that 
forward the response.

■ The asynchronous request-reply pattern in Oracle Mediator is 
supported only for web services. This exchange pattern is not 
supported for adapters and other services.



Understanding a One-way Message Exchange Pattern

24-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

24.1 Understanding a One-way Message Exchange Pattern
In a one-way interaction, the Oracle Mediator is invoked, but it does not send a 
response back to the caller. Depending on the type of routing rule target, the 
responses, faults, and callbacks are handled as shown in Table 24–1:

Figure 24–1 illustrates the one-way message exchange pattern.

Figure 24–1 One-way Message Exchange Pattern

Table 24–1 Response When Oracle Mediator’s WSDL Is a One-way Interaction

Routing Rule Target Type Response

Request No response.

Request Response Response is forwarded to another target or event.

Request Response Fault Response and fault are forwarded to another target or event.

Request Callback Callback is forwarded to another target or event.

Request Response Callback Response and callback are forwarded to another target or event.

Request Response Fault 
Callback

Response, fault, and callback are forwarded to another target or 
event.

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Invoke
Reply
Fwd

Invoke
Callback

Fwd

Invoke
Response/

Fault
Fwd

One-Way
Mediator



Understanding a One-way Message Exchange Pattern

Understanding Message Exchange Patterns of an Oracle Mediator 24-3

24.1.1 The one.way.returns.fault Property
The one.way.returns.fault property controls how faults and one-way messages 
are handled for one-way interface SOAP calls. You can add this property to the service 
binding component of the web service section for one-way web services in the 
composite.xml file. This property is not applicable to references. It is applicable only 
to services and only to the binding.ws binding type. Table 24–2 provides more 
details on this property.

Table 24–2 one.way.returns.fault Property

If one.way.returns.fault Is... Then...

Set to true:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
    <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file
 /LocalSandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
    <binding.ws
 port="http://xmlns.oracle.com/pcbpel/adapter/file
/LocalSandbox/Project1/ReadFile%2F#wsdl.endpoint
(Mediator1/Read_pt)">
   <property name="one.way.returns.fault" type="xs:string" 
many="false"
     override="may">true</property>
    </binding.ws>
</service>
. . .

Any fault that occurs 
during downstream 
processing returns a 
SOAP fault to the client 
and an HTTP response 
code of 500. (The same 
behavior as 11g Release 
1.)

Set to false:

. . .
<service name="Mediator1_2"
 ui:wsdlLocation="ReadFile.wsdl">
    <interface.wsdl
 interface="http://xmlns.oracle.com/pcbpel/adapter/file/
Local Sandbox/Project1/ReadFile%2F#wsdl.interface(Read_
ptt)"/>
    <binding.ws
port="http://xmlns.oracle.com/pcbpel/adapter/file/LocalSan
dbox/Project1/ReadFile%2F#wsdl.endpoint(Mediator1/Read_
pt)">
      <property name="one.way.returns.fault"
 type="xs:string" many="false"
                override="may">false</property>
    </binding.ws>
  </service>
. . .

Any fault that occurs 
during downstream 
processing returns only 
an HTTP response code 
of 500. No SOAP fault is 
returned to the client.

Not set (the default case) Any fault that occurs 
during downstream 
processing returns a 
SOAP fault to the client 
and an HTTP response 
code of 500. (The same 
behavior as 11g Release 
1.)



Understanding a Request-Reply Message Exchange Pattern

24-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To add the one.way.returns.fault property:
1. In the SOA Composite Editor, select the service binding component to which you 

want to add the one.way.returns.fault property.

2. Go to the Property Inspector section in the lower right part of the editor.

3. In the Binding Properties section, click the Add icon.

The Create Property dialog is displayed.

4. In the Name field, enter one.way.returns.fault.

5. In the Value field, enter true or false.

6. Click OK.

24.2 Understanding a Request-Reply Message Exchange Pattern
In a request-reply interaction, the Oracle Mediator is invoked and sends a reply to the 
caller. Depending on the type of routing rule target, the responses, faults, and callbacks 
are handled as shown in Table 24–3:

Figure 24–2 illustrates the request-reply message exchange pattern.

Table 24–3 Response When Oracle Mediator’s WSDL Is a Request Reply

Routing Rule Target Type Response

Request There is no response from the target, but there should be at least 
one sequential routing rule with a request-response service.

Request Response The response is sent back to the caller. The response can be 
forwarded to another target or event, but there should be at least 
one sequential routing rule that returns a response back to the 
caller.

Request Response Fault The response is sent back to the caller. The fault is forwarded to 
another target or event.

Request Callback There is no response from the target, but there should be at least 
one sequential routing rule with a request-response service. The 
callback is forwarded to another target or event.

Request Response Callback The response is sent back to the caller. The callback is forwarded 
to another target or event.

Request Response Fault 
Callback

The response is sent back to the caller. The callback and fault are 
forwarded to another target or event.



Understanding a Request-Reply-Fault Message Exchange Pattern

Understanding Message Exchange Patterns of an Oracle Mediator 24-5

Figure 24–2 Request-Reply Message Exchange Pattern

24.3 Understanding a Request-Reply-Fault Message Exchange Pattern
In a request-reply-fault interaction, the Oracle Mediator is invoked and sends a reply 
and one or more faults back to the caller. Depending on the type of routing rule target, 
the responses, faults, and callbacks are handled as shown in Table 24–4:

Table 24–4 Response When Oracle Mediator’s WSDL Is a Request Reply Fault

Routing Rule Target Type Response

Request There should be at least one sequential routing rule with a 
request-response-fault service. Oracle Mediator returns null 
when there is no response to be sent.

Request Response The response is sent back to the caller. Any exception in Oracle 
Mediator message processing may result in a fault.

Request Response Fault The response and fault are sent back to the caller. Any exception 
in Oracle Mediator message processing may result in a fault.

Request Callback There is no response from the target, but there should be at least 
one sequential routing rule with a request-response service. 
Oracle Mediator returns null when there is no response to be 
sent. The callback is forwarded to another target or event.

Request Response Callback The response is sent back to the caller. Any exception in Oracle 
Mediator message processing may result in a fault.

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Null
Response

Invoke
Reply to

Client

Invoke
Callback

Fwd

Null
Response

Invoke
Response/

Fault
Fwd

Request-
Response
Mediator



Understanding a Request-Callback Message Exchange Pattern

24-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 24–3 illustrates the request-reply-fault message exchange pattern.

Figure 24–3 Request-Reply-Fault Message Exchange Pattern

24.4 Understanding a Request-Callback Message Exchange Pattern
In a request-callback interaction, the Oracle Mediator is invoked and may send an 
asynchronous reply to the caller. Depending on the type of routing rule target, the 
responses, faults, and callbacks are handled as shown in Table 24–5:

Request Response Fault 
Callback

The response and fault are sent back to the caller. Any exception 
in Oracle Mediator message processing may result in a fault.

Table 24–5 Response When Oracle Mediator’s WSDL Is a Request Callback

WSDL of the Routing Rule 
Target Response

Request There should be at least one sequential routing rule with a 
request-callback service. No callback is sent to the caller if there 
is no routing rule with a defined callback.

Table 24–4 (Cont.) Response When Oracle Mediator’s WSDL Is a Request Reply Fault

Routing Rule Target Type Response

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Null
Response

Exception as
Fault

Invoke
Reply to

Client

Exception as
Fault

Invoke
Callback

Fwd

Null
Response

Exception as
Fault

Invoke
Response/

Fault to
Client

Request-
Response

Fault
Mediator



Understanding a Request-Callback Message Exchange Pattern

Understanding Message Exchange Patterns of an Oracle Mediator 24-7

Figure 24–4 illustrates the request-callback message exchange pattern.

Figure 24–4 Request-Callback Message Exchange Pattern

Request Response The response is sent back to the caller, as a callback, in a separate 
thread.

Request Response Fault The response is sent back to the caller, as a callback, in a separate 
thread. The fault is forwarded to another target or event.

Request Callback The callback is sent back to the caller.

Request Response Callback The callback is sent back to the caller, and the response is 
forwarded to another target or event.

Request Response Fault 
Callback

The callback is sent back to the caller. The response and fault are 
forwarded to another target or event.

Table 24–5 (Cont.) Response When Oracle Mediator’s WSDL Is a Request Callback

WSDL of the Routing Rule 
Target Response

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

No
Callback

Invoke
Response to

Client as
Callback

Invoke
Callback

to
Client

Invoke
Response to

Client
as Callback

Fault
Fwd

Request-
Callback
Mediator



Understanding a Request-Reply-Callback Message Exchange Pattern

24-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

24.5 Understanding a Request-Reply-Callback Message Exchange 
Pattern

In a request-reply-callback interaction, the Oracle Mediator is invoked and sends a 
response and an asynchronous reply to the initial caller. Depending on the type of 
routing rule target, the responses, faults, and callbacks are handled as shown in 
Table 24–6:

Figure 24–5 illustrates the request-reply-callback message exchange pattern.

Table 24–6 Response When Oracle Mediator’s WSDL Is a Request Response Callback

Routing Rule Target Type Response

Request There should be at least one sequential routing rule that returns 
a response. No callback is sent to the caller if there is no routing 
rule with a defined callback.

Request Response There should be at least one sequential routing rule that returns 
a response. No callback is sent if there is no routing rule with a 
defined callback.

Request Response Fault There should be at least one sequential routing rule that returns 
a response. No callback is sent to the caller if there is no routing 
rule with a defined callback.

Request Callback There should be at least one sequential routing rule that returns 
a response. Oracle Mediator returns null when there is no 
response to be sent.

Request Response Callback The response and callback are sent back to the caller.

Request Response Fault 
Callback

The response and callback are sent back to the caller. The fault is 
forwarded to another target or event.



Understanding a Request-Reply-Fault-Callback Message Exchange Pattern

Understanding Message Exchange Patterns of an Oracle Mediator 24-9

Figure 24–5  Request-Reply-Callback Message Exchange Pattern

24.6 Understanding a Request-Reply-Fault-Callback Message Exchange 
Pattern

In a request-reply-fault-callback interaction, the Oracle Mediator is invoked and sends 
a response, an asynchronous reply, and one or more fault types to the initial caller. 
Depending on the type of routing rule target, the responses, faults, and callbacks are 
handled as shown in Table 24–7:

Table 24–7 Response to a Request Response Fault Callback Oracle Mediator

WSDL of the Routing Rule 
Target Response

Request There should be at least one sequential routing rule with a 
request-callback service. No callback is sent to the caller if there 
is no routing rule with a defined callback.

Request Response There should be at least one sequential routing rule with a 
request-callback service. No callback is sent to the caller if there 
is no routing rule with a defined callback.

Request Response Fault There should be at least one sequential routing rule with a 
request-callback service. No callback is sent to the caller if there 
is no routing rule with a defined callback.

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Null
Response

No
Callback

Invoke
Reply to

Client

No
Callback

Invoke

Null

Reply
Callback
to Client

Invoke

Reply and
Callback
to Client

Fault Fwd

Request-
Reply-

Callback
Mediator



Understanding a Request-Reply-Fault-Callback Message Exchange Pattern

24-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 24–6 illustrates the request-reply-fault-callback message exchange pattern.

Figure 24–6 Request-Reply-Fault-Callback Message Exchange Pattern

Request Callback There should be at least one sequential routing rule that returns 
a response. Oracle Mediator returns null when there is no 
response to be sent.

Request Response Callback The response and callback are sent back to the caller. Any 
exception in Oracle Mediator message processing may result in a 
fault.

Request Response Fault 
Callback

The response, fault, and callback are sent back to the caller.

Table 24–7 (Cont.) Response to a Request Response Fault Callback Oracle Mediator

WSDL of the Routing Rule 
Target Response

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Null Reply

No Callback

Exception as
Fault

Invoke
Reply to Client

Exception as
Fault

No Callback

Invoke

Reply, Fault
Callback
to Client

Request-
Reply-
Fault

Callback
Mediator Invoke

Null Reply

Callback to
Client

Exception as
Fault



Part IV
Part IV  Using the Business Rules Service

Component

This part describes how to use the business rules service component.

This part contains the following chapters: 

■ Chapter 25, "Getting Started with Oracle Business Rules"

■ Chapter 26, "Using Declarative Components and Task Flows"





25

Getting Started with Oracle Business Rules 25-1

25 Getting Started with Oracle Business Rules

This chapter describes how to use a business rule service component to integrate a 
SOA composite application with Oracle Business Rules. A business rule service 
component is also called a Decision component. You can add business rules as part of 
an SCA application or as part of a BPEL process.

This chapter includes the following sections:

■ Section 25.1, "Introduction to the Business Rule Service Component"

■ Section 25.2, "Overview of Rules Designer Editor Environment"

■ Section 25.3, "Introduction to Creating and Editing Business Rules"

■ Section 25.4, "Adding Business Rules to a BPEL Process"

■ Section 25.5, "Adding Business Rules to a SOA Composite Application"

■ Section 25.6, "Running Business Rules in a Composite Application"

■ Section 25.7, "Using Business Rules with Oracle ADF Business Components Fact 
Types"

For more examples of using Oracle Business Rules, see Oracle Fusion Middleware User's 
Guide for Oracle Business Rules.

25.1 Introduction to the Business Rule Service Component
A Decision component, also called a business rule service component, supports use of 
Oracle Business Rules in a SOA composite application. Decision components support 
the following SOA composite usage:

■ A Decision component can be used within a SOA composite and wired to a BPEL 
component.

■ A Decision component can be used within a SOA composite and used directly to 
run business rules.

■ A Decision component can be used with the dynamic routing capability of 
Mediator.

For more information, see Chapter 20, "Creating Oracle Mediator Routing Rules."

■ A Decision component can be used with the Advanced Routing Rules in Human 
Workflow.

For more information, see Section 28.4, "Associating the Human Task Service 
Component with a BPEL Process."



Overview of Rules Designer Editor Environment

25-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks
You can create a SOA composite application that includes BPEL process, business rule, 
and human task service components. These components are complementary 
technologies. BPEL processes focus on the orchestration of systems, services, and 
people. Business rules focus on decision making and policies. Human tasks enable you 
to model a workflow that describes the tasks for users or groups to perform as part of 
an end-to-end business process flow.

Some examples of where business rules can be used include:

■ Dynamic processing

Rules can perform intelligent routing within the business process based on service 
level agreements or other guidelines. For example, if the customer requires a 
response within one day, send a loan application to the QuickLoan loan agency 
only. If the customer can wait longer, then route the request to three different loan 
agencies.

■ Externalize business rules in the process

There are typically many conditions that must be evaluated as part of a business 
process. However, the parameters to these conditions can be changed 
independently of the process. For example, you provide loans only to customers 
with a credit score of at least 650. This value may be changed dynamically based 
on new guidelines set by business analysts.

■ Data validation and constraint checks

Rules can validate input documents or apply additional constraints on requests. 
For example, a new customer request must always be accompanied with an 
employment verification letter and bank account details.

■ Human task routing

Rules are frequently used for human tasks in the business process:

– Policy-based task assignments dispatch tasks to specific roles or users. For 
example, a process that handles incoming requests from a portal can route 
loan requests and insurance quotes to a different set of roles.

– Load balancing of tasks among users. When a task is assigned to a set of users 
or a role, each user in that role acquires a set of tasks and acts on them in a 
specified time. For new incoming tasks, policies may be applied to set 
priorities on the task and put them in specific user queues. For example, a 
specific loan agent is assigned a maximum of 10 loans at any time.

For more information about creating business rules in the Human Task editor of a 
human task component, see Section 28.3.7.2, "Specifying Advanced Task Routing 
Using Business Rules."

25.2 Overview of Rules Designer Editor Environment
You can create a business rules service component in the SOA composite application of 
Oracle JDeveloper and then design it by using the Business Rules Designer, which is 
displayed when you double-click a business rule in the SOA Composite Editor.

The Business Rules Designer consists of the following main sections shown in 
Figure 25–1. These sections enable you to work with business rules in Oracle 
JDeveloper.



Overview of Rules Designer Editor Environment

Getting Started with Oracle Business Rules 25-3

Figure 25–1 Rules Designer in Oracle JDeveloper

25.2.1 Application Navigator
 The Application Navigator displays the files in the project. Each project can only 
contain one composite. But each composite can have multiple components of either the 
same type or different types (Business Rules, BPEL process, Oracle Mediator, and 
human workflow).

As you design business rules, additional files, folders, and elements can appear in the 
Application Navigator.

25.2.2 Rules Designer Window
The Rules Designer window provides a visual view of the selected dictionary 
component. You use the Rules Designer navigation tabs to select different parts of the 
dictionary with which to work. The rules designer window displays when you 
perform one of the following actions:

■ In a composite, double-click a Business Rule component.

■ Double-click the Business Rule component in the SOA Composite Editor.



Overview of Rules Designer Editor Environment

25-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ In a BPEL process, double click a business rule.

■ In the Application Navigator, double-click a business rules dictionary file (a file 
with the .rules extension)

■ Click the Design tab with a .rules file selected.

Table 25–1 describes where you can find information about working with a dictionary 
with Rules Designer.

For more information about the Rules Designer navigation areas and its descriptions, 
see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

25.2.3 Structure Window
The Structure window offers a structural view of the data in the Business Rule 
dictionary currently selected in the Rules Designer window. You can perform a 
variety of tasks from this section, by selecting an element and right-clicking on the 
element, including:

■ Managing (creating, editing, refreshing, and deleting) elements such as facts, 
functions, globals, bucketsets, dictionary links, and decision functions

■ Accessing rulesets, rules, and Decision Tables

Figure 25–2 shows the Structure window.

Table 25–1 Rules Designer Navigation Areas Descriptions

Rules Designer 
Navigation Tab Description

Facts Facts are the objects that rules reason on.

Functions A function, in Oracle Business Rules, refers to the standard 
mathematical functions.

Globals A global, in Oracle Business Rules, is similar to a public static 
variable in Java.

Bucketsets Bucketsets define the data types of fact properties.

Links Links are used to link to a dictionary in the same application or in 
another application.

Decision Functions A Decision Function is a function that is configured declaratively, 
without using RL Language programming.

Rulesets with Rules and 
Decision Tables

A ruleset provides a unit of execution for rules and for Decision 
Tables. A Decision Table provides a mechanism for describing data 
processing tasks.



Introduction to Creating and Editing Business Rules

Getting Started with Oracle Business Rules 25-5

Figure 25–2 Structure Window with Rules Designer Dictionary

25.2.4 Business Rule Validation Log Window
Rules Designer displays the status of dictionary validation in the business rule 
validation log, as shown in Figure 25–3.

When a dictionary is invalid, Rules Designer produces a list of warning messages and 
lists the associated dictionary objects that you can use to locate the dictionary object 
and to correct the problem. You can safely ignore the validation warnings that you see 
when you create rules using Rules Designer. The validation warnings are removed as 
you create the rules, but are shown during the intermediate steps. To test or deploy 
rules, the associated dictionary must not display warnings.

For more information on business rules validation, see Oracle Fusion Middleware User's 
Guide for Oracle Business Rules.

Figure 25–3 Rules Designer Business Rule Validation Log

25.3 Introduction to Creating and Editing Business Rules
This section describes how to get started with business rules and provides a brief 
introduction to the main sections of Oracle JDeveloper that you use to design business 
rules.

25.3.1 How to Create Business Rules Components
You can add Business Rule components using the SOA Composite Editor.

To create a Business Rule component:
1. Follow the instructions in Table 25–2 to start Oracle JDeveloper.



Introduction to Creating and Editing Business Rules

25-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Create a Business Rule service component through one of the following methods:

As a service component in an existing SOA composite application:

a. From the Component Palette, drag a Business Rule service component into 
the SOA Composite Editor.

In a new application:

a. From the Application Navigator, select File > New > Applications > SOA 
Application.

This starts the Create SOA Application wizard. 

b. In the Name your application page, enter an application name in the Name 
field.

c. In the Directory field, enter a directory path in which to create the SOA 
composite application and project.

d. Click Next.

e. In the Name your project page, enter a unique project name in the Project 
Name field. The project name must be unique across SOA composite 
applications. This is because the uniqueness of a composite is determined by 
its project name. For example, do not perform the actions described in 
Table 25–3.

During deployment, the second deployed project (composite) overwrites the 
first deployed project (composite).

f. Click Next.

g. In the Configure SOA settings page, select Composite with Business Rule.

h. Click Finish.

Each method causes the Create Business Rules dialog shown in Figure 25–4 to 
appear.

Table 25–2 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper Click JDev_Oracle_
Home\JDev\bin\jdev.exe or create a 
shortcut

$ORACLE_HOME/jdev/bin/jdev

Table 25–3 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...

Application1 Project1

Application2 Project1



Adding Business Rules to a BPEL Process

Getting Started with Oracle Business Rules 25-7

Figure 25–4 Create Business Rules Dialog

3. Provide the required details. For more information on providing Inputs and 
Outputs and on using the Import Dictionary option with this dialog, see Oracle 
Fusion Middleware User's Guide for Oracle Business Rules.

4. Click OK.

25.3.2 Introduction to Working with Business Rules in Rules Designer
When you are working with business rules Oracle JDeveloper displays Rules 
Designer. 

25.4 Adding Business Rules to a BPEL Process
You can use a Decision component, also called a business rule service component, to 
execute business rules in a BPEL process.

25.4.1 How to Add Business Rules to a BPEL Process
You add business rules to a BPEL process using a Business Rule component. When 
you add a business rule component to a BPEL process, you must include input and 
output variables to provide input to the rules and obtain results back from the 
business rules.

A business rule component enables you to execute business rules and make business 
decisions based on the rules. To create a business rule component, also called a 
Decision component, you drag-and-drop a Business Rule from the component palette 
into the BPEL process.

To add a business rule to a BPEL process:
1. Create a BPEL process service component. For more information, see Section 4.1, 

"Introduction to the BPEL Process Service Component."



Adding Business Rules to a BPEL Process

25-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Expand the BPEL process by double-clicking the process item. For example, 
expand the BPEL process to view receiveInput and callbackClient as 
shown in Figure 25–5.

Figure 25–5 Adding A Business Rule to a BPEL Process

3. Select Business Rule from the SOA Components section of the Component Palette 
and drag-and-drop a Business Rule into the position where the business rules are 
needed. For example, drag-and-drop a Business Rule between receiveInput 
and callbackClient, as shown in Figure 25–6. 

Figure 25–6 Drag-and-drop a Business Rule into a BPEL Process



Adding Business Rules to a BPEL Process

Getting Started with Oracle Business Rules 25-9

4. Oracle JDeveloper displays the business rule in the diagram. Double-click the 
business rule component to display the Rule dialog box. The Rule dialog box 
provides tabs, such as General, Dictionary, Correlation Sets, and so on, where you 
can select an existing Oracle Business Rules dictionary or enter the name of a new 
dictionary to create. Under the General tab, in the Name field enter a name for the 
business rule. For example, enter GetCreditRating, as shown in Figure 25–7. If 
you previously created a dictionary, under the Dictionary tab, in the Dictionary 
field, select an existing dictionary.

Figure 25–7 Business Rule Added to Auto Loan BPEL Process

5. In the Business Rule area for the Business Rule Dictionary, click the Create 
Dictionary icon to display the Create Business Rules dialog.

6. In the Create Business Rules dialog you do the following: 

■ Specify a name for the Oracle Business Rules dictionary and a package name.

■ Specify the input and output data elements for the business rule. For example, 
for a sample Decision component named GetCreditRating, the input is a 
rating request document. The output is generated when you run the business 
rules, and for this example is a rating document. For example, in BPEL you 
can create two new variables, RatingRequest and Rating that carry the 
input and output data for the GetCreditRating rules.

Enter a name for the Oracle Business Rules dictionary. For example, enter 
GetCreditRating, as shown in Figure 25–8.



Adding Business Rules to a BPEL Process

25-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–8 Adding GetCreditRating Business Rule Dictionary

Add inputs for business rule:
1. In the Create Business Rules dialog, from the menu next to the Add icon select 

Add Input Variable... to create the input variable. 

This displays the Add Input Variable dialog box.

2. In the Add Input Variable dialog box, expand the Process folder and select the 
Variables folder immediately inside the Process.

3. Right-click the Variables folder, and from the list select Create Variable... as 
shown in Figure 25–9.



Adding Business Rules to a BPEL Process

Getting Started with Oracle Business Rules 25-11

Figure 25–9 Add Input Variable

This displays the Create Variable dialog box.

4. In the Create Variable dialog box, in the Name field enter a value. For example, 
enter RatingRequest as shown in Figure 25–10.

Figure 25–10 Create Variable Dialog

5. In the Create Variable Type area click the Browse Elements icon. Use the 
navigator to locate the schema element type for the input variable. For example, 
select the ratingrequest type. Add any needed types using the Type Chooser.

6. Click the Import Schema File icon to import the schema. For example, import 
CreditRatingTypes.xsd. Also import any other required schema for your 
application.

7. In the Type Chooser dialog, select ratingrequest and click OK.

8. In the Create Variable dialog, click OK. 



Adding Business Rules to a BPEL Process

25-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9. In the Add Input Variable dialog, click OK.

Add outputs for business rule:
1. In the Create Business Rules dialog, from the dropdown menu next to the Add 

icon, select Add Output Variable.... This displays the Add Output Variable dialog. 
Use this dialog to create an output variable. For example, create an output variable 
for GetCreditRating in the same way you created the input variable.

2. In the Add Output Variable dialog select the scope by selecting the Variables 
folder under Process.

3. Right-click and from the dropdown list select Create Variable.... This displays the 
Create Variable dialog.

4. In the Create Variable dialog, in the Name field enter the output variable name. 
For example enter Rating.

5. In the Create Variable dialog, in the Type area select the Browse elements icon and 
use the Type Chooser dialog to enter the type for the output variable. For example, 
expand the CreditRatingTypes.xsd and select the element type rating.

6. In the Type Chooser dialog, click OK.

7. In the Create Variable dialog, click OK. 

8. In the Add Output Variable dialog, click OK.

This displays the Create Business Rules dialog, as shown in Figure 25–11.

Figure 25–11 Create Business Rules Dialog with Input and Output Variables

Set options and create decision service and business rules dictionary:
1. If you do not want to use the default service name, then select the Advanced tab 

and in the Service Name field enter the service name. For example enter the 
service name CreditRatingService.



Adding Business Rules to a BPEL Process

Getting Started with Oracle Business Rules 25-13

2. Determine if the Decision Component is stateful or stateless with Reset Session. 
For more information, see Section 25.4.5, "What You May Need to Know About 
Decision Component Stateful Operation".

3. In the Create Business Rules dialog, click OK. Oracle JDeveloper creates the 
Decision component and the dictionary and displays Rules Designer, as shown in 
Figure 25–12.

Figure 25–12 Rules Designer Canvas Where You Work with Business Rules

For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle 
Business Rules.

25.4.2 What Happens When You Add Business Rules to a BPEL Process
When you add business rules to a BPEL process, Oracle JDeveloper creates a Decision 
component to control and run the business rules using the Business Rule Service 
Engine.

A Decision component consists of the following:

■ Rules or Decision Tables that are evaluated using the Rules Engine. These are 
defined using Rules Designer and stored in a business rules dictionary.

■ A description of the facts required for specific rules to be evaluated and the 
decision function to call. Each ruleset that contains rules or Decision Tables is 
exposed as a service with facts that are input and output, and the name of an 
Oracle Business Rules decision function. The facts are exposed through XSD 
definitions when you define the inputs and outputs for the business rule. A 
Decision function is stored in an Oracle Business Rules dictionary. For more 
information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

■ A web service wraps the input, output, and the call to the underlying Business 
Rule service engine. 

This web service lets business processes assert and retract facts as part of the 
process. In some cases, all facts can be asserted from the business process as one 



Adding Business Rules to a BPEL Process

25-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

unit. In other cases, the business process can incrementally assert facts and 
eventually consult the rule engine for inferences. Therefore, the service supports 
both stateless and stateful interactions.

You can create a variety of such Decision components. 

For more information, see Oracle Fusion Middleware User's Guide for Oracle Business 
Rules.

25.4.3 What Happens When You Create a Business Rules Dictionary
After you create an application, a project, and a rules dictionary, the rules dictionary 
appears in the structure pane in Oracle JDeveloper and Rules Designer opens in the 
main canvas.

As part of the create Business Rule dialog you either select an existing dictionary or a 
new rule dictionary is created with the following pre-loaded data:

■ XML fact type model based on the input and output information of the Business 
Rule.

■ A Ruleset that must be completed by adding rules or Decision Tables. With an 
existing dictionary, you use the import option to specify a dictionary that may 
already contain the rules or Decision Tables.

■ A service component with the input and output contract of the Decision 
component.

■ A Decision component for the rule dictionary and wires to the BPEL process.

25.4.4 What You May Need to Know About Invoking Business Rules in a BPEL Process
When you add business rules to a BPEL process Oracle JDeveloper creates a Decision 
Service that supports calling Oracle Business Rules with the inputs you supply, and 
returning the outputs with results. The Decision Service provides access to Oracle 
Business Rules Engine at runtime as a web service. For more information, see Oracle 
Fusion Middleware User's Guide for Oracle Business Rules.

25.4.5 What You May Need to Know About Decision Component Stateful Operation
A Decision Component running in a business rules service engine supports either 
stateful or stateless operation. The Reset Session checkbox in the Create Business 
Rules dialog provides support for these two modes of operation.

Note: When you create inputs and outputs for a business rule, the 
XML fact type that is created in the associated dictionary is named 
based on the schema types for the inputs and outputs that you supply 
in the Create Business Rules dialog. When you specify schema type 
for the input and the output, Rules Designer defines fact types and 
aliases associated with your type selections for input and output. If 
you only use a single type for both the input and the output, then the 
Decision component creates a single fact that is shown in the Rules 
Designer Facts tab. This fact represents the fact type you specified and 
uses an alias name that is a concatenation of both the input variable 
name and the output variable name. In Rules Designer you can 
rename this alias if you do not like the default naming scheme for the 
fact type.



Adding Business Rules to a SOA Composite Application

Getting Started with Oracle Business Rules 25-15

By default the Reset Session checkbox is selected which indicates stateless operation. 
Stateless operation means that, at runtime, the rule session is released after the 
Decision Component invocation. 

When Reset Session is unselected, the underlying Oracle Business Rules object is kept 
in the memory of the business rules service engine at a separate location (so that it is 
not given back to the Rule Session Pool when the operation is finished). A subsequent 
use of the Decision component re-uses the cached RuleSession object, with all its state 
information from the callFunctionStateful invocation, and then releases it back 
to the Rule Session pool after the callFunctionStateless operation is finished. 
Thus, when Reset Session is unselected the rule session is saved for a subsequent 
request and a sequence of Decision Service invocations from the same BPEL process 
should always end with a stateless invocation.

25.5 Adding Business Rules to a SOA Composite Application
To work with Oracle Business Rules in a SOA composite application, you create an 
application and add business rules.

The business rule service component enables you to integrate your SOA composite 
application with business rules. This creates a business rule dictionary and enables 
you to execute business rules and make business decisions based on the rules.

After creating a project in Oracle JDeveloper, you must create a Business Rule Service 
component within the project. When you add a business rule you can create input and 
output variables to provide input to the service component and to obtain results from 
the service component.

To use business rules with Oracle JDeveloper, you do the following:

■ Add a business rules service component

■ Create input and output variables for the service component

■ Create an Oracle Business Rules dictionary

25.5.1 How to Add Business Rules to a SOA Composite Application
To work with Oracle Business Rules in a SOA composite application you use Oracle 
JDeveloper to create an application, a project, and then add a business rule component.

To create a SOA application with business rules:
1. Create a SOA application and project. For more information, see Section 2.1.1, 

"How to Create a SOA Application and Project". For a SOA composite using 
business rules, pick the required technologies for your application. For example, 
you may need the following for a SOA application with business rules: ADF 
Business Components, Java, and XML. You move these items to the Selected area 
on the Project Technologies tab.

2. In the Application Navigator, if the SOA composite editor is not showing, then in 
your project expand SOA Content folder and double-click composite.xml to 
launch the SOA composite editor.

3. From the Component Palette, drag-and-drop a Business Rule from the Service 
Components area of the SOA menu to the Components lane of the SOA composite 
editor, as shown in Figure 25–13.



Adding Business Rules to a SOA Composite Application

25-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–13 Adding Business Rules to a SOA Composite Application

4. When you drag-and-drop a Business Rule, Oracle JDeveloper displays the Create 
Business Rules dialog as shown in Figure 25–14. 

Figure 25–14 Adding Business Rules to a SOA Composite and Creating a Dictionary

Add inputs for business rules:
1. In the Create Business Rules dialog box, from the menu next to the Add icon select 

Input... to add input for the business rule. This displays the Type Chooser dialog.

2. In the Type Chooser dialog, add inputs. If the schema is available in the Project 
Schema Files, skip to step 9 to select the appropriate schema.

3. Click the Import Schema File... icon. This brings up the Import Schema File 
dialog.



Adding Business Rules to a SOA Composite Application

Getting Started with Oracle Business Rules 25-17

4. In the Import Schema File dialog click Browse Resources to choose the XML 
schema elements for the input. This displays the SOA Resource Browser dialog.

5. In the SOA Resource Browser dialog, navigate to find the schema for your 
business rules input. For example, select the order.xsd schema file, and click 
OK.

6. In the Import Schema File dialog select Copy to Project, as shown in Figure 25–15.

Figure 25–15 Importing Schema for Input to Business Rules

7. In the Import Schema File dialog, click OK.

8. In the Localize Files dialog, click OK.

9. Use the Type Chooser dialog navigator to locate and select the input from the 
schema and click OK. For example, select the CustomerOrder element as the 
input.

Add outputs for business rules:
1. In the Create Business Rules dialog, from the dropdown menu next to the Add 

icon select Output.... 

2. In the Type Chooser dialog, in a manner similar to adding an input add the 
output. For example, add OrderApproval from the order.xsd and click OK.

3. This displays the Create Business Rules dialog, as shown in Figure 25–16.



Adding Business Rules to a SOA Composite Application

25-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–16 Create Business Rules Dialog with Input and Output

Set options and create decision service and business rules dictionary:
1. In the Create Business Rules dialog, select Expose as Composite Service.

2. If you do not want to use the default service name, then select the Advanced tab 
and in the Service Name field enter the service name.

3. In the Create Business Rules dialog, click OK. This creates the Business Rule 
component, also called a Decision component, and Oracle JDeveloper shows the 
Business Rule component in the canvas workspace as shown in Figure 25–17.

Figure 25–17 Business Rule Component in SOA Composite



Adding Business Rules to a SOA Composite Application

Getting Started with Oracle Business Rules 25-19

4. Double-click the Decision component (for example the OracleRules1 business 
rule). This opens Rules Designer, as shown in Figure 25–18. The validation log 
shows validation warnings for the input and output facts. By working with Rules 
Designer to define rules or decision tables, you remove these warning messages.

Figure 25–18 Rules Designer Showing New Dictionary for SOA Composite Application

For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle 
Business Rules.

25.5.2 How to Select and Modify a Decision Function in a Business Rule Component
You can specify one or more decision functions as inputs for calling Oracle Business 
Rules as a component in a composite application. For example, you can specify a 
particular decision function as the input when multiple decision functions are 
available in an Oracle Business Rules dictionary.

To specify a decision function in a composite application:
1. Add a decision function to the Oracle Business Rules dictionary. For more 

information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

2. Add a Business Rule component to the composite application. For more 
information, see Section 25.5.1, "How to Add Business Rules to a SOA Composite 
Application".

3. Select a business rule component, as shown in Figure 25–19.



Adding Business Rules to a SOA Composite Application

25-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–19 Selecting a Business Rule Component in a Composite Application

4. Select the decision function port of interest. For example, select the port for DF_2 
as shown in Figure 25–20.

Figure 25–20 Selecting a Decision Function Port in a Business Rule Component

5. When you select the port, Oracle JDeveloper shows the port information in the 
Property Inspector. 

6. When you double-click the port, Oracle JDeveloper displays the Update Interface 
dialog for the port as shown in Figure 25–21.



Running Business Rules in a Composite Application

Getting Started with Oracle Business Rules 25-21

Figure 25–21 Update Interface Dialog for a Decision Function in a Business Rule Decision Port

25.6 Running Business Rules in a Composite Application
You run business rules as part of a Decision component within a SOA composite 
application. The business rules are executed by the Business Rule Service Engine. You 
can use Oracle Enterprise Manager Fusion Middleware Control Console to monitor the 
Business Rule Service Engine and to test a SOA composite application that includes a 
Decision component. For more information, see Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

25.6.1 What You May Need to Know About Testing a Standalone Decision Service 
Component 

To test a standalone Decision Service component by using Oracle Enterprise Manager 
Fusion Middleware Control Console, you must provide the name of the Decision 
Service as the value of the payload name field in the Test Web Service page as shown 
in Figure 25–22.



Running Business Rules in a Composite Application

25-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–22 Invoking a Standalone Test Decision Service

'name' in payload should be the Decision Service name as can be seen in the sample 
.decs file in Figure 25–23.

Figure 25–23 Sample .decs File

Without the Decision Service name, it would not be possible to invoke the standalone 
Decision Service with just the payload and endpoint details.



Using Business Rules with Oracle ADF Business Components Fact Types

Getting Started with Oracle Business Rules 25-23

25.7 Using Business Rules with Oracle ADF Business Components Fact 
Types

You can use Oracle ADF Business Components Fact Types and ActionTypes from 
the Business Rules Service Engine. Typically, a Decision component can be used within 
a SOA composite and wired to a BPEL component and the Oracle Business Rules rules 
act on XML types. The Business Rules Service Engine is called as a web service with a 
payload containing instances of the XML schema types, and the service engine returns 
a response similarly.

It is also possible to use Oracle ADF Business Components Fact Types from a Decision 
component. Instead of loading the Oracle ADF Business Components Fact Type 
instances and passing them to the Business Rules Service Engine, you call the Business 
Rules Service Engine with configuration information describing how the Oracle ADF 
Business Components view object rows can be loaded. Special Oracle Business Rules 
decision functions in the DecisionPointDictionary and classes in the Oracle 
Business Rules SDK Decision Point API then load the rows and assert Oracle ADF 
Business Components fact type instances. When working with Oracle ADF Business 
Components Fact Types, you write rules that use user-defined Java classes which 
inherit from ActionType to affect action, such as modifying the Oracle ADF Business 
Components fact type instances such that they update their underlying database rows. 

A Decision component requires an XML document as input. The Oracle Business Rules 
Decision Point dictionary provides an XML Fact Type called 
SimpleDecisionPointInput that serves as this input. The primary key(s) of Oracle 
ADF Business Components are passed to the business rule service component. The 
business rule service component invokes a user-defined decision function which it 
invokes to load the Oracle ADF Business Components view object instances, asserts 
them in the rules engine, and then marshals the results in the following order: 

1. DecisionPointDictionary.DecisionPoint_Preprocessing_Webservice Ruleset: The 
preprocessing ruleset reads the business component from the database and asserts 
them as facts. 

2. User-defined rulesets: The user ruleset matches these facts and should assert facts 
that extend ActionType to update the business component.

3. DecisionPointDictionary.DecisionPoint_Postprocessing_Webservice Ruleset: The 
actual updating is performed by the postprocessing ruleset. Use of ActionTypes 
is optional.

For specific instructions on how to use Oracle ADF Business Components Fact Types 
and ActionTypes from the Business Rules Service Engine, see the source code for 
Oracle Business Rules-specific samples and SOA samples available online at

https://soasamples.samplecode.oracle.com



Using Business Rules with Oracle ADF Business Components Fact Types

25-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



26

Using Declarative Components and Task Flows 26-1

26Using Declarative Components and Task
Flows

This chapter describes how to use different Oracle Business Rules declarative 
components and task flows to develop high-performance, interactive, and multitiered 
applications that are also easy to maintain.

This chapter includes the following sections:

■ Section 26.1, "Introduction to Declarative Components and Task Flows"

■ Section 26.2, "Using the Oracle Business Rules Editor Declarative Component"

■ Section 26.3, "Using the Oracle Business Rules Dictionary Editor Declarative 
Component"

■ Section 26.4, "Using the Oracle Business Rules Dictionary Task Flow"

■ Section 26.5, "Localizing the ADF-Based Web Application"

26.1 Introduction to Declarative Components and Task Flows
Declarative components are reusable, composite User Interface (UI) components that 
comprise other existing Application Development Framework (ADF) Faces 
components. Consider an application that contains multiple JSF pages. On a particular 
page, a set of specific components is used in multiple parts of that page. In this 
scenario, if you make any changes to any of the components in the set, you typically 
must replicate the changes in multiple parts of the page. This approach makes it 
difficult to maintain the consistency of the structure and layout of the page. However, 
by defining a declarative component that comprises the given set of components, you 
can reuse that composite declarative component in multiple places or pages. 
Declarative components, thereby, save time and ensure integrity across pages, because 
when you make any changes to the components, the JSF pages using them 
automatically get updated.

ADF task flows are reusable components that provide a modular and transactional 
method in specifying the control flow in an application. You can use a set of reusable 
task flows as an alternative to representing an application as a single large JSF page 
flow, thereby providing modularity. Each task flow contains a part of the entire 
navigational plan of the application. The nodes in a task flow are called activities. 
Apart from navigation, task flow activities can also call methods on managed beans or 
call another task flow without invoking any particular page. This facilitates reuse 
because business logic can be invoked independently of the page being displayed.



Using the Oracle Business Rules Editor Declarative Component

26-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

26.2 Using the Oracle Business Rules Editor Declarative Component
This section discusses the Oracle Business Rules Editor declarative component. It also 
provides information on how to create and run an application using the Rules Editor 
component, and then deploy the application. In addition, this section lists the 
supported tags and the localization process for the application.

26.2.1 Introduction to the Oracle Business Rules Editor Component
Oracle Business Rules Editor is a declarative component that can be embedded in any 
ADF-based Web application. The component renders the user interface for rules 
editing and handles all events associated with rules editing. Rules Editor uses the 
Rules SDK2 API to create and edit rules.

Using Rules Editor, you can edit rules and decision tables that are part of a single 
ruleset. You require to specify a RuleSetModel object, which is a wrapper around 
the Rules SDK ruleset object, as a parameter to the Rules Editor component. If multiple 
rulesets are required to be modified, multiple Rules Editor components must be 
instantiated, one for each ruleset.

The Rules Editor component performs the following functions:

■ Creates, updates, and deletes:

– Rules in a ruleset, as shown in Figure 26–1:

Figure 26–1 Rules in a Ruleset

– Simple tests or conditions in a rule, as shown in Figure 26–2:

Note: You should not confuse Rules Editor with Rules Dictionary 
Editor. Rules Editor is used to edit rules inside a specified ruleset. In 
fact, Rules Editor is embedded within Rules Dictionary Editor. For 
more information about Rules Dictionary Editor, see Section 26.3, 
"Using the Oracle Business Rules Dictionary Editor Declarative 
Component."



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-3

Figure 26–2 Simple Tests or Conditions in a Rule

– Actions in a rule, as shown in Figure 26–3.

Figure 26–3 Actions in a Rule

– Decision tables, as shown in Figure 26–4.

Figure 26–4 Decision Tables

■ Sets effective dates and priorities for rulesets and rules.

■ Provides support for user-defined operators.

■ Provides a Condition Browser pop-up to display the left or right value options, as 
shown in Figure 26–5.



Using the Oracle Business Rules Editor Declarative Component

26-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–5 Condition Browser 

■ Provides a Date Browser for selecting date types, as shown in Figure 26–6.

Figure 26–6 Date Browser

■ Provides a Right Operand browser to handle multiple right-hand side expressions, 
as shown in Figure 26–7.

Figure 26–7 Right Operand Browser

■ Provides support for nested rules, as shown in Figure 26–8.

Figure 26–8 Nested Rules Support

■ Provides the Properties browser for editing properties of a rule action, as shown in 
Figure 26–9.



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-5

Figure 26–9 Properties Browser

■ Provides an Expression Builder window to build custom expressions, as shown in 
Figure 26–10.

Figure 26–10 Expression Builder Window

■ Provides Advanced Mode features for working with patterns and advanced 
actions, as shown in Figure 26–11.

Figure 26–11 Advanced Mode Features

■ Provides a Validation panel to manage error messages, as shown in Figure 26–12.



Using the Oracle Business Rules Editor Declarative Component

26-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–12 Validation Panel to Manage Error Messages

26.2.2 How to Create and Run a Sample Application by Using the Rules Editor 
Component

This section lists the steps for creating and running a sample application by using the 
Rules Editor component. 

The prerequisite for using the Rules Editor component to create ADF-based Web 
applications is having a running installation of Oracle SOA Suite and Oracle 
JDeveloper on your computer.

To create a sample application by using the Rules Editor:
The first task is to create a sample application. 

The steps are:

1. Open Oracle JDeveloper.

2. From the File menu, select New and then Generic Application to create an 
application.

3. Enter a name for the application in the Application Name field, for example, 
useRulesDCApp, and click Next as shown in Figure 26–13.

Figure 26–13 Creating a Generic Application

4. Enter useRulesDC in the Project Name field and ensure that ADF Faces is 
selected in the Project Technologies tab as shown in Figure 26–14.

Note: Once all the edits are done, the component user is responsible 
for saving the ruleset.



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-7

Click Finish to create the project.

Figure 26–14 Creating a Project

5. Right-click the useRulesDC project in the Application Navigator of Oracle 
JDeveloper, and select Project Properties to display the Project Properties dialog 
box.

In the Project Properties dialog box:

a. Click JSP Tag Libraries from the left panel.

b. Click Add and select ADF Faces Components from the Extension list in the 
Choose Tag Libraries dialog box, and click OK as shown in Figure 26–15.

Figure 26–15 Choosing Tab Libraries



Using the Oracle Business Rules Editor Declarative Component

26-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

c. Click Libraries and Classpath from the left panel and click the Add Library 
button to display the Add Library dialog box.

d. Click Oracle Rules and Oracle Rules Editor Component from the Extension 
list and then click OK as shown in Figure 26–16. 

Figure 26–16 Selecting Oracle Rules and Rules Editor Component

This adds the Rules SDK and the Rules Editor Component tag libraries to the 
project.

e. Click OK to close the Project Properties dialog box.

6. Select Save All from the Oracle JDeveloper File menu to save the project.

You have to ensure that all the required tag libraries are added:

1. Right-click the useRulesDC project in the Application Navigator of Oracle 
JDeveloper and select Project Properties to display the Project Properties dialog 
box.

2. Click JSP Tag Libraries from the left panel and check if all the tag libraries are 
added as shown in Figure 26–17.



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-9

Figure 26–17 Checking the Required Tag Libraries

To create the RuleSetModel object:
The Rules Editor component requires a 
oracle.bpel.rulesdc.model.impl.RuleSetModel object. The component uses 
this object to read the rules and the decision tables that exist in the ruleset. So, the next 
task is to create a managed bean called SomeBean.java that creates a 
RuleSetModel object.

The steps are:

1. Open Oracle JDeveloper.

2. From the File menu, select New to display the New Gallery dialog box.

3. In the New Gallery dialog box, select Java under General from the Categories 
panel. Ensure that Java Class under Items is selected and click OK to display the 
Create Java Class dialog box. 

4. Enter the name of the Java class, for example SomeBean.java, and click OK to 
create the Java class in your project as shown in Figure 26–18.



Using the Oracle Business Rules Editor Declarative Component

26-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–18 Creating a Java Class

5. In SomeBean.java, provide a method that returns the RuleSetModel object. 
You must specify the location of the rules file here. The following is a sample of the 
SomeBean.java file:

package userulesdc;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Reader;

import java.io.Writer;

import java.util.ArrayList;
import java.util.List;

import oracle.bpel.rulesdc.model.impl.RuleSetModel;
import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.exception.SDKWarning;
import oracle.rules.sdk2.ruleset.RuleSet;
import oracle.rules.sdk2.ruleset.RuleSetTable;

public class SomeBean {
    private static final String RULES_FILE = "<your rules file here>";
    private RuleSetModel ruleSetModel = null;

    public RuleSetModel getRuleSetModel() {
        if (ruleSetModel != null)
            return ruleSetModel; 
            //cache ruleSetModel instead of re-creating it each time

         Reader reader = null;
        try {
            reader =
                    new FileReader(new File(RULES_FILE));
        } catch (FileNotFoundException e) {



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-11

            //LOG.severe(e);
            System.err.println(e);
        }

        RuleDictionary dict = null;

        try {
            dict = RuleDictionary.readDictionary(reader, null);
        } catch (SDKException e) {
            System.err.println(e);
        } catch (FileNotFoundException e) {
            System.err.println(e);
        } catch (IOException e) {
            System.err.println(e);
        }
        if (reader != null) {
            try {
                reader.close();
            } catch (IOException ioe) {
            }
        }

        //get the ruleSetTable from the RuleDictionary object
        RuleSetTable ruleSetTable = dict.getRuleSetTable();

        //get the first ruleSet from the ruleSetTable
        RuleSet ruleSet = ruleSetTable.get(0);
        //create a RuleSetModel object and pass this to the rulesDC

        ruleSetModel = new RuleSetModel(ruleSet) ;
        return ruleSetModel;
    }

     //refer to Rules SDK documentation for saving a dictionary also
     //because this code does not take care of saving linked dictionaries
     public static boolean saveDictionary(RuleDictionary dict,
                                         String ruleFileName) {
        Writer writer = null;
        try {
            writer = new FileWriter(new File(ruleFileName));
            dict.writeDictionary(writer);

        } catch (SDKException e) {
            System.err.println(e);
            return false;
        } catch (FileNotFoundException e) {
            System.err.println(e);
            return false;
        } catch (IOException e) {
            System.err.println(e);
            return false;
        } finally {
            if (writer != null) {
                try {
                    writer.close();
                } catch (IOException ioe) {
                    return false;
                }
            }
        }



Using the Oracle Business Rules Editor Declarative Component

26-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        return true;
    }

    public static void updateDictionary(RuleDictionary dict) {
        if (dict == null)
            return;

        List<SDKWarning> warnings = new ArrayList<SDKWarning>();
        try {
            dict.update(warnings);
            if (!warnings.isEmpty()) {
                for (int i = 0; i < warnings.size(); i++)
                    System.out.println("warnings: " +
                                       warnings.get(i).getLocalizedMessage());
            }
        } catch (SDKException sdkEx) {
            sdkEx.printStackTrace();
        }
    }

    //You can call this method from your "Save" button
    public void saveDictionary() {

     RuleDictionary dict = this.getRuleSetModel().getRuleSet().getDictionary();
        if (dict != null) {
            //update the dictionary before saving it
            updateDictionary(dict);
            saveDictionary(dict, RULES_FILE);
        }
    }

//call the validation method on the ruleSetModel to update the Validation Panel 

    public void validate() {
        if (this.ruleSetModel == null)
            return;
        
        this.ruleSetModel.validate();

6. Open the faces-config.xml file in Overview mode and click the + button under 
Managed Beans to display the Create Managed Bean dialog box. Point to 
SomeBean.java by providing the Bean Name as someBean and the Scope as 
session as shown in Figure 26–19.

Figure 26–19 Specifying the Bean Name and Scope

The ADF/JSF framework makes multiple calls to SomeBean.java to render the 
user interface. For example, someBean.ruleSetModel is called multiple times. 



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-13

So, it is better to create the RuleSetModel object once, cache it, and return it each 
time instead of re-creating it.

To create the .jspx file for the Rules Editor Component tag:
The next task is to create the .jspx file to include the Rules Editor component tag.

The steps are:

1. Open Oracle JDeveloper.

2. From the File menu, select New to display the New Gallery dialog box.

3. In the New Gallery dialog box, select JSF under Web Tier from the Categories 
panel. 

4. Select JSF Page under Items and click OK to display the Create JSF Page dialog 
box. 

5. In the Create JSF Page dialog box, enter useRulesDC.jspx as the file name as 
shown in Figure 26–20.

Figure 26–20 Creating the JSF Page File

RulesCompLib in the component palette of Oracle JDeveloper is displayed as 
shown in Figure 26–21. 



Using the Oracle Business Rules Editor Declarative Component

26-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–21 Rules Editor Component Library in the Component Palette

This is because you have added the Rules Editor Component tag library when 
creating the sample application.

6. Select RulesCompLib to view the Rulesdc tag. You can drag and drop the 
Rulesdc tag into the .jspx file. You can also add the Rulesdc tag in the .jspx file 
manually as shown:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
          xmlns:f="http://java.sun.com/jsf/core"
          xmlns:h="http://java.sun.com/jsf/html"
          xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
          xmlns:rdc="http://xmlns.oracle.com/bpel/rules/editor">
  <jsp:directive.page contentType="text/html;charset=UTF-8"/>
  <f:view>
     <af:document title="Sample Rules Editor App" id="d1">
      <af:form id="f1">
        <af:panelStretchLayout id="psl1" inlineStyle="margin:15px;"
                               partialTriggers="cb1 cb3">
          <f:facet name="center">
            <rdc:rulesdc rulesetModel="#{someBean.ruleSetModel}"
                         viewOnly="false" discloseRules="true"
                         genericAction="true" genericPattern="true"
                         dtColumnPageSize="6" id="r1" dateStyle="yyyy-MM-dd"
                         timeStyle="HH-mm-ss"></rdc:rulesdc>
          </f:facet>
          <f:facet name="top">
            <af:panelGroupLayout id="pgl2" layout="horizontal">
              <af:commandButton text="Save Dictionary"
                                action="#{someBean.saveDictionary}" id="cb1"/>
              <af:spacer width="10" height="10" id="s5"/>
              <af:commandButton text="Validate" id="cb3"
                                action="#{someBean.validate}"
                                partialSubmit="true"/>
            </af:panelGroupLayout>
          </f:facet>
        </af:panelStretchLayout>
      </af:form>
    </af:document>
  </f:view>
</jsp:root>



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-15

To refer to the oracle.rules and the oracle.soa.rules_editor_dc.webapp shared 
libraries:
After creating the .jspx file, you must refer to the oracle.rules and 
oracle.soa.rules_editor_dc.webapp shared libraries from the 
weblogic-application.xml file.

The steps are:

1. In Oracle JDeveloper, open the weblogic-application.xml file by browsing to 
Application Resources, then Descriptors, and then META-INF.

2.  Add the following lines to refer to the oracle.rules shared library as shown in 
Figure 26–22.

<library-ref>
<library-name>oracle.rules</library-name>
</library-ref>

Figure 26–22 Referring to the oracle.rules Shared Library

3. In Oracle JDeveloper, 

a. From the File menu, select New to display the New Gallery dialog box.

b. In the New Gallery dialog box, select Deployment Descriptors under General 
from the Categories panel.

c. Select Weblogic Deployment Descriptor under Items and click OK to display 
the Create Weblogic Deployment Descriptor dialog box.

d. Select weblogic.xml from the list and click Finish.

e. In Oracle JDeveloper, in the Overview mode of weblogic.xml, select Libraries 
from the left panel and enter oracle.soa.rules_editor_dc.webapp as 
the library name as shown in Figure 26–23.



Using the Oracle Business Rules Editor Declarative Component

26-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–23 Adding the Rules Editor Component Library

f. Click Save All.

4. Deploy the oracle.rules shared library to the embedded Weblogic server:

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp). Ensure 
that the Weblogic embedded server on Oracle JDeveloper is running.

b. Select Deployments and click Install to display the Install Application 
Assistant page.

c. Select <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.rules_
11.1.1/rules.jar and click Finish as shown in Figure 26–24.

Figure 26–24 Deploying the oracle.rules Shared Library

5. Deploy the oracle.soa.rules_editor_dc.webapp shared library to the 
Weblogic server:

a. In the Weblogic console, select Deployments and click Install to display the 
Install Application Assistant page.



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-17

b. Select <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.soa.rules_editor_
dc.webapp_11.1.1/oracle.soa.rules_editor_dc.webapp.war and click Next.

c. Select Install this deployment as a library and click Finish as shown in 
Figure 26–25.

Figure 26–25 Deploying oracle.soa.rules_editor_dc.webapp Shared Library 

oracle.soa.rules_editor_dc.webapp is added to the list of 
deployments as shown in Figure 26–26.

Figure 26–26 oracle.soa.rules_editor_dc.webapp Added to the Deployment List

To run the sample Rules Editor application:
The last task is running the sample application.

To run the sample application, from Oracle JDeveloper, right-click the 
useRulesDC.jspx file, and select Run. This starts the sample application on a Web 
browser as shown in Figure 26–27.



Using the Oracle Business Rules Editor Declarative Component

26-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–27 Running the Sample Application

26.2.3 How to Deploy a Rules Editor Application to a Standalone Weblogic Server
When you are ready to deploy your application EAR file to the standalone Weblogic 
server, perform the following:

1. Launch the Weblogic server console 
(http://host:port/console/login/LoginForm.jsp) and ensure that oracle.rules 
is displayed in the deployments list.

2. Ensure that oracle.soa.rules_editor_dc.webapp is displayed in the 
deployments list. If this is not displayed, click Install and select the <JDEV_
INSTALL>/jdeveloper/soa/modules/oracle.soa.rules_editor_dc.webapp_
11.1.1/oracle.soa.rules_editor_dc.webapp.war file.

3. Open Oracle JDeveloper. 

4. Right-click the project name in the Application Navigator and select Project 
Properties.

5. Select Libraries and Classpath from the left panel and click Add Library.

6. In the Add Library dialog box, select Oracle Rules Editor Component and click 
OK as shown in Figure 26–28. 



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-19

Figure 26–28 Adding the Oracle Rules Editor Component

This step enables you to refer to these libraries, but does not deploy these libraries 
by default. Therefore, the jars are not included in your project WAR file.

7. In the project that has to be deployed (where you create the EAR file):

a. Add the following lines to the weblogic-application.xml:

<library-ref>
   <library-name>oracle.rules</library-name>
</library-ref>

b. Add the following lines to weblogic.xml in the project WAR file:

<library-ref>
   <library-name>oracle.soa.rules_editor_dc.webapp</library-name>
</library-ref>

c. Deploy the EAR file in the Weblogic server.

For more information about creating an EAR file, see "How to Create an EAR File for 
Deployment" in Oracle Fusion Middleware Java EE Developer's Guide for Oracle 
Application Development Framework.

26.2.4 What You May Need to Know About the Custom Permissions for the Rules 
Editor Component

For the role based authorization, Rules DC implements custom JAAS permissions 
(extending oracle.adf.share.security.authorization.ADFPermission class to ensure that 
the permission can be used by ADF Security).

If a Rules Editor application supports ADF security, which means there is support for 
role-based authentication and authorization, then security is enforced by 
implementing custom JAAS permissions (by extending the 
oracle.adf.share.security.authorization.ADFPermission class to 
ensure that the permission can be used by ADF Security). You have to create ADF 
security policies by granting the following permissions to the user roles based on your 
application requirement:

■ oracle.rules.adf.permission.AddRulePermission: Displays Add Rule 
button; if the permission is not granted, the Add Rule button is not visible to the 
user.



Using the Oracle Business Rules Editor Declarative Component

26-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ oracle.rules.adf.permission.DeleteRulePermission: Displays the 
Delete Rule button; if the permission is not granted, the Delete Rule button is not 
visible to the user.

■ oracle.rules.adf.permission.EditRulePermission: Displays the Edit 
Rule button for rules inside a ruleset; if the permission is not granted, then the 
rules are "View-Only".

■ oracle.rules.adf.permission.AddDTPermission: Displays the Add 
Decision Table button; if the permission is not granted, the Add Decision Table 
button is not visible to the user.

■ oracle.rules.adf.permission.DeleteDTPermission: Displays the 
Delete Decision Table button; if the permission is not granted, the Delete 
Decision Table button is not visible to the user.

■ oracle.rules.adf.permission.EditDTPermission: Displays the Edit 
Decision Table button for decision tables within a ruleset; if the permission is not 
granted, the decision tables are "View-Only".

■ oracle.rules.adf.permission.RulesEditorPermission: A global 
permission that sets all the preceding permissions to "true".

For example, to grant the delete rule permission to a role, specify the following code in 
the jazn-data.xml file of the application:

<grant>
  <grantee>
     <principals>
      <principal>
       <class>oracle.security.jps.service.policystore.ApplicationRole</class>
       <name>role2</name>
      </principal>
     </principals>
   </grantee>
   <permissions>
    <permission>
      <class>oracle.rules.adf.permission.DeleteRulePermission</class>
      <name>DeleteRulePermission</name>
      <actions>access</actions>
    </permission>
  </permissions>
</grant>

If you do not want to use the individual permissions, such as AddRulePermission 
or DeleteRulePermission, you can just set the RulesEditorPermission in the 
jazn-data.xml file to set global permissions.

26.2.5 What You May Need to Know About the Supported Tags of the Rules Editor 
Component

This section lists the tags and attributes that are supported by the Rules Editor 
component.

Table 26–1 lists the supported facets.



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-21

Table 26–2 lists the supported attributes.

Table 26–1 Supported Facets of the Rules Editor Component

Name Description

patternDisplay Used to render specific user interfaces. This facet is used to 
display the rule condition and pattern (in advanced mode), 
which is the "IF" portion of the rule. 

actionDisplay Used to render specific user interfaces. This facet is used to 
display the rule action, which is the "THEN" portion of the rule. 

Table 26–2 Supported Attributes of the Rules Editor Component

Name Type Required
Default 
Value

Supports 
EL? Description

dateStyle java.lang. 
String

no Gets from the 
locale

yes If specified, the date 
style is used in all 
inputDate 
components, for 
example, 
yyyy.MM.dd.

decimalSeparator java.lang. 
Character

no Based on 
Locale

yes Specifies the decimal 
separators. This is 
used in Number 
Formatting. If 
specified, this 
attribute overrides 
the decimal separator 
based on locale.

disableRuleSetName java.lang. 
Boolean

no false yes If true, the editable 
ruleset name is 
disabled. This 
attribute is used only 
when 
displayRuleSetNa
me is set to true.

discloseRules java.lang. 
Boolean

no false yes If true, all the rules 
in the ruleset are 
expanded. If "false", 
all the rules are 
collapsed.

displayRuleSetEffDate java.lang. 
Boolean

no true yes If true, the Rules 
Editor component 
renders the user 
interface for 
displaying the 
effective dates for the 
RuleSet.

displayRuleSetName java.lang. 
Boolean

no true yes Displays the editable 
ruleset name by 
default. You can 
choose to hide this by 
setting it to false.



Using the Oracle Business Rules Editor Declarative Component

26-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

dtColumnPageSize java.lang. 
Integer

no 5 yes Specifies the number 
of columns to be 
displayed at a time in 
a decision table. This 
works only when 
rules are columnar.

dtHeight java.lang. 
Integer

no 16 yes Number of rows to be 
displayed at a time in 
the decision table. A 
scroll bar is displayed 
if the number of rows 
increases over the 
specified height.

genericAction java.lang. 
Boolean

no true yes If true, the Rules 
Editor component 
renders the user 
interface for 
displaying the THEN 
part, which is 
Actions. If "false", 
then the 
"actionDisplay" facet 
must be passed to the 
Rules Editor 
component. The facet 
must contain the 
user-defined user 
interface. The facet 
has access to the 
ActionModel.

genericPattern java.lang. 
Boolean

no true yes If true, the Rules 
Editor component 
renders the user 
interface for 
displaying the IF part, 
which is Conditions 
and Patterns (in 
Advanced Mode). If 
false, then the 
"patternDisplay" facet 
must be passed to the 
Rules Editor 
component. The facet 
must contain the 
user-defined user 
interface. The facet 
has access to the 
RuleModel and 
SimpleTestModel.

groupingSeparator java.lang. 
Character

no Based on 
Locale

yes Specifies the 
grouping separators. 
This is used in 
Number Formatting. 
If specified, this 
attribute overrides 
the grouping 
separator based on 
locale.

Table 26–2 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required
Default 
Value

Supports 
EL? Description



Using the Oracle Business Rules Editor Declarative Component

Using Declarative Components and Task Flows 26-23

locale java.util. 
Locale

no Locale.get
Default()

yes Used for Localization

ruleModel java.lang. 
String

no oracle. 
bpel.rules
dc.model. 
impl. 
RuleModel

yes Used to customize the 
default RuleModel. 
You can extend the 
RuleModel class to 
override certain 
methods.

rulesetModel oracle.bpel. 
rulesdc.model. 
interfaces. 
RuleSetInterface

yes               - Only EL Wrapper around the 
Rules SDK ruleset 
object.You can use the 
RuleSetModel 
object supplied as 
part of the Rules 
Editor Component jar 
file 
(adflibRulesDC.jar).

rulesPageSize java.lang. 
Integer

no 5 yes Specifies the number 
of rules to be 
displayed in a page. It 
is used in IF/THEN 
rules pagination. |

showDTButtons java.lang. 
Boolean

no true yes Displays the Add and 
Delete Decision Table 
links by default. You 
can choose to hide 
this by setting this to 
false.

showValidationPanel java.lang. 
Boolean

no true yes Displays the 
validation panel by 
default. You can 
choose to hide this by 
setting this to false.

simpleTestModel java.lang. 
String

no oracle. 
bpel.rules
dc.model. 
impl. 
SimpleTest
Model

yes Used to customize the 
default 
SimpleTestModel. 
You can extend the 
SimpleTestModel 
class to override 
certain methods.

timeStyle java.lang. 
String

no Gets from the 
locale

yes If specified, the time 
style is used in all 
inputDate 
components, for 
example HH:mm:ss.

timezone java.util. 
TimeZone

no TimeZone. 
getDefault
()

yes Used for Localization

Table 26–2 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required
Default 
Value

Supports 
EL? Description



Using the Oracle Business Rules Dictionary Editor Declarative Component

26-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

26.3 Using the Oracle Business Rules Dictionary Editor Declarative 
Component

This section discusses the Oracle Business Rules Dictionary Editor declarative 
component. It also provides information on how to create and run an application 
using the Rules Dictionary Editor component, and then deploy the application. In 
addition, this section lists the supported tags and the localization process for the 
application.

26.3.1 Introduction to the Oracle Business Rules Dictionary Component
The Oracle Business Rules Dictionary Editor is a composite declarative component 
that can be embedded in any ADF-based Web application. It enables you to edit 
business rules metadata artifacts, such as Globals, Bucketsets, and Rulesets, by using 
the Rules SDK2 API.

The Rules Dictionary Editor Task Flow uses the Rules Dictionary Editor Component to 
create applications. Typically, you should either use the Rules Dictionary Editor 
component or the Rules Dictionary Editor task flow, but not both. For more 
information on Rules Dictionary Editor Task Flow, see Section 26.4, "Using the Oracle 
Business Rules Dictionary Task Flow."

The Rules Dictionary Editor component performs the following:

■ Edits Globals or Variables that have the final attribute set to true by using the 
Globals Editor, as shown in Figure 26–29.

viewOnly java.lang. 
Boolean

no true yes If "true", in the 
"viewOnly" mode, 
you can view the 
existing rules in the 
ruleset. If "false", 
which is the "edit" 
mode, you can add 
new rules and edit 
existing rules.

Note: You should not confuse Rules Dictionary Editor with Rules 
Editor. Rules Editor is used to edit rules inside a specified ruleset. In 
fact, Rules Editor is embedded within Rules Dictionary Editor. For 
more information about Rules Editor, see Section 26.2, "Using the 
Oracle Business Rules Editor Declarative Component."

Table 26–2 (Cont.) Supported Attributes of the Rules Editor Component

Name Type Required
Default 
Value

Supports 
EL? Description



Using the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-25

Figure 26–29 Globals Editor

Globals Editor enables you to edit only the Name, Description, and Value of 
Globals. It does not allow creation or deletion of Globals. However, it supports 
validation of Globals.

■ Edits Bucketsets by using the Bucketset Editor as shown in Figure 26–30.

Figure 26–30 Bucketset Editor

Bucketset Editor enables you to perform CRUD (create, read, update, and delete) 
operations on Bucketsets and buckets inside a Bucketset. It also supports 
validation of Bucketsets.

■ Edits Rulesets, as shown in Figure 26–31.



Using the Oracle Business Rules Dictionary Editor Declarative Component

26-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–31 Edits Rulesets

Rules Dictionary Editor enables you to edit only rules inside a selected ruleset. It 
does not allow creation or deletion of rulesets.

26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary 
Editor Component

This section lists the steps for creating and running a sample application by using the 
Rules Dictionary Editor component. 

The prerequisite for using the Rules Dictionary Editor component to create ADF-based 
Web applications is having a running installation of SOA Suite and Oracle JDeveloper 
on your computer.

To create a sample application by using the Rules Dictionary Editor:
The first task is to create a sample application. 

The steps are:

1. Open Oracle JDeveloper.

2. From the File menu, select New and then Generic Application to create an 
application.

3. Enter a name for the application in the Application Name field, for example, 
useRuleDictDCApp, and click Next as shown in Figure 26–32.



Using the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-27

Figure 26–32 Creating a Generic Application

4. Enter useRuleDictDC in the Project Name field and ensure that ADF Faces is 
selected in the Project Technologies tab as shown in Figure 26–33.

Click Finish to create the project.

Figure 26–33 Creating a Project

5. Right-click the useRuleDictDC project in the Application Navigator of Oracle 
JDeveloper, and select Project Properties to display the Project Properties dialog 
box.

In the Project Properties dialog box:

a. Click JSP Tag Libraries from the left panel.

b. Click Add and select ADF Faces Components from the extension list in the 
Choose Tag Libraries dialog box, and then click OK as shown in Figure 26–34.



Using the Oracle Business Rules Dictionary Editor Declarative Component

26-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–34 Choosing Tab Libraries

c. Click Libraries and Classpath from the left panel and click the Add Library 
button to display the Add Library dialog box.

d. Click Oracle Rules and Oracle Rules Dictionary Component from the 
Extension list and then click OK as shown in Figure 26–35. 

Figure 26–35 Selecting Oracle Rules and Rules Dictionary Component

This adds the Rules SDK and the Rules Dictionary Editor tag libraries to the 
project.



Using the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-29

e. Click OK to close the Project Properties dialog box.

6. Select Save All from the Oracle JDeveloper File menu to save the project.

You have to ensure that all the required tag libraries are added:

1. Right-click the useRuleDictDC project in the Application Navigator of Oracle 
JDeveloper and select Project Properties to display the Project Properties dialog 
box.

2. Click JSP Tag Libraries from the left panel and check if all the tag libraries are 
added as shown in Figure 26–36.

Figure 26–36 Checking the Required Tag Libraries for Rules Dictionary Editor

To create the RuleDictionaryModel object:
The Rules Dictionary Editor component requires a 
oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel 
object. The component uses this object to read Globals, Bucketsets, and Rulesets 
information from the dictionary. So, the next task is to create a managed bean called 
SomeBean.java that creates a RuleDictionaryModel object.

The steps are:

1. Open Oracle JDeveloper.

2. From the File menu, select New to display the New Gallery dialog box.

3. In the New Gallery dialog box, select Java under General from the Categories 
panel. Ensure that Java Class under Items is selected and click OK to display the 
Create Java Class dialog box. 

4. Enter the name of the Java class, for example SomeBean.java, and click OK to 
create the Java class in your project as shown in Figure 26–37.



Using the Oracle Business Rules Dictionary Editor Declarative Component

26-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–37 Creating a Java Class

5. In SomeBean.java, provide a method that returns the RuleDictionaryModel 
object. You must specify the location of the rules file here. The following is a 
sample of the SomeBean.java file:

package useruledictdc;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Reader;

import java.io.Writer;

import java.util.ArrayList;
import java.util.List;

import oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel;

import oracle.rules.sdk2.dictionary.DictionaryFinder;
import oracle.rules.sdk2.dictionary.RuleDictionary;
import oracle.rules.sdk2.exception.SDKException;
import oracle.rules.sdk2.exception.SDKWarning;

public class SomeBean {
    private RuleDictionaryModel ruleDictModel;
    private static final String RULES_FILE1 =
        "C:\\scratch\\asuraj\\system\\rules\\OrderBookinRules.rules";

    public SomeBean() {
        super();
    }

    public RuleDictionaryModel getRuleDictModel() {
        if (ruleDictModel != null)
            return ruleDictModel; 
              //cache ruleDictModel instead of re-creating it each time



Using the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-31

        ruleDictModel = new RuleDictionaryModel(getRuleDictionary());
        return ruleDictModel;
    }

    public RuleDictionary getRuleDictionary() {

        Reader reader = null;
        try {
            reader = new FileReader(new File(RULES_FILE1));
        } catch (FileNotFoundException e) {
            //LOG.severe(e);
            System.err.println(e);
        }
        RuleDictionary dict = openRulesDict(reader, null);
        if (reader != null) {
            try {
                reader.close();
            } catch (IOException ioe) {
            }
        }

        return dict;
    }

    private static RuleDictionary openRulesDict(Reader reader,
                                                DictionaryFinder finder) {
        RuleDictionary dict = null;

        try {
            dict = RuleDictionary.readDictionary(reader, finder);
        } catch (SDKException e) {
            System.err.println(e);
        } catch (FileNotFoundException e) {
            System.err.println(e);
        } catch (IOException e) {
            System.err.println(e);
        } 
        catch (IllegalArgumentException e) {
            System.err.println(e);
        } finally {

        }

        return dict;
    }

    //refer to Rules SDK documentation for saving a dictionary also
    //because this code does not take care of saving linked dictionaries

    public static boolean saveDictionary(RuleDictionary dict,
                                         String ruleFileName) {

        if (dict == null || ruleFileName == null)
            return false;

        if (dict.isTransactionInProgress())
            System.out.println("Transaction in progress, cannot save 
dictionary");

        Writer writer = null;



Using the Oracle Business Rules Dictionary Editor Declarative Component

26-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        try {
            writer = new FileWriter(new File(ruleFileName));
            dict.writeDictionary(writer);

        } catch (SDKException e) {
            System.err.println(e);
            return false;
        } catch (FileNotFoundException e) {
            System.err.println(e);
            return false;
        } catch (IOException e) {
            System.err.println(e);
            return false;
        } finally {
            if (writer != null) {
                try {
                    writer.close();
                } catch (IOException ioe) {
                    return false;
                }
            }
        }
        return true;
    }

    public static void updateDictionary(RuleDictionary dict) {
        if (dict == null)
            return;

        List<SDKWarning> warnings = new ArrayList<SDKWarning>();
        try {
            dict.update(warnings);
            for (SDKWarning warning : warnings)
                System.out.println("warnings: " +
                                   warning.getLocalizedMessage());
        } catch (SDKException sdkEx) {
            sdkEx.printStackTrace();
        }
    }

    //You can call this method from your "Save" button

    public void saveDictionary() {

        RuleDictionary dict = this.getRuleDictModel().getRuleDictionary();

        if (dict != null) {
            if (dict.isModified())
                updateDictionary(dict);
            if (!dict.isTransactionInProgress())
                saveDictionary(dict, RULES_FILE1);
        }
    }
    
     //call validation method on the ruleDictModel to update Validation Panel

    public void validate() {
        if (this.ruleDictModel == null)
            return;



Using the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-33

        this.ruleDictModel.validate();
    }
}

6. Open the faces-config.xml file in the Overview mode and click the + button under 
Managed Beans to display the Create Managed Bean dialog box. Point to 
SomeBean.java by providing the Bean Name as someBean and the Scope as 
session as shown in Figure 26–38.

Figure 26–38 Specifying the Bean Name and Scope

The ADF/JSF framework makes multiple calls to SomeBean.java to render the 
user interface. For example, someBean.ruleDictModel is called multiple times. 
So, it is better to create the RuleDictModel object once, cache it, and return it 
each time instead of re-creating it.

To create the .jspx file for the Rules Dictionary Editor Component tag:
The next task is to create the .jspx file to include the Rules Dictionary Editor 
Component tag.

The steps are:

1. Open Oracle JDeveloper.

2. From the File menu, select New to display the New Gallery dialog box.

3. In the New Gallery dialog box, select JSF under Web Tier from the Categories 
panel. 

4. Select JSF Page under Items and click OK to display the Create JSF Page dialog 
box. 

5. In the Create JSF Page dialog box, enter useRuleDictDC.jspx as the file name 
as shown in Figure 26–39.



Using the Oracle Business Rules Dictionary Editor Declarative Component

26-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–39 Specifying the Name of the JSF Page

RuleDictionaryDC in the component palette of Oracle JDeveloper is displayed as 
shown in Figure 26–40. 

Figure 26–40 Rule Dictionary Editor Library in the Component Palette

This is because you have added Rules Dictionary Component when creating the 
sample application.

6. Select RuleDictionaryDC to view the ruleDictionaryDC tag.You can drag and 
drop the RuleDictionaryDC tag into the .jspx file. You can also add the 
RuleDictionaryDC tag in the .jspx file manually as shown:

<?xml version='1.0' encoding='UTF-8'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.1"
          xmlns:f="http://java.sun.com/jsf/core"
          xmlns:h="http://java.sun.com/jsf/html"
          xmlns:af="http://xmlns.oracle.com/adf/faces/rich"
          xmlns:rddc="http://xmlns.oracle.com/bpel/rules/dictionaryEditor">
  <jsp:directive.page contentType="text/html;charset=UTF-8"/>
  <f:view>
       <af:document id="d1" title="Sample Rule Dictionary App">
      <af:form id="f1">
        <af:panelStretchLayout id="psl1" inlineStyle="margin:15px;"
                               partialTriggers="cb2 cb3">
          <f:facet name="center">



Using the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-35

            <rddc:ruleDictionaryDC ruleDictModel="#{someBean.ruleDictModel}"
                                   dtColumnPageSize="6" id="rddc1"
                                   viewOnly="false" dateStyle="yyyy-MM-dd"
                                   timeStyle="HH-mm-ss"
                                   discloseRules="true"
                                   showValidationPanel="true"/>
          </f:facet>
          <f:facet name="top">
            <af:panelGroupLayout id="pgl1" layout="horizontal">
              <af:commandButton text="Save Dict" id="cb2"
                                action="#{someBean.saveDictionary}"/>
              <af:spacer width="10" height="10" id="s1"/>
              <af:commandButton text="Validate" id="cb3"
                                action="#{someBean.validate}"/>
            </af:panelGroupLayout>
          </f:facet>
        </af:panelStretchLayout>
      </af:form>
    </af:document>
  </f:view>
</jsp:root>

To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared 
libraries:
After creating the .jspx file, you must refer to the oracle.rules and 
oracle.soa.rules_editor_dc.webapp shared libraries from the 
weblogic-application.xml file.

The steps are:

1. In Oracle JDeveloper, open the weblogic-application.xml file by browsing to 
Application Resources, then Descriptors, and then META-INF.

2.  Add the following lines to refer to the oracle.rules shared library as shown in 
Figure 26–41.

<library-ref>
<library-name>oracle.rules</library-name>
</library-ref>



Using the Oracle Business Rules Dictionary Editor Declarative Component

26-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–41 Referring to the oracle.rules Shared Library

3. In Oracle JDeveloper, 

a. From the File menu, select New to display the New Gallery dialog box.

b. In the New Gallery dialog box, select Deployment Descriptors under General 
from the Categories panel.

c. Select Weblogic Deployment Descriptor under Items and click OK to display 
the Create Weblogic Deployment Descriptor dialog box.

d. Select weblogic.xml from the list and click Finish.

e. In Oracle JDeveloper, in the Overview mode of weblogic.xml, select Libraries 
from the left panel and enter oracle.soa.rules_dict_dc.webapp as the 
library name as shown in Figure 26–42.

Figure 26–42 Adding the Rules Dictionary Component Library

4. Click Save All.



Using the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-37

5. Deploy the oracle.rules shared library to the embedded Weblogic server:

a. Launch WLS console (http://host:port/console/login/LoginForm.jsp). Ensure 
that the Weblogic embedded server on Oracle JDeveloper is running.

b. Select Deployments and click Install to display the Install Application 
Assistant page.

c. Select <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.rules_
11.1.1/rules.jar and click Finish.as shown in Figure 26–43.

Figure 26–43 Deploying the oracle.rules Shared Library

6. Deploy the oracle.soa.rules_dict_dc.webapp shared library to the 
Weblogic server:

a. In the Weblogic console, select Deployments and click Install to display the 
Install Application Assistant page.

b. Select <JDEV_INSTALL>/jdeveloper/soa/modules/oracle.soa.rules_dict_
dc.webapp_11.1.1/oracle.soa.rules_dict_dc.webapp.war and click Next.

c. Select Install this deployment as a library and click Finish as shown in 
Figure 26–44.

Figure 26–44 Deploying oracle.soa.rules_editor_dc.webapp Shared Library 



Using the Oracle Business Rules Dictionary Editor Declarative Component

26-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

oracle.soa.rules_dict_dc.webapp is added to the list of deployments 
as shown in Figure 26–45.

Figure 26–45 oracle.soa.rules_dict_dc.webapp Added to the Deployment List

To run the sample Rules Dictionary Editor application:
The last task is running the sample application.

To run the sample application, from Oracle JDeveloper, right-click the 
useRuleDictDC.jspx file, and select Run. This starts the sample application on a Web 
browser as shown in Figure 26–46.

Figure 26–46 Running the Sample Rules Dictionary Editor Application

26.3.3 How to Deploy a Rules Dictionary Application to a Standalone Weblogic Server
When you are ready to deploy your application EAR file to the standalone Weblogic 
server, perform the following:

1. Launch the Weblogic server console 
(http://host:port/console/login/LoginForm.jsp) and ensure that oracle.rules 
is displayed in the deployments list.



Using the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-39

2. Ensure that oracle.soa.rules_dict_dc.webapp is displayed in the 
deployments list. If this is not displayed, click Install and select the <JDEV_
INSTALL>/jdeveloper/soa/modules/oracle.soa.rules_dict_dc.webapp_
11.1.1/oracle.soa.rules_dict_dc.webapp.war file.

3. Open Oracle JDeveloper. 

4. Right-click the project name in the Application Navigator and select Project 
Properties.

5. Select Libraries and Classpath from the left panel and click Add Library.

6. In the Add Library dialog box, select Oracle Rules Dictionary Component and 
click OK as shown in Figure 26–47. 

Figure 26–47 Adding the Oracle Rules Dictionary Component

This step enables you to refer to these libraries, but does not deploy these libraries 
by default. Therefore, the jar files are not included in your project war file.

7. In the project that has to be deployed (where you create the EAR file):

a. Add the following lines to the weblogic-application.xml:

<library-ref>
   <library-name>oracle.rules</library-name>
</library-ref>

b. Add the following lines to weblogic.xml in the project WAR file:

<library-ref>
   <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

c. Deploy the EAR file in the Weblogic server.

26.3.4 What You May Need to Know About the Supported Attributes of the Rules 
Dictionary Editor Component

This section lists the attributes that are supported by the Rules Dictionary Editor 
component.



Using the Oracle Business Rules Dictionary Editor Declarative Component

26-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 26–3 lists the supported attributes.

Table 26–3 Supported Rules Dictionary Editor Attributes

Name Type Required
Default 
Value

Support
s EL? Description

dateStyle java.lang.String no Gets it from 
the locale

yes If specified, the date 
style is used in all 
inputDate 
components, for 
example, yyyy.MM.dd.

decimalSeparator java.lang. 
Character

no Based on 
Locale

yes Specifies the decimal 
separators. This is used 
in Number Formatting. 
If specified, this 
attribute overrides the 
decimal separator 
based on locale.

disableDFName java.lang. 
Boolean

no false yes If true, the Decision 
Function Name in the 
Decision Function 
editor window is 
disabled.

disableInputOps java.lang. 
Boolean

no false yes Disables add, edit, and 
delete operations for 
the Inputs table in the 
Decision Function 
editor window.

disableOutputOps java.lang. 
Boolean

no false yes Disables add, edit, and 
delete operations for 
the Outputs table in the 
Decision Function 
editor window.

disableRuleSetName java.lang. 
Boolean

no false yes If true, the editable 
ruleset name is 
disabled. This attribute 
is used only when 
displayRuleSetNam
e is set to true.

discloseRules java.lang. 
Boolean

no false yes If true, all the rules in 
the ruleset are disclosed 
or expanded. If false, 
all the rules are 
collapsed.

displayAddDF java.lang. 
Boolean

no true yes Displays the Add 
Decision Function 
button.

displayDeleteDF java.lang. 
Boolean

no true yes Displays the Delete 
Decision Function 
button.

displayRuleSetName java.lang. 
Boolean

no true yes Displays the editable 
ruleset name by 
default. You can choose 
to hide this by setting 
this to false.



Using the Oracle Business Rules Dictionary Editor Declarative Component

Using Declarative Components and Task Flows 26-41

displayWSCheck java.lang. 
Boolean

no true yes If true, the Invoke as 
rule service check box 
in the Decision 
Function editor 
window is displayed.

displayWSName java.lang. 
Boolean

no true yes If true, the decision 
service name is 
displayed in the 
Decision Function 
editor window. Note 
that the service name is 
relevant only when 
Invoke as rule service 
is selected.

dtColumnPageSize java.lang. 
Integer

no 5 yes Number of columns to 
be displayed at a time 
in the decision table. 
This works only when 
rules are columnar.

dtHeight java.lang. 
Integer

no 16 yes Number of rows to be 
displayed at a time in 
the decision table. A 
scroll bar is displayed if 
the number of rows 
increases over the 
specified height.

groupingSeparator java.lang. 
Character

no Based on 
Locale

yes Specifies the grouping 
separators. This is used 
in Number Formatting. 
If specified, this 
attribute overrides the 
grouping separator 
based on locale.

locale java.util.Locale no Locale. 
get 
Default()

yes Used for Localization

ruleDictModel oracle.bpel. 
ruledictionarydc. 
model.interfaces.
RuleDictionaryInt
erface

yes          - Only EL Wrapper around the 
Rules SDK Dictionary 
object.You can use the 
RuleDictionaryMod
el object supplied as 
part of the Rules 
Dictionary Editor 
Component jar file 
(adflibRuleDictionaryD
C.jar).

rulesPageSize java.lang. 
Integer

no 5 yes Specifies the number of 
rules to be displayed in 
a page. It is used in 
IF/THEN rules 
pagination. 

Table 26–3 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required
Default 
Value

Support
s EL? Description



Using the Oracle Business Rules Dictionary Task Flow

26-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

26.4 Using the Oracle Business Rules Dictionary Task Flow
This section discusses the Oracle Business Rules Dictionary Editor task flow. It also 
provides information on how to create and run an application using the Rules 
Dictionary Editor task flow, and then deploy the application.

26.4.1 Introduction to the Oracle Business Rules Dictionary Task Flow
The Rules Dictionary Editor Task Flow is basically a wrapper around the Rules 
Dictionary Editor declarative component. The task flow is used in ADF-based Web 
applications that require a task flow instead of a declarative component. For more 
information on Rules Dictionary Editor Component, see Section 26.3, "Using the 
Oracle Business Rules Dictionary Editor Declarative Component."

26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary 
Editor Task Flow

This section lists the steps for creating and running a sample application by using the 
Rules Dictionary Editor task flow. 

selectedTab java.lang.String no          - yes Switches to the 
specified tab name 
(either GLOBALS, 
BUCKETSETS, DESC_
FUNCS or the ruleset 
name).

showDTButtons java.lang. 
Boolean

no true yes Displays the add and 
delete Decision Table 
buttons.

showValidationPanel java.lang. 
Boolean

no true yes Displays the validation 
panel by default. You 
can choose to hide this 
by setting this to 
false.

timeStyle java.lang.String no Gets it from 
the locale

yes If specified, the time 
style is used in all 
inputDate 
components, for 
example, HH:mm:ss.

timezone java.util. 
TimeZone

no TimeZone. 
getDefault
()

yes Used for Localization

viewOnly java.lang. 
Boolean

no true yes If true, in the 
"viewOnly" mode, you 
can view the existing 
dictionary data, but 
you cannot edit the 
data. If false, which is 
the "edit" mode, you 
can edit existing the 
dictionary data.

Table 26–3 (Cont.) Supported Rules Dictionary Editor Attributes

Name Type Required
Default 
Value

Support
s EL? Description



Using the Oracle Business Rules Dictionary Task Flow

Using Declarative Components and Task Flows 26-43

The prerequisites for using the Rules Dictionary Editor task flow to create ADF-based 
Web applications is having a running installation of SOA Suite and Oracle JDeveloper 
on your computer.

To create a sample application by using the Rules Dictionary Editor task flow:
The first task is to create a sample application. 

The steps are:

1. Open Oracle JDeveloper.

2. From the File menu, select New and then Generic Application to create an 
application.

3. Enter a name for the application in the Application Name field, for example, 
useRuleDictTaskFlowApp, and click Next as shown in Figure 26–48.

Figure 26–48 Creating a Generic Task Flow Application

4. Enter useRuleDictTaskFlow in the Project Name field and ensure that ADF 
Faces is selected in the Project Technologies tab, as shown in Figure 26–49.

Click Finish to create the project.



Using the Oracle Business Rules Dictionary Task Flow

26-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–49 Creating a Task Flow Project

5. Right-click the useRuleDictTaskFlow project in the Application Navigator of 
Oracle JDeveloper, and select Project Properties to display the Project Properties 
dialog box.

In the Project Properties dialog box:

a. Select JSP Tag Libraries from the left panel.

b. Click Add and select ADF Faces Components from the extension list in the 
Choose Tag Libraries dialog box, and click OK as shown in Figure 26–50.

Figure 26–50 Choosing Tab Libraries for the Task Flow Application

c. Select Libraries and Classpath from the left panel and click Add Library to 
display the Add Library dialog box. 



Using the Oracle Business Rules Dictionary Task Flow

Using Declarative Components and Task Flows 26-45

d. Select Oracle Rules and then Oracle Rules Dictionary Task Flow in the 
Libraries list and click OK as shown in Figure 26–51. This adds the Rules SDK 
and the Rules Dictionary Task Flow JARs to the project.

Figure 26–51 Adding the Rules SDK and Rules Dictionary Task Flow

e. Click OK to close the Project Properties dialog box.

6. Click Save All from the Oracle JDeveloper File menu to save the project.

7. Create a Java class that implements the 
oracle.integration.console.metadata.model.share.MetadataDetai
ls interface, which is defined in soaComposerTemplates.jar. For more information 
on the MetadataDetails interface, see Section I.1, "The MetadataDetails Interface." 

The steps are:

a. Open Oracle JDeveloper.

b. From the File menu, select New to display the New Gallery dialog box.

c. In the New Gallery dialog box, select Java under General from the Categories 
panel. Ensure that Java Class under Items is selected and click OK to display 
the Create Java Class dialog box. 

d. Enter the name of the Java class, for example MyMetaDataDetails, add the 
MetadataDetails interface in the Implements box under Optional 
Attributes, and click OK to create the Java class in your project as shown in 
Figure 26–52.



Using the Oracle Business Rules Dictionary Task Flow

26-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–52 Creating a Java Class That Implements the MetadataDetails Interface

The following is a sample of the content of the MyMetaDataDetails.java file:

package useruledicttaskflow;

import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.io.Writer;

import java.net.MalformedURLException;
import java.net.URL;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.RelatedMetadataPath;

public class MyMetaDataDetails implements MetadataDetails {
    public MyMetaDataDetails() {
        super();
    }

    private static final String RULES_FILE1 =
        "file:///<path of Rules file>";

    public String getDocument() {
        URL url = null;
        try {
            url = new URL(RULES_FILE1);
            return readFile(url);
        } catch (IOException e) {
            System.err.println(e);
        }
        return "";
    }



Using the Oracle Business Rules Dictionary Task Flow

Using Declarative Components and Task Flows 26-47

    public void setDocument(String string) {
        URL url = null;

        try {
            url = new URL(RULES_FILE1);
        } catch (MalformedURLException e) {
            System.err.println(e);
            return;
        }
        Writer writer = null;
        try {
            //os = new FileWriter(url.getPath());
            writer =
               new OutputStreamWriter(new FileOutputStream(url.getPath()),
              "UTF-8");
       } catch (FileNotFoundException e) {
            System.err.println(e);
            return;
        } catch (IOException e) {
            System.err.println(e);
            return;
        }
        try {
            writer.write(string);
        } catch (IOException e) {
            System.err.println(e);
        } finally {
            if (writer != null) {
                try {
                    writer.close();
                } catch (IOException ioe) {
                    System.err.println(ioe);
                }
            }
        }
    }

    private String readFile(URL dictURL) {
        InputStream is;
        try {
            is = dictURL.openStream();
        } catch (IOException e) {
            System.err.println(e);
            return "";
        }
        BufferedReader reader;
        try {
           reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
        } catch (UnsupportedEncodingException e) {
            System.err.println(e);
            return "";
        }
        String line = null;
        StringBuilder stringBuilder = new StringBuilder();
        String ls = System.getProperty("line.separator");
        try {
            while ((line = reader.readLine()) != null) {
                stringBuilder.append(line);
                stringBuilder.append(ls);
            }



Using the Oracle Business Rules Dictionary Task Flow

26-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        } catch (IOException e) {
            System.err.println(e);
            return "";
        } finally {
            try {
                reader.close();
            } catch (IOException e) {
                System.err.println(e);
            }
        }
        return stringBuilder.toString();
    }

public String getRelatedDocument(RelatedMetadataPath relatedMetadataPath) {
        String currPath =
            RULES_FILE1.substring(0, RULES_FILE1.indexOf("oracle/rules"));
        String relatedDoc =
            currPath + "oracle/rules/" + relatedMetadataPath.getValue();

        URL url = null;
        try {
            url = new URL(relatedDoc);
            return readFile(url);
        } catch (IOException e) {
            System.err.println(e);
        }
        return "";
    }
}

8. Create a Java class called MyNLSPreferences that implements the 
oracle.integration.console.metadata.model.share.NLSPreference
s interface, which is defined in soaComposerTemplates.jar.

For more information about the NLS Preferences interface, see Section I.2, "The 
NLSPreferences Interface."

The following is a sample of MyNLSPreferences.java that implements the 
NLSPreferences interface:

package useruledicttaskflow;

import java.util.Locale;
import java.util.TimeZone;

import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyNLSPreferences implements NLSPreferences {
    private static final String DATE_STYLE = "yyyy-MM-dd";
    private static final String TIME_STYLE = "HH-mm-ss";
    
    public MyNLSPreferences() {
        super();
    }

    public Locale getLocale() {
        return Locale.getDefault();
    }

    public TimeZone getTimeZone() {
        return TimeZone.getTimeZone("America/Los_Angeles");



Using the Oracle Business Rules Dictionary Task Flow

Using Declarative Components and Task Flows 26-49

    }

    public String getDateFormat() {
        return DATE_STYLE;
    }

    public String getTimeFormat() {
        return TIME_STYLE;
    }
}

9. Create a Managed Bean called MyBean.java to return the implementation of 
MetadataDetails and NLSPreferences. It also returns the 
oracle.integration.console.metadata.model.share.MetadataDetai
lsMode object and provides event handlers such as toggleMode(), 
saveDictionary(), saveNoValidateDictionary(), and validate(). 

The following is a sample of the MyBean.java file:

package useruledicttaskflow;

import javax.el.ELContext;
import javax.el.ExpressionFactory;
import javax.el.MethodExpression;

import javax.faces.context.FacesContext;
import javax.faces.event.PhaseId;

import oracle.adf.view.rich.component.rich.fragment.RichRegion;

import oracle.integration.console.metadata.model.share.MetadataDetails;
import oracle.integration.console.metadata.model.share.MetadataDetailsMode;
import oracle.integration.console.metadata.model.share.NLSPreferences;

public class MyBean {
    private MyMetaDataDetails details = null;
    private MetadataDetailsMode mode = MetadataDetailsMode.VIEW;
    private RichRegion regionComp;
    private NLSPreferences nlsPrefs;

    public MyBean() {
        super();
    }

    public MetadataDetails getMetaDataDetails() {
        if (details != null)
            return details;

        details = new MyMetaDataDetails();
        return details;
    }

    public MetadataDetailsMode getDetailsMode() {
        return mode;
    }

    public void toggleMode() {
        if (mode.equals(MetadataDetailsMode.EDIT))
            mode = MetadataDetailsMode.VIEW;
        else
            mode = MetadataDetailsMode.EDIT;



Using the Oracle Business Rules Dictionary Task Flow

26-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    }

    public void saveDictionary() {
        if (regionComp == null)
            return;
        FacesContext fc = FacesContext.getCurrentInstance();
        ExpressionFactory ef = fc.getApplication().getExpressionFactory();
        ELContext elc = fc.getELContext();
        MethodExpression me =
            ef.createMethodExpression(elc, "doMetadataUpdate", String.class,
                                      new Class[] { });
        regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
                                            PhaseId.ANY_PHASE);
    }

    public void saveNoValidateDictionary() {
        if (regionComp == null)
            return;
        FacesContext fc = FacesContext.getCurrentInstance();
        ExpressionFactory ef = fc.getApplication().getExpressionFactory();
        ELContext elc = fc.getELContext();
        MethodExpression me =
            ef.createMethodExpression(elc, "doNoValidateMetadataUpdate",
                                      String.class, new Class[] { });
        regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
                                            PhaseId.ANY_PHASE);
    }

    public void validate() {
        if (regionComp == null)
            return;
        FacesContext fc = FacesContext.getCurrentInstance();
        ExpressionFactory ef = fc.getApplication().getExpressionFactory();
        ELContext elc = fc.getELContext();
        MethodExpression me =
            ef.createMethodExpression(elc, "doValidate", String.class,
                                      new Class[] { });
        regionComp.queueActionEventInRegion(me, null, null, false, -1, -1,
                                            PhaseId.ANY_PHASE);
    }

    public void setRegionComp(RichRegion regionComp) {
        this.regionComp = regionComp;
    }
    public RichRegion getRegionComp() {
        return regionComp;
    }

    public NLSPreferences getNlsPrefs() {
        if (nlsPrefs != null)
            return nlsPrefs;

        nlsPrefs = new MyNLSPreferences();
        return nlsPrefs;
    }
}

10. Open the faces-config.xml file in the Overview mode and click the + button 
under Managed Beans to display the Create Managed Bean dialog box. Point to 



Using the Oracle Business Rules Dictionary Task Flow

Using Declarative Components and Task Flows 26-51

MyBean.java by providing the Bean Name as MyBean and the Scope as 
session as shown in Figure 26–53.

Figure 26–53 Specifying the Bean Name and Scope in the Task Flow Application

To add a Rules Dictionary Editor task flow in a .jspx file:
The next task is to create the .jspx file to include the Rules Dictionary Editor 
component tag.

The steps are:

1. Open Oracle JDeveloper.

2. From the File menu, select New to display the New Gallery dialog box.

3. In the New Gallery dialog box, select JSF under Web Tier from the Categories 
panel. 

4. Select JSF Page under Items and click OK to display the Create JSF Page dialog 
box as shown in Figure 26–54. 



Using the Oracle Business Rules Dictionary Task Flow

26-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–54 Creating the JSF Page File to Include the Rules Dictionary Editor Task 
Flow

5. In the Create JSF Page dialog box, enter useRuleDictTaskFlow.jspx as the 
file name as shown in Figure 26–55.

Figure 26–55 Specifying the Name of the JSF Page for the Task Flow

adflibRuleDictionaryTaskFlow.jar is displayed in the component palette of Oracle 
JDeveloper as shown in Figure 26–56. 



Using the Oracle Business Rules Dictionary Task Flow

Using Declarative Components and Task Flows 26-53

Figure 26–56 Rules Dictionary Task Flow JAR in the Component Palette

This is because you have added the Oracle Rules Dictionary Task Flow shared 
library when creating the sample application.

6. Select adflibRuleDictionaryTaskFlow.jar to make 
rule-dict-flow-definition to be available under Regions in the component 
palette. You can drag and drop the rule-dict-flow-definition region into 
the .jspx file as shown in Figure 26–57, and specify all the required parameters. 

Figure 26–57 Dragging and Dropping the Region

The following is a sample of the useRuleDictTaskFlow.jspx file with the task 
flow added:

<f:view>
    <af:document id="d1">
      <af:form id="f1">
        <af:panelStretchLayout id="psl1" inlineStyle="margin:8px;">
          <f:facet name="top">



Using the Oracle Business Rules Dictionary Task Flow

26-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

            <af:menuBar id="mb1">
              <af:commandMenuItem text="Toggle Mode" id="cmi1"
                                  action="#{MyBean.toggleMode}"
                                  partialSubmit="true"/>
              <af:commandMenuItem text="Save Dict" id="cmi2"
                                  action="#{MyBean.saveDictionary}"
                                  partialSubmit="true"/>
              <af:commandMenuItem text="Save Dict No Validate" id="cmi3"
                                  action="#{MyBean.saveNoValidateDictionary}"
                                  partialSubmit="true"/>
              <af:commandMenuItem text="Validate" id="cmi4"
                                  action="#{MyBean.validate}"
                                  partialSubmit="true"/>
            </af:menuBar>
          </f:facet>
          <f:facet name="center">
            <af:region value="#{bindings.rulesdictflowdefinition1.regionModel}"
                         id="r2" binding="#{MyBean.regionComp}"
                         partialTriggers="::cmi1 ::cmi2 ::cmi3 ::cmi4"/>
          </f:facet>
        </af:panelStretchLayout>
      </af:form>
    </af:document>
  </f:view>

In the preceding sample, you can find code snippets for rendering the following 
buttons to the page:

■ Toggle Mode: Enables switching between Read-Only and Editable modes of 
SOA Composer

■ Save Dict: Enables saving the dictionary (with or without validation)

To edit the pagedef.xml file:
After you add the task flow to the .jspx file, you must edit the 
useRuleDictTaskFlowPageDef.xml file. The pagedef.xml file is created when 
you drop the Rules Dictionary task flow into the .jspx page. 

The following is a sample of the pagedef.xml file along with all the parameters that 
must be passed to the Rules Dictionary task flow:

<?xml version="1.0" encoding="UTF-8" ?>
<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
                version="11.1.1.55.99" id="useRuleDictTaskFlowPageDef"
                Package="useruledicttaskflow.pageDefs">
 <parameters/>
  <executables>
    <variableIterator id="variables"/>
    <taskFlow id="rulesdictflowdefinition1"
   taskFlowId= "/WEB-INF/rule-dict-flow-definition.xml#rules-dict-flow-definition"
   activation="deferred"
   xmlns="http://xmlns.oracle.com/adf/controller/binding">
 <parameters>
        <parameter id="details" value="#{MyBean.metaDataDetails}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="mode" value="#{MyBean.detailsMode}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="dtHeight" value="10"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="selectedTab" value="Ruleset_1"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>



Using the Oracle Business Rules Dictionary Task Flow

Using Declarative Components and Task Flows 26-55

        <parameter id="dtColumnPageSize" value="6"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="nlsPrefs" value="#{MyBean.nlsPrefs}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="discloseRules" value="true"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
      </parameters>
    </taskFlow>
  </executables>
  <bindings/>
</pageDefinition

To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared 
libraries:
The next task is to refer to the oracle.rules and oracle.soa.rules_dict_
dc.webapp shared libraries from the weblogic-application.xml file.

For more information on referring to the shared libraries, see Section 26.3.2, "How to 
Create and Run a Sample Application by Using the Rules Dictionary Editor 
Component." 

To run the sample task flow application:
The last task is running the sample application in the embedded server.

To run the sample application, from Oracle JDeveloper, right-click the 
useRulesDictTaskFlow.jspx file, and select Run. This starts the sample application on a 
Web browser as shown in Figure 26–46.

Figure 26–58 Running the Sample Rules Dictionary Editor Task Flow Application

26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone 
Weblogic Server

When you are ready to deploy your application EAR file to the standalone Weblogic 
server, perform the following:

1. Launch the Weblogic server console 
(http://host:port/console/login/LoginForm.jsp) and ensure that oracle.rules 
is displayed in the deployments list.



Localizing the ADF-Based Web Application

26-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Ensure that oracle.soa.rules_dict_dc.webapp is displayed in the 
deployments list. If this is not displayed, click Install and select the <JDEV_
INSTALL>/jdeveloper/soa/modules/oracle.soa.rules_dict_dc.webapp_
11.1.1/oracle.soa.rules_dict_dc.webapp.war file.

3. In the project that has to be deployed (where you create the EAR file):

a. Add the following lines to the weblogic-application.xml:

<library-ref>
   <library-name>oracle.rules</library-name>
</library-ref>

b. Add the following lines to weblogic.xml in the project WAR file:

<library-ref>
   <library-name>oracle.soa.rules_dict_dc.webapp</library-name>
</library-ref>

c. Deploy the EAR file in the Weblogic server.

26.5 Localizing the ADF-Based Web Application
You can localize an application that is created using the Rules Editor component, 
Rules Dictionary Editor component, or the Rules Dictionary Editor task flow. 

The steps are:

1. Modify faces-config.xml in the project that uses the Rules Editor component. 
The faces-config.xml file must have the following code within the 
<application> tag to support the available resource bundles:

<locale-config>
      <default-locale>en</default-locale>
      <supported-locale>en</supported-locale>
      <supported-locale>ar</supported-locale>
      <supported-locale>cs</supported-locale>
      <supported-locale>da</supported-locale>
      <supported-locale>de</supported-locale>
      <supported-locale>el</supported-locale>
      <supported-locale>es</supported-locale>
      <supported-locale>fi</supported-locale>
      <supported-locale>fr</supported-locale>
      <supported-locale>hu</supported-locale>
      <supported-locale>it</supported-locale>
      <supported-locale>iw</supported-locale>
      <supported-locale>ja</supported-locale>
      <supported-locale>ko</supported-locale>
      <supported-locale>nl</supported-locale>
      <supported-locale>no</supported-locale>
      <supported-locale>pl</supported-locale>
      <supported-locale>pt-BR</supported-locale>
      <supported-locale>pt</supported-locale>
      <supported-locale>ro</supported-locale>
      <supported-locale>ru</supported-locale>
      <supported-locale>sk</supported-locale>
      <supported-locale>sv</supported-locale>
      <supported-locale>th</supported-locale>
      <supported-locale>tr</supported-locale>
      <supported-locale>zh-CN</supported-locale>
      <supported-locale>zh-TW</supported-locale>
</locale-config>



Localizing the ADF-Based Web Application

Using Declarative Components and Task Flows 26-57

2. Change the browser language to the locale of your choice.

3. You can override the locale provided by the browser and display the user interface 
in a specific locale. This is done by passing that locale as an attribute to the 
component and modifying the f:view tag in the application using the component 
as shown:

<f:view locale="#{someBean.locale}">

The locale specified here should be the same as the one passed to the 
component using the locale attribute.



Localizing the ADF-Based Web Application

26-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Part V
Part V  Using the Human Workflow Service

Component

This part describes how to use the human workflow service component.

This part contains the following chapters:

■ Chapter 27, "Getting Started with Human Workflow"

■ Chapter 28, "Designing Human Tasks"

■ Chapter 29, "Designing Task Forms for Human Tasks"

■ Chapter 30, "Using Oracle BPM Worklist"

■ Chapter 31, "Building a Custom Worklist Client"

■ Chapter 32, "Introduction to Human Workflow Services"

■ Chapter 33, "Integrating Microsoft Excel with a Human Task"

■ Chapter 34, "Configuring Task List Portlets"





27

Getting Started with Human Workflow 27-1

27Getting Started with Human Workflow

This chapter introduces human workflow concepts, features, and architecture. Use 
cases for human workflow are provided. Instructions for designing your first 
workflow from start to finish are also provided.

This chapter includes the following sections:

■ Section 27.1, "Introduction to Human Workflow"

■ Section 27.2, "Introduction to Human Workflow Concepts"

■ Section 27.3, "Introduction to Human Workflow Features"

■ Section 27.4, "Introduction to Human Workflow Architecture"

27.1 Introduction to Human Workflow
Many end-to-end business processes require human interactions with the process. For 
example, humans may be needed for approvals, exception management, or 
performing activities required to advance the business process. The human workflow 
component provides the following features:

■ Human interactions with processes, including assignment and routing of tasks to 
the correct users or groups

■ Deadlines, escalations, notifications, and other features required for ensuring the 
timely performance of a task (human activity)

■ Presentation of tasks to end users through a variety of mechanisms, including a 
worklist application (Oracle BPM Worklist)

■ Organization, filtering, prioritization, and other features required for end users to 
productively perform their tasks

■ Reports, reassignments, load balancing, and other features required by supervisors 
and business owners to manage the performance of tasks

Figure 27–1 provides an overview of human workflow.



Introduction to Human Workflow

27-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–1 Human Workflow

In Figure 27–1, the following actions occur:

■ A BPEL process invokes a special activity of the human task type when it needs a 
human to perform a task.

■ This creates a task in the human task service component. The process waits for the 
task to complete. It is also possible for the process to watch for other callbacks 
from the task and react to them.

■ There is metadata associated with the task that is used by the human task service 
component to manage the lifecycle of the task. This includes specification of the 
following:

– Who performs the task. If multiple people are required to perform the task, 
what is the order?

– Who are the other stakeholders?

– When must the task be completed?

– How do users perform the task, what information is presented to them, what 
are they expected to provide, and what actions can they take?

■ The human task service component uses an identity directory, such as LDAP, to 
determine people’s roles and privileges.

■ The human task service component presents tasks to users through a variety of 
channels, including the following:

BPEL Process
Manager

Client
Applications

Human Task Service
Component

Portals

Oracle
BPM
Worklist

Email & 
RSS 
Clients

Identity Directory
(LDAP, for example)

Phone and 
Other
Notification
Channels

Service
Interface

Task Definition

Client
Interface

Human
Task

Invoke

Receive

Invoke Invoke

Deadlines
and
Escalations

Roles
and
Assignments

Presentation

Create 
Task

Task
Complete



Introduction to Human Workflow Concepts

Getting Started with Human Workflow 27-3

– Oracle BPM Worklist, a role-based application that supports the concept of 
supervisors and process owners, and provides functionality for finding, 
organizing, managing, and performing tasks.

– Worklist functionality is also available as portlets that can be exposed in an 
enterprise portal. 

– Notifications can be sent by email, phone, SMS, and other channels. Email 
notifications can be actionable, enabling users to perform actions on the task 
from within the email client without connecting to Oracle BPM Worklist or 
Oracle WebLogic Server.

For information about portlets, see Chapter 34, "Configuring Task List Portlets."

27.2 Introduction to Human Workflow Concepts
This section introduces you to key human workflow design time and runtime 
concepts. This section also provides an overview of the three main stages of human 
workflow design. 

27.2.1 Introduction to Design and Runtime Concepts
Before designing a human task, it is important to understand the design and runtime 
concepts. A typical task consists of a subject, priority, task participants, task 
parameters or data, deadlines, notifications or reminders, and task forms. This section 
provides an overview of key concepts.

27.2.1.1 Task Assignment and Routing
Human workflow supports declarative assignment and routing of tasks. In the 
simplest case, a task is assigned to a single participant (user or group). However, there 
are many situations in which more detailed task assignment and routing is necessary 
(for example, when a task must be approved by a management chain or worked and 
voted on by a set of people in parallel, as shown in Figure 27–2). Human workflow 
provides declarative, pattern-based support for such scenarios. 

Note: Human workflow design-time tasks are performed in a 
graphical editor known as the Human Task Editor. The tutorial in 
Section 27.3.2, "Designing a Human Task from Start to Finish" 
describes how to use this editor.



Introduction to Human Workflow Concepts

27-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–2 Participants in a Task

27.2.1.1.1 Participant  A participant is a user or set of users in the assignment and 
routing policy definition. In Figure 27–2, each block with an icon representing people 
is a participant.

27.2.1.1.2 Participant Type  In simple cases, a participant maps to a user, group, or role. 
However, as discussed in Section 27.2.1.1, "Task Assignment and Routing," workflow 
supports declarative patterns for common routing scenarios such as management 
chain and group vote.The following participant types are available:

■ Single approver

This is the simple case where a participant maps to a user, group, or role. 

For example, a vacation request is assigned to a manager. The manager must act 
on the request task three days before the vacation starts. If the manager formally 
approves or rejects the request, the employee is notified with the decision. If the 
manager does not act on the task, the request is treated as rejected. Notification 
actions similar to the formal rejection are taken. 

■ Parallel

This participant indicates that a set of people must work in parallel. This pattern is 
commonly used for voting.

For example, multiple users in a hiring situation must vote to hire or reject an 
applicant. You specify the voting percentage that is needed for the outcome to take 
effect, such as a majority vote or a unanimous vote. 

■ Serial

This participant indicates that a set of users must work in sequence. While 
working in sequence can be specified in the routing policy by using multiple 
participants in sequence, this pattern is useful when the set of people is dynamic. 
The most common scenario for this is management chain escalation, which is done 
by specifying that the list is based on a management chain within the specification 
of this pattern.

■ FYI (For Your Information) 



Introduction to Human Workflow Concepts

Getting Started with Human Workflow 27-5

This participant also maps to a single user, group, or role, just as in single 
approver. However, this pattern indicates that the participant just receives a 
notification task and the business process does not wait for the participant’s 
response. FYI participants cannot directly impact the outcome of a task, but in 
some cases can provide comments or add attachments. 

For example, a regional sales office is notified that a candidate for employment has 
been approved for hire by the regional manager and their candidacy is being 
passed onto the state wide manager for approval or rejection. FYIs cannot directly 
impact the outcome of a task, but in some cases can provide comments or add 
attachments.

For more information, see Section 28.3.6, "How to Assign Task Participants."

27.2.1.1.3 Participant Assignment  A task is work that must be done by a user. When you 
create a task, you assign humans to participate in and act upon the task. Participants 
can perform actions upon tasks during runtime from Oracle BPM Worklist, such as 
approving a vacation request, rejecting a purchase order, providing feedback on a help 
desk request, or some other action. There are three types of participants:

■ Users

You can assign individual users to act upon tasks. For example, you may assign 
users jlondon or jstein to a particular task. Users are defined in an identity 
store configured with the SOA Infrastructure. These users can be in the embedded 
LDAP of Oracle WebLogic Server, Oracle Internet Directory, or a third party LDAP 
directory.

■ Groups

You can assign groups to act upon tasks. Groups contain individual users who can 
claim and act upon a task. For example, users jcooper and fkafka may be 
members of the group LoanAgentGroup that you assign to act upon the task. 

As with users, groups are defined in the identity store of the SOA Infrastructure.

■ Application roles

You can assign users who are members of application roles to claim and act upon 
tasks. 

Application roles consist of users or other roles grouped logically for 
application-level authorizations. These roles are application-specific and are 
defined in the application Java policy store rather than the identity store. These 
roles are used by the application directly and are not necessarily known to a Java 
EE container. 

Application roles define policy. Java permissions can be granted to application 
roles. Therefore, application roles define a set of permissions granted to them 
directly or indirectly through other roles (if a role is granted to a role). The policy 
can contain grants of application roles to enterprise groups or users. In the 
jazn-data.xml file of the file-based policy store, these roles are defined in 
<app-role> elements under <policy-store> and written to 
system-jazn-data.xml at the farm level during deployment. You can also 
define these roles after deployment using Oracle Enterprise Manager Fusion 
Middleware Control Console. You can set a task owner or approver to an 
application role at design time if the role has been previously deployed.

For more information about Oracle BPM Worklist, see Section 27.2.1.6, "Task Forms."



Introduction to Human Workflow Concepts

27-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

27.2.1.1.4 Ad Hoc Routing  In processes dealing with significant variance, you cannot 
always determine all participants. Human workflow enables you to specify that a 
participant can invite other participants as part of performing the task. 

For more information, see Section 28.3.7.1.1, "Allowing All Participants to Invite Other 
Participants."

27.2.1.1.5 Outcome-based Completion of Routing Flow  By default, a task goes from starting 
to final participant according to the flow defined in the routing policy (as shown in 
Figure 27–2). However, sometimes a certain outcome at a particular step within a 
task’s routing flow makes it unnecessary or undesirable to continue presenting the 
task to the next participants. For example, if an approval is rejected by the first 
manager, it does not need to be routed to the second manager. Human workflow 
supports specifying that a task or subtask be completed when a certain outcome 
occurs.

For more information, see Section 28.3.7.1.2, "Stopping Routing of a Task to Further 
Participants."

27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
There are different methods for assigning users, groups, and application roles to tasks. 

■ Assign tasks statically

You can assign users, groups, and application roles statically (or by browsing the 
identity service). The values can be either of the following:

– A single user, group, or application role (for example, jstein, 
CentralLoanRegion, or ApproverRole).

– A delimited string of users, groups, or application roles (for example, jstein, 
wfaulk, cdickens).

■ Assign tasks dynamically

You can assign users, groups, and application roles dynamically using XPath 
expressions. These expressions enable you to dynamically determine the task 
participants at runtime. For example, you may have a business requirement to 
create a dynamic list of task approvers specified in a payload variable. The XPath 
expression can resolve to zero or more XML nodes. Each node value can be either 
of the following:

– A single user, group, or application role

– A delimited string of users, groups, or application roles. The default delimiter 
for the assignee delimited string is a comma (,). 

For example, if the task has a payload message attribute named po within which 
the task approvers are stored, you can use the following XPath expression: 

– /task:task/task:payload/po:purchaseOrder/po:approvers

–  ids:getManager('jstein', 'jazn.com') 

This returns the manager of jstein.

– ids:getReportees('jstein', 2, 'jazn.com') 

This returns all reportees of jstein up to two levels.

– ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com') 

This returns all direct and indirect users in the group LoanAgentGroup.



Introduction to Human Workflow Concepts

Getting Started with Human Workflow 27-7

■ Assign tasks with business rules 

You can create the list of task participants with complex expressions. The result of 
using business rules is the same as using XPath expressions.

27.2.1.3 Task Stakeholders
A task has multiple stakeholders. Participants are the users defined in the assignment 
and routing section of the task definition. These users are the primary stakeholders 
that perform actions on the task.

In addition to the participants specified in the assignment and routing policy, human 
workflow supports additional stakeholders: 

■ Owner

This participant has business administration privileges on the task. This 
participant can be specified as part of the task definition or from the invoking 
process (and for a particular instance). The task owner can act upon tasks they 
own and also on behalf of any other participant. The task owner can change both 
the outcome of the task and the assignments.

For more information, see Section 28.3.4.6, "Specifying a Task Owner" to specify an 
owner in the Human Task Editor or Section 28.4.4.2, "Specifying a Task Owner" to 
specify an owner in the Advanced tab of the Human Task dialog.

■ Initiator

The person who initiates the process (for example, the initiator files an expense 
report for approval). This person can review the status of the task using initiated 
task filters. Also, a useful concept is for including the initiator as a potential 
candidate for request-for-information from other participants.

For more information, see Section 28.4.3.2, "Specifying the Task Initiator and Task 
Priority."

■ Reviewer

This participant can review the status of the task and add comments and 
attachments. 

■ Admin

This participant can view all tasks and take certain actions such as reassigning a 
test, suspending a task to handle errors, and so on. The task admin cannot change 
the outcome of a task. 

While the task admin cannot perform the types of actions that a task participant 
can, such as approve, reject, and so on, this participant type is the most powerful 
because it can perform actions such as reassign, withdraw, and so on.

■ Error Assignee

When an error occurs, the task is assigned to this participant (for example, the task 
is assigned to a nonexistent user). The error assignee can perform task recovery 
actions from Oracle BPM Worklist, the task form in which you perform task 
actions during runtime.

For more information, see Section 28.3.7.4, "Configuring the Error Assignee."

27.2.1.4 Task Deadlines
Human workflow supports the specification of deadlines associated with a task. You 
can associate the following actions with deadlines:



Introduction to Human Workflow Concepts

27-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Reminders:

The task can be reminded multiple times based on the time after the assignment or 
the time before the expiration.

■ Escalation:

The task is escalated up the management hierarchy.

■ Expiration:

The task has expired.

■ Renewal:

The task is automatically renewed.

For more information, see Section 28.3.9, "How to Escalate, Renew, or End the Task."

27.2.1.5 Notifications
You can configure your human task to use notifications. Notifications enable you to 
alert interested users to changes in the state of a task during the task lifecycle. For 
example, a notification is sent to an assignee when a task has been approved or 
withdrawn. 

You can specify for notifications to be sent to different types of participants for 
different actions. For example, you can specify the following:

■ For the owner of a task to receive a notification message when a task is in error (for 
example, been sent to a nonexistent user). 

■ For a task assignee to receive a notification message when a task has been 
escalated.

You can specify the contents of the notification message and the notification channel to 
use for sending the message.

■ Email

You can configure email notification messages to be actionable, meaning that a 
task assignee can act upon a task from within the email. 

■ Voice message

■ Instant messaging (IM)

■ Short message service (SMS)

For example, you may send the message shown in Example 27–1 by email when a task 
assignee requests additional information before they can act upon a task:

Example 27–1 Email Message

For me to approve this task, more information is required to justify the need
 for this business trip

During runtime, you can mark a message sender's address as spam and also display a 
list of bad or invalid addresses. These addresses are automatically removed from the 
bad address list.

For more information about notifications, see the following:

■ Chapter 17, "Using the Notification Service"

■ Section 28.3.10, "How to Specify Participant Notification Preferences"



Introduction to Human Workflow Concepts

Getting Started with Human Workflow 27-9

■ Part XI, "Using Oracle User Messaging Service"

27.2.1.6 Task Forms
Task forms provide you with a way to interact with a task. Oracle BPM Worklist 
displays all worklist tasks that are assigned to task assignees in the task form. When 
you drill down into a specific task, the task form displays the contents of the task to 
the user's worklist. For example, an expense approval task may show a form with line 
items for various expenses, and a help desk task form may show details such as 
severity, problem location, and so on. 

The integrated development environment of Oracle SOA Suite includes Oracle 
Application Development Framework (Oracle ADF) for this purpose. With Oracle 
ADF, you can design a task form that depicts the human task in the SOA composite 
application. 

ADF-based task forms can be automatically generated. Advanced users can design 
their own task forms by using ADF data controls to lay out the content on the page 
and connect to the workflow service engine at execution time to retrieve task content 
and act on tasks. 

You can create task forms in JSF, .NET, or any other client technologies using the APIs.

Integration with Microsoft Excel for initiating and acting on tasks is also provided.

For more information, see the following:

■  Chapter 29, "Designing Task Forms for Human Tasks."

■ Chapter 30, "Using Oracle BPM Worklist"

27.2.1.7 Advanced Concepts
This section describes advanced human workflow concepts.

27.2.1.7.1 Rule-based Routing  You can use Oracle Business Rules to dynamically alter 
the routing flow. If used, each time a participant completes their step, the associated 
rules are invoked and the routing flow can be overridden from the rules.

For more information, see Section 28.3.7.2, "Specifying Advanced Task Routing Using 
Business Rules."

27.2.1.7.2 Rule-based Participant Assignment  You can use Oracle Business Rules to 
dynamically build a list of users, groups, and roles to associate with a participant.

For more information, see Section 28.3.6, "How to Assign Task Participants."

27.2.1.7.3 Stages  A stage is a way of organizing the approval process for blocks of 
participant types. You can have one or more stages in sequence or in parallel. Within 
each stage, you can have one or more participant type blocks in sequence or in 
parallel. 

For more information, see Section 28.3.6, "How to Assign Task Participants."

27.2.1.7.4 Access Rules  You can specify access rules that determine the parts of a task 
that assignees can view and update. For example, you can configure the task payload 
data to be read by assignees. This action enables only assignees (and nobody else) to 
have read permissions. No one, including assignees, has write permissions.

For more information, see Section 28.3.11.1, "Specifying Access Policies on Task 
Content."



Introduction to Human Workflow Concepts

27-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

27.2.1.7.5 Callbacks  While human workflow supports detailed behavior that can be 
declaratively specified, in some advanced situations, more extensible behavior may be 
required. Task callbacks enable such extensibility; these callbacks can either be 
handled in the invoking BPEL process or a Java class.

For more information, see Section 28.3.14.1, "Specifying Callback Classes on Task 
Status."

27.2.1.8 Reports and Audit Trails
Oracle BPM Worklist provides several out-of-the-box reports for task analysis:

■ Unattended tasks

Analysis of tasks assigned to users' groups or reportees' groups that have not yet 
been acquired.

■ Tasks priority

Analysis of tasks assigned to a user, reportees, or their groups, based on priority.

■ Tasks cycle time

Analysis of the time taken to complete tasks from assignment to completion based 
on users' groups or reportees' groups.

■ Tasks productivity

Analysis of assigned tasks and completed tasks in a given time period for a user, 
reportees, or their groups.

■ Tasks time distribution

The time an assignee takes to perform a task.

You can view an audit trail of actions performed by the participants in the task and a 
snapshot of the task payload and attachments at various points in the workflow. The 
short history for a task lists all versions created by the following tasks:

■ Initiate task

■ Reinitiate task

■ Update outcome of task

■ Completion of task

■ Erring of task

■ Expiration of task

■ Withdrawal of task

■ Alerting of task to the error assignee

For more information, see Chapter 30, "Using Oracle BPM Worklist."

27.2.2 Introduction to the Stages of Human Workflow Design
Human workflow modeling consists of three stages of modeling, as described in 
Table 27–1.



Introduction to Human Workflow Features

Getting Started with Human Workflow 27-11

27.3 Introduction to Human Workflow Features
This section provides an introduction to use cases for human workflow. After that, a 
tutorial guides you through the design of a human task from start to finish.

27.3.1 Human Workflow Use Cases
The following sections describe multiple use cases for workflow services.

27.3.1.1 Task Assignment to a User or Role
A vacation request process may start with getting the vacation details from a user and 
then routing the request to their manager for approval. User details and the 
organizational hierarchy can be looked up from a user directory or identity store. This 
scenario is shown in Figure 27–3.

Figure 27–3 Assigning Tasks to a User or Role from a Directory

27.3.1.2 Use of the Various Participant Types
A task can be routed through multiple users with a group vote, management chain, or 
sequential list of approvers participant type. For example, consider a loan request that 
is part of the loan approval flow. The loan request may first be assigned to a loan agent 
role. After a specific loan agent acquires and accepts the loan, the loan may be routed 
further through multiple levels of management if the loan amount is greater that 
$100,000. This scenario is shown in Figure 27–4.

Table 27–1 Stages of Human Workflow Modeling

Step Description For More Information...

1 You create and define contents of the human task 
in the Human Task Editor, including defining a 
participant type, routing policy, escalation and 
expiration policy, notification, and so on.

Section 28.2.1, "Create a Human 
Task Definition."

2 You associate the human task definition with a 
BPEL process. The BPEL process integrates a series 
of activities (including the human task activity) 
and services into an end-to-end process flow. 

Section 28.2.2, "Associate the 
Human Task Definition with a 
BPEL Process."

3 You create a task form. This form displays the task 
details on which you act at runtime in Oracle BPM 
Worklist.

Section 28.2.3, "Generate the Task 
Form."

Assign Task

Task Complete

Workflow
ServicesBPEL

Process

OID

LDAP



Introduction to Human Workflow Features

27-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–4 Flow Patterns and Routing Policies

You can use these types as building blocks to create complex workflows.

27.3.1.3 Escalation, Expiration, and Delegation
A high-priority task can be assigned to a certain user or role based on the task type 
through use of custom escalation functions. However, if the user does not act on it in a 
certain time, the task may expire and in turn be escalated to the manager for further 
action. As part of the escalation, you may also notify the users by email, telephone 
voice message, or SMS. Similarly, a manager may delegate tasks from one reportee to 
another to balance the load between various task assignees. All tasks defined in BPEL 
have an associated expiration date. Additionally, you may specify escalation or 
renewal policies, as shown in Figure 27–5. For example, consider a support call, which 
is part of a help desk service request process. A high-priority task may be assigned to a 
certain user, and if the user does not respond in two days, the task is routed to the 
manager for further action.

Figure 27–5 Escalation and Notification

27.3.1.4 Automatic Assignment and Delegation
A user may decide to have another user perform tasks on their behalf. Tasks can be 
explicitly delegated from the Oracle BPM Worklist or can be automatically delegated. 
For example, a manager sets up a vacation rule saying that all their high priority tasks 
are automatically routed to one of their direct reports while the manager is on 
vacation. In some cases, tasks can be routed to different individuals based on the 
content of the task. Another example of automatic routing is to allocate tasks among 
multiple individuals belonging to a group. For example, a help desk supervisor 
decides to allocate all tasks for the western region based on a round robin basis or 

Change Routing

Get Approvals

All Approvals
Complete

BPEL
Process

Various
Routing
Patterns

Workflow Service

Notify Manager

Escalate Task
Workflow Services

1 2 3 4 5 6

87 9 10 11 12 13

1514 16 17 18 19 20

2221 23 24 25 26 27

2928 30 CalendarTask Resolved

BPEL
Process

Notification



Introduction to Human Workflow Features

Getting Started with Human Workflow 27-13

assign tasks to the individual with the lowest number of outstanding tasks (the least 
busy).

27.3.1.5 Dynamic Assignment of Users Based on Task Content
An employee named James in the human resources department requests new 
hardware that costs $5000. The company may have a policy that all hardware expenses 
greater than $3000 must go through manager and vice president approval, and then 
review by the director of IT. In this scenario, the workflow can be configured to 
automatically determine the manager of James, the vice president of the human 
resources department, and the director of IT. The purchase order is routed through 
these three individuals for approval before the hardware is purchased.

27.3.2 Designing a Human Task from Start to Finish
This section guides you through design of your first human task.

This sample describes how an employee submits a vacation request that is 
automatically routed to their manager for approval. Once the manager responds 
(approved or rejected), a notification is sent to the employee.

This sample illustrates creation of a SOA composite application with two components:

■ A BPEL process 

■ A human task, for approving a vacation request submitted by an employee

This example highlights the use of the following:

■ Using the SOA Composite Editor and Human Task Editor

■ Modeling a single approval workflow using Oracle BPEL Designer

■ Creating an Oracle ADF-based Oracle BPM Worklist

■ Using Oracle BPM Worklist to view and respond to the task

27.3.2.1 Prerequisites
This tutorial makes the following assumptions:

■ Oracle SOA Suite is installed on a host on which the SOA Infrastructure is 
configured.

■ You are familiar with basic BPEL constructs, including BPEL activities and partner 
links, and basic XPath functions. Familiarity with the SOA Composite Editor and 
Oracle BPEL Designer, the environment for designing and deploying BPEL 
processes, is also assumed.

1. Create a file named VacationRequest.xsd with the following syntax. This file 
includes the schema for the vacation request and subsequent response.

<schema attributeFormDefault="qualified" elementFormDefault="qualified"
        targetNamespace="http://xmlns.oracle.com/VacationRequest"
        xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="VacationRequestProcessRequest">
  <complexType>
   <sequence>
    <element name="creator" type="string"/>
    <element name="fromDate" type="date"/>
    <element name="toDate" type="date"/>
    <element name="reason" type="string"/>
   </sequence>
  </complexType>



Introduction to Human Workflow Features

27-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 </element>
 <element name="VacationRequestProcessResponse">
  <complexType>
   <sequence>
    <element name="result" type="string"/>
   </sequence>
  </complexType>
 </element>
</schema>

27.3.2.2 How to Create the Vacation Request Process
In this tutorial, you create a new application and SOA project and design the human 
task to send a vacation request to a manager for approval or rejection. You also create a 
second application and project in which you create an Oracle ADF-based task form 
from which to act upon the vacation request.

27.3.2.2.1 Creating an Application and a Project with a BPEL Process  

To create an application and a project with a BPEL process:
1. Start Oracle JDeveloper.

2. From the File main menu, select New > Applications > SOA Application.

3. Click OK.

4. In the Application Name field, enter VacationRequest, and click Next.

5. In the Project Name field, enter VacationRequest, and click Next.

6. In the Composite Template list, select Composite with BPEL Process, and click 
Finish.

7. The Create BPEL Process dialog appears.

8. In the Name field, enter VacationRequestProcess.

9. Go to the bottom of the Create BPEL Process dialog.

10. To the right of the Input field, click the Search icon.

The Type Chooser dialog appears. 

11. In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears. 

12. Browse for and select the VacationRequest.xsd file you created in Section 27.3.2.1, 
"Prerequisites."

13. Click OK until you are returned to the Type Chooser dialog, as shown in 
Figure 27–6.

Note: The VacationRequest.xsd file is also available for 
download as part of tutorial workflow-100-VacationRequest. See 
Section 27.3.3, "Additional Tutorials" for information on downloading 
this and other tutorials.



Introduction to Human Workflow Features

Getting Started with Human Workflow 27-15

Figure 27–6 Type Chooser Dialog with the Request and Response Elements

14. Select the input element VacationRequestProcessRequest, and click OK.

You are returned to the Create BPEL Process dialog. 

15. To the right of the Output field, click the Search icon.

16. Select the output element VacationRequestProcessResponse, and click OK.

You are returned to the Create BPEL Process dialog, as shown in Figure 27–7.

Figure 27–7 BPEL Process Dialog

17. Accept the default values for all other settings, and click OK.

A BPEL process service component is created in the SOA Composite Editor, as 
shown in Figure 27–8. Because Expose as a SOAP service was selected in the 
Create BPEL Process dialog, the BPEL process is automatically connected with a 
service binding component. The service exposes the SOA composite application to 
external customers.



Introduction to Human Workflow Features

27-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–8 BPEL Process in SOA Composite Editor

For more information about service components and the SOA Composite Editor, 
see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."

27.3.2.2.2 Create the Human Task Service Component  

You are now ready to create the human task service component in which you design 
your human task.

To create the human task service component:
1. From the Service Components section of the Component Palette, drag a Human 

Task into the SOA Composite Editor.

The Create Human Task dialog appears.

2. Enter the details described in Table 27–2.

3. Click OK.

The Human Task icon appears in the SOA Composite Editor above the BPEL 
process, as shown in Figure 27–9.

Table 27–2 Create Human Task Dialog Fields and Values

Field Value

Name Enter VacationRequestTask.

Namespace Accept the default value.

Create Composite Service 
with SOAP Bindings

Do not select the checkbox. Instead, you create a human task that 
you later associate with the BPEL process you created in 
Section 27.3.2.2.1, "Creating an Application and a Project with a 
BPEL Process." The BPEL process was created with an 
automatically-bound web service.



Introduction to Human Workflow Features

Getting Started with Human Workflow 27-17

Figure 27–9 Human Task Icon in SOA Composite Editor

4. Double-click the Human Task icon.

The Human Task Editor appears. You are now ready to begin design of your 
human task.

27.3.2.2.3 Designing the Human Task  

To design the human task:
1. In the Task Title field, enter Request for Vacation.

2. Accept the default values for outcomes (APPROVE and REJECT). For this task, 
these outcomes represent the two choices the manager has for acting on the 
vacation request.

3. Click the Data tab on the left side of the editor.

4. Click the Add icon to specify the task payload.

5. Select Add string parameter.

The Add Task Parameter dialog is displayed. You now create parameters to 
represent the elements in your XSD file. This makes the payload data available to 
the workflow task.

6. Select Element.

7. To the right of the Element field, click the Search icon.

The Type Chooser dialog appears.

8. Expand and select Project Schema Files > VacationRequest.xsd > 
VacationRequestProcessRequest, and click OK. Figure 27–10 provides details.



Introduction to Human Workflow Features

27-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–10 Type Chooser Dialog

9. Ensure that the Editable via worklist checkbox is selected. This provides you with 
the option to modify this parameter during runtime from Oracle BPM Worklist.

10. Click OK on the Add Task Parameter dialog.

11. Click the Assignment tab on the left side of the editor.

12. Highlight the <Edit participant> box below Stage1, as shown in Figure 27–11.

Figure 27–11 Assignment and Routing Policy

13. At the top of the Human Task Editor, click the Edit icon.

The Edit Participant Type dialog appears. You now add participants to this task. 
As described in Section 27.2.1.1.2, "Participant Type," Oracle SOA Suite provides 
several out-of-the-box patterns known as participant types for addressing specific 
business needs. 



Introduction to Human Workflow Features

Getting Started with Human Workflow 27-19

14. Accept the default participant type of Single that displays in the Type list. You 
select this type because a single assignee, the manager, acts on the vacation request 
task.

15. In the Participant Names table, click the Add icon, and select Add User.

This participant type acts alone on the task.

16. Click the Data Type column, and select By Expression from the list that is 
displayed. Figure 27–12 provides details.

This action enables the task to be assigned dynamically by the contents of the task. 
The employee filing the vacation request comes from the parameter passed to the 
task (the creator element in the XSD file you imported in Section 27.3.2.2.1, 
"Creating an Application and a Project with a BPEL Process"). The task is 
automatically routed to the employee’s manager. 

Figure 27–12 Selection of By Expression from the Data Type Column

17. In the Value column, click the Browse icon (the dots) to invoke the Expression 
Builder dialog.

18. In the dropdown list in the Functions section, select Identity Service Functions.

19. Select getManager. This function gets the manager of the user who created the 
vacation request task.

20. Above the Functions section, click Insert into Expression.

21. Place the cursor between the parentheses of the function.

22. In the Schema section, expand task:task > task:payload > 
ns1:VacationRequestProcessRequest > ns1:creator.

where ns1 is the namespace for this example; your namespace may be different. 

23. Click Insert into Expression.

The Expression Builder dialog displays the XPath expression in the Expression 
section. Figure 27–13 provides details.

Figure 27–13 XPath Expression

24. Click OK to exit the Expression Builder dialog.

25. Click OK to exit the Add Participant Type dialog.

26. From the File menu, select Save All.



Introduction to Human Workflow Features

27-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

27.3.2.2.4 Associating the Human Task and BPEL Process Service Components  

You are now ready to associate your human task with the BPEL process you created in 
Section 27.3.2.2.1, "Creating an Application and a Project with a BPEL Process."

To associate the human task and BPEL process service component:
1. In the Application Navigator, double-click composite.xml.

2. Double-click the VacationRequestProcess BPEL process service component in the 
SOA Composite Editor.

The BPEL process displays in Oracle BPEL Designer. 

3. In the Component Palette, expand SOA Components.

4. Drag a Human Task beneath the receiveInput receive activity.

5. Double-click the activity.

The Human Task dialog appears.

6. From the Task Definition list, select the VacationRequestTask task you created (if 
it is not currently displaying).

The dialog refreshes as shown in Figure 27–14 to display additional fields.

Figure 27–14 Human Task Dialog

7. In the BPEL Variable column, click the Browse icon (dots) shown in Figure 27–15.



Introduction to Human Workflow Features

Getting Started with Human Workflow 27-21

Figure 27–15 BPEL Variable Entry

The Task Parameters dialog appears.

8. From the Type list, select Variable.

9. Expand Process > Variables > inputVariable > payload > 
ns1:VacationRequestProcessRequest. Figure 27–16 provides details.

Figure 27–16 Variable Selection

10. Click OK.



Introduction to Human Workflow Features

27-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 When complete, the dialog looks as shown in Figure 27–17:

Figure 27–17 BPEL Variable

11. Click OK to close the Human Task dialog.

The human task activity appears as shown in Figure 27–18.



Introduction to Human Workflow Features

Getting Started with Human Workflow 27-23

Figure 27–18 Human Task and Partner Links in Oracle BPEL Designer

12. Return to the SOA Composite Editor and note that the BPEL process and human 
task service components have been automatically connected. Figure 27–19 
provides details.

Figure 27–19 SOA Composite Editor

13. From the File menu, select Save All.

27.3.2.2.5 Creating an Application Server Connection  



Introduction to Human Workflow Features

27-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

You are now ready to create a connection to the application server on which Oracle 
SOA Suite is installed and configured with the SOA Infrastructure. These instructions 
describe how to create a connection to Oracle WebLogic Server. For information about 
creating a connection to other application servers such as IBM WebSphere Server, see 
Oracle Fusion Middleware Third-Party Application Server Guide.

To create an application server connection
1. From the File main menu, select New > Connections > Application Server 

Connection.

2. Click OK.

3. In the Connection Name field, enter a connection name.

4. From the Connection Type list, select WebLogic 10.3.

5. Click Next.

6. In the Username field, enter weblogic.

7. In the Password field, enter the password for connecting to the application server.

8. Click Next.

9. Enter the hostname for the application server that is configured with the SOA 
Infrastructure.

10. In the Weblogic Domain field, enter the Oracle WebLogic Server domain.

11. Click Next.

12. Click Test Connection.

If successful, the message shown in Figure 27–20 is displayed.

Figure 27–20 Connection Success

13. Click Finish.

14. From the File menu, select Save All.

27.3.2.2.6 Deploying the SOA Composite Application  

You are now ready to deploy to the application server on which you created the 
connection.



Introduction to Human Workflow Features

Getting Started with Human Workflow 27-25

To deploy the SOA composite application
1. In the Application Navigator, right-click the VacationRequest project and select 

Deploy > VacationRequest.

2. Follow the pages of the deployment wizard to deploy the project.

The project is deployed. 

For more information about deployment, see Section 41.7, "Deploying SOA 
Composite Applications." 

27.3.2.2.7 Initiating the Process Instance  

To initiate the process instance:
1. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle 

BPM Suite for instructions on accessing the Test Web Service page for initiating the 
process instance.

27.3.2.2.8 Creating a Task Form Project  

You are now ready to create a project for the task form. This is a separate project from 
the one in which you created the human task.

To create a task form project:
1. Double-click the VacationRequestTask human task.

The Human Task Editor is displayed. 

2. From the Create Form menu at the top, select Auto-Generate Task Form. 
Figure 27–21 provides details.

Figure 27–21 Task Form Creation

The Create Project dialog appears. 

3. In the Project Name field, enter VacationRequestTaskFlow, and click OK.

4. From the File main menu, select Save All. 

27.3.2.2.9 Acting on the Task in Oracle BPM Worklist  

To resolve the task in Oracle BPM Worklist:
1. Go to Oracle BPM Worklist:



Introduction to Human Workflow Features

27-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

http://hostname:7001/integration/worklistapp

2. Log in to Oracle BPM Worklist.

3. Resolve the task.

27.3.2.2.10 Deploying the Task Form  

To deploy the task form:
1. In the Application Navigator, right-click the VacationRequestTaskFlow project 

and select Deploy > VacationRequestTaskFlow.

2. Follow the pages of the deployment wizard to deploy the task form.

The task form is deployed. 

For more information about deployment, see Section 41.7, "Deploying SOA 
Composite Applications." 

3. Return to Oracle BPM Worklist.

4. Note that the task form now appears at the bottom of Oracle BPM Worklist.

27.3.3 Additional Tutorials
In addition to the vacation request use case, other tutorials are available at the 
following URL:

https://soasamples.samplecode.oracle.com

Table 27–3 provides an overview of some samples. All samples show the use of 
worklist applications and workflow notifications. For the complete list of samples, 
visit the URL.

Table 27–3 End-to-End Examples

Sample Description Name

Demo Community 
Seed Application

Performs demo community seeding. 
This is a prerequisite for all other 
workflow samples.

workflow-001-DemoCommun
itySeedApp

Vacation Request Provides a sample in which a user 
submits a vacation request that gets 
assigned to their manager for approval 
or rejection. This sample also describes 
how to create Oracle ADF task forms 
for the vacation request to act on the 
task.

workflow-100-VacationReque
st

Sales Quote Request Provides a complex workflow sample 
with chaining of multiple tasks.

workflow-102-SalesQuote

Contract Approval Provides a sample of approving a 
contract. This sample uses digital 
signatures for tasks.

workflow-104-ContractAppro
val

Iterative Design Provides a sample in which a workflow 
task can be passed multiple times 
between assignees during the design 
process. Advanced routing rules 
implement the routing behavior.

workflow-106-IterativeDesign



Introduction to Human Workflow Architecture

Getting Started with Human Workflow 27-27

27.4 Introduction to Human Workflow Architecture
This section provides an overview of human workflow architecture. The following 
topics are discussed:

■ The services that perform a variety of operations in the lifecycle of a task, such as 
querying tasks for a user, retrieving metadata information related to a task, and so 
on.

■ The two ways to use a human task:

– Associated with a BPEL process service component

– Used in standalone mode

■ The role of the service engine in the life of a human task

27.4.1 Human Workflow Services
Starting with release 11g, all human task metadata is stored and managed in the 
Metadata Service (MDS) repository. The workflow service consists of many services 
that handle various aspects of human interaction with a business process.

Figure 27–22 shows the following workflow service components:

■ Task Service:

The task service provides task state management and persistence of tasks. In 
addition to these services, the task service exposes operations to update a task, 
complete a task, escalate and reassign tasks, and so on. The task service is used by 
Oracle BPM Worklist to retrieve tasks assigned to users. This service also 
determines if notifications are to be sent to users and groups when the state of the 
task changes. The task service consists of the following services.

– Task Routing Service

Workflow 
Customizations

Demonstrates how to deploy 
customizations to workflow service 
APIs, such as custom resource strings 
for task attributes, view names, and so 
on.

workflow-110-workflowCusto
mizations

MLS Sample Demonstrates the setting up of a task 
with multiple translations for the task 
title.

workflow-114-MLSSample

Workflow Event 
Callback

Demonstrates the use of the workflow 
event callback. Workflow events 
generated by task lifecycle events are 
consumed by an Oracle Mediator.

workflow-116-WorkflowEven
tCallback

User Config Data 
Migrator

Moves user configurations (views, 
mapped attributes, and so on) from one 
instance to another through an 
intermediate export file.

workflow-117-UserConfigDat
aMigrator

Java Samples Provides an assortment of samples that 
use Java to interact with human 
workflow.

workflow-118-JavaSamples

Table 27–3 (Cont.) End-to-End Examples

Sample Description Name



Introduction to Human Workflow Architecture

27-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The task routing service offers services to route, escalate, and reassign the task. 
The service makes these decisions by interpreting a declarative specification in 
the form of the routing slip. 

– Task Query Service

The task query service queries tasks for a user based on a variety of search 
criterion such as keyword, category, status, business process, attribute values, 
history information of a task, and so on.

– Task Metadata Service

The task metadata service exposes operations to retrieve metadata information 
related to a task. 

■ Identity Service

The identity service is a thin web service layer on top of the Oracle WebLogic 
Server 11g security infrastructure or any custom user repository. It enables 
authentication and authorization of users and the lookup of user properties, roles, 
group memberships, and privileges.

■ Notification Service

The notification service delivers notifications with the specified content to the 
specified user through any of the following channels: email, telephone voice 
message, IM, and SMS. See Section 32.2, "Notifications from Human Workflow" for 
more information.

■ User Metadata Service

The user metadata service manages metadata related to workflow users, such as 
user work queues, preferences, vacations, and delegation rules.

■ Runtime Config Service

The runtime config service provides methods for managing metadata used in the 
task service runtime environment. It principally supports management of task 
payload mapped attribute mappings. 

■ Evidence service

The evidence service supports storage and nonrepudiation of digitally-signed 
workflow tasks.



Introduction to Human Workflow Architecture

Getting Started with Human Workflow 27-29

Figure 27–22 Workflow Services Components 

Figure 27–23 shows the interactions between the services and the business process.

Identity
Management

Portal

Oracle BPM
Worklist

E-mail Client

User
Metadata
Service

Task
Service

Task
Assignment

Service

Identity
Service

Task
Metadata
Service

Evidence
Store

Service

Task
Query 
Service

Notification
Service

Database
· OID
· LDAP
· JAZN
· other user 
  directories

MDS
.task
.bpel
.wsdl

Notification
Channels
· E-mail
· Voice
· SMS
· IM

Workflow Services

UsersBPEL
Process
Service

Component

Workflow
Services

Metadata

Metadata



Introduction to Human Workflow Architecture

27-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–23 Workflow Services and Business Process Interactions

27.4.2 Use of Human Task
There are two ways in which to use a human task:

■ Human task associated with a BPEL process

In most cases, you associate your human task with a BPEL process. The BPEL 
process integrates a series of activities (including the human task activity) and 
services into an end-to-end process flow.

■ Standalone human task

You can also create the human task as a standalone component only in the SOA 
Composite Editor and not associate it with a BPEL process. Standalone human 
task service components are useful for environments in which there is no need for 

User Metadata Service
Manages metadata related 
to workflow (user work 
queues, preferences, 
vacation, and delegation 
rules)

Oracle
Internet

Directory

User Directory 
(one of)

JAZN
XML

LDAP,
Custom

Policy Store
Contains 
Information 
about 
application 
roles and 
permissions

BPEL Process
Service Component

Runtime Config Services
Provides methods for 
managing metadata used 
in the task service runtime 
environment

Identity Service 
· user / group / role lookup
· user authentication
· authorization
· organization hierarchy

Task Assignment Service
Offers services to route, 
escalate, and reassign 
tasks

Notification Service
Sends notifications to users
by e-mail, voice message, 
instance messaging, or
short message service

Evidence Store Service
Captures digital signatures 
and checkpoints for 
digitally signed tasks

Task Metadata Service
Exposes operations to 
retrieve metadata 
information related to 
a task

Task Query Service
Queries tasks for a user 
based on keyword, 
category, status, 
business process, 
attribute values, 
task history information, 
and so on

Worklist application
Web application to search 
for tasks, view tasks, and 
act on tasks

Task Service
Provides task persistence 
and exposes operations 
to update a task, complete 
a task, escalate and 
reassign tasks, 
and so on



Introduction to Human Workflow Architecture

Getting Started with Human Workflow 27-31

any automated activity in an application. In the standalone case, the client can 
create the task themselves.

27.4.3 Service Engines
During runtime, the business logic and processing rules of the human task service 
component are executed by the human workflow service engine. Each service 
component (BPEL process, human workflow, decision service (business rules), and 
Oracle Mediator) has its own service engine container for performing these tasks. All 
human task service components, regardless of the SOA composite application of 
which they are a part, are executed in this single human task service engine.

For more information about configuring, monitoring, and managing the human 
workflow service engine, see Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite.



Introduction to Human Workflow Architecture

27-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



28

Designing Human Tasks 28-1

28 Designing Human Tasks

This chapter describes how to design human tasks. It introduces the Human Task 
Editor to use for modeling task metadata, routing and assignment policies, escalation 
policies, expiration policies, and notification settings.

This chapter includes the following sections:

■ Section 28.1, "Introduction to Human Task Design Concepts"

■ Section 28.2, "Introduction to the Modeling Process"

■ Section 28.3, "Creating the Human Task Definition with the Human Task Editor"

■ Section 28.4, "Associating the Human Task Service Component with a BPEL 
Process"

28.1 Introduction to Human Task Design Concepts
To use the Human Task Editor, you must understand human task design concepts, 
including the following:

■ The types of users to which to assign tasks

■ The methods by which to assign users to tasks (statically, dynamically, or 
rule-based)

■ The task participant types available for modeling a task to which you assign users

■ The options for creating lists of task participants

■ The participants involved in the entire life cycle of a task

For information about human task concepts, see Chapter 27, "Getting Started with 
Human Workflow."

28.2 Introduction to the Modeling Process
Oracle SOA Suite provides a graphical tool, known as the Human Task Editor, for 
modeling your task metadata. The modeling process consists of the following:

■ Creating and modeling a human task service component in the SOA Composite 
Editor

■ Associating it with a BPEL process

■ Generating the task form for displaying the human task during runtime in Oracle 
BPM Worklist.



Introduction to the Modeling Process

28-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

This section provides a brief overview of these modeling tasks and provides references 
to specific modeling instructions.

For more information about using the SOA Composite Editor, see Chapter 2, 
"Developing SOA Composite Applications with Oracle SOA Suite."

For information about available samples, see Section 27.3.2, "Designing a Human Task 
from Start to Finish."

28.2.1 Create a Human Task Definition
You define the metadata for the human task in either of two ways:

■ By dragging a human task from the Component Palette into a BPEL process in 
Oracle BPEL Designer and clicking the Add icon in the Create Human Task dialog 
that automatically is displayed. This displays a dialog for creating the human task 
service component. When creation is complete, the Human Task Editor is 
displayed.

■ By dragging a human task service component from the Component Palette into 
the SOA Composite Editor. This displays a dialog for creating the human task 
component. When creation is complete, the Human Task Editor is displayed.

The Human Task Editor enables you to specify human task metadata, such as task 
outcome, payload structure, assignment and routing policy, expiration and escalation 
policy, notification settings, and so on. This information is saved to a metadata task 
configuration file with a .task extension. In addition, some workflow patterns may 
also need to use the Oracle Business Rules Designer to define task routing policies or 
the list of approvers.

For more information, see Section 28.3, "Creating the Human Task Definition with the 
Human Task Editor."

28.2.2 Associate the Human Task Definition with a BPEL Process
You can associate the .task file that consists of the human task settings with a BPEL 
process in Oracle BPEL Designer. Association is made with a human task that you 
drag into your BPEL process flow for configuring, as shown in Figure 28–1. 

Figure 28–1 Dragging a Human Task into a BPEL Process



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-3

You also specify the task definition, task initiator, task priority, and task parameter 
mappings that carry the input data to a BPEL variable. You can also define advanced 
features, such as the scope and global task variables names (instead of accepting the 
default names), task owner, identification key, BPEL callback customizations, and 
whether to extend the human task to include other workflow tasks.

When association is complete, a task service partner link is created. The task service 
exposes the operations required to act on the task.

You can also create the human task as a standalone component only in the SOA 
Composite Editor and not associate it with a BPEL process. Standalone human task 
service components are useful for environments in which there is no need for any 
automated activity in an application. In the standalone case, the client can create the 
task themselves.

For more information, see Section 28.4, "Associating the Human Task Service 
Component with a BPEL Process."

28.2.3 Generate the Task Form
You can generate a task form using the Oracle Application Development Framework 
(ADF). This form is used for displaying the task details on which you act at runtime in 
Oracle BPM Worklist.

For information on generating the task form, see Chapter 29, "Designing Task Forms 
for Human Tasks."

28.3 Creating the Human Task Definition with the Human Task Editor
The Human Task Editor enables you to define the metadata for the task. The editor 
enables you to specify human task settings, such as task outcome, payload structure, 
assignment and routing policy, expiration and escalation policy, notification settings, 
and so on.

28.3.1 How to Create a Human Task Service Component
You create a human task service component in the SOA Composite Editor or in Oracle 
BPEL Designer. After creation, you design the component in the Human Task Editor. 
The method by which you create the human task service component determines 
whether the component can be associated later with a BPEL process service 
component or is a standalone component in the SOA Composite Editor.

To create a human task service component in the SOA Composite Editor:
1. Go to the SOA project in which to create a human task service component in the 

SOA Composite Editor.

2. From the Component Palette list, select SOA.

The list refreshes to display service components and service adapters. 

3. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

4. In the Name field, enter a name.

The name you enter becomes the .task file name.

5. Note the Create Composite Service with SOAP Bindings checkbox. The selection 
of this checkbox determines how the human task service component is created.



Creating the Human Task Definition with the Human Task Editor

28-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. To create a human task service component that you later associate with a BPEL 
process service component, do not select the Create Composite Service with 
SOAP Bindings checkbox. The human task service component is created as a 
component that you explicitly associate with a BPEL process service 
component. Figure 28–2 provides details.

Figure 28–2 Human Task Component

b. To create the human task service component as a standalone component in the 
SOA Composite Editor, select the Create Composite Service with SOAP 
Bindings checkbox. This creates a human task service component that is 
automatically wired to a Simple Object Access Protocol (SOAP) web service. 
Figure 28–3 provides details.

Figure 28–3 Standalone Human Task Component

This web service provides external customers with an entry point into the 
human task service component of the SOA composite application.

6. Click OK.

To create a human task in Oracle BPEL Designer:
1. In the Component Palette, expand SOA Components.

2. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

3. Click the Add icon to create a human task.

4. In the Name field, enter a name.

The name you enter becomes the .task file name.

5. In the Title field, enter a task.

6. Click OK.

The Human Task Editor appears. 

Note: You can also create a human task that you later associate with a 
BPEL process by selecting New from the File main menu, then 
selecting SOA Tier > Service Components > Human Task.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-5

For more information about creating a human task service component in the SOA 
Composite Editor, see Chapter 2, "Developing SOA Composite Applications with 
Oracle SOA Suite."

28.3.2 What Happens When You Create a Human Task Service Component
When a human task is created, the following folders and files appear:

■ The human task settings specified in the Human Task Editor are saved to a 
metadata task configuration file in the metadata service (MDS) repository with a 
.task extension. This file appears in the Application Navigator under SOA_
Project_Name > SOA Content. You can re-edit the settings in this file by 
double-clicking the following:

– The .task file in the Application Navigator in either the SOA Composite 
Editor or Oracle BPEL Designer

– The human task icon in the SOA Composite Editor or in your BPEL process in 
Oracle BPEL Designer.

This reopens the .task file in the Human Task Editor.

■ A Human Tasks folder containing the human task you created appears in the 
Structure window of the SOA Composite Editor.

Figure 28–4 shows these folders and files.

Figure 28–4 Human Task Folders and Files

For information about available samples, see Section 27.3.2, "Designing a Human Task 
from Start to Finish."



Creating the Human Task Definition with the Human Task Editor

28-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.3 How to Access the Sections of the Human Task Editor

To access the sections of the Human Task Editor:
1. Double-click the Human Task icon in the SOA Composite Editor or double-click 

the Human Task icon in Oracle BPEL Designer and click the Edit icon in the upper 
right corner.

The Human Task Editor consists of the main sections shown on the left side in 
Figure 28–5. These sections enable you to design the metadata of a human task.

Figure 28–5 Human Task Editor

Instructions for using these main sections of the Human Task Editor to create a 
workflow task are listed in Table 28–1.

Table 28–1 Human Task Editor

Section Description See...

General

(title, description, 
outcomes, category, 
priority, owner, and 
application context)

Enables you to define task details 
such as title, task outcomes, 
owner, and other attributes.

Section 28.3.4, "How to Specify 
the Title, Description, Outcome, 
Priority, Category, Owner, and 
Application Context"

Data Enables you to define the 
structure (message elements) of 
the task payload (the data in the 
task). 

Section 28.3.5, "How to Specify 
the Task Payload Data 
Structure"

Assignment Enables you to assign participants 
to the task and create a policy for 
routing the task through the 
workflow.

Section 28.3.6, "How to Assign 
Task Participants"

Section 28.3.7, "How to Select a 
Routing Policy"

Presentation Enables you to specify the 
following settings:

■ Multilingual settings

■ WordML and custom style 
sheets for attachments

Section 28.3.8, "How to Specify 
Multilingual Settings and Style 
Sheets"

Deadlines Enables you to specify the 
expiration duration of a task, 
custom escalation Java classes, 
and due dates.

Section 28.3.9, "How to Escalate, 
Renew, or End the Task"



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-7

28.3.4 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and 
Application Context

To specify the title, description, outcome, priority, category, owner, and 
application context:
1. Click the General tab.

Figure 28–6 shows the General section of the Human Task Editor. 

This section enables you to specify details such as the task title, description, task 
outcomes, task category, task priority, and task owner.

Figure 28–6 Human Task Editor — General Section

Instructions for configuring the following subsections of the General section are 
listed in Table 28–2:

Notification Enables you to create and send 
notifications when a user is 
assigned a task or informed that 
the status of the task has changed. 

Section 28.3.10, "How to Specify 
Participant Notification 
Preferences"

Access Enables you to specify access rules 
for task content and task actions, 
workflow signature policies, and 
assignment restrictions.

Section 28.3.11, "How to Specify 
Access Policies and Task Actions 
on Task Content"

Section 28.3.12, "How to Specify 
a Workflow Digital Signature 
Policy"

Section 28.3.13, "How to Specify 
Restrictions on Task 
Assignments"

Events Enables you to specify callback 
classes and task and routing 
assignments in BPEL callbacks.

Section 28.3.14, "How to Specify 
Java or Business Event 
Callbacks"

Table 28–2 Human Task Editor — General Section

For This Subsection... See...

Title Section 28.3.4.1, "Specifying a Task Title"

Description Section 28.3.4.2, "Specifying a Task Description"

Table 28–1 (Cont.) Human Task Editor

Section Description See...



Creating the Human Task Definition with the Human Task Editor

28-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.4.1 Specifying a Task Title

To specify a task title:
Enter an optional task title. The title defaults to this value only if the initiated task does 
not have a title set in it. The title provides a visual identifier for the task. The task title 
displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM Worklist. 

1. In the Task Title field of the General section, select a method for specifying a task 
title:

■ Plain Text: Manually enter a name (for example, Vacation Request 
Approved).

■ Text and XPath: Enter a combination of manual text and a dynamic 
expression. After manually entering a portion of the title (for example, 
Approval Required for Order Id:), place the cursor one blank space 
to the right of the text and click the icon to the right of this field. This displays 
the Expression Builder for dynamically creating the remaining portion of the 
title. After completing the dynamic portion of the name, click OK to return to 
this field. The complete name is displayed. For example:

Approval Required for Order Id: <%/task:task/task:payload/task:orderId%>

The expression is resolved during runtime with the exact order ID value from 
the task payload. 

If you enter a title in the Task Title field of the General tab of the Create Human 
Task dialog described in Section 28.4.3.1, "Specifying the Task Title," the title you 
enter here is overridden.

28.3.4.2 Specifying a Task Description
You can optionally specify a description of the task in the Description field of the 
General section. The description enables you to provide additional details about a 
task. For example, if the task title is Computer Upgrade Request, you can provide 
additional details in this field, such as the model of the computer, amount of CPU, 
amount of RAM, and so on. The description does not display in Oracle BPM Worklist.

28.3.4.3 Specifying a Task Outcome
Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays 
the outcomes you specify here as the possible task actions to perform during runtime. 
Figure 28–7 provides details.

Outcomes Section 28.3.4.3, "Specifying a Task Outcome"

Priority Section 28.3.4.4, "Specifying a Task Priority"

Category Section 28.3.4.5, "Specifying a Task Category"

Owner Section 28.3.4.6, "Specifying a Task Owner"

Application Context Section 28.3.4.7, "Specifying an Application Context"

Table 28–2 (Cont.) Human Task Editor — General Section

For This Subsection... See...



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-9

Figure 28–7 Outcomes in Oracle BPM Worklist

You can specify the following types of task outcomes:

■ Select a seeded outcome

■ Enter a custom outcome

The task outcomes can also have runtime display values that are different from the 
actual outcome value specified here. This permits outcomes to be displayed in a 
different language in Oracle BPM Worklist. For more information about 
internationalization, see Section 28.3.8.2, "Specifying Multilingual Settings."

To specify a task outcome:
1. To the right of the Outcomes field in the General section, click the Search icon.

The Outcomes dialog shown in Figure 28–8 displays the possible outcomes for 
tasks. APPROVE and REJECT are selected by default.

Figure 28–8 Outcomes Dialog

2. Enter the information shown in Table 28–3.



Creating the Human Task Definition with the Human Task Editor

28-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The seeded and custom outcomes selected here display for selection in the 
Majority Voted Outcome section of the parallel participant type.

3. For more information, see Section 28.3.6.2.1, "Specifying the Voting Outcome."

28.3.4.4 Specifying a Task Priority
Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. 
By default, the priority of a task is 3. This priority value is overridden by any priority 
value you select in the General tab of the Create Human Task dialog. You can filter 
tasks based on priority and create views on priorities in Oracle BPM Worklist.

To specify a task priority:
1. From the Priority list in the General section, select a priority for the task.

For more information about specifying a priority value in the Create Human Task 
dialog, see Section 28.4.3.2, "Specifying the Task Initiator and Task Priority."

28.3.4.5 Specifying a Task Category
You can optionally specify a task category in the Category field of the General section. 
This categorizes tasks created in a system. For example, in a help desk environment, 
you may categorize customer requests as either software-related or hardware-related. 
The category displays in Oracle BPM Worklist. You can filter tasks based on category 
and create views on categories in Oracle BPM Worklist.

To specify a task category:
1. Select a method for specifying a task category in the Category field of the General 

section:

■ By Name: Manually enter a name.

Table 28–3 Outcomes Dialog

Field Description

Select one or more 
outcomes

Select additional task outcomes or deselect the default outcomes.

Add icon Click to invoke a dialog for adding custom outcomes. 

In the Name field of the dialog, enter a custom name, and click OK. 
Your outcome displays in the Outcomes field.

Notes: Be aware of the following naming restrictions:

■ Do not specify a custom name that matches a name listed in the 
Actions tab of the Access section of the Human Task Editor (for 
example, do not specify Delete). Specifying the same name can 
cause problems at runtime.

■ Do not specify a custom name with blank spaces (for example, 
On Hold). This causes an error when the custom outcome is 
accessed in Oracle BPM Worklist. If you need to specify an 
outcome with spaces, use a resource bundle. For more 
information, see Chapter 32, "Introduction to Human Workflow 
Services."

Outcomes Requiring 
Comment

Click to select an outcome to which an assignee adds comments in 
Oracle BPM Worklist at runtime. The assignee must add the 
comments and perform the action without saving the task at runtime.

Default Outcome Select the default outcome for this outcome.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-11

■ By Expression: Click the icon to the right of this field to display the Expression 
Builder for dynamically creating a category.

28.3.4.6 Specifying a Task Owner
The task owner can view the tasks belonging to business processes they own and 
perform operations on behalf of any of the assigned task participant types. 
Additionally, the owner can also reassign, withdraw, or escalate tasks. The task owner 
can be considered the business administrator for a task. The task owner can also be 
specified in the Advanced tab of the Create Human Task dialog described in 
Section 28.4.4.2, "Specifying a Task Owner." The task owner specified in the Advanced 
tab overrides any task owner you enter here.

For more information about the task owner, see Section 27.2.1.3, "Task Stakeholders."

To specify a task owner:
1. Select a method for specifying the task owner:

■ Statically through the identity service user directory or the list of application 
roles

■ Dynamically through an XPath expression

For example:

– If the task has a payload message attribute named po within which the 
owner is stored, you can specify an XPath expression such as: 
/task:task/task:payload/po:purchaseOrder/po:owner

– ids:getManager('jstein', 'jazn.com')

The manager of jstein is the task owner.

For more information about users, groups, and application roles, see Section 27.2.1.1.3, 
"Participant Assignment."

28.3.4.6.1 Specifying a Task Owner Statically Through the User Directory or a List of Application 
Roles  

Task owners can be selected by browsing the user directory (Oracle Internet Directory, 
Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles 
configured for use with Oracle SOA Suite. 

To specify a task owner statically through the user directory or a list of 
application roles:
1. In the first list to the right of the Owner field in the General section, select User, 

Group, or Application Role as the type of task owner. Figure 28–9 provides 
details.

Note: By default, group names in human tasks are case sensitive. 
Therefore, if you select Group and enter a name in upper case text (for 
example, LOANAGENTGROUP), no task is displayed under the 
Administrative Tasks tab in Oracle BPM Worklist. To enable group 
names to be case agnostic (case insensitive), you must set the 
caseSensitiveGroups property to false in the System MBeans 
Browser. For information, see Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite.



Creating the Human Task Definition with the Human Task Editor

28-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–9 Specify a Task Owner By Browsing the User Directory or Application Roles

2. In the second list to the right of the Owner field in the General section, select 
Static.

3. See the step in Table 28–4 based on the type of owner you selected. 

4. If you selected User or Group, the Identity Lookup dialog shown in Figure 28–10 
appears.

Figure 28–10 Identity Lookup Dialog

To select a user or group, you must first create an application server connection by 
clicking the Add icon. Note the following restrictions:

■ Do not create an application server connection to an Oracle WebLogic 
Administration Server from which to retrieve the list of identity service 
realms. This is because there is no identity service running on the 
Administration Server. Therefore, no realm information displays and no users 
display when performing a search with a search pattern in the Identity 

Table 28–4 Type of Owner

If You Selected... See Step...

User or Group 4

Application Role 5



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-13

Lookup dialog. Instead, create an application server connection to a managed 
Oracle WebLogic Server.

■ You must select an application server connection configured with the complete 
domain name (for example, myhost.us.oracle.com). If you select a 
connection configured only with the hostname (for example, myhost), the 
Realm list may not display the available realms. If the existing connection 
does not include the domain name, perform the following steps:

– In the Resource Palette, right-click the application server connection.

– Select Properties.

– In the Configuration tab, add the appropriate domain to the hostname.

– Return to the Identity Lookup dialog and reselect the connection. 

a. Select or create an application server connection to display the realms for 
selection. A realm provides access to a policy store of users and roles (groups). 

b. Search for the owner by entering a search string such as jcooper, j*, *, 
and so on. Clicking the Lookup icon to the right of the User Name field 
fetches all the users that match the search criteria. Figure 28–11 provides 
details. One or more users or groups can be highlighted and selected by 
clicking Select. 

Figure 28–11 Identity Lookup with Realm Selected



Creating the Human Task Definition with the Human Task Editor

28-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

c. View the hierarchy of a user by highlighting the user and clicking Hierarchy. 
Similarly, clicking Reportees displays the reportees of a selected user or group. 
Figure 28–12 provides details.

Figure 28–12 User Hierarchy in Identity Lookup Dialog

d. View the details of a user or group by highlighting the user or group and 
clicking Detail. Figure 28–13 provides details.

Figure 28–13 User or Group Details

e. Click OK to return to the Identity Lookup dialog. 

f. Click Select to add the user to the Selected User section.

g. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

5. If you selected Application Role, the Select an Application Role dialog appears.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-15

a. In the Application Server list, select the type of application server that 
contains the application role or click the Add icon to launch the Create 
Application Server Connection wizard to create a connection.

b. In the Application list, select the application that contains the application roles 
(for example, a custom application or soa-infra for the SOA Infrastructure 
application).

c. In the Available section, select appropriate application roles and click the > 
button. To select all, click the >> button. Figure 28–14 provides details.

Figure 28–14 Application Role

d. Click OK.

28.3.4.6.2 Specifying a Task Owner Dynamically Through an XPath Expression  

Task owners can be selected dynamically in the Expression Builder dialog. 

To specify a task owner dynamically:
1. In the first list to the right of the Owner field in the General section, select User, 

Group, or Application Role as the type of task owner. Figure 28–15 provides 
details.



Creating the Human Task Definition with the Human Task Editor

28-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–15 Specify a Task Owner Dynamically

2. In the second list to the right of the Owner field in the General section, select 
XPath.

3. Click the icon to launch the Expression Builder.

This displays the Expression Builder dialog shown in Figure 28–16:

Figure 28–16 Expression Builder

4. Browse the available variable schemas and functions to create a task owner.

5. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field. 

For more information, see the following:

■ Click Help for instructions on using the Expression Builder dialog and XPath 
Building Assistant

■ Appendix B, "XPath Extension Functions" for information about workflow 
service dynamic assignment functions, identity service functions, and 
instructions on using the XPath Building Assistant



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-17

28.3.4.7 Specifying an Application Context
You can specify the name of the application that contains the application roles used in 
the task. This indicates the context in which the application role operates. If you do not 
explicitly create a task, but end up having one, you can set up the context.

1. In the Application Context field of the General section, enter the name.

28.3.5 How to Specify the Task Payload Data Structure
Figure 28–17 shows the Data section of the Human Task Editor.

This section enables you to specify the structure (message elements) of the task 
payload (the data in the task) defined in the XSD file. You create parameters to 
represent the elements in the XSD file. This makes the payload data available to the 
workflow task. For example:

■ You create a parameter for an order ID element for placing an order from a store 
front application.

■ You create parameters for the location, type, problem description, severity, status, 
and resolution elements for creating a help desk request.

 Task payload data consists of one or more elements or types. Based on your selections, 
an XML schema definition is created for the task payload.

Figure 28–17 Human Task Editor — Parameters Section

To specify the task payload data structure:
1. Click the Data tab.

2. Click the Add icon and select a payload type:

■ String

■ Integer

■ Boolean

■ Other

The Add Task Parameter dialog is displayed, as shown in Figure 28–18.



Creating the Human Task Definition with the Human Task Editor

28-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–18 Add Task Parameter Dialog

3. Enter the details described in Table 28–5:

4. Select the type, as shown in Figure 28–19.

Table 28–5 Add Task Parameter Dialog Fields and Values

Field Description

Parameter Type Select Type or Element and click the Search icon to display the 
Type Chooser dialog for selecting the task parameter.

Parameter Name Accept the default name or enter a custom name. This field only 
displays if Type is the selected parameter type.

Editable via worklist Select this checkbox to enable users to edit this part of the task 
payload in Oracle BPM Worklist. For example, for a loan 
approval task, the APR attribute may need to be updated by the 
user reviewing the task, but the SSN field may not be editable.

You can also specify access rules that determine the parts of a 
task that participants can view and update. For more 
information, see Section 28.3.11.1, "Specifying Access Policies on 
Task Content."

Note: You can only define payload mapped attributes (previously 
known as flex field mappings) in Oracle BPM Worklist for payload 
parameters that are simple XML types (string, integer, and so on) or 
complex types (for example, a purchase order, and so on). If you must 
search tasks using keywords or define views or delegation rules based 
on task content, then you must use payload parameters based on 
simple XML types. These simple types can be mapped to flex columns 
in Oracle BPM Worklist.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-19

Figure 28–19 Parameter Type

5. Click OK to return to the Human Task Editor.

Your selection displays in the Data section.

6. To edit your selection, select it and click the Edit icon in the upper right part of the 
Data section.

28.3.6 How to Assign Task Participants
Figure 28–20 shows the Assignment section of the Human Task Editor. This section 
enables you to select a participant type that meets your business requirements. While 
configuring the participant type, you build lists of users, groups, and application roles 
to act upon tasks.

Figure 28–20 Human Task Editor — Assignment Section



Creating the Human Task Definition with the Human Task Editor

28-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

You can easily mix and match participant types to create simple or complex workflow 
routing policies. You can also extend the functionality of a previously configured 
human task to model more complex workflows. 

A participant type is grouped in a block under a stage (for example, named Stage1 in 
Figure 28–20). A stage is a way of organizing the approval process for blocks of 
participant types. You can have one or more stages in sequence or in parallel. Within 
each stage, you can have one or more participant type blocks in sequence or in 
parallel. The up and down keys enable you to rearrange the order of your participant 
type blocks.

For example:

■ You can create all participant type blocks in a single stage (for example, a purchase 
order request in which the entire contents of the order are approved or rejected as 
a whole).

■ You can create more complex approval tasks that may include one or more stages. 
For example, you can place one group of participant type blocks in one stage and 
another block in a second stage. The list of approvers in the first stage handles line 
entry approvals and the list of approvers in the second stage handles header entry 
approvals.

Each of the participant types has an associated editor that you use for configuration 
tasks. The sequence in which the assignees are added indicates the execution 
sequence. 

To specify a different stage name or have a business requirement that requires you to 
create additional stages, perform the following steps. Note that creating additional 
stages is an advanced requirement that may not be necessary for your environment.

For more information about participant types, see Section 27.2.1.1, "Task Assignment 
and Routing."

To specify a stage name and add parallel and sequential blocks:
The stage is named Stage1 by default. If you want, you can change the name.

1. Double-click the name.

The Edit dialog shown in Figure 28–21 appears.

Figure 28–21 Edit Dialog

2. Enter a name, and click OK.

3. Select the stage and its participant type block, as shown in Figure 28–22.

4. Click the Add icon.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-21

Figure 28–22 Add a Second Stage

5. Select an option from the list (for example, Parallel stage).

A second stage is added in parallel to the first stage, as shown in Figure 28–23.

Figure 28–23 Parallel Stage

6. Select the second stage on the right, and click the Add icon. Note that if you do not 
select the second stage (for this example, named Stage1 in Figure 28–24) and 
instead select only the participant type block (for example, named Edit Participant 
in Figure 28–24), all options under the Add icon are disabled.

7. Select Sequential stage.

A sequential stage is added below the selected block. 



Creating the Human Task Definition with the Human Task Editor

28-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–24 Sequential Stage

You create participant types within these blocks.

To assign task participants:
1. In the Assignment section, perform one of the following tasks:

a. Highlight the block below the stage box and click the Edit icon. The first time 
you create a task participant, the box is labeled <Edit Participant>.

or 

b. Double-click the participant box below the stage box.

The Edit Participant Type dialog appears. This dialog enables you to select a 
specific participant type. 

2. From the Type list, select a participant type shown in Figure 28–25.

Figure 28–25 Type List

3. See the section shown in Table 28–6 based on your selection. 

28.3.6.1 Configuring the Single Participant Type
Figure 28–26 displays the Edit Participant Type dialog for the single participant type. 

Table 28–6 Participant Types

Participant 
Type

For a Description of this 
Participant Type, See...

For Instructions on Configuring this Participant Type, 
See...

■ Single

■ Parallel

■ Serial

■ FYI

Section 27.2.1.1.2, "Participant Type" Section 28.3.6.1, "Configuring the Single Participant Type"

Section 28.3.6.2, "Configuring the Parallel Participant Type"

Section 28.3.6.3, "Configuring the Serial Participant Type"

Section 28.3.6.4, "Configuring the FYI Participant Type"



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-23

Figure 28–26 Edit Participant Type — Single Type

To configure the single participant type:
1. In the Label field, enter a recognizable label for this participant. This label must be 

unique among all the participants in the task definition (for example, Approval 
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type 
dialog for the single participant type are listed in Table 28–7:

Table 28–7 Edit Participant Type — Single Type

For This Subsection... See...

Participant List Section 28.3.6.1.1, "Creating a Single Task Participant 
List"

Limit allocated duration to (under 
the Advanced section)

Section 28.3.6.1.2, "Specifying a Time Limit for Acting on 
a Task"

Allow this participant to invite 
other participants (under the 
Advanced section)

Section 28.3.6.1.3, "Inviting Additional Participants to a 
Task"

Specify skip rule (under the 
Advanced section)

Section 28.3.6.1.4, "Bypassing a Task Participant"



Creating the Human Task Definition with the Human Task Editor

28-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.6.1.1 Creating a Single Task Participant List  

Users assigned to the list of participants can act upon tasks. In this type of assignment 
list, only one user is required to act on the task. You can provide either a single user or 
a list of users, groups, or application roles for this pattern. If a list is specified, then all 
users are assigned the task; one of them must acquire and act upon the task. When one 
user acts on it, the task is withdrawn from the task list of other assignees.

You can create several types of lists for the single user participant (and also for the 
parallel, serial, and FYI user participants):

■ Value-based name and expression lists

These lists enable you to statically or dynamically select users, groups, or 
application roles as task assignees. 

■ Value-based management chain lists

Management chains are typically used for serial approvals through multiple users 
in a management chain hierarchy. Therefore, this list is most likely useful with the 
serial participant type. This is typically the case if you want all users in the 
hierarchy to act upon the task. Management chains can also be used with the 
single participant type. In this case, however, all users in the hierarchy get the task 
assigned at the same time. As soon as one user acts on the task, it is withdrawn 
from the other users.

For example, a purchase order is assigned to a manager. If the manager approves 
the order, it is assigned to their manager. If that manager approves it, it is assigned 
to their manager, and so on until three managers approve the order. If any 
managers reject the request or the request expires, the order is rejected if you 
specify an abrupt termination condition. Otherwise, the task flow continues to be 
routed.

■ Rule-based names and expression lists and management chain lists

Business rules enable you to create the list of task participants with complex 
expressions. For example, you create a business rule in which a purchase order 
request below $5000 is sent to a manager for approval. However, if the purchase 
order request exceeds $5000, the request is sent to the manager of the manager for 
approval. Two key features of business rules are facts and action types, which are 
described in Section 28.3.7.2, "Specifying Advanced Task Routing Using Business 
Rules." 

When you select a participant type, the dialog that displays enables you to choose an 
option for building your list of task participant assignees (users, groups, or application 
roles), as shown in Figure 28–27. The three selections described above are available: 
Names and expressions, Management Chain, and Rule-based.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-25

Figure 28–27 Build a List of Participants

After selecting an option, you dynamically assign task participant assignees (users, 
groups, or application roles) and a data type, as shown in Figure 28–28.

Figure 28–28 Assignment of Task Assignees

This section describes how to create these lists of participants.

Creating Participant Lists Consisting of Value-Based Names and Expressions
Select a method for statically or dynamically assigning a user, group, or application 
role as a task participant.

For conceptual information about the following: 

■ Users, groups, or application roles, see Section 27.2.1.1.3, "Participant 
Assignment."

■ Statically and dynamically assigning task participants, see Section 27.2.1.2, "Static, 
Dynamic, and Rule-Based Task Assignment."

To create participant lists consisting of value-based names and expressions:
1. From the Build a list of participants using list, select Names and expressions.

2. From the Specify attributes using list, select Value-based.

The dialog refreshes to display the fields shown in Figure 28–29.



Creating the Human Task Definition with the Human Task Editor

28-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–29 Value-Based Names and Expressions

3. Click the Add icon and select a user, group, or application role as a task 
participant.

The Identification Type column of the Participant Names table displays your 
selection of user, group, or application role.

4. To change your selection in the Identification Type column, click it to invoke a 
dropdown list. 

5. In the Data Type column, click your selection to invoke a dropdown list to assign 
a value:

■ By Name: If your identification type is a user or group, click the Browse icon 
(the dots) on the right to display a dialog for selecting a user or group 
configured through the identity service. The identity service enables the 
lookup of user properties, roles, and group memberships. User information is 
obtained from an LDAP server such as Oracle Internet Directory. You can use 
wild cards (*) to search for IDs. 

If your selection is an application role, click the Browse icon to display the 
Select an Application Role dialog for selecting an application role. To search 
for application roles, you must first create a connection to the application 
server. When searching, you must specify the application name to find the 
name of the role. Note that the task definition can refer to only one application 
name. You cannot use application roles from different applications as 
assignees or task owners. 

■ By Expression: For a user, group, or application role, click the Browse icon to 
dynamically select a task assignee in the Expression Builder dialog. Use the 
bpws:getVariableData(...) expression or the ids:getManager() 
XPath function.

The Value column displays the value you specified. 

6. To manually enter a value, click the field in the Value column and specify a value.

Creating Participant Lists Consisting of Value-Based Management Chains
Select a method for statically or dynamically assigning management chain parameters 
as task participants.

For conceptual information about the following: 

■ Users, groups, or application roles, see Section 27.2.1.1.3, "Participant 
Assignment."

■ Statically and dynamically assigning task participants, see Section 27.2.1.2, "Static, 
Dynamic, and Rule-Based Task Assignment."



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-27

■ Management chains, see Section 28.3.6.1.1, "Creating a Single Task Participant 
List."

To specify participant lists based on value-based management chains:
1. From the Build a list of participants using list, select Management Chain.

2. From the Specify attributes using list, select Value-based.

The dialog refreshes to display the fields shown in Figure 28–30.

Figure 28–30 Value-Based Management Chains

3. See Step 3 through Step 6 of Section 28.3.6.1.1, "Creating a Single Task Participant 
List" for instructions on assigning a user, group, or application role to a list in the 
Starting Participant table.

4. In the Top Participant list, select a method for assigning the number of task 
participant levels:

■ By Title: Select the title of the last (highest) approver in the management 
chain.

■ XPath: Select to dynamically enter a top participant through the Expression 
Builder dialog.

5. In the Number of Levels list, select a method for assigning a top participant:

■ By Number: Enter a value for the number of levels in the management chain 
to include in this task. For example, if you enter 2 and the task is initially 
assigned to user jcooper, both the user jstein (manager of jcooper) and 
the user wfaulk (manager of jstein) are included in the list (apart from 
jcooper, the initial assignee). 

■ XPath: Select to dynamically enter a value through the Expression Builder 
dialog.

Creating Participant Lists Consisting of Rulesets
A ruleset provides a unit of execution for rules and for decision tables. In addition, 
rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets 
can be executed in order. This is called rule flow. The ruleset stack determines the 
order. The order can be manipulated by rule actions that push and pop rulesets on the 
stack. In rulesets, the priority of rules applies to specify the order of firing of rules in 



Creating the Human Task Definition with the Human Task Editor

28-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

the ruleset. Rulesets also provide an effective date specification that identifies that the 
ruleset is always active, or that the ruleset is restricted based on a time and date range, 
or a starting or ending time and date.

The method by which you create a ruleset is based on how you access it. This is 
described in the following section.

To specify participant lists based on rulesets:
Business rules can define the participant list. There are two options for using business 
rules:

■ Rules define parameters of a specific list builder (such as Names and Expressions 
or Management Chain). In this case, the task routing pattern is modeled to use a 
specific list builder. In the list builder, the parameters are listed as coming from 
rules. Rules return the list builder of the same type as the one modeled in Oracle 
JDeveloper. 

1. From the Build a list of participants using list, select Names and expressions 
or Management Chain.

2. From the Specify attributes using list, select Rule-based.

3. In the List Ruleset field, enter a ruleset name.

Figure 28–31 provides details. 

Figure 28–31 Rulesets

4. Click OK.

■ Rules define the list builder and the list builder parameters. In this case, the list 
itself is built using rules. The rules define the list builder and the parameters.

1. From the Build a list of participants using list, select Rule-based.

2. In the List Ruleset field, enter a ruleset name.

Figure 28–32 provides details. 



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-29

Figure 28–32 Rulesets

3. Click OK.

Both options create a rule dictionary, if one is not already created, and preseed several 
rule functions and facts for easy specifications of the participant list. In the rule 
dictionary, the following rule functions are seeded to create participant lists:

■ CreateResourceList

■ CreateManagementChainList

The Task fact is asserted by the task service for basing rule conditions.

After the rule dictionary is created, the Oracle Business Rules Designer is displayed. 

1. Model your rule conditions. In the action part, call one of the above functions to 
complete building your lists. Figure 28–33 provides details.

Figure 28–33 Business Rules

The parameters for the rule functions are similar to the ones in Oracle JDeveloper 
modeling. In addition to the configurations in Oracle JDeveloper, some additional 
options are available in the Oracle Business Rules Designer for the following 
attributes:

■ responseType: If the response type is REQUIRED, the assignee must act on 
the task. Otherwise, the assignment is converted to an FYI assignment.

■ ruleName: The rule name can create reasons for assignments.

■ lists: This object is a holder for the lists that are built. Clicking this option 
shows a pre-asserted fact Lists object to use as the parameter. 

An example of rules specifying management chain-based participants is shown in 
Figure 28–34.



Creating the Human Task Definition with the Human Task Editor

28-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–34 Business Rules

If multiple rules are fired, the list builder created by the rule with the highest 
priority is selected.

28.3.6.1.2 Specifying a Time Limit for Acting on a Task  

You can specify the amount of time a user, group, or application role receives to act on 
a task. If the user, group, or role does not act in the time specified, the global escalation 
and renewal policies that you set in the Deadlines section (known as the routing slip 
level) of the Human Task Editor are applied. For example, if the global policy is set to 
escalate the task and this participant does not act in the duration provided, the task is 
escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:
1. Expand the Advanced section of the Edit Participant Type dialog for the single 

type, as shown in Figure 28–35.

Figure 28–35 Advanced Section of Edit Participant Type — Single Type 

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in 
the Deadlines section of the Human Task Editor, see Section 28.3.9, "How to 
Escalate, Renew, or End the Task."

28.3.6.1.3 Inviting Additional Participants to a Task  

You can allow a task assignee to invite other participants into the workflow before 
routing it to the next assignee in this workflow. For example, assume the approval 
workflow goes from James Cooper to John Steinbeck. If this option is checked, James 
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

This is also known as ad hoc routing. If this option is selected, Adhoc Route is added 
to the Actions list in Oracle BPM Worklist at runtime.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-31

To invite additional participants to a task:
1. Expand the Advanced section of the Edit Participant Type dialog for the single 

type, as shown in Figure 28–35.

2. Select Allow this participant to invite other participants. 

28.3.6.1.4 Bypassing a Task Participant  

You can bypass a task participant (user, group, or application role) if a specific 
condition is satisfied. For example, if a user submits a business trip expense report that 
is under a specific amount, no approval is required by their manager.

To bypass a task:
1. Expand the Advanced section of the Edit Participant Type dialog for the single 

type, as shown in Figure 28–35.    

2. Select Specify skip rule. 

This action displays an icon for accessing the Expression Builder dialog for 
building a condition. 

The expression to bypass a task participant must evaluate to a boolean value. For 
example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath 
expression for skipping a participant.

For more information about creating dynamic rule conditions, see Section 28.3.7.2, 
"Specifying Advanced Task Routing Using Business Rules."

28.3.6.2 Configuring the Parallel Participant Type
Figure 28–36 and Figure 28–37 display the upper and lower sections of the Parallel 
dialog.

This participant type is used when multiple users, working in parallel, must act 
simultaneously, such as in a hiring situation when multiple users vote to hire or reject 
an applicant. You specify the voting percentage that is needed for the outcome to take 
effect, such as a majority vote or a unanimous vote. 

For example, a business process collects the feedback from all interviewers in the 
hiring process, consolidates it, and assigns a hire or reject request to each of the 
interviewers. At the end, the candidate is hired if the majority of interviewers vote for 
hiring instead of rejecting. 



Creating the Human Task Definition with the Human Task Editor

28-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–36 Edit Participant Type — Parallel Type (Upper Section of Dialog)

Figure 28–37 Edit Participant Type — Parallel Type (Lower Section of Dialog)

To assign participants to the parallel participant type:
1. In the Label field, enter a recognizable label for this participant. This label must be 

unique among all the participants in the task definition (for example, Approval 
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type 
dialog for the parallel participant type are listed in Table 28–8:

Table 28–8 Edit Participant Type — Parallel Type

For This Subsection... See...

Vote Outcome Section 28.3.6.2.1, "Specifying the Voting Outcome"



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-33

28.3.6.2.1 Specifying the Voting Outcome  You can specify a voted-upon outcome that 
overrides the default outcome selected in the Default Outcome list. This outcome 
takes effect if the required percentage is reached. Outcomes are evaluated in the order 
listed in the table. 

To specify group voting details:
1. Go to the Vote Outcome section of the Edit Participant Type dialog for the parallel 

type.

2. From the list in the Voted Outcomes column, select an outcome for the task (for 
example, Any, ACCEPT, REJECT, or any other outcome specified in 
Section 28.3.4.3, "Specifying a Task Outcome"). 

The Any outcome enables you to determine the outcome dynamically at runtime. 
For example, if you select Any and set the outcome percentage to 60, then at 
runtime, whichever outcome reaches 60% becomes the final voted outcome. If 60% 
of assignees vote to reject the outcome, then it is rejected.

3. From the list in the Outcome Type column, select a method for determining the 
outcome of the final task.

■ By Expression: Dynamically specify the details with an XPath expression.

■ By Percentage: Specify a percentage value that determines when the outcome 
of this task takes effect.

4. From the list in the Value column, specify a value based on your selection in Step 
3.

■ If you selected By Expression, click the Browse icon to the right of the field to 
display the Expression Builder dialog for creating an expression.

■ If you selected By Percentage, enter a percentage value required for the 
outcome of this task to take effect (for example, a majority vote (51) or a 
unanimous vote (100)). For example, assume there are two possible outcomes 
(ACCEPT and REJECT) and five subtasks. If two subtasks are accepted and 
three are rejected, and the required acceptance percentage is 50%, the outcome 
of the task is rejected. Figure 28–38 provides details.

Note that this functionality is nondeterministic. For example, selecting a 
percentage of 30% when there are two subtasks does not make sense.

Participant List Section 28.3.6.2.2, "Creating a Parallel Task Participant 
List"

Limit allocated duration to (under 
the Advanced section)

Section 28.3.6.2.3, "Specifying a Time Limit for Acting on 
a Task"

Allow this participant to invite 
other participants (under the 
Advanced section)

Section 28.3.6.2.4, "Inviting Additional Participants to a 
Task"

Specify skip rule (under the 
Advanced section)

Section 28.3.6.2.5, "Bypassing a Task Participant"

Table 28–8 (Cont.) Edit Participant Type — Parallel Type

For This Subsection... See...



Creating the Human Task Definition with the Human Task Editor

28-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–38 Vote Outcomes Section

5. Click the Add icon to specify additional outcomes.

6. In the Default Outcome list, select the default outcome or enter an XPath 
expression for this task to take effect if the consensus percentage value is not 
satisfied. This happens if there is a tie or if all participants do not respond before 
the task expires. Seeded and custom outcomes that you entered in the Outcomes 
dialog in Section 28.3.4.3, "Specifying a Task Outcome" display in this list.

7. Specify additional group voting details:

■ Immediately trigger voted outcome when minimum percentage is met

If selected, the outcome of the task can be computed early with the outcomes 
of the completed subtasks, enabling the pending subtasks to be withdrawn. 
For example, assume four users are assigned to act on a task, the default 
outcome is APPROVE, and the consensus percentage is set at 50. If the first 
two users approve the task, the third and fourth users do not need to act on 
the task, since the consensus percentage value has been satisfied.

■ Wait until all votes are in before triggering outcome

If selected, the workflow waits for all responses before an outcome is initiated.

8. To share comments and attachments with all group collaborators or workflow 
participants for a task, select Share attachments and comments. This information 
typically displays in the footer region of Oracle BPM Worklist.

28.3.6.2.2 Creating a Parallel Task Participant List  

Users assigned to the list of participants can act upon tasks. You can create several 
types of lists:

■ Value-based name and expression lists

■ Value-based management chain lists

■ Rule-based names and expression lists

■ Rule-based management chain lists

■ Rule-based links

For information about creating these lists of participants, see section Section 28.3.6.1.1, 
"Creating a Single Task Participant List."

28.3.6.2.3 Specifying a Time Limit for Acting on a Task  

You can specify the amount of time a user, group, or application role receives to act on 
a task. If the user, group, or role does not act in the time specified, the global escalation 
and renewal policies that you set in the Deadlines section (known as the routing slip 
level) of the Human Task Editor are applied. For example, if the global policy is set to 
escalate the task and this participant does not act in the duration provided, the task is 
escalated to the manager or another user, as appropriate.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-35

To specify a time limit for acting on a task:
1. In the Advanced section of the Edit Participant Type dialog for the parallel type, 

click the Advanced icon to expand the section shown in Figure 28–37.

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in the 
Deadlines section of the Human Task Editor, see Section 28.3.9, "How to Escalate, 
Renew, or End the Task."

28.3.6.2.4 Inviting Additional Participants to a Task  

You can allow a task assignee to invite other participants into the workflow before 
routing it to the next assignee in this workflow. For example, assume the approval 
workflow goes from James Cooper to John Steinbeck. If this option is checked, James 
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:
1. In the Advanced section of the Edit Participant Type dialog for the parallel type, 

click the Advanced icon to expand the section (if not expanded).

2. Select Allow this participant to invite other participants. 

28.3.6.2.5 Bypassing a Task Participant  

You can bypass a task participant (user, group, or application role) if a specific 
condition is satisfied. For example, if a user submits a business trip expense report that 
is under a specific amount, no approval is required by their manager.

To bypass a task participant:
1. In the Edit Participant Type dialog for the parallel type, select the Specify skip 

rule checkbox. 

This action displays an icon for accessing the Expression Builder dialog for 
building a condition. The expression must evaluate to a boolean value.

For information about a valid XPath expression for skipping a participant, see 
Section 28.3.6.1.4, "Bypassing a Task Participant."

28.3.6.3 Configuring the Serial Participant Type
Figure 28–39 displays the Serial dialog.

This participant type enables you to create a list of sequential participants for a 
workflow. For example, if you want a document to be reviewed by John, Mary, and 
Scott in sequence, use this participant type. For the serial participant type, they can be 
any list of users or groups.



Creating the Human Task Definition with the Human Task Editor

28-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–39 Edit Participant Type — Serial Type

To configure the serial participant type:
1. In the Label field, enter a recognizable label for this participant. This label must be 

unique among all the participants in the task definition (for example, Approval 
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type 
dialog for the serial participant type are listed in Table 28–9.

Table 28–9 Edit Participant Type — Serial Type

For This Subsection... See...

Participant List Section 28.3.6.3.1, "Creating a Serial Task Participant 
List"

Limit allocated duration to (under 
the Advanced section)

Section 28.3.6.3.2, "Specifying a Time Limit for Acting on 
a Task"

Allow this participant to invite 
other participants (under the 
Advanced section)

Section 28.3.6.3.3, "Inviting Additional Participants to a 
Task"

Specify skip rule (under the 
Advanced section)

Section 28.3.6.3.4, "Bypassing a Task Participant"



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-37

28.3.6.3.1 Creating a Serial Task Participant List  

Users assigned to the list of participants can act upon tasks. You can create several 
types of lists:

■ Value-based name and expression lists

■ Value-based management chain lists

■ Rule-based names and expression lists

■ Rule-based management chain lists

■ Rule-based lists

See section Section 28.3.6.1.1, "Creating a Single Task Participant List" for instructions 
on creating these lists of participants.

28.3.6.3.2 Specifying a Time Limit for Acting on a Task  

You can specify the amount of time a user, group, or application role receives to act on 
a task. If the user, group, or role does not act in the time specified, the global escalation 
and renewal policies that you set in the Deadlines section (known as the routing slip 
level) of the Human Task Editor are applied. For example, if the global policy is set to 
escalate the task and this participant does not act in the duration provided, the task is 
escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:
1. In the Advanced section of the Edit Participant Type dialog for the serial type, 

click the Advanced icon to expand the section shown in Figure 28–39.

2. Click Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in 
the Deadlines section of the Human Task Editor, see Section 28.3.9, "How to 
Escalate, Renew, or End the Task."

28.3.6.3.3 Inviting Additional Participants to a Task  

You can allow a task assignee to invite other participants into the workflow before 
routing it to the next assignee in this workflow. For example, assume the approval 
workflow goes from James Cooper to John Steinbeck. If this option is checked, James 
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:
1. In the Advanced section of the Edit Participant Type dialog for the serial type, 

click the Advanced icon to expand the section (if not already expanded).

2. Select Allow this participant to invite other participants.



Creating the Human Task Definition with the Human Task Editor

28-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.6.3.4 Bypassing a Task Participant  

You can bypass a task participant (user, group, or application role) if a specific 
condition is satisfied. For example, if a user submits a business trip expense report that 
is under a specific amount, no approval is required by their manager.

To bypass a task participant:
1. In the Advanced section of the Edit Participant Type dialog for the serial type, 

select the Specify skip rule checkbox. 

This action displays an icon for accessing the Expression Builder dialog for 
building a condition. The expression must evaluate to a boolean value.

For more information about a valid XPath expression for skipping a participant, 
see Section 28.3.6.1.4, "Bypassing a Task Participant."

28.3.6.4 Configuring the FYI Participant Type
Figure 28–40 displays the Edit Participant Type dialog for the FYI type.

This participant type is used when a task is sent to a user, but the business process 
does not wait for a user response; it just continues. FYIs cannot directly impact the 
outcome of a task, but in some cases can provide comments or add attachments. 

For example, a magazine subscription is due for renewal. If the user does not cancel 
the current subscription before the expiration date, the subscription is renewed. This 
user is reminded weekly until the request expires or the user acts on it. 

Figure 28–40 Edit Participant Type — FYI Type

Note: For the serial participant type, additional participants can be 
invited as follows:

■ Globally specifying that the ad hoc participants can be invited at 
anytime. In this case, even in a sequential workflow, approvers 
can invite other participants at any level in the sequential 
workflow.

■ Specifying that an ad hoc invitation of other participants can be 
done only in specific points in the workflow. In this case, other ad 
hoc participants are invited only when a serial in complete.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-39

To configure the FYI participant type:
1. In the Label field, enter a recognizable label for this participant. This label must be 

unique among all the participants in the task definition (for example, Approval 
Manager, Primary Reviewers, and so on).

28.3.6.4.1 Creating an FYI Task Participant List  

Users assigned to the list of participants can act upon tasks. You can create several 
types of lists:

■ Value-based name and expression lists

■ Value-based management chain lists

■ Rule-based names and expression lists

■ Rule-based management chain lists

■ Rule-based lists

See section Section 28.3.6.1.1, "Creating a Single Task Participant List" for instructions 
on creating these lists of participants.

28.3.7 How to Select a Routing Policy
After you configure a participant type and are returned to the Human Task Editor, 
click the Task will go from starting to final participant icon, as shown in 
Figure 28–41.

Figure 28–41 Human Task Editor — Assignment Section

This displays the Configure Assignment dialog shown in Figure 28–42 for specifying a 
method for routing your task through the workflow.



Creating the Human Task Definition with the Human Task Editor

28-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–42 Configure Assignment

Table 28–10 describes the routing policy methods provided.

Table 28–10 Routing Policy Method

Routing Policy Selection Use This Policy In Environments Where... Section

Route task to all 
participants, in order 
specified

This selection enables you 
to specify the following 
suboptions:

A task must be routed to each of the 
participants in the order in which they 
appear. This is predetermined, default 
routing. For example, in a hiring process, if 
three users interview and provide review 
feedback, then the task is sent to the human 
resources department.

Section 28.3.7.1, "Routing Tasks to All 
Participants in the Specified Order"

■ Allow all participants 
to invite other 
participants

A participant can select users or groups as 
the next assignee (ad hoc) when approving 
the task.

Section 28.3.7.1.1, "Allowing All 
Participants to Invite Other 
Participants"

■ Complete task when 
a participant chooses: 
<outcome>

A participant in a task can accept or reject it, 
thus ending the workflow without the task 
being sent to any other participant. For 
example, a manager rejects a purchase order, 
meaning that purchase order is not sent to 
their manager for review.

Section 28.3.7.1.2, "Stopping Routing of 
a Task to Further Participants"

■ Enable early 
completion in 
parallel subtasks

Note: This option is for environments in 
which you have multiple stages and 
participants working in parallel.

Participants perform subtasks in parallel, 
and one group’s rejection or approval of a 
subtask does not cause the other group’s 
subtask to also be rejected or approved. 

Section 28.3.7.1.3, "Enabling Early 
Completion in Parallel Subtasks"

■ Complete parent 
tasks of early 
completing subtasks

Note: This option is for environments in 
which you have multiple stages and 
participants working in parallel.

Participants perform subtasks in parallel, 
and one group’s rejection or approval of a 
subtask causes the other group’s subtask to 
also be rejected or approved. 

Section 28.3.7.1.4, "Completing Parent 
Subtasks of Early Completing Subtasks"



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-41

28.3.7.1 Routing Tasks to All Participants in the Specified Order
You can select to have a task reviewed by all selected participants. This is known as 
default routing because the task is routed to each of the participants in the order in 
which they appear. This type of routing differs from state machine-based routing.

To route tasks to all participants in the specified order:
1. In the Assignment section, click the icon to the right of Task will go from starting 

to final participant. 

2. Select Route task to all participants, in order specified from the list shown in 
Figure 28–43.

Figure 28–43 Route a Task to All Participants

See the following tasks to define a routing policy:

■ Allowing all participants to invite other participants

■ Completing a task when a participant chooses

■ Enabling early completion in parallel subtasks

■ Completing parent subtasks of early completing subtasks

Use Advanced Rules The participants to whom the task is routed 
are determined by the business rule logic 
that you model. For example, a loan 
application task is designed to go through a 
loan agent, their manager, and then the 
senior manager. If the loan agent approves 
the loan, but their manager rejects it, the 
task is returned to the loan agent.

Section 28.3.7.2, "Specifying Advanced 
Task Routing Using Business Rules"

Use External Routing The participants in a task are dynamically 
determined. For example, a company’s rules 
may require the task participants to be 
determined and then retrieved from a 
back-end database during runtime.

Section 28.3.7.3, "Using External 
Routing"

Assignment tab A participant is assigned a failed task for the 
purposes of recovery.

Section 28.3.7.4, "Configuring the Error 
Assignee"

Table 28–10 (Cont.) Routing Policy Method

Routing Policy Selection Use This Policy In Environments Where... Section



Creating the Human Task Definition with the Human Task Editor

28-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.7.1.1 Allowing All Participants to Invite Other Participants  This checkbox is the 
equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL Process Manager 
releases. This applies when there is at least one participant. In this case, each user 
selects users or groups as the next assignee when approving the task.

To allow all participants to invite other participants:
1. In the Assignment section, click the icon to the right of Task will go from starting 

to final participant.

2. Select Route task to all participants, in order specified.

3. Select the Allow all participants to invite other participants checkbox for this task 
assignee to invite other participants into the workflow before routing it to the next 
assignee in this workflow.

28.3.7.1.2 Stopping Routing of a Task to Further Participants  You can specify conditions 
under which to complete a task early, regardless of the other participants in the 
workflow.

For example, assume an expense report goes to the manager, and then the director. If 
the first participant (manager) rejects it, you can end the workflow without sending it 
to the next participant (director).

To abruptly complete a condition:
1. In the Assignment section, click the icon to the right of Task will go from starting 

to final participant. 

2. Select Route task to all participants, in order specified from the list.

3. Select the Complete task when a participant chooses: <outcome> checkbox.

The Abrupt Completion Details dialog appears.

There are two methods for specifying the abrupt completion of a task:

■ Outcomes

■ XPath expression routing condition

If outcomes are specified, any time the selected task outcome occurs, the task 
completes. If both outcome and routing condition are specified, the workflow 
service performs a logical OR operation on the two. 

4. Select appropriate outcomes and click the > button, as shown in Figure 28–44. To 
select all, click the >> button. 



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-43

Figure 28–44 Abrupt Completion Details

5. To the right of the Routing Condition field, click the icon to display the 
Expression Builder dialog for dynamically creating a condition under which to 
complete this task early. For example, if a user submits a business trip expense 
report that is under a specific amount, no approval is required by their manager.

Note that an early completion XPath expression is not evaluated until at least one 
user has acted upon the task. 

6. To enable early completion, click Enable early completion in parallel with 
subtasks. For more information, see Section 28.3.7.1.3, "Enabling Early Completion 
in Parallel Subtasks."

7. To enable early completion of parent tasks, click Complete parent tasks of early 
completing subtasks. For more information, see Section 28.3.7.1.4, "Completing 
Parent Subtasks of Early Completing Subtasks."

8. Click OK to return to the Human Task Editor.

You can click the icon to the right of the Complete task when a participant 
chooses: <outcome> checkbox to edit this information.

28.3.7.1.3 Enabling Early Completion in Parallel Subtasks   You can use this option in the 
following environments:

■ Multiple stages and groups of participants perform subtasks in parallel.

■ A participant in one group approves or rejects a subtask, which causes the other 
participants in that same group to stop acting upon the task. However, this does 
not cause the other parallel group to stop acting upon subtasks. That group 
continues taking actions on tasks. 

For example, assume there are two parallel subgroups, each in separate stages. One 
group acts upon lines of a purchase order. The other group acts upon headers of the 
same purchase order. If participant ApproveLines.Participant2 of the first group 
rejects a line, all other task participants in the first group stop acting upon tasks. 
However, the second parallel group continues to act upon headers in the purchase 
order. In this scenario, the entire task does not complete early. Figure 28–45 provides 
details.



Creating the Human Task Definition with the Human Task Editor

28-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–45 Early Completion of Parallel Subtasks

28.3.7.1.4 Completing Parent Subtasks of Early Completing Subtasks   You can use this 
option in the following environments:

■ Multiple stages and groups of participants perform subtasks in parallel.

■ A participant in one group approves or rejects a subtask, which causes the other 
participants in that same group to stop acting upon the task. This also causes the 
other parallel group to stop acting upon subtasks.

For example, assume there are two parallel subgroups, each in separate stages, as 
shown in Figure 28–45. One group acts upon lines of a purchase order. The other 
group acts upon headers of the same purchase order. If participant 
ApproveLines.Participant2 of the first group rejects a line, all other task participants 
in the first group stop acting upon tasks. In addition, the second parallel group stops 
acting upon headers in the purchase order. In this scenario, the entire task completes 
early.

28.3.7.2 Specifying Advanced Task Routing Using Business Rules
Use advanced routing rules to create complex workflow routing scenarios. The 
participant types (single, parallel, serial, and FYI) are used to create a linear flow from 
one set of users to another with basic conditions such as abrupt termination, skipping 
assignees, and so on. However, there is often a need to perform more complex back 
and forth routing between multiple individuals in a workflow. One option is to use the 
BPEL process as the orchestrator of these tasks. Another option is to specify it 
declaratively using business rules. This section describes how you can model such 
complex interactions by using business rules with the Human Task Editor.

28.3.7.2.1 Introduction to Advanced Task Routing Using Business Rules  You can define state 
machine routing rules using Oracle Business Rules. This action enables you to create 
Oracle Business Rules that are evaluated:

■ After a routing slip task participant sets the outcome of the task

■ Before the task is assigned to the next routing slip participant

This action enables you to override the standard task routing slip method described in 
Section 28.3.7.1, "Routing Tasks to All Participants in the Specified Order" and build 
complex routing behavior into tasks. 



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-45

Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on 
business objects, called facts, to determine which action to take.

28.3.7.2.2 Facts  A fact is an object with certain business data. Each time a routing slip 
assignee sets the outcome of a task, instead of automatically routing the task to the 
next assignee, the task service performs the following steps:

■ Asserts facts into the decision service

■ Executes the advanced routing ruleset

Rules can test values in the asserted facts and specify the routing behavior by setting 
values in a TaskAction fact type.

Table 28–11 describes the fact types asserted by the task service.

Some fact types can only be used in workflow routing rules, while others can only be 
used in workflow participant rules. Table 28–12 describes where you can use each 
type.

Table 28–11 Fact Types Asserted By the Task Service

Fact Type Description

Task This fact contains the current state of the workflow task instance. All task 
attributes can be tested against it. The task fact also contains the current 
task payload. This fact enables you to construct tests against payload 
values and task attribute values. 

PreviousOutco
me

This fact describes the previous task outcome and the assignee who set the 
outcome. The previous outcome fact contains the following attributes:

■ actualParticipant: The name of the participant who set the task 
outcome (for example, jstein)

■ logicalParticipant: The logical name (or label) for the routing 
slip participant responsible for setting the task outcome (for example, 
assignee1)

■ outcome: The outcome that was set (for example, approve or reject)

■ level: If the previous participant was part of a management chain, 
then this attribute records their level in the chain, where 1 is the first 
level in the chain. For other participant types, the value is -1.

■ totalNumberOfApprovals: The total number of users that have 
now set the outcome of the task. 

TaskAction This fact is not intended for writing rule tests against it. Instead, it is 
updated by the ruleset, and returned to the task service to indicate how 
the task should be routed. Rules should not directly update the 
TaskAction fact. Instead, they should call one of the RL functions 
described in Section 28.3.7.2.3, "Action Types." These functions handle 
updating the TaskAction fact with the appropriate values.

Table 28–12 Use of Fact Types

Fact Type Can Use in Routing Rules? Can Use in Participant Rules?

Task Yes Yes

PreviousOutcome Yes No

TaskAction Yes No

Lists No Yes

RoutingSlipObjectFact
ory

No Yes



Creating the Human Task Definition with the Human Task Editor

28-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.7.2.3 Action Types  To instruct the task service on how to route the task, rules can 
specify one of many task actions. This is done by updating the TaskAction fact 
asserted into the rule session. However, rules should not directly update the 
TaskAction fact. Instead, rules should call one of the action RL functions, passing the 
TaskAction fact as a parameter. These functions handle the actual updates to the 
fact. For example, to specify an action of go forward, you must add a call GO_
FORWARD(TaskAction) to the action part of the rule.

Each time a state machine routing rule is evaluated, the rule takes one of the actions 
shown in Table 28–13:

28.3.7.2.4 Sample Ruleset  This section describes how to use rules to implement custom 
routing behavior with a simple example. A human workflow task is created for 
managing approvals of expense requests. The outcomes for the task are approve and 
reject. The task definition includes an ExpenseRequest payload element. One of the 
fields of ExpenseRequest is the total amount of the expense request. The routing slip 
for the task consists of three single participants (assignee1, assignee2, and 
assignee3).

By default, the task gets routed to each of the assignees, with each assignee choosing to 
approve or reject the task.

Instead of this behavior, the necessary routing behavior is as follows:

ResourceListType No Yes

ManagementChainListTy
pe

No Yes

ResourceType No Yes

ParameterType No Yes

AutoActionType No Yes

ResponseType No Yes

Table 28–13 Business Rule Actions

Action Description Parameters

GO_FORWARD Goes to the next participant in the routing 
slip (default behavior).

None

PUSHBACK Goes back to the previous participant in 
the routing slip (the participant before the 
one that just set the task outcome).

None

GOTO Goes to a specific participant in the routing 
slip.

participant'

A string that identifies the 
label of the participant (for 
example, Approver1) to 
which to route the task.

COMPLETE Finishes routing and completes the task. 
The task is marked as completed, and no 
further routing is required.

None

ESCALATE Escalates and reassigns the task according 
to the task escalation policy (usually to the 
manager of the current assignee).

None

Table 28–12 (Cont.) Use of Fact Types

Fact Type Can Use in Routing Rules? Can Use in Participant Rules?



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-47

■ If the total amount of the expense request is less than $100, approval is only 
required from one of the participants. Otherwise, it must be approved by all three.

■ If an expense request is rejected by any of the participants, it must be returned to 
the previous participant for re-evaluation. If it is rejected by the first participant, 
the expense request is rejected and marked as completed.

This behavior is implemented using the following rules. Note that when a rule 
dictionary is generated for advanced routing rules, it is created with a template rule 
that implements the default GO_FORWARD behavior. You can edit this rule, and make 
copies of the template rule by right-clicking and selecting Copy Rule in the Oracle 
Business Rules Designer.

If the amount is greater than $100 and the previous assignee approved the task, it is 
not necessary to provide a rule for routing a task to each of the assignees in turn. This 
is the default behavior that is reverted to if none of the rules in the ruleset are 
triggered:

■  Early approval rule (Figure 28–46):

Figure 28–46 Early Approval Rule

■ Push back on the rejected rule (Figure 28–47):

Figure 28–47 Push Back On The Rejected Rule

■ Complete the Assignee1 rejected rule (Figure 28–48):



Creating the Human Task Definition with the Human Task Editor

28-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–48 Completion of the Assignee1 Rejected Rule

For information about iterative design, see the workflow-106-IterativeDesign 
sample available at the Oracle Technology Network:

https://soasamples.samplecode.oracle.com

28.3.7.2.5 Linked Dictionary Support  For human workflow, business rule artifacts are 
now stored in two rules dictionaries. This is useful for scenarios in which you must 
customize your applications. For example, you create and ship version 1 of an 
application to a customer. The customer then customizes the rulesets in the application 
with Oracle SOA Composer. Those customizations are now stored in a different rules 
dictionary than the base rules dictionary. The rules dictionary that stores the 
customized rulesets links with the rules in the base dictionary. When you later ship 
version 2 of the application, the base rule dictionary may contain additional changes 
introduced in the product. The ruleset customization changes previously performed 
by the customer are preserved and available with the new changes in the base 
dictionary. When an existing application containing a task using rules is opened, if the 
rules are in the old format using one dictionary, they are automatically upgraded and 
divided into two rules dictionaries: 

■ Base dictionary

■ Custom dictionary

For more information about customizations, see Chapter 16, "Customizing SOA 
Composite Applications."

28.3.7.2.6 Creating Advanced Routing Rules  

To create advanced routing rules:
1. In the Assignment section, click the icon to the right of Task will go from starting 

to final participant.

2. Select Use Advanced Rules from the list.

3. To the right of Rules Dictionary, click the Edit icon, as shown in Figure 28–49.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-49

Figure 28–49 Creating a Rules Dictionary

This starts the Oracle Business Rules Designer with a preseeded repository 
containing all necessary fact definitions, as shown in Figure 28–50. A decision 
service component is created for the dictionary, and is associated with the task 
service component.

Figure 28–50 Human Task Rule Dictionary

4. Define state machine routing rules for your task using Oracle Business Rules.

This automatically creates a fully-wired decision service in the human task and the 
associated rule repository and data model.

For more information about business rules, see the following documentation: 

■ Section 28.3.7.2.4, "Sample Ruleset" for an example human task ruleset

■ Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

28.3.7.3 Using External Routing
You configure an external routing service that dynamically determines the participants 
in the workflow. If this routing policy is specified, all other participant types are 
ignored. It is assumed that the external routing service provides a list of participant 
types (single approver, serial approver, parallel approver, and so on) at runtime to 
determine the routing of the task.



Creating the Human Task Definition with the Human Task Editor

28-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Use this option if you do not want to use any of the routing rules to determine task 
assignees. In this case, all the logic of task assignment is delegated to the external 
routing service.

To use external routing
1. In the Assignment section, click the icon to the right of Task will go from starting 

to final participant.

2. Select Use External Routing from the list.

3. Click the Edit icon, as shown in Figure 28–51.

Figure 28–51 Selection of Use External Routing

The External Routing dialog appears, as shown in Figure 28–52.

Note:  If you select Use External Routing in the Configure 
Assignment dialog, specify a Java class, and click OK to exit, the next 
time you open this dialog, the other two selections (Route task to all 
participants, in order specified and Use Advanced Rules) no longer 
appear in the dropdown list. To access all three selections again, you 
must delete the entire assignment.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-51

Figure 28–52 Use External Routing Dialog

4. In the Class Name field, enter the fully qualified class file name (for example, the 
org.mycompany.tasks.RoutingService class name). This class must 
implement the following interface:

oracle.bpel.services.workflow.task.IAssignmentService

5. Add name and pair value parameters by name or XPath expression that can be 
passed to the external service, as shown in Table 28–14.

6. Click the Add icon to add additional name and pair value parameters.

28.3.7.4 Configuring the Error Assignee
Tasks can error for reasons such as incorrect assignments. When such errors occur, the 
task is assigned to the error assignee, who can perform corrective actions. Recoverable 
errors are as follows:

■ Invalid user and group for all participants

■ Invalid XPath expressions that are related to assignees and expiration duration

■ Escalation on expiration errors

■ Evaluating escalation policy

■ Evaluating renewal policy

■ Computing a management chain

■ Evaluating dynamic assignment rules. The task is not currently in error, but is still 
left as assigned to the current user and is therefore recoverable.

Table 28–14 External Routing

Field Description

By Name Enter a name in the Name field and a value in the Value field.

By Expression Enter a name and dynamically enter a value by clicking the icon 
to the right of the field to display the Expression Builder dialog.



Creating the Human Task Definition with the Human Task Editor

28-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Dynamic assignment cyclic assignment (for example, user A > user B > user A). 
The task is not currently in error, but is still left as assigned to the last user in the 
chain and is therefore recoverable.

The following errors are not recoverable. In these cases, the task is moved to the 
terminating state ERRORED.

■ Invalid task metadata

■ Unable to read task metadata

■ Invalid GOTO participant from state machine rules

■ Assignment service not found

■ Any errors from assignment service 

■ Evaluating custom escalate functions

■ Invalid XPath and values for parallel default outcome and percentage values

During modeling of workflow tasks, you can specify error assignees for the workflow. 
If error assignees are specified, they are evaluated and the task is assigned to them. If 
no error assignee is specified at runtime, an administration user is discovered and is 
assigned the alerted task. The error assignee can perform one of the following actions:

■ Ad hoc route

Route the task to the actual users assigned to the task. Ad hoc routing allows the 
task to be routed to users in sequence, parallel, and so on.

■ Reassign

Reassign the task to the actual users assigned to this task

■ Error task

Indicate that this task cannot be rectified.

If there are any errors in evaluating the error assignees, the task is marked as being in 
error.

This dialog enables you to specify the users or groups to whom the task is assigned if 
an error in assignment has occurred.

To configure the error assignee:
1. In the Assignment section, click the icon to the right of Task will go from starting 

to final participant. 

2. Click the Assignment tab.

3. Click the Add icon to assign reviewers or error assignees, as shown in 
Figure 28–53.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-53

Figure 28–53 Error Assignment Details

4. Click the Add icon and select a user, group, or application role to participate in 
this task.

The Identification Type column of the Starting Participant table displays your 
selection of user, group, or application role.

5. See Step 4 through 6 of Section 28.3.6.1.1, "Creating a Single Task Participant List" 
for instructions on selecting a user, group, or application role.

6. If you are using parallel participant types, you can specify where to store the 
subtask payload with the following options.

■ Use server settings

The SharePayloadAcrossAllParallelApprovers System MBean Browser 
boolean property in Oracle Enterprise Manager Fusion Middleware Control 
Console determines whether to share the payload of subtasks in the root task. 
By default, this property is set to true. If set to true, the All task participants 
share the same payload (better performance and less storage space) option is 
used. If this property is set to false, the Each parallel participant has a local 
copy of the payload option is used. To change this property, perform the 
following steps:

a. Right-click soa-infra and select Administration > System MBean 
Browser.

b. Expand Application Defined MBeans > oracle.as.soainfra.config > 
Server: server_name > WorkflowConfig > human-workflow.

c. Click SharePayloadAcrossAllParallelApprovers.

d. Change this property in the list, and click Apply.

■ All task participants share the same payload (better performance and less 
storage space)

The payload for the subtasks is stored in their root task. This means that the 
payload of the root task is shared across all its subtasks. Internally, this option 
provides better performance and storage space consumption. Less storage 
space is consumed because the payload of the root task is shared across all its 
subtasks.

■ Each parallel participant has a local copy of the payload



Creating the Human Task Definition with the Human Task Editor

28-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Each subtask has its own copy of the payload. Internally, this option provides 
lesser performance and storage space consumption because more storage 
space is consumed.

7. Click OK.

For more information about users, groups, or application roles, see Section 27.2.1.1.3, 
"Participant Assignment."

28.3.8 How to Specify Multilingual Settings and Style Sheets
The Presentation section shown in Figure 28–54 enables you to specify resource 
bundles for displaying task details in different languages in Oracle BPM Worklist and 
WordML and custom style sheets for attachments. 

Figure 28–54 Presentation Section

28.3.8.1 Specifying WordML and Other Style Sheets for Attachments

To specify WordML style sheets for attachments:
1. In the Stylesheet for Attachments list of the Presentation section, select one of the 

following options:

■ Word ML: This option dynamically creates Microsoft Word documents for 
sending as email attachments using a WordML XSLT style sheet. The XSLT 
style sheet is applied on the task document. 

■ Other: This option creates email attachments using an XSLT style sheet. The 
XSLT style sheet is applied on the task document.

2. Click the Search icon to select the style sheet as an attachment.

28.3.8.2 Specifying Multilingual Settings
You can specify resource bundles for displaying task details in different languages in 
Oracle BPM Worklist. Resource bundles are supported for the following task details:

■ Displaying the value for task outcomes in plain text or with the message(key) 
format.

■ Making email notification messages available in different languages. At runtime, 
you specify the hwf:getTaskResourceBundleString(taskId, key, 
locale?) XPath extension function to obtain the internationalized string from 
the specified resource bundle. The locale of the notification recipient can be 
retrieved with the function 
hwf:getNotificationProperty(propertyName).

Resource bundles can also simply be property files. For example, a resource bundle 
that configures a display name for task outcomes can look as follows:



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-55

■ APPROVE=Approve

■ REJECT=Reject

To specify multilingual settings:
1. In the Presentation section, click the Add icon across from Resource Bundle.

The Resource Details dialog shown in Figure 28–55 appears.

Figure 28–55 Resource Details Dialog

2. In the Resource Name field, enter the name of the resource used in the resource 
bundle. This should be a .properties-based resource bundle file. 

3. In the Resource Location field, click the Search icon to select the JAR or ZIP 
resource bundle file to use. The resource bundle is part of your system archive 
(SAR) file.

If the resource bundle is outside of the composite project, you are prompted to 
place a local copy in SCA-INF/lib.

If the resource bundle file is not in the composite class loader (directly under 
SCA-INF/classes or in a JAR file in SCA-INF/lib), you must specify its 
location. For example, if the resource bundle is accessible from a location outside 
of the composite class loader (for example, an HTTP location such as 
http://host:port/bundleApp/taskBundles.jar), then this location must 
be specified in this field. 

4. Click OK to return to the Human Task Editor.

For more information, see Section 32.2.6, "How to Configure Notification Messages 
in Different Languages."

28.3.9 How to Escalate, Renew, or End the Task
Figure 28–56 shows the Deadlines section of the Human Task Editor.

You can specify the expiration duration of a task in this global policy section (also 
known as the routing slip level). If the expiration duration is specified at the routing 
slip level instead of at the participant type level, then this duration is the expiration 
duration of the task across all the participants. However, if you specify expiration 
duration at the participant type level (through the Limit allocated duration to 



Creating the Human Task Definition with the Human Task Editor

28-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

checkbox), then those settings take precedence over settings specified in the Deadlines 
section (routing slip level).

Figure 28–56 Human Task Editor — Deadlines Section

28.3.9.1 Introduction to Escalation and Expiration Policy
This section provides an overview of how specifying the expiration duration at this 
level makes this setting the expiration duration of the task across all the participants.

For example, participant LoanAgentGroup and participant Supervisor have three 
days to act on the task between them, as shown in Figure 28–57:

Figure 28–57 Expire After Policy

If there is no expiration specified at either the participant level or this routing slip 
level, then that task has no expiration duration.

If expiration duration is specified at any level of the participants, then for that 
participant, the participant expiration duration is used. However, the global expiration 
duration is still used for the participants that do not have participant level expiration 
duration. The global expiration duration is always decremented by the time elapsed in 
the task. 

The policy for interpreting the participant level expiration for the participants is 
described as follows:

■ Serial

Each assignment in the management chain gets the same expiration duration as 
the one specified in the serial. Note that the duration is not for all the assignments 
resulting from this assignment. If the task expires at any of the assignments in the 
management chain, the escalation and renewal policy is applied.

■ Parallel:

– In a parallel workflow, if the parallel participants are specified as a resource, a 
routing slip is created for each of the resources. The expiration duration of 
each created routing slip follows these rules:



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-57

* The expiration duration equals the expiration duration of the parallel 
participant if it has an expiration duration specified.

* The expiration duration that is left on the task if it was specified at the 
routing slip level.

* Otherwise, there is no expiration duration.

– If parallel participants are specified as routing slips, then the expiration 
duration for the parallel participants is determined by the routing slip.

28.3.9.2 Specifying a Policy to Never Expire
You can specify for a task to never expire.

To specify a policy to never expire:
1. In the dropdown list in the Deadlines section, as shown in Figure 28–56, select 

Never Expire.

28.3.9.3 Specifying a Policy to Expire
You can specify for a task to expire. When the task expires, either the escalation policy 
or the renewal policy at the routing slip level is applied. If neither is specified, the task 
expires. The expiration policy at the routing slip level is common to all the 
participants.

To specify for a task to expire:
1. In the dropdown list of the Deadlines section, select Expire after, as shown in 

Figure 28–58.

2. Specify the maximum time period for the task to remain open.

The expiration policy for parallel participants is interpreted as follows:

■ If parallel participants are specified as resources in parallel elements, there is 
no expiration policy for each of those participants.

■ If parallel participants are specified as routing slips, then the expiration policy 
for the routing slip applies to the parallel participants.

Figure 28–58 indicates that the task expires in three days.

Figure 28–58 Expire After Policy

Note: When the parent task expires in a parallel task, the subtasks 
are withdrawn if those tasks have not expired or completed.



Creating the Human Task Definition with the Human Task Editor

28-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.9.4 Extending an Expiration Policy Period
You can extend the expiration period when the user does not respond within the 
allotted time. You do this by specifying the number of times the task can be renewed 
upon expiration (for example, renew it an additional three times) and the duration of 
each renewal (for example, three days for each renewal period).

To extend an expiration policy period:
1. In the dropdown list of the Deadlines section, select Renew after, as shown in 

Figure 28–59.

2. Specify the maximum number of times to continue renewing this task.

In Figure 28–59, when the task expires, it is renewed at most three times. It does 
not matter if the task expired at the LoanAgentGroup participant or the 
Supervisor participant.

Figure 28–59 Renew After Policy

28.3.9.5 Escalating a Task Policy
You can escalate a task if a user does not respond within the allotted time. For 
example, if you are using the escalation hierarchy configured in your user directory, 
the task can be escalated to the user’s manager. If you are using escalation callbacks, 
the task is escalated to whoever you have defined. When a task has been escalated the 
maximum number of times, it stops escalating. An escalated task can remain in a user 
inbox even after the task has expired.

To escalate a task policy:
1. In the dropdown list of the Deadlines section, select Escalate after, as shown in 

Figure 28–60.

2. Specify the following additional values. When both are set, the escalation policy is 
more restrictive.

■ Maximum Escalation Levels

Number of management levels to which to escalate the task. This field is 
required.

■ Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO). 
These titles are compared against the title of the task assignee in the 
corresponding user repository. This field is optional.

The escalation policy specifies the number of times the task can be escalated on 
expiration and the renewal duration. In Figure 28–60, when the task expires, it is 



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-59

escalated at most three times. It does not matter if the task expired at the 
LoanAgentGroup participant or the Supervisor participant.

Figure 28–60 Escalate After Policy

28.3.9.6 Specifying Escalation Rules
This option allows a custom escalation rule to be plugged in for a particular workflow. 
For example, to assign the task to a current user’s department manager on task 
expiration, you can write a custom task escalation function, register it with the 
workflow service, and use that function in task definitions.

The default escalation rule is to assign a task to the manager of the current user. To add 
a new escalation rule, follow these steps.

To specify escalation rules:
1. Implement the following interface:

oracle.bpel.services.workflow.assignment.dynamic.IDynamicTaskEscalationFunction

This implementation must be available in the class path for the server.

2. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

3. Expand the SOA folder in the navigator.

4. Right-click soa-infra, and select SOA Administration > Workflow Task Service 
Properties.

The Workflow Task Service Properties page appears. 

5.  Add a new function. For example:

■ Function name: DepartmentSupervisor

■ Classpath: 
oracle.bpel.services.workflow.assignment.dynamic.patterns.
DepartmentSupervisor

■ Function parameter name

■ Function parameter value

6. In the Custom Escalation Java Class field of the Deadlines section, enter the 
function name as defined in the Workflow Task Service Properties page for the 
escalation rule.

For more information, see Section 32.3.3, "Custom Escalation Function."



Creating the Human Task Definition with the Human Task Editor

28-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.9.7 Specifying a Due Date
A due date indicates the date by which the task should be completed. Note that the 
due date is different from the expiration date. When a task expires it is either marked 
expired or automatically escalated or renewed based on the escalation policy. The due 
date is generally a date earlier than the expiration date and an indication to the user 
that the task is about to expire.

You can enter a due date for a task, as shown in Figure 28–56. A task is considered 
overdue after it is past the specified due date. This date is in addition to the expiration 
policy. A due date can be specified irrespective of whether an expiration policy has 
been specified. The due date enables Oracle BPM Worklist to display a due date, list 
overdue tasks, highlight overdue tasks in the inbox, and so on. Overdue tasks can be 
queried using a predicate on the TaskQueryService.queryTask(...) API.

To specify a due date:
1. In the Deadlines section, select the Action Requested Before checkbox.

2. Select By Duration to enter a time duration or select By Expression to 
dynamically enter a value as an XPath expression.

Note the following details:

■ The due date can be set on both the task (using the Create ToDo Task dialog in 
Oracle BPM Worklist) and in the .task file (using the Human Task Editor). 
This is to allow to-do tasks without task definitions to set a due date during 
initiation of the task. A due date that is set in the task (a runtime object) 
overrides a due date that is set in the .task file.

■ In the task definition, the due date can only be specified at the global level, 
and not for each participant.

■ If the due date is set on the task, the due date in the .task file is ignored.

■ If the due date is not set on the task, the due date in the .task file is 
evaluated and set on the task.

■ If there is no due date on either the task or in the .task file, there is no due 
date on the task.

For more information, see Section 30.3.4, "How To Create a ToDo Task."

28.3.10 How to Specify Participant Notification Preferences
Figure 28–61 shows the General tab of the Notification section of the Human Task 
Editor (when fully expanded).

Notifications indicate when a user or group is assigned a task or informed that the 
status of the task has changed. Notifications can be sent through email, voice message, 
instant message, or SMS. Notifications are sent to different types of participants for 
different actions. Notifications are configured by default with default messages. For 
example, a notification message is sent to indicate that a task has completed and 
closed. You can create your own or modify existing configurations.

Note: You cannot specify business rules for to-do tasks.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-61

Figure 28–61 Human Task Editor — General Tab of Notification Section

To specify participant notification preferences:
1. Click the Notification tab (displays as shown in Figure 28–61).

Instructions for configuring the following subsections of the General tab of the 
Notification section are listed in Table 28–15.

For information about the notification service, see Section 32.2, "Notifications from 
Human Workflow."

2. In the Notification section, click the Advanced tab. Figure 28–62 provides details.

Figure 28–62 Notification Section - Advanced Tab

Note: Embedded LDAP does not support group email addresses. 
Therefore, when a task is assigned to a group ID, emails are sent to all 
of its members instead of to the group email address.

Table 28–15 Human Task Editor — General Tab of Notification Section

For This Subsection... See...

Task Status 

Recipient

Section 28.3.10.1, "Notifying Recipients of Changes to 
Task Status"

Notification Header Section 28.3.10.2, "Editing the Notification Message"



Creating the Human Task Definition with the Human Task Editor

28-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Instructions for configuring the following subsections of the Advanced tab of the 
Notification section are listed in Table 28–16.

28.3.10.1 Notifying Recipients of Changes to Task Status
Three default status types display in the Task Status column: Assign, Complete, and 
Error. You can select other status types for which to receive notification messages.

To notify recipients of changes to task status:
1. In the Notification section, click the General tab.

2. In the Task Status column, click a type to display the complete list of task types:

■ Alerted

When a task is in an alerted state, you can notify recipients. However, none of 
the notification recipients (assignees, approvers, owner, initiator, or reviewer) 
can move the task from an alerted state to an error state; they only receive an 
FYI notification of the alerted state. The owner can reassign, withdraw, delete, 
or purge the task, or ask the error assignee to move the task to an error state if 
the error cannot be resolved. Only the error assignee can move a task from an 
alerted state to an error state.

You configure the error assignee on the Assignment tab of the Configure 
Assignment dialog under the Task will go from starting to final participant 
icon in the Assignment section. For more information, see Section 28.3.7.4, 
"Configuring the Error Assignee."

■ Assign

When the task is assigned to users or a group. This captures the following 
actions:

– Task is assigned to a user

– Task is assigned to a new user in a serial workflow

– Task is renewed

– Task is delegated

Table 28–16 Human Task Editor — Advanced Tab of Notification Section

For This Subsection... See...

Reminders Section 28.3.10.3, "Setting Up Reminders"

Encoding Section 28.3.10.4, "Changing the Character Set 
Encoding"

Make notifications secure (exclude 
details)

Section 28.3.10.5, "Securing Notifications to Exclude 
Details"

Show worklist URL in notifications Section 28.3.10.6, "Showing the Oracle BPM Worklist 
URL in Notifications"

Make notifications actionable Section 28.3.10.7, "Making Email Messages Actionable"

Send task attachments with email 
notifications

Section 28.3.10.8, "Sending Task Attachments with Email 
Notifications"

Group notification configuration Section 28.3.10.9, "Sending Email Notifications to 
Groups and Application Roles"

Notification header attributes Section 28.3.10.10, "Customizing Notification Headers"



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-63

– Task is reassigned

– Task is escalated

– Information for a task is submitted

■ Complete

■ Error

■ Expire

■ Request Info

■ Resume

■ Suspend

■ Update

– Task payload is updated

– Task is updated

– Comments are added

– Attachments are added and updated

■ Update Outcome

■ Withdraw

■ All Other Actions

– Any action not covered in the above task types. This includes acquiring a 
task.

3. Select a task status type.

Notifications can be sent to users involved in the task in various capacities. This 
includes when the task is assigned to a group, each user in the group is sent a 
notification if there is no notification endpoint available for the group.

4. In the Recipient column, click an entry to display a list of possible recipients for 
the notification message:

■ Assignees

The users or groups to whom the task is currently assigned.

■ Initiator

The user who created the task.

■ Approvers

The users who have acted on the task up to this point. This applies in a serial 
participant type in which multiple users have approved the task and a 
notification must be sent to all of them.

■ Owner

The task owner

■ Reviewer

The user who can add comments and attachments to a task.

For more information, see Section 32.2.5, "How to Configure the Notification 
Channel Preferences."



Creating the Human Task Definition with the Human Task Editor

28-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.10.2 Editing the Notification Message
A default notification message is available for delivery to the selected recipient. If you 
want, you can modify the default message text.

To edit the notification message:
1. In the Notification section, click the General tab.

2. In the Notification Header column, click the Edit icon to modify the default 
notification message.

The Edit Notification Message dialog shown in Figure 28–63 appears.

Figure 28–63 Edit Notification Message Dialog

This message applies to all the supported notification channels: email, voice, 
instant messaging, and SMS. Email messages can also include the worklist task 
detail defined in this message. The channel by which the message is delivered is 
based upon the notification preferences you specify.

3. Modify the message wording as necessary.

4. Click OK to return to the Human Task Editor.

For more information about notification preference details, see Section 32.2, 
"Notifications from Human Workflow."

28.3.10.3 Setting Up Reminders
You can send task reminders, which can be based on the time the task was assigned to 
a user or the expiration time of a task. The number of reminders and the interval 
between the reminders can also be configured.

To set up reminders:
1. In the Notification section, click the Advanced tab.

2. From the list, select the number of reminders to send.

3. If you selected to remind the assignee one, two, or three times, select the interval 
between reminders, and whether to send the reminder before or after the 
assignment.

For more information, see Section 32.2.12, "How to Send Reminders."



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-65

28.3.10.4 Changing the Character Set Encoding
Unicode is a universally-encoded character set that enables information from any 
language to be stored using a single character set. Unicode provides a unique code 
value for every character, regardless of the platform, program, or language. You can 
use the default setting of UTF-8 or you can specify a character set with a Java class.

To change the character set encoding
1. In the Notification section, click the Advanced tab.

2. From the Encoding list, select Specify by Java Class.

3. Enter the Java class to use.

28.3.10.5 Securing Notifications to Exclude Details

To secure notifications, make messages actionable, and send attachments:
1. In the Notification section, click the Advanced tab.

2. Select Make notifications secure (exclude details).

If selected, a default notification message is used. There are no HTML worklist 
task details, attachments, or actionable links in the email. Only the task 
number is in the message. 

For more information, see Section 32.2.10, "How to Send Secure Notifications." 

28.3.10.6 Showing the Oracle BPM Worklist URL in Notifications
You can configure whether to display the Oracle BPM Worklist URL in email 
notification messages. 

To show the Oracle BPM Worklist URL in notifications:
1. In the Notification section, click the Advanced tab.

2. Select the Show worklist URL in notifications checkbox to display the Oracle 
BPM Worklist URL in email notification messages. If this checkbox is not selected, 
the URL is not displayed.

28.3.10.7 Making Email Messages Actionable

To make email messages actionable:
1. In the Notification section, click the Advanced tab.

2. Select Make notification actionable. This action enables you to perform task 
actions through email.

For more information about additional configuration details, see Section 32.2.7, 
"How to Send Actionable Messages."

For more information about configuring outbound and inbound emails, see Oracle 
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite. 

Note: FYI tasks are not actionable and cannot be acknowledged from 
email messages.



Creating the Human Task Definition with the Human Task Editor

28-66 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.3.10.8 Sending Task Attachments with Email Notifications
You can send task attachments with email notifications.

To send task attachments with email notifications:
1. In the Notification section, click the Advanced tab.

2. Select Send task attachments with email notifications.

28.3.10.9 Sending Email Notifications to Groups and Application Roles 
You can send email notifications to groups and application roles to which tasks are 
assigned.

To send email notifications to groups and application roles:
1. In the Notification section, click the Advanced tab.

2. From the Group notification configuration list, select one of the following 
options.

■ Send individual emails

Each user in the group or application role receives an individual email 
notification. This is the default selection. 

In addition, the Use separate task forms based on locale checkbox is 
automatically selected. 

– When selected, this sends individual emails with a separate task form 
based on the language locale.

– When not selected, this sends individual emails and reuses (shares) the 
task form.

■ Send one email containing all user addresses

A shared notification email is generated once for a user locale in a group or 
application role, thereby saving time in notification email content generation. 
The email is sent to all users in the group or application role.

28.3.10.10 Customizing Notification Headers
Custom notification headers are used to specify name and value pairs to identify key 
fields within the notification. These entries can be used by users to define delivery 
preferences for their notifications. For example:

You can set Name to ApprovalType and value to Expense or Name to Priority and 
value to High.

Notes:

■ Since all (or a subset of) users receive the same email, the users in 
the group or application role are expected to have the same 
privilege. This ensures that the user does not see task details to 
which they are not entitled.

■ When sending one email to all users, the maximum number of 
characters allowed in the address field is 2000. If the limit is 
exceeded, email is sent to only those user addresses contained 
within the maximum limit.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-67

Users can then specify delivery preferences in Oracle BPM Worklist. These preferences 
can be based on the contents of the notification.

Note that the rule-based notification service is only used to identify the preferred 
notification channel to use. The address for the preferred channel is still obtained from 
the identity service.

To customize notification headers:
1. In the Notification section, click the Advanced tab.

2. Expand Notification Header Attributes.

3. Add name and pair value parameters by name or XPath expression.

For more information about preferences, see the following sections:

■ Section 32.2.8, "How to Send Inbound and Outbound Attachments"

■ Section 32.2.14, "How to Create Custom Notification Headers"

■ Part XI, "Using Oracle User Messaging Service"

28.3.11 How to Specify Access Policies and Task Actions on Task Content
You can specify access rules on task content and actions to perform on that content.

28.3.11.1 Specifying Access Policies on Task Content
You can specify access rules that determine the parts of a task that participants can 
view and update. Access rules are enforced by the workflow service by applying rules 
on the task object during the retrieval and update of the task. 

28.3.11.1.1 Introduction to Access Rules  Access rules are computed based on the 
following details:

■ Any attribute configured with access rules declines any permissions for roles not 
configured against it. For example, assume you configure the payload to be read 
by assignees. This action enables only assignees and nobody else to have read 
permissions. No one, including assignees, has write permissions.

■ Any attribute not configured with access rules has all permissions.

■ If any payload message attribute is configured with access rules, any 
configurations for the payload itself are ignored due to potential conflicts. In this 
case, the returned map by the API does not contain any entry for the payload. 
Write permissions automatically provide read permissions.

■ If only a subset of message attributes is configured with access rules, all message 
attributes not involved have all permissions. 

■ Only comments and attachments have add permissions. 

■ Write permissions on certain attributes are meaningless. For example, write 
permissions on history do not grant or decline any privileges on history. 

■ The following date attributes are configured as one in the Human Task Editor. The 
map returned by TaskMetadataService.getVisibilityRules() contains 

Note: Task content access rules and task actions access rules exist 
independently of one another. 



Creating the Human Task Definition with the Human Task Editor

28-68 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

one key for each. Similarly, if the participant does not have read permissions on 
DATES, the task does not contain any of the following task attributes:

– START_DATE

– END_DATE

– ASSIGNED_DATE

– SYSTEM_END_DATE

– CREATED_DATE

– EXPIRATION_DATE

– ALL_UPDATED_DATE

■ The following assignee attributes are configured as one in the Human Task Editor. 
The map returned by TaskMetadataService.getVisibilityRules() 
contains one key for each of the following. Similarly, if the participant does not 
have read permissions on ASSIGNEES, the task does not contain any of the 
following task attributes:

– ASSIGNEES

– ASSIGNEE_USERS

– ASSIGNEE_GROUPS

– ACQUIRED_BY

■ Mapped attributes do not have individual representation in the map returned by 
TaskMetadataService.getVisibilityRules(). 

■ All message attributes in the map returned by 
TaskMetadataService.getVisibilityRules() are prefixed by 
ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_
MESSAGE_ATTR_PREFIX (PAYLOAD).

An application can also create pages to display or not display task attributes based on 
the access rules. This can be achieved by retrieving a participant’s access rules by 
calling the API on 
oracle.bpel.services.workflow.metadata.ITaskMetadataService. 
Example 28–1 provides details.

Example 28–1 API Call

public Map<String, IPrivilege> getTaskVisibilityRules(IWorkflowContext context,
                                      String taskId)
   throws TaskMetadataServiceException;

For more information about this method, see Oracle Fusion Middleware Workflow 
Services Java API Reference for Oracle SOA Suite.

28.3.11.1.2 Specifying User Privileges for Acting on Task Content  You can specify the 
privileges that specific users (such as the task creator or owner) have for acting on 
specific task content (such as a payload).

To specify user privileges for acting on task content:
1. Click the Access tab.

2. Click the Content tab.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-69

3. Select the task content for which to specify access privileges, as shown in 
Figure 28–64.

Figure 28–64 Configure Task Content Access

4. Assign privileges (read, write, or no access) to users to act upon task content. Note 
that a user cannot be assigned a privilege above their highest level. For example, 
an ADMIN user cannot be assigned write access on the PAYLOAD task content. 
Table 28–17 shows the maximum privilege each user has on task content.

For example, if you accept the default setting of ASSIGNEES, CREATOR, and 
OWNER with write access, ADMIN, APPROVERS, and REVIEWERS with read 
access, and PUBLIC with no access to the PAYLOAD task content, the dialog 
appears as shown in Figure 28–64.

5. Select the method for displaying task content in this dialog. Note that choosing the 
currently unselected option causes all settings to reset to their default values.

■ Coarse grained (default)

Table 28–17 Highest Privilege Levels for Users of Task Content

Task Content Individual with Read Access Individual with Write Access

Assignees Admin, Approvers, Assignees, 
Creator, Owner, Reviewers

--

Attachments Admin, Approvers Assignees, Creator, Owner, 
Reviewers

Comments Admin, Approvers Assignees, Creator, Owner, 
Reviewers

Dates Admin, Approvers, Assignees, 
Creator, Owner, Reviewers

--

Flexfields Admin, Approvers, Reviewers Assignees, Creator, Owner

History Admin, Approvers, Assignees, 
Creator, Owner, Reviewers

--

Payload Admin, Approvers, Reviewers Assignees, Creator, Owner

Reviewers Admin, Approvers, Assignees, 
Creator, Owner, Reviewers

--

Payload elements Inherited from payload Inherited from payload



Creating the Human Task Definition with the Human Task Editor

28-70 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 Displays the task content as a whole (for example, displays only one payload 
or reviewer).

■ Fine grained 

Displays the content as individual elements (for example, displays all 
payloads (such as p1, p2, and p3) and all reviewers assigned to this task (such 
as jstein, wfaulk, and cdickens).

28.3.11.1.3 Specifying Actions for Acting Upon Tasks   You can specify the actions (either 
access or no access) that specific users (such as the task creator or owner) have for 
acting on the task content (such as a payload) that you specified in the Configure Task 
Content Access dialog.

To specify actions for acting upon tasks:
1. Click the Access tab.

2. Click the Actions tab.

3. Select the task action for which to specify users, as shown in Figure 28–65.

Figure 28–65 Selection of Add Action Access Rule

4. Select if participants can or cannot perform the selected actions.

5. Select the method for displaying task actions in this dialog. Note that choosing the 
currently unselected option causes all settings to reset to their default values.

■ Coarse grained (default)

Displays the task actions as a whole (for example, displays only one approval 
or rejection).

■ Fine grained 

Displays the content actions as individual elements. (for example, displays all 
approvals or rejections).

Note: Access rules are always applied on top of what the system 
permits, depending on who is performing the action and the current 
state of the task.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-71

28.3.12 How to Specify a Workflow Digital Signature Policy
Digital signatures provide a mechanism for the nonrepudiation of digitally-signed 
human tasks. This ability to mandate that a participant acting on a task signs the 
details and their action before the task is updated ensures that they cannot repudiate it 
later.

To specify a workflow digital signature policy:
1. Click the Access tab.

2. From the Signature Policy list, select Configure Policy, as shown in Figure 28–66.

Figure 28–66 Digital Signatures

3. Specify the signature policy for task participants to use:

■ No signature required

Participants can send and act upon tasks without providing a signature. This 
is the default policy.

■ Password required

Participants specify a signature before sending tasks to the next participant. 
Participants must reenter their password while acting on a task. The password 
is used to generate the digital signature. A digital signature authenticates the 
identity of the message sender or document signer. This ensures that the 
original content of the sent message is unchanged.

■ Digital certificate required

Participants must possess a digital certificate for the nonrepudiation of 
digitally-signed human tasks. A digital certificate establishes the participant's 
credentials. It is issued by a certification authority (CA). It contains the 
following:

– Your name

– A serial number

Note: If digital signatures are enabled for a task, actionable emails 
are not sent during runtime. This is the case even if actionable emails 
are enabled during design time.



Creating the Human Task Definition with the Human Task Editor

28-72 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– Expiration dates

– A copy of the certificate holder's public key (used for encrypting messages 
and digital signatures)

– Digital signature of the certificate-issuing authority so that message 
authenticity can be established

The CA names and CA CRL and URLs of the issuing authorities must be 
configured separately.

4. Click OK.

For more information, see Section 32.1.10, "Evidence Store Service and Digital 
Signatures."

28.3.12.1 Specifying a Certificate Authority
To use digital signatures, you must specify CAs you consider trustworthy in the 
System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control 
Console. Only certificates issued from such CAs are considered valid by human 
workflow.

To specify a certificate authority:
1. From the SOA Infrastructure menu, select Administration > System MBean 

Browser.

2. Select Application Defined MBeans > oracle.as.soainfra.config > Server: server_
name > WorkflowConfig > human.workflow.

3. Click the Operations tab.

4. Click AddTrustedCA.

5. In the Value fields for CaName and CaURL, specify appropriate values.

6. Click Invoke.

7. Click Return.

You must validate these values before using them. 

28.3.13 How to Specify Restrictions on Task Assignments
You can restrict the users to which a task can be reassigned or routed by using a 
callback class.

The user community seeded in a typical LDAP directory can represent the whole 
company or division. However, it may be necessary at times to limit the potential list 
of users to associate with a task based on the scope or importance of the task or 
associated data. For example, in a large company with thousands of users, only a few 
people have the ability to approve and create purchase orders. Specifically for such 
tasks, the users that can be chosen for ad hoc routing and reassignment should not be 
the whole company. Instead, only a few users who are relevant or have the right 
privilege should be chosen. This can be achieved by the restricted assignment 
functionality. This is implemented as a callback class that can implement the logic to 
choose the right set of users dynamically based on the task object that is passed 
containing the instance data. 

To specify restrictions on task assignments:
1. In the Access section, click Configure Restricted Assignments.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-73

The Configure Restricted Assignment dialog appears. 

2. Enter the class name. The class must implement the 
oracle.bpel.services.workflow.task.IRestrictedAssignmentCallb
ack interface.

3. Click the Add icon to add name and value pairs for the property map passed to 
invoke the callback.

4. Click OK.

28.3.14 How to Specify Java or Business Event Callbacks
You can specify Java or business event callbacks.

28.3.14.1 Specifying Callback Classes on Task Status
You can register callbacks for the workflow service to call when a particular stage is 
reached during the lifecycle of a task. Two types of callbacks are supported:

■ Java callbacks: The callback class must implement the interface 
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make 
the callback class available in the class path of the server. 

■ Business event callbacks: You can have business events raised when the state of a 
human task changes. You do not need to develop and register a Java class. The 
caller implements the callback using an Oracle Mediator service component to 
subscribe to the applicable business event to be informed of the current state of an 
approval transaction.

To specify callback classes on task status:
1. Click the Events tab.

The following callbacks are available for selection:

■ OnAssigned

Select if the callback class must be called on any assignment change, including 
standard routing, reassignment, delegation, escalation, and so on. If a callback 
is required when a task has an outcome update (that is, one of the approvers 
in a chain approves or rejects the task), this option must be selected.

■ OnUpdated

Select if the callback class must be called on any update (including payload, 
comments, attachments, priority, and so on).

■ OnCompleted

Select if the callback class must finally be called when the task is completed 
and control is about to be passed to the initiator (such as the BPEL process 
initiating the task).

■ OnStageCompleted

Select if the callback class must be called to enable business event callbacks in 
a human workflow task. When the event is raised, it contains the name of the 
completed stage, the outcome for the completed stage, and a snapshot of the 
task when the callback is invoked.

■ OnSubtaskUpdated



Creating the Human Task Definition with the Human Task Editor

28-74 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Select if the callback class must be called on any update (including payload, 
comments, attachments, priority, and so on) on a subtask (one of the tasks in a 
parallel-and-parallel scenario).

2. See the following section based on the type of callback to perform.

■ Section 28.3.14.1.1, "Specifying Java Callbacks"

■ Section 28.3.14.1.2, "Specifying Business Event Callbacks"

28.3.14.1.1 Specifying Java Callbacks  

To specify Java callbacks:
1. In the State column of the Events section, select a task state.

2. In the Java Class column, click the empty field to enter a value. This value is the 
complete class name of the Java class that implements 
oracle.bpel.services.workflow.task.IRoutingSlipCallback. 
Figure 28–67 provides details.

Figure 28–67 CallBack Details Dialog with Java Selected

3. Click OK.

28.3.14.1.2 Specifying Business Event Callbacks  

To specify business event callbacks:
1. In the State column of the Events section, select a task state.

2. Leave the Java Class field empty.

3. Select the Trigger Workflow Event checkbox. This action disables the Java Class 
column, as shown in Figure 28–68. Each callback, such as OnAssigned, 
corresponds to a business event point. When a business event is fired, the event 
details contain the task object and a set of properties that are populated based on 
the context of the event being fired.



Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 28-75

Figure 28–68 CallBack Details Dialog with Business Events Selected

A preseeded, static event definition language (EDL) file (JDev_
Home\jdeveloper\integration\seed\soa\shared\workflow\HumanTas
kEvent.edl) provides the list of available business events to which to subscribe. 
These business events correspond to the callbacks you select in the Callback 
Details dialog. You must now create an Oracle Mediator service component in 
which you reference the EDL file and subscribe to the appropriate business event. 

4. Create an Oracle Mediator service component in the same or a different SOA 
composite application that can subscribe to the event.

5. In the Template list during Oracle Mediator creation, select Subscribe to Events.

6. Click the Add icon to subscribe to a new event.

7. To the right of the Event Definition field, click the Browse icon to select the EDL 
file.

The SOA Resource Browser dialog appears. 

8. Select the previously created file-based MDS connection.

9. From the list at the top, select Resource Palette.

10. Select SOA > Shared > Workflow > HumanTaskEvent.edl.

11. Click OK.

The Event Chooser is now populated with EDL file business events available for 
selection. 

12. In the Event field, select the event to which to subscribe. Figure 28–69 provides 
details. 

Note: A file-based MDS connection is required so that the EDL file 
can be located. The location for the file-based MDS is JDev_
Home\jdeveloper\integration\seed.



Creating the Human Task Definition with the Human Task Editor

28-76 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–69 Event Callbacks

You can have multiple human tasks available for subscribing to the event. For 
example, assume you performed the following:

■ Configured a human task named TaskA to subscribe to the event (for example, 
OnAssigned)

■ Configured a human task named TaskB to subscribe to the same event

To distinguish between events for TaskA and TaskB and ensure that an event is 
processed only by the intended Oracle Mediator, you can add a static routing 
filter:

xpath20:compare(med:getComponentName(), 'TaskA')

This only invokes this routing when the sending component is TaskA.

13. If the EDL file was not selected from the file-based MDS connection, accept to 
import the dependent XSD files when prompted, and click OK. If the EDL file was 
selected from the file-based MDS connection, you are not prompted. 

The Oracle Mediator service component is now populated with the business event 
to which to subscribe. You can also subscribe to other business events defined in 
the same EDL file now or at a later time.

See the following documentation for additional details about business events and 
callbacks:

■ Chapter 39, "Using Business Events and the Event Delivery Network" for specific 
details about business events

■ Sample workflow-116-WorkflowEventCallback, which is available from the Oracle 
Technology Network:

https://soasamples.samplecode.oracle.com

28.3.15 How to Specify Task and Routing Customizations in BPEL Callbacks
In general, the BPEL process calls into the workflow component to assign tasks to 
users. When the workflow is complete, the human workflow service calls back into the 
BPEL process. However, if you want fine-grained callbacks (for example, 
onTaskUpdate or onTaskEscalated) to be sent to the BPEL process, you can use 
the Allow task and routing customization in BPEL callbacks option.

Make sure to manually refresh the BPEL diagram for this callback setting. 



Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 28-77

To specify task and routing customizations in BPEL callbacks:
1. In the Events section, select the Allow task and routing customization in BPEL 

callbacks checkbox.

2. Return to Oracle BPEL Designer.

3. Open the task activity dialog.

4. Click OK.

This creates the while, pick, and onMessage branch of a pick activity for BPEL callback 
customizations inside the task scope activity. 

For more information about specifying task and routing customizations, see 
Section 28.4.5.1, "Invoking BPEL Callbacks."

28.3.16 Disabling BPEL Callbacks
A user talk activity (in Oracle BPEL Designer) has an invoke activity followed by a 
receive or pick activity. Deselecting the Disable BPEL callbacks checkbox enables you 
to invoke the task service without waiting for a reply. 

To disable BPEL callbacks:
1. In the Events section, deselect the Disable BPEL callbacks checkbox.

2. Click OK.

28.3.17 How to Exit the Human Task Editor and Save Your Changes
You can save your human task changes at any time. The task can be re-edited at a later 
time by double-clicking the metadata task configuration .task file in the Application 
Navigator.

To exit the Human Task Editor and save your changes:
1. From the File main menu, select Save or click the X sign shown in Figure 28–70 to 

close the .task metadata task configuration file.

Figure 28–70 File Closure

2. If you click the X sign, select Yes when prompted to save your changes.

28.4 Associating the Human Task Service Component with a BPEL 
Process

To associate the human task service component created in the SOA Composite Editor 
with a BPEL process, follow these instructions. When association is complete, a task 
service partner link is created in Oracle BPEL Designer. The task service exposes the 
operations required to act on a task.

For more information about creating a human task, see Section 28.3, "Creating the 
Human Task Definition with the Human Task Editor."



Associating the Human Task Service Component with a BPEL Process

28-78 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.4.1 How to Associate a Human Task with a BPEL Process
There are two ways to associate a human task service component with a BPEL process:

■ If you have created a human task service component in the SOA composite 
application, drag a human task activity into the BPEL process in Oracle BPEL 
Designer. Then, select the existing human task service component from the Task 
Definition list of the Create Human Task dialog. You can then specify the task 
title, initiator, parameter values, and other values.

■ If you have not created a human task service component, drag the human task 
activity into the BPEL process in Oracle BPEL Designer Then, click the Add icon to 
the right of the Task Definition list in the Create Human Task dialog. This action 
enables you to specify the name of the new human task service component, the 
parameters, and the outcomes. The Human Task Editor then opens for you to 
design the remaining task metadata. After design completion, close the Human 
Task Editor.

To associate a human task with a BPEL process:
1. Go to the SOA Composite Editor.

2. Double-click the BPEL process service component with which to associate the 
.task file of the human task service component.

3. In the Component Palette, expand SOA Components.

4. Drag a new Human Task activity into the BPEL process.

5. Double-click the Human Task activity.

The Human Task dialog appears.

6. From the Task Definition list of the General tab, select the human task, as shown 
in Figure 28–71.

Figure 28–71 Task Definition List Selection



Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 28-79

The .task file of the human task service component is associated with the BPEL 
process.

28.4.2 What You May Need to Know About Deleting a Wire Between a Human Task 
Service Component and a BPEL Process

If you delete the wire between a BPEL process and the human task service component 
that it invokes, the invoke activity of the human workflow is deleted from the BPEL 
process. However, the taskSwitch switch activity for taking action (contains the 
approve, reject, and otherwise task outcomes) is still there. This is by design for the 
following reasons:

■ The switch activity contains user-entered BPEL code.

■ The switch can be reused if the intention for deleting the wire is only to point to 
another human task.

■ Deleting the switch is a single-step action.

If you then drag and drop a human task service component into the BPEL process to 
use the same taskSwitch switch activity, a new taskSwitch switch activity is created. 
You then have two switch activities in the BPEL process with the same name. To 
determine which one to delete, you must go into the approve, reject, and otherwise 
task outcomes of the taskSwitch switch activities to determine which is the older, 
modified switch and which is the newer switch. 

28.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter 
Variables

Figure 28–72 shows the General tab that displays after you select the human task.

Note: After you complete association of your human task activity 
with a BPEL process and close the Create Human Task dialog, you can 
always re-access this dialog by double-clicking the human task 
activity in Oracle BPEL Designer.



Associating the Human Task Service Component with a BPEL Process

28-80 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–72 Human Task — General Tab (After Selection)

The General tab of the Human Task activity enables you to perform the tasks shown in 
Table 28–18:

28.4.3.1 Specifying the Task Title
The title displays the task in Oracle BPM Worklist during runtime. This is a mandatory 
field. Your entry in this field overrides the task title you entered in the Task Title field 
of the General section of the Human Task Editor described in Section 28.3.4.1, 
"Specifying a Task Title." 

To specify the task title:
1. In the Task Title field of the General tab, enter the task title through one of the 

following methods:

■ Enter the title manually.

■ Click the icon to the right of the field to display the Expression Builder dialog 
to dynamically create the title.

You can also combine static text and dynamic expressions in the same title. To 
include dynamic text, place your cursor at the appropriate point in the text and 
click the icon on the right to invoke the Expression Builder dialog. 

Table 28–18 Human Task - General Tab

For this Field... See...

Task Title Section 28.4.3.1, "Specifying the Task Title"

Initiator

Priority

Section 28.4.3.2, "Specifying the Task Initiator and Task Priority"

Task Parameters Section 28.4.3.3, "Specifying Task Parameters"



Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 28-81

28.4.3.2 Specifying the Task Initiator and Task Priority
You can specify a task initiator. The initiator is the user who initiates a task. The 
initiator can view their created tasks from Oracle BPM Worklist and perform specific 
tasks, such as withdrawing or suspending a task. 

To specify the task initiator and task priority:
1. To the right of the Initiator field of the General tab, enter the initiator (for 

example, jcooper) or click the icon to display the Expression Builder dialog for 
dynamically specifying an initiator. This field is optional. If not specified, the 
initiator defaults to the task owner specified on the Advanced tab of the Human 
Task dialog. The initiator defaults to bpeladmin if a task owner is also not 
specified.

2. From the Priority list, select a priority value between 1 (the highest) and 5. This 
field is provided for user reference and does not make this task a higher priority 
during runtime. Use the priority to sort tasks in Oracle BPM Worklist. This priority 
value overrides the priority value you select in the Priority list of the General 
section of the Human Task Editor.

For more information about specifying the priority in the Human Task Editor, see 
Section 28.3.4.1, "Specifying a Task Title."

28.4.3.3 Specifying Task Parameters
The task parameter table shown in Figure 28–73 displays a list of task parameters after 
you complete the Task Title and Initiator fields.

Figure 28–73 Task Parameter Table

To specify task parameters:
1. In the BPEL Variable column, double-click the dots to map the task parameter to 

the BPEL variable. You must map only the task parameters that carry input data. 
For output data that is filled in from Oracle BPM Worklist, you do not need to map 
the corresponding variables.



Associating the Human Task Service Component with a BPEL Process

28-82 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Task Parameters dialog appears.

2. Expand the Variables tree shown in Figure 28–74 and select the appropriate task 
variable.

Figure 28–74 Variables Tree

3. Click OK.

The Human Task dialog shown in Figure 28–75 appears as follows.

Figure 28–75 Human Task Dialog



Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 28-83

4. To define advanced features for the human task activity, click the Advanced tab 
and go to Section 28.4.4, "How to Define the Human Task Activity Advanced 
Features." Otherwise, click OK to close the Human Task dialog.

28.4.4 How to Define the Human Task Activity Advanced Features 
Figure 28–76 shows the Advanced tab.

Figure 28–76 Create Human Task — Advanced Tab

The Advanced tab of the Human Task activity enables you to perform the tasks shown 
in Table 28–19:

28.4.4.1 Specifying a Scope Name and a Global Task Variable Name
You are automatically provided with default scope and global task variable names 
during human task activity creation. However, you can specify custom names that are 
used to name the scope and global variable during human task activity creation.

Table 28–19 Human Task - Advanced Tab

For this Field... See...

Scope Name

Global Task Variable Name

Section 28.4.4.1, "Specifying a Scope Name and a Global 
Task Variable Name"

Owner Section 28.4.4.2, "Specifying a Task Owner"

Identification Key Section 28.4.4.3, "Specifying an Identification Key"

Identity Context Section 28.4.4.4, "Specifying an Identity Context"

Application Context Section 28.4.4.5, "Specifying an Application Context"

Include task history from Section 28.4.4.6, "Including the Task History of Other 
Human Tasks"



Associating the Human Task Service Component with a BPEL Process

28-84 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To specify a scope name and a global task variable name:
1. In the Scope Name field of the Advanced tab, enter the name for the BPEL scope 

to be generated. 

This BPEL scope encapsulates the entire interaction with the workflow service and 
BPEL variable manipulation. 

2. In the Global Task Variable Name field of the Advanced tab, enter the global task 
variable name. 

This is the name of the BPEL task variable used for the workflow interaction.

28.4.4.2 Specifying a Task Owner
The task owner can view tasks belonging to business processes they own and perform 
operations on behalf of any of the task assignees. Additionally, the owner can also 
reassign, withdraw, or escalate tasks.

If you do not specify a task initiator on the General tab of the Human Task dialog, it 
defaults to the owner specified here.

To specify a task owner:
1. In the Owner field of the Advanced tab, enter the task owner name or click the 

icon to the right to use the Expression Builder to dynamically specify the owner of 
this task.

28.4.4.3 Specifying an Identification Key
The identification key can be used as a user-defined ID for the task. For example, if the 
task is meant for approving a purchase order, the purchase order ID can be set as the 
identification key of the task. Tasks can be searched from Oracle BPM Worklist using 
the identification key. This attribute has no default value. 

To specify an identification key:
1. In the Identification Key field of the Advanced tab, enter an optional 

identification key value. 

28.4.4.4 Specifying an Identity Context
The identity realm name is used for the task when multiple realms are configured. You 
cannot have assignees from multiple realms working on the same task. This field is 
required if you are using multiple realms.

To specify an identity context
1. In the Identity Context field of the Advanced tab, enter a value.

28.4.4.5 Specifying an Application Context
The stripe name of the application contains the application roles used in the task.

To specify an application context
1. In the Application Context field of the Advanced tab, enter a value.

28.4.4.6 Including the Task History of Other Human Tasks
This feature enables one human task to be continued with another human task. There 
are many scenarios in which you have related tasks in a single BPEL process. For 
example, assume you have the following:



Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 28-85

■ A procurement process to obtain a manager’s approval for a computer

■ Several BPEL activities in between

■ Another task for the IT department to buy the computer

The participant of the second task may want to see the approval history, comments, 
and attachments created when the manager approved the purchase. You can link these 
different tasks in the BPEL process by chaining the second task to the first task with 
this option.

For chained tasks, the title of the new task cannot be set from the task metadata 
(.task file). For example, assume existing Task A is chained with new task Task B, 
and Task B has a new title set in the Human Task Editor; this title is not recognized. 
Therefore, if the chained task requires a different title, it must be set in the task 
instance before calling the task service reinitiate operation. If a BPEL process is 
initiating the tasks, set the task title before the workflow service APIs are called. If a 
Java program is calling the workflow APIs programatically, then it must set the title.

To include the task history of other tasks:
1. Select the Include task history from checkbox of the Advanced tab to extend a 

previous workflow task in the BPEL process. Selecting this checkbox includes the 
task history, comments, and attachments from the previous task. This provides 
you with a complete end-to-end audit trail.

When a human task is continued with another human task, the following 
information is carried over to the new workflow:

■ Task payload and the changes made to the payload in the previous workflow

■ Task history

■ Comments added to the task in the previous workflow

■ Attachments added to the task in the previous workflow

■ Due date

In the Include task history from list, all existing workflows are listed. 

2. Select a particular human task to extend (continue) the selected human task. 

For example, a hiring process is used to hire new employees. Each interviewer 
votes to hire or not hire a candidate. If 75% of the votes are to hire, then the 
candidate is hired; otherwise, the candidate is rejected. If the candidate is to be 
hired, an entry in the HR database is created and the human resources contact 
completes the hiring process. The HR contact also must see the interviewers and 
the comments they made about the candidate. This process can be modeled using 
a parallel participant type for the hiring. If the candidate is hired, a database 
adapter is used to create the entry in the HR database. After this action, a simple 
workflow can include the task history from the parallel participant type so that the 
hiring request, history, and interviewer comments are carried over. This simple 
workflow is assigned to the HR contact.

3. Select a payload to use:

■ Clear old payload and recreate 

This option is applicable when the payload attributes in the XML files of the 
human tasks involved in this extended workflow are different. For example, 
the payload attribute for the human task whose history you are including has 
three extra attributes than the payload of the other human task.



Associating the Human Task Service Component with a BPEL Process

28-86 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Use existing payload 

This option is applicable when the payload attributes in the XML files of the 
human tasks involved in this extended workflow are the same.

28.4.5 How to View the Generated Human Task Activity
When you have completed modeling the human task activity, the human task is 
generated in the designer.

Figure 28–77 shows how a workflow interaction is modeled. Figure 28–77 also 
illustrates the interaction when no BPEL callbacks are modeled. In this case, after a 
task is complete, the BPEL process is called back with the completed task. No 
intermediary events are propagated to the BPEL process instance. It is recommended 
that any user customizations be done in the first assign, AssignTaskAttributes, and 
that AssignSystemTaskAttributes not be changed.

Figure 28–77 Workflow Interaction Modeling

Click the Expand icon next to the human task activity in Oracle BPEL Designer to 
display its contents, as shown in Figure 28–78.

Figure 28–78 Expanding the Human Task Activity

28.4.5.1 Invoking BPEL Callbacks
If intermediary events must be propagated to the BPEL process instance, select the 
Allow task and routing customization in BPEL callbacks checkbox in the Events 
section of the Human Task Editor. When this option is selected, the workflow service 
invokes callbacks in the BPEL instance during each update of the task. The callbacks 
are listed in the TaskService.wsdl file and described as follows:

AssignTaskAttributes
Captures the user-defined attributes of the task 
such as title, payload, creator, priority, and so on

InitiateTask
Initiates the task by invoking the task service

ReceiveCompletedTask
Receives the completed task from the task service

AssignSystemTaskAttributes
Captures the system task attributes such as 
process id, process version, and so on



Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 28-87

■ onTaskCompleted

This callback is invoked when the task is completed, expired, withdrawn, or 
errored.

■ onTaskAssigned 

This callback is invoked when the task is assigned to a new set of assignees due to 
the following actions:

– Outcome update

– Skip current assignment

– Override routing slip

■ onTaskUpdated 

This callback is invoked for any other update to the task that does not fall in the 
onTaskComplete or onTaskAssigned callback. This includes updates on tasks 
due to a request for information, a submittal of information, an escalation, a 
reassign, and so on.

■ onSubTaskUpdated 

This callback is invoked for any update to a subtask.

Figure 28–79 shows how a workflow interaction with callbacks is modeled. After this 
task is initiated, a while loop is used to receive messages until the task is complete. The 
while loop contains a pick with four onMessage branches — one for each of the 
above-mentioned callback operations. The workflow interaction works fine even if 
nothing is changed in the onMessage branches, meaning that customizations in the 
onMessage branches are not required.

In this scenario, a workflow context is captured in the BPEL instance. This context can 
be used for all interaction with the workflow services. For example, to reassign a task 
if it is assigned to a group, then you need the workflow context for the 
reassignTask operation on the task service.

It is recommended that any user customizations be performed in the first assign, 
AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.



Associating the Human Task Service Component with a BPEL Process

28-88 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 28–79 Workflow Interaction Modeling (with Callbacks)

28.4.6 What You May Need to Know About Changing the Generated Human Task 
Activity

If you must change a generated human task activity, note the following details:

■ Do not modify the assign tasks that are automatically created in a switch activity 
when you add a human task to a BPEL process flow. Instead, add a new assign 
activity outside the switch activity.

■ If the parameter passed into a human task is modified (for example, you change 
the parameter type in the Edit Task Parameter dialog), you must open the human 
task activity in the BPEL process flow and click OK to correct the references to the 
payload variable. Not doing so causes the parameter name to change and become 
uneditable.

AssignTaskAttributes
Captures the user-defined attributes of the task 
such as title, payload, creator, priority, and so on

InitiateTask
Initiates the task by invoking the task service

AssignWorkflowContext
Assigns the workflow context to use for 
interactions with the workflow service

AssignSystemTaskAttributes
Captures the system task attributes such as 
process id, process version, and so on

Pick
activity

Receive
onTaskCompleted
message

Receive
onTaskAssigned
message

Receive
onTaskUpdated
message

Receive
onSubTaskUpdate
message

User
customizations

User
customizations

User
customizations

User
customizations

While the task is not 
completed/expired/errored



Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 28-89

If the task outcomes in the Human Task Editor are modified, you must edit the 
human task activity and click OK. The switch case is then updated based on the 
changes to the outcomes.

■ If you make any changes to the translatable strings of the title or category of a task 
in the resource bundle, those changes do not appear in any instances of that task 
that are already initiated. However, they do appear in instances of that task that 
are initiated after you make the changes.

28.4.7 What You May Need to Know About Deleting a Partner Link Generated by a 
Human Task

Deleting a partner link that was generated by a human task (for example, human_
task_name.TaskService in the Partner Links swimlane) causes the human task to 
become unusable. If you delete the partner link, you must delete the human task 
activity in Oracle BPEL Designer and start over again.

28.4.8 How to Define Outcome-Based Modeling
In many cases, the outcome of a task determines the flow of the business process. To 
facilitate modeling of the business logic, when a user task is generated, a BPEL switch 
activity is also generated with prebuilt BPEL case activities. By default, one case 
branch is created for each outcome selected during creation of the task. An otherwise 
branch is also generated in the switch to represent cases in which the task is 
withdrawn, expired, or in error.

28.4.8.1 Specifying Payload Updates
The task carries a payload in it. If the payload is set from a business process variable, 
then an assign activity with the name copyPayloadFromTask is created in each of 
the case and otherwise branches to copy the payload from the task back to its source. If 
the payload is expressed as other XPath expressions (such as ora:getNodes(...)), 
then this assign is not created because of the lack of a process variable to copy the 
payload back. If the payload does not require modification, then this assign can be 
removed.

28.4.8.2 Using Case Statements for Other Task Conclusions
By default, the switch activity contains case statements for the outcomes only. The 
other task conclusions are captured in the otherwise branch. These conclusions are as 
follows:

■ The task is withdrawn.

■ The task is in error.

■ The task is expired.

If business logic must be added for each of these other conclusions, then case 
statements can be added for each of the preceding conditions. The case statements can 
be created as shown in the following BPEL segment. The XPath conditions for the 
other conclusions in the case activities for each of the preceding cases are shown in 
bold in Example 28–2.

Example 28–2 XPath Conditions for Other Conclusions in the Case Activities

<switch name="taskSwitch">
  <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'COMPLETED' and



Associating the Human Task Service Component with a BPEL Process

28-90 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:conclusion') = 
'ACCEPT'">
    <bpelx:annotation>
      <bpelx:pattern>Task outcome is ACCEPT
      </bpelx:pattern>
    </bpelx:annotation>
      ...
  </case>
  <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'WITHDRAWN'">
    <bpelx:annotation>
      <bpelx:pattern>Task is withdrawn
      </bpelx:pattern>
    </bpelx:annotation>
     ...
  </case>
  <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'EXPIRED'">
    <bpelx:annotation>
      <bpelx:pattern>Task is expired
      </bpelx:pattern>
    </bpelx:annotation>
     ...
  </case>
  <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'ERRORED'">
    <bpelx:annotation>
      <bpelx:pattern>Task is errored
      </bpelx:pattern>
    </bpelx:annotation>
     ...
  </case>
  <otherwise>
    <bpelx:annotation>
      <bpelx:pattern>Task is EXPIRED, WITHDRAWN or ERRORED
      </bpelx:pattern>
    </bpelx:annotation>
      ...
  </otherwise>
</switch>



29

Designing Task Forms for Human Tasks 29-1

29 Designing Task Forms for Human Tasks

The human workflow service creates tasks for users to interact with the business 
process. Each task has two parts—the task metadata and the task form. The task form 
is used to display the contents of the task to the user’s worklist.

Oracle BPM Worklist displays all worklist tasks that are assigned to a user or a group. 
When a worklist user drills down into a specific task, the task form renders the details 
of that task. For example, the task form for the Fusion Order Demo 
ApprovalHumanTask shows order information such as the order total and ship-to 
information. 

This chapter describes how to design and customize task forms using ADF task flows 
in Oracle JDeveloper.

This chapter includes the following sections:

■ Section 29.1, "Introduction to the Task Form"

■ Section 29.2, "Associating the Task Flow with the Task Service"

■ Section 29.3, "Creating an ADF Task Flow Based on a Human Task"

■ Section 29.4, "Creating a Task Form"

■ Section 29.5, "Refreshing Data Controls When the Task XSD Changes"

■ Section 29.6, "Securing the Task Flow Application"

■ Section 29.7, "Creating an Email Notification"

■ Section 29.8, "Deploying a Composite Application with a Task Flow"

■ Section 29.9, "Displaying a Task Form in the Worklist"

■ Section 29.10, "Displaying a Task in an Email Notification"

■ Section 29.11, "Reusing the Task Flow Application with Multiple Human Tasks"

29.1 Introduction to the Task Form
If your SOA composite includes a human task, then you need a way for users to 
interact with the task. The integrated development environment of Oracle SOA Suite 
includes Oracle Application Development Framework (Oracle ADF) for this purpose. 
With Oracle ADF, you can design a task form that depicts the human task in the SOA 
composite.

The task form is a Java Server Page XML (.jspx) file that you create in the Oracle 
JDeveloper designer where you created the SOA composite containing the human 
task. Note that you must set the page encoding to UTF-8 in Oracle JDeveloper before 
creating the Java Server Page XML file. You can do this in Oracle JDeveloper by 



Introduction to the Task Form

29-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

choosing Tools > Preferences > Environment, and selecting UTF-8 using the 
Encoding dropdown list.

Figure 29–1 shows the Oracle JDeveloper ADF Task Flow Based on Human Task 
option where you start creating a task form. 

Figure 29–1 ADF Task Flow Based on a Human Task, in Oracle JDeveloper

29.1.1 What You May Need to Know About Task Forms: Time Zone Conversion
Time zone conversion is not automatic for datetime elements in the task payload when 
a task form is created. You must add the <af:convertDateTime> tag to enable time 
zone conversion on a datetime element. See any standard task header time label for an 
example. Example 29–1 shows a sample header. 

Example 29–1 Time Zone Conversion

<af:outputText value="#{bindings.createdDate.inputValue}"
                        id="ot15">
         <f:convertDateTime type="#{pageFlowScope.dt}"
                              timeZone="#{pageFlowScope.tz}"
                              dateStyle="#{pageFlowScope.df}"
                              timeStyle="#{pageFlowScope.tf}"/>
         </af:outputText> 



Creating an ADF Task Flow Based on a Human Task

Designing Task Forms for Human Tasks 29-3

29.2 Associating the Task Flow with the Task Service
When you create an ADF task flow based on a human task, you must select a task 
metadata file to generate the data control. This data control is used to lay out the 
content on the page and connect to the workflow service engine at execution time to 
retrieve task content and act on tasks. See "Getting Started with ADF Task Flows" in 
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development 
Framework for more information.

The hwtaskflow.xml file is used to capture the details on connecting with the 
service engine. By default, it uses remote EJBs to connect to the workflow server. The 
SOA server URL and port are automatically determined by using WebLogic Server 
runtime MBeans. However, you can override these by explicitly specifying the URL 
and port information here.

Seed a user that has ORMI privileges so that the task details application can connect to 
the workflow service. You can seed this user by using Oracle Enterprise Manager 
Fusion Middleware Control.

29.3 Creating an ADF Task Flow Based on a Human Task
ADF task flows are used to model the user interface for the task details page. You can 
create the task flow in the same application that contains the human task or in a 
separate application.

You must have previously created a human task (.task file) as part of a SOA 
composite before you can create a task flow. See Chapter 28, "Designing Human Tasks" 
for how to create the.task file.

If the task flow is in the same application as the human task, create a different project 
for the task flow. If the SOA composite contains multiple human tasks, create a 
separate project for each ADF task flow associated with each human task. By using an 
ADF task flow, you create data controls based on the task parameters and outcomes. 

To autogenerate an ADF task form, access the human task in the SOA composite 
application (form and task are in the same application). See Section 29.3.1, "How To 
Create an ADF Task Flow from the Human Task Editor," for more information.

To create an ADF task form in a separate application, create the new application and 
project and browse for the .task file for the human task. See Section 29.3.2, "How To 
Create an ADF Task Flow Based on a Human Task," for more information.

29.3.1 How To Create an ADF Task Flow from the Human Task Editor
The.task file that specifies the human task is easily associated with the task flow 
when the two are located in the same application.

To create an ADF task flow for a human task:
1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity and click Edit.

Figure 29–2 shows the Human Task dialog.



Creating an ADF Task Flow Based on a Human Task

29-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–2 Editing a Human Task

3. In the .task tab (shown in Figure 29–3), click Create Form and select 
Auto-Generate Task Form.

Figure 29–3 Creating a Task Flow from the Human Task Editor

4. Provide a project name and a directory path (or use the default) and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 29–4.



Creating an ADF Task Flow Based on a Human Task

Designing Task Forms for Human Tasks 29-5

Figure 29–4 The taskDetails1_jspx Icon

The task flow and task form are complete and ready to be deployed.

29.3.2 How To Create an ADF Task Flow Based on a Human Task
The ADF Task Flow Based on Human Task option (shown in Figure 29–1) creates an 
ADF task flow and additional artifacts to make deployment easier. When you select 
the .task file to associate with the ADF task flow, human task data controls are 
created based on the task parameters and outcomes. These are then available to use in 
the JSPX page. You must have access to the SOA composite project while creating the 
task flow project.

To create an ADF task flow based on a human task:
1. From the File main menu, select New > Applications > SOA Application.

2. Click OK.

3. Provide an application name and directory information (or accept the default), and 
click Finish.

4. Right-click the project name and select New.

5. Under Web Tier, select JSF. 

6. Select ADF Task Flow Based on Human Task and click OK. 

7. In the SOA Resource Browser, find and select the .task file where you defined 
the human task and click OK.

a. If the human task is in the same application as the task definition, then click 
File to use the file browser to navigate to the .task file, which is typically in 
the composite directory. 

b. If the human task is in a different application, then click Resource Palette to 
use the MDS resource catalog and find the .task file in the composite 
application.

c. If the .task file is located within the current application, then click 
Application.

This displays the Create Task Flow dialog and creates the data controls.



Creating an ADF Task Flow Based on a Human Task

29-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8. In the Create Task Flow dialog, accept the defaults and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 29–4. The 
task flow has a view, a control flow, and a task return.

To continue creating the task form, see the following:

■ Section 29.4.4, "How To Create a Task Form Using the Complete Task with Payload 
Drop Handler."

or

■ Section 29.4.5, "How To Create Task Form Regions Using Individual Drop 
Handlers."

29.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task
With an ADF task flow based on a human task, the task flow application has task data 
controls that wire the task form with the workflow services. The data controls provide 
the following:

■ Various parameters and operations to access task data and act on it

■ Drop handlers with which you can create interface regions to display the contents 
of the task

The human task-aware data controls appear in the Data Controls panel of the Oracle 
JDeveloper Application Navigator, as shown in Figure 29–5. 



Creating an ADF Task Flow Based on a Human Task

Designing Task Forms for Human Tasks 29-7

Figure 29–5 The Task Collection in the Data Controls Panel

The data controls for the task (represented by the Task node in Figure 29–5) have drop 
handlers to render the task form. See Section 29.4, "Creating a Task Form," for more 
information.

29.3.4 What You May Need to Know About Having Multiple ADF Task Flows That 
Contain the Same Element with Different Meta-attributes

You must create separate ADF task flows if both contain the same element, but with 
different meta-attributes specified (for example, editable and noneditable).

For example, assume you perform the following tasks.

1. Create two task form applications for a SOA composite application:

■ Task form application one (for example, named EnterBankDetails.task) has 
one editable payload (for example, named BankDetails) and one noneditable 
payload (for example, named Employee). 



Creating a Task Form

29-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Task form application two (for example, named 
ValidatePersonalInformation.task) has one editable payload (for example, also 
Employee). 

While creating the task form, the wizard provides you with the option to define 
the ADF table for payload Employee.

2. Complete the wizard, then deploy the process.

3. Invoke the process.

4. Log in to Oracle BPM Worklist. 

There is a Validate Personal Information task (for 
ValidatePersonalInformation.task).

5. Select the task.

Employee details are available for modification, as expected. 

6. Add a new record, then approve the task. 

7. Select the Enter Bank Details task (for EnterBankDetails.task). In the task form, 
note that the Insert New and Delete buttons are still present for Employee data, 
even though it is a noneditable payload.

8.  Click Delete, then select Approve. The payload gets deleted. 

Ensure that you create two separate ADF task flow applications because both contain 
the Employee element, but with different meta-attributes specified (editable and 
noneditable). 

29.4 Creating a Task Form
You can create a task form by using the Auto-Generate Task Form option, the Launch 
Task Form Wizard option, or by using human task drop handlers.

■ For how to use the Auto-Generate Task Form option, see Section 29.4.1, "How To 
Create an Autogenerated Task Form."

■ For how to use the Launch Task Form Wizard option, see Section 29.4.3, "How To 
Create a Task Form Using the Custom Task Form Wizard."

■ For how to use human task drop handlers, see the following:

– Section 29.4.4, "How To Create a Task Form Using the Complete Task with 
Payload Drop Handler"

– Section 29.4.5, "How To Create Task Form Regions Using Individual Drop 
Handlers"

– Section 29.4.6, "How To Add the Payload to the Task Form"

29.4.1 How To Create an Autogenerated Task Form
The autogenerated task form can be further edited as needed.

To create an autogenerated task form:
1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity and click Edit.

3. From the .task editor, click Create Form and select Auto-Generate Task Form, as 
shown in Figure 29–6.



Creating a Task Form

Designing Task Forms for Human Tasks 29-9

Figure 29–6 Creating a Task Form

4. Provide a project name and a directory path (or use the default) and click OK.

The default form opens in the taskDetails1.jspx tab. The default form for 
ApprovalHumanTask is shown in Figure 29–7.



Creating a Task Form

29-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–7 Autogenerated Task Form for ApprovalHumanTask

29.4.2 How to Register the Library JAR File for Custom Page Templates
You can optionally specify your own custom page templates in the Custom Task Form 
wizard. As described in Section 29.4.3, "How To Create a Task Form Using the Custom 
Task Form Wizard," you select Custom Page Template in the Name and Definition 
page of the Custom Task Form Wizard and specify the library JAR file name and the 
path to the .jspx template file within the JAR file.

As a prerequisite, you first must register the library JAR file in Oracle JDeveloper.

To create the library JAR file for custom page templates:
1. From the Tools menu, select Manage Libraries.

2. Click New.

The Create Library dialog appears. 



Creating a Task Form

Designing Task Forms for Human Tasks 29-11

3. Highlight Class Path, and click Add Entry.

The Select Path Entry dialog appears. 

4. Select the class path for the library, and click Select.

The class path is displayed below Class Path and the library JAR file name is 
displayed in the Library Name field. Ensure that the library name you select ends 
with a suffix of .jar. Figure 29–8 provides details. 

Figure 29–8 Custom Library JAR File

5. Select the Deployed by Default checkbox.

6. Click OK.

When you run the Custom Task Form wizard, you select Custom Page Template 
on the Name and Definition page, and enter the following information that you 
registered in the Create Library dialog:

■ The same library name as you entered in the Library Name field in the Create 
Library dialog; these names must match.

■ The path to the .jspx templates file in the library JAR file in the Template 
Path field.

29.4.3 How To Create a Task Form Using the Custom Task Form Wizard
This wizard enables you to create a task form using ADF page templates and 
standardized task regions. The page templates can be either of the following:

■ Default page templates that are automatically provided. You select Default Page 
Template in the Name and Definition page of the Custom Task Flow wizard.

There are two types of default templates:

– Nontabbed, default templates



Creating a Task Form

29-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– Tabbed templates in which the payload and comments, attachment, and 
history sections are displayed on a separate tab.

■ Custom page templates that you define. You select Custom Page Template in the 
Name and Definition page of the Custom Task Flow wizard. You package a page 
template and its artifacts into an ADF library JAR file. These JAR files can be 
packaged, deployed, discovered, and used like any other Oracle library 
component. The wizard prompts you to specify the JAR name and template 
location in the JAR. 

Page templates let you define entire page layouts, including values for certain 
attributes of the page. When pages are created using a template, they all inherit the 
defined layout. When you make layout modifications to the template, all pages that 
consume the template automatically reflect the layout changes.

The templates used in the wizard generate content for the following six facets: 

■ Actions

■ Attachments

■ Body

■ Comments

■ Header

■ History

For the action, header, and body facets, you can pick the content and attributes that 
you want to display and then fine tune the layout. 

All six facets are defined in the default page templates. In the case of custom 
templates, you use these exact facet names in your template. If your template does not 
include these facets, then the facet content is not generated in the JSPX file.

If you do not want to include page templates in your task form, select None in the 
Name and Definition page. In this case, the wizard generates a task form with a 
header, body (one or more), and footer, and provides for tabular formatting into 
columns and rows. You can select any of the task (system) actions to display on the 
form and you can specify that the custom actions defined for the human task appear 
on the form as buttons. Any or all parts of the payload can be selected to appear, as 
well as attachments and comments.

For more information about facets, see Oracle Fusion Middleware Web User Interface 
Developer's Guide for Oracle Application Development Framework.

To create a custom task form:
1. Open the BPEL process within the SOA composite application.

2. Double-click the human task activity, and click the Edit icon.

The Human Task Editor appears. 

3. Above the editor, click Create Form and select Launch Task Form Wizard.

4. Provide a project name and a directory path (or use the default), and click OK.

5. In the Form Name field on the Name and Definition page, shown in Figure 29–9, 
provide the name of the form (.jspx file) that is generated at the end of the 
wizard. The default name, Humantasknumber_Form, is provided if you do not 
provide a name. Ensure that valid characters are used in the name. Spaces are not 
permitted.



Creating a Task Form

Designing Task Forms for Human Tasks 29-13

Figure 29–9 Custom Task Form Wizard: Form Name and Definition

6. If you want to specify advanced definitions, expand Advanced.

7. Specify the following information, and click Next. This form is created as an ADF 
task flow and added to the project.

■ Task Flow Name: The name of the ADF task flow that is generated at the end 
of the wizard. Accept the default name of Humantasknumber_TaskFlow or 
specify a different name.

■ Page Templates: The page template to use.

– None: Select to create a task form that does not use a page template. This 
is the default selection.

– Default Page Template: Select to use the default page template.

– Custom Page Template: Specify the library name (for example, 
MyTemplatesLibrary.jar) and template class path in the JAR file (for 
example, templates/MyTemplate.jspx) to use. This is the library 
name and template class path that you specified in the Create Library 
dialog in Section 29.4.2, "How to Register the Library JAR File for Custom 
Page Templates."

If the template is not found after the wizard finishes, a message is 
displayed indicating that the template was not found, and that task form 
generation is to continue without the use of a template.

8. On the Header page, shown in Figure 29–10, perform the following procedures 
and click Next.

■ In the Actions facet section, select the options to include in the title bar of the 
task form:

– Other actions (menu): Lists the system actions that are possible for the 
task, such as Request Information, Reassign, Renew, Suspend, Escalate, 
and Save. 



Creating a Task Form

29-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– Outcomes (buttons): Displays buttons for task actions that are defined in 
the human task, such as setting task outcomes.

■ In the Header facet section, enter the number of display columns. If you want 
each header label to display in its own column, then enter the same number as 
the number of headers you move into the Selected list. If you enter 1, but 
select 7 headers, all 7 headers appear in one column.

■ Move header labels into the Selected list and reorder them as needed.

Figure 29–10 Custom Task Form Wizard: Setting Up the Header

9. On the Body page, shown in Figure 29–11, perform the following procedures in the 
Body facet section to set up the form, and click Next:

■ Enter a title that describes the body panel.

■ Enter the number of columns for row 1. For a simple form, you may want to 
enter the same number as you entered for the number of header columns.

■ Click the Add (+) button to add more rows. For each new row, you can also 
specify the number of columns. Each row can have its own column layout. For 
each column in each row, a body page is created, labeled Row1, Column1, and 
so on.



Creating a Task Form

Designing Task Forms for Human Tasks 29-15

Figure 29–11 Custom Task Form Wizard: Setting Up the Body

10. On the Row1 Column1 page, shown in Figure 29–12, move all or part of the 
payload to the Selected list and click Next.

Figure 29–12 Custom Task Form Wizard: Selecting the Body Fields

11. For any Rown Columnn page after Row1 Column1, repeat Step 10 and click Next.

The Footer page that displays is based upon the page template you selected on the 
Name and Definition page in Step 7 (either Default Page Template or Custom 
Page Template).

Note: If you specify rows or columns for which no payload data 
appears, then an empty panel group is displayed. You can use this 
blank section to add content to the form later by using data controls. 



Creating a Task Form

29-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. If you selected Default Page Template, the Footer page shown in Figure 29–13 
is displayed. Deselect any comments, attachments, or history facet that you do 
not want to include in the footer, and click Next. By default, the comments, 
attachments, and history facets are all selected.

Figure 29–13 Custom Task Form Wizard: Selecting the Footer Fields for the Default Page Template

b. If you selected Custom Page Template, the Footer page shown in Figure 29–14 
is displayed. Select any comments, attachments, or history facet that you want 
to move to the Selected list, and click Next. 

Figure 29–14 Custom Task Form Wizard: Selecting the Footer Fields for the Custom Page Template



Creating a Task Form

Designing Task Forms for Human Tasks 29-17

12. On the Summary page, shown in Figure 29–15, inspect your selections. Click Back 
to make changes or click Finish.

Figure 29–15 Custom Task Form Wizard: Summary

The Designer initializes and the form_name.jspx tab is displayed, as shown in 
Figure 29–16 (upper part of tab) and Figure 29–17 (lower part of tab).

Figure 29–16 Custom Task Form (Upper Part of Tab)



Creating a Task Form

29-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–17 Custom Task Form (Lower Part of Tab)

29.4.4 How To Create a Task Form Using the Complete Task with Payload Drop Handler
The human task drop handlers appear in the context menu of the designer, as shown 
in Figure 29–18.

Figure 29–18 Human Task Drop Handlers for Creating the Task Form



Creating a Task Form

Designing Task Forms for Human Tasks 29-19

Other ADF drop handlers—for forms, tables, trees, and so on (shown in 
Figure 29–18)—can also be used to create task forms. See Oracle Fusion Middleware 
Fusion Developer's Guide for Oracle Application Development Framework for more 
information about standard ADF drop handlers.

Complete Task with Payload
This option creates the combination of all the preceding task form components (the 
task header, task history, task actions, and task comments and attachments), plus the 
interface for the payload. The payload interface is created as follows:

■ All text nodes are created as text input fields.

■ If an element has maxOccurs="unbounded", then it appears as a table.

■ Nested tables are not rendered; that is, if an element has 
maxOccurs="unbounded" and it has a child with maxOccurs="unbounded", 
then the child element is not rendered.

■ If there are multiple levels of nesting, then drag and drop the individual sections 
and use a standard ADF drop handler.

Complete Task without Payload
This option creates the combination of all of the preceding task form components (the 
task header, task history, task actions, and task comments and attachments). 

Task Details for Email
This option creates an ADF region that renders well when sent by email. It generates 
the form shown in Figure 29–19.



Creating a Task Form

29-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–19 Task Form for Email Notification

See Section 29.7, "Creating an Email Notification," for more information.

Task Header
All the standard header fields are added to the task form. This includes the task 
number and title; the state, outcome, and priority of the BPEL process, and 
information about who created, updated, claimed, or is assigned to the task. The 
header also displays dates related to task creation, last modification, and expiration. 
You can add or remove header fields as required for your task display. 

Figure 29–20 shows an example of header information.

Figure 29–20 Header Information

Buttons for task actions are also created in the header, as shown in Figure 29–21.



Creating a Task Form

Designing Task Forms for Human Tasks 29-21

Figure 29–21 Task Header: Task Action Buttons

Task Actions
The following task actions appear from the Actions dropdown list or as buttons. The 
tasks that appear depend on the state of the task (assigned, completed, and so on) and 
the privileges that are granted to the user viewing the task. For example, when a task 
is assigned to a group, only the Claim button appears. After the task is claimed, other 
actions such as Reject and Approve appear.

The first three custom actions appear on the task form as buttons: Claim, Dismiss, and 
Resume. Only those buttons applicable to the task appear. Other actions are displayed 
under the Actions list, starting with Request for Information, Reassign, and Route. 
Systems actions—Withdraw, Pushback, Escalate, Release, Suspend, and 
Renew—follow the custom actions, followed by the Save button. These actions require 
no further dialog to complete.

■ Claim—A task that is assigned to a group or multiple users must be claimed first. 
Claim is the only action available in the Task Action list for group or multiuser 
assignments. After a task is claimed, all applicable actions are listed.

■ Dismiss—This action is used for a task that requires the person acting on the task 
to acknowledge receipt, but not take any action (like an FYI).

■ Resume—A task that was halted by a Suspend action can be worked on again. See 
Suspend.

■ Request for Information—You can request more information from the task creator 
or any of the previous assignees. If reapproval is not required, then the task is 
assigned to the next approver or the next step in the business process.

■ Reassign—Managers can reassign a task to reportees. A user with 
BPMWorkflowReassign privileges can reassign a task to anyone. The Reassign 
option also provides a Delegate function. A task can be delegated to another user 
or group. The delegated task appears in both the original user’s and the delegated 
user’s worklists. The delegated user can act on behalf of the original assignee, and 
has the same privileges for that task as the original assignee.

■ Route—If there is no predetermined sequence of approvers or if the workflow was 
designed to permit ad hoc routing, then the task can be routed in an ad hoc 
fashion. For such tasks, a Route button appears on the task details page. From the 
Routing page, you can look up one or more users for routing. When you specify 
multiple assignees, you can choose whether the list of assignees is for simple 
(group assignment to all users), sequential, or parallel assignment. In the case of 
parallel assignment, you provide the percentage of votes required for approval. 

■ Withdraw—Only the task creator can withdraw (cancel) the task. The Comments 
area is available for an optional comment. The business process determines what 
happens next.

Note: If an FYI task is sent to multiple users, a user must first select 
the Claim button to claim the task before they can dismiss it.



Creating a Task Form

29-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Pushback—This action sends a task up one level in the workflow to the previous 
assignee.

■ Escalate—An escalated task is assigned to the user’s manager. The Comments 
area is available for an optional comment.

■ Release—Releasing a task makes it available to other assignees. A task assigned to 
a group or multiple users can then be claimed by the other assignees.

■ Suspend—This action suspends the expiration date indefinitely, until the task is 
resumed. Suspending and resuming tasks are available only to users who have 
been granted the BPMWorkflowSuspend role. Other users can access the task by 
selecting Previous in the task filter or by looking up tasks in the Suspended status. 
Buttons that update a task are disabled after suspension.

■ Renew—Renewing a task extends the task expiration date seven days (P7D is the 
default). The renewal duration is controlled from Oracle Enterprise Manager Grid 
Control Console. A renewal appears in the task history. The Comments area is 
available for an optional comment.

■ Save—Changes to the task are saved.

While you are creating a task form, all possible system action buttons appear, although 
only those actions that are appropriate for the task state and fit the user’s privileges 
appear in the worklist. 

Task History
The history of task actions appears on the task details page, and is displayed in the 
worklist as a history table. The history includes the following fields:

■ Version number

■ Participant name—the person who acted on the task

■ Action—for example, if the task was approved or assigned

■ Updated By—name of the person who last updated the task

■ Action date

See Figure 30–20, "History: Graphical View" and Figure 30–21, "History: Full Task 
Actions" for how task history is displayed in Oracle BPM Worklist, including the 
options to take a history snapshot, list future participants, and list full task actions.

Task Comments and Attachments
A trail of comments with the comment date and comment writer’s user name is 
maintained throughout the life cycle of a task.

Files or reference URLs associated with a task can be added by any of the human task 
participants. 

Figure 29–22 shows an example of the comments and attachments region.



Creating a Task Form

Designing Task Forms for Human Tasks 29-23

Figure 29–22 Comments and Attachment Region

The following steps describe how to use a drop handler that creates the task form, 
including the payload, without building each region individually. To build each region 
individually, see Section 29.4.5, "How To Create Task Form Regions Using Individual 
Drop Handlers."

To create a task form using the Complete Task with Payload drop handler:
1. In the designer, double-click taskDetails1_jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or 
accept the defaults) and click OK.

3. In the Data Controls panel of the Application Navigator, expand the human task 
node, then the getTaskDetails node, and then the Return node.

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Complete Task with Payload.

6. In the Edit Action Binding dialog, shown in Figure 29–23, click OK. 



Creating a Task Form

29-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–23 Edit the Action Binding

7. In the next Edit Action Binding dialog, the data collection is selected, as shown in 
Figure 29–24; click OK. 



Creating a Task Form

Designing Task Forms for Human Tasks 29-25

Figure 29–24 Select the Data Collection and Action

The task form is displayed, as shown in Figure 29–25.



Creating a Task Form

29-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–25 Task Form

29.4.5 How To Create Task Form Regions Using Individual Drop Handlers
You can create a display form with multiple regions using the individual Task Header, 
Task Action, Task History, and Task Comment and Attachment drop handlers shown 
in Figure 29–26. 



Creating a Task Form

Designing Task Forms for Human Tasks 29-27

Figure 29–26 Using Human Task Drop Handlers

Task Header provides both header and task actions, so you do not need the Task 
Action drop handler when you use Task Header. Use Task Action when you want the 
actions dropdown menu and buttons, but not header details. 

To create the task form without building each region individually, see Section 29.4.4, 
"How To Create a Task Form Using the Complete Task with Payload Drop Handler."

Before you create this task form, you must have created the following:

■ A new application and SOA project, and a human task service.

■ An ADF task flow based on the human task. See Section 27.3.2.2, "How to Create 
the Vacation Request Process," for more information.

To create task form regions using individual drop handlers:
1. In the designer, double-click taskDetails1.jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or 
accept the defaults) and click OK.

3. In the Data Controls panel of the Application Navigator, expand the human task 
node, then the getTaskDetails node, and then the Return node.

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Task Header.

This creates the Actions dropdown list and buttons for task actions, as shown in 
Figure 29–27, and header details, as shown in Figure 29–28. 

Figure 29–27 Designing the Task Form: Buttons for Task Actions



Creating a Task Form

29-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–28 Designing the Task Form: Task Headers

6. Drag additional Task icons into the JSPX designer, selecting these options with 
each iteration:

■ Human Task, then Task History

■ Human Task, then Task Comment and Attachment 

The task form now has multiple regions for task action dropdown lists and 
buttons, task header details, task history, and comments and attachments.

To continue creating the task form, see Step 1 in Section 29.4.6, "How To Add the 
Payload to the Task Form."

29.4.6 How To Add the Payload to the Task Form
In addition to adding the payload, you can create task form regions. See Step 1 in 
Section 29.4.5, "How To Create Task Form Regions Using Individual Drop Handlers."

To add the payload to the task form:
1. From the Component Palette, select ADF Faces. 

2. Expand Layout.

3. Drag Panel Group Layout between the Header and Comment sections.

4. In the Data Controls panel, expand Task, and then Payload.

5. Drag the payload data collection to the left of the Panel Group Layout area.

An alternative to dropping the payload node onto the form is to expand the 
payload node and drop the necessary child elements onto the form. For example, 
to create a read-only form for the VacationRequest payload, expand the payload 
node, drag the Vacation Request Process Request node onto the form, and select 
Forms > ADF Read-only Form.

6. From the context menu, select Forms, then ADF Read-only Form, as shown in 
Figure 29–29.



Creating a Task Form

Designing Task Forms for Human Tasks 29-29

Figure 29–29 Adding ADF Read-Only Fields to the Task Form Payload Region

7. In the Edit Form Fields dialog, accept the defaults and click OK.

This creates read-only fields in the payload region, between the Details and 
History sections.

The payload regions appear, as shown in Figure 29–30.

Figure 29–30 The Payload Region of the Task Form

The task form, shown in Figure 29–31, is complete and ready to be deployed.

Figure 29–31 The Task Form (taskDetails.jspx)



Refreshing Data Controls When the Task XSD Changes

29-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

29.4.7 What Happens When You Create a Task Form
The form you designed is saved in the .jspx file at 

JDev_Oracle_Home\mywork\task_form_application_name\project_name\public_html

The task form is ready to be deployed. See Section 29.8, "Deploying a Composite 
Application with a Task Flow."

29.5 Refreshing Data Controls When the Task XSD Changes
When task metadata changes, refresh the Data Controls view (XSD changes are not 
refreshed) that is based on that task metadata. The refresh functionality re-creates the 
data control. Figure 29–32 shows the Refresh option. 

Figure 29–32 Refreshing Data Controls

To refresh the data control:
1. Right-click the data control.

2. Select the Edit Definition option to display the Refresh Data Control dialog, as 
shown in Figure 29–33.



Creating an Email Notification

Designing Task Forms for Human Tasks 29-31

Figure 29–33 The Refresh Data Control Button

29.6 Securing the Task Flow Application
You can use any container-based security for securing the task flow. See 
Section 32.6.2.1.2, "Requirements for Client Applications For Identity Propagation," for 
more information. Form-based authentication and SSO-based authentication are 
available for web security.

If you are sending a notification as email, do not secure the URL 
with"/notification/secure" to use container-based security because this is accessed by 
SOA APIs using an internal context that cannot be created outside of SOA. The URL 
pattern inside security cannot contain "/" (all URLs) and "//notification".

No additional steps are required for identity propagation. Identity is automatically 
propagated to the server EJBs. 

29.7 Creating an Email Notification 
A task form is used to provide an email notification, if email notification is defined as 
part of the human task. Options for email notification include:

■ Default email notification—Use the first page of the task form that you create for 
the human task. The content is sent as an HTML-based email. Images in the task 
flow are included as attachments so that the notification can be viewed in 
disconnected mode. All drop handlers, including Complete Task with Payload 
and Complete Task without Payload, are suitable for emails.

■ Custom email notification—Use the Task display for email drop handler to create 
a custom email notification task page.

Section 32.2, "Notifications from Human Workflow" to review notification settings as 
part of a human task definition (.task file). 

29.7.1 How To Create an Email Notification
To send a custom email notification whose content and layout you have specified, 
create another JSPX file in which you design an email notification page. (Note, 
however, that you can use the default page for notification with no further 
modifications.) Create the custom notification page by using the custom and standard 
drop handlers, or use the email notification drop handler. In addition, do the 
following: 



Creating an Email Notification

29-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Add a router to the task flow. The router directs the task flow to send either the 
email notification page or the default page, depending on the control flow based 
on the bpmClientType page flow scope value.

■ Edit the generated inline CSS to customize the page. No additional CSS is included 
at runtime and the ADF CSS is not available at runtime. See the samples 
notification-101 and notification-102 at 

https://soasamples.samplecode.oracle.com
 

■ Reference images directly from the HTML or JSF page. (Indirect references, for 
example, an included JSF that in turn includes the image, are not allowed.) 

29.7.1.1 Creating a Task Flow with a Router
The control flow case with a router enables you to direct the request to a specific page 
based on certain parameters. For an ADF task flow based on a human task, you need a 
special page for email notifications. This section describes how to create a special page 
for email notifications.

To create a task flow with a router:
1. In the Application Navigator, expand the task flow project and double-click 

project_name _TaskFlow.xml.

The XML file opens in the designer. In the diagram view, you see the 
taskDetails1.jspx icon.

2. From the Component Palette, select ADF Task Flow, and drag the View icon into 
the designer.

3. Click view1 below the icon and enter a name for the email notification page.

Figure 29–34 shows an example using the name EmailPage.

Figure 29–34 Creating the Email Page

4. From the Component Palette, drag Router into the designer.



Creating an Email Notification

Designing Task Forms for Human Tasks 29-33

5. Click router1 below the icon and enter a router name.

Figure 29–36 shows an example using the name PageRouter.

6. To ensure that the router is called, right-click the router icon and click Mark 
Activity > Default Activity, as shown in Figure 29–35.

Figure 29–35 Marking the Router as the Default Activity

7. Click the router - router_name - Property Inspector tab.

8. In the default-outcome field, enter default.

9. Click Add, and in the Outcome field, enter the name of the email notification 
page.

10. Use the Expression Builder to enter the following in the expression field: 
#{pageFlowScope.bpmClientType=="notificationClient"} 

11. In the Component Palette, click Control Flow Case.

12. In the designer, drag from the router page icon to taskDetails1.jspx.

The control flow is automatically labeled default, as shown in Figure 29–36.



Creating an Email Notification

29-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–36 Connecting the Control Flow

13. In the Component Palette, click Control Flow Case.

14. In the designer, drag from the router page icon to the email notification page icon.

15. Click the control-flow-case - email_page_name - Property Inspector tab.

16. From the from-outcome list, select the name of the email notification page.                                           

Figure 29–37 shows the completed control flow.



Creating an Email Notification

Designing Task Forms for Human Tasks 29-35

Figure 29–37 Completed Control Flow for an Email Notification

To continue creating the email notification page, see Step 1 in Section 29.7.1.2, 
"Creating an Email Notification Page."

29.7.1.2 Creating an Email Notification Page
Creating an email notification page is similar to creating a task form, with the addition 
of defining layout and inline styles. See Oracle Fusion Middleware Web User Interface 
Developer's Guide for Oracle Application Development Framework for design information. 

To create an email notification page:
1. In the designer, double-click EmailPage.

2. In the Create JSF Page dialog, provide a file name and directory information (or 
accept the defaults) and click OK.

The EmailPage.jspx tab opens in the designer.

3. From the Component Palette, drag any of the Common Components (for an 
image, for example) or Layout components into the designer. 

4. For the layout component you selected, provide alignment and other details in the 
Property Inspector tab.

Figure 29–38 shows the layout fields available when Panel Group Layout is 
selected.



Creating an Email Notification

29-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–38 Specifying a Layout

See Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle 
Application Development Framework for more information about panel group layout.

5. Expand Appearance, Style and Theme, Behavior, Advanced, Customization, and 
Annotations to specify other details, as shown in Figure 29–39.



Creating an Email Notification

Designing Task Forms for Human Tasks 29-37

Figure 29–39 Specifying a Layout: More Details

See "How to Set Component Attributes," in Oracle Fusion Middleware Web User 
Interface Developer's Guide for Oracle Application Development Framework.

6. From the Data Controls panel, expand the human task node, then the 
getTaskDetails node, and then the Return node.

7. Drag Task into the panel group layout area.

8. Select Human Task, and then Task details for email, as shown in Figure 29–40.



Deploying a Composite Application with a Task Flow

29-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–40 Human Task Drop Handlers

This drop handler includes a header with inline style, a payload using ADF, and a 
comment using inline style. Because the payload is dynamically generated, it does 
not include an inline style. 

In general, you can find the inline styles for the Header section for each 
component and use the same style for the Content section for the respective 
components.

9. In the Edit Action Bindings dialog, select the data collection and click OK.

The email task form is complete and ready to be deployed.

29.7.2 What Happens When You Create an Email Notification Page
The email notification page is sent as HTML content in the email message body. 
Images on the page are inlined as attachments. Relative URLs are converted to 
absolute URLs.

29.7.3 What You May Need to Know About Creating an Email Notification Page
A notification may not display correctly in email if the styles used in the fields of the 
form are not valid for email. Editing the generated inline CSS to customize the page 
may be required. See Section 29.7.1, "How To Create an Email Notification," for more 
information.

Security issues can also prevent the form from being rendered correctly. See 
Section 29.6, "Securing the Task Flow Application," for more information.

29.8 Deploying a Composite Application with a Task Flow
The composite application containing the task flow must be deployed before you can 
use the task form in the Worklist Application. The process for deploying an application 
with a task flow is basically the same as deploying any SOA composite application, as 
described in Section 29.8.2, "How To Deploy a Composite Application with a Task 
Flow." See Chapter 41, "Deploying SOA Composite Applications" for more 
information.

29.8.1 Before Deploying the Task Form: Port Changes
If you are not using the default values for RMI or HTTP ports, open the 
hwtaskflow.xml file in Oracle JDeveloper to change values. Figure 29–41 shows the 
file in the Application Navigator.



Deploying a Composite Application with a Task Flow

Designing Task Forms for Human Tasks 29-39

Figure 29–41 The hwtaskflow.xml File

Example 29–2 shows a sample hwtaskflow.xml file with comments on which values 
can and cannot be changed.

Example 29–2 Sample hwtaskflow.xml File

<!--Sample hwtaskflow.xml file. This is required for successful deployment of an
ADF Task Flow Based on Human Task application. -->
 
<?xml version = '1.0' encoding = 'UTF-8'?>
<hwTaskFlows xmlns="http://xmlns.oracle.com/bpel/workflow/hwTaskFlowProperties">

   <!-- Name of the client application used to view the tasks, defaults to
 'worklist' -->

   <ApplicationName>worklist</ApplicationName>

   <!-- Type of ejb lookup used. If not specified, remote lookup is used. Values
 - LOCAL, REMOTE, SOAP -->
   <LookupType>LOCAL</LookupType>

   <!-- Do not modify this element. Value must be 'false' for deployment to
 complete successfully -->

   <TaskFlowDeploy>false</TaskFlowDeploy>

   <!-- Connection details for soa server for remote ejb lookup.
If not specified, default values for ejbProviderUrl is http://localhost/soa-infra
        , aliasKeyName is BPM_SERVICES, keyName is BPM_SERVICES  -->

   <SoaServer>



Deploying a Composite Application with a Task Flow

29-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

      <ejbProviderUrl/>
      <aliasKeyName/>
      <keyName/>
      <connectionName/>
   </SoaServer>

   <!-- Connection details for server on which task flow is deployed.
If not specified, default values for hostname is localhost,
        httpPort is 8888 and httpsPort is 443 --> -->

   <TaskFlowServer>
      <hostName/>
      <httpPort/>
      <httpsPort/>
   </TaskFlowServer>

    <!-- Task Flow specific properties -->

<hwTaskFlow>
  <WorkflowName></WorkflowName>
 <TaskDefinitionNamespace></TaskDefinitionNamespace>
  <TaskFlowId></TaskFlowId>
  <TaskFlowFileName></TaskFlowFileName>
 </hwTaskFlow>
</hwTaskFlows>

29.8.2 How To Deploy a Composite Application with a Task Flow
An application server connection is required to do the following.   

To deploy a composite application with a task flow:
1. Right-click the composite application name, select Deploy, and then application_

name > to > application_server_connection. 

If you do not have a connection, select New Connection and use the Application 
Server Connection wizard.

2. In the Select Deployment Targets dialog, select a server instance.

3. Click OK.

29.8.3 How To Redeploy the Task Form
If you change the task form and want to redeploy it, repeat the deployment step. 
(Right-click the task form application name, select Deploy, and then application_
name > to > application_server_connection.) A message asking you if you want to 
undeploy the form is displayed. Click OK and deploy the task form again. 

29.8.4 How To Deploy a Task Flow as a Separate Application
If you want to deploy the task flow as a separate application, outside of the SOA 
composite application, then create a new application and project as a container for the 
task flow. After you deploy the SOA composite application, deploy the task flow 
application. 

29.8.5 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server
This section describes how to deploy a task form to a non-SOA Oracle WebLogic 
Server.



Deploying a Composite Application with a Task Flow

Designing Task Forms for Human Tasks 29-41

29.8.5.1 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
The oracle.soa.workflow.jar shared library is needed on the non-SOA Oracle WebLogic 
Server. It is available from

ORACLE_JDEV_HOME\jdeveloper\soa\modules\oracle.soa.workflow_11.1.1

Use Oracle WebLogic Server Administration Console to deploy the JAR file.

To deploy oracle.soa.workflow.jar:
1. Go to Oracle WebLogic Server Administration Console at

http://remote_hostname:remote_portnumber/console

2. In the Domain Structure area, click Deployments.

3. Click Install, as shown in Figure 29–42.

Figure 29–42 Oracle WebLogic Server Administration Console: List of Deployments

4. In the Path field, provide the following path and click Next. 

ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_
11.1.1/oracle.soa.workflow.jar

5. Keep the same name for the deployment and click Next, as shown in Figure 29–43.



Deploying a Composite Application with a Task Flow

29-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–43 Oracle WebLogic Server Administration Console: Install Applications Assistant

6. Select the Deploy as Library option and click Finish.

7. Confirm that the oracle.soa.workflow(11.1.1,11.1.1) library is in the Active state, as 
shown in Figure 29–44.

Figure 29–44 Oracle WebLogic Server Administration Console: The oracle.soa.workflow Active State

See Section 29.8.5.2, "Defining the Foreign JNDI Provider on a non-SOA Oracle 
WebLogic Server," to continue.

29.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
Use Oracle WebLogic Server Administration Console to complete this portion of the 
task.



Deploying a Composite Application with a Task Flow

Designing Task Forms for Human Tasks 29-43

To define the foreign JNDI provider:
1. In the Domain Structure area, expand Services and click Foreign JNDI Providers.

2. Click New.

3. In the Name field, enter ForeignJNDIProvider-SOA, as shown in Figure 29–45, 
and click OK.

Figure 29–45 Creating a Foreign JNDI Provider

4. Click the ForeignJNDIProvider-SOA link.

5. Do the following and click Save.

■ For Initial Context Factory, enter 
weblogic.jndi.WLInitialContextFactory.

■ For Provider URL, enter t3://soa_hostname:soa_
portnumber/soa-infra.

In a clustered environment, for Provider URL, enter http://soa_
hostname:soa_portnumber/soa-infra. 

■ For User, enter weblogic. 

■ For Password, enter weblogic.

Figure 29–46 shows the page where you enter this information.



Deploying a Composite Application with a Task Flow

29-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–46 Defining the Foreign JNDI Provider

See Section 29.8.5.3, "Defining the Foreign JNDI Provider Links on a non-SOA Oracle 
WebLogic Server," to continue.

29.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic 
Server
Use Oracle WebLogic Server Administration Console to complete this portion of the 
task.

To define the foreign JNDI provider links:
1. In the Domain Structure area, expand Services and click Foreign JNDI Providers.

2. Click the ForeignJNDIProvider-SOA link.

3. Click the Links tab.

4. Click New.

Figure 29–47 shows the Links tab.



Deploying a Composite Application with a Task Flow

Designing Task Forms for Human Tasks 29-45

Figure 29–47 Defining the Foreign JNDI Provider Links: The Links Tab

5. Do the following and click OK.

■ For Name, enter RuntimeConfigService. 

■ For Local JNDI Name, enter RuntimeConfigService.

■ For Remote JNDI Name, enter RuntimeConfigService. 

Figure 29–48 shows where you do this.

Figure 29–48 Defining the Foreign JNDI Provider Links: Link Properties

6. Do the following and click OK.

■ For Name, Local JNDI Name, Remote JNDI Name, enter 
ejb/bpel/services/workflow/TaskServiceBean. 



Deploying a Composite Application with a Task Flow

29-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ For Name, Local JNDI Name, Remote JNDI Name, enter 
ejb/bpel/services/workflow/TaskMetadataServiceBean. 

■ For Name, Local JNDI Name, Remote JNDI Name, enter 
TaskReportServiceBean. 

■ For Name, Local JNDI Name, Remote JNDI Name, enter 
TaskEvidenceServiceBean.

■ For Name, Local JNDI Name, Remote JNDI Name, enter 
TaskQueryService. 

■ For Name, Local JNDI Name, Remote JNDI Name, enter 
UserMetadataService. 

See Section 29.8.5.4, "Including a Grant for bpm-services.jar," to continue.

29.8.5.4 Including a Grant for bpm-services.jar
To include a grant for bpm-services.jar, edit the system-jazn-data.xml file and 
then restart the non-SOA Oracle WebLogic Server.

To include a grant for bpm-services.jar:
1. Locate the system-jazn-data.xml file by navigating to the domain directory, 

soa-infra, and then to

ORACLE_WEBLOGIC_INSTALL/user_projects/domains/your_domain_name/config/fmwconfig

2. In system-jazn-data.xml, add the following grant. (If all or some portion of 
the grant exists, then add only what is missing.)

<grant>
  <grantee>
   <codesource>
    <url>file: ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_
11.1.1/bpm-services.jar</url>
   </codesource>
  </grantee>
  <permissions>
   <permission>
    <class>oracle.security.jps.JpsPermission</class>
    <name>VerificationService.createInternalWorkflowContext</name>
   </permission>
  <permission>
  <class>oracle.security.jps.service.credstore.CredentialAccessPermission
  </class>
  <name>credstoressp.credstore.BPM-CRYPTO.BPM-CRYPTO</name>
  <actions>read,write</actions>
  </permission>
  <permission>
   <class>oracle.security.jps.JpsPermission</class>
   <name>IdentityAssertion</name>
   <actions>*</actions>
  </permission>
 </permissions>
</grant>

3. Restart the non-SOA Oracle WebLogic Server.

See Section 29.8.5.5, "Deploying the Application," to continue.



Displaying a Task Form in the Worklist

Designing Task Forms for Human Tasks 29-47

29.8.5.5 Deploying the Application
Deploy the application that contains the task form to a non-SOA Oracle WebLogic 
Server the same way other applications are deployed. When you set up the application 
server connection, specify the domain on the non-SOA server (the domain you 
specified in Step 1 of Section 29.8.5.4, "Including a Grant for bpm-services.jar.". See 
Chapter 41, "Deploying SOA Composite Applications" for information on deploying 
applications.

29.8.6 What Happens When You Deploy the Task Form
When the task form is deployed, an automatic association is created between the task 
metadata and the task flow application URL. Use Oracle Enterprise Manager 11g 
Fusion Middleware Control to update this mapping. Access the task flow component 
in the Component Metrics table for a specific SOA composite application. The 
Administration tab shows the URI for the task form. See Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information. 
If the task flow is configured for HTTPS access, you may need to do additional settings 
in Enterprise Manager.

See Chapter 30, "Using Oracle BPM Worklist" for information on how to act on tasks.

29.8.7 What You May Need to Know About Undeploying a Task Flow
When a task flow Web application is deployed, the task flow URL is registered in the 
database. This URL is displayed in Oracle BPM Worklist when a task is clicked and the 
task details are displayed. If the task flow Web application is later undeployed or 
stopped, the task flow URL in the database is not removed as part of the 
undeployment. Consequently, when you click the task in the worklist to see the task 
details, a 404 Not Found error is displayed rather than the message Details not 
available for task. To avoid the 404 Not Found error, use Oracle Enterprise 
Manager Fusion Middleware Control Console to undeploy the task flow application 
from the application home page.

29.9 Displaying a Task Form in the Worklist
The task form is displayed in Oracle BPM Worklist, a web-based interface for users to 
act on their assigned human tasks. Specific actions are available or unavailable 
depending on a user’s privileges.

Figure 29–49 shows how the task form for the help desk request example is displayed 
in the Worklist Application task details page.

Notes:

■ For the task form to work correctly, always specify the URL using 
the complete name for the host on which the task flow is 
deployed.

■ If you want to access the task form from a different URL that has a 
different port number than the hostname and port number 
previously set in Oracle WebLogic Server Administration Console, 
then you must change the port number for the front-end in Oracle 
WebLogic Server Administration Console and redeploy the task 
form so that the task details appear correctly in the worklist.



Displaying a Task in an Email Notification

29-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–49 Worklist Task Details Page

29.9.1 How To Display the Task Form in the Worklist
The task form is available in Oracle BPM Worklist after you log in. See Section 30.2.1, 
"How To Log In to the Worklist" for instructions.

29.10 Displaying a Task in an Email Notification
Figure 29–50 shows how an email task notification appears in email.



Reusing the Task Flow Application with Multiple Human Tasks

Designing Task Forms for Human Tasks 29-49

Figure 29–50 Email Task Notification

You can click an available action, RESOLVED or UNRESOLVED, or click the Worklist 
Application link to log in to the worklist. Clicking an action displays an email 
composer window in which you can add a comment and send the email.

29.11 Reusing the Task Flow Application with Multiple Human Tasks
You can reuse a single task flow application with multiple human tasks. To use this 
feature, all human tasks must have identical payload elements.



Reusing the Task Flow Application with Multiple Human Tasks

29-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

29.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks
1. Open the TASKFLOW_PROJ_DIR\adfmsrc\hwtaskflow.xml file.

2. For each additional human task, add the following element inside the file (at the 
bottom just before </hwTaskFlows>):

<hwTaskFlow>
  <WorkflowName>$TASK_NAME</WorkflowName>
  <TaskDefinitionNamespace>$TASK_NAMESPACE</TaskDefinitionNamespace>
  <TaskFlowId>$TASK_FLOW_NAME</TaskFlowId>
  <TaskFlowFileName>$TASK_FLOW_FILENAME</TaskFlowFileName>
</hwTaskFlow

where:

■ $TASK_NAME is replaced with the name of the human task inside the .task 
file (value of the <name> element).

■ $TASK_NAMESPACE is replaced with the namespace of the human task inside 
the .task file (value of the attribute targetNameSpace of element 
<taskDefinition>).

■ $TASK_FLOW_NAME is copied from the existing 
<hwTaskFlow>/<TaskFlowId> element.

■ $TASK_FLOW_FILENAME is copied from the existing 
<hwTaskFlow>/<TaskFlowFileName> element.



30

Using Oracle BPM Worklist 30-1

30 Using Oracle BPM Worklist

This chapter describes how worklist users and administrators interact with Oracle 
BPM Worklist, and how to customize the worklist display to reflect local business 
needs, languages, and time zones. 

This chapter includes the following sections:

■ Section 30.1, "Introduction to Oracle BPM Worklist"

■ Section 30.2, "Logging In to Oracle BPM Worklist"

■ Section 30.3, "Customizing the Task List Page"

■ Section 30.4, "Acting on Tasks: The Task Details Page"

■ Section 30.5, "Approving Tasks"

■ Section 30.6, "Setting a Vacation Period"

■ Section 30.7, "Setting Rules"

■ Section 30.8, "Using the Worklist Administration Functions"

■ Section 30.9, "Specifying Notification Settings"

■ Section 30.10, "Using Mapped Attributes (Flex Fields)"

■ Section 30.11, "Creating Worklist Reports"

■ Section 30.12, "Accessing Oracle BPM Worklist in Local Languages and Time 
Zones"

■ Section 30.13, "Creating Reusable Worklist Regions"

See Chapter 31, "Building a Custom Worklist Client" for how to use the APIs exposed 
by the workflow service. 

30.1 Introduction to Oracle BPM Worklist
Oracle BPM Worklist enables business users to access and act on tasks assigned to 
them. For example, from a worklist, a loan agent can review loan applications or a 
manager can approve employee vacation requests. These processes are defined in 
human tasks.

Oracle BPM Worklist provides different functionality based on the user profile. 
Standard user profiles include task assignee, supervisor, process owner, and 
administrator. For example, worklist users can update payloads, attach documents or 
comments, and route tasks to other users, in addition to completing tasks by providing 
conclusions such as approvals or rejections. Supervisors or group administrators can 
use the worklist to analyze tasks assigned to a group and route them appropriately. 



Introduction to Oracle BPM Worklist

30-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Users can customize their task lists, as required, by adding worklist views, for 
example, selecting the columns to display, or displaying a subset of the tasks based on 
filter criteria.

Using Oracle BPM Worklist, task assignees can do the following:

■ Perform authorized actions on tasks in the worklist, acquire and check out shared 
tasks, define personal to-do tasks, and define subtasks.

■ Filter tasks in a worklist view based on various criteria.

■ Work with standard work queues, such as high priority tasks, tasks due soon, and 
so on. Work queues allow users to create a custom view to group a subset of tasks 
in the worklist, for example, high priority tasks, tasks due in 24 hours, expense 
approval tasks, and more.

■ Define custom work queues.

■ Gain proxy access to part of another user’s worklist. 

■ Define custom vacation rules and delegation rules.

■ Enable group owners to define task dispatching rules for shared tasks.

■ Collect a complete workflow history and audit trail.

■ Use digital signatures for tasks.

Figure 30–1 shows an illustration of Oracle BPM Worklist.

Figure 30–1 Oracle BPM Worklist—Access Tasks, Forms, Attachments, and Reports

The worklist is rendered in a browser by a task form that you create using ADF task 
flows in Oracle JDeveloper. See Chapter 29, "Designing Task Forms for Human Tasks" 
for more information.

Users can also act on tasks through portals such as Oracle WebCenter. Portals enable 
users to present information from multiple, unrelated data sources in a single 
organized view. This view, a portal page, can contain one or more components called 
portlets that can each collect content from different data sources.

You can build clients for workflow services using the APIs exposed by the workflow 
service. The APIs enable clients to communicate with the workflow service using local 
and remote EJBs, SOAP, and HTTP.

Complete Task

List Work Items

Workflow ServicesOracle BPM Worklist

Get Weekly
Productivity

Report

Task Details
and History



Logging In to Oracle BPM Worklist

Using Oracle BPM Worklist 30-3

30.1.1 What You May Need To Know About Oracle BPM Worklist
Note the following:

■ Only one identity provider is supported. Java policy store does not support 
multiple providers in a sequence. Therefore, fall-through from one directory server 
to another is not supported for worklists.

30.2 Logging In to Oracle BPM Worklist 
Table 30–1 lists the different types of users recognized by Oracle BPM Worklist, based 
on the privileges assigned to the user. 

30.2.1 How To Log In to the Worklist
To log in, you must have installed Oracle SOA Suite and the SOA server must be 
running. See Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle 
Business Process Management Suite for more information.

 Use a supported web browser:

■ Microsoft Internet Explorer 7.x

■ Mozilla Firefox 2.x

■ Mozilla Firefox 3.x

■ Apple Safari

To log in:
1. Go to 

http://hostname:port_number/integration/worklistapp

■ hostname is the name of the host computer on which Oracle SOA Suite is 
installed

■ The port_number used at installation

Table 30–1 Worklist User Types

Type of User Access

End user (user) Acts on tasks assigned to him or his group and has access to system and custom 
actions, routing rules, and custom views

Supervisor (manager) Acts on the tasks, reports, and custom views of his reportees, in addition to his own 
end-user access

Process owner Acts on tasks belonging to the process but assigned to other users, in addition to his 
own end-user access

Group administrator Manages group rules and dynamic assignments, in addition to his own end-user 
access

Workflow administrator Administers tasks that are in an errored state, for example, tasks that must be 
reassigned or suspended. The workflow administrator can also change application 
preferences and map attributes, and manage rules for any user or group, in addition 
to his own end-user access.

Note: Multiple authentication providers (for example, SSO and 
forms) are not supported.



Logging In to Oracle BPM Worklist

30-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Enter the user name and password.

You can use the preseeded user to log in as an administrator. If you have loaded 
the demo user community in the identity store, then you can use other users such 
as jstein or jcooper.

The user name and password must exist in the user community provided to 
JAZN. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and 
Oracle BPM Suite for the organizational hierarchy of the demo user community 
used in examples throughout this chapter.

3. Click Login.

30.2.1.1 Enabling the weblogic User for Logging in to the Worklist
For the weblogic user in Oracle Internet Directory to log in to Oracle BPM Worklist, 
the Oracle Internet Directory Authenticator must have an Administrators group, and 
the weblogic user must be a member of that group.

To enable the weblogic user:
1. Create a weblogic user in Oracle Internet Directory using the LDAP browser. The 

users.ldif file is imported to Oracle Internet Directory as follows:

dn: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com
objectclass: inetorgperson
objectclass: organizationalPerson
objectclass: person
objectclass: orcluser
objectclass: orcluserV2
objectclass: top
sn: weblogic
userpassword: welcome1
uid: weblogic 

2. Create an Administrators group in Oracle Internet Directory and assign the 
weblogic user to it. The groups.ldif file is imported to Oracle Internet 
Directory as follows:

dn: cn=Administrators,cn=Groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames
objectclass: orclGroup
objectclass: top
owner: cn=orcladmin,cn=Users,dc=us,dc=oracle,dc=com
uniquemember: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com

30.2.2 What Happens When You Log In to the Worklist
Identity service workflow APIs authenticate and authorize logins using a user name, 
password, and optionally a realm set, if multiple realms were defined for an 
organization. See Section 30.8.2, "How To Set the Worklist Display (Application 
Preferences)," for information on how administrators can set a preference to change 
the realm label displayed in the interface, or specify an alternative location for the 
source of the login page image.

After a user logs in, the Home (task list) page displays tasks for the user based on the 
user’s permissions and assigned groups and roles. The My Tasks tab and the Inbox 
are displayed by default. The actions allowed from the Actions list also depend on the 
logged-in user’s privileges.

Figure 30–2 shows an example of the Home page. 



Logging In to Oracle BPM Worklist

Using Oracle BPM Worklist 30-5

Figure 30–2 Oracle BPM Worklist—The Home (Task List) Page

Table 30–2 describes the components of the Home (task list) page.



Logging In to Oracle BPM Worklist

30-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 30–2 Components of the Home (Task List) Page 

Component Description

Tabs The tabs displayed depend on the role granted to the logged-in user. 

■ Everyone (the user role) sees My Tasks and Initiated Tasks.

■ Users who are also managers see the My Tasks, Initiated Tasks, and My Staff Tasks tabs.

■ Users who are also owners (of a process) see the My Tasks, Initiated Tasks, and 
Administration Tasks tabs.

■ Users who are also administrators (the BPMWorkflowAdmin), but not managers, see the My 
Tasks, Initiated Tasks, Administration Tasks, Administration, and Evidence Search tabs.

■ Users who are managers and administrators see all the tabs— My Tasks, Initiated Tasks, My 
Staff Tasks, Administration Tasks, Administration, and Evidence Search.

■ Users with the workflow.admin.evidenceStore permission also see the Evidence Search tab.

See the following for more information:

■ Section 30.4.4, "How To Act on Tasks That Require a Digital Signature," for information about 
evidence search 

■ Section 30.8.1, "How To Manage Other Users’ or Groups’ Rules (as an Administrator)"

Worklist 
Views

Inbox, My Work Queues, Proxy Work Queues—See Section 30.3.2, "How To Create and 
Customize Worklist Views," for more information.

Task Status A bar chart shows the status of tasks in the current view. See Section 30.3.3, "How To Customize 
the Task Status Chart," for more information.

Display Filters Specify search criteria from the View, Assignee or Status fields. The category filters that are 
available depend on which tab is selected. 

■ The View filters are Inbox, Due Soon, High Priority, and New Tasks. 

■ From the My Tasks tab, the Assignee filters are My, Group, My & Group, Previous (tasks 
worked on previously), and Reviewer. From the Initiated Tasks tab, the only assignee filter is 
Creator. From the My Staff Tasks tab, the only assignee filter is Reportees. From the 
Administration Tasks tab, the only assignee filter is Admin.

■ The Status filters include Any, Assigned, Completed, Suspended, Withdrawn, Expired, 
Errored, Alerted, Information Requested.

Use Search to enter a keyword, or use Advanced Search. See Section 30.3.1, "How To Filter Tasks," 
for more information.



Logging In to Oracle BPM Worklist

Using Oracle BPM Worklist 30-7

Figure 30–2 also shows the Administration, Reports, and Preferences links 
(upper-right corner). Table 30–3 summarizes the Home, Administration, Reports, and 
Preferences pages.

Actions List Select a group action (Claim) or a custom action (for example, Approve or Reject) that was 
defined for the human task. Claim appears for tasks assigned to a group or multiple users; one 
user must claim the task before it can be worked. Other possible actions for a task, such as system 
actions, are displayed on the task details page for a specific task. You can also create ToDo tasks 
and subtasks here.

Note:

■ If a task is aggregated, you only see actions such as Approve and Reject, even if the 
aggregated task includes FYI tasks. No acknowledge action is explicitly provided. Approve or 
Reject can be interpreted as an acknowledge action.

■ The Claim button remains enabled even when Auto Claim has been previously enabled. This 
button enables a user to claim and continue working on the task rather than to simply 
approve it.

Default 
Columns

Title—The title specified when the human task was created. Tasks associated with a purged or 
archived process instance do not appear. 

Number—The task number generated when the BPEL process was created. 

Priority—The priority specified when the human task was created. The highest priority is 1; the 
lowest is 5.

Assignees—The user or group or application roles.

State—Select from Assigned, Completed, Errored, Expired, Information Requested, Stale, 
Suspended, or Withdrawn.

Created—Date and time the human task was created

Expires—Date and time the tasks expires, specified when the human task was created

Task Details The lower section of the worklist displays the inline view of the task details page. Buttons indicate 
available actions. See Section 30.4, "Acting on Tasks: The Task Details Page," for more information.

Table 30–3 Worklist Main Pages Summary

Page Description

Home As described in Table 30–2, the logged-in user’s list of tasks, details for a selected task, 
and all the functions needed to start acting on a task are provided.

Administration The following administrative functions are available:

■ Setting application preferences 

■ Mapping attributes

■ Searching the evidence store

■ Configuring tasks

Reports The following reports are available: Unattended Tasks Report, Tasks Priority Report, 
Tasks Cycle Time Report, Tasks Productivity Report, and Tasks Time Distribution 
Report. See Section 30.11.1, "How To Create Reports," for more information.

Preferences Preference settings include:

■ Setting rules for users or groups, including vacation rules, and setting vacation 
periods

■ Uploading certificates 

■ Specifying user notification channels and message filters

Table 30–2 (Cont.) Components of the Home (Task List) Page 

Component Description



Customizing the Task List Page

30-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

30.2.3 What Happens When You Change a User’s Privileges While They are Logged in 
to Oracle BPM Worklist

If you change a user's privileges in Oracle Enterprise Manager Fusion Middleware 
Control Console while the user is logged in to Oracle BPM Worklist, the changes take 
effect only after a subsequent login by the user. This is true for situations in which 
there are two active worklist sessions, one in which the user is logged in before the 
privileges are changed, and one in which the same user logs in after the privileges are 
changed. In the first case, the changes to the user's privileges do not take effect while 
the user is logged in. In the second case, when the user logs in to the second instance 
of the Worklist Application, the changes to the user's privileges do take effect.

30.3 Customizing the Task List Page 
You can customize your task list in several ways, including adding worklist views, 
selecting which columns to display, and displaying a subset of the tasks based on filter 
criteria. Resize the task list display area to increase the number of tasks fetched.

30.3.1 How To Filter Tasks
Figure 30–3 shows the filter fields.

Figure 30–3 Filters—Assignee, Status, Search, and Advanced Search 

Filters are used to display a subset of tasks, based on the following filter criteria: 

■ Assignee

From the My Tasks tab, select from the following:

■ My—Retrieves tasks directly assigned to the logged-in user

■ Group—Retrieves the following:

* Tasks that are assigned to groups that the logged-in user belongs to

* Tasks that are assigned to an application role that the logged-in user is 
assigned

Note: When you deploy SOA composite applications with human 
tasks to partitions, the tasks created for these composites cannot be 
filtered using the partition as a parameter inside Oracle BPM Worklist. 
For example, you can select a task type corresponding to a particular 
partition (the same task type, but in different partitions), but filtering 
does not work with the advanced search, custom views, custom rules, 
and mapped attribute features. For example, assume 
VacationRequestApp is deployed to partition 1 and partition 2. When 
the advanced search is used to select tasks corresponding to 
composites deployed in partition 1, the result does not return the 
tasks. 



Customizing the Task List Page

Using Oracle BPM Worklist 30-9

* Tasks that are assigned to multiple users, one of which is the logged-in 
user

■ My & Group—Retrieves all tasks assigned to the user, whether through direct 
assignment, or by way of a group, application role, or list of users

■ Previous—Retrieves tasks that the logged-in user has updated

■ Reviewer—Retrieves task for which the logged-in user is a reviewer 

From the Initiated Tasks tab, select Creator. 

From the My Staff Tasks tab, select Reportees. 

From the Administration Tasks tab, select Admin.

■ Status—Select from the following: Any, Assigned, Completed, Suspended (can 
be resumed later), Withdrawn, Expired, Errored (while processing), Alerted, or 
Information Requested.

■ Search—Enter a keyword to search task titles, comments, identification keys, and 
the flex string fields of tasks that qualify for the specified filter criterion.

■ Advanced—Provides additional search filters.

To filter tasks based on assignee or status:
1. Select options from the Assignee and Status lists.

The task list is automatically updated based on the filter selections.

To filter tasks based on keyword search:
1. Enter a keyword to search task titles, comments, identification keys, and the flex 

string fields of tasks that qualify for the specified filter criterion.

2. Press Enter or click Refresh.

To filter tasks based on an advanced search:
Mapped attribute labels can be used in an advanced search if you select task types for 
which mapped attribute mappings have been defined.

See Section 30.10.1, "How To Map Attributes," for more information.

1. Click Advanced.

2. (Optional) Check Save As View, provide a view name, and use the Display tab to 
provide other information, as shown in Figure 30–4 and Figure 30–5.

Note: If a task is assigned separately to multiple reportees, when a 
manager looks at the My Staff Tasks list, the manager sees as many 
copies of that task as the number of reportees that the task is assigned 
to.



Customizing the Task List Page

30-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–4 Worklist Advanced Search—Definition Tab

Figure 30–5 Worklist Advanced Search—Display Tab

Table 30–4 describes the advanced search view columns available in the Display 
tab. 



Customizing the Task List Page

Using Oracle BPM Worklist 30-11

Table 30–4 Advanced Search—View Columns

Column Description

Start Date The start date of the task (used with ToDo tasks).

Task Definition Name The name of the task component that defines the task instance.

Owner Role The application role (if any) that owns the task instance. Task 
owners can be application roles, users, or groups. If the owner of 
the task is an application role, this field is set.

Updated Date The date the task instance was last updated.

Composite Version The version of the composite that contains the task component 
that defines the task instance.

Creator The name of the creator of the task.

From User The from user for the task.

Percentage Complete The percentage of the task completed (used with ToDo tasks).

Owner Group The group (if any) that owns the task instance. Task owners can 
be application roles, users, or groups. If the owner of the task is a 
group, this field is set.

End Date The end date of the task (used with ToDo tasks).

Composite The name of the composite that contains the task component 
that defines the task instance.

Due Date The due date of the task (used with ToDo tasks).

Composite Distinguished 
Name

The unique name for the particular deployment of the composite 
that contains the task component that defines the task instance.

Task Display URL The URL to display the details for the task.

Updated By The user who last updated the task.

Outcome The outcome of the task, for example Approved or Rejected. 
This is only set on completed task instances.

Task Namespace A namespace that uniquely defines all versions of the task 
component that defines this task instance. Different versions of 
the same task component can have the same namespace, but no 
two task components can have the same namespace.

Approvers The approvers of the task.

Application Context The application to which any application roles associated with 
the tasks (such as assignees, owners, and so on) belong.

Owner User The user (if any) that owns the task instance. Task owners can be 
application roles, users, or groups. If the owner of the task is a 
user, this field is set.

Identifier The (optional) custom unique identifier for the task. This is an 
additional unique identifier to the standard task number.

Category The category of the task.

Acquired By The name of the user who claimed the task in the case when the 
task is assigned to a group, application role, or to multiple users, 
and then claimed by the user.

Component The name of the task component that defines the task instance.

Original Assignee User The name of the user who delegated the task in the case when 
the user delegates a task to another user.

Assigned The date that this task was assigned.



Customizing the Task List Page

30-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The saved view appears in the Inbox under My Views, as shown in Figure 30–6.

Figure 30–6 Saving a View

3. Select an assignee, as shown in Figure 30–7.

Figure 30–7 Worklist Advanced Search

4. Add conditions (filters), as shown in Figure 30–8.

Domain The domain to which the composite that contains the task 
component that defines the task instance belongs.

Title The title of the task.

Number An integer that uniquely identifies the task instance.

Priority An integer that defines the priority of the task. A lower number 
indicates a higher priority—typically numbers 1 to 5 are used.

Assignees The current task assignees (users, groups or application roles).

State The state of the task instance.

Created The date that the task instance was created.

Expires The date on which the task instance expires.

Table 30–4 (Cont.) Advanced Search—View Columns

Column Description



Customizing the Task List Page

Using Oracle BPM Worklist 30-13

Figure 30–8 Adding Filters for an Advanced Search on Tasks

Table 30–5 describes the available conditions.

Table 30–5 Advanced Search—Conditions

Condition Description

Start Date The start date of the task (used with ToDo tasks).

Assignees The current task assignees (users, groups or application roles).

Task Definition Name The name of the task component that defines the task instance.

Owner Role The application role (if any) that owns the task instance. Task 
owners can be application roles, users, or groups. If the owner of 
the task is an application role, this field is set.

Updated Date The date that the task instance was last updated.

Created The date that the task instance was created.

Composite Version The version of the composite that contains the task component 
that defines the task instance.

Creator The name of the creator of the task.



Customizing the Task List Page

30-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Add parameter values, shown in Figure 30–9.

From User The from user for the task.

Percentage Complete The percentage of the task completed (used with ToDo tasks).

Title The title of the task.

Owner Group The group (if any) that owns the task instance. Task owners can 
be application roles, users, or groups. If the owner of the task is a 
group, this field is set.

End Date The end date of the task (used with ToDo tasks).

Priority An integer that defines the priority of the task. A lower number 
indicates a higher priority—typically numbers 1 to 5 are used.

Number An integer that uniquely identifies the task instance.

Composite The name of the composite that contains the task component 
that defines the task instance.

Due Date The due date of the task (used with ToDo tasks).

State The state of the task instance.

Composite Distinguished 
Name

The unique name for the particular deployment of the composite 
that contains the task component that defines the task instance.

Task Display URL The URL to display the details for the task.

Updated By The user who last updated the task.

Outcome The outcome of the task, for example Approved or Rejected. 
This is only set on completed task instances.

Task Namespace The namespace of the task.

Approvers The approvers of the task.

Application Context The application to which any application roles associated with 
the tasks (such as assignees, owners, and so on) belong.

Owner User The user (if any) that owns the task instance. Task owners can be 
application roles, users, or groups. If the owner of the task is a 
user, this field is set.

Identifier The (optional) custom unique identifier for the task. This is an 
additional unique identifier to the standard task number.

Expires The date on which the task instance expires.

Category The category of the task.

Acquired By The name of the user who claimed the task in the case when the 
task is assigned to a group, application role, or to multiple users, 
and then claimed by the user.

Component The name of the task component that defines the task instance.

Original Assignee User The name of the user who delegated the task in the case when 
the user delegates a task to another user.

Assigned The date that this task was assigned.

Domain The domain to which the composite that contains the task 
component that defines the task instance belongs.

Table 30–5 (Cont.) Advanced Search—Conditions

Condition Description



Customizing the Task List Page

Using Oracle BPM Worklist 30-15

Figure 30–9 Advanced Search

6. Select Any or All for matching multiple filters.

7. (Optional) Search on a task type.

8. Click Search.

The task list page with the tasks filtered according to your criteria appears.

30.3.2 How To Create and Customize Worklist Views
The Worklist Views area, shown in Figure 30–10, displays the following: 

■ Inbox—Shows all tasks that result from any filters you may have used. The 
default shows all tasks. 

■ My Work Queues—Shows standard views and views that you defined.

■ Proxy Work Queues—Shows shared views.



Customizing the Task List Page

30-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–10 Worklist Views

Use Worklist Views to create, share, and customize views.

To create a worklist view:
1. In the Worklist Views section, click Add.

2. Use the Definition tab of the Create User View dialog, shown in Figure 30–11.

Figure 30–11 Creating a Worklist View



Customizing the Task List Page

Using Oracle BPM Worklist 30-17

■ Create View or Use Public View—Create your own view or browse for a 
public view to copy.

■ Name—Specify a name for your view.

■ Add to Standard Views—This option applies to Administrators only. 
Administrators select this option to create the view as a standard view, which 
then appears in the Standard Views list for all worklist users.

■ Assignee—Select My, Group, My&Group, Previous, or Reviewer.

■ Add Condition—Select a filter from the list and click Add. For example, if you 
select startDate, and click Add, then a calendar and a list including on, equals, 
not equals, greater than, less than, and so on appears.

■ Task Type—Browse for a task type or leave the field blank for all types. 
Mapped attribute labels can be selected in the query and display columns 
dialogs if the selected task types have mapped attribute mappings defined.

■ Match—Select All or Any to match the conditions you added.

■ Share View—You can grant access to another user to either the definition of 
this view, in which case the view conditions are applied to the grantee’s data, 
or to the data itself, in which case the grantee can see the grantor’s worklist 
view, including the data. Sharing a view with another user is similar to 
delegating all tasks that correspond to that view to the other user; that is, the 
other user can act on your behalf. Shared views are displayed under Proxy 
Work Queues. 

■ Assignees—Specify the users (grantees) who can share your view.

3. Use the Display tab of the Create User View dialog, shown in Figure 30–12, to 
customize the fields that appear in the view.

Figure 30–12 Displaying Fields in a Worklist View



Customizing the Task List Page

30-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Select View Columns—Specify which columns you want to display in your 
task list. They can be standard task attributes or mapped attributes that have 
been mapped for the specific task type. The default columns are the same as 
the columns in your inbox.

■ Sort by Column—Select a column to sort on.

■ Sort Order—Select ascending or descending order.

4. Click OK.

To customize a worklist view:
1. In the Worklist Views section, click the view name.

2. Click the Edit icon.

3. Use the Definition and Display tabs of the Edit User View dialog to customize the 
view, as shown in Figure 30–13 and Figure 30–14, and click OK.

Figure 30–13 Customizing a Worklist View



Customizing the Task List Page

Using Oracle BPM Worklist 30-19

Figure 30–14 Customizing Fields in a Worklist View

When you select and move items from the Available Columns list to the Selected 
Columns list (or vice-versa), the items remain checked. Therefore, if you select 
items to move back, the previously selected items are also moved. Be sure to 
uncheck items after moving them between the lists if you intend to move 
additional columns.

30.3.3 How To Customize the Task Status Chart
The bar chart shows tasks broken down by status, with a count of how many tasks in 
each status category. The chart applies to the filtered set of tasks within the current 
view.

To customize the task status chart:
1. Click the Edit icon.

2. Add or remove status states for display, as shown in Figure 30–15, and click OK.



Customizing the Task List Page

30-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–15 Customizing the Task Status Chart

30.3.4 How To Create a ToDo Task
Use the Create ToDo Task dialog, shown in Figure 30–16, to create a top-level ToDo 
task for yourself or others. This task is not associated with a business task.

Figure 30–16 The Create ToDo Task Dialog

ToDo tasks appear in the assignee’s Inbox.

You can create ToDo tasks that are children of other ToDo tasks or business tasks. A 
ToDo task can have only one level of child ToDo tasks. When all child ToDo tasks are 
100% complete, the parent ToDo task is also marked as completed. If the parent ToDo 
task is completed, then child ToDo tasks are at 100% within the workflow system. If 
the parent is a business task, the child ToDo is not marked as completed. You must set 
the outcome and complete it. If you explicitly set a ToDo task to 100%, there is no 
aggregation on the parent task.

ToDo tasks can be reassigned, escalated, and so on, and deleted (logical delete) and 
purged (physical delete). Reassignment, escalation, and so on of the parent task does 
not affect the assignment of any child ToDo tasks. The completion percentage of a 
ToDo task can be reset to less than 100% after it is completed.



Customizing the Task List Page

Using Oracle BPM Worklist 30-21

Assignment rules (such as vacation rules) are not applied to ToDo tasks. You cannot 
specify business rules for ToDo tasks.

To create a ToDo task:
1. From the Actions list, select Create TODO Task, as shown in Figure 30–17.

Figure 30–17 Creating a ToDo Task

2. Provide details in the Create ToDo Task dialog, shown in Figure 30–17, and click 
OK.

■ Task Title: Enter anything that is meaningful to you.

■ Category: Enter anything that is meaningful to you.

■ Priority: Select from 1 (highest) to 5 (lowest)

■ Percentage Complete: This attribute indicates how much of the task is 
completed. 100% sets the attribute as completed. 

■ Due Date: The due date does not trigger an expiration. You can also see 
overdue tasks. The start date need not be the current date.

■ StartDate: The task start date.

■ Assignee: You can assign yourself or someone else.

30.3.5 How To Create a Subtask
Use the Create Sub Task dialog, shown in Figure 30–18, to create a subtask, which is a 
ToDo task for a business task. You must select a business task before selecting the 
Create Sub Task option (shown in Figure 30–17).



Acting on Tasks: The Task Details Page

30-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–18 Creating a Subtask

Subtasks can break down a business task into measurable subtasks, and can be created 
for ToDo tasks also. Multiple levels of subtasks are not supported (that is, you cannot 
have subtasks inside of subtasks). If you create multiple levels of subtasks, and 
attempt to act on the main task (for example, to approve or reject), you receive an 
error.

30.4 Acting on Tasks: The Task Details Page
Task details can be viewed inline (see the lower section in Figure 30–2, "Oracle BPM 
Worklist—The Home (Task List) Page") or in a pop-up browser window. (Double-click 
the task.) 

Figure 30–19 shows the task details page.



Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 30-23

Figure 30–19 Task Details Page

Any kind of change to the task details page, such as changing a priority or adding a 
comment or attachment, requires you to save the change before you go on to make any 
other changes.

The task details page has the following components:

■ Task Actions—Lists the system actions that are possible for the task, such as 
Request Information, Reassign, Renew, Suspend, Escalate, and Save. 

■ Action buttons—Displays buttons for custom actions that are defined in the 
human task, such as setting task outcomes (for example, Resolved and 
Unresolved for a help desk request or Approve and Reject for a loan request). For 
the task initiator, manager, or administrator, Withdraw may also appear.



Acting on Tasks: The Task Details Page

30-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Details—Displays task attributes, including the assignee, task creator, task 
number, state, priority, who acquired the task, and other mapped attributes. It also 
displays dates related to task creation, last update, and expiration date.

■ Contents—Displays the payload. The fields displayed are specific to how the 
human task was created.

■ Requester—Displays details (full name, contact information, and so on) about the 
task requester. 

■ Resolution—Displays any comments or resolution status.

■ History—Displays the approval sequence and the update history for the task. See 
Section 30.4.2, "Task History," for more information. 

Table 30–6 tells what the icons used in the Task Details History section signify.

■ Comments—Displays comments entered by various users who have participated 
in the workflow. A newly added comment and the commenter’s user name are 
appended to the existing comments. A trail of comments is maintained throughout 
the life cycle of the task. To add or delete a comment, you must have permission to 
update the task. 

■ Attachments—Displays documents or reference URLs that are associated with a 
task. These are typically associated with the workflow as defined in the human 
task or attached and modified by any of the participants using the worklist. To add 
or delete an attachment, you must have permission to update the task. When 
adding file attachments, you can use an absolute path name or browse for a file.

Comments and attachments are shared between tasks and subtasks. Therefore, when 
you create a ToDo task and add comments and attachments, subtasks of this ToDo task 
include the same comments and attachments.

A user can view a task when associated with the task as the current assignee (directly 
or by group membership), the current assignee’s manager, the creator, the owner, or a 
previous actor.

Table 30–6 Icons for Task Action History

Icon Description

Indicates an approver in an ad hoc routing scenario.

Indicates that the task has been approved.

Indicates that the participant is an FYI participant—that is, this participant just 
receives a notification task and the business process does not wait for the 
participant’s response. Participant cannot directly impact the outcome of a task, but 
in some cases can provide comments or add attachments. 

Indicates that a set of people must work in parallel. This pattern is commonly used 
for voting.

Indicates that the participant belongs to a management chain.

Indicates the simple case in which a participant maps to a user, group, or role.

Indicates that the task is untouched.



Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 30-25

A user’s profile determines his group memberships and roles. The roles determine a 
user’s privileges. Apart from the privileges, the exact set of actions a user can perform 
is also determined by the state of the task, the custom actions, and restricted actions 
defined for the task flow at design time. 

The following algorithm is used to determine the actions a user can perform on a task:

1. Get the list of actions a user can perform based on the privileges granted to him.

2. Get the list of actions that can be performed in the current state of the task. 

3. Create a combined list of actions that appear on the preceding lists.

4. Remove any action on the combined list that is specified as a restricted action on 
the task.

The resulting list of actions is displayed in the task list page and the task details page 
for the user. When a user requests a specific action, such as claim, suspend, or reassign, 
the workflow service ensures that the requested action is contained in the list 
determined by the preceding algorithm.

Step 2 in the preceding algorithm deals with many cases. If a task is in a final, 
completed state (after all approvals in a sequential flow), an expired state, a 
withdrawn state, or an errored state, then no further update actions are permitted. In 
any of the these states, the task, task history, and subtasks (parent task in parallel flow) 
can be viewed. If a task is suspended, then it can only be resumed or withdrawn. A 
task that is assigned to a group must be claimed before any actions can be performed 
on it.

30.4.1 System Actions
The action bar displays system actions, which are available on all tasks based on the 
user’s privileges. Table 30–7 lists system actions.

Note: If you act on a task from the task details page, for example, if 
you approve a task, then any unchanged task details data is saved 
along with the saved changes to the task. However if you act on a task 
from the Actions menu, then unchanged task details are not saved.

Table 30–7 System Task Actions

Action Description

Claim If a task is assigned to a group or multiple users, then the task must be claimed first. 
Claim is the only action available in the Task Action list for group or multiuser 
assignments. After a task is claimed, all applicable actions are listed.

Escalate If you are not able to complete a task, you can escalate it and add an optional 
comment in the Comments area. The task is reassigned to your manager (up one level 
in a hierarchy).

Pushback Use this action to send a task down one level in the workflow to the previous 
assignee. 

The pushback action overrides all other actions. For example, if a task is pushed back 
and then reassigned, after the reassignee approves it, the task goes to the user who 
performed the pushback. This is the expected behavior.

Reassign If you are a manager, you can delegate a task to reportees. A user with 
BPMWorkflowReassign privileges can delegate a task to anyone.

Release If a task is assigned to a group or multiple users, it can be released if the user who 
claimed the task cannot complete the task. Any of the other assignees can claim and 
complete the task.



Acting on Tasks: The Task Details Page

30-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

30.4.2 Task History
The task history maintains an audit trail of the actions performed by the participants 
in the workflow and a snapshot of the task payload and attachments at various points 
in the workflow. The short history for a task lists all versions created by the following 
tasks:

■ Initiate task

■ Re-initiate task

■ Update outcome of task

■ Completion of task

■ Error of task

■ Expiration of task

■ Withdrawal of task

■ Alerting of task to the error assignee

You can include the following actions in the short history list by modifying the 
shortHistoryActions element.

■ Acquire

■ Ad hoc route

■ Auto release of task

■ Delegate

■ Escalate

■ Information request on task

■ Information submit for task

■ Override routing slip

■ Update outcome and route

■ Push back

Renew If a task is about to expire, you can renew it and add an optional comment in the 
Comments area. The task expiration date is extended one week. A renewal appears in 
the task history. The renewal duration for a task can be controlled by an optional 
parameter. The default value is P7D (seven days). 

Submit Information and 
Request Information

Use these actions if another user requests that you supply more information or to 
request more information from the task creator or any of the previous assignees. If 
reapproval is not required, then the task is assigned to the next approver or the next 
step in the business process. 

Suspend and Resume If a task is not relevant, you can suspend it. These options are available only to users 
who have been granted the BPMWorkflowSuspend role. Other users can access the 
task by selecting Previous in the task filter or by looking up tasks in the Suspended 
status. A suspension is indefinite. It does not expire until Resume is used to resume 
working on the task.

Withdraw If you are the creator of a task and do not want to continue with it, for example, you 
want to cancel a vacation request, you can withdraw it and add an optional comment 
in the Comments area. The business process determines what happens next. You can 
use the Withdraw action on the home page by using the Creator task filter.

Table 30–7 (Cont.) System Task Actions

Action Description



Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 30-27

■ Reassign

■ Release

■ Renew

■ Resume

■ Skip current assignment

■ Suspend

■ Update

The history provides a graphical view of a task flow, as shown in Figure 30–20.

Figure 30–20 History: Graphical View

Check Full task actions to see all actions performed, including those that do not make 
changes to the task, such as adding comments, as shown in Figure 30–21.



Acting on Tasks: The Task Details Page

30-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–21 History: Full Task Actions

Available ways to view the task history include:

■ Take a task snapshot

■ See future approvers

■ See complete task actions

30.4.3 How To Act on Tasks
If the human task was designed to permit ad hoc routing, or if no predetermined 
sequence of approvers was defined, then the task can be routed in an ad hoc fashion in 
the worklist. For such tasks, a Route button appears on the task details page. From the 
Route page, you can look up one or more users for routing. When you specify multiple 
assignees, you can select whether the list of assignees is for simple (group assignment 
to all users), sequential, or parallel assignment. 

Parallel tasks are created when a parallel flow pattern is specified for scenarios such as 
voting. In this pattern, the parallel tasks have a common parent. The parent task is 
visible to a user only if the user is an assignee or an owner or creator of the task. The 
parallel tasks themselves (referred to as subtasks) are visible to whomever the task is 
assigned, just like any other task. It is possible to view the subtasks from a parent task. 
In such a scenario, the task details page of the parent task contains a View SubTasks 
button. The SubTasks page lists the corresponding parallel tasks. In a voting scenario, 
if any of the assignees updates the payload or comments or attachments, the changes 
are visible only to the assignee of that task. 

A user who can view the parent task (such as the final reviewer of a parallel flow 
pattern), can drill down to the subtasks and view the updates made to the subtasks by 
the participants in the parallel flow. The parent task is a container for the subtasks 
while they are worked on by the assignees. The task owner must not act on or approve 
the parent task. 

If a human task was set up to require a password, then when you act on it, you must 
provide the password, as shown in Figure 30–22.



Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 30-29

Figure 30–22 Acting on a Task That Requires a Password

To reassign or delegate a task:
1. From the Task Actions list, select Reassign, as shown in Figure 30–23.

Figure 30–23 Reassigning a Task

2. Select Reassign or Delegate.

Delegate differs from Reassign in that the privileges of the delegatee are based on 
the delegator’s privileges. This function can be used by managers’ assistants, for 
example.

3. Provide or browse for a user or group name, as shown in Figure 30–24.

Note: Any kind of change to the task details page, such as changing 
a priority or adding a comment, requires you to save the change. If 
you add an attachment to a task, it is automatically saved. 



Acting on Tasks: The Task Details Page

30-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–24 Reassigning a Task

A supervisor can always reassign tasks to any of his reportees. Users with the 
BPMWorkflowReassign role can assign tasks to any users in the organization.

4. Move names to the Selected area and click OK. 

You can reassign to multiple users or groups. One of the assignees must claim the 
task, as shown in Figure 30–25.



Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 30-31

Figure 30–25 Claiming a Task

To request information:
1. From the Task Actions list, select Request Information, as shown in Figure 30–26.

Figure 30–26 Requesting Information

2. Request information from a past approver or search for a user name, or push the 
task back to the previous assignee, as shown in Figure 30–27.

Figure 30–27 Requesting Information from Past Approvers or Another User, or Pushing 
the Task Back

If you use the Search icon to find a user name, the Identity Browser appears, as 
shown in Figure 30–28.



Acting on Tasks: The Task Details Page

30-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–28 Identity Browser

3. Click OK.

To route a task:
1. From the Task Actions list, select Adhoc Route, as shown in Figure 30–29.

Figure 30–29 Ad Hoc Routing

2. Select an action and a routing option, as shown in Figure 30–30.

Note: If you are in a multi-tenancy environment, search for a user 
simply by the user identifier and not by the tenant identifier. For 
example, if the user identifier is jstein and the tenant identifier is 
company_name.jstein, you would search by using jstein.



Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 30-33

Figure 30–30 Routing a Task

■ Single Approver: Use this option for a single user to act on a task. If the task is 
assigned to a role or group with multiple users, then one member must claim 
the task and act on it. 

■ Group Vote: Use this option when multiple users, working in parallel, must 
act, such as in a hiring situation when multiple users vote to hire or reject an 
applicant. You specify the voting percentage that is needed for the outcome to 
take effect, such as a majority vote or a unanimous vote, as shown in 
Figure 30–31.



Acting on Tasks: The Task Details Page

30-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–31 Providing Consensus Information

■ Chain of Single Approvers: Use this option for a sequential list of approvers. 
The list can comprise any users or groups. (Users are not required to be part of 
an organization hierarchy.) 

3. Add optional comments for the next participant on the route.

4. Provide or search for user or group names; then move the names to the Selected 
area.

5. Click OK.

To add comments or attachments:

1. In the Comments or Attachments area, click Add.

Figure 30–32 Worklist Comments and Attachments

2. Enter comment text and click OK. Note that comments cannot be deleted once 
they are added.

The date and timestamp and your user name are included with the comment.

Notes:

■ Click Save before you browse for or upload attachments, to 
ensure that any previous changes to the task details page are 
saved.

■ When you remove a file or URL attachment, the task is not 
automatically updated. You must explicitly select Actions > Save. 
Otherwise, the attachment is not removed, even though it is 
displayed as removed. This is the expected behavior.

■ If you add a file attachment, you do not need to explicitly select 
Actions > Save.

■ If you add a URL attachment, you must explicitly select Actions > 
Save.



Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 30-35

3. For attachments, provide a file or URL attachment, as shown in Figure 30–33, and 
click OK.

Figure 30–33 Adding a Worklist Attachment

If you attach a URL file in Oracle BPM Worklist (for example, 
http://www.oracle.com/technology/products/oem/management_
partners/snmpwp6.gif), it is not sent as an e-mail attachment. Instead, it 
appears as a hyperlink in the task details of the e-mail notification. However, if a 
desktop file is attached, it can be seen as a separate attachment in the task 
notification.

4. From the Task Actions list, click Save.

30.4.4 How To Act on Tasks That Require a Digital Signature
The worklist supports the signature policy created in the human task: 

■ No signature required — Participants can send and act on tasks without 
providing a signature.

■ Password required — Participants must specify their login passwords. 

■ Digital certificate (signature) required —Participants must possess a digital 
certificate before being able to send and act on tasks. A digital certificate contains 
the digital signature of the certificate-issuing authority so that anyone can verify 
that the certificate is real. A digital certificate establishes the participant’s 
credentials. It is issued by a certification authority (CA). It contains your name, a 
serial number, expiration dates, a copy of the certificate holder's public key (used 
for encrypting messages and digital signatures), and the digital signature of the 
certificate-issuing authority so that a recipient can verify that the certificate is real. 

When you act on a task that has a signature policy, the Sign button appears, as shown 
in Figure 30–34.

Note: Attachment file names that use a multibyte character set 
(MBCS) are not supported.

Attachments of up to 1998K can be uploaded. You can modify this 
setting by setting the context parameter in web.xml as follows:

<context-param>
  <param-name>org.apache.myfaces.trinidad.UPLOAD_MAX_DISK_
SPACE</param-name>
  <param-value>1998</param-value>
</context-param>

For more information about file uploading, see the Oracle Fusion 
Middleware Web User Interface Developer's Guide for Oracle Application.



Acting on Tasks: The Task Details Page

30-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–34 Digital Signature Task Details

The evidence store service is used for digital signature storage and nonrepudiation of 
digitally signed human tasks. You can search the evidence store, as shown in 
Figure 30–35.

Figure 30–35 The Evidence Store



Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 30-37

See Section 32.1.10, "Evidence Store Service and Digital Signatures" for more 
information.

To provide a digital signature:
1. In the upper right corner of Oracle BPM Worklist, click Preferences.

2. In the navigation bar on the left, click Certificates.

3. Upload the certificate to use to sign your decision, as shown in Figure 30–36.

When signing a task outcome using your certificate, you must upload the entire 
chain of certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file, 
not just the one certificate issued to you by the certificate issuer. The entire chain 
can be exported through Internet Explorer. Mozilla Firefox does not let you export 
the chain as a .P7B file. Therefore, you can perform the following steps:

a. Export the chain from Mozilla Firefox as a .P12 file (PKCS12 format that also 
contains your private key).

b. Import the .P12 file in Internet Explorer.

c. Export it again from Internet Explorer as a .P7B file.

d. Upload it through Oracle BPM Worklist.

Figure 30–36 Uploading a Certificate

Note the following important points when providing your certificate to the 
system. Otherwise, you cannot use your certificate to sign your decisions on tasks.

■ The PKCS7 file format is a binary certificate format. Select this option if you 
have a standalone certificate file stored on your disk. 

■ The PKCS12 file format is a keystore format. Select this option if you have 
your certificate stored inside a keystore.

■ If you want to copy and paste the contents of the certificate, select Type or 
Paste Certificate Contents and paste the BASE64-encoded text into the field. 
Do not paste a certificate in any other format into this field. Likewise, if you 
choose to upload a certificate, do not try to upload a BASE64-encoded 



Approving Tasks

30-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

certificate. Only PKCS12 and PKCS7 formatted files are supported for 
uploads.

4. Return to the task list by clicking the Home link in the upper-right corner of 
Oracle BPM Worklist.

5. Click a task to approve or reject. 

The task details are displayed.

6. Click either Approve or Reject.

Details about the digital signature are displayed. 

7. For a task that has a signature policy, click Sign.

The Text Signing Report dialog appears. 

8. Select the certificate from the dropdown list to use to sign your decision.

9. Enter the master password of the web browser that you are using.

10. Click OK.

The web browser signs the string displayed in the upper half of the Text Signing 
Request with the certificate you selected and invokes the action (approval or 
rejection) that you selected. The task status is appropriately updated in the human 
workflow service.

For more information about how certificates are uploaded and used, see 
Section 32.1.10, "Evidence Store Service and Digital Signatures."

30.5 Approving Tasks
Table 30–8 describes the type of actions that can be performed on tasks by the various 
task approvers.

Table 30–8 Task Actions and Approvers

Task 
Action Admin

Owner (+ 
Owner 
Group)

Assignee (+ Assignee Manager + 
Assignee Group + Proxy Assignee) Creator Reviewer Approver

Acquire 
(Claim)

No Yes Yes No No No

Custom No Yes1 Yes1 No No No

Delegate No No Yes No No No

Delete Yes2 Yes2 Yes2 Yes2 No No

Error No No Yes3 No No No

Escalate Yes4 Yes4 Yes No No No

Info 
Request

No No Yes No No No

Info Submit No No Yes No No No

Override 
Routing 
Slip

Yes Yes No No No No

Push Back No No Yes No No No

Purge Yes2 Yes No Yes No No



Setting a Vacation Period

Using Oracle BPM Worklist 30-39

30.6 Setting a Vacation Period
You can set a vacation period so that you are removed from automatic task assignment 
during the dates you specify, as shown in Figure 30–37.

Reassign Yes5 Yes5 Yes (No for proxy assignee) No No No

Release Yes Yes Yes No No No

Renew No Yes Yes No No No

Resume Yes Yes Yes No No No

Route No Yes Yes No No No

Skip 
Current 
Assignment

Yes Yes No No No No

Suspend Yes Yes Yes No No No

Update No Yes Yes Yes No No

Update 
Attachment

Yes Yes Yes Yes Yes No

Update 
Comment

Yes Yes Yes Yes Yes No

View 
Process 
History

Yes Yes Yes Yes No No

View Sub 
Tasks

Yes Yes Yes No No No

View Task 
History

Yes Yes Yes Yes Yes Yes

Withdraw Yes Yes No Yes No No
1 Not valid for ToDo tasks
2 Valid only for ToDo tasks
3 Applicable for tasks in alerted states
4 Without claim and escalate to current assignee’s manager
5 Without claim

Table 30–8 (Cont.) Task Actions and Approvers

Task 
Action Admin

Owner (+ 
Owner 
Group)

Assignee (+ Assignee Manager + 
Assignee Group + Proxy Assignee) Creator Reviewer Approver



Setting a Vacation Period

30-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–37 Setting a Vacation Period

Vacation rules are not executed for ToDo tasks. See Section 30.7, "Setting Rules," for 
how to set a vacation rule that is synchronized with the vacation period.

To create a vacation period:
1. Click the Preferences link.

The My Rules tab is displayed.

2. Click Enable vacation period.

3. Provide start and end dates.

4. Click Save.

The vacation period is enabled, as shown in Figure 30–38.

Figure 30–38 Enabling a Vacation Period



Setting Rules

Using Oracle BPM Worklist 30-41

30.7 Setting Rules
Rules act on tasks, either a specific task type or all the tasks assigned to a user or 
group. Figure 30–39 shows where you set rules, including vacation rules (different 
from the vacation period settings described in Section 30.6, "Setting a Vacation 
Period").

Figure 30–39 Creating a Rule

A rule cannot always apply in all circumstances in which it is used. For example, if a 
rule applies to multiple task types, it may not be possible to set the outcome for all 
tasks, since different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by 
using the up and down buttons in the header, as shown in Figure 30–39. 

If a rule meets its filter conditions, then it is executed and no other rules are evaluated. 
For your rule to execute, you must be the only user assigned to that task. If the task is 
assigned to multiple users (including you), the rule does not execute.

You cannot specify business rules for ToDo tasks

30.7.1 How To Create User Rules
Specify the following when creating a user rule:

■ Rule name

■ If the rule is a vacation rule. See Section 30.6, "Setting a Vacation Period," for how 
to set the vacation period that is synchronized with the vacation rule.



Setting Rules

30-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Which task or task type the rule applies to—If unspecified, then the rule applies to 
all tasks. If a task type is specified, then any attributes mapped for that task type 
can be used in the rule condition.

■ When the rule applies

■ Conditions on the rule—These are filters that further define the rule, such as 
specifying that a rule acts on priority 1 tasks only, or that a rule acts on tasks 
created by a specific user. The conditions can be based on standard task attributes 
and any mapped attributes that have been mapped for the specific tasks. See 
Section 30.10.1, "How To Map Attributes," for more information. 

User rules do the following actions:

■ Reassign to—You can reassign tasks to subordinates or groups you manage. If you 
have been granted the BPMWorkflowReassign role, then you can reassign tasks to 
any user or group.

■ Delegate to—You can delegate to any user or group. Any access rights or 
privileges for completing the task are determined according to the original user 
who delegated the task. (Any subsequent delegations or re-assignments do not 
change this from the original delegating user.)

■ Set outcome to—You can specify an automatic outcome if the workflow task was 
designed for those outcomes, for example, accepting or rejecting the task. The rule 
must be for a specific task type. If a rule is for all task types, then this option is not 
displayed.

■ Take no action—Use this action to prevent other more general rules from 
applying. For example, to reassign all your tasks to another user while you are on 
vacation, except for loan requests, for which you want no action taken, then create 
two rules. The first rule specifies that no action is taken for loan requests; the 
second rule specifies that all tasks are reassigned to another user. The first rule 
prevents reassignment for loan requests.

To create a user rule:
1. Click the Preferences link

The My Rules tab is displayed.

2. In the Rules area, click My Rules and click Add.

3. In the My Rule area, do the following and click Save:

■ Provide a name for the rule.

■ Select Use as a vacation rule if you are creating a vacation rule. The start and 
end dates of the rule are automatically synchronized with the vacation period.

■ Browse for task types to which the rule applies.

■ Select Execute rule only between these dates and provide rule execution 
dates.

■ In the IF area, add rule conditions.

■ In the THEN area, select actions to be taken: Reassign to, Delegate to, Set 
outcome to, or Take no action), as shown in Figure 30–39.

The new rule appears under the My Rules node.



Setting Rules

Using Oracle BPM Worklist 30-43

30.7.2 How To Create Group Rules
Creating a group rule is similar to creating a user rule, with the addition of a list of the 
groups that you (as the logged-in user) manage. Examples of group rules include:

■ Assigning tasks from a particular customer to a member of the group

■ Ensuring an even distribution of task assignments to members of a group by using 
round-robin assignment

■ Ensuring that high-priority tasks are routed to the least busy member of a group

Group rules do the following actions:

■ Assign to member via—You can specify a criterion to determine which member of 
the group gets the assignment. This dynamic assignment criterion can include 
round-robin assignment, assignment to the least busy group member, or 
assignment to the most productive group member. You can also add your custom 
functions for allocating tasks to users in a group.

■ Assign to—As with user rules, you can assign tasks to subordinates or groups you 
directly manage. If you have been granted the BPMWorkflowReassign role, then 
you can reassign tasks to any user or group (outside your management hierarchy).

■ Take no action—As with user rules, you can create a rule with a condition that 
prevents a more generic rule from being executed.

To create a group rule:
1. Click the Preferences link

2. Click the Other Rules tab.

3. Select Group from the list.

4. Enter a group name and click the Search icon, or enter a group name.

The Identity Browser opens for you to find and select a group.

5. Select the group name under the Group Rules node and click Add, as shown in 
Figure 30–40.



Setting Rules

30-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–40 Creating a Group Rule

6. Provide group rule information and click Save.

■ Provide a name for the rule.

■ Browse for task types to which the rule applies.

■ Provide rule execution dates.

■ In the IF area, add rule conditions.

■ In the THEN area, select the actions to be taken (or none) (Assign to member 
via, Assign to, or Take no action), as shown in Figure 30–40.

The new rule appears under the Group Rules node.

30.7.3 Assignment Rules for Tasks with Multiple Assignees
If a task has multiple assignees, then assignment rules are not evaluated for the task, 
and the task is not automatically routed. This is because each of the task's assignees 
can define assignment rules, which can potentially provide conflicting actions to take 
on the task. Only tasks that are assigned exclusively to a single user are routed by the 
assignment rules.

For example, consider the following sequence:

1. A rule is created for user cdickens to reassign all assigned requests to user jstein.

2. User jcooper reassigns the allocated tasks to cdickens and cdoyle.

3. Cdickens claims the task, and the task appears in their inbox.



Using the Worklist Administration Functions

Using Oracle BPM Worklist 30-45

The task is not automatically reassigned to jstein. The task is routed to jstein, following 
the assignment rule set for cdickens, if user jcooper explicitly re-assigns the task only 
to cdickens instead of reassigning the task to multiple users (cdickens and cdoyle).

30.8 Using the Worklist Administration Functions
Administrators are users who have been granted the BPMWorkflowAdmin role. 
Administration functions include the following:

■ Managing other users’ or groups’ rules

■ Setting the worklist display (application preferences)

■ Mapping attributes

An administrator can view and update all tasks assigned to all users. An 
administrator’s Assignee filter displays Admin when the Admin tab is selected.

30.8.1 How To Manage Other Users’ or Groups’ Rules (as an Administrator)
This function is useful for fixing a problem with a rule. Also, for a user who no longer 
works for the company, administrators can set up a rule for that user so that all tasks 
assigned to the user are automatically assigned to another user or group. 

To create a rule for another user or group:
1. From the task list page, click the Rules link.

2. Click the Other Rules tab.

3. Search for the user or group for whom rules are to be created, as shown in 
Figure 30–41.

Figure 30–41 Creating Rules for Another User or Group

4. Click a user rules node, or click a group name (for a group rule).

5. Click the Add icon to create a rule. 

6. Provide rule information, as shown in Figure 30–42, and click Save.



Using the Worklist Administration Functions

30-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–42 Defining Rules for Another User or Group

30.8.2 How To Set the Worklist Display (Application Preferences)
Application preferences customize the appearance of the worklist. Administrators can 
specify the following:

■ Login page realm label—If the identity service is configured with multiple realms, 
then the Oracle BPM Worklist login page displays a list of realm names. LABEL_
LOGIN_REALM specifies the resource bundle key used to look up the label to 
display these realms. The term realm can be changed to fit the user 
community—terms such as country, company, division, or department may be more 
appropriate. Administrators can customize the resource bundle, specify a resource 
key for this string, and then set this parameter to point to the resource key.

■ Global branding icon—This is the image displayed in the top left corner of every 
page of the worklist. (The Oracle logo is the default.) Administrators can provide a 
.gif, .png, or .jpg file for the logo. This file must be in the public_html 
directory.

■ Resource bundle—An application resource bundle provides the strings displayed 
in the worklist. By default, this is the class at:

oracle.bpel.worklistapp.resource.WorklistResourceBundle

Administrators can change the strings shown in the application by copying 
WorkflowResourceBundle and creating their own. This parameter allows 
administrators to specify the class path to this custom resource bundle. 

Administrators must extend WorklistResourceBundle.java by adding their 
resource strings. Administrators can change the strings shown in the application 
by copying WorkflowResourceBundle and creating their own. This parameter 
allows administrators to specify the class path to this custom resource bundle. 
Then administrators create a JAR file from the compiled resource bundle and copy 
it under 



Specifying Notification Settings

Using Oracle BPM Worklist 30-47

SOA_Oracle_Home\j2ee\home\applications\worklist\worklist\WEB-INF\lib

■ Use language settings of—Select the browser or the identity provider.

The Identity Provider that stores information on worklist users can store the user's 
locale, which can determine the worklist display language. Alternatively, the 
user's browser can supply the locale information. This parameter determines 
which is used as the source for determining the worklist application display 
language.

To specify application preferences:
1. Click the Administration tab.

2. Click Application Preferences.

3. Browse for the locations of the application preferences (login page realm label, 
branding icon, or resource bundle), as shown in Figure 30–43.

Figure 30–43 Application Preferences

4. Select which language settings you want to use—from the browser or the identity 
provider.

5. Click Save.

30.9 Specifying Notification Settings
You can configure the notification settings to control how, when, and where you 
receive messages in cases when you have access to multiple communication channels 
(delivery types). Specifically, you can define messaging filters (delivery preferences) 
that specify the channel to which a message should be delivered, and under what 
circumstances.

For example, you might want to create filters for messages received from customers 
with different Service Level Agreements (SLA), specifying to be notified through 
business phone and SMS channels for customers with a premium SLA and by EMAIL 
for customers with a nonpremium SLA. 

30.9.1 Messaging Filter Rules
A messaging filter rule consists of rule conditions and rule actions. A rule condition 
consists of a rule attribute, an operator, and an associated value. A rule action is the 
action to be taken if the specified conditions in a rule are true.



Specifying Notification Settings

30-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

30.9.1.1 Data Types
Table 30–9 lists data types supported by messaging filters. Each attribute has an 
associated data type, and each data type has a set of predefined comparison operators.

30.9.1.2 Attributes
Table 30–10 lists the predefined attributes for messaging filters.

Table 30–9 Data Types Supported by Messaging Filters

Data Type Comparison Operators

Date isEqual, isNotEqual, isGreaterThan, isGreaterThanOrEqual, 
isLessThan, isLessThanOrEqual, Between, isWeekday, isWeekend

Time isEqual, isNotEqual, Between

Number isEqual, isNotEqual, Between, isGreaterThan, isGreaterThanOrEqual, 
isLessThan, isLessThanOrEqual

String isEqual, isNotEqual, Contains, NotContains

Note: The String data type does not support regular expressions.

Table 30–10 Predefined Attributes for Messaging Filters

Attribute Data Type

Total Cost Number

From String

Expense Type String

To String

Application Type String

Duration Number

Application String

Process Type String

Status String

Subject String

Customer Type String

Time Time

Group Name String

Processing Time Number

Date Date

Due Date Date

User String

Source String

Amount Number

Role String

Priority String



Specifying Notification Settings

Using Oracle BPM Worklist 30-49

30.9.2 Rule Actions
For a given rule, a messaging filter can define the following actions:

■ Send No Messages: Do not send a message to any channel.

■ Send Messages to All Selected Channels: Send a message to all specified 
channels in the address list.

■ Send to the First Available Channel: Send a message serially to channels in the 
address list until one successful message is sent. This entails performing a send to 
the next channel when the current channel returns a failure status. This filter 
action is not supported for messages sent from the human workflow layer. 

30.9.3 Managing Messaging Channels
In Oracle BPM Worklist, messaging channels represent both physical channels, such as 
business mobile phones, and also email client applications running on desktops. 
Specifically, Oracle BPM Worklist supports the following messaging channels:

■ EMAIL

■ IM

■ MOBILE

■ SMS

■ VOICE

■ WORKLIST

Note the following about message channels:

■ Addresses for messaging channels are fetched from the configured identity store.

■ SMS and MOBILE notifications are sent to the mobile phone number.

■ VOICE notifications are sent to the business phone number.

■ No special notification is sent when the messaging channel preference is 
WORKLIST. Instead, log in to Oracle BPM Worklist to view tasks.

■ EMAIL is the default messaging channel preference when a preferred channel has 
not been selected.

You can use the Messaging Channels tab to view, create, edit, and delete messaging 
channels.

30.9.3.1 Viewing Your Messaging Channels
You can display your existing messaging channels.

Customer Name String

Expiration Date Date

Order Type String

Organization String

Classification String

Service Request Type String

Table 30–10 (Cont.) Predefined Attributes for Messaging Filters

Attribute Data Type



Specifying Notification Settings

30-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To view messaging channels:
1. Click the Preferences link.

2. Click the Notification tab.

3. Click the Messaging Channels tab. 

The My Messaging Channels list appears (Figure 30–44) and displays the 
following information:

■ Name: The name of the messaging channel.

■ Type: The type of messaging channel, such as EMAIL or SMS.

■ Address: The address for the channel, such as a phone number or email 
address.

■ Default: Specifies whether this channel is the default messaging channel. 

Figure 30–44 Messaging Channels

4. Click View > Columns and select the columns to display or hide. 

You can also click View > Reorder Columns to display a dialog to reorder the 
displayed columns.

Messaging channel names and addresses are retrieved from the underlying 
identity store, such as Oracle Internet Directory.

30.9.3.2 Creating, Editing, and Deleting a Messaging Channel
Oracle BPM Worklist uses an underlying identity store, such as Oracle Internet 
Directory, to manage messaging channels and addresses. Therefore, you cannot 
directly create, modify, or delete messaging channels using Oracle BPM Worklist. 

To perform these actions, contact the system administrator responsible for managing 
your organization’s identity store.



Specifying Notification Settings

Using Oracle BPM Worklist 30-51

30.9.4 Managing Messaging Filters
You can use the Messaging Filters tab to define filters that specify the types of 
notifications you want to receive along with the channels through which to receive 
these notifications. You can do this through a combination of comparison operators 
(such as is equal to, is not equal to), attributes that describe the notification type, content, 
or source, and notification actions, which send the notifications to the first available 
messaging channels, all messaging channels, or to no channels (effectively blocking the 
notification).

For example, you can create a messaging filter called Messages from Lise, that retrieves 
all messages addressed to you from your boss, Lise. Notifications that match all of the 
filter conditions might first be directed to your business mobile phone, for instance, 
and then to your business email if the first messaging channel is unavailable.   

30.9.4.1 Viewing Messaging Filters
You can display your existing messaging filters.

To view your messaging filters:
1. Click the Notification tab.

2. Click the Messaging Filters tab. 

The My Messaging Filters list appears (Figure 30–45) and displays the following 
information:

■ Filter Name: The name of the messaging filter

■ Description: An optional description of the messaging filter

Figure 30–45 Messaging Filters

3. Click View > Columns and select the columns to display or hide. 

You can also click View > Reorder Columns to display a dialog to reorder the 
displayed columns.



Specifying Notification Settings

30-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

30.9.4.2 Creating Messaging Filters

To create a messaging filter:
1. Click Create. 

The Messaging Filters page appears, as shown in Figure 30–46.

Figure 30–46 Adding a Messaging Filter

2. Specify the following information:

■ Filter Name: The name of the messaging filter.

■ Description: An optional description for the messaging filter.

3. Define the filter conditions using the lists and fields in the Condition section, as 
follows:

a. Select whether notifications must meet all of the conditions or any of the 
conditions by selecting either the All of the following conditions or the Any 
of the following conditions options. 

b. Select the attribute from the list.

c. Select the operator, such as isEqual, from the list.

d. Type the value of the condition in the text box.

e. Click Add to add the condition to the list.

f. Repeat these steps to add more filter conditions. To remove a filter condition, 
click Delete.



Using Mapped Attributes (Flex Fields)

Using Oracle BPM Worklist 30-53

4. Select from the following messaging options in the Action section:

■ Send No Messages: Do not send a message to any channel. 

■ Send Messages to All Selected Channels: Send a message to all specified 
channels in the address list. 

■ Send to the First Available Channel: Send a message serially to channels in 
the address list until one successful message is sent. This entails performing a 
send to the next channel when the current channel returns a failure status.

5. To set the delivery channel, select a channel from the Add Notification Channel 
list and click Add. To remove a channel, click Delete.

6. Use the up and down arrows to prioritize channels. If available, the top-most 
channel receives messages meeting the filter criteria if you select Send to the First 
Available Channel. 

7. Click OK. 

The messaging filter appears on the My Messaging Filters page. The My 
Messaging Filters page enables you to edit or delete the channel. Click Cancel to 
dismiss the dialog without creating the filter.

30.9.4.3 Editing a Messaging Filter
To edit a messaging filter:

1. Select the filter on the My Messaging Filters page.

2. Click Edit.

3. Click OK to update the messaging filter. Click Cancel to dismiss the dialog 
without modifying the filter.

30.9.4.4 Deleting a Messaging Filter
To delete a messaging filter:

1. Select the filter on the My Messaging Filters page.

2. Click Delete. A confirmation dialog appears.

3. Click OK to delete the messaging filter. Click Cancel to dismiss the dialog without 
deleting the filter.

30.10 Using Mapped Attributes (Flex Fields)
Human workflow mapped attributes (formerly referred to as flex fields) store and 
query use case-specific custom attributes. These custom attributes typically come from 
the task payload values. Storing custom attributes in mapped attributes provides the 
following benefits: 

■ They can be displayed as a column in the task listing

■ They can filter tasks in custom views and advanced searches

■ They can be used for a keyword-based search

For example the Requester, PurchaseOrderID, and Amount fields in a purchase 
order request payload of a task can be stored in the mapped attributes. An approver 
logging into Oracle BPM Worklist can see these fields as column values in the task list 
and decide which task to access. The user can define views that filter tasks based on 
the mapped attributes. For example, a user can create views for purchase order 



Using Mapped Attributes (Flex Fields)

30-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

approvals based on different amount ranges. If the user must also retrieve tasks at 
some point related to a specific requester or a purchase order ID, they can specify this 
in the keyword field and perform a search to retrieve the relevant tasks.

For the mapped attributes to be populated, an administrator must create mapped 
attribute mappings, as follows:

1. Specify a label for the mapped attribute to be populated.

2. Map the payload attribute containing the data to the label.

These mappings are valid for a certain task type. Therefore, each task type can have 
different mapped attribute mappings. After the mapping is complete and any new 
task is initiated, the value of the payload is promoted to the mapped attribute. Tasks 
initiated before the mapping do not contain the value in the mapped attribute. Only 
top-level simple type attributes in the payload can be promoted to a mapped attribute. 
Complex attributes or simple types nested inside a complex attribute cannot be 
promoted. It is important to define the payload for a task in the Human Task Editor, 
keeping in mind which attributes from the payload may must promoted to a mapped 
attribute. All text and number mapped attributes are automatically included in the 
keyword-based search.

Essentially, the Human Task Editor is used only when defining the payload for a task. 
All other operations are performed at runtime.

Directory naming is not available concomitant with the flex file naming convention. 

30.10.1 How To Map Attributes
An administrator, or users with special privileges, can use attribute mapping, shown 
in Figure 30–47, to promote data from the payload to inline mapped attributes. By 
promoting data to mapped attributes, the data becomes searchable and can be 
displayed as columns on the task list page. 

Administrators can map public mapped attributes. Users who have been granted the 
workflow.mapping.publicFlexField privilege can map public mapped 
attributes, and see a Public Flex Fields node on the Administration tab. 

Note:

■ Mapped attributes must be defined before instances of the 
business process are generated. Only instances generated after 
mapped attributes are created reflect the correct mapped 
attributes. Older instances of the business process do not reflect 
subsequent mapped attribute changes.

■ When you add a new locale, the mapped attribute labels are not 
automatically translated until you have flushed the cache. You 
may flush the cache either by restarting the server, or by changing 
a value in the workflow configuration settings—for example, by 
changing the workflowCustomClasspathURL property in the 
workflow configuration to some new value, then changing it back 
again.



Using Mapped Attributes (Flex Fields)

Using Oracle BPM Worklist 30-55

Figure 30–47 Mapped Attribute Mapping

To create labels:
To create a mapped attribute mapping, an administrator first defines a semantic label, 
which provides a more meaningful display name for the mapped attribute. Click Add 
to use the Create Label dialog, as shown in Figure 30–48. 

Figure 30–48 Creating a Label

As Figure 30–48 shows, labelName is mapped to the task attribute TextAttribute3. The 
payload attribute is also mapped to the label. In this example, the Text attribute type is 
associated with labelName. The result is that the value of the Text attribute is stored in 
the TextAttribute3 column, and labelName is the column label displayed in the user’s 



Using Mapped Attributes (Flex Fields)

30-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

task list. Labels can be reused for different task types. You can delete a label only if it is 
not used in any mappings. 

A mapped payload attribute can also be displayed as a column in a custom view, and 
used as a filter condition in both custom views and workflow rules. The display name 
of the payload attribute is the attribute label that is selected when doing the mapping. 

Note the following restrictions:

■ Only simple type payload attributes can be mapped.

■ A mapped attribute (and thus a label) can be used only once per task type.

■ Data type conversion is not supported for the number or date data types. For 
example, you may not map a payload attribute of type string to a label of type 
number.

To browse all mappings:
1. Click Browse all mappings.

2. Select a row in the label table to display all the payload attributes mapped to a 
particular label.

Figure 30–49 Browsing Mappings

To edit mappings by task type:
1. Click Edit mappings by task type, optionally provide a task type, and click 

Search.

2. Select a task type and click OK.



Using Mapped Attributes (Flex Fields)

Using Oracle BPM Worklist 30-57

Figure 30–50 Selecting a Task Type

3. With the task type displayed in the Edit mappings by task type field, click Go.

All current mappings for the task type are displayed, as shown in Figure 30–51.

Figure 30–51 Selecting a Label

4. Select a mapping label and click Select.

Figure 30–52 shows a completed mapping.

Figure 30–52 Mapped Attribute Mapping Created



Creating Worklist Reports

30-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

See Section 32.1.9.1, "Internationalization of Attribute Labels" for more information.

30.10.2 Custom Mapped Attributes
The following mapped attributes are included in the WorkflowTask.xsd file and are 
available for your use without restrictions.

Use the following Java Architecture for XML Binding (JAXB) methods to set and get 
these attributes:

task.getCustomerAttributes.getCustomerAttributeString1()

task.getCustomerAttributes.setCustomerAttributeString1("String")

task.getCustomerAttributes.getCustomerAttributeNumber1()

task.getCustomerAttributes.setCustomerAttributeNumber2(9)

task.getCustomerAttributes.setCustomerAttributeDate1()

task.getCustomerAttributes.setCustomerAttributeDate2()

These fields are persisted in the database as customerAttributeString1,  
customerAttributeString2, customerAttributeNumber1, 
customerAttributeNumber2, customerAttributeDate1, 
customerAttributeDate2.

30.11 Creating Worklist Reports
Table 30–12 lists the worklist reports available for task analysis.

Table 30–11 Custom Mapped Attributes

Attribute Datatype

customerAttributeString1 String

customerAttributeString2 String

customerAttributeNumber1 Double

customerAttributeNumber2 Double

customerAttributeDate1 Date

customerAttributeDate2 Date



Creating Worklist Reports

Using Oracle BPM Worklist 30-59

30.11.1 How To Create Reports
Reports are available from the Reports link. Report results cannot be saved.

To create a report:
1. Click the Reports link.

2. Click the type of report you want to create.

Figure 30–53 shows the report types available.

Table 30–12 Worklist Report Types

Report Name Description Input Parameters

Unattended Tasks Provides an analysis of 
tasks assigned to users' 
groups or reportees' groups 
that have not yet been 
acquired (the "unattended" 
tasks).

■ Assignee—This option (required) selects tasks assigned to the user's 
group (My Group), tasks assigned to the reportee's groups (Reportees), 
tasks where the user is a creator (Creator), or tasks where the user is an 
owner (Owner).

■ Creation Date—An optional date range

■ Expiration Date—An optional date range

■ Task State—The state (optional) can by Any, Assigned, Expired, or 
Information Requested.

■ Priority—The priority (optional) can be Any, Highest, High, Normal, 
Low, or Lowest.

Tasks Priority Provides an analysis of the 
number of tasks assigned to 
a user, reportees, or their 
groups, broken down by 
priority.

■ Assignee—Depending on the assignee that you select, this required 
option includes tasks assigned to the logged-in user (My), tasks assigned 
to the user and groups that the user belongs to (My & Group), or tasks 
assigned to groups to which the user’s reportees belong (Reportees).

■ Creation Date—An optional date range

■ Ended Date—An optional date range for the end dates of the tasks to be 
included in the report

■ Priority—The priority (optional) can by Any, Highest, High, Normal, 
Low, or Lowest. 

Tasks Cycle Time Provides an analysis of the 
time taken to complete 
tasks from assignment to 
completion based on users' 
groups or reportees' groups.

■ Assignee—Depending on the assignee that you select, this required 
option includes your tasks (My) or tasks assigned to groups to which 
your reportees belong (Reportees).

■ Creation Date—An optional date range

■ Ended Date—An optional date range for the end dates of the tasks to be 
included in the report

■ Priority—The priority (optional) can by Any, Highest, High, Normal, 
Low, or Lowest.

Tasks Productivity Provides an analysis of 
assigned tasks and 
completed tasks in a given 
time period for a user, 
reportees, or their groups.

■ Assignee—Depending on the assignee that the user selects, this required 
option includes the user’s tasks (My & Group) or tasks assigned to 
groups to which the user’s reportees belong (Reportees).

■ Creation Date (range)—An optional creation date range. The default is 
one week.

■ Task Type—Use the Search (flashlight) icon to select from a list of task 
titles. All versions of a task are listed on the Select Workflow Task Type 
page (optional).

Tasks Time 
Distribution

Provides the time an 
assignee takes to perform a 
task.

■ Assignee—Depending on the assignee that the user selects, this required 
option includes the user’s tasks (My & Group) or tasks assigned to 
groups to which the user’s reportees belong (Reportees).

■ From...to (date range)—An optional creation date range. The default is 
one week.

■ Task Type—Use the Search (flashlight) icon to select from a list of task 
titles. All versions of a task are listed on the Select Workflow Task Type 
page (optional).



Creating Worklist Reports

30-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–53 Oracle BPM Worklist Reports

3. Provide inputs to define the search parameters of the report. 

Figure 30–54 shows an example of the Unattended Tasks Report input page. The 
other reports are similar. See Table 30–12 for information about input parameters 
for all the report types. 

Figure 30–54 Unattended Tasks Report—Input Page for Task Analysis

4. Click Run.

30.11.2 What Happens When You Create Reports
As shown in Figure 30–55, report results (for all report types) are displayed in both a 
table format and a bar chart format. The input parameters used to run the report are 
displayed under Report Inputs, in the lower-left corner (may require scrolling to 
view).



Creating Worklist Reports

Using Oracle BPM Worklist 30-61

Figure 30–55 Report Display—Table Format, Bar Chart Format, and Report Inputs

30.11.2.1 Unattended Tasks Report
Figure 30–56 shows an example of an Unattended Tasks report.

Figure 30–56 Unattended Tasks Report



Creating Worklist Reports

30-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The report shows that the California group has 15 unattended tasks, the Supervisor 
group has 7 unattended tasks, and the LoanAgentGroup has 11 unattended tasks. The 
unattended (unclaimed) tasks in this report are all DocumentReview tasks. If multiple 
types of unattended task exists when a report is run, all task types are included in the 
report, and the various task types are differentiated by color.

30.11.2.2 Tasks Priority Report
Figure 30–57 shows an example of a Tasks Priority report.

Figure 30–57 Tasks Priority Report

The report shows that the California group, the Supervisor group, and the 
LoanAgentGroup each have 16 tasks of normal priority. The users rsteven and jcooper 
have 5 and 22 tasks, respectively, all normal priority. Priorities (highest, high, normal, 
low, lowest) are distinguished by different colors in the bar chart.

30.11.2.3 Tasks Cycle Time Report
Figure 30–58 shows an example of a Tasks Cycle Time Report.



Creating Worklist Reports

Using Oracle BPM Worklist 30-63

Figure 30–58 Tasks Cycle Time Report

The report shows that it takes 1 hour and 6 minutes on average to complete 
DocumentReview tasks, and 1 hour and 28 minutes on average to complete 
VacationApproval tasks. The bar chart shows the average cycle time in milliseconds.

30.11.2.4 Tasks Productivity Report
Figure 30–59 shows an example of a Tasks Productivity Report.

Figure 30–59 Tasks Productivity Report

The report shows the number of tasks assigned to the California, LoanAgentGroup, 
and Supervisor groups. For individual users, the report shows that jcooper has 22 
assigned tasks. In addition to his assigned tasks, jcooper has completed 2 tasks. The 



Accessing Oracle BPM Worklist in Local Languages and Time Zones

30-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

report shows that mtwain and rsteven have completed 6 and 11 tasks respectively. In 
the bar chart, the two task states—assigned and completed—are differentiated by 
color.

30.12 Accessing Oracle BPM Worklist in Local Languages and Time 
Zones

A user’s preferred worklist language is configured from either the identity store or the 
browser.

A user’s preferred time zone is configured from the identity store.

If no preference information is available, then the user's preferred language and time 
zone are determined by the system defaults. System defaults are based on the server 
settings for language and time zone.

If the custom resource bundle class in the browser locale is not available and the 
custom resource bundle class in default server locale is available, then the language is 
derived from the custom resource bundle class in default server locale.

If the custom resource bundle class in default server locale is also not available, then 
the language is derived from the custom base class.

If no user language preferences are set, or if they are set to a language not supported 
by Oracle BPM Worklist, then the Worklist Application defaults to English.

For more information, see the following sections for instructions on how to select 
Browser or Identity Provider in the worklist interface:

■ Section 30.8.2, "How To Set the Worklist Display (Application Preferences)" for 
how to select Browser or Identity Provider from the Application Preferences page

■ Section 30.3, "Customizing the Task List Page" and Figure 30–14, "Customizing 
Fields in a Worklist View"

30.12.1 Strings in Oracle BPM Worklist
Most strings in the worklist come from the Worklist Application bundle. By default, 
this is the class

oracle.bpel.services.workflow.resource.WorkflowResourceBundle

However, this can be changed to a custom resource bundle by setting the appropriate 
application preference (see Section 30.8.2, "How To Set the Worklist Display 
(Application Preferences)") or by providing an updated version of the default bundle 
class. See the Workflow Customizations sample for details. 

For task attribute names, mapped attribute labels, and dynamic assignment function 
names, the strings come from configuring the resource property file 
WorkflowLabels.properties. This file exists in the wfresource subdirectory of 
the services config directory. See Chapter 32, "Introduction to Human Workflow 
Services" for information on adding entries to this file for dynamic assignment 
functions and attribute labels.

For custom actions and task titles, the display names come from the message bundle 
specified in the task configuration file. If no message bundle is specified, then the 

Note: The Me and Group and Reportees options have been 
removed from the Productivity Report.



Accessing Oracle BPM Worklist in Local Languages and Time Zones

Using Oracle BPM Worklist 30-65

values specified at design time are used. See Chapter 32, "Introduction to Human 
Workflow Services" for information on how to specify message bundles so that custom 
actions and task titles are displayed in the preferred language.

30.12.2 How to Change the Preferred Language if the Identity Store is LDAP-Based
If an LDAP-based provider such as Oracle Internet Directory is used, then language 
settings are changed in the Oracle Internet Directory community. Connect to the 
embedded LDAP server, where you can change language settings in the Oracle 
Internet Directory community.

1. Start an LDAP browser (for example, openLdap browser, ldapbrowser, jXplorer, 
and so on). See the documentation for your browser for instructions.

2. Connect to the LDAP server by providing the hostname, port number on which 
the server is running, and the administration user credentials with which to log in. 

■ For Embedded LDAP:

a. The default managed server port number is 7001.

b. The administration credential username is cn=admin.

c. The administration password credential is accessible from the Oracle 
WebLogic Server Administration Console by selecting Security > 
Embedded LDAP for your domain.

For instructions on changing the default password credential, see Chapter 
9, "Managing the Embedded LDAP Server" of Oracle Fusion Middleware 
Securing Oracle WebLogic Server. 

■ For OIDm:

a. The default port number is 3060.

b. The administration username is cn=orcladmin.

c. The administration password is the password for the LDAP server.

3. To change a user's preferred language, navigate to the user entry, and add/set the 
preferredLanguage attribute. See Table 30–13, " Languages Supported in Oracle 
BPM Worklist" for a list of supported languages. To change the time zone setting, 
add/set the orclTimeZone attribute. The format of the time zone string is 
Continent/Region. You can find the time zone values in the $JAVA_
HOME/jre/lib/zi directory. The directories specify the continent names, for 
example, Africa, Asia, America, and so on, while the files within the directories 
specify the regions. Note that some regions include subregions, for example 
America/Indiana/Indianapolis.

When a user logs in, the worklist pages are rendered in the user's preferred 
language and time zone.

30.12.3 How to Change the Language in Which Tasks Are Displayed
For better performance, only the English language is listed for the LocaleList 
property in the System MBean Browser in Oracle Enterprise Manager Fusion 
Middleware Control Console. If you want to display the task title, category, and 
subcategory in other languages or add other languages, you must change the required 
language locale in the System MBean Browser.



Accessing Oracle BPM Worklist in Local Languages and Time Zones

30-66 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To add or change a language:
1. In Oracle Enterprise Manager Fusion Middleware Control Console, right-click 

soa-infra in the navigator, select Administration, then select System MBean 
Browser.

2. Expand the following in sequence: Application Defined MBeans; then 
oracle.as.soainfra.config; then Server: server_name; then WorkflowConfig.

3. Click human-workflow.

To change the language:

a. In the Name column, click LocaleList.

b. In the Value field, click the value.

c. In the Name column, click Language.

d. In the Value field, change en to the language value that you want to use.

e. Click Apply.

To add additional languages:

a. Click the Operations tab.

b. In the Name column, click createLocale.

c. In the Value field, enter a value. For better performance, ensure that you 
include only the languages that you need for task title, category, and 
subcategory.

d. Click Invoke.

30.12.4 How To Change the Language Preferences from a JAZN XML File
In the JAZN XML file, change the portion in bold to set the user's preferred language.

<preferredLanguage>en-US</preferredLanguage>

Oracle BPM Worklist supports the languages shown in Table 30–13.

Note: If you add another language, then any previously written 
tasks continue to appear only in the languages that were previously 
specified. For example, if the previously specified language was 
English, and you then added another language, then any tasks written 
before you added the new language appear in English only. Tasks 
created after you added the other language appear in either English or 
the added language, depending on the language specified in the 
LocaleList property of your System MBean Browser.

Table 30–13 Languages Supported in Oracle BPM Worklist

Language Format

English (en)

English (United States) (en-US)

German (de)

Spanish (International) (es)

French (fr)



Accessing Oracle BPM Worklist in Local Languages and Time Zones

Using Oracle BPM Worklist 30-67

30.12.5 What You May Need to Know About Runtime Languages Not Displaying in the 
Worklist

Oracle BPM Worklist supports nine administration languages. However, the user's 
notification preference interface, as a standalone application, supports 21 runtime 
languages. If a user's preferred language is set to a language that is not supported by 
the worklist, but which is supported by the user's notification preference interface, 
then the worklist displays the language set by the server (or English if the server 
language is also not supported by the worklist), while the embedded user's 
notification preference interface displays in the user's preferred language. In this case, 
two languages are seen when you navigate to the Preferences settings in the 
Notification tab in the worklist.

For example, assume that the language of the SOA server is French and that someone 
tries to access the worklist in a browser with the language set to Arabic. The worklist 
interface displays the server language, French, while the embedded user's notification 
preference interface displays in Arabic when navigating to the Preferences > 
Notification tab.

30.12.6 What You May Need to Know About Inconsistent Display Languages in Worklist 
and Embedded User's Notification Preference Interface

Oracle BPM Worklist can be configured to set the language from the browser or from 
the identity store. There are two levels to this setting, the application level and the user 
level. If the user preference is set, it takes precedence in determining the worklist 
display language. However, the embedded user's notification preference interface 
always respects the application preference. Therefore, if the user's preference indicates 
that the language from the browser is to be used, while the application preference is 
set to use the language from the identity store, or vice versa, you may see different 
display languages in the worklist and in the user's notification preference interface.

30.12.7 How To Change the Time Zone Used in the Worklist
The following is based on extracting a user’s time zone from a JAZN XML file.

To change the time zone:
Change the string in bold to set the user's preferred time zone.

<timeZone>America/Los_Angeles</timeZone>

The format of the time zone string is Continent/Region. You can find the time zone 
values in the $JAVA_HOME/jre/lib/zi directory. The directories specify the 
continent names, for example Africa, Asia, America, and so on, while the files within 

Italian (it)

Japanese (ja)

Korean (ko)

Portuguese (Brazil) (pt-BR)

Chinese (Simplified) (zh-CN)

Chinese (Traditional) (zh-TW)

Table 30–13 (Cont.) Languages Supported in Oracle BPM Worklist

Language Format



Creating Reusable Worklist Regions

30-68 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

the directories specify the regions. Note that some regions include sub-regions, for 
example America/Indiana/Indianapolis.

30.13 Creating Reusable Worklist Regions
Some features available in worklist are exposed as standalone reusable components 
that can be embedded in any application. Moreover, these standalone task flows 
provide many customizations through parameters that enable user to build and 
customize a worklist application to meet requirements. All of the task flows are 
bundled in an ADF library that can be included in the embedding application.

30.13.1 How to Create an Application With an Embedded Reusable Worklist Region
The usage of each reusable worklist region is the same with a few exceptions. The 
following procedure provides the detailed steps to create an application and embed 
the Task List task flow in the application. Where applicable, notes on how to use other 
types of reusable worklist regions are provided.

To create an application with an embedded reusable worklist region:
1. Create new Fusion Web Application in Oracle JDeveloper. In this example, the 

name of the application is TaskListTaskFlowSample. Figure 30–60 provides details.

Figure 30–60 Creation of Application with an Embedded Reusable Worklist Region

2. Open the View Controller Project Properties, Libraries and Classpath section, and 
click Add Library to add the following libraries in the class path:

■ BPM Worklist Components 
Add this library to add the task flow JAR adflibTaskListTaskFlow.jar 
and adflibWorklistComponents.jar, which are required in the project's 
class path.

■ BPM Services

■ WSRP Container



Creating Reusable Worklist Regions

Using Oracle BPM Worklist 30-69

Figure 30–61 provides details.

Figure 30–61 Libraries and Classpath Section

3. If your application runs on non-SOA server, you must perform two additional 
steps. 

a. Install the oracle.soa.workflow shared library. 

Note that if your server has oracle.soa.workflow.wc already installed 
you do not need to install oracle.soa.workflow.

b. Configure a foreign JNDI on the server. 

Note that if you run the Task List task flow in federated mode, you do not 
need to do this step. See the section "federatedMode" on page 30-72 for 
information about how to use the task flow in federated mode. 

4. Select the View Controller project and choose File > New > Current Project 
Technologies > Web Tier > JSF Page to create a jspx file (for example, 
testSample.jspx).

Be sure to select Create as XML document (*.jspx) in the Create JSF Page dialog.

5. Choose adflibTaskListTaskFlow.jar from the component palette. It 
contains the list of all the Task Flows and Regions. Figure 30–62 provides details.



Creating Reusable Worklist Regions

30-70 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–62 Component Palette

6. Drag and drop one of the task flow Regions to the jspx page, and select Region in 
the Create menu (for example, taskList-task-flow-definition for Task List Task 
Flow).

See the following sections for details about the task flow definitions:

■ Section 30.13.4, "What You May Need to Know About Task List Task Flow"

■ Section 30.13.5, "What You May Need to Know About Certificates Task Flow"

■ Section 30.13.6, "What You May Need to Know About the Reports Task Flow"

■ Section 30.13.7, "What You May Need to Know About Application Preferences 
Task Flow"

■ Section 30.13.8, "What You May Need to Know About Mapped Attributes Task 
Flow"

■ Section 30.13.9, "What You May Need to Know About Rules Task Flow"

7. If you chose flex-fields-task-flow-definition, rules-task-flow-definition, 
tasklist-reports-task-flow-definition, or taskList-task-flow-definition, pass the 
task flow parameters in the Edit Task Flow Binding dialog that appears.

8. A new entry is added to the pagenamePagedef.xml file. 

For example, adding the taskList-task-flow-definition results in the following 
new entry:

<taskFlow id="taskListtaskflowdefinition1"

          taskFlowId="/WEB-INF/taskList-task-flow-definition.xml#taskList-task-
flow-definition"
           xmlns="http://xmlns.oracle.com/adf/controller/binding">
   <parameters>
      <parameter id="federatedMode" value="true"
                 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
      <parameter id="showServerColumn" value="true"
                 xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
   </parameters>
</taskFlow>

9. Add the shared libraries in the weblogic-application.xml file. If you have 
oracle.soa.workflow.wc installed on your server, add that library.

<library-ref>
    <library-name>oracle.soa.workflow</library-name>



Creating Reusable Worklist Regions

Using Oracle BPM Worklist 30-71

</library-ref>

10. Before deploying the application, see Section 30.13.2, "How to Set Up the 
Deployment Profile."

30.13.2 How to Set Up the Deployment Profile
Before deploying the application, you must edit the deployment profile. 

To edit the deployment profile
1. Select the View Controller project and choose File > New > General > 

Deployment Profiles, select WAR File, and click OK.

2. Select WEB-INF/lib > Filters, and check adflibTaskListTaskFlow.jar, 
adflibWorklistComponents.jar and wsrp-container.jar.

30.13.3 How to Prepare Federated Mode Task Flows For Deployment
If you are using the task flow in federated mode, you must pass the list of federated 
servers to the task flow. See "federatedMode" on page 30-72 for details.

If the task flow is used in the federated mode, then enable global trust between the 
federated servers. This is done so that the already authenticated user token is passed 
to all the federated servers passed.

Do the below steps for all the federated servers and restart all the servers. It is very 
important that you restart all the servers. 

To restart the servers:
1. Login to the Oracle Weblogic Server console.

2. Select the domain name soainfra under Domain Structures. The domain name 
may be different if a SOA server is not used.

3. Select the Security tab.

4. Select the Advanced link (near the bottom Save button).

5. Enter a password in the Credential field. (The same password must be given for 
all the federated servers).

6. Click Save.

7. Restart the server.

30.13.4 What You May Need to Know About Task List Task Flow
The Task List task flow takes in the parameters to control the display behavior of the 
embedded region. Figure 30–63 provides details.



Creating Reusable Worklist Regions

30-72 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–63 Task List

Some of the parameters are listed below. For the full list of parameters, see 
Section 34.4, "Passing Worklist Portlet Parameters."

■ federatedMode

■ federatedServers

■ showServerColumn

■ wfCtxID

federatedMode
Only if passed as true, the task list would be shown in the federated mode. To run the 
task flow in federated mode, the list of federated servers must be passed to the task 
flow. You can pass the federated servers list to the task flow in one of the following 
two ways.

One method is to provide the client configuration file wf_client_config.xml in 
the class path (APP-INF\classes\wf_client_config.xml at the EAR level, or 
the WEB-INF\classes of the web application). The client configuration file contains 
all federated server details. See more information about this parameter in detail in 
Section 34.4, "Passing Worklist Portlet Parameters."

Another method is to construct a JAXB object, which contains the federated servers 
list. This JAXB object can be passed to the task flow through the federatedServers 
parameter. See "federatedServers" on page 30-72 for information about constructing 
the JAXB object. 

If both the client configuration file (wf_client_config.xml) and the JAXB object 
were provided to the task flow, the JAXB object takes the precedence.

federatedServers
This parameter is a JAXB object that contains the list of servers if the task flow is run in 
federated mode. This parameter takes precedence over the client configuration file 
(wf_client_config.xml) if it were also provided. See the code example in 
Example 30–1 for details about to constructing the JAXB object 
(WorkflowServicesClientConfigurationType). 



Creating Reusable Worklist Regions

Using Oracle BPM Worklist 30-73

Make sure that you set one of the servers as default, as shown in Example 30–1. 
Only one server is required to be designated as the default. Also, verify that the server 
you designate as the default is excluded from the federated servers list. The relevant 
code for doing this is in bold in the example.

The default server is used when you have many servers defined in wf_client_
config.xml or in the JAXB object, but the workflow client is desired for a single 
server. There are a few legacy APIs that do not take a server name as a parameter. To 
support such legacy APIs, your must define a single server as the default server, 
otherwise any legacy APIs that do not take a server name do not work.

Example 30–1 federatedServers

import oracle.bpel.services.workflow.client.config.IdentityPropagationType;
import oracle.bpel.services.workflow.client.config.PolicyReferenceType;
import oracle.bpel.services.workflow.client.config.PolicyReferencesType;
import oracle.bpel.services.workflow.client.config.RemoteClientType;
import oracle.bpel.services.workflow.client.config.ServerType;
import oracle.bpel.services.workflow.client.config.SoapClientType;
import 
oracle.bpel.services.workflow.client.config.WorkflowServicesClientConfigurationTyp
e;
         
WorkflowServicesClientConfigurationType wscct =
   new WorkflowServicesClientConfigurationType();
        
List<ServerType> servers = wscct.getServer();        
        
/**** Setting default server in the list ****/
                
ServerType defalutServer = new ServerType();
servers.add(defalutServer);
 
defalutServer.setDefault(true);
defalutServer.setExcludeFromFederatedList(true);
defalutServer.setName("default");
 
RemoteClientType rct = new RemoteClientType();
rct.setServerURL("t3://myhost.us.oracle.com:7001");
rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct.setParticipateInClientTransaction(false);
defalutServer.setRemoteClient(rct);
 
SoapClientType sct = new SoapClientType();
PolicyReferencesType prts = new PolicyReferencesType();
 
PolicyReferenceType prt = new PolicyReferenceType();
prt.setEnabled(true);
prt.setCategory("security");
prt.setUri("oracle/wss10_saml_token_client_policy");
prts.getPolicyReference().add(prt);
 
IdentityPropagationType ipt = new IdentityPropagationType();
ipt.setMode("dynamic");
ipt.setType("saml");
ipt.setPolicyReferences(prts);
 
sct.setRootEndPointURL("http://myhost.us.oracle.com:7001");
sct.setIdentityPropagation(ipt);
 



Creating Reusable Worklist Regions

30-74 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

defalutServer.setSoapClient(sct);      
        
/****** Setting Federated Server 1 to the list ****/       
              
ServerType server1 = new ServerType();
servers.add(server1);
server1.setName("Human Resource");
 
RemoteClientType rct1 = new RemoteClientType();
rct1.setServerURL("t3://stadl28.us.oracle.com:7001");
rct1.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct1.setParticipateInClientTransaction(false);
server1.setRemoteClient(rct1);
 
SoapClientType sct1 = new SoapClientType();
PolicyReferencesType prts1 = new PolicyReferencesType();
 
PolicyReferenceType prt1 = new PolicyReferenceType();
prt1.setEnabled(true);
prt1.setCategory("security");
prt1.setUri("oracle/wss10_saml_token_client_policy");
prts1.getPolicyReference().add(prt1);
IdentityPropagationType ipt1 = new IdentityPropagationType();
ipt1.setMode("dynamic");
ipt1.setType("saml");
ipt1.setPolicyReferences(prts1);
 
sct1.setRootEndPointURL("http://stadl28.us.oracle.com:7001");
sct1.setIdentityPropagation(ipt1);
 
server1.setSoapClient(sct1); 
        
/****** Setting Federated Server 2 to the list ****/       
        
ServerType server2 = new ServerType();
servers.add(server2);
server2.setName("Financials");
 
RemoteClientType rct2 = new RemoteClientType();
rct2.setServerURL("t3://myhost.us.oracle.com:7001");
rct2.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
rct2.setParticipateInClientTransaction(false);
server2.setRemoteClient(rct2);
 
SoapClientType sct2 = new SoapClientType();
PolicyReferencesType prts2 = new PolicyReferencesType();
 
PolicyReferenceType prt2 = new PolicyReferenceType();
prt2.setEnabled(true);
prt2.setCategory("security");
prt2.setUri("oracle/wss10_saml_token_client_policy");
prts2.getPolicyReference().add(prt2);
 
IdentityPropagationType ipt2 = new IdentityPropagationType();
ipt2.setMode("dynamic");
ipt2.setType("saml");
ipt2.setPolicyReferences(prts2);
 
sct2.setRootEndPointURL("http://myhost.us.oracle.com:7001");
sct2.setIdentityPropagation(ipt2);



Creating Reusable Worklist Regions

Using Oracle BPM Worklist 30-75

 
server2.setSoapClient(sct2);

showServerColumn
If the task flow is run in federated mode, the server column in the task list is not 
shown by default. The server column is shown if this parameter is passed as true, 
otherwise it is not.

wfCtxID
This is a workflow context token string. It is used to create workflow context inside the 
task flow. If the application is SSO-enabled, or it is secured using ADF security, this 
parameter is not required, otherwise this is a required parameter. You can get the 
workflow context ID as shown in Example 30–2.

Example 30–2 wfCtxID

IWorkflowContext wfCtx =  wfSvcClient.getTaskQueryService().authenticate(username,
                                                               password,
                                                               realm,
                                                               null); 
wfCtxID = wfCtx.getToken();

30.13.5 What You May Need to Know About Certificates Task Flow
The user can upload the certificate to use to sign a decision, as shown in the following 
graphic. When signing a task outcome using your certificate, you must upload the 
entire chain of certificates through Oracle BPM Worklist as a .P7B (PKCS7 format) file, 
not only the one certificate issued to you by the certificate issuer. 

A digital certificate contains the digital signature of the certificate-issuing authority, so 
that anyone can verify that the certificate is real. A digital certificate establishes the 
participant's credentials. It is issued by a certification authority (CA). It contains your 
name, a serial number, expiration dates, a copy of the certificate holder's public key 
(used for encrypting messages and digital signatures), and the digital signature of the 
certificate-issuing authority, so that a recipient can verify that the certificate is real.

Certificates task flow does not have any parameters. Figure 30–64 provides details.



Creating Reusable Worklist Regions

30-76 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–64 Digital Certificate

30.13.6 What You May Need to Know About the Reports Task Flow
Figure 30–65 shows the unattended tasks report.

Figure 30–65 Unattended Tasks Report

The following worklist reports are available for task analysis.

Unattended Tasks
Unattended Tasks provides an analysis of tasks assigned to users' groups or reportees' 
groups that have not yet been acquired (the "unattended" tasks).

■ Assignee -This option (required) selects tasks assigned to the user's group (My 
Group), tasks assigned to the reportee's groups (Reportees), tasks where the user is 
a creator (Creator), or tasks where the user is an owner (Owner).

■ Creation Date - An optional date range

■ Expiration Date - An optional date range



Creating Reusable Worklist Regions

Using Oracle BPM Worklist 30-77

■ Task State - The state (optional) can by Any, Assigned, Expired, or Information 
Requested.

■ Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or 
Lowest.

Tasks Priority
Tasks Priority provides an analysis of the number of tasks assigned to a user, reportees, 
or their groups, broken down by priority.

■ Assignee - Depending on the assignee that you select, this required option 
includes tasks assigned to the logged-in user (My), tasks assigned to the user and 
groups that the user belongs to (My & Group), or tasks assigned to groups to 
which the user's reportees belong (Reportees).

■ Creation Date - An optional date range

■ Ended Date - An optional date range for the end dates of the tasks to be included 
in the report.

■ Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or 
Lowest.

Tasks Cycle Time
Tasks Cycle Time provides an analysis of the time taken to complete tasks from 
assignment to completion based on users' groups or reportees' groups.

■ Assignee - Depending on the assignee that you select, this required option 
includes your tasks (My) or tasks assigned to groups to which your reportees 
belong (Reportees).

■ Creation Date - An optional date range

■ Ended Date - An optional date range for the end dates of the tasks to be included 
in the report.

■ Priority - The priority (optional) can be Any, Highest, High, Normal, Low, or 
Lowest.

Tasks Productivity
Tasks Productivity provides an analysis of assigned tasks and completed tasks in a 
given time period for a user, reportees, or their groups.

■ Assignee - Depending on the assignee that the user selects, this required option 
includes the user's tasks (My & Group) or tasks assigned to groups to which the 
user's reportees belong (Reportees).

■ Creation Date (range) - An optional creation date range. The default is one week.

■ Task Type - Use the Search (flashlight) icon to select from a list of task titles. All 
versions of a task are listed on the Select Workflow Task Type page (optional).

Tasks Time Distribution
Tasks Time Distribution provides the time an assignee takes to perform a task.

■ Assignee - Depending on the assignee that the user selects, this required option 
includes the user's tasks (My & Group) or tasks assigned to groups to which the 
user's reportees belong (Reportees).

■ From...to (date range) - An optional creation date range. The default is one week.



Creating Reusable Worklist Regions

30-78 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Task Type - Use the Search (flashlight) icon to select from a list of task titles. All 
versions of a task are listed on the Select Workflow Task Type page (optional).

30.13.7 What You May Need to Know About Application Preferences Task Flow
Application preferences customize the appearance of the worklist. Administrators can 
specify the following:

■ Login page realm label-If the identity service is configured with multiple realms, 
then the Oracle BPM Worklist login page displays a list of realm names. LABEL_
LOGIN_REALM specifies the resource bundle key used to look up the label to 
display these realms. The term realm can be changed to fit the user community. 
Terms such as country, company, division, or department may be more 
appropriate. Administrators can customize the resource bundle, specify a resource 
key for this string, and then set this parameter to point to the resource key.

■ Global branding icon-This is the image displayed in the top left corner of every 
page of the worklist. (The Oracle logo is the default.) Administrators can provide a 
.gif, .png, or .jpg file for the logo. This file must be in the public_html directory.

■ Resource bundle-An application resource bundle provides the strings displayed 
in the worklist. By default, this is the class at 
oracle.bpel.worklistapp.resource.WorklistResourceBundle. 
Figure 30–66 provides details.

Figure 30–66 Application Preferences

30.13.8 What You May Need to Know About Mapped Attributes Task Flow
Human workflow mapped attributes store and query use case-specific custom 
attributes. These custom attributes typically come from the task payload values. 
Storing custom attributes in mapped attributes provides the following benefits:

■ They can be displayed as a column in the task listing.

■ They can filter tasks in custom views and advanced searches.

■ They can be used for a keyword-based search.

For example the Requester, PurchaseOrderID, and Amount fields in a purchase order 
request payload of a task can be stored in the mapped attributes. An approver logging 
into Oracle BPM Worklist can see these fields as column values in the task list and 
decide which task to access. The user can define views that filter tasks based on the 
mapped attributes. 

For example, a user can create views for purchase order approvals based on different 
amount ranges. If the user must also retrieve tasks at some point related to a specific 
requester or a purchase order ID, they can specify this in the keyword field and 
perform a search to retrieve the relevant tasks. Figure 30–67 provides details.



Creating Reusable Worklist Regions

Using Oracle BPM Worklist 30-79

Figure 30–67 Mapped Attribute Mapping

30.13.9 What You May Need to Know About Rules Task Flow
Rules act on tasks, either a specific task type, or all the tasks assigned to a user or 
group. The graphic below shows where you set rules, including vacation rules.

A rule cannot always apply in all circumstances in which it is used. For example, if a 
rule applies to multiple task types, it may not be possible to set the outcome for all 
tasks, since different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by 
using the up and down buttons in the header. If a rule meets its filter conditions, then 
it is executed and no other rules are evaluated. For your rule to execute, you must be 
the only user assigned to that task. If the task is assigned to multiple users (including 
you), the rule does not execute.

The showOtherUsersRules parameter takes a boolean value. When it is passed as 
True other users’ rules are displayed, and when it is passed as False other users’ 
rules are not shown. In addition, this user has to have required permission to view 
other user rules. Figure 30–68 and Figure 30–69 provide details.

Figure 30–68 Vacation Period



Creating Reusable Worklist Regions

30-80 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–69 My Rule



31

Building a Custom Worklist Client 31-1

31 Building a Custom Worklist Client

Starting with the sample Worklist Application, you can build clients for workflow 
services using the APIs exposed by the workflow service. The APIs enable clients to 
communicate with the workflow service using local and remote EJBs, SOAP, and 
HTTP. 

This chapter includes the following sections:

■ Section 31.1, "Introduction to Building Clients for Workflow Services"

■ Section 31.2, "Packages and Classes for Building Clients"

■ Section 31.3, "Workflow Service Clients"

■ Section 31.4, "Class Paths for Clients Using SOAP"

■ Section 31.5, "Class Paths for Clients Using Remote EJBs"

■ Section 31.6, "Class Paths for Clients Using Local EJBs"

■ Section 31.7, "Enterprise JavaBeans References in Web Applications"

■ Section 31.8, "Initiating a Task"

■ Section 31.9, "Changing Workflow Standard View Definitions"

■ Section 31.10, "Writing a Worklist Application Using the HelpDeskUI Sample"

31.1 Introduction to Building Clients for Workflow Services
The typical sequence of calls when building a simple worklist application is as follows.

To build a simple worklist application:
1. Get a handle to IWorklistServiceClient from 

WorkflowServiceClientFactory.

2. Get a handle to ITaskQueryService from IWorklistServiceClient.

3. Authenticate a user by passing a username and password to the authenticate 
method on ITaskQueryService. Get a handle to IWorkflowContext.

4. Query the list of tasks using ITaskQueryService.

5. Get a handle to ITaskService from IWorklistServiceClient.

6. Iterate over the list of tasks returned, performing actions on the tasks using 
ITaskService.

Example 31–1 demonstrates how to build a client for workflow services. A list of all 
tasks assigned to jstein is queried. A task whose outcome has not been set is approved.



Packages and Classes for Building Clients

31-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 31–1 Building a Client for Workflow Services—Setting the Outcome to Approved

try
{
 //Create JAVA WorflowServiceClient
 IWorkflowServiceClient  wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
  WorkflowServiceClientFactory.REMOTE_CLIENT);
 //Get the task query service
 ITaskQueryService querySvc = wfSvcClient.getTaskQueryService();

 //Login as jstein
 IWorkflowContext ctx = querySvc.authenticate("jstein","welcome1".toCharArry(),null);
 //Set up list of columns to query
 List queryColumns = new ArrayList();
 queryColumns.add("TASKID");
 queryColumns.add("TASKNUMBER");
 queryColumns.add("TITLE");
 queryColumns.add("OUTCOME");
 
 //Query a list of tasks assigned to jstein
 List tasks = querySvc.queryTasks(ctx,
              queryColumns,                   
              null, //Do not query additional info
              ITaskQueryService.AssignmentFilter.MY,
              null, //No keywords
              null, //No custom predicate
              null, //No special ordering
              0,    //Do not page the query result
              0);
 //Get the task service
 ITaskService taskSvc = wfSvcClient.getTaskService();
 //Loop over the tasks, outputting task information, and approving any
 //tasks whose outcome has not been set...
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
  Task task = (Task)tasks.get(i);
  int taskNumber = task.getSystemAttributes().getTaskNumber();
  String title = task.getTitle();
  String taskId = task.getSystemAttributes().getTaskId();
  String outcome = task.getSystemAttributes().getOutcome();
  if(outcome == null)
  {
   outcome = "APPROVED";
   taskSvc.updateTaskOutcome(ctx,taskId,outcome);
  }
  System.out.println("Task #"+taskNumber+" ("+title+") is "+outcome);
 }

}
catch (Exception e)
{
 //Handle any exceptions raised here...
 System.out.println("Caught workflow exception: "+e.getMessage());
}

31.2 Packages and Classes for Building Clients
Use the following packages and classes for building clients:

■ oracle.bpel.services.workflow.metadata.config.model



Workflow Service Clients

Building a Custom Worklist Client 31-3

The classes in this package contain the object model for the workflow 
configuration in the task definition file. The ObjectFactory class can create 
objects.

■ oracle.bpel.services.workflow.metadata.routingslip.model

The classes in this package contain the object model for the routing slip. The 
ObjectFactory class can create objects.

■ oracle.bpel.services.workflow.metadata.taskdisplay.model

The classes in this package contain the object model for the task display. The 
ObjectFactory class can create objects.

■ oracle.bpel.services.workflow.metadata.taskdefinition.model

The classes in this package contain the object model for the task definition file. The 
ObjectFactory class can create objects.

■ oracle.bpel.services.workflow.client.IWorkflowServiceClient

The interface for the workflow service client.

■ oracle.bpel.services.workflow.client.WorkflowServiceClientFacto
ry

The factory for creating the workflow service client.

■ oracle.bpel.services.workflow.metadata.ITaskMetadataService

The interface for the task metadata service.

■ oracle.bpel.services.workflow.task.ITaskService

The interface for the task service.

■ oracle.bpel.services.workflow.task.IRoutingSlipCallback

The interface for the callback class to receive callbacks during task processing.

■ oracle.bpel.services.workflow.task.IAssignmentService

The interface for the assignment service.

31.3 Workflow Service Clients
Any worklist application accesses the various workflow services through the 
workflow service client. The workflow service client code encapsulates all the logic 
required for communicating with the workflow services using different local and 
remote protocols. After the worklist application has an instance of the workflow 
service client, it does not need to consider how the client communicates with the 
workflow services.

The advantages of using the client are as follows:

■ Hides the complexity of the underlying connection mechanisms such as 
SOAP/HTTP and Enterprise JavaBeans

■ Facilitates changing from using one particular invocation mechanism to another, 
for example from SOAP/HTTP to remote Enterprise JavaBeans

The following class is used to create instances of the IWorkflowServiceClient 
interface:

oracle.bpel.services.workflow.client.WorkflowServiceClientFactory



Workflow Service Clients

31-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

WorkflowServiceClientFactory has several methods that create workflow 
clients. The simplest method, getWorkflowServiceClient, takes a single 
parameter, the client type. The client type can be one of the following:

■ WorkflowServiceClientFactory.LOCAL_CLIENT—The client uses a local 
Enterprise JavaBeans interface to invoke the workflow services.

■ WorkflowServiceClientFactory.REMOTE_CLIENT—The client uses a 
remote Enterprise JavaBeans interface to invoke workflow services located 
remotely from the client.

■ WorkflowServiceClientFactory.SOAP_CLIENT—The client uses SOAP to 
invoke web service interfaces to the workflow services, located remotely from the 
client.

The other factory methods enable you to specify the connection properties directly 
(rather than having the factory load them from the wf_client_config.xml file), 
and enable you to specify a logger to log client activity.

The following enhancements to the workflow service clients are included in this 
release:

■ You can specify the workflow client configuration using either a JAXB object or a 
map, as shown in Example 31–2 and Example 31–3.

Example 31–2 Workflow Client Configuration Using a JAXB Object

WorkflowServicesClientConfigurationType wscct = new  WorkflowServicesClientConfigurationType();
   List<ServerType> servers = wscct.getServer();
   ServerType server = new ServerType();
   server.setDefault(true);
   server.setName(serverName);
   servers.add(server);

   RemoteClientType rct = new RemoteClientType();
   rct.setServerURL("t3://stapj73:7001");
   rct.setUserName("weblogic");
   rct.setPassword("weblogic"));
   rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
   rct.setParticipateInClientTransaction(false);
   server.setRemoteClient(rct);
   IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
                                        WorkflowServiceClientFactory.REMOTE_CLIENT, wscct, logger);

Example 31–3 Workflow Client Configuration Using a Map

Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String> properties = new
   HashMap<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String>();
 
properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE,
   IWorkflowServiceClientConstants.MODE_DYNAMIC);
 
properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
   "http://localhost:8888");
 
IWorkflowServiceClient client =
   WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.SOAP_CLIENT,
   properties, null);

■ Clients can optionally pass in a java.util.logging.Logger where the client 
logs messages. If no logger is specified, then the workflow service client code does 



Workflow Service Clients

Building a Custom Worklist Client 31-5

not log anything. Example 31–4 shows how a logger can be passed to the 
workflow service clients. 

Example 31–4 Passing a Logger to the Workflow Service Clients

java.util.logging.Logger logger = ....;
 
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, logger);

Through the factory, it is possible to get the client libraries for all the workflow 
services. See Table 32–1, " Enterprise JavaBeans, SOAP, and Java Support" for the 
clients available for each of the services.

Note that you can obtain instances of BPMIdentityService and 
BPMIdentityConfigService by calling the getSOAPIdentityServiceClient 
and getSOAPIdentityConfigServiceClient methods on 
WorkflowServiceClientFactory. You can obtain all other services through an 
instance of IWorkflowServiceClient.

The client classes use the configuration file wf_client_config.xml for the service 
endpoints. In the client class path, this file is in the class path directly, meaning the 
containing directory is in the class path. The wf_client_config.xml file contains:

■ A section for remote clients, as shown in Example 31–5.

Example 31–5 Section for Remote Clients

<remoteClient>
      <serverURL>t3://hostname.domain_name:7001</serverURL>
  <userName>weblogic</userName>
  <password>weblogic</password>
  <initialContextFactory>weblogic.jndi.WLInitialContextFactory
     </initialContextFactory>
  <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

■ A section for SOAP endpoints for each of the services, as shown in Example 31–6.

Example 31–6 Section for SOAP Endpoints

<soapClient>
   <rootEndPointURL>http://hostname.domain_name:7001</rootEndPointURL>
   <identityPropagation mode="dynamic" type="saml">
   <policy-references>
      <policy-reference enabled="true" category="security" 
         uri="oracle/wss10_saml_token_client_policy"/>
      </policy-references>
   </identityPropagation>
</soapClient>

The workflow client configuration XML schema definition is in the wf_client_
config.xsd file.

31.3.1 The IWorkflowServiceClient Interface
The IWorkflowServiceClient interface provides methods, summarized in 
Table 31–1, for obtaining handles to the various workflow services interfaces.



Class Paths for Clients Using SOAP

31-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

31.4 Class Paths for Clients Using SOAP
SOAP clients must have the following JAR files in their class path:

■ ${bea.home}/wlserver_10.3/server/lib/wlfullclient.jar

■ ${bea.home}/AS11gR1SOA/webservices/wsclient_extended.jar

■ ${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.fabric_
11.1.1/bpm-infra.jar

■ ${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.workflow_
11.1.1/bpm-services.jar

■ ${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.fabric_
11.1.1/fabric-runtime.jar

You can generate the wlfullclient.jar file using the commands shown in 
Example 31–7.

Example 31–7 wlfullclient.jar File Generation

cd ${bea.home}/wlserver_10.3/server/lib
java -jar ../../../modules/com.bea.core.jarbuilder_1.3.0.0.jar

31.5 Class Paths for Clients Using Remote EJBs
Clients using remote EJBs must have the following JAR files in their class path:

■ xmlparserv2.jar

■ xml.jar

■ bpm-infra.jar

■ bpm-services.jar

■ bpm-services-client.jar (only if you are using the ADF data controls for 
workflow)

■ fabric-runtime.jar

Table 31–1 IWorkflowServiceClient Methods

Method Interface

getTaskService oracle.bpel.services.workflow.task.ITaskService

getTaskQueryService oracle.bpel.services.workflow.query.ITaskQueryService

getTaskReportService oracle.bpel.services.workflow.report.ITaskReportService

getTaskMetadataService oracle.bpel.services.workflow.metadata.ITaskMetadataService

getUserMetadataService oracle.bpel.services.workflow.user.IUserMetadataService

getRuntimeConfigService oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService

getTaskEvidenceService oracle.bpel.services.workflow.metadata.ITaskMetadataService

Note: Client applications no longer use the 
system\services\config or system\services\schema 
directories in the class path. 



Initiating a Task

Building a Custom Worklist Client 31-7

31.6 Class Paths for Clients Using Local EJBs
Only applications running as part of the soa-infra application or those that are a child 
application of the soa-infra application can use local EJBs. In either case, the child 
application has all the necessary classes in its class path, either because they are part of 
soa-infra or because they inherit the class path as the child of soa-infra.

31.7 Enterprise JavaBeans References in Web Applications
If a web application uses the workflow service EJBs, then the client application must 
define the Enterprise JavaBeans references in its web.xml file. The references for each 
of the services are shown in Example 31–8 and Example 31–9.

Example 31–8 Task Service

<ejb-local-ref id="EjbRef_TaskServiceBean_Message">
  <ejb-ref-name>ejb/local/TaskServiceBean</ejb-ref-name>
  <ejb-ref-type>Session</ejb-ref-type>
  <local-home>oracle.bpel.services.workflow.task.ejb.TaskServiceLocalHome</local-home>
  <local>oracle.bpel.services.workflow.task.ejb.TaskServiceLocal</local>
  <ejb-link>TaskServiceBean</ejb-link>
</ejb-local-ref>

Example 31–9 Task Metadata Service

<ejb-local-ref id="EjbRef_TaskMetadataServiceBean_Message">
  <ejb-ref-name>ejb/local/TaskMetadataServiceBean</ejb-ref-name>
  <ejb-ref-type>Session</ejb-ref-type>
  <local-home>oracle.bpel.services.workflow.metadata.ejb.TaskMetadataServiceLocalHome</local-home>
  <local>oracle.bpel.services.workflow.metadata.ejb.TaskMetadataServiceLocal</local>
  <ejb-link>TaskMetadataServiceBean</ejb-link>
</ejb-local-ref>

See Chapter 32, "Introduction to Human Workflow Services," for more information on 
TaskQueryService, TaskReportService, UserMetadataService, and 
RuntimeConfigService.

31.8 Initiating a Task
Tasks can be initiated programmatically, in which case the following task attributes 
must be set:

■ taskDefinitionId

■ title

■ payload

Note: Client applications no longer use the 
system\services\config or system\services\schema 
directories in the class path. 

Note: Client applications no longer use the 
system\services\config or system\services\schema 
directories in the class path. 



Initiating a Task

31-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ priority

The following task attributes are optional, but are typically set by clients:

■ creator

■ ownerUser—Defaults to bpeladmin if empty

■ processInfo

■ identificationKey—Tasks can be queried based on the identification key from 
the TaskQueryService.

31.8.1 Creating a Task
The task object model is available in the package 

oracle.bpel.services.workflow.task.model

To create objects in this model, use the ObjectFactory class.

31.8.2 Creating a Payload Element in a Task
The task payload can contain multiple payload message attributes. Since the payload 
is not well defined until the task definition, the Java object model for the task does not 
contain strong type objects for the client payload. The task payload is represented by 
the AnyType Java object. The AnyType Java object is created with an XML element 
whose root is payload in the namespace

http://xmlns.oracle.com/bpel/workflow/task

The payload XML element contains all the other XML elements in it. Each XML 
element defines a message attribute.

Example 31–10 shows how to set a task payload.

Example 31–10 Setting a Task Payload

import oracle.bpel.services.workflow.task.model.AnyType;
import oracle.bpel.services.workflow.task.model.ObjectFactory;
import oracle.bpel.services.workflow.task.model.Task;
..........

Document document = //createXMLDocument
Element payloadElem = document.createElementNS("http://xmlns.oracle.com/bpel/workflow/
  task", "payload");
Element orderElem = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "order");
Element child = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "id");
  child.appendChild(document.createTextNode("1234567"));
  orderElem.appendChild(child); 
  payloadElem.appendChild(orderElem);
  document.appendChild(payloadElem);

  task.setPayloadAsElement(payloadElem);

Note: The AnyType.getContent() element returns an 
unmodifiable list of XML elements. You cannot add other message 
attributes to the list.



Initiating a Task

Building a Custom Worklist Client 31-9

31.8.3 Initiating a Task Programmatically
Example 31–11 shows how to initiate a vacation request task programmatically.

Example 31–11 Initiating a Vacation Request Task Programmatically

  // create task object
  ObjectFactory objectFactory = new ObjectFactory();
  Task task = objectFactory.createTask();

  // set title
  task.setTitle("Vacation request for jcooper"); 

  // set creator
  task.setCreator("jcooper");
 
// set taskDefinitionId. taskDefinitionId is the target
// namespace of the task 
// If namespace is used, the active version of the composite corresponding 
// to that of the namespace will be used.
task.setTaskDefinitionId("http://xmlns.oracle.com/VacationRequest/
Project1/Humantask1");  (Your task definition ID will be different.)

  // create and set payload 
  Document document = XMLUtil.createDocument();
  Element payloadElem = document.createElementNS(TASK_NS, "payload"); 
  Element vacationRequestElem = document.createElementNS(VACATION_REQUEST_NS,
    "VacationRequestProcessRequest");
 
  Element creatorChild = document.createElementNS(VACATION_REQUEST_NS, "creator");
  creatorChild.appendChild(document.createTextNode("jcooper")); 
  vacationRequestElem.appendChild(creatorChild);
  
  Element fromDateChild = document.createElementNS(VACATION_REQUEST_NS, "fromDate");
  fromDateChild.appendChild(document.createTextNode("2006-08-05T12:00:00")); 
  vacationRequestElem.appendChild(fromDateChild);
  
  Element toDateChild = document.createElementNS(VACATION_REQUEST_NS, "toDate");
  toDateChild.appendChild(document.createTextNode("2006-08-08T12:00:00"));
  vacationRequestElem.appendChild(toDateChild);
  
  Element reasonChild = document.createElementNS(VACATION_REQUEST_NS, "reason");
  reasonChild.appendChild(document.createTextNode("Hunting")); 
  vacationRequestElem.appendChild(reasonChild);
  
  payloadElem.appendChild(vacationRequestElem);
  document.appendChild(payloadElem);
  
  task.setPayloadAsElement(payloadElem);
 
  IWorkflowServiceClient workflowServiceClient =
    WorkflowServiceClientFactory.getWorkflowServiceClient
    (WorkflowServiceClientFactory.SOAP_CLIENT);
  ITaskService taskService = workflowServiceClient.getTaskService(); 
  IInitiateTaskResponse iInitiateTaskResponse = taskService.initiateTask(task); 
  Task retTask = iInitiateTaskResponse.getTask(); 
  System.out.println("Initiated: " + retTask.getSystemAttributes().getTaskNumber() + " - " +
    retTask.getSystemAttributes().getTaskId());
  return retTask;



Changing Workflow Standard View Definitions

31-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

31.9 Changing Workflow Standard View Definitions
The worklist application and the UserMetadataService API provide methods that 
you can use to create, update, and delete standard views. See Section 32.1.7, "User 
Metadata Service" for more information.

31.10 Writing a Worklist Application Using the HelpDeskUI Sample
The following example shows how to modify the help desk interface that is part of the 
HelpDeskRequest demo.

To write a worklist application
1. Create the workflow context by authenticating the user. 

// get workflow service client
  IWorkflowServiceClient wfSvcClient =
    WorkflowServiceClientFactory.getWorkflowServiceClient
    (WorkflowServiceClientFactory.REMOTE_CLIENT);
 
//get the workflow context
IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);

This is Step 3 in Section 31.1, "Introduction to Building Clients for Workflow 
Services."

The login.jsp file of HelpDeskRequest uses the preceding API to authenticate 
the user and create a workflow context. After the user is authenticated, the 
statusPage.jsp file displays the tasks assigned to the logged-in user. 
Example 31–12 shows sample code from the login.jsp file.

Example 31–12 Login.jsp

<%@ page import="javax.servlet.http.HttpSession"
         import="oracle.bpel.services.workflow.client.IWorkflowServiceClient"
         import="oracle.bpel.services.workflow.client.WorkflowServiceClientFactory"
         import="java.util.Set"
         import="java.util.Iterator"
         import="oracle.bpel.services.workflow.verification.IWorkflowContext"
         import="oracle.tip.pc.services.identity.config.ISConfiguration"%>
<%@ page contentType="text/html;charset=windows-1252"%>
 
<html>
<head>
<title>Help desk request login page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
 
<body bgcolor="#F0F0F0" text="#000000" style="font: 12px verdana; line-height:18px">
<center>
<div style="width:640px;padding:15px;border-width: 10px; border-color: #87b4d9; border-style:
 solid;
background-color:white; text-align:left">
 
    <!-- Page Header, Application banner, logo + user status -->
    <jsp:include page="banner.jsp"/>
   
    <!-- Initiate Meta Information -->
 



Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 31-11

    <div style="background-color:#F0F0F0; border-top:10px solid white;border-bottom:
      10px solid white;padding:10px;text-align:center" >
    <b>Welcome to the HelpDesk application</b>
    </div>
 
    <% 
     String redirectPrefix =  "/HelpDeskUI/";
      // Ask the browser not to cache the page
      response.setHeader("Pragma", "no-cache");
      response.setHeader("Cache-Control", "no-cache");
 
      HttpSession httpSession = request.getSession(false);
      if (httpSession != null) {
       
        IWorkflowContext ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
        if (ctx != null) {
          response.sendRedirect(redirectPrefix + "statusPage.jsp");
        }
        else
        {
          String authFailedStr = request.getParameter("authFailed"); 
          boolean authFailed = false;
          if ("true".equals(authFailedStr))
          {
            authFailed = true;
          }
          else
          {
            authFailed = false;
          }
 
          if (!authFailed)
          {
            //Get page parameters:
            String userId="";
            if(request.getParameter("userId") != null)
            {
              userId = request.getParameter("userId");
            }
            String pwd="";
            if(request.getParameter("pwd") != null)
            {
              pwd = request.getParameter("pwd");
            }
 
            if(userId != null && (!("".equals(userId.trim())))
               && pwd != null && (!("".equals(pwd.trim()))))   
            {
              try {
                HttpSession userSession = request.getSession(true);
 
                IWorkflowServiceClient wfSvcClient =
                        WorkflowServiceClientFactory.getWorkflowServiceClient
                                (WorkflowServiceClientFactory.REMOTE_CLIENT);
                IWorkflowContext wfCtx =
                            wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);
                httpSession.setAttribute("workflowContext", wfCtx);
                response.sendRedirect(redirectPrefix + "statusPage.jsp");
              }
              catch (Exception e)



Writing a Worklist Application Using the HelpDeskUI Sample

31-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

              {
                String worklistServiceError = e.getMessage();
                response.sendRedirect(redirectPrefix + "login.jsp?authFailed=true");
                out.println("error is " + worklistServiceError);
              }          
            }
          } else
          {
            out.println("Authentication failed");
          }
        }
      }
    %>
 
    <form action='<%= request.getRequestURI() %>' method="post">
      <div style="width:100%">
      <table cellspacing="2" cellpadding="3" border="0" width="30%" align="center">
        <tr>
          <td>Username
          </td>
          <td>
            <input type="text" name="userId"/>
          </td>
        </tr>
        <tr>
          <td>Password
          </td>
          <td>
            <input type="password" name="pwd"/>
          </td>
        </tr>
        <tr>
          <td>
            <input type="submit" value="Submit"/>
          </td>
        </tr>
      </table>
    </form>
    </div>
</div>
</center>
  </body>
</html>

2. Query tasks using the queryTask API from TaskQueryService.

//add list of attributes to be queried from the task
List displayColumns = new ArrayList();
     displayColumns.add("TASKNUMBER");
     displayColumns.add("TITLE");
     displayColumns.add("PRIORITY");
     displayColumns.add("STATE");
     displayColumns.add("UPDATEDDATE");
     displayColumns.add("UPDATEDBY");
     displayColumns.add("CREATOR");
     displayColumns.add("OUTCOME");
     displayColumns.add("CREATEDDATE");
     displayColumns.add("ASSIGNEEUSERS");
     displayColumns.add("ASSIGNEEGROUPS");
     // get the list of tasks
     List tasks =  wfSvcClient.getTaskQueryService().queryTasks



Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 31-13

                        (wfCtx,
                        displayColumns,
                        null,
                        ITaskQueryService.AssignmentFilter.MY_AND_GROUP,
                        null,
                        null,
                        null,
                        0,
                        0);
    // create listing page by using above tasks
    //add href links to title to display details of the task by passing taskId
      as input parameter
   Use getTaskDetailsById(IWorkflowContext wftx, String taskId);

This is Step 4 in Section 31.1, "Introduction to Building Clients for Workflow 
Services."

The statusPage.jsp file of HelpDeskRequest is used to display the status of 
help desk requests. Example 31–13 shows the statusPage.jsp example code.

Example 31–13 statusPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page import="oracle.tip.pc.services.identity.BPMAuthorizationService,
                 oracle.bpel.services.workflow.verification.IWorkflowContext,
                 oracle.tip.pc.services.common.ServiceFactory,
                 oracle.bpel.services.workflow.client.IWorkflowServiceClient,
                 oracle.bpel.services.workflow.client.WorkflowServiceClientFactory,
                 oracle.bpel.services.workflow.query.ITaskQueryService,
                 oracle.bpel.services.workflow.task.model.Task,
                 oracle.bpel.services.workflow.task.model.IdentityType,
                 oracle.tip.pc.services.identity.BPMUser,
                 java.util.List,
                 java.util.Calendar,
                 java.text.SimpleDateFormat,
                 java.util.ArrayList"%>
<%@ page contentType="text/html;charset=UTF-8"%>
<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
    <title>RequestPage</title>
    <style TYPE="text/css">
      Body, Form, Table, Textarea, Select, Input, Option
      {  
        font-family : tahoma, verdana, arial, helvetica, sans-serif;
        font-size : 9pt;
      }
      table.banner
      {
        background-color: #eaeff5;
      }
      tr.userInfo
      {
        background-color: #eaeff5;
      }
      tr.problemInfo
      {
        background-color: #87b4d9;
      }
    </style>



Writing a Worklist Application Using the HelpDeskUI Sample

31-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  </head>
  <body bgcolor="White">
  <%
     HttpSession httpSession = request.getSession(false);
     httpSession.setAttribute("pageType","STATUSPAGE");
  %>
  <table bordercolor="#eaeff5" border="4" width="100%">
    <tr><td> <jsp:include page="banner.jsp"/> </td></tr>
  </table>
  <%
      BPMUser bpmUser = null;
      String redirectPrefix =  request.getContextPath() + "/";
      IWorkflowContext ctx = null;
      if (httpSession != null) {
        
        ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
        if (ctx != null) {
            bpmUser = getAuthorizationService(ctx.getIdentityContext()).
                             lookupUser(ctx.getUser());
        }
        else
        {
           response.sendRedirect(redirectPrefix + "login.jsp");
           return;
        }
      }
      else
      {
         response.sendRedirect(redirectPrefix + "login.jsp");
         return;
      }
      if(bpmUser == null)
      {
        response.sendRedirect(redirectPrefix + "login.jsp");
         return;
      }
      String status = (String)httpSession.getAttribute("requeststatus");
      if(status != null && !status.equals(""))
      {
    %>
       <p></p>
       <div style="text-align:left;color:red" >
         <%= status %>
       </div>
    <%    
      }
      httpSession.setAttribute("requeststatus",null);
      IWorkflowServiceClient  wfSvcClient =
                        WorkflowServiceClientFactory.getWorkflowServiceClient(
                                 WorkflowServiceClientFactory.REMOTE_CLIENT);
      List displayColumns = new ArrayList();
      displayColumns.add("TASKNUMBER");
      displayColumns.add("TITLE");
      displayColumns.add("PRIORITY");
      displayColumns.add("STATE");
      displayColumns.add("UPDATEDDATE");
      displayColumns.add("UPDATEDBY");
      displayColumns.add("CREATOR");
      displayColumns.add("OUTCOME");
      displayColumns.add("CREATEDDATE");



Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 31-15

      displayColumns.add("ASSIGNEEUSERS");
      displayColumns.add("ASSIGNEEGROUPS");
      List tasks =  wfSvcClient.getTaskQueryService().queryTasks
                        (ctx,
                        displayColumns,
                        null,
                        ITaskQueryService.ASSIGNMENT_FILTER_CREATOR,
                        null,
                        null,
                        null,
                        0,
                        0);
  %>
  <p></p>
  <div style="text-align:left;color:green" >
   <b>
    Previous help desk request
   </b>
  </div>
  <p></p>
  <div style="text-align:center" >
  <table cellspacing="2" cellpadding="2" border="3" width="100%">
     <TR class="problemInfo">
         <TH>TaskNumber</TH>
         <TH>Title</TH>
         <TH>Priority</TH>
         <TH>CreatedDate</TH>
         <TH>Assignee(s)</TH>
         <TH>UpdatedDate</TH>
         <TH>UpdatedBy</TH>
         <TH>State</TH>
         <TH>Status</TH>
     </TR>
     <%
       SimpleDateFormat dflong = new SimpleDateFormat( "MM/dd/yy hh:mm a" );
       for(int i = 0 ; i < tasks.size() ; i ++)
       {
          Task task = (Task)tasks.get(i);
          int taskNumber = task.getSystemAttributes().getTaskNumber();
          String title = task.getTitle();
          int priority = task.getPriority();
          String assignee = getAssigneeString(task);
          Calendar createdDate = task.getSystemAttributes().getCreatedDate();              
          Calendar updateDate =  task.getSystemAttributes().getUpdatedDate();
          String updatedBy = task.getSystemAttributes().getUpdatedBy().getId();
          String state = task.getSystemAttributes().getState();
          String outcome = task.getSystemAttributes().getOutcome();
          if(outcome == null) outcome = "";
          String titleLink = "http://" + request.getServerName() +
                             ":" + request.getServerPort() +
                              "/integration/worklistapp/TaskDetails?taskId=" +  
                              task.getSystemAttributes().getTaskId();
      %>
        <tr class="userInfo">
           <td><%=taskNumber%></td>
           <td><a href="<%=titleLink%>" target="_blank"><%=title%></a></td>
           <td><%=priority%></td>
           <td><%=dflong.format(createdDate.getTime())%></td>
           <td><%=assignee%></td>
           <td><%=dflong.format(updateDate.getTime())%></td>



Writing a Worklist Application Using the HelpDeskUI Sample

31-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

           <td><%=updatedBy%></td>
           <td><%=state%></td>
           <td><%=outcome%></td>
        <tr>
     <%
       }
     %>
  </table>
  </div>
  <%!
      private BPMAuthorizationService getAuthorizationService(String identityContext)
      {
       BPMAuthorizationService authorizationService =
 ServiceFactory.getAuthorizationServiceInstance();
       if (identityContext != null)
         authorizationService = ServiceFactory.getAuthorizationServiceInstance(identityContext);
 
       return authorizationService;
      }
      private String getAssigneeString(Task task) throws Exception
      {
         List assignees = task.getSystemAttributes().getAssigneeUsers();
         StringBuffer buffer = null;
         for(int i = 0 ; i < assignees.size() ; i++)
         {
           IdentityType type = (IdentityType)assignees.get(i);
           String name = type.getId();
           if(buffer == null)
           {
              buffer = new StringBuffer();
           }
           else
           {
             buffer.append(",");
           }
           buffer.append(name).append("(U)");
         }
         assignees = task.getSystemAttributes().getAssigneeGroups();
         for(int i = 0 ; i < assignees.size() ; i++)
         {
           IdentityType type = (IdentityType)assignees.get(i);
           String name = type.getId();
           if(buffer == null)
           {
              buffer = new StringBuffer();
           }
           else
           {
             buffer.append(",");
           }
           buffer.append(name).append("(G)");
         }
         if(buffer == null)
         {
            return "";
         }
         else
         {
           return buffer.toString();
         }



Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 31-17

      }
  %>
 </body>
</html>



Writing a Worklist Application Using the HelpDeskUI Sample

31-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



32

Introduction to Human Workflow Services 32-1

32Introduction to Human Workflow Services

This chapter describes how the human workflow services are used. These services 
perform a variety of operations in the life cycle of a task.

This chapter includes the following sections:

■ Section 32.1, "Introduction to Human Workflow Services"

■ Section 32.2, "Notifications from Human Workflow"

■ Section 32.3, "Assignment Service Configuration"

■ Section 32.4, "Class Loading for Callbacks and Resource Bundles"

■ Section 32.5, "Resource Bundles in Workflow Services"

■ Section 32.6, "Introduction to Human Workflow Client Integration with Oracle 
WebLogic Server Services"

■ Section 32.7, "Task States in a Human Task"

■ Section 32.8, "Database Views for Oracle Workflow"

32.1 Introduction to Human Workflow Services
This section describes the responsibilities of the following human workflow services.

■ Task service

■ Task query service

■ Identity service

■ Task metadata service

■ User metadata service

■ Task report service

■ Runtime config service

■ Evidence store service

Note: In previous releases, Oracle BPM Worklist included a feature 
known as flex fields. Starting with Release 11g R1 (11.1.1.4), flex fields 
are now known as mapped attributes. 



Introduction to Human Workflow Services

32-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

32.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow 
Services

Table 32–1 lists the type of Simple Object Access Protocol (SOAP), Enterprise 
JavaBeans, and Java support provided for the task services. Most human workflow 
services are accessible through SOAP and local and remote Enterprise JavaBeans APIs. 
You can use these services directly by using appropriate client proxies. Additionally, 
the client libraries are provided to abstract out the protocol details and provide a 
common interface for all transports.

Table 32–2 lists the location for the SOAP Web Services Description Language (WSDL) 
file for each task service. 

Table 32–1 Enterprise JavaBeans, SOAP, and Java Support

Service Name
Supports SOAP 
Web Services

Supports 
Remote 
Enterprise 
JavaBeans

Supports 
Local 
Enterprise 
JavaBeans

Task Service: Provides task state management 
and persistence of tasks. In addition to these 
services, the task service exposes operations 
to update a task, complete a task, escalate and 
reassign tasks, and so on.

Yes Yes Yes

Task Query Service: Queries tasks for a user 
based on a variety of search criterion such as 
keyword, category, status, business process, 
attribute values, history information of a task, 
and so on.

Yes Yes Yes

Identity Service: Enables authentication of 
users and the lookup of user properties, roles, 
group memberships, and privileges.

Yes No No

Task Metadata Service: Exposes operations to 
retrieve metadata information related to a 
task.

Yes Yes Yes

User Metadata Service: Manages metadata 
related to workflow users, such as user work 
queues, preferences, vacation, and delegation 
rules.

Yes Yes Yes

Task Reports Service: Provides workflow 
report details.

Yes Yes Yes

Runtime Config Service: Provides methods 
for managing metadata used in the task 
service runtime environment.

Yes Yes Yes

Evidence Store Service: Supports storage and 
nonrepudiation of digitally-signed workflow 
tasks.

Yes Yes Yes

Table 32–2 SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Task Service http://host:port/integration/services/TaskServi
ce/TaskServicePort?WSDL

Task Query Service http://host:port/integration/services/TaskQuery
Service/TaskQueryService?WSDL



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-3

Table 32–3 lists the JDNI names for the different Enterprise JavaBeans.

For more information about the client library for worklist services, see Chapter 31, 
"Building a Custom Worklist Client" for details.

32.1.1.1 Support for Foreign JNDI Names
Human workflow services can be integrated with J2EE applications through web 
services and remote method invocation (RMI). To simplify the remote lookup of 
Enterprise JavaBeans in other managed servers and clusters or even other Oracle 
WebLogic Server domains, Oracle WebLogic Server includes foreign JNDI providers 
that are configured with the remote server's host and port to link Enterprise JavaBeans 
from that remote server into the local server’s JNDI trees.

Workflow services expose the Enterprise JavaBeans listed in Table 32–3 that must all be 
linked through the foreign JNDI providers to provide full support for the task query 
service, ADF task flow for human task registration, and embedded worklist region use 
cases.

Identity Service http://host:port/integration/services/IdentityS
ervice/configuration?WSDL

http://host:port/integration/services/IdentityS
ervice/identity?WSDL

Task Metadata Service http://host:port/integration/services/TaskMetad
ataService/TaskMetadataServicePort?WSDL

User Metadata Service http://host:port/integration/services/UserMetad
ataService/UserMetadataService?WSDL

Task Report Service http://host:port/integration/services/TaskRepor
tService/TaskReportServicePort?WSDL 

Runtime Config Service http://host:port/integration/services/RuntimeCo
nfigService/RuntimeConfigService?WSDL

Evidence Store Service http://host:port/integration/services/EvidenceS
ervice/EvidenceService?WSDL

Table 32–3 JNDI Names for the Different Enterprise JavaBeans

Service name JNDI Names for the Different Enterprise JavaBeans

Task Service ejb/bpel/services/workflow/TaskServiceBean

Task Service Enterprise 
JavaBeans participating 
in client transaction

ejb/bpel/services/workflow/TaskServiceGlobalTransa
ctionBean

Task Metadata Service ejb/bpel/services/workflow/TaskMetadataServiceBean

Task Query Service ejb/bpel/services/workflow/TaskQueryService

User Metadata Service ejb/bpel/services/workflow/UserMetadataService

Runtime Config Service ejb/bpel/services/workflow/RuntimeConfigService

Task Report Service ejb/bpel/services/workflow/TaskReportServiceBean

Task Evidence Service ejb/bpel/services/workflow/TaskEvidenceServiceBean

Table 32–2 (Cont.) SOAP WSDL Location for the Task Services

Service name SOAP WSDL location



Introduction to Human Workflow Services

32-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To provide support for foreign JNDI names:
1. Log in to Oracle WebLogic Server Administration Console.

http://host:port/console

2. In the Domain Structure, select Services > JDBC > Foreign JNDI Providers.

There is one caveat when linking remote Enterprise JavaBeans names to the local 
JNDI namespace through a foreign JNDI provider from a SOA server to a 
managed server or cluster in the same Oracle WebLogic Server domain. The local 
JNDI names are exposed to all of the managed servers within that domain. This 
causes namespace collisions on the SOA server within that domain, which already 
has those Enterprise JavaBeans registered from the Oracle BPM Worklist. An 
alternative, which avoids collisions while keeping configuration to a minimum, is 
to use JNDI suffixing. This is done by appending a consistent suffix to the end of 
all the local JNDI links of the remote workflow Enterprise JavaBeans and creating 
a simple wf_client_config.xml file that contains the suffix key. 

You can define client properties in either of three ways. For more information, see 
Section 32.6.1.2, "Configuration Option." 

3. Append the JNDI suffix to each Enterprise JavaBeans name shown in Table 32–3 to 
register the foreign JNDI names.

■ ejb/bpel/services/workflow/TaskServiceGlobalTransactionean_s
erver1

■ ejb/bpel/services/workflow/TaskServiceBean_server1

■ ejb/bpel/services/workflow/TaskMetadataServiceBean_server1

■ TaskQueryService_server1

■ UserMetadataService_server1

■ RuntimeConfigService_server1

■ TaskReportServiceBean_server1

■ TaskEvidenceServiceBean_server1

4. Define the remote name by specifying only the ejbJndiSuffix element value in 
the wf_client_config.xml file, as shown in Example 32–1. You can also use 
the JAXB WorkflowServicesClientConfigurationType object or the 
CONNECTION_PROPERTY.EJB_JNDI_SUFFIX in the Map<CONNECTION_
PROPERTY, String> properties.

Example 32–1 ejbJndiSuffix Element Value

<remoteClient>
      <ejbJndiSuffix>_server1</ejbJndiSuffix>
</remoteClient>

32.1.2 Security Model for Services
With the exception of the identity service, all services that use the above-mentioned 
APIs (SOAP, remote Enterprise JavaBeans, local Enterprise JavaBeans, and Java WSIF) 
require authentication to be invoked. All the above channels support passing the user 
identity using the human workflow context. The human workflow context contains 
either of the following:

■ Login and password



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-5

■ Token

The task query service exposes the authenticate operation that takes the login and 
password and returns the human workflow context used for all services. Optionally, 
with each request, you can pass the human workflow context with the login and 
password.

The authenticate operation also supports the concept of creating the context on 
behalf of a user with the admin ID and admin password. This operation enables you to 
create the context for a logged-in user to the Oracle BPM Worklist if the password for 
that user is not available.

Oracle recommends that you get the workflow context one time and use it 
everywhere. There are performance implications for getting the workflow context for 
every request. 

A realm is an identity service context from the identity configuration. The realm name 
can be null if the default configuration is used. 

32.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP 
Web Services
Identity propagation is the replication of authenticated identities across multiple 
SOAP web services used to complete a single transaction. SOAP web services also 
support web service security. When web service security is used, the human workflow 
context does not need to be present in the SOAP input. Web service security can be 
configured from Oracle Enterprise Manager Fusion Middleware Control Console.

32.1.2.2 Creating Human Workflow Context on Behalf of a User
The authenticateOnBehalfOf API method on the task query service can create the 
human workflow context on behalf of a user by passing the user ID and password of 
an admin user in the request. An admin user is a user with the workflow.admin 
privilege. This created context is as if it was created using the password on behalf of 
the user.

This is useful for environments in which a back-end system acts on workflow tasks 
while users act in their own system. There is no direct interaction with workflow 
services; the system can use the on-behalf-of-user login to get a context for the user.

In Example 32–2, the human workflow context is created for user jcooper.

Note:  Human workflow SOAP clients have been enhanced to work 
with Security Assertion Markup Language (SAML) token-based 
identity propagation when the web service is secured.

Note: Oracle recommends that you only use this feature for system 
operations. This is because you must create an admin user context and 
then query for the human workflow context created on behalf of the 
user. If you instead use identity propagation, the user is already 
authenticated and the client can get IWorkflowContext for the 
already authenticated user. For more information, see Section 32.1.2.3, 
"Obtaining the Workflow Context for a User Previously Authenticated 
by a JAAS Application."



Introduction to Human Workflow Services

32-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 32–2 Human Workflow Context Creation

String adminUser = "...."
String adminPassword = "...."
String realm = "...."

IWorkflowContext adminCtx =
taskQueryService.authenticate(user,password.toCharArray(),realm);

IWorkflowContext behalfOfCtx =
 taskQueryService.authenticateOnBehalfOf(adminCtx,"jcooper");

32.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a 
JAAS Application
If the client wants to obtain the workflow context for a user previously authenticated 
by a JAAS application, you can use identity propagation as shown in Example 32–3.

Example 32–3 Identity Propagation

public IWorkflowContext getWorkflowContextForAuthenticatedUser() throws 
WorkflowException;

This API returns a workflow context for the authenticated user if the client configures 
the identity propagation for the appropriate client type. If the client type is remote, 
Enterprise JavaBeans identity propagation is used with this method. If the client type 
is SOAP, SAML token propagation is used with this method.

32.1.3 Task Service
The task service exposes operations to act on tasks. Table 32–4 describes the operations 
of the task service. Package oracle.bpel.services.workflow.task corresponds 
to the task service.

Table 32–4 Task Service Methods

Method Description

acquireTask Acquire a task.

acquireTasks Acquire a set of tasks.

addAttachment Add an attachment to a task.

addComment Add a comment to a task.

createToDoTask Create a to-do task.

delegateTask Delegate a task to a different user. Both the current assignee and 
the user to whom the task is delegated can view and act on the 
task.

delegateTasks Delegate a list of tasks to a different user. Both the current 
assignee and the user to whom the list of tasks is delegated can 
view and act on the tasks.

deleteTask Perform a logical deletion of a task. The task still exists in the 
database.

deleteTasks Perform a logical deletion of a list of tasks. The tasks still exist 
in the database.

errorTask Cause the task to error. This operation is typically used by the 
error assignee.



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-7

escalateTask Escalate a task. The default escalation is to the manager of the 
current user. This can be overridden using escalation functions.

escalateTasks Escalate tasks in bulk. The default escalation is to the manager 
of the current user. This can be overridden using escalation 
functions.

getApprovers Get the previous approvers of a task.

getFutureParticipants Get the future participants of a task. The future participants are 
returned in the form of a routing slip that contains simple 
participants (participant node and parallel nodes that contain 
routing slips).

getUsersToRequestInfo
ForTask

Get the users from whom a request for information can be 
requested.

initiateTask Initiate a task.

mergeAndUpdateTask Merge and update a task. Use this operation when a partial task 
should be updated. A partial task is one in which not all the 
task attributes are present. In this partial task, only the 
following task attributes are interpreted:

■ Task payload

■ Comments

■ Task state

■ Task outcome 

overrideRoutingSlip Override the routing slip of a task instance with a new routing 
slip. The current task assignment is nullified and the new 
routing slip is interpreted as its task is initiated.

purgeTask Remove a task from the persistent store.

purgeTasks Remove a list of tasks from the persistent store.

pushBackTask Push back a task to the previous approver or original assignees. 
The original assignees do not need to be the approver, as they 
may have reassigned the task, escalated the task, and so on. The 
property PushbackAssignee in the System MBean Browser of 
Oracle Enterprise Manager Fusion Middleware Control Console 
controls whether the task is pushed back to the original 
assignees or the approvers.

1. From the SOA Infrastructure menu, select Administration 
> System MBean Browser.

2. Select Application Defined MBeans > 
oracle.as.soainfra.config > Server: soa_server1 > 
WorkflowConfig > human-workflow. 

3. Click PushbackAssignee to view or change the value.

reassignTask Reassign a task.

reassignTasks Reassign tasks in bulk.

reinitiateTask Reinitiate a task. Reinitiating a task causes a previously 
completed task to be carried forward so that the history, 
comments, and attachments are carried forward in a new task.

releaseTask Release a previously acquired task.

releaseTasks Release a set of previously acquired tasks.

removeAttachment Remove a task attachment.

Table 32–4 (Cont.) Task Service Methods

Method Description



Introduction to Human Workflow Services

32-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

renewTask Renew a task to extend the time it takes to expire.

requestInfoForTask Request information for a task.

requestInfoForTaskWit
hReapproval

Request information for a task with reapproval. For example, 
assume jcooper created a task and jstein and wfaulk 
approved the task in the same order. When the next approver, 
cdickens, requests information with reapproval from 
jcooper, and jcooper submits the information, jstein and 
wfaulk approve the task before it comes to cdickens. If 
cdickens requests information with reapproval from jstein, 
and jstein submits the information, wfaulk approves the 
task before it comes to cdickens.

resumeTask Resume a task. Operations can only be performed by the task 
owners (or users with the BPMWorkflowSuspend privilege) to 
remove the hold on a workflow. After a human workflow is 
resumed, actions can be performed on the task.

resumeTasks Resume a set of tasks.

routeTask Allow a user to route the task in an ad hoc fashion to the next 
user(s) who must review the task. The user can specify to route 
the tasks in serial, parallel, or single assignment. Routing a task 
is permitted only when the human workflow permits ad hoc 
routing of the task.

skipCurrentAssignment Skip the current assignment and move to the next assignment 
or pick the outcome as set by the previous approver if there are 
no more assignees.

submitInfoForTask Submit information for a task. This action is typically 
performed after the user has made the necessary updates to the 
task or has added comments or attachments containing 
additional information.

suspendTask Allow task owners (or users with the BPMWorkflowSuspend 
privilege) to put a human workflow on hold temporarily. In this 
case, task expiration and escalation do not apply until the 
workflow is resumed. No actions are permitted on a task that 
has been suspended (except resume and withdraw).

suspendTasks Suspend a set of tasks. 

updateOutcomeOfTasks Update the outcome of a set of tasks. 

updateTask Update the task.

updateTaskOutcome Update the task outcome.

updateTaskOutcomeAndR
oute

Update the task outcome and route the task. Routing a task 
allows a user to route the task in an ad hoc fashion to the next 
user(s) who must review the task. The user can specify to route 
the tasks in serial, parallel, or single assignment. Routing a task 
is permitted only when the human workflow permits ad hoc 
routing of the task.

withdrawTask The creator of the task can withdraw any pending task if they 
are no longer interested in sending it further through the 
human workflow. A task owner can also withdraw a task on 
behalf of the creator. When a task is withdrawn, the business 
process is called back with the state attribute of the task set to 
Withdrawn.

withdrawTasks Withdraw a set of tasks.

Table 32–4 (Cont.) Task Service Methods

Method Description



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-9

For more information, see the following:

■ Section 32.1.11, "Task Instance Attributes"

■ Oracle Fusion Middleware Workflow Services Java API Reference for Oracle SOA Suite

■ Sample workflow-118-JavaSamples, which demonstrates some APIs

32.1.4 Task Query Service
The task query service queries tasks based on a variety of search criterion such as 
keyword, category, status, business process, attribute values, historical information of 
a task, and so on. Table 32–5 describes the operations of the task query service, 
including how to use the service over SOAP. Package 
oracle.bpel.services.workflow.query corresponds to the task query service.

Table 32–5 Task Query Service Methods

Method Description

authenticate Authenticates a user with the identity authentication service 
and passes back a valid IWorkflowContext object. 

authenticateOnBehalfOf Optionally makes authentication on behalf of another user.

countTasks Counts the number of tasks that match the specified query 
criteria.

countViewTasks Counts the number of tasks that match the query criteria of the 
specified view.

createContext Creates a valid IWorkflowContext object from a 
preauthenticated HTTP request.

doesTaskExist Checks to see if any existing tasks match the specified query 
criteria.

doesViewTaskExist Checks to see if any tasks exist match the query criteria of the 
specified view.

getWorkflowContext Gets a human workflow context with the specified context 
token.

destroyWorkflowContext Cleans up a human workflow context that is no longer needed. 
This method is typically used when a user logs out.

getTaskDetailsById Gets the details of a specific task from the task's taskId 
property.

getTaskDetailsByNumber Gets the details of a specific task from the task's task number 
property.

getTaskHistory Gets a list of the task versions for the specified task ID.

getTaskSequence Gets the task sequence tree of a task whose ID is a task ID, for 
those type of sequences.

getTaskVersionDetails Gets the specific task version details for the specified task ID 
and version number.

getWorkflowContextForA
uthenticatedUser

Gets the IWorkflowContext object for a user authenticated 
by a JAAS application. Use this either with Enterprise 
JavaBeans or SAML token identity propagation.

queryAggregatedTasks Executes the specified query, and aggregates a count of the 
tasks returned by the query, grouped by the specified column.

queryTaskErrors Returns a list of task error objects matching the specified 
predicate.



Introduction to Human Workflow Services

32-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see the following:

■ Section 32.1.11, "Task Instance Attributes"

■ Oracle Fusion Middleware Workflow Services Java API Reference for Oracle SOA Suite in 
the documentation library

queryTasks Returns a list of tasks that match the specified filter conditions. 
Tasks are listed according to the ordering condition specified (if 
any). The entire list of tasks matching the criteria can be 
returned or clients can execute paging queries in which only a 
specified number of tasks in the list are retrieved. The filter 
conditions are as follows:

■ assignmentFilter: Filters tasks according to whom the 
task is assigned, or who created the task. Possible values 
for the assignment filter are as follows:

ADMIN: No filtering; returns all tasks regardless of 
assignment or creator.

ALL: No filtering; returns all tasks regardless of 
assignment or creator.

CREATOR: Returns tasks in which the context user is the 
creator.

GROUP: Returns tasks that are assigned to a group, 
application role, or list of users of which the context user is 
a member.

MY: Returns tasks that are assigned exclusively to the 
context user.

MY_AND_GROUP: Returns tasks that are assigned 
exclusively to the context user, or to a group, application 
role, or list of users of which the context user is a member.

OWNER: Returns tasks in which the context user is the task 
owner.

PREVIOUS: Returns tasks the context user previously 
updated.

REPORTEES: Returns tasks that are assigned to reportees 
of the context user.

REVIEWER: Returns tasks for which the context user is a 
reviewer.

■ keywords: An optional search string. This only returns 
tasks in which the string is contained in the task title, task 
identification key, or one of the task text mapped attributes 
(formerly referred to as flex fields).

■ predicate: An optional 
oracle.bpel.services.workflow.repos.Predica
te object that allows clients to specify complex, SQL-like 
query predicates.

queryViewAggregatedTas
ks

Executes the query as defined in the specified view, and 
aggregates the selected tasks according to the chart property 
defined in the view.

queryViewTasks Returns a list of tasks according to the criteria in the specified 
view. The entire list or paged list of tasks can be returned. 
Clients can specify additional filter and ordering criteria to 
those in the view.

Table 32–5 (Cont.) Task Query Service Methods

Method Description



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-11

■ Sample workflow-118-JavaSamples, which demonstrates some APIs

32.1.5 Identity Service
The identity service is a thin web service layer on top of the Oracle WebLogic Server 
security infrastructure, namely Oracle Identity Management and Oracle Platform 
Security Services (OPSS), or any custom user repository. The identity service enables 
authentication of users and the lookup of user properties, roles, group memberships, 
and privileges. Oracle Identity Management is the sole identity service provider for 
Oracle WebLogic Server. Oracle Identity Management handles all storage and retrieval 
of users and roles for various repositories, including XML, LDAP, and so on. More 
specifically, Oracle Identity Management provides the following features:

■ All providers are supported through Oracle Identity Management. The OracleAS 
JAAS Provider (JAZN) and LDAP providers are no longer supported. The custom 
provider is deprecated and supported only for backward compatibility. All 
customization of providers is performed through the custom provider to Oracle 
Identity Management, through configuring Oracle Virtual Directory (OVD) as an 
LDAP provider to Oracle Identity Management, or through both. OVD aggregates 
data across various repositories.

■ The OPSS layer is used, which includes the following:

– Identity store

– Policy store

– Credential store

– Framework

For more information, see Oracle Fusion Middleware Security Guide. All security 
configuration is done through the jps-config.xml file.

■ All privileges are validated against permissions, as compared to actions in 
previous releases.

■ The following set of application roles are defined. These roles are automatically 
defined in the SOA Infrastructure application of the OPSS policy store.

– SOAAdmin: Grant this role to users who must perform administrative actions 
on any SOA module. This role is also granted the BPMWorkflowAdmin and 
B2BAdmin roles.

– BPMWorkflowAdmin: Grant this role to users who must perform any 
workflow administrative action. This includes actions such as searching and 
acting on any task in the system, creating and modifying user and group rules, 
performing application customization, and so on. This role is granted the 
BPMWorkflowCustomize role and the following permissions:

* workflow.mapping.protectedFlexField

* workflow.admin.evidenceStore

* workflow.admin

– BPMWorkflowCustomize: Grant this role to business users who must 
perform mapped attributes (formally flex field) mapping to public mapped 
attributes. This role is also granted the 
workflow.mapping.publicFlexField permission.

■ The following workflow permissions are defined:



Introduction to Human Workflow Services

32-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– workflow.admin: Controls who can perform administrative actions related 
to tasks, user and group rules, and customizations.

– workflow.admin.evidenceStore: Controls who can view and search 
evidence records related to digitally-signed tasks (tasks that require a 
signature with the use of digital certificates).

– workflow.mapping.publicFlexField: Controls who can perform 
mapping of task payload attributes to public mapped attributes.

– workflow.mapping.protectedFlexField: Controls who can perform 
mapping of task payload attributes to protected mapped attributes.

For more information, see the following:

■ Oracle Fusion Middleware Security Guide for details about OPSS

■ Oracle Fusion Middleware Application Developer's Guide for Oracle Identity 
Management for details about Oracle Identity Management

■ Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory for details 
about OVD

32.1.5.1 Identity Service Providers
Oracle Identity Management is the only supported provider for release 11g, as shown 
in Figure 32–1. 

Note: You cannot specify multiple authentication providers for 
Oracle SOA Suite. This is because OPSS does not support multiple 
providers. The provider to use for human workflow authentication 
must be the first one listed in the order of authentication providers for 
Oracle SOA Suite.



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-13

Figure 32–1 Identity Service Providers

32.1.5.1.1 Custom User Repository Plug-ins  Starting with release 11g, custom provider 
plug-ins in the identity service are not supported. All identity customizations are now 
done in the identity store. Oracle Fusion Middleware supports providers that enable 
the User and Role API to interact with custom identity stores. For more information, 
visit the following URL:

http://www.oracle.com/technology/products/id_mgmt/opss/index.html

32.1.6 Task Metadata Service
The task metadata service exposes operations to retrieve metadata information related 
to a task. Table 32–6 describes these methods. Package 
oracle.bpel.services.workflow.metadata corresponds to the task metadata 
service.

Table 32–6 Task Metadata Service Methods

Method Description

getTaskMetadataByName
space

Gets the TaskMetadata object that describes the human task 
service component with the specified task definition namespace 
and composite version.

getOutcomes Gets the permitted outcomes of a task. The outcomes are 
returned with their display values.

Oracle BPEL
Process Manager

Identity Service

11g IDM

Provider Plug-ins

XML

XML

Database

Repository

Third Party
LDAP

Oracle
Internet

Directory
Database

LDAP
Oracle
Internet

Directory

DatabaseDatabase



Introduction to Human Workflow Services

32-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see Oracle Fusion Middleware Workflow Services Java API Reference 
for Oracle SOA Suite.

32.1.7 User Metadata Service
The user metadata service provides methods for managing metadata specific to 
individual users and groups. It is used for getting and setting user worklist 
preferences, managing user custom views, and managing human workflow rules for 
users and groups.

For most methods in the user metadata service, the authenticated user can query and 
update their own user metadata. However, they cannot update metadata belonging to 
other users. 

In the case of group metadata (for example, human workflow rules for groups), only a 
user designated as an owner of a group (or a user with the workflow.admin 
privilege) can query and update the metadata for that group. However, a user with the 
workflow.admin privilege can query and update metadata for any user or group.

Table 32–7 describes the methods in the user metadata service. Package 
oracle.bpel.services.workflow.user corresponds to the user metadata 
service.

getResourceBundleInfo Gets the resource bundle information of the task. The resource 
bundle information contains the location and the name of the 
bundle.

getRestrictedActions Gets the actions that are restricted for a particular task.

getTaskAttributesForT
askDefinitions

Gets a list of TaskAttribute objects that describe standard 
task attributes and mapped attribute columns that are common 
for the specified task definitions.

getTaskAttributesForT
askNamespaces

Gets a list of TaskAttribute objects that describe standard 
task attributes and mapped attribute columns that are common 
for task definitions identified by the specified namespaces.

getTaskAttributes Gets the task message attributes.

getTaskAttributesForT
askDefinition

Gets the message attributes for a particular task definition.

getTaskDefinition Gets the task definition associated with the task.

getTaskDefinitionById Gets the task definition by the task definition ID.

getTaskDefinitionOutc
ome

Gets the outcomes given the task definition ID.

getTaskDisplay Gets the task display for a task.

getTaskVisibilityRule
s

Gets the task visibility rules.

getTaskDisplayRegion Gets the task display region for a task.

getVersionTrackedAttr
s

Gets the task attributes that when changed cause a task version 
creation.

listTaskMetadata Lists the task definitions in the system.

Table 32–6 (Cont.) Task Metadata Service Methods

Method Description



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-15

Table 32–7 User Metadata Service Methods

Method Description

createRule Creates a new rule.

decreaseRulePriorit
y

Decreases the priority of a rule by one. This method does nothing if 
this rule has the lowest priority.

deleteRule Deletes a rule.

getVacationInfo Retrieves the date range (if any) during which a user is unavailable 
for the assignment of tasks.

getRuleDetail Gets the details for a particular human workflow rule.

getRuleList Retrieves a list of rules for a particular user or group.

updateRule Updates an existing rule.

increaseRulePriorit
y

Increases the priority of a rule by one. Rules for a user or group are 
maintained in an ordered list of priority. Higher priority rules 
(those closer to the head of the list) are executed before rules with 
lower priority. This method does nothing if this rule has the highest 
priority.

getUserTaskViewList Gets a list of the user task views that the user owns.

getGrantedTaskViewL
ist

Gets a list of user task views that have been granted to the user by 
other users. Users can use granted views for querying lists of tasks, 
but they cannot update the view definition.

getStandardTaskView
List

Gets a list of standard task views that ship with the human 
workflow service, and are available to all users.

getUserTaskViewDeta
ils

Gets the details for a single view.

createUserTaskView Creates a new user task view.

updateUserTaskView Updates an existing user task view.

deleteUserTaskView Deletes a user task view.

updateGrantedTaskVi
ew

Updates details of a view grant made to this user by another user. 
Updates are limited to hiding or unhiding the view grant (hiding a 
view means that the view is not listed in the main inbox page of 
Oracle BPM Worklist), and changing the name and description that 
the granted user sees for the view.

getUserPreferences Gets a list of user preferences for the user. User preferences are 
simple name-value pairs of strings. User preferences are private to 
each user (but can still be queried and updated by a user with the 
workflow.admin privilege).

setUserPreferences Sets the user preference values for the user. Any preferences that 
were previously stored and are not in the new list of user 
preferences are deleted.

getPublicPreference
s

Gets a list of public preferences for the user. Public preferences are 
similar to user preferences, except that any user can query them. 
However, only the user that owns the preferences, or a user with 
the workflow.admin privilege, can update them. Public 
preferences are useful for storing application-wide preferences 
(preferences can be stored under a dummy user name, such as 
MyAppPrefs).

setPublicPreference
s

Sets the public preferences for the user.



Introduction to Human Workflow Services

32-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see the following:

■ Chapter 30, "Using Oracle BPM Worklist" for details about the rule configuration 
and user preference pages

■ Sample workflow-118-JavaSamples, which demonstrates some APIs

■ Oracle Fusion Middleware Workflow Services Java API Reference for Oracle SOA Suite

32.1.8 Task Report Service
The task report service executes a report and receives the results. Table 32–8 describes 
the method. Package oracle.bpel.services.workflow.report corresponds to 
the task report service. The standard reports shown in Table 32–8 are available as part 
of installation.

32.1.9 Runtime Config Service
The runtime config service provides methods for managing metadata used in the task 
service runtime environment. It principally supports the management of task payload 
mapped attribute mappings and the URIs used for displaying task details.

The task object used by the task service contains many mapped attributes, which can 
be populated with information from the task payload. This allows the task payload 
information to be queried, displayed in task listings, and used in human workflow 
rules.

The runtime config service provides methods for querying and updating the URI used 
for displaying the task details of instances of a particular task definition in a client 
application. For any given task definition, multiple display URIs can be supported, 
with different URIs being used for different applications. The method 

setVacationInfo Sets a date range over which the user is unavailable for the 
assignment of tasks. (Dynamic assignment functions do not assign 
tasks to a user that is on vacation.)

getStandardTaskView
Details

Gets the full details for a particular standard view, identified by its 
viewId.

Table 32–8 Task Report Service

Report Description

Unattended tasks report Provides an analysis of tasks assigned to users' groups or 
reportees' groups that require attention because they have not 
yet been acquired.

Tasks priority report Provides an analysis of the number of tasks by priorities 
assigned to a user, reportees, or their groups.

Tasks cycle time report Provides an analysis of time taken to complete tasks from 
assignment to completion based on users' groups or reportees' 
groups.

Tasks productivity report Provides an analysis of tasks assigned and tasks completed in a 
given time period for a user, reportees, or their groups.

Tasks time distribution 
report

Provides an analysis of time taken to complete their part of the 
tasks for a given user, user's groups, or reportees in the given 
time period.

Table 32–7 (Cont.) User Metadata Service Methods

Method Description



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-17

getTaskDisplayInfo can query the URIs for a particular task definition. The 
method setTaskDisplayInfo can define new URIs or update existing ones. Only 
users with the workflow.admin privilege can call setTaskDisplayInfo, but any 
authenticated user can call getTaskDisplayInfo.

The runtime config service allows administrators to create mappings between simple 
task payload attributes and these mapped attributes. 

Only a user with the workflow.mapping.publicFlexField or 
workflow.mapping.protectedFlexField privilege can make updates to payload 
mappings for public mapped attributes. Only a user with the 
workflow.mapping.protectedFlexField privilege can make updates to payload 
mappings for protected mapped attributes. Any authenticated user can use the query 
methods in this service.

An administrator can create attribute labels for the various mapped attributes. These 
attribute labels provide a meaningful label for the attribute (for example, a label 
Location may be created for the mapped attribute TextAttribute1). A given 
mapped attribute may have multiple labels associated with it. This attribute label is 
what is displayed to users when displaying lists of attributes for a specific task in 
Oracle BPM Worklist. The attribute labels for a specific task type can be determined by 
calling the getTaskAttributesForTaskDefinition method on the task metadata 
service.

When defining attribute labels, the following fields are automatically populated by the 
service. You do not need to specify values for these attributes when creating or 
updating attribute labels:

■ Id

■ CreatedDate

■ WorkflowType

■ Active

Valid values for the task attribute field for public mapped attributes are as follows:

■ TextAttribute1 through TextAttribute20

■ FormAttribute1 through FormAttribute10

■ UrlAttribute1 through UrlAttribute10

■ DateAttribute1 through DateAttribute10

■ NumberAttribute1 through NumberAttribute10

Mappings can then be created between task payload fields and the attribute labels. For 
example, the payload field customerLocation can be mapped to the attribute label 
Location. Different task types can share the same attribute label. This allows payload 
attributes from different task types that have the same semantic meaning to be 
mapped to the same attribute label.

The runtime config service also provides the following:

■ Methods for querying the dynamic assignment functions supported by the server

Note: Only payload fields that are simple XML types can be 
mapped.



Introduction to Human Workflow Services

32-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Methods for maintaining the task display URLs used for displaying the task 
details in Oracle BPM Worklist and other applications

■ Methods for getting the server HTTP and JNDI URLs

Table 32–9 describes the methods in the runtime config service. Package 
oracle.bpel.services.workflow.runtimeconfig corresponds to the runtime 
config service. 

For more information, see the following:

■ Section 32.3.1, "Dynamic Assignment and Task Escalation Functions" for 
additional details

■ Chapter 30, "Using Oracle BPM Worklist" for details about mapped attribute 
mappings

■ Sample workflow-118-JavaSamples, which demonstrates some APIs.

■ Oracle Fusion Middleware Workflow Services Java API Reference for Oracle SOA Suite

32.1.9.1 Internationalization of Attribute Labels
Attribute labels provide a method of attaching a meaningful label to a task mapped 
attribute. It can be desirable to present attribute labels that are translated into the 
appropriate language for the locale of the user.

To use a custom resource bundle, place it at the location identified by the workflow 
configuration parameter workflowCustomClasspathURL (which can be a file or 
HTTP path).

Table 32–9 Runtime Config Service

Method Description

CreateAttributeLabel Creates a new attribute label for a particular task mapped 
attribute.

createPayloadMapping Creates a new mapping between an attribute label and a task 
payload field.

DeleteAttributeLabel Deletes an existing attribute label.

deletePayloadMapping Deletes an existing payload mapping.

getAttributeLabelUsag
es

Gets a list of attribute labels (either all attribute labels or labels 
for a specific type of attribute) for which mapping (if any) the 
labels are currently used.

getGroupDynamicAssign
mentFunctions

Returns a list of the dynamic assignment functions that can 
select a group that are implemented on this server.

getTaskDisplayInfo Retrieves information relating to the URIs used for displaying 
task instances of a specific task definition.

getTaskStatus Gets the status of a task instance corresponding to a particular 
task definition and composite instance.

getUserDynamicAssignm
entFunctions

Returns a list of the dynamic assignment functions that can 
select a user that are implemented on this server.

GetWorkflowPayloadMap
pings

Gets a list of all the mapped attribute mappings for a particular 
human workflow definition.

setTaskDisplayInfo Sets information relating to the URIs to be used for displaying 
task instances of a specific task definition.

updateAttributeLabel Updates an existing attribute label.



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-19

This can be set in either of two places in Oracle Enterprise Manager Fusion 
Middleware Control Console:

■ System MBean Browser page

■ Workflow Task Service Properties page

For more information, see the workflow-110-workflowCustomizations sample, which 
describes how to use this parameter. Visit the following URL for details:

https://soasamples.samplecode.oracle.com/

Entries for mapped attribute labels must be of the form:

FLEX_LABEL.[label name]=Label Display Name

For instance, the entry for a label named Location is:

FLEX_LABEL.Location=Location

Note that adding entries to these files for attribute labels is optional. If no entry is 
present in the file, the name of the attribute label as specified using the API is used 
instead.

32.1.10 Evidence Store Service and Digital Signatures
The evidence store service is used for digital signature storage and nonrepudiation of 
digitally-signed human workflows. A digital signature is an electronic signature that 
authenticates the identity of a message sender or document signer. This ensures that 
the original content of the message or document sent is unchanged. Digital signatures 
are transportable, cannot be imitated by others, and are automatically time-stamped. 
The ability to ensure that the original signed message arrived means that the sender 
cannot repudiate it later. Digital signatures ensure that a human workflow document:

■ Is authentic

■ Has not been forged by another entity

■ Has not been altered

■ Cannot be repudiated by the sender

A cryptographically-based digital signature is created when a public key algorithm 
signs a sender's message with a sender's private key. 

During design time, signatures are enabled for the task. During runtime in Oracle 
BPM Worklist, when a user approves or rejects the task, the web browser:

■ Asks the user to choose the private key to use for signing.

■ Generates a digital signature using the private key and task content provided by 
Oracle BPM Worklist.

Figure 32–2 provides an example.



Introduction to Human Workflow Services

32-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 32–2 Digital Signature and Certificate

Notes:

■ The certificate refers to a Personal Information Exchange Syntax 
Standard (PFX) file that includes a certificate and a private key, 
and is protected by a simple text password. PFX specifies a 
portable format for storing or transporting a user's private keys, 
certificates, miscellaneous secrets, and so on.

■ The possession of a private key that corresponds to the public key 
of a certificate is sufficient to sign the data, because the signature 
is verifiable through the public key in the certificate. However, no 
attempt is made to correlate the name of a user of a certificate 
with the person updating it. For example, user jstein can sign 
using the private key of user cdickens if jstein has that 
private key. 

Browser

Private Key

Certificate

Signature=

Task
Content+

upload

2
Create Evidence: User creates evidence 
by using their private key to digitally sign 
a task update 

Worklist Application Admin Screen

Stored
Certificate

Task Content=

Stored
Signature+

4
Nonrepudiation: Prove that the user 
generated the signature by creating 
the content from the user certificate 
and signature

1
Upload Certificate: One time uploading 
of each user's certificate and private key 
(user action) 

CA, CRL

3
Validate: Human workflow validates the 
certificate used for evidence creation with 
the Certificate Revocation List (CRL) 
issued by the Certifying Authorities (CAs)

Human
Workflow



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-21

The following digital signature features are supported:

■ PKCS7 signatures based on X.509 certificates

■ Browser-based, digitally-signed content without attachments

32.1.10.1 Prerequisites
Prerequisites for using digital signatures and certificates are as follows:

■ Users of the Oracle BPM Worklist must have certificates

■ The administrator must specify the CAs and corresponding CRL URL whose 
certificates must be trusted. Users are expected to upload only certificates issued 
by these CAs. This is done by editing the System MBean Browser in Oracle 
Enterprise Manager Fusion Middleware Control Console.

1. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System Mbean Browser displays on the right side of the page.

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server: 
server_name > WorkflowConfig > human-workflow.

5. Click the Operations tab on the right side of the page.

6. Click addTrustedCA.

7. Provide values for caName and caURL. You must do this for each certificate in 
the trust chain. For example, values provided for each invocation may look as 
shown in Table 32–10.

8. Click Invoke.

32.1.10.2 Interfaces and Methods
Table 32–11 through Table 32–14 describe the methods in the evidence store service. 
Package oracle.bpel.services.security.evidence corresponds to the 
evidence service.

Table 32–10 caName and caURL Values

caName caURL

CN = Intg, OU 
=AppServ, O =Oracle, 
C = US

http://www.oracle.com/Integration%20CRL%20Data.
crl

CN = Intg1, OU 
=AppServ, O =Oracle, 
C = US

http://www.oracleindia.in.com/Integration%20In.
crl

CN = Intg2, OU 
=AppServ, O =Oracle, 
C = US

http://www.oracle.us.com/integration.crl

Table 32–11 ITaskEvidenceService Interface

Method Description

createEvidence Creates evidence and stores it in the repository for 
nonrepudiation.



Introduction to Human Workflow Services

32-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

getEvidence Gets a list of evidence matching the given criteria. The result 
also depends on the privileges associated with the user querying 
the service. If the user has been granted the 
workflow.admin.evidenceStore permission (points to a 
location detailing how to grant the permission), all matching 
evidence is visible. Otherwise, only that evidence created by the 
user is visible.

uploadCertificate Uploads certificates to be used later for signature verification. 
This is a prerequisite for creating evidence using a given 
certificate. A user can only upload their certificates.

updateEvidence Updates the CRL verification part of the status. This includes 
verified time, status, and error messages, if any.

validateEvidenceSigna
ture

Validates the evidence signature. This essentially performs a 
nonrepudiation check on the evidence. A value of true is 
returned if the signature is verified. Otherwise, false is 
returned.

Table 32–12 Evidence Interface

Method Description

getCertificate Gets the certificate used to sign this evidence.

getCreateDate Gets the creation date of the evidence.

getErrorMessage Gets the error message associated with the CRL validation.

getEvidenceId Gets the unique identifier associated with the evidence.

getPlainText Gets the content that was signed as part of this evidence.

getPolicy Gets the signature policy of the evidence. This is either 
PASSWORD or CERTIFICATE.

getSignature Gets the signature of this evidence.

getSignedDate Gets the date on which the signature was created.

getStatus Gets the CRL validation status. This can be one of the following:

■ AVAILABLE: The evidence is available for CRL validation.

■ FAILURE: CRL validation failed.

■ SUCCESS: CRL validation succeeded.

■ UNAVAILABLE: The CRL data could not be fetched.

■ WAIT: CRL validation is in progress.

getTaskId Gets the unique identifier of the task with which this evidence is 
associated.

getTaskNumber Gets the task number of the task with which this evidence is 
associated.

getTaskPriority Gets the task priority of the task with which this evidence is 
associated.

getTaskStatus Gets the task status of the task with which this evidence is 
associated.

getTaskSubStatus Gets the task substatus of the task with which this evidence is 
associated.

getTaskTitle Gets the title of the task with which this evidence is associated.

Table 32–11 (Cont.) ITaskEvidenceService Interface

Method Description



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-23

For more information, see the following:

■ Section 28.3.12, "How to Specify a Workflow Digital Signature Policy" for details 
about specifying digital signatures and digital certificates in the Human Task 
Editor

■ Chapter 29, "Designing Task Forms for Human Tasks" for details about digitally 
signing a task action in the Oracle BPM Worklist

32.1.11 Task Instance Attributes
A task is work that must be done by a user. When you create a task, you assign 
humans to participate in and act upon the task. Table 32–15 describes the task 
attributes that are commonly used and interpreted by applications.

getTaskVersion Gets the version of the task with which this evidence is 
associated.

getVerifiedDate Gets the date on which the CRL validation of the certificate used 
was performed.

getWorkflowType Gets the workflow type of the task with which this evidence is 
associated. This is typically BPELWF.

Table 32–13 Certificate Interface

Method Description

getCA Gets the certificate issuer’s distinguished name (DN).

getCertificate Gets the certificate object that is abstracted by the interface.

getID Gets the certificate’s serial number.

getIdentityContext Gets the identity context with which the uploader of this 
certificate is associated.

getUserName Gets the user name with whom this certificate is associated.

isValid Returns true if the certificate is still valid.

Table 32–14 Policy Type and Workflow Type Interface

Method Description

fromValue Constructs an object from the string representation.

value Returns the string representation of this object.

Table 32–15 Task Attributes

Task Attribute Name Description

task/applicationContext The application with which any application roles associated 
with this task (assignees, owners, and so on) belong.

task/category An optional category of the task.

task/creator The name of the creator of this task.

task/dueDate The due date for the task. This is used on to-do tasks.

Table 32–12 (Cont.) Evidence Interface

Method Description



Introduction to Human Workflow Services

32-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 32–16 lists the attributes that capture process metadata information.

task/identificationKey An optional, custom, unique identifier for the task. This can 
be set as an additional unique identifier to the standard task 
ID and task number. This key can retrieve a task based on 
business object identifiers for which the task is created.

task/identityContext The identity realm under which the users and groups are 
seeded. In a single realm environment, this defaults to the 
default realm.

task/ownerGroup The group (if any) that owns this task instance. Task owners 
can be application roles, users, or groups. If the owner of the 
task is a group, this field is set.

task/ownerRole The application role (if any) that owns this task instance. Task 
owners can be application roles, users, or groups. If the owner 
of the task is an application role, this field is set.

task/ownerUser The user (if any) that owns this task instance. Task owners can 
be application roles, users, or groups. If the owner of the task 
is a user, this field is set.

task/payload The task payload that is captured as XML.

task/percentageComplete The percentage of the task completed. This is used on to-do 
tasks.

task/priority An integer number that defines the priority of this task. A 
lower number indicates a higher priority. The numbers 1 to 5 
are typically used.

task/startDate The start date for the task. This is used on to-do tasks.

task/subCategory An optional subcategory of the task.

task/taskDefinitionId The task definition ID that binds the task to the task 
metadata. At task initiation time, this can be either the 
compositeDN/componentName string or the 
targetNamespace in the .task file. If the later is used, the 
active version matching the targetNamespace is used.

task/taskDisplayUrl The URL to use to display the details for this task.

task/title The title of the task.

Table 32–16 Attributes Capturing Process Metadata Information

Attribute Description

task/processInfo/domain The domain to which the composite that contains the task 
component that defines this task instance belongs.

task/sca/applicationName The application that is deployed.

task/sca/componentName The name of the task component that defines this task 
instance.

task/sca/compositeDN A unique name for the particular deployment of the 
composite that contains the task component that defines 
this task instance.

task/sca/compositeInstanc
eId

The composite instance ID.

task/sca/compositeName The name of the composite that contains the task 
component that defines this task instance.

Table 32–15 (Cont.) Task Attributes

Task Attribute Name Description



Introduction to Human Workflow Services

Introduction to Human Workflow Services 32-25

Table 32–17 lists the attachment-related attributes.

Table 32–18 lists the comment-related attributes.

Table 32–19 lists the attributes manipulated by the workflow services system.

task/sca/compositeVersion The version of the composite that contains the task 
component that defines this task instance.

Table 32–17 Attachment-related attributes

Attribute Description

task/attachment/conte
nt

The attachment content.

task/attachment/mimeT
ype

The Multipurpose Internet Mail Extension (MIME) type of the 
attachment.

task/attachment/name The name of the attachment.

task/attachment/updat
edBy

The user who updated the attachment.

task/attachment/updat
edDate

The date on which the attachment was updated.

task/attachment/URI The URI if the attachment is URI-based.

Table 32–18 Comment-related Attributes

Attribute Description

task/userComment/comment The user comment.

task/userComment/updatedBy The user who added the comment.

task/userComment/updatedDate The date on which the comment was added.

Table 32–19 Attributes Manipulated by the Workflow Services System

Attribute Description

task/systemAttributes
/acquiredBy

If a task is assigned to a group, application role, or to multiple 
users, and then claimed by a user, this field is set to the name of 
the user who claimed the task.

task/systemAttributes
/approvers 

The IDs of users who performed custom actions on the task.

task/systemAttributes
/assignedDate 

The date that this task was assigned.

task/systemAttributes
/assignees 

The current task assignees (can be users, groups, or application 
roles).

task/systemAttributes
/createdDate

The date the task instance was created.

task/systemAttributes
/customActions

The custom actions that can be performed on the task.

task/systemAttributes
/endDate

The end date for the task. This is used on to-do tasks.

Table 32–16 (Cont.) Attributes Capturing Process Metadata Information

Attribute Description



Introduction to Human Workflow Services

32-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

task/systemAttributes
/expirationDate

The date on which the task instance expires.

task/systemAttributes
/fromUser

The user who previously acted on the task.

task/systemAttributes
/hasSubTasks

If true, there are subtasks.

task/systemAttributes
/isGroup

If true, the task is assigned to a group.

task/systemAttributes
/originalAssigneeUser

If a user delegates a task to another user, this field is populated 
with the name of the user who delegated the task.

task/systemAttributes
/outcome

The outcome of the task (for example, approved or rejected). 
This is only set on completed task instances.

task/systemAttributes
/parentTaskId

This is only set on reinitiated tasks (the task ID of the previous 
task that is being reinitiated).

task/systemAttributes
/parentTaskVersion

This only set on a subtask. This refers to the version of the parent 
task.

task/systemAttributes
/participantName

The logical name of the participant as modeled from Oracle 
JDeveloper.

task/systemAttributes
/reviewers

The reviewers of the task. This can be a user, group, or 
application role.

task/systemAttributes
/rootTaskId

The ID of the root task. This is the same as the task ID for the 
root task.

task/systemAttributes
/stage

The stage name that is being executed.

task/systemAttributes
/state 

The current state of the task instance.

task/systemAttributes
/substate

The current substate of the task.

task/systemAttributes
/subTaskGroupInstance
Id

A unique ID that is set on a subtask. This same ID is set on the 
parent task's taskGroupInstanceId. This is required to 
identify which subtasks were created at which time.

task/systemAttributes
/systemActions

The system actions (such as reassign, escalate, and so on) that 
can be performed on a task.

task/systemAttributes
/taskDefinitionName

The name of the task component that defines this task instance.

task/systemAttributes
/taskGroupId

The ID of the immediate parent task. This only sets a subtask. 

task/systemAttributes
/taskGroupInstanceId

A unique ID that is set on the parent task. This same ID is set on 
the subtask's subTaskGroupInstanceId. This is required to 
identify which subtasks were created at which time.

task/systemAttributes
/taskId

The unique ID of the task.

task/systemAttributes
/taskNamespace 

A namespace that uniquely defines all versions of the task 
component that defines this task instance. Different versions of 
the same task component can have the same namespace, but no 
two task components can have the same namespace.

task/systemAttributes
/taskNumber

An integer number that uniquely identifies this task instance.

Table 32–19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description



Notifications from Human Workflow

Introduction to Human Workflow Services 32-27

Table 32–20 lists the mapped attributes.

32.2 Notifications from Human Workflow
Notifications are sent to alert users of changes to the state of a task. Notifications can 
be sent through any of the following channels: email, telephone voice message, instant 
messaging (IM), or short message service (SMS). Notifications can be sent from a 
human task in a BPEL process or directly from a BPEL process. 

In releases before 11g, email notifications were sent through the human workflow 
email notification layer. Voice and SMS notifications were sent through Oracle’s hosted 
notification service. IM notifications were not supported.

Starting with release 11g, the human workflow email notification layer works with 
Oracle User Messaging Service to alert users to changes in the state of a task. The 
Oracle User Messaging Service exposes operations that can be invoked from the BPEL 
process or human task to send notifications through email, voice, IM, or SMS channels.

The Oracle User Messaging Service supports features such as:

■ Sending and receiving messages and statuses

■ Sending notifications to a specific address on a particular channel

■ Sending notifications to a set of failover addresses

On application servers other than Oracle Fusion Middleware, the human workflow 
email notification layer can be used for email notifications.

For more information about configuring the Oracle User Messaging Service, see the 
following:

■ Chapter 17, "Using the Notification Service"

■ Part XI, "Using Oracle User Messaging Service"

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite for instructions on configuring notification service delivery channels in 
Oracle Enterprise Manager Fusion Middleware Control Console

task/systemAttributes
/updatedBy 

The user who last updated the task.

task/systemAttributes
/updatedDate

The date this instance was last updated.

task/systemAttributes
/version

The version of the task.

task/systemAttributes
/versionReason

The reason the version was created.

task/systemAttributes
/workflowPattern

The pattern that is being executed (for example, parallel, serial, 
FYI, or single).

Table 32–20 Mapped Attributes

Attribute Description

task/systemMessageAtt
ributes/*

The mapped attributes.

Table 32–19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description



Notifications from Human Workflow

32-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

32.2.1 Contents of Notification
Each email notification can contain the following parts:

■ The notification message

■ The HTML content from Oracle BPM Worklist: 

This is a read-only view of Oracle BPM Worklist on the task. For information on 
how you can configure email notifications to include the content from Oracle BPM 
Worklist, see Section 29.7, "Creating an Email Notification." 

■ Task attachments: 

For notifications that include task attachments.

■ Actionable links

Notifications through SMS, IM, and voice contain only the notification message.

The notification message is an XPath expression that can contain static text and 
dynamic values. In creating the messages, only the task BPEL variable is available for 
dynamic values. This restriction is because the messages are evaluated outside the 
context of the BPEL process. The payload in the task variable is also strongly typed to 
contain the type of the payload for XPath tree browsing. The XPath extension function 
hwf:getNotificationProperty(propertyName) is available to get properties 
for a particular notification. The function evaluates to corresponding values for each 
notification. The propertyName can be one of the following values:

■ recipient

The recipient of the notification

■ recipientDisplay

The display name of the recipient

■ taskAssignees

The task assignees

■ taskAssigneesDisplay

The display names of the task assignees

■ locale

The locale of the recipient

■ taskId

The ID of the task for which the notification is meant

■ taskNumber

The number of the task for which the notification is meant

■ appLink

The HTML link to the Oracle BPM Worklist task details page

Example 32–4 demonstrates the use of hwf:getNotificationProperty and 
hwf:getTaskResourceBundle: 

Example 32–4 Use of hwf:getNotificationProperty and hwf:getTaskResourceBundle

concat('Dear ', hwf:getNotificationProperty('recipientDisplay'), ' Task ',
/task:task/task:systemAttributes/task:taskNumber, ' is assigned to you. ',
hwf:getTaskResourceBundleString(/task:task/task:systemAttributes/task:taskId,



Notifications from Human Workflow

Introduction to Human Workflow Services 32-29

'CONGRATULATIONS', hwf:getNotificationProperty('locale')))

This results in a message similar to the following:

Dear Cooper, James Task 1111 is assigned to you. Congratulations

32.2.2 Error Message Support
The human workflow email notification layer is automatically configured to warn an 
administrator about error occurrences in which intervention is required. Error 
notifications and error response messages are persisted.

You can view messages in Oracle Enterprise Manager Fusion Middleware Control 
Console.

For more information about viewing messages, see Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

32.2.3 Reliability Support
The human workflow email notification layer works with Oracle User Messaging 
Service to provide the following reliability support:

■ Messages are not lost:

– If the human workflow email notification layer fails after acknowledging 
receipt of a message from the human workflow.

– If the human workflow email notification layer and Oracle User Messaging 
Service both fail before the Oracle User Messaging Service acknowledges 
receipt of a message from the human workflow.

– If the Oracle User Messaging Service is down. Message delivery is retried until 
successful.

– If a notification channel is down.

■ Notifications that cannot be delivered are retried three times and the address is 
marked as invalid. The address is also added to the bad address list. If needed, 
you can manually remove these addresses from the bad address list in Oracle 
Enterprise Manager Fusion Middleware Control Console. Outgoing notifications 
are not resent until the address is corrected. To guard against any incorrect 
identification, the address is marked as invalid only for about an hour. No new 
notifications are sent in this time. 

■ Incoming notification responses from an address that has been identified as a 
spam source are ignored.

■ Incoming notification messages are persisted. 

■ Incoming notification responses that indicate notification delivery failure (for 
example, an unknown host mail) are not ignored. Instead, corrective actions are 
automatically taken (for example, the bad address list is updated). 

■ Incoming notification responses can be configured to send acknowledgements 
indicating notification status to the sender.

■ Validation of incoming notification responses is performed by correlating the 
incoming notification message with the outgoing notification message.

For more information about notifications, see the following:

■ Chapter 17, "Using the Notification Service"



Notifications from Human Workflow

32-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite

32.2.4 Management of Oracle Human Workflow Notification Service
An administrator can perform the following management tasks from Oracle Enterprise 
Manager Fusion Middleware Control Console:

■ View failed notifications and erroneous incoming notification responses and take 
corrective actions.

■ Perform corrective actions such as delete, resend, and edit on outgoing 
notifications and addresses.

■ View bad emails and block email addresses for incoming notification responses.

■ Manage the bad email address list.

■ Access runtime data of failed notifications. You can purge this data when it is no 
longer needed.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite.

32.2.5 How to Configure the Notification Channel Preferences

To configure the notification channel preferences:
1. In Oracle JDeveloper, configure the notification service for email and other 

channels. See Chapter 17, "Using the Notification Service" for details.

2. Open the Human Task Editor in Oracle JDeveloper.

The notifications for a task can be configured during the creation of a task in the 
Human Task Editor. Notifications can be sent to different types of participants for 
different actions.

The actions for which a task notification can be sent are described in 
Section 28.3.10.1, "Notifying Recipients of Changes to Task Status."

Notifications can be sent to users involved in the task in various capacities. These 
users are described in Section 28.3.10.1, "Notifying Recipients of Changes to Task 
Status."

When the task is assigned to a group, each user in the group is sent a notification if 
no notification endpoint is available for the group.

For more information, see the following:

■ Chapter 17, "Using the Notification Service"

■ Section 28.3.10, "How to Specify Participant Notification Preferences" to 
configure task notifications in the Human Task Editor

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle 
BPM Suite for details about configuring the notification channel

3. From the messaging server pages of Oracle Enterprise Manager Fusion 
Middleware Control Console, configure the appropriate channel (for example, 
email). See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and 
Oracle BPM Suite for details.



Notifications from Human Workflow

Introduction to Human Workflow Services 32-31

4. From the Workflow Notification Properties pages of Oracle Enterprise Manager 
Fusion Middleware Control Console, configure the notification mode parameter 
for the notification service to either all channels or email.

By default, this value is set to NONE, meaning that no notifications are sent. The 
possible values are:

■ ALL

The email, IM, SMS, and voice channels are configured and notification is sent 
through any channel.

■ EMAIL

Only the email channel is configured for sending notification messages.

■ NONE

No channel is configured for sending notification messages. This is the default 
setting.

32.2.6 How to Configure Notification Messages in Different Languages
A notification consists of four types of data generated from multiples sources and 
internationalized differently. However, for all internationalized notifications, the locale 
is obtained from the BPMUser object of the identity service.

■ Prepackaged strings (action links, comments, Oracle BPM Worklist, and so on)

These strings are internationalized in the product as part of the following package:

oracle.bpel.services.workflow.resource

The user's locale is used to get the appropriate message.

■ Task details attachment

 The user's locale is used to retrieve the task detail HTML content.

■ Task outcome strings (approve, reject, and so on)

The resource bundle for outcomes is specified when the task definition is modeled 
in the Advanced Settings section of the Human Task Editor. The key to each of the 
outcomes in the resource bundle is the outcome name itself.

■ Notification message

To configure notification messages in different languages:
1. Use one of the following methods to internationalize messages in the notification 

content:

a. To use values from the resource bundle specified during the task definition, 
use the following XPath extension function:

hwf:getTaskResourceBundleString(taskId, key, locale?)

This function returns the internationalized string from the resource bundle 
specified in the task definition.

The locale of the notification recipient can be retrieved with the following 
function:

hwf:getNotificationProperty('locale')



Notifications from Human Workflow

32-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The task ID corresponding to a notification can be retrieved with the following 
function:

hwf:getNotificationProperty('taskId')

b. If a different resource bundle is used, then use the following XPath extension 
to retrieve localized messages:

orcl:get-localized-string()

For more information, see Section 28.3.8.2, "Specifying Multilingual Settings."

32.2.7 How to Send Actionable Messages
There are several methods for sending actionable messages. This section provides an 
overview of procedures.

32.2.7.1 How to Send Actionable Emails for Human Tasks
Task actions can be performed through email if the task is set up to enable actionable 
email (the same actions can also be performed from Oracle BPM Worklist). An 
actionable email account is the account in which task action-related emails are received 
and processed. 

To send actionable emails for human tasks:
1. In the Advanced tab of the Notification section of the Human Task Editor, select 

Make notification actionable to make email notifications actionable. This action 
enables you to perform task actions through email.

If a notification is actionable, the email contains links for each of the custom 
outcomes.

2. To send task attachments with the notification message, select Send task 
attachments with email notifications.

When an actionable email arrives, perform the following tasks. 

3. Click the Approve link to invoke a new email window with approval data. 
Figure 32–3 provides details.

Note: If digital signatures are enabled for a task, actionable emails 
are not sent during runtime. This is the case even if actionable emails 
are enabled during design time.



Notifications from Human Workflow

Introduction to Human Workflow Services 32-33

Figure 32–3 Actionable Notifications

4. Add comments in the comments section of the approval mail. For example:

This contract has been approved based on the attached information.

5. Add attachments as needed, as shown in Figure 32–4.

Figure 32–4 Attachment to an Actionable Email

6. Do not change anything in the subject or the body in this email. If you change the 
content with the NID substrings, the email is not processed.

7. Click Send.

8. Set properties such as incoming server, outgoing mail server, outgoing username 
and password, and others from the Oracle User Messaging Service section of 
Oracle Enterprise Manager Fusion Middleware Control Console.

9. In the Workflow Notification Properties page of Oracle Enterprise Manager Fusion 
Middleware Control Console, set the notification mode to ALL or EMAIL.

10. In the Workflow Task Service Properties page of Oracle Enterprise Manager Fusion 
Middleware Control Console, set the actionable email account name.

For more information about the Oracle User Messaging Service section, Workflow 
Notification Properties page, and Workflow Task Service Properties page of Oracle 
Enterprise Manager Fusion Middleware Control Console, see Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.



Notifications from Human Workflow

32-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

32.2.8 How to Send Inbound and Outbound Attachments
If the include attachments flag is checked; only email is sent. The emails include all the 
task attachments as email attachments. 

To send inbound and outbound attachments:
1. Select Send task attachments with email notifications in the Advanced tab of the 

Notification section of the Human Task Editor.

In the actionable email reply, the user can add attachments in the email. These 
attachments are added as task attachments.

For more information, see Section 28.3.10.7, "Making Email Messages Actionable."

32.2.9 How to Send Inbound Comments

To send inbound comments:
1. Add comments in the actionable email reply between Comments[[‘ and ‘]], 

as shown in Figure 32–3. Those contents are added as task comments. For 
example, Comments[[looks good]].

32.2.10 How to Send Secure Notifications

To send secure notifications:
1. Select Make notifications secure (exclude details) in the Advanced tab of the 

Notification section of the Human Task Editor. This action enables a default 
notification message to be used. In this case, the notification message does not 
include the content of the task. Also, this notification is not actionable. The default 
notification message includes a link to the task in Oracle BPM Worklist. You must 
log in to see task details.

For more information, see Section 28.3.10.5, "Securing Notifications to Exclude 
Details." 

32.2.11 How to Set Channels Used for Notifications

To set channels used for notifications:
1. Set up preferred notification channels by using the preferences user interface in 

Oracle BPM Worklist. The channel is dynamically determined by querying the 
user preference store before sending the notification. If the user preference is not 
specified, then the email channel is used.

For more information about the Oracle Delegated Administration Service, see 
Oracle Fusion Middleware Guide to Delegated Administration for Oracle Identity 
Management.

32.2.12 How to Send Reminders
Tasks can be configured to send reminders, which can be based on the time the task 
was assigned to a user or the expiration time of a task. The number of reminders and 
the interval between the reminders can also be configured. The message used for 
reminders is the message that is meant for ASSIGNEES when the task is marked as 
ASSIGNED.



Notifications from Human Workflow

Introduction to Human Workflow Services 32-35

To send reminders:
1. Set reminders in the Advanced tab of the Notification section of the Human Task 

Editor. Reminder configuration involves the following parameters:

■ Recurrence:

Specifies the number of times reminders are sent. The possible values for 
recurrence are EVERY, NEVER, 0, 1, 2 …, 10.

■ RelativeDate:

Specifies if the reminder duration is computed relative to the assigned date or 
to the expiration date of the task. The possible values for the relativeDate 
are ASSIGNED, EXPIRATION, and BEFORE DUE DATE. The final value 
appears in Oracle JDeveloper if you modify the escalation and expiration 
policy of the task to use the option Action Requested Before (known as Use 
Due Date in previous releases). 

■ Duration:

Specifies the duration from the relativeDate and the first reminder and 
each reminder since then. The data type of duration is xsd:duration, whose 
format is defined by ISO 8601 under the form PnYnMnDTnHnMnS. The capital 
letters are delimiters and can be omitted when the corresponding member is 
not used. Examples include PT1004199059S, PT130S, PT2M10S, P1DT2S, 
-P1Y, or P1Y2M3DT5H20M30.123S.

The following examples illustrate when reminders are sent:

■ If the relativeDate is ASSIGNED, the recurrence is EVERY, the reminder 
duration is PT1D, and the task is assigned at 3/24/2005 10:00 AM, then 
reminders are sent at 3/25/2005 10:00 AM, 3/26/2005 10:00 AM, 
3/27/2005 10:00 AM, and so on until the user acts on the task. 

■ If the relativeDate is EXPIRATION, the recurrence is 2, the reminder 
duration is PT1D, and the task expires at 3/26/2005 10:00 AM, then 
reminders are sent at 3/24/2005 10:00 AM and 3/25/2005 10:00 AM if 
the task was assigned before 3/24/2005 10:00 AM.

■ If the relativeDate is EXPIRATION, the recurrence is 2, the reminder 
duration is PT1D, the task expires at 3/26/2005 10:00 AM, and the task 
was assigned at 3/24/2005 3:00 PM, then only one reminder is sent at 
3/25/2005 10:00 AM.

For more information, see Section 28.3.10.3, "Setting Up Reminders."

32.2.13 How to Set Automatic Replies to Unprocessed Messages
The human workflow notification service sends you an automatic reply message when 
it cannot process an incoming message (due to system error, exception error, user error, 
and so on). You can modify the text for these messages in the global resource bundle. 
Example 32–5 shows the WorkflowLabels.properties file. For more information, 
see Section 32.5.2, "Global Resource Bundle – WorkflowLabels.properties."

Example 32–5 WorkflowLabels.properties

# String to be prefixed to all auto reply messages
AUTO_REPLY_PREFIX_MESSAGE=Oracle Human Workflow Service 
# String to be sufixed to all auto reply mesages
AUTO_REPLY_SUFFIX_MESSAGE=This message was automatically generated by Human \
                Workflow Mailer. Do not reply to this mail.



Assignment Service Configuration

32-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

# Message indicating closed status of a notified task
TaskClosed=You earlier received the notification shown below. That notification \
                is now closed, and no longer requires your response. You may \
                simply delete it along with this message.

# Message indicating that notification was "replied" to instead of "responded" by
# using the response link.
EMailRepliedNotification=The message you sent appeared to be a reply to a \
                notification. To respond to a notification, use the \
                response link that was included with your notification.

#
EMailUnSolicited= The message you sent did not appear to be in response to a \
                notification. If you are responding to a notification        \
                Use the response link that was included with your notification.

EMailUnknownContent= The message you sent did not appear to be in response to a \
                notification. If you are responding to a notification,      \
                Use the response link that was included with your notification.

ResponseNotProcessed=Your response to notification could not be processed. \
                Log in to worklist application for more details.

ResponseProcessed=Your response to notification was successfully processed.

32.2.14 How to Create Custom Notification Headers
Some task participants may have access to multiple notification channels. You can use 
custom notification headers to enable this type of participant to specify a single 
channel as the preferred channel on which to receive notifications.

To create custom notification headers:
1. In the Notification header attributes section of the Advanced tab of the 

Notification section of the Human Task Editor, create custom notification headers 
that specify the preferred notification channel to use (such as voice, SMS, and so 
on). The human workflow email notification layer provides these header values to 
the rule-based notification service of the Oracle User Messaging Service for use.

For example, set the Name field to deliveryType and the Value field to SMS. 

Note that the rule-based notification service is only used to identify the preferred 
notification channel to use. The address for the preferred channel is obtained from 
Oracle Identity Management. The notification message is created from the 
information provided by both services.

For more information, see the following:

■ Section 28.3.10.8, "Sending Task Attachments with Email Notifications"

■ Chapter 64, "User Messaging Preferences"

32.3 Assignment Service Configuration
This section describes how to configure the assignment service with dynamic 
assignment functions.



Assignment Service Configuration

Introduction to Human Workflow Services 32-37

32.3.1 Dynamic Assignment and Task Escalation Functions
When tasks are assigned to a group, users in the group must typically claim a task to 
act on it. However, you can also automatically send work to users in the group by 
using various dispatching mechanisms. Automatic task dispatching is done through 
dynamic assignment functions. Dynamic assignment functions select a particular user 
or group from either a group, or from a list of users or groups. Several functions are 
automatically provided. However, you can also create your own functions and register 
them with the workflow service. Table 32–21 describes the three dynamic assignment 
functions.

These functions all check a user’s vacation status. A user that is currently unavailable 
is not automatically assigned tasks.

These dynamic assignment functions can be called using the custom XPath functions 
in a BPEL process or task definition:

■ wfDynamicUserAssign

■ wfDynamicGroupAssign

These XPath functions must be called with at least two, and optionally more, 
parameters:

■ The name of the dynamic assignment function being called.

■ The name of the group on which to execute the function (or a list of users or 
groups).

■ (Optional) The identity realm to which the user or group belongs (the default 
value is the default identity realm). 

■ Additional optional parameters specific to the dynamic assignment function. In 
the case of the MOST_PRODUCTIVE assignment function, this is the length of time 
(in days) to calculate a user’s productivity. The two other functions do not use 
additional parameters.

In addition, human workflow rules created for a group can use dynamic assignment 
functions to select a member of that group for reassignment of a task.

In addition to these functions, a dynamic assignment framework is provided that 
enables you to implement and configure your own dynamic assignment functions.

32.3.1.1 How to Implement a Dynamic Assignment Function
Follow these procedures to implement your own dynamic assignment function.

Table 32–21 Dynamic Assignment Functions

Function Type Description

LEAST_BUSY Dynamic 
assignment

Picks the user or group with the least number of 
tasks currently assigned to it.

MANAGERS_MANAGER Task escalation Picks the manager’s manager.

MOST_PRODUCTIVE Dynamic 
assignment

Picks the user or group that has completed the 
most tasks over a certain time period (by 
default, the last seven days).

ROUND_ROBIN Dynamic 
assignment

Picks each user or group in turn.



Assignment Service Configuration

32-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To implement dynamic assignment functions:
1. Write a Java class that implements one or both of the following interfaces:

oracle.bpel.services.workflow.assignment.dynamic. 
IDynamicUserAssignmentFunction
oracle.bpel.services.workflow.assignment.dynamic. 
IDynamicGroupAssignmentFunction

2. If your dynamic assignment function selects users, implement the first interface. If 
it selects groups, implement the second interface. If it allows the selection of both 
users and groups, implement both interfaces.

The two interfaces above both extend the interface 
oracle.bpel.services.workflow.assignment.dynamic.IDynamicAssi
gnmentFunction.

Your Java class should also implement the methods in that interface. These 
interfaces are shown in the Javadoc.

The dynamic assignment framework also provides the utility class 
oracle.bpel.services.workflow.assignment.dynamic.DynamicAssig
nmentUtils.

This class provides many methods that are useful when implementing dynamic 
assignment functions.

For information about the Javadoc for dynamic assignment interfaces and utilities, 
see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle SOA 
Suite.

32.3.1.2 How to Configure Dynamic Assignment Functions
Dynamic assignment functions are configured along with other human workflow 
configuration parameters in Oracle Enterprise Manager Fusion Middleware Control 
Console.

Each dynamic assignment has two mandatory parameters in this file, in the form of a 
<function> tag.

The function tag must contain two attributes: 

■ name: 

The name of the function

■ classpath: 

The fully qualified class name of the class that implements the function.

In addition, each function can optionally have any number of properties. These 
properties are simple name-value pairs that are passed as initialization parameters to 
the function.

The property values specified in these tags are passed as a map (indexed by the value 
of the name attributes) to the setInitParameters method of the dynamic 
assignment functions.

Two of the functions have initialization parameters. These are:

■ ROUND_ROBIN

The parameter MAX_MAP_SIZE specifies the maximum number of sets of users or 
groups for which the function can maintain ROUND_ROBIN counts. The dynamic 
assignment function holds a list of users and groups in memory for each group (or 



Assignment Service Configuration

Introduction to Human Workflow Services 32-39

list of users and groups) on which it is asked to execute the ROUND_ROBIN 
function.

■ MOST_PRODUCTIVE

The parameter DEAFULT_TIME_PERIOD specified the length of time (in days) 
over which to calculate the user’s productivity. This value can be overridden when 
calling the MOST_PRODUCTIVE dynamic assignment function. Use an XPath 
function by specifying an alternative value as the third parameter in the XPath 
function call.

For more information about configuring the dynamic assignment functions from 
Oracle Enterprise Manager Fusion Middleware Control Console, see Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

32.3.1.3 How to Configure Display Names for Dynamic Assignment Functions
The runtime config service provides methods for returning a list of available user and 
group dynamic assignment functions. These functions return both the name of the 
function, and a user-displayable label for the function. The functions support 
localization of the display name, so that it displays in the appropriate language for the 
context user. These functions are used by Oracle BPM Worklist to show a list of 
available dynamic assignment functions. This applies exclusively to dynamic 
assignment functions. Display names for task escalation functions are not supported.

To configure display names for dynamic assignment functions:
1. Specify display names (and appropriate translations) for your dynamic 

assignment functions by adding entries to the resource property file 
WorkflowLabels.properties, and associated resource property files in other 
languages. This file exists in the class path identified in the workflow 
configuration parameter workflowCustomizationsClasspathURL.

Entries for dynamic assignment functions must be of the form:

DYN_ASSIGN_FN.[function name]=Function Display Name

For instance, the entry for the ROUND_ROBIN function is:

DYN_ASSIGN_FN.ROUND_ROBIN = Round Robin

Note that adding entries to these files for dynamic assignment functions is 
optional. If no entry is present in the file, then the name of the function (for 
example, ROUND_ROBIN’) is used instead.

For more information about the WorkflowLabels.properties file, see the 
workflow-110-workflowCustomizations sample available at the following URL:

https://soasamples.samplecode.oracle.com/

32.3.1.4 How to Implement a Task Escalation Function
Task escalation functions are very similar to dynamic assignment functions, but 
perform a different function (determining to whom a task is assigned when it is 
escalated). Custom implementations must implement a different interface 
(IDynamicTaskEscaltionFunction).

32.3.2 Dynamically Assigning Task Participants with the Assignment Service
Human workflow participants are specified declaratively in a routing slip. The routing 
slip guides the human workflow by specifying the participants and how they 



Assignment Service Configuration

32-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

participate in the human workflow (for example, management chain hierarchy, serial 
list of approvers, and so on). 

The Human Task Editor enables you to declaratively create the routing slip using 
various built-in patterns. In addition, you can use advanced routing based on business 
rules to do more complex routing. However, to do more sophisticated routing using 
custom logic, you implement a custom assignment service to do routing. To support a 
dynamic assignment, an assignment service is used. The assignment service is 
responsible for determining the task assignees. You can also implement your own 
assignment service and plug in that implementation for use with a particular human 
workflow.

The assignment service determines the following task assignment details in a human 
workflow:

■ The assignment when the task is initiated.

■ The assignment when the task is reinitiated.

■ The assignment when a user updates the task outcome. When the task outcome is 
updated, the task can either be routed to other users or completed.

■ The assignees from whom information for the task can be requested.

■ If the task supports reapproval from Oracle BPM Worklist, a user can request 
information for reapproval. 

■ The users who reapprove the task if reapproval is supported.

The human workflow service identifies and invokes the assignment service for a 
particular task to determine the task assignment.

For example, a simple assignment service iteration is as follows:

1. A client initiates an expense approval task whose routing is determined by the 
assignment service.

2. The assignment service determines that the task assignee is jcooper.

3. When jcooper approves the task, the assignment service assigns the task to 
jstein. The assignment service also specifies that a notification must be sent to 
the creator of the task, jlondon.

4. jstein approves the task and the assignment service indicates that there are no 
more users to whom to assign the task.

32.3.2.1 How to Implement an Assignment Service

To implement an assignment service:
1. Implement the assignment service with the IAssignmentService interface. The 

human workflow service passes the following information to the assignment 
service to determine the task assignment:

■ Task document

The task document that is executed by the human workflow. The task 
document contains the payload and other task information like current state, 
and so on.

■ Map of properties



Assignment Service Configuration

Introduction to Human Workflow Services 32-41

When an assignment service is specified, a list of properties can also be 
specified to correlate callbacks with back-end services that determine the task 
assignees.

■ Task history

The task history is a list of chronologically-ordered task documents to trace the 
history of the task. The task documents in this list contain a subset of 
attributes in the actual task (such as state, updatedBy, outcome, 
updatedDate, and so on).

32.3.2.2 Example of Assignment Service Implementation

You can implement your own assignment service plug-in that the human workflow 
service invokes during human workflow execution.

Example 32–6 provides a sample IAssignmentService implementation named 
TestAssignmentService.java.

Example 32–6 Sample IAssignmentService Implementation

/* $Header: TestAssignmentService.java 24-may-2006.18:26:16 Exp $ */
/* Copyright (c) 2004, 2006, Oracle. All rights reserved.  */
/*
   DESCRIPTION
    Interface IAssignmentService defines the callbacks an assignment 
    service implements. The implementation of the IAssignmentService 
    is called by the workflow service
   PRIVATE CLASSES
    <list of private classes defined - with one-line descriptions>
   NOTES
    <other useful comments, qualifications, etc.>
   MODIFIED    (MM/DD/YY)
        
 */
/**
 *  @version $Header: IAssignmentService.java 29-jun-2004.21:10:35 Exp
 $
 *  
 *  
 */
package oracle.bpel.services.workflow.test.workflow;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import oracle.bpel.services.workflow.metadata.routingslip.model.*; 

Notes:

■ The assignment service class cannot be stateful because every time 
human workflow services must call the assignment service, it 
creates a new instance.

■ The getAssigneesToRequestForInformation method can 
be called multiple times because one of the criteria to show the 
request-for-information action is that there are users to request 
information. Therefore, this method is called every time the 
human workflow service tries to determine the permitted actions 
for a task.



Assignment Service Configuration

32-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

import oracle.bpel.services.workflow.metadata.routingslip.model.Participants;
import 
oracle.bpel.services.workflow.metadata.routingslip.model.ParticipantsType.*;
import oracle.bpel.services.workflow.task.IAssignmentService;
import oracle.bpel.services.workflow.task.ITaskAssignee;
import oracle.bpel.services.workflow.task.model.Task;
public class TestAssignmentService implements
 oracle.bpel.services.workflow.task.IAssignmentService {
    static int numberOfApprovals = 0;
    static String[] users = new String[]{"jstein", "wfaulk", "cdickens"};
    public Participants onInitiation(Task task, 
                                     Map propertyBag) {
        return createParticipant();
    }
    public Participants onReinitiation(Task task, 
                                       Map propertyBag) {
        return null;
    }
    public Participants onOutcomeUpdated(Task task, 
                                         Map propertyBag,
                                         String updatedBy,
                                         String outcome) {
        return createParticipant();
    }
    public Participants onAssignmentSkipped(Task task, 
                                            Map propertyBag) {
        return null;
    }
    public List getAssigneesToRequestForInformation(Task task, 
                                                    Map propertyBag) {
        List rfiUsers = new ArrayList();
        rfiUsers.add("jcooper");
        rfiUsers.add("jstein");
        rfiUsers.add("wfaulk");
        rfiUsers.add("cdickens");
        return rfiUsers;
    }
    public List getReapprovalAssignees(Task task, 
                                       Map propertyBag,
                                       ITaskAssignee infoRequestedAssignee) {
        List reapprovalUsers = new ArrayList();
        reapprovalUsers.add("jstein");
        reapprovalUsers.add("wfaulk");
        reapprovalUsers.add("cdickens");
        return reapprovalUsers;
    }
    private Participants createParticipant() {
        if (numberOfApprovals > 2) {
            numberOfApprovals = 0;
            return null;
        }
        String user = users[numberOfApprovals++];

        ObjectFactory objFactory = new ObjectFactory();
        Participants participants = objFactory.createParticipants();
        Participant participant = objFactory.createParticipantsTypeParticipant();
        participant.setName("Loan Agent");
        ResourceType resource2 = objFactory.createResourceType(user);
        resource2.setIsGroup(false);
        resource2.setType("STATIC");



Assignment Service Configuration

Introduction to Human Workflow Services 32-43

        participant.getResource().add(resource2);

        participants.getParticipantOrSequentialParticipantOrAdhoc().
          add(participant);
        return participants;
    }

}

32.3.2.3 How to Deploy a Custom Assignment Service

To deploy a custom assignment service:
1. Use one of the following methods to make an assignment service implementation 

class and its related classes available in the class path of Oracle BPEL Process 
Manager:

■ Load your classes in SCA-INF/classes directly or in SCA-INF/lib as a 
JAR.

■ Place the class files for your custom function in a directory tree or JAR file. 
Then, update the worklfowCustomClasspathURL configuration parameter 
to point to the JAR or root directory in which your classes are located. As this 
is a URL, it is possible to host the class files on a web server, and make them 
accessible to multiple Oracle WebLogic Servers through HTTP. It is even 
possible to deploy the files into the metadata repository (MDS), and use an 
ORAMDS URL to point to the appropriate location. This approach is described 
in detail in sample workflow-110-workflowCustomizations. To download this 
sample, visit the following URL:

https://soasamples.samplecode.oracle.com/

32.3.3 Custom Escalation Function
The custom escalation function enables you to integrate a custom rule in a human 
workflow.

To implement a custom escalation function:
1. Create a custom task escalation function and register this with the human 

workflow service that uses that function in task definitions. 

2. Use the Human Task Editor to integrate the rule in a human workflow.

For more information, see Section 28.3.9.6, "Specifying Escalation Rules."

Notes:

■ You cannot create different versions of the assignment service for 
use in different BPEL processes unless you change package names 
or class names.

■ Java classes and JAR files in the suitcase are not available in the 
class path and therefore cannot be used as a deployment model 
for the assignment service.

■ The steps must be repeated for each node in a cluster.



Class Loading for Callbacks and Resource Bundles

32-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

32.4 Class Loading for Callbacks and Resource Bundles
You can load classes for the following callbacks and resource bundles directly from the 
SOA project instead of having to load classes in the oracle.soainfra.common 
shared library and restarting Oracle WebLogic Server:

■ IAssignmentService

■ IRestrictedAssignmentService

■ IRoutingSlipCallback

■ IPercentageCompletionCallback

■ INotificationCallback

■ Project level resource bundles

The callback classes can be in the following locations:

■  JARs in the SCA-INF/lib directory of the project

■ Classes in the SCA-INF/classes directory of the project

Additionally, to support backward compatibility, the project level resource bundles can 
also be in the same directory as the .task file. 

32.5 Resource Bundles in Workflow Services
This section describes the resource bundles used in human workflow services and how 
they can be customized to provide alternative resource strings.

The human workflow service APIs and Oracle BPM Worklist use the locale set in the 
IWorkflowContext object to access the APIs. This is the locale of the user in the user 
directory configured with the identity service. If no locale is specified for the user, then 
the default locale for the Java EE server is used instead.

It is possible for API clients to override this locale by setting a new value in the 
IWorkflowContext object. Oracle BPM Worklist provides a user preference option 
that allows users to use their browser's locale, rather than the locale set in their user 
directory.

32.5.1 Task Resource Bundles
Each human workflow component can be associated with a resource bundle. The 
bundle defines the resource strings to use as display names for the task outcomes. The 
resource strings are returned by the TaskMetadataService method 
getTaskDefinitionOutcomes, and are displayed in Oracle BPM Worklist and the 
task flow task details application.

In addition, you can use the human workflow XPath function 
getTaskResourceBundle string to look up resource strings for the task's resource 
bundle. For example, this XPath function can be used as part of the XPath expression 
used to construct notification messages for the task.

A human workflow component is associated with a resource bundle by setting the 
Resource Name and Resource Location fields of the Resource Details dialog in the 
Presentation section of the Human Task Editor. Note that the value for the Resource 
Location field is a URL, and the resource bundle can be contained within a JAR file 
pointed to by the URL. It is possible to share the same resource bundle between 
multiple human workflow components by using a common location for the resource 
bundle.



Resource Bundles in Workflow Services

Introduction to Human Workflow Services 32-45

If no resource bundle is specified for the human workflow component, the resource 
string is looked up in the global resource bundle. (See Section 32.5.2, "Global Resource 
Bundle – WorkflowLabels.properties.") Commonly-used task outcomes can be defined 
in the global resource bundle, alleviating the need to define a resource bundle for 
individual human workflow components.

If no resource string can be located for a particular outcome, then the outcome name is 
used as the display value in all locales.

32.5.2 Global Resource Bundle – WorkflowLabels.properties
The following global resource bundle is used by human workflow service APIs to look 
up resource strings:

oracle.bpel.services.worklfow.resource.WorkflowLabels.properties

You can customize this bundle to provide alternatives for existing display strings or to 
add additional strings (for example, for mapped attribute labels, standard views, or 
custom dynamic assignment functions).

The global resource bundle provides resource strings for the following:

■ Task attributes: 

Labels for the various task attributes displayed in Oracle BPM Worklist (or other 
clients). Resource string values are returned from the following 
TaskMetadataService methods:

– getTaskAttributes

– getTaskAttributesForTaskDefinition

– getTaskAttributesForTaskDefinitions

■ Mapped attribute labels: 

Mapped attribute labels created through the runtime config service. These strings 
are used in Oracle BPM Worklist when displaying mapped attributes. Resource 
string values are returned from the TaskMetadataService methods:

– getTaskAttributesForTaskDefinition

– getTaskAttributesForTaskDefinitions

If translated resource strings are required for mapped attribute mappings, then 
customize the WorkflowLabels.properties bundle to include the appropriate 
strings.

■ Task outcomes: 

Default resource strings for common task outcomes. These can be overridden by 
the task resource bundle, as described above. The resource strings are returned by 
the TaskMetadataService method getTaskDefinitionOutcomes, if no 
task-specific resource bundle has been specified. As shipped, the global resource 
bundle contains resource strings for the following outcomes:

– Approve

– Reject

– Yes

– No

– OK



Resource Bundles in Workflow Services

32-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– Defer

– Accept

– Acknowledge

■ Dynamic assignment function names: 

Labels for dynamic assignment functions. These strings are returned from the 
runtime config service methods getUserDynamicAssignmentFunctions and 
getGroupDynamicAssignmentFunctions. The shipped resource bundle 
contains labels for the standard dynamic assignment functions (ROUND_ROBIN, 
LEAST_BUSY, and MOST_PRODUCTIVE). If additional custom dynamic 
assignment functions have been created, then modify the 
WorkflowLabels.properties resource bundle to provide resource strings for 
the new functions.

■ Standard view names: 

Labels for standard views. If you want translated resource strings for any standard 
views you create, then add them here. Standard view resource strings are looked 
up from the resource bundle, and are returned as the standard view name from the 
UserMetadataService methods getStandardTaskViewList and 
getStandardTaskViewDetails. The key for the resource string should be the 
name given to the standard view when it is created. If no resource string is added 
for a particular standard view, then the name as entered is used instead.

■ Notification messages: 

Resource strings used when the task service sends automatic notifications. These 
can be customized to suit user requirements.

■ Task routing error comments: 

When an error is encountered in the routing of a task, the task service 
automatically appends comments to the task to describe the error. The various 
strings used for the comments are defined in this resource bundle.

A copy of the WorkflowLabels.properties resource bundle is available in the 
sample workflow-110-workflowCustomizations.

You can customize the WorkflowLabels.properties resource bundle by editing it 
and then adding the customized version to the class path for workflow services, ahead 
of the version that ships with the product.

This can be done in the following ways:

■ Place the customized file in a directory tree:

directory_path/oracle/bpel/services/workflow/resource/WorkflowLabels.properties

■ Update the worklfowCustomClasspathURL configuration parameter to point 
to directory_path. (As this is a URL, it is possible to host the resource bundles 
on a web server, and make them accessible to multiple Oracle WebLogic Servers.) 
This approach is described in detail in sample 
workflow-110-workflowCustomizations. To download this sample, visit the 
following URL:

https://soasamples.samplecode.oracle.com/



Resource Bundles in Workflow Services

Introduction to Human Workflow Services 32-47

32.5.3 Worklist Client Resource Bundles
The ADF worklist client application uses two resource bundles that contain all the 
strings displayed in the worklist client web application.

■ oracle.bpel.worklistapp.resource.WorkflowResourceBundle: 

This contains strings used by both the ADF Oracle BPM Worklist, and the 
JSP-based sample Oracle BPM Worklist that shipped with version 10.1.3 of Oracle 
SOA Suite.

■ oracle.bpel.worklistapp.resource.WorklistResourceBundle:

This contains strings used only by the ADF Oracle BPM Worklist.

Copies of the worklist resource bundles are available in the sample 
workflow-110-workflowCustomizations.

The sample illustrates how to customize Oracle BPM Worklist by recompiling these 
resource bundles, and adding the updated classes to Oracle BPM Worklist.

32.5.4 Task Detail ADF Task Flow Resource Bundles
The ADF task flow applications and associated data controls that get created to display 
the details of a particular task type use the resource bundle 
oracle.bpel.services.workflow.worklist.resource.worklist to store 
their resource strings.

You can provide your own custom resource strings for a task detail ADF task flow by 
adding a customized resource bundle in the task flow application.

You can localize the XML element name displayed in the task flow form through this 
resource bundle. You can add keys, and use them in the task flow form contents 
section. The input text label looks as follows:

#{resources.mykeyword}

A copy of the WorkflowLabels.properties resource bundle is available in the 
sample workflow-110-workflowCustomizations. This sample illustrates in detail how 
to provide your own customized resource strings for the task detail ADF task flow 
application.

32.5.5 Specifying Stage and Participant Names in Resource Bundles
You can provide translated values for stage names and participant names in the 
composite resource bundle. The resource bundle should contain entries such as the 
following:

■ stage_name=translated_value

■ participant_name=translated_value

32.5.6 Case Sensitivity in Group and Application Role Names 
By default, the human workflow system is case insensitive to user names. All user 
names are stored in lowercase. However, group names and application role names are 
always case sensitive. User name case insensitivity can be changed in Oracle 
Enterprise Manager Fusion Middleware Control Console.



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

32-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To change case sensitivity:
1. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System MBean Browser displays on the right side of the page.

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server: 
server_name > WorkflowIdentityConfig > human-workflow > 
WorkflowIdentityConfig.PropertyType.

5. Click caseSensitive.

6. Click the Operations tab.

7. Click setValue.

8. In the Value field, enter true, and click Invoke. 

If you are upgrading from 10.1.3, which by default was case sensitive, set 
caseSensitive to true for the system to be the same as with 10.1.3.

32.6 Introduction to Human Workflow Client Integration with Oracle 
WebLogic Server Services

This section describes how human workflow clients integrate with Oracle WebLogic 
Server services.

32.6.1 Human Workflow Services Clients
Human workflow services expose the following workflow services:

■ Task service

■ Task query service 

■ User metadata service

■ Task evidence service

■ Task metadata service

■ Runtime config service

■ Task report service

To use any of these services, you must use the abstract factory pattern for workflow 
services. The abstract factory pattern provides a way to encapsulate a group of 
individual factories that have a common theme. 

Perform the following tasks:

■ Get the IWorkflowServiceClient instance for the specific service type. The 
WorkflowServiceClientFactory provides a static factory method to get 
IWorkflowServiceClient according to the service type.

Caution: Only change this setting after performing a new 
installation. Changing this value on an installation that is actively 
processing instances, or has many instances in the database, causes 
serious issues.



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 32-49

■ Use the IWorkflowServiceClient instance to get the service instance to use.

There are three supported service types: 

■ Local

■ Remote

■ SOAP

Local and remote clients use Enterprise JavaBeans clients (local Enterprise JavaBeans 
and remote Enterprise JavaBeans, accordingly). SOAP uses SOAP clients. Each type of 
service requires you to configure workflow clients. Example 32–7 provides details.

Example 32–7 Client Configuration File

<workflowServicesClientConfiguration>
<server name="default" default="true">
   <localClient>
      <participateInClientTransaction>false</participateInClientTransaction>
   </localClient>
   <remoteClient>
      <serverURL>t3://myhost.us.oracle.com:7001</serverURL>
      <userName>weblogic</userName>
      <password>weblogic</password>
      <initialContextFactory>weblogic.jndi.WLInitialContextFactory
         </initialContextFactory>
      <participateInClientTransaction>false</participateInClientTransaction>
   </remoteClient>
   <soapClient>
      <rootEndPointURL>http://myhost.us.oracle.com:7001</rootEndPointURL>
      <identityPropagation mode="dynamic" type="saml">
      <policy-references>
      <policy-reference enabled="true" category="security" 
        uri="oracle/wss10_saml_token_client_policy"/>
      </policy-references>
      </identityPropagation>
   </soapClient>
</server>
</workflowServicesClientConfiguration>

The client configuration file can contain definitions for several configurations. Each 
server must have its own unique name. If the configuration file defines multiple 
servers, one server must be set with the default attribute equal to true. The 
workflowServicesClientConfiguration has an optional attribute named 
serverType that can be set to one of the following: LOCAL, REMOTE, or SOAP. Each 
server can override the client type by using the optional attribute clientType.

Example 32–8 provides details.

Example 32–8 Client Configuration File with Multiple Configuration Definitions

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<workflowServicesClientConfiguration
 xmlns="http://xmlns.oracle.com/bpel/services/client" clientType="REMOTE"
   <server name="server1" default="true"  clientType="SOAP">
      <localClient>
         <participateInClientTransaction>false</participateInClientTransaction>
      </localClient>
      <remoteClient>
         <serverURL>t3://myhost1.us.oracle.com:7001</serverURL>
         



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

32-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<initialContextFactory>weblogic.jndi.WLInitialContextFactory</initialContextFactor
y>
         <participateInClientTransaction>false</participateInClientTransaction>
      </remoteClient> -->
      <soapClient>
         <rootEndPointURL>http://myhost1.us.oracle.com:7001</rootEndPointURL>
         <identityPropagation mode="dynamic" type="saml">
            <policy-references>
               <policy-reference enabled="true" category="security"
                                 uri="oracle/wss10_saml_token_client_policy"/>
            </policy-references>
         </identityPropagation>
      </soapClient>
   </server>
   <server name="server2">
     <localClient>
         <participateInClientTransaction>false</participateInClientTransaction>
      </localClient>
      <remoteClient>
         <serverURL>t3://myhost2.us.oracle.com:7001</serverURL>
         
<initialContextFactory>weblogic.jndi.WLInitialContextFactory</initialContextFactor
y>
         <participateInClientTransaction>false</participateInClientTransaction>
      </remoteClient> -->
      <soapClient>
         <rootEndPointURL>http://myhost2us.oracle.com:7001</rootEndPointURL>
         <identityPropagation mode="dynamic" type="saml">
            <policy-references>
               <policy-reference enabled="true" category="security"
                                 uri="oracle/wss10_saml_token_client_policy"/>
            </policy-references>
         </identityPropagation>
      </soapClient>
   </server>
</workflowServicesClientConfiguration>

In Example 32–8, server2 uses the default clientType of REMOTE, while server1 
overrides the default clientType value to use the clientType of SOAP. The same 
rule applies if the JAXB WorkflowServicesClientConfigurationType object is 
used instead of the wf_client_config.xml file.

If the configuration defines a client type, the factory method from 
WorkflowServiceClientFactory class can be used. Example 32–9 provides 
details.

Example 32–9 Factory Method from WorkflowServiceClientFactory Class

public static IWorkflowServiceClient
 getWorkflowServiceClient(WorkflowServicesClientConfigurationType wscc, Logger
 logger) throws WorkflowException

If the map defines a client type with the property CONNECTION_PROPERTY.CLIENT_
TYPE, the factory method in Example 32–10 can be used:

Example 32–10 Factory Method for CONNECTION_PROPERTY.CLIENT_TYPE

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties, String serverName,    Logger logger) throws
 WorkflowException



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 32-51

32.6.1.1 Task Query Service Client Code
Example 32–11 provides an example of the task query service client code.

Example 32–11 Task Query Service Client Code

/**
 * WFClientSample
 */
package oracle.bpel.services.workflow.samples;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import oracle.bpel.services.workflow.IWorkflowConstants;
import oracle.bpel.services.workflow.WorkflowException;
import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.client.WorkflowServiceClientFactory;
import oracle.bpel.services.workflow.client.IWorkflowServiceClientConstants
 .CONNECTION_PROPERTY;
import oracle.bpel.services.workflow.query.ITaskQueryService;
import oracle.bpel.services.workflow.query.ITaskQueryService.AssignmentFilter;
import oracle.bpel.services.workflow.query.ITaskQueryService.OptionalInfo;
import oracle.bpel.services.workflow.repos.Ordering;
import oracle.bpel.services.workflow.repos.Predicate;
import oracle.bpel.services.workflow.repos.TableConstants;
import oracle.bpel.services.workflow.verification.IWorkflowContext;

public class WFClientSample {

  public static List  runClient(String clientType) throws WorkflowException {
      try {
      
         IWorkflowServiceClient wfSvcClient = null;
         ITaskQueryService taskQuerySvc = null;
         IWorkflowContext wfCtx = null;

         // 1. this step is optional since configuration can be set in  wf_client_
             config.xml file
         Map<CONNECTION_PROPERTY, String> properties = new HashMap<CONNECTION_
PROPERTY, String>();
         if (WorkflowServiceClientFactory.REMOTE_CLIENT.equals(clientType)) {
           properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
           properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.oracle.com:7001");
           properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS,
 "weblogic");
           properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
         } else if (WorkflowServiceClientFactory.SOAP_CLIENT.equals(clientType)) {
           properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost:7001");
           properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_
PROPAGATION,"non-saml"); // optional
         } 
         // 2. gets IWorkflowServiceClient for specified client type
         wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(clientType, properties,
 null);



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

32-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

         // 3. gets ITaskQueryService instance
         taskQuerySvc = wfSvcClient.getTaskQueryService();

         // 4. gets IWorkflowContext instance
         wfCtx = taskQuerySvc.authenticate("jcooper", "welcome1".toCharArray(),
 "jazn.com");

         // 5. creates displayColumns
         List<String> displayColumns = new ArrayList<String>(8);
         displayColumns.add("TASKID");
         displayColumns.add("TASKNUMBER");
         displayColumns.add("TITLE");
         displayColumns.add("CATEGORY");

         // 6. creates optionalInfo
         List<ITaskQueryService.OptionalInfo> optionalInfo = new
 ArrayList<ITaskQueryService.OptionalInfo>();
         optionalInfo.add(ITaskQueryService.OptionalInfo.DISPLAY_INFO);

         // 7. creates assignmentFilter
         AssignmentFilter assignmentFilter = AssignmentFilter.MY_AND_GROUP;

         // 8. creates predicate
         List<String> stateList = new ArrayList<String>();
         stateList.add(IWorkflowConstants.TASK_STATE_ASSIGNED);
         stateList.add(IWorkflowConstants.TASK_STATE_INFO_REQUESTED);
         Predicate predicate = new Predicate(TableConstants.WFTASK_STATE_COLUMN,
 Predicate.OP_IN, stateList);

         // 9. creates ordering
         Ordering ordering = new Ordering(TableConstants.WFTASK_DUEDATE_COLUMN,
 true, false);
         ordering.addClause(TableConstants.WFTASK_CREATEDDATE_COLUMN, true,
 false);

         // 10. calls service - query tasks 
         List taskList = taskQuerySvc.queryTasks(wfCtx, 
                                                (List<String>) displayColumns, 
                                                (List<OptionalInfo>) optionalInfo, 
                                                (AssignmentFilter)
                                                  assignmentFilter, 
                                                (String) null, // keywords is
 optional (see javadoc)
 // optional
                                                 predicate, 
                                                 ordering,
                                                 0,    // starting row 
                                                 100); // ending row for paging, 0
                                                    if no paging
      
         // Enjoy result
         System.out.println("Successfuly get list of tasks for client type: " +
            clientType +
                            ". The list size is " + taskList.size());
         return taskList;
      } catch (WorkflowException e) {
         System.out.println("Error occurred");
         e.printStackTrace();
         throw e;



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 32-53

      }
   }
   
   public static void main(String args[]) throws Exception {
      runClient(WorkflowServiceClientFactory.REMOTE_CLIENT);
      runClient(WorkflowServiceClientFactory.SOAP_CLIENT);
   }  
  
}

32.6.1.2 Configuration Option
Each type of client is required to have a workflow client configuration. You can set the 
configuration in the following locations:

■ JAXB object

■ wf_client_config.xml file

■ Property map

The property map is always complementary to the wf_client_config.xml file. The 
JAXB object or property map can overwrite the configuration attribute. The file is 
optional. If it cannot be found in the application class path, then the property map is 
the main source of configuration.

32.6.1.2.1 JAXB Object  You can use the JAXB object to define the client configuration. 
Example 32–12 shows how to use the WorkflowServiceClientFactory method.

Example 32–12 JAXB Object

public static IWorkflowServiceClient getWorkflowServiceClient(String clientType,
                           WorkflowServicesClientConfigurationType wscc,
                           Logger logger) throws WorkflowException

32.6.1.2.2 Workflow Client Configuration File - wf_client_config.xml  The client configuration 
XSD schema is present in the wf_client_config.xsd file.

The server configuration should contain three types of clients:

■ localClient

■ remoteClient

■ soapClient

Oracle recommends that you specify all clients. This is because some services (for 
example, the identity service) do not have remote and local clients. Therefore, when 
you use remote clients for other services, the identity service uses the SOAP service.

An example of a client configuration XML file is shown in Example 32–13. The 
configuration defines a server named default. The XML file must go into the client 
application’s EAR file.

Example 32–13 Client Configuration

<workflowServicesClientConfiguration>
server name="default" default="true">
<localClient>
   <participateInClientTransaction>false</participateInClientTransaction>
</localClient>

<remoteClient>



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

32-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

   <serverURL>t3://myhost.us.oracle.com:7001</serverURL>
   <userName>weblogic</userName>
   <password>weblogic</password>
   <initialContextFactory>weblogic.jndi.WLInitialContextFactory
      </initialContextFactory>
   <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

<soapClient>
   <rootEndPointURL>http://myhost.us.oracle.com:7001</rootEndPointURL>
   <identityPropagation mode="dynamic" type="saml">
   <policy-references>
      <policy-reference enabled="true" category="security" 
         uri="oracle/wss10_saml_token_client_policy"/>
      </policy-references>
   </identityPropagation>
</soapClient>

</server>
</workflowServicesClientConfiguration>

You can define client properties in wf_client_config.xml when 
WorkflowServicesClientConfigurationType wscc is null.

The WorkflowServiceClientFactory getWorkflowServiceClient() 
methods always look for wf_client_config.xml in the class path. If this file is 
found, the client properties are loaded.

All properties defined in either the property map or the JAXB object override values 
defined in the wf_client_config.xml file.

32.6.1.2.3 Workflow Client Configuration in the Property Map  To specify the connection 
property dynamically, you can use a java.util.Map to specify the properties. The 
properties take precedence over definitions in the configuration file. Therefore, the 
values of the properties overwrite the values defined in wf_client_config.xml. If 
you do not want to dynamically specify connection details to the server, you can omit 
the property setting in the map and pass a null value to the factory method. In that 
case, the configuration wf_client_config.xml is searched for in the client 
application class path.

The configuration file must be in the class path only if you want to get the 
configuration from the file. It is optional to have the file if all settings from the specific 
client type are done through the property map. The JAXB object is also not required to 
have the file, since all settings are taken from the JAXB object. Example 32–14 provides 
details.

Example 32–14 Property Map

IWorkflowServiceClient   wfSvcClient =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT,
(Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY, String> ) null, null);

If you do so, the value from wf_client_config.xml found in the class path is used 
by the client to access the services. If the file is not found in the class path and you do 
not provide the setting according to the service type, a workflow exception is thrown. 
If the properties map is null and the file is not found, an exception is thrown. If the 
client omits some properties in the map while the file is not found, the service call fails 
at runtime (the properties are complementary to the file).



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 32-55

You can define client properties by using the WorkflowServiceClientFactory 
method. Example 32–15 provides details.

Example 32–15 WorkflowServiceClientFactory Method

public static IWorkflowServiceClient getWorkflowServiceClient(String clientType,
                          Map<CONNECTION_PROPERTY, String> properties,
                          Logger logger) hrows WorkflowException 

If the map defines a client type with the property CONNECTION_PROPERTY type, the 
factory method in Example 32–16 can be used:

Example 32–16 Factory Method for CONNECTION_PROPERTY Type

public static IWorkflowServiceClient getWorkflowServiceClient(Map<CONNECTION_
PROPERTY, String> properties,   Logger logger) throws WorkflowException

The IWorkflowServiceClientConstants.CONNECTION_PROPERTY, which can 
be used in the properties map for setting client properties, is shown in Example 32–17: 

Example 32–17 CONNECTION_PROPERTY

public enum CONNECTION_PROPERTY {
            MODE,  // not supported , deprecated
            EJB_INITIAL_CONTEXT_FACTORY,
            EJB_PROVIDER_URL,
            EJB_SECURITY_PRINCIPAL,
            EJB_SECURITY_CREDENTIALS,
            // SOAP configuration
            SOAP_END_POINT_ROOT,
            SOAP_IDENTITY_PROPAGATION, // if value is 'saml' then SAML-token
              identity propagation is used
            SOAP_IDENTITY_PROPAGATION_MODE,  // "dynamic’
            MANAGEMENT_POLICY_URI, // dafault value is "oracle/log_policy"
            SECURITY_POLICY_URI,   // default value is  "oracle/wss10_
               saml_token_client_policy"
            // LOCAL and REMOTE EJB  option
            TASK_SERVICE_PARTICIPATE_IN_CLIENT_TRANSACTION  // default value is
               false
            //(task service EJB starts a new transaction)
            CLIENT_TYPE,
            DISCOVERY_OF_END_POINT,
            WSS_RECIPIENT_KEY_ALIAS,
            EJB_JNDI_SUFFIX // append to jndi name to used  foreign jndi name
 };

Example 32–18 provides an example for remote Enterprise JavaBeans clients.

Example 32–18 Example for Remote Enterprise JavaBeans Clients

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_
FACTORY,"weblogic.jndi.WLInitialContextFactory");

Note: If you use the properties map, you do not need to specify 
IWorkflowServiceClientConstants.CONNECTION_
PROPERTY.MODE. This property is deprecated in 11g Release 1.



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

32-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.oracle.com:7001");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS, "weblogic");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
                                WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, null);

Example 32–19 provides an example for a SOAP client.

Example 32–19 Example for SOAP Client

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT, "http://myhost:7001");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
                                WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

32.6.1.3 Client Logging
Clients can optionally pass in a java.util.logging.Logger to where the client 
logs messages. If there is no logger specified, the workflow service client code does not 
log anything. Example 32–20 shows how to pass a logger to the workflow service 
clients: 

Example 32–20 java.util.logging.Logger

java.util.logging.Logger logger = ....;

IWorkflowServiceClient client =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT, properties, logger);

32.6.1.4 Configuration Migration Utility
The client configuration schema has changed between release 10.1.3.x and 11g Release 
1. To migrate from release 10.1.3.x to 11g Release 1, use the utility shown in 
Example 32–21.

Example 32–21 Configuration Migration Utility

java -classpath wsclient_extended.jar:bpm-services.jar 
 oracle.bpel.services.workflow.client.config.MigrateClientConfiguration 
original_file [new_file];

where original_file is a wf_client_config.xml file from 10.1.3.x and new_
file is the optional name of the new configuration file. If a new name is not specified, 
the utility backs up the original configuration file and overwrites the wf_client_
config.xml file.

32.6.2 Identity Propagation
This section describes how to propagate identities using Enterprise JavaBeans and 
SAML-tokens for SOAP clients.

There are performance implications for getting the workflow context for every request. 
This is also true for identity propagation. If you use identity propagation with 



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 32-57

SAML-token or Enterprise JavaBeans, authenticate the client by passing null for the 
user and password, get the workflow context instance, and use another service call 
with workflow context without identity propagation.

32.6.2.1  Enterprise JavaBeans Identity Propagation
The client application can propagate user identity to services by using Enterprise 
JavaBeans identity propagation. The client code is responsible for securing the user 
identity.

32.6.2.1.1 Client Configuration  If you use identity propagation, the client code must omit 
the element’s <userName> and <password> under the <remoteClient> element in 
the wf_client_config.xml configuration file. In addition, do not populate the 
following properties into 
Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,String> 
properties as you did in Section 32.6.1.2.3, "Workflow Client Configuration in the 
Property Map."

■ IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_
SECURITY_PRINCIPAL 

■ IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_
SECURITY_CREDENTIALS

32.6.2.1.2 Requirements for Client Applications For Identity Propagation   Identity 
propagation only works if the application is deployed under the Oracle WebLogic 
Server container and secured with container security or the client is secured with a 
custom JAAS login module.

End users log in to the client application with the correct user name and password. 
The users using the client application must be available in the identity store used by 
the SOA application. As a best practice, configure the client to use the same identity 
store as the workflow services and Oracle SOA Suite are using. This guarantees that if 
the user exists on the client side, they also exist on the server side.

For information about configuring the identity store, see Oracle Fusion Middleware 
Security Guide.

For information about interacting with custom identity stores, visit the following URL:

http://www.oracle.com/technology/products/id_mgmt/opss/index.html

32.6.2.2 SAML Token Identity Propagation for SOAP Client
If you use a SOAP client, you can use the SAML-token identity propagation supported 
by Oracle web services.

This section assumes the application resides in and is secured by the Oracle WebLogic 
Server container.

32.6.2.2.1 Client configuration  To enable identity propagation, the client configuration 
must specify a special propagation mode.

32.6.2.2.2  Identity Propagation Mode Setting Through Properties  If properties are used, then 
populate the property CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION 
with the value saml.

■ Dynamic SAML token propagation mode



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

32-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The SAML token policy is provided dynamically (the default). The property 
shown in Example 32–22 is optional. If the identity propagation mode is set, you 
run by default in dynamic mode.

Example 32–22 Identity Propagation Mode Setting Through Properties

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_
IDENTITY_PROPAGATION_MODE , "dynamic");

By default, SAML-token constructs dynamic policy based on the following security 
policy URI: oracle/wss10_saml_token_client_policy. Logging is not used. To 
overwrite the default policy URI, the client can add the code shown in Example 32–23.

Example 32–23 Default Policy URI Overwrite

properties.put(CONNECTION_PROPERTY.SECURITY_POLICY_URI     "oracle/wss10_saml_
token_client_policy");
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");

Example 32–24 shows the SAML token dynamic client.

Example 32–24 Token Dynamic Client

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.oracle.com:7001");
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");
  //optional
IWorkflowServiceClient client =
                            WorkflowServiceClientFactory.getWorkflowServiceClient(
                            WorkflowServiceClientFactory.SOAP_CLIENT,
properties, null);

The client reference to the policy URI must match the server policy URI. Otherwise, 
SAML token propagation fails.

32.6.2.2.3  Identity Propagation Mode Setting in Configuration File  In the configuration file, 
you can define the propagation mode by using the <identityPropagation> 
element in the <soapClient>, as shown in Example 32–25.

Example 32–25 <identityPropagation> Element

<soapClient>
        <rootEndPointURL>http://myhost.us.oracle.com:7001</rootEndPointURL>
        <identityPropagation mode="dynamic" type="saml">
            <policy-references>
                <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
            </policy-references>
        </identityPropagation>
 </soapClient>

For more information, see Oracle Fusion Middleware Security and Administrator's Guide 
for Web Services.



Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 32-59

32.6.2.2.4 Identity Propagation Mode Setting Through the JAXB Object  You can 
programmatically set the identity propagation mode with the JAXB object.

32.6.2.3 Public Key Alias
You can use the 
oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_
RECIPIENT_KEY_ALIAS property with the workflow client. This property sets the 
alias for the recipient's public key that is used to encrypt the type outbound message. 
Use this property to secure workflow services with the public key alias. This property 
is only relevant when the SOAP client type uses identity propagation.

The client code must add the WSS_RECIPIENT_KEY_ALIAS value to the map if the 
public key alias is defined. Example 32–26 provides details.

Example 32–26 WSS_RECIPIENT_KEY_ALIAS Property

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.oracle.com:7001");
properties.put(CONNECTION_PROPERTY.WSS_RECIPIENT_KEY_ALIAS,keyAlias); 
// where keyAlias  is a key alias value
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");
  //optional
IWorkflowServiceClient client =
                            WorkflowServiceClientFactory.getWorkflowServiceClient(
                            WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

If the client uses the JAXB WorkflowServicesClientConfigurationType object 
or the wf_client_config.xml file, an optional element called 
wssRecipientKeyAlias is added under the identityPropagation element for a 
SOAP client. Example 32–27 provides details.

Example 32–27 wssRecipientKeyAlias Element

<xsd:complexType name="identityPropagationType">
    <xsd:sequence>
      <xsd:element name="policy-references"  type="PolicyReferencesType" 
       minOccurs="0" maxOccurs="1"/>
      <xsd:element name="wssRecipientKeyAlias"  type="xsd:string"  minOccurs="0"
       maxOccurs="1"/> </xsd:sequence> 
    <xsd:attribute name="type" type="xsd:string"  default="saml"/>
    <xsd:attribute name="mode" type="xsd:string"  default="dynamic"/>
  </xsd:complexType>

For more information about how to create and use the public key alias in the credential 
store, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

32.6.3 Client JAR Files
A client application without identity propagation must have the bpm-services.jar 
file in its class path. For 11g Release 1, the client class path requires the files shown in 
Example 32–28.



Task States in a Human Task

32-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 32–28 Client JAR Files

${bea.home}/wlserver_10.3/server/lib/wlfullclient.jar
${bea.home}/AS11gR1SOA/webservices/wsclient_extended.jar
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar

The wlfullclient.jar file must be generated.

1. Generate the wlfullclient.jar as follows:

cd ${bea.home}/wlserver_10.3/server/lib
java -jar ../../../modules/com.bea.core.jarbuilder_1.3.0.0.jar

32.7 Task States in a Human Task
The following list identifies all the task states available in a human task. The constants 
for all states are defined in IWorkflowConstants.java.

■ String TASK_STATE_ALERTED = "ALERTED";

■ String TASK_STATE_ASSIGNED = "ASSIGNED";

■ String TASK_STATE_COMPLETED = "COMPLETED";

■ String TASK_STATE_DELETED = "DELETED";

■ String TASK_STATE_ERRORED = "ERRORED";

■ String TASK_STATE_EXPIRED = "EXPIRED";

■ String TASK_STATE_INFO_REQUESTED = "INFO_REQUESTED";

■ String TASK_STATE_OUTCOME_UPDATED = "OUTCOME_UPDATED";

■ String TASK_STATE_STALE = "STALE";

■ String TASK_STATE_SUSPENDED = "SUSPENDED";

■ String TASK_STATE_WITHDRAWN = "WITHDRAWN";

For more information about IWorkflowConstants.java, see Oracle Fusion 
Middleware Workflow Services Java API Reference for Oracle SOA Suite.

32.8 Database Views for Oracle Workflow
This section describes database views that enable queries against the Oracle workflow 
services schema to receive reports. Table 32–22 lists the reports exposed in Oracle BPM 
Worklist and the database views corresponding to these reports.

32.8.1 Unattended Tasks Report View
Table 32–23 describes the WFUNATTENDEDTASKS_VIEW report view.

Table 32–22 Report Views

Existing Worklist Report Corresponding Database View

Unattended Tasks report WFUNATTENDEDTASKS_VIEW

Task Cycle Time report WFTASKCYCLETIME_VIEW

Task Productivity report WFPRODUCTIVITY_VIEW

Task Priority Report WFTASKPRIORITY_VIEW



Database Views for Oracle Workflow

Introduction to Human Workflow Services 32-61

For example:

■ Query unattended tasks that have an expiration date of next week, as shown in 
Example 32–29.

Example 32–29 Query of Unattended Tasks with an Expiration Date of Next Week

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE expirationdate > current_date AND expirationdate < current_date +
 7;

■ Query unattended tasks for mygroup, as shown in Example 32–30.

Example 32–30 Query of Unattended Tasks for mygroup

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE 'mygroup' IN assigneegroups;

■ Query unattended tasks created in the last 30 days, as shown in Example 32–31.

Example 32–31 Query of Unattended Tasks Created in the Last 30 Days

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE createddate > current_date -30;

32.8.2 Task Cycle Time Report View
Table 32–24 describes the WFTASKCYCLETIME_VIEW report view.

Table 32–23 Unattended Tasks Report View

Name Type

TASKID1

1 NOT NULL column

VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

CREATEDDATE DATE

EXPIRATIONDATE DATE

STATE VARCHAR2(100)

PRIORITY NUMBER

ASSIGNEEGROUPS VARCHAR2(2000)

Table 32–24 Task Cycle Time Report View

Name Type

TASKID1 VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

CREATEDDATE DATE

ENDDATE DATE

CYCLETIME NUMBER(38)



Database Views for Oracle Workflow

32-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For example:

■ Compute the average cycle time (task completion time) for completed tasks that 
were created in the last 30 days, as shown in Example 32–32.

Example 32–32 Average Cycle Time for Completed Tasks Created in the Last 30 Days

SELECT avg(cycletime) FROM  WFTASKCYCLETIME_VIEW  WHERE createddate > 
 (current_date - 30);

■ Query the average cycle time for all completed tasks created in the last 30 days 
and group them by task name, as shown in Example 32–33.

Example 32–33 Average Cycle Time for All Completed Tasks Created in Last 30 days 
Grouped by Task Name

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE
 createddate > (current_date - 30) GROUP BY taskname;

■ Query the least and most time taken by each task, as shown in Example 32–34.

Example 32–34 least and most time taken by each task

SELECT taskname, min(cycletime), max(cycletime) FROM WFTASKCYCLETIME_VIEW
 GROUP BY taskname;

■ Compute the average cycle time for tasks completed in the last seven days, as 
shown in Example 32–35.

Example 32–35 Average Cycle Time for Tasks Completed in the Last Seven Days

SELECT avg(cycletime) FROM  WFTASKCYCLETIME_VIEW  WHERE enddate >
  (current_date - 7);

■ Query tasks that took more than seven days to complete, as shown in 
Example 32–36.

Example 32–36 Tasks Taking More than Seven Days to Complete

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE cycletime
 > ((current_date +7) - current_date) GROUP BY taskname;

32.8.3 Task Productivity Report View
Table 32–25 describes the WFPRODUCTIVITY_VIEW report view.

1 NOT NULL column

Table 32–25 Task Productivity Report View

Name Type

TASKNAME VARCHAR2(200)

TASKID VARCHAR2(200)

TASKNUMBER NUMBER

USERNAME VARCHAR2(200)

STATE1 VARCHAR2(100)



Database Views for Oracle Workflow

Introduction to Human Workflow Services 32-63

For example:

■ Count the number of unique tasks that the user has updated in the last 30 days, as 
shown in Example 32–37.

Example 32–37 Number of Unique Tasks Updated in the Last 30 Days

SELECT username, count(distinct(taskid))  FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -30) GROUP BY username;

■ Count the number of tasks that the user has updated (one task may have been 
updated multiple times) in the last seven days, as shown in Example 32–38.

Example 32–38 Number of Tasks Updated in the Last 7 Days

SELECT username, count(taskid)  FROM WFPRODUCTIVITY_VIEW  WHERE
 lastupdateddate > (current_date -7) GROUP BY username;

■ Count the number of tasks of each task type on which the user has worked, as 
shown in Example 32–39.

Example 32–39 Number of Tasks of Each Task Type on Which the User has Worked

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW GROUP
 BY username, taskname;

■ Count the number of tasks of each task type that the user has worked on in the last 
100 days, as shown in Example 32–40.

Example 32–40 Number of Tasks of Each Task Type Worked on in the Last 100 Days

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -100) GROUP BY username, taskname;

32.8.4 Task Priority Report View
Table 32–26 describes the WFTASKPRIORITY_VIEW report view.

LASTUPDATEDDATE DATE

1 For completed tasks, the state is null. Use decode(outcome, '', 'COMPLETED', outcome) in 
queries.

Table 32–26 Task Priority Report View

Name Type

TASKID1 VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

PRIORITY NUMBER

OUTCOME VARCHAR2(100)

ASSIGNEDDATE DATE

UPDATEDDATE DATE

Table 32–25 (Cont.) Task Productivity Report View

Name Type



Database Views for Oracle Workflow

32-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For example:

■ Query the number of tasks updated by each user in each task priority, as shown in 
Example 32–41.

Example 32–41 Number of Tasks Updated by Each User in Each Task Priority

SELECT updatedby, priority, count(taskid) FROM  WFTASKPRIORITY_VIEW GROUP
 BY  updatedby, priority;

■ Query task-to-outcome distribution, as shown in Example 32–42.

Example 32–42 Task-to-outcome Distribution

SELECT taskname, decode(outcome, '', 'COMPLETED', outcome),  count
 (taskid) FROM WFTASKPRIORITY_VIEW GROUP BY taskname, outcome;

■ Query the number of tasks updated by the given user in each priority, as shown in 
Example 32–43.

Example 32–43 Number of Tasks Updated by the Given User in Each Priority

SELECT priority, count(taskid) FROM WFTASKPRIORITY_VIEW WHERE
 updatedby='jstein' GROUP BY priority;

UPDATEDBY VARCHAR2(64)

1 NOT NULL column

Table 32–26 (Cont.) Task Priority Report View

Name Type



33

Integrating Microsoft Excel with a Human Task 33-1

33 Integrating Microsoft Excel with a Human
Task

This chapter describes how to integrate the enterprise system capabilities of Oracle 
SOA Suite with Microsoft Excel 2007. This integration enables you to invoke a BPEL 
process from Microsoft Excel and attach Microsoft Excel workbooks to workflow email 
notifications. You can configure this integration without having to switch between 
tools.

This chapter includes the following sections:

■ Section 33.1, "Configuring Your Environment for Invoking a BPEL Process from an 
Excel Workbook"

■ Section 33.2, "Attaching Excel Workbooks to Human Task Workflow Email 
Notifications"

33.1 Configuring Your Environment for Invoking a BPEL Process from an 
Excel Workbook

From an Excel workbook, you can invoke a BPEL process that is deployed in Oracle 
WebLogic. To perform this task, you install a plug-in of the Application Development 
Framework Desktop Integration (ADF-DI) on the same host as the Excel document 
that invokes the BPEL process. 

To enable this functionality, do the following:

33.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control
You use the Create Web Service Data Control Wizard to create the project.

To create an Oracle JDeveloper project of the type web service data control:
1. In JDeveloper, from the File menu, select New. The New Gallery dialog appears.

2. In the Categories section, expand Business Tier, then select Data Controls. The 
corresponding items appear in the Items pane.

3. In the Items pane, select Web Service Data Control and click OK. The Create Web 
Service Data Control Wizard appears.

4. Follow the instructions in the online Help for this wizard. As you follow these 
instructions, you are prompted to select the WSDL file and operations to use for 
this project.



Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook

33-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

33.1.2 How to Create a Dummy JSF Page
In this task you generate a page definition file. Note that the actual layout generated in 
the JSF file is not of a concern. Instead, you simply want to generate a page definition 
file that contains these controls and actions. This page definition is used later in the 
Excel file.

To create a dummy JSF page:
1. In JDeveloper, from the File menu, select New. The New Gallery dialog appears.

2. In the Categories section, from the Web Tier node, select JSF. The corresponding 
items appear in the Items pane.

3. In the Items pane, select JSF Page and then click OK. The Create JSF Page dialog 
appears.

4. Fill in the various fields by following the instructions in the online Help for this 
dialog.

5. When prompted, drag and drop from the Component Palette the controls and 
fields you are interested in using in the Excel document. 

For an example of how to perform this task, see "Task 3: Create a Valid Page Definition 
File to Be Used in the Excel Workbook" on page 33-13.

33.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project
To add Oracle ADF Desktop Integration to the technology scope of your project, use 
the Project Properties dialog in JDeveloper. 

To add Oracle ADF Desktop Integration to your project:
1. In the Application Navigator, right-click the project to which you want to add the 

Oracle ADF Desktop Integration module and choose Project Properties from the 
context menu. 

If your application uses the Fusion Web Application (ADF) application template, 
you select the ViewController project. If your application uses another application 
template, select the project that corresponds to the web application. 

2. In the Project Properties dialog, select Technology Scope to view the list of 
available technologies. 

3. Choose the ADF Desktop Integration and ADF Library Web Application 
Support project technologies and add them to the Selected Technologies list.

4. Click OK.

33.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project
When you add the Oracle ADF Desktop Integration module to the technology scope of 
your project, the following events occur: 

■ The project adds the Oracle ADF Desktop Integration runtime library. This library 
references the following .jar files in its class path:

– wsclient.jar

– adf-desktop-integration.jar

– resourcebundle.jar

■ The project adds an ADF bindings filter (adfBindings).   



Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook

Integrating Microsoft Excel with a Human Task 33-3

■ The project’s deployment descriptor (web.xml) is modified to include the 
following entries:

– A servlet named adfdiRemote

– A filter named adfdiExcelDownload

– A MIME mapping for Excel files (.xlsx and .xlsm)

The previous list is not exhaustive. Adding Oracle ADF Desktop Integration to a 
project makes other changes to web.xml. Note that some entries in web.xml are 
only added if they do not exist.

When you add ADF Library Web Application Support to the technology scope of your 
project, the project’s web.xml file is modified to include the entries shown in 
Example 33–1.

Example 33–1 web.xml File Entries

    <filter>
        <filter-name>ADFLibraryFilter</filter-name>
        <filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
    </filter>
    <filter-mapping>
        <filter-name>ADFLibraryFilter</filter-name>
        <url-pattern>/*</url-pattern>
        <dispatcher>FORWARD</dispatcher>
        <dispatcher>REQUEST</dispatcher>
    </filter-mapping>
    <servlet>
        <servlet-name>adflibResources</servlet-name>
        <servlet-class>oracle.adf.library.webapp.ResourceServlet</servlet-class>
    </servlet>
    <servlet-mapping>
        <servlet-name>adflibResources</servlet-name>
        <url-pattern>/adflib/*</url-pattern>
    </servlet-mapping>

Make sure that the filter for ADF Library Web Application Support 
(<filter-name>ADFLibraryFilter</filter-name>) appears below the 
adfdiExcelDownload filter entries in web.xml as shown in Example 33–2 so that 
integrated Excel workbooks can be downloaded from the Fusion web application.

Example 33–2 web.xml File Entries

<filter>
<filter-name>adfdiExcelDownload</filter-name>
<filter-class>oracle.adf.desktopintegration.filter.DIExcelDownloadFilter</filter-c
lass>
</filter>
<filter>
<filter-name>ADFLibraryFilter</filter-name>
<filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>

Note: The value for the url-pattern attribute of the 
servlet-mapping element for adfdiRemote must match the value 
of the RemoteServletPath workbook property described in Oracle 
Fusion Middleware Desktop Integration Developer's Guide for Oracle 
Application Development Framework.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

</filter>
...
<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsx</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsm</url-pattern>
</filter-mapping>
...
<filter-mapping>
<filter-name>ADFLibraryFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>

For more information about web.xml, see Oracle Fusion Middleware Desktop Integration 
Developer's Guide for Oracle Application Development Framework.

33.1.5 How to Deploy the Web Application You Created in Step 1
For an example of how to perform this task, see Section 33.2.3.5, "Task 5: Deploy the 
ADF Task Flow."

33.1.6 How to Install Microsoft Excel
Install Microsoft Excel by following the appropriate Microsoft documentation.

33.1.7 How to Install the Oracle ADF-Desktop Integration Plug-in
To perform this installation, follow the steps in Section 33.2.3.4, "Task 4: Prepare the 
Excel Workbook."

33.1.8 How to Specify the User Interface Controls and Create the Excel Workbook
For instructions see Section 33.2.3.4, "Task 4: Prepare the Excel Workbook."

33.2 Attaching Excel Workbooks to Human Task Workflow Email 
Notifications

As an alternative to using Oracle BPM Worklist, you can attach an Excel workbook 
with task details as part of a Human Task workflow email notification. In this case, the 
user receives an email about a new task. This email has an Excel workbook attached, 
and, when the user opens the attachment, they are directed to a login page--similar to 
that for Oracle BPM Worklist. The Excel workbook includes such task details as task 
ID, payload, and so on. Buttons correspond to the actions the user can perform, and 
clicking one of them invokes the corresponding BPEL process.

33.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email 
Notifications

To enable this functionality, do the following:



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-5

1. In Oracle JDeveloper, create an ADF task flow that corresponds to a particular 
human task activity in a BPEL process.

2. Modify the settings in the ADF-DI-enabled Excel sheet to point to the server on 
which the task flow is deployed, then save this Excel sheet as part of the .war file 
packaged for the ADF task flow. The steps for doing these things are covered in 
Section 33.2.3, "Example: Attaching an Excel Workbook to Email Notifications." 
Later, you use the page definition files generated in Section 33.1.2, "How to Create 
a Dummy JSF Page."

3. Enable the ADF task flow project for desktop integration and deploy it to the 
server.

33.2.2 What Happens During Runtime When You Enable Attachment of Excel 
Workbooks to Human Task Workflow Email Notifications

Note the following end-user experience during runtime: 

■ A user receives an email notification regarding a new task, with the Excel 
attachment. When the attachment is opened, the user is directed to a login page 
and prompted to enter a username and password. This login page is similar to the 
login page for Oracle BPM Worklist.

■ The Excel workbook loads up with the task details—for example, task identifier, 
payload, and so on. There are buttons corresponding to actions the user can take. 
Clicking one of these buttons starts the BPEL process in which the task is a step. 

Note the following runtime behaviors:

■ The Excel workbook is added as an attachment only when the flag include task 
attachments for the corresponding task is set to true. 

■ Before adding the Excel workbook as an attachment, runtime verifies that a digital 
signature is not enabled for the workflow.

■ When the ADF task flow is deployed to the server, such data as the hostname and 
port number of the task flow URI is registered in the database.

■ When an email notification is created, runtime retrieves from the database the 
hostname and port number of the application server and the context root of the 
task flow application. It uses this information to find the Excel workbook, 
workflow_name.xls.

33.2.3 Example: Attaching an Excel Workbook to Email Notifications
This section describes how to attach an Excel workbook to email notifications.

33.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities
In this task, you configure the web application to work with Oracle ADF-DI.

1. Create an ADF task flow project based on a human task. This creates a data control 
corresponding to the task, and .xml files corresponding to the task's structure. 
Figure 33–1 shows Oracle JDeveloper with a sample project open.

Note: Packaging the Excel workbook with the ADF task flow 
assumes that there is a one-to-one correspondence between the ADF 
task flow and the Excel sheet used for a workflow.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 33–1 Oracle JDeveloper with a Sample Project Open

2. Add Oracle ADF Desktop Integration to the project by following the instructions 
in Section 33.1.3, "How to Add Desktop Integration to Your Oracle JDeveloper 
Project."

Figure 33–2 illustrates the Oracle JDeveloper Project Properties dialog when you 
are adding Oracle ADF Desktop Integration to your project.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-7

Figure 33–2 Oracle JDeveloper Project Properties Dialog

3. When the technology scopes mentioned in Step 2 are added to the project, verify 
that the necessary events have occurred:

a. In the Application Navigator, right-click the project. 

b. Click Project Properties, then select Libraries and Classpath. 

c. Confirm that the entry ADF Desktop Integration Runtime exists and is 
checked. 

d. Select this library and click View. 

e. Confirm that the library references wsclient.jar and 
adf-desktop-integration.jar in its class path.

4. Confirm that the project's deployment descriptor—namely, web.xml—is modified 
to include the following entries: 

■ A servlet named adfdiRemote

■ A filter named adfdiExcelDownload

■ A MIME mapping for Excel files 

The previous list is not exhaustive. Adding ADF Desktop Integration and ADF 
Library Web Application Support to the project makes other changes to 
web.xml. Here is a sample snippet of the deployment descriptor:

<context-param>
        <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
        <param-value>client</param-value>
</context-param>
<context-param>
        <description>...</description>
        <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION
        </param-name>
        <param-value>false</param-value>



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

</context-param>
<context-param>
        <description>Whether the 'Generated by...' comment at the bottom of ADF
 Faces HTML pages should contain version number information.</description>
        <param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>
        <param-value>false</param-value>
</context-param>
<filter>
        <filter-name>trinidad</filter-name>
       <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter
       </filter-class>
</filter>
<filter>
        <filter-name>ADFLibraryFilter</filter-name>
        <filter-class>oracle.adf.library.webapp.LibraryFilter
        </filter-class>
</filter>
<filter>
        <filter-name>adfBindings</filter-name>
        <filter-class>oracle.adf.model.servlet.ADFBindingFilter
        </filter-class>
</filter>
<filter>
        <filter-name>adfdiExcelDownload</filter-name>
        <filter-class>
        oracle.adf.desktopintegration.filter.DIExcelDownloadFilter
        </filter-class>
</filter>
<filter-mapping>
        <filter-name>trinidad</filter-name>
        <servlet-name>Faces Servlet</servlet-name>
        <dispatcher>FORWARD</dispatcher>
        <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<filter-mapping>
        <filter-name>adfBindings</filter-name>
        <servlet-name>Faces Servlet</servlet-name>
        <dispatcher>FORWARD</dispatcher>
        <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<filter-mapping>
        <filter-name>trinidad</filter-name>
        <servlet-name>adfdiRemote</servlet-name>
</filter-mapping>
<filter-mapping>
        <filter-name>adfBindings</filter-name>
        <servlet-name>adfdiRemote</servlet-name>
</filter-mapping>
<filter-mapping>
        <filter-name>adfdiExcelDownload</filter-name>
        <url-pattern>*.xlsx</url-pattern>
</filter-mapping>
<filter-mapping>
        <filter-name>adfdiExcelDownload</filter-name>
        <url-pattern>*.xlsm</url-pattern>
</filter-mapping>

<filter-mapping>
            <filter-name>ADFLibraryFilter</filter-name>
            <url-pattern>/*</url-pattern>



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-9

            <dispatcher>FORWARD</dispatcher>
            <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<servlet>
        <servlet-name>Faces Servlet</servlet-name>
        <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
        <load-on-startup>1</load-on-startup>
</servlet>
<servlet>
        <servlet-name>resources</servlet-name>
        
<servlet-class>org.apache.myfaces.trinidad.webapp.ResourceServlet</servlet-clas
s>
</servlet>
<servlet>
        <servlet-name>adflibResources</servlet-name>
       
 <servlet-class>oracle.adf.library.webapp.ResourceServlet</servlet-class>
</servlet>
<servlet>
        <servlet-name>adfdiRemote</servlet-name>
        
<servlet-class>oracle.adf.desktopintegration.servlet.DIRemoteServlet</servlet-c
lass>
</servlet>
<servlet-mapping>
        <servlet-name>Faces Servlet</servlet-name>
        <url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
        <servlet-name>resources</servlet-name>
        <url-pattern>/adf/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
        <servlet-name>resources</servlet-name>
        <url-pattern>/afr/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
        <servlet-name>adflibResources</servlet-name>
        <url-pattern>/adflib/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
        <servlet-name>adfdiRemote</servlet-name>
        <url-pattern>/adfdiRemoteServlet</url-pattern>
</servlet-mapping>
<session-config>
        <session-timeout>35</session-timeout>
</session-config>
<mime-mapping>
        <extension>html</extension>
        <mime-type>text/html</mime-type>
</mime-mapping>
<mime-mapping>
        <extension>txt</extension>
        <mime-type>text/plain</mime-type>
</mime-mapping>
<mime-mapping>
        <extension>xlsx</extension>
        
<mime-type>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</m



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

ime-type>
</mime-mapping>
<mime-mapping>
        <extension>xlsm</extension>
        <mime-type>application/vnd.ms-excel.sheet.macroEnabled.12</mime-type>
</mime-mapping>

5. Add the following <auth-filter> entry to weblogic.xml.

<weblogic-web-app>
  <auth-filter>oracle.bpel.services.workflow.client.worklist.util.FDIFilter
</auth-filter>
  .
  .
</weblogic-web-app>

6. Click Save All. Right-click the project and click Rebuild. Make sure there are no 
compilation errors and the build completes successfully. 

The web application is now configured to work with Oracle ADF-DI.

33.2.3.2 Task 2: Set up Authentication
This task is required to add Oracle ADF-Desktop Integration to create a web session 
for an Excel workbook.

1. Add ADF security to your project:

a. From the Application menus, then Secure, then Configure ADF Security. 

b. Select ADF Authentication.

c. Click Finish.

2. Create a login page for the application:

a. From the directory ExpenseReportTaskFlow\public_html\, copy the 
file LoginPage.jsp to the directory project_home\public_html.

b. Refresh the view in Oracle JDeveloper.

c. Verify that the file LoginPage.jsp is visible. It should appear as illustrated 
in Figure 33–3.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-11

Figure 33–3 Oracle JDeveloper: Login.jsp File

3. Once you have added ADF security, confirm that the following entries are added 
to the web.xml file. If some entries are missing, add them manually. Note that 
form authentication, using the login page created in Step 2 of Section 33.2.3.2, 
"Task 2: Set up Authentication," is used.

<security-constraint>
        <web-resource-collection>
            <web-resource-name>allPages</web-resource-name>
            <url-pattern>/</url-pattern>
        </web-resource-collection>
        <auth-constraint>
            <role-name>Administrators</role-name>
        </auth-constraint>
    </security-constraint>
   <security-constraint>
        <web-resource-collection>
            <web-resource-name>adfAuthentication</web-resource-name>
            <url-pattern>/adfAuthentication</url-pattern>
        </web-resource-collection>
        <auth-constraint>



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

            <role-name>Administrators</role-name>
        </auth-constraint>
    </security-constraint>
    <login-config>
        <auth-method>FORM</auth-method>
        <realm-name>jazn.com</realm-name>
        <form-login-config>
            <form-login-page>/LoginPage.jsp</form-login-page>
            <form-error-page>/LoginPage.jsp</form-error-page>
        </form-login-config>
    </login-config>
    <security-role>
        <role-name>Administrators</role-name>
    </security-role>

Figure 33–4 shows how these entries appear graphically in the Web Application 
Deployment Descriptor dialog.

Figure 33–4 Oracle JDeveloper: Application Deployment Descriptor

4. For every logical security role added in web.xml, make a corresponding entry in 
weblogic.xml as follows:

<weblogic-web-app>
   
<auth-filter>oracle.bpel.services.workflow.client.worklist.util.FDIAuthFilter</
auth-filter>
   <security-role-assignment>
     <role-name>Administrators</role-name>
      <principal-name>fmwadmin</principal-name>
      <principal-name>users</principal-name>
    </security-role-assignment>
  .
  .
</weblogic-web-app>



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-13

5. Click Save All. 

The ADF task flow web application is now configured for login capability that can be 
used by the Excel workbook.

33.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel 
Workbook
The page definition file ExcelControlsPageDef.xml is used to create the Excel 
workbook. Perform the following steps:

1. Create a new Java class by following these steps:

a. Select Technologies, then select General, then select Simple Files, then select 
Java Class.

b. Specify details as follows:

Name: TaskRetrievers 

Package: (leave it as default)

Extends: oracle.bpel.services.workflow.client.worklist.excel.TasksRetriever 
(Click Browse to select this class.)

This creates a new Java class <default-package>.TasksRetriever.

2. Create a data control for this newly created Java class. This data control provides 
access to an API that retrieves all assigned tasks for a user. Figure 33–5 shows the 
menu for creating the data control.

Figure 33–5 Oracle JDeveloper: Creating a Data Control

3. Verify that the newly created data control TasksRetriever is visible in the Data 
Control palette in the lower portion of the Application Navigator. Figure 33–6 
shows the Application Navigator with the Data Control palette expanded.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 33–6 Oracle JDeveloper: Application Navigator with Data Control Palette 
Expanded

4. Create a new JSF JSP page--namely, ExcelControls.jspx. This generates a 
page definition that can be used by ADF-DI while authoring the Excel document. 
Figure 33–7 provides details.

Figure 33–7 Oracle JDeveloper: Creating a JSF JSP Page

5. Drag and drop the task node from the Data Controls palette to 
ExcelControls.jspx. Select Human Task, then select Complete task with 
payload. Figure 33–8 illustrates the sequence of menus you use. Click OK on 
dialogs that pop up. 



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-15

Figure 33–8 Oracle JDeveloper: Creating an ADF Read-Only Form

6. Drag and drop one or more task actions to the .jspx file. In this example, as 
illustrated in Figure 33–9, the actions APPROVE, REJECT, update, and Suspend 
are added to create the entries in the page definition.

Figure 33–9 Oracle JDeveloper: Configuring the Page Definition File

7. Drag and drop the retrieveTasksForUser() method from the Data Controls palette 
(expand the node TasksRetriever) to ExcelControls.jspx. For now, click OK on the 
Edit Action Binding dialog. This creates a binding in 
ExcelControlsPageDef.xml to extract all assigned tasks for the logged-in 
user. 



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8. Drag and drop TaskObject from the Data Control palette to ExcelControls.jspx to 
create an ADF read-only form. Verify that a corresponding <methodIterator> 
executable and <attributeValues> bindings are created in 
ExcelControlsPageDef.xml. Figure 33–10 provides details.

Figure 33–10 Oracle JDeveloper: Page Definition File

9. Depending on the number of task details to be exposed in the Excel workbook, 
drag and drop as many ADF controls as needed. In this example, you expose only 
as many task details as needed to develop a minimally-operational workbook.

10. Create a list binding in ExcelControlsPageDef.xml that can create a list of 
assigned tasks in the Excel workbook. Add the following entry to the 
<bindings> element in the page definition.

<list ListOperMode="navigation" 
        IterBinding="retrieveTasksForUserIterator" id="retrievedTaskList"
 StaticList="false">
      <AttrNames>
        <Item Value="taskNumber"/>
      </AttrNames>
    </list>

11. Similarly add the following list binding in ExcelControlsPageDef.xml that 
can be later used to create a list of an updatable table of expense items in the Excel 
workbook.

<list ListOperMode="navigation" IterBinding="ItemIterator"
 id="expenseItemsList" StaticList="false">



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-17

      <AttrNames>
        <Item Value="itemName"/>
      </AttrNames>
    </list>

12. Click Save All. Right-click the project and click Rebuild. Make sure that there are 
no compilation errors and the build completes successfully. 

33.2.3.4 Task 4: Prepare the Excel Workbook
To author the Excel workbook, follow these steps:

1. For information about desktop requirements for running the ADF-DI solution, 
read Section 3.1 of Oracle Fusion Middleware Desktop Integration Developer's Guide for 
Oracle Application Development Framework. 

2. Configure security for Excel:

a. Open Excel.

b. Click the Microsoft Office button, then click Excel Options. 

c. Click the Trust Center tab, then click Trust Center Settings.

d. Click the Macro Settings tab, then click the checkbox labeled Trust Access to 
the VBA project object model.

e. Click OK.

3. Run the setup tool that comes with the Oracle ADF-DI module. The setup tool is 
stored in the following folder: JDEV_
HOME\jdeveloper\adfdi\bin\excel\client.

4. Create a new Excel workbook in the directory project_home\public_html. 
Click View, then click Refresh. This displays the Excel workbook in Oracle 
JDeveloper.

5. Run the conversion command on the Excel workbook. The Oracle ADF-DI module 
stores the conversion tool, convert-adfdi-excel-solution.exe, in 
ORACLE_JDEVELOPER_HOME\jdeveloper\adfdi\bin\excel\convert. To 
convert the Excel workbook, execute the following command: 
convert-adfdi-excel-solution.exe <workbook.xlsx> -attach.

The Excel workbook is now enabled to use the Oracle ADF-DI framework.

6. Open the Excel workbook and choose a page definition. In this use case, the page 
definition is expensereporttaskflow_ExcelControlsPageDef. 
Figure 33–11 provides details.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 33–11 Excel: Page Definition Dialog

7. In the Document Actions pane, select Workbook Properties.

8. Specify ProtectedWebPage: http://application_
server:port//workflow/application_name/faces/app/logon. (Note 
that this URL is protected and triggers form authentication. See Section 33.2.3.2, 
"Task 2: Set up Authentication." )

Specify WebAppRoot: http://application_
server:port//workflow/application_name. Click OK. 

Figure 33–12 provides details. 



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-19

Figure 33–12 Excel: Setting WebAppRoot

For more information, see Oracle Fusion Middleware Desktop Integration Developer's 
Guide for Oracle Application Development Framework.

9. From the Document Actions pane, insert ADF Bindings to create the 
corresponding fields in the Excel workbook. For further details on specific 
components, see Oracle Fusion Middleware Desktop Integration Developer's Guide for 
Oracle Application Development Framework. For instance, insert binding 
retrievedTaskList to create a list of values. Figure 33–13 provides details.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 33–13 Excel: Creating s List of Values

10. Insert a methodAction binding to create a button in Excel. Figure 33–14 provides 
details.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-21

Figure 33–14 Excel: Inserting a methodAction Binding

11. Insert a tree binding to create an ADF Table component. A Table component is an 
updatable table of records in Excel. For instance, the list binding expenseItemsList 
is a candidate for a Table component. 

A completed Excel workbook for an expense report application looks similar to 
that shown in Figure 33–15.

See Also: Oracle Fusion Middleware Desktop Integration Developer's 
Guide for Oracle Application Development Framework for further 
information about creating and modifying a Table component.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 33–15 Excel Workbook Integrated with Oracle ADF-DI

12. Publish the workbook by following these steps:

a. On the toolbar, click Publish. The Publish Workbook dialog appears.

b. In the File name field, specify the name as workflow_name.xls. The 
workflow name is the value of the element WorkflowName specified in 
project_home\adfmsrc\hwtaskflow.xml. In this example, the name of 
the published Excel workbook is ExpenseReportTask.xls.

13. In Oracle JDeveloper, click View, then click Refresh. Verify that the published 
workbook is visible under Web Content, as illustrated in Figure 33–16. 



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-23

Figure 33–16 Oracle JDeveloper: Verifying Workbook Under WebContent

14. Click Save All. The ADF task flow is now ready for deployment.

33.2.3.5 Task 5: Deploy the ADF Task Flow
To deploy the ADF task flow, follow these steps:

1. For the Excel workbook to be sent as an attachment when a task is assigned, you 
must configure the corresponding task in the SCA Composite: 

a. In Oracle JDeveloper, open the SCA composite project that corresponds to the 
ADF task flow.

b. Open the .task file. 

c. In the Advanced tab of the Notification section of the Human Task Editor, 
verify that Send task attachments with email notifications checkbox is 
checked.

2. Deploy the application. To perform a deployment, right-click the SOA Composite, 
select Deploy, select the project name, and follow the pages on the deployment 
wizard.

3. Deploy the ADF task flow. In the Application Navigator, expand Projects, and 
select the application. Then select Deploy, then application_TaskFlow (In this 
example, the application task flow is ExpenseReportTaskFlow), then follow the 
pages on the deployment wizard. 

At this point, the ADF task flow is successfully deployed.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

33.2.3.6 Task 6: Test the Deployed Application
To test the deployed application, follow these steps:

1. Invoke the deployed SOA composite and verify that the assignee receives the 
Excel workbook as part of the email notification. Figure 33–17 provides details.

Figure 33–17 Excel Workbook Attached to an Email

2. Open the Excel workbook. You are directed to a login page (This is 
LoginPage.jsp from Section 33.1.2, "How to Create a Dummy JSF Page.") Enter 
your security credentials. Figure 33–18 provides details.

Note: To successfully open and execute the workbook, the user's 
desktop host should have the correct security policy and must run the 
caspol command to grant trust to the client assemblies hosted on the 
network share.



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-25

Figure 33–18 Desktop-Integrated Excel Workbook: Login Page

3. Examine the workbook to verify the following:

■ All the assigned tasks for the logged-in user are retrieved in the Excel 
workbook. Figure 33–19 provides details.

Figure 33–19 ADF Desktop-Integrated Excel Workbook with Assigned Tasks 



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ You can navigate to the needed task from the list of assigned tasks and update 
it as required. For instance, as illustrated in Figure 33–20, in the Expense 
Report application, you can upload new expense items. 

Figure 33–20 ADF Desktop-Integrated Excel Workbook Uploading New Items

■ The Status column in the workbook indicates if the upload was successful. 
Figure 33–21 provides details.

Figure 33–21 ADF Desktop-Integrated Excel Workbook



Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 33-27

Also, you can perform actions on the task by clicking Approve, Reject, 
Update, or Suspend. Figure 33–22 provides details.

Figure 33–22 Task Actions



Attaching Excel Workbooks to Human Task Workflow Email Notifications

33-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



34

Configuring Task List Portlets 34-1

34Configuring Task List Portlets

This chapter describes how to configure the task list portlets. This action enables you 
to review and act upon worklist tasks from an Oracle WebCenter portlet.

This chapter includes the following sections:

■ Section 34.1, "Introduction to Task List Portlets"

■ Section 34.2, "Deploying the Task List Portlet Producer Application to a Portlet 
Server"

■ Section 34.3, "Creating a Portlet Consumer Application for Embedding the Task 
List Portlet"

■ Section 34.4, "Passing Worklist Portlet Parameters"

34.1 Introduction to Task List Portlets
The worklist task list is exposed as a JSR-168 Web Services for Remote Portlets (WSRP) 
portlet and can be embedded in portal applications. This portlet enables you to check 
the business and personal ToDo tasks assigned to the user and take actions on the 
tasks. You build a consumer application that can consume the JSR-168 portlet hosted 
by the task list portlet producer application. Any consumer can consume the portlet 
after registering with the portlet producer (the Oracle WebLogic Server portlet server). 
The portlet also supports many customizations through parameters, which are 
described in Section 34.4, "Passing Worklist Portlet Parameters." Figure 34–1 shows the 
high level portlet deployment and usage. 



Deploying the Task List Portlet Producer Application to a Portlet Server

34-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 34–1 High Level Portlet Deployment and Usage

34.2 Deploying the Task List Portlet Producer Application to a Portlet 
Server

This section describes how to deploy and configure the task list portlet producer 
application on a managed portlet server.

34.2.1 Deployment Prerequisites
This section describes deployment prerequisites for the task list portlet producer 
application.

■ Since the task list portlet is a WSRP portlet producer application, it must be 
deployed on a managed server configured for deploying portlet producer 
applications. For this to occur, you must install Oracle WebCenter.

■ Oracle WebCenter and Oracle SOA Suite must be installed in different domains. 

■ If the task list portlet producer application is installed on the SOA server, you can 
skip the steps described in Section 34.2.3, "How to Connect the Task List Producer 
to the Remote SOA Server."

■ The task list portlet producer application is deployed on the Oracle WebLogic 
Server portlet server shown in Figure 34–1 (the host on which Oracle WebCenter is 
installed). The portlet server contacts the remote Oracle WebLogic Server SOA 
server to access the task list using remote Enterprise JavaBeans (EJB) calls. The 
portlet producer application EAR file is provided on the SOA server in the 
following directory:

Oracle_Home/SOA_Home/soa/applications

(for example, /fmwhome/AS11gR1SOA/soa/applications)

■ The shared library oracle.soa.workflow.wc must be targeted to the Oracle 
WebLogic Server portlet managed server. See Section 34.2.2, "How to Deploy the 
Task List Portlet Producer Application" for instructions.

Oracle WebLogic Server
(Portlet Server)

Managed Server with Oracle
WebCenter Installed

(Domain A)

Consumes the task list
portlet after registering
with the portlet server

Remote EJB Calls 
access the task list

Task List
retrieval for
logged-in user

Oracle WebLogic Server
(SOA Server)

Managed Server with Oracle
SOA Suite Installed

(Domain B)

Task List
Task List Portlet
(WSRP Portlet

Producer Application)

Portlet Consumer
Application



Deploying the Task List Portlet Producer Application to a Portlet Server

Configuring Task List Portlets 34-3

34.2.2 How to Deploy the Task List Portlet Producer Application

To deploy the task list portlet producer application:
1. Install Oracle WebCenter as described in Oracle Fusion Middleware Installation Guide 

for Oracle WebCenter.

2. For this administration domain, start both the Oracle WebLogic Administration 
Server and the Oracle WebLogic Server portlet managed server. See Oracle Fusion 
Middleware Administrator's Guide for instructions on starting administration and 
managed servers.

3. Because the task list portlet producer application uses the deployed library 
oracle.soa.workflow.wc, you must confirm that the library is targeted to the 
Oracle WebLogic Server portlet managed server. 

a. Log in to Oracle WebLogic Server Administration Console.

http://hostname:port/console

where hostname and port are the hostname and port for the Oracle 
WebLogic Server Administration Console.

b. Go to Deployments > oracle.soa.workflow.wc >Targets. 

c. See if WLS_Portlet is checked. If not, check it and save your updates.

4. Deploy the TaskListTaskFlow.ear file on the Oracle WebLogic Server portlet 
managed server. 

a. In the Domain Structure section, click Deployments.

b. In the Deployment section, click Install.

c. Navigate to and select to install TaskListTaskFlow.ear as an application. For 
example:

/Oracle_Home/SOA_Home/soa/applications/TaskListTaskFlow.ear

5. Ensure that the WSRP producer application is running by accessing the WSDL 
from a web browser:

http://server:port/TaskListTaskFlow/portlets/wsrp2?WSDL

34.2.3 How to Connect the Task List Producer to the Remote SOA Server
The task list portlet producer application communicates with the remote Oracle 
WebLogic Server SOA managed server to get the task list for the logged-in user. See 
Figure 34–1 for details. The task list portlet producer application uses remote EJB calls 
to the human workflow services API to achieve this. Therefore, you must configure the 
remote JNDI providers on the Oracle WebLogic Server on which Oracle WebCenter is 
installed.

34.2.3.1 How to Define the Foreign JNDI on the Oracle WebCenter Oracle WebLogic 
Server

To define the foreign JNDI on the Oracle WebCenter Oracle WebLogic Server:
1. Log in to Oracle WebLogic Server Administration Console:

http://remote_hostname:remote_port/console



Deploying the Task List Portlet Producer Application to a Portlet Server

34-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

where remote_hostname and remote_port are the hostname and port for the 
remote Oracle WebCenter Oracle WebLogic Server.

2. Navigate to Domain Structure > Services > Foreign JNDI Providers.

3. Click New.

4. In the Name field, enter ForeignJNDIProvider-SOA.

5. Click OK.

6. Click the ForeignJNDIProvider-SOA link.

The Settings for ForeignJNDIProvider-SOA page appears.

7. Enter values for the fields listed in Table 34–1, then click Save.

8. Click ForeignJNDIProvider-SOA.

9. Click the Links tab.

10. Under Foreign JNDI Links, click New.

The Create a Foreign JNDI Link page appears. 

11. Enter values for the fields listed in Table 34–2, and click OK.

12. Repeat Step 11 six times and enter the values shown in Table 34–3 for the Name, 
Local JNDI Name, and Remote JNDI Name fields.

Table 34–1 Parameters and Values

Field Description

Initial Context Factory Enter weblogic.jndi.WLInitialContextFactory.

Provider URL Enter t3://soa_hostname:soa_port/soa-infra.

Note: Replace soa_hostname and soa_port with the 
hostname and port for the remote Oracle WebLogic Server SOA 
server that includes the task list to retrieve.

User Enter weblogic.

Password Enter the password for the user.

Confirm Password Enter the same password again.

Table 34–2 Parameters and Values

Field Values

Name Enter RuntimeConfigService.

Local JNDI Name Enter RuntimeConfigService.

Remote JNDI Name Enter RuntimeConfigService.

Table 34–3 Parameters and Values

The...
Enter This Value in the Name, Local JNDI Name, and Remote JNDI Name 
Fields, and click OK...

First time ejb/bpel/services/workflow/TaskServiceBean

Second time ejb/bpel/services/workflow/TaskMetadataServiceBean

Third time TaskReportServiceBean

Fourth time TaskEvidenceServiceBean



Deploying the Task List Portlet Producer Application to a Portlet Server

Configuring Task List Portlets 34-5

For more information about configuring a foreign JNDI provider, see the Oracle Fusion 
Middleware Oracle WebLogic Server Administration Console Help.

34.2.3.2 How to Configure EJB Identity Propagation
The task list portlet producer application must be configured so that the 
already-authenticated user token in the consumer application is passed to the 
producer-managed server and then to the remote SOA server. This can be achieved by 
enabling global trust between the concerned domains. For more information about 
enabling cross domain security between Oracle WebLogic Server domains, see Oracle 
Fusion Middleware Securing Oracle WebLogic Server.

To configure EJB identity propagation:
1. To enable the global trust, log in to the Oracle WebLogic Server Administration 

Console of the Oracle WebCenter Oracle WebLogic Server.

2. On the left side of the page, select the domain name that you specified during 
installation (for example, soainfra).

3. Select Security, and expand the Advanced section.

4. Modify the domain credentials.

5. Log in to the Oracle WebLogic Server Administration Console of the SOA server 
Oracle WebLogic Server.

6. Modify the domain credentials of the SOA server and enter the same password as 
entered for the Oracle WebCenter server in Step 4.

7. Click Save.

34.2.3.3 How to Configure the Identity Store
You must configure the authenticator of the Oracle WebCenter Oracle WebLogic Server 
domain to point to the same identity provider used by the SOA server.

Note that either the user name used to log in to the consumer application must be 
present in the identity stores of the portlet server and SOA server or all three servers 
must point to the same identity store. The three impacted servers are as follows:

■ The Oracle SOA Suite managed server

■ The Oracle WebCenter managed server on which the task list portlet producer 
application is deployed

■ The server on which the portlet consumer application is deployed

The user first logs in to the consumer application. Therefore, the user must be present 
in the identity store of this server. Then, when the consumer application contacts the 
task list portlet producer application, it must propagate the user name to the Oracle 
WebCenter managed server. The same user name must also be present in the identity 
store of this server. Then, to fetch the Oracle SOA Suite data, the task list portlet 
producer application contacts the Oracle SOA Suite managed server. Therefore, it must 
again propagate the user name to the SOA server. Again, the same user name must be 

Fifth time TaskQueryService

Sixth time UserMetadataService

Table 34–3 (Cont.) Parameters and Values

The...
Enter This Value in the Name, Local JNDI Name, and Remote JNDI Name 
Fields, and click OK...



Deploying the Task List Portlet Producer Application to a Portlet Server

34-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

present in the identity store of the Oracle SOA Suite server. Alternatively, all the above 
servers can point to the same identity store.

To configure the identity store:
1. Log in to the Oracle WebLogic Server Administration Console of the Oracle 

WebCenter Oracle WebLogic Server. 

2. See Section "Reassociating the Identity Store with an External LDAP" of Oracle 
Fusion Middleware Administrator's Guide for Oracle WebCenter for instructions on 
configuring the identity store. 

3. Follow these instructions for all three servers.

34.2.4 How to Secure the Task List Portlet Producer Application Using Web Services 
Security 

You must perform the following tasks to secure the task list portlet producer 
application:

■ Enable WS-Security for the task list portlet producer application

■ Set up the certificate keystores

To secure the task list portlet producer application using web services security:
1. See Sections "Securing a WSRP Producer with WS-Security" and "Securing Oracle 

WebLogic Communication Services (OWLCS) with WS-Security" of Oracle Fusion 
Middleware Administrator's Guide for Oracle WebCenter for instructions on enabling 
WS-Security and setting up the certificate keystores.

While following the instructions in those sections, you access the following pages 
in Oracle Enterprise Manager Fusion Middleware Control Console.

a. In the navigator on the left side, select Farm_base_domain > WebLogic 
Domain.

where base_domain is the domain name for this example.

b. Right-click base_domain and select Security > Security Provider 
Configuration.

c. Access the Keystore section at the bottom of the provider configuration page 
and click Configure, as shown in Figure 34–2.

Note: Ensure that you copy the producer.jks file to a location in 
your file system that is running the task list portlet producer 
application. For the following example, the keystore is copied under 
domain_home/config/fmwconfig.



Deploying the Task List Portlet Producer Application to a Portlet Server

Configuring Task List Portlets 34-7

Figure 34–2 Keystore Section

d. Enter details for keystore management and identity certificates, as shown in 
Figure 34–3. Section "Securing a WSRP Producer with WS-Security" of Oracle 
Fusion Middleware Administrator's Guide for Oracle WebCenter provides specific 
details.

Figure 34–3 Keystore Configuration

e. When complete, click OK.

f. Restart the managed portlet server and the administration server for the 
managed portlet server.

34.2.5 How to Specify the Inbound Security Policy
You now specify the inbound security policy. This section assumes that the keystore 
configuration steps described in Section 34.2.4, "How to Secure the Task List Portlet 
Producer Application Using Web Services Security" have been completed.



Deploying the Task List Portlet Producer Application to a Portlet Server

34-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To specify the inbound security policy:
1. In Oracle Enterprise Manager Fusion Middleware Control Console under 

Application Deployments, navigate to the portlet producer application node.

2. Click Application Deployments > TaskListTaskFlow (WLS_Portlet).

3. Select menu > Application Deployments > Web Services.

4. Select the markup port from the page that is displayed, as shown in Figure 34–4.

Figure 34–4 Markup Port Selection

5. On the page that is displayed, click the Policies tab.

6. Click the Attach/Detach button.

7. Attach and detach policies appropriate to your use of the task list portlets 
producer application, as shown in Figure 34–5.

Figure 34–5 Policy Attachment and Detachment



Creating a Portlet Consumer Application for Embedding the Task List Portlet

Configuring Task List Portlets 34-9

8. Once complete, click OK in each open page.

9. Restart the managed server to which the task list portlet producer application is 
deployed.

34.3 Creating a Portlet Consumer Application for Embedding the Task 
List Portlet

You now create a portlet consumer application for embedding the task list portlet, as 
shown in Figure 34–1.

Ensure that you have already deployed and configured the task list portlet producer 
application as described in Section 34.2, "Deploying the Task List Portlet Producer 
Application to a Portlet Server" and verified that it is running. Note that the portlet 
consumer application can only be deployed on a managed server that has Oracle 
WebCenter installed.

34.3.1 How To Create a Portlet Consumer Application for Embedding the Task List 
Portlet

Follow these procedures to create a consumer application for embedding the task list 
portlet.

To create a portlet consumer application for embedding the task list portlet:
1. Create a new Oracle WebCenter application in Oracle JDeveloper:

a. From the File main menu, select New > Application.

b. Select WebCenter Application, and click OK.

c.  In the Application Name field, enter a name (for this example, 
TaskListConsumer is entered).

d. Click Finish.

2. Add a new JSPX page to the application consumer.jspx.

3. Register the WSRP producer with the consumer by dragging and dropping the 
portlet on consumer.jspx:

a. In the Application Navigator, right-click View Controller and select New.

b. Click Portlets under web tier.

c. Select WSRP Producer Registration in the right hand pane, as shown in 
Figure 34–6. 



Creating a Portlet Consumer Application for Embedding the Task List Portlet

34-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 34–6 WSRP Producer Registration

d. Click OK.

A Register WSRP Portlet Producer wizard is displayed. 

e. Click Next on the Welcome page.

f. Check the Application Resources button.

g. Provide a producer registration name, as shown in Figure 34–7.

Figure 34–7 Producer Name

h. Click Next.



Creating a Portlet Consumer Application for Embedding the Task List Portlet

Configuring Task List Portlets 34-11

i. Provide the following URL endpoint:

http://server:port/TaskListTaskFlow/portlets/wsrp2?WSDL

where server is the host on which the portal service is installed and port is 
the port on that server.

j. Enter proxy details appropriate to your environment.

Figure 34–8 provides details.

Figure 34–8 URL Endpoint

k. Click Next.

l. Specify the execution timeout, as shown in Figure 34–9. Oracle recommends 
that you specify a large value, such as 300 seconds. This reduces the chance of 
timeout exceptions occurring during runtime. 



Creating a Portlet Consumer Application for Embedding the Task List Portlet

34-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 34–9 Execution Timeout

m. Click Next.

The Configure Security Attributes page appears. 

n. From the Token Profile list, select a token profile appropriate to your 
environment. For example, select the SAML Token with Message Integrity 
token profile. The token profile selected must be the same as that selected 
when you configured WS-Security on the task list portlet producer 
application, as described in Section "Securing a WSRP Producer with 
WS-Security" of Oracle Fusion Middleware Administrator's Guide for Oracle 
WebCenter.

o. For the Configuration option, select Custom.

p. Specify the default user as fmwadmin and the issuer name as 
www.oracle.com, as shown in Figure 34–10.



Creating a Portlet Consumer Application for Embedding the Task List Portlet

Configuring Task List Portlets 34-13

Figure 34–10 Security Attribute Configuration

q. Copy consumer.jks to your local directory. 

r. Click the Browse button to select the consumer keystore (consumer.jks file) 
you used for configuring web service security for the producer application in 
Section 34.2.4, "How to Secure the Task List Portlet Producer Application 
Using Web Services Security." 

s. Complete the remaining fields. 

Figure 34–11 provides details.

Figure 34–11 Key Store Specification

t. Click Finish.



Creating a Portlet Consumer Application for Embedding the Task List Portlet

34-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The registered portlets appear under Application Resources.

u. Select the token profile based on the requirements of your application, as 
shown in Figure 34–12.

Figure 34–12 Token Profile Selection

v. Drag the task list portlet named Worklist onto the JSPX page 
consumer.jspx, as shown in Figure 34–13.

Figure 34–13 consumer.jspx

w. Specify the height and width for the task list portlet suitable for your page, as 
shown in Figure 34–14. This dialog typically appears at the bottom right when 
you select the portlet component that is dragged onto the page. If this dialog 
does not appear, select Property Inspector from the View main menu.



Creating a Portlet Consumer Application for Embedding the Task List Portlet

Configuring Task List Portlets 34-15

Figure 34–14 Height and Width Specifications for the Portlet

x. Right-click consumer.jspx in the designer and select Go to Page Definition, as 
shown in Figure 34–15.

Figure 34–15 Page Definition Selection

This takes you to consumerPageDef.xml.



Passing Worklist Portlet Parameters

34-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Provide values for the parameters described in Table 34–4. See Section 34.4, 
"Passing Worklist Portlet Parameters" for additional details.

Figure 34–16 provides details.

Figure 34–16 consumerPageDef.xml

5. Secure the Oracle WebCenter consumer application using ADF security by 
following the steps provided in chapter "Enabling ADF Security in a Fusion Web 
Application" of Oracle Fusion Middleware Fusion Developer's Guide for Oracle 
Application Development Framework (section "How to Enable Oracle ADF Security").

6. Configure the identity store of the embedded Oracle WebLogic Server of Oracle 
JDeveloper to point to that of the SOA server. You can do this by following the 
steps described in Section 34.2.3.3, "How to Configure the Identity Store."

7. Run the consumer.jspx consumer application page:

a. Right-click the consumer.jspx page. 

b. Select Run.

This starts the embedded Oracle WebLogic Server instance, deploys the 
consumer application, and shows the portlet in the consumer.jspx page. 

34.4 Passing Worklist Portlet Parameters
The task list portlet can accept certain parameters in the consumerPageDef.xml file. 
The consumer application for the task list region can do the following:

■ Pass some parameters to the producer application

■ Control the display behavior of the embedded region

Table 34–4 Parameters and Values

Parameter Description of Value

soaURL

Used when the 
SOA server and the 
portlet server are 
different. The task 
details for the ToDo 
task require this 
URL.

<variable Name="Worklist1_1_soaURL" Type="java.lang.Object"
DefaultValue="${'http://soa_host:soa_port')"/>

refreshURL

The complete URL 
of the page, 
including the task 
list portlet.

<variable Name="Worklist1_1_refreshURL" Type="java.lang.Object"
DefaultValue="${'http://soa_host:soa_port/HWTFConsumer/faces)



Passing Worklist Portlet Parameters

Configuring Task List Portlets 34-17

■ Pass parameters to filter the task list, such as a list of task types and a task 
attributes value list

Table 34–5 shows the display parameters.

Table 34–5 Display Parameters

Parameters Description Values Mandatory

displayColumnsLi
st

A comma separated string of the 
columns to be displayed in the task list 
table.

Possible values: 

■ title

■ number

■ priority

■ assignees

■ state

■ createdDate

■ expirationDate

See Section 34.4.2, "Example of File 
Containing All Column Constants" 
for an example.

No

localeSource Specifies whether to take language 
settings from the web browser or the 
identity settings.

Possible values:

■ identity (default)

■ browser 

No

refreshURL The complete URL of the page, 
including the task list portlet.

This is a mandatory parameter if 
showTaskDetailsPanel is set to 
true.

The task details in the task list region are 
shown in an inline frame. Therefore, if 
any action is taken on the task details 
page, it tries to refresh the task listing 
area. To do that, it refreshes the page 
URL in which the taskflow/portlet is 
contained. Since the taskflow does not 
know the URL of the container page, this 
URL must be passed as a parameter. If 
showTaskDetailsPanel is passed as 
false, this parameter is not required. 
You can get it by calling the 
getRequestURL() method on the 
HttpServletRequest/PortletRequ
est object.

Enter a value appropriate to your 
environment. See Section 34.4.2, 
"Example of File Containing All 
Column Constants" for an 
example.

Yes

showActionDropDo
wn

Specifies whether to display the Actions 
list on the toolbar.

Possible values:

■ true (default)

■ false 

No

showAssignmentFi
lter

Specifies whether to display the 
Assignment Filter Selection dropdown 
list in the toolbar.

Possible values:

■ true (default)

■ false 

No

showSearchContro
l

Specifies whether to display the Quick 
Search text field.

Possible values:

■ true (default)

■ false 

No



Passing Worklist Portlet Parameters

34-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 34–6 shows the filter parameters.

showStatusFilter Specifies whether to display the Task 
Status Filter Selection dropdown list in 
the toolbar.

Possible values:

■ true (default)

■ false 

No

showTaskDetailsP
anel

Specifies whether to display the task 
details panel.

Possible values:

■ true

■ false (default)

No

showViewFilter Specifies whether to display the View 
selection dropdown list in the toolbar.

Possible values:

■ true (default)

■ false

No

showViewsPanel Specifies whether to display the View 
selection panel.

Possible values:

■ true

■ false (default)

No

soaURL Used where the SOA server and the 
portlet server are different.

This is a mandatory parameter if 
showTaskDetailsPanel is set to 
true.

The task details for the ToDo task require 
this URL. This is because the ToDo task 
is an internal application and does not 
know the URL of the SOA server when 
accessed from an application deployed 
on a remote non-SOA Oracle WebLogic 
Server. The format is as follows:

http://soa_host:soa_port

Enter a value appropriate to your 
environment. See Section 34.4.2, 
"Example of File Containing All 
Column Constants" for an 
example.

Yes

sortColumn The name of the column to use for 
sorting tasks by default in the region.

The default value is 
createdDate. See Section 34.4.2, 
"Example of File Containing All 
Column Constants" for an 
example.

No

sortOrder Specifies whether to sort the task list in 
ascending or descending order.

Possible values:

■ asc 

■ desc (default)

No

wfCtxID Specifies the authenticated workflow 
context token.

Enter a value appropriate to your 
environment. See Section 34.4.2, 
"Example of File Containing All 
Column Constants" for an 
example.

No

Table 34–5 (Cont.) Display Parameters

Parameters Description Values Mandatory



Passing Worklist Portlet Parameters

Configuring Task List Portlets 34-19

For example, if you want to see the task with attribute filter values as priority = 1, 
status = ASSIGNED, and promoted mapped attribute textAttribute1 = 
NorthAmerica, then you set the values as follows:

attributeFilterList: priority=1, status=ASSIGNED, textAttribute1=NorthAmerica

and set the attribute filter operator as:

attributeFilterOperator: and

The parameters in Table 34–5 and Table 34–6 are defined in the page definition of the 
test JSPX page. Example 34–1 shows the consumerPageDef.xml page definition file 
syntax when the task list is consumed as a taskflow. The attribute value has the value 
of the parameter.

Example 34–1 Parameter Definition

<parameters>
        <parameter id="showViewsPanel" value="#{testBean.showViewsPanel}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="showTaskDetailsPanel"
                   value="#{testBean.showTaskDetailsPanel}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="wfCtxID" value="#{testBean.wfCtxID}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="soaHostName" value="#{testBean.soaHostName}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="soaPort" value="#{testBean.soaPort}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
       <parameter id="refreshURL" value="#{testBean.refreshURL}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="localeSource" value="#{testBean.localeSource}"
    xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="showActionDropdown" value="#{testBean.showActionDropdown}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="showViewFilter" value="#{testBean.showViewFilter}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>

Table 34–6 Filter Parameters

Parameters Description Values Mandatory

assignmentFilter Specifies the type of assignee. See Section 34.4.1, "Assignment 
Filter Constraints" for examples.

No

viewFilter Specifies the selected view for which the 
tasks are displayed.

Enter a custom value that you 
create or accept the default value 
of Inbox.

No

taskTypesFilterL
ist

A comma-separated list of task type 
values to display tasks of only the 
passed-in task types.

Enter a value appropriate to your 
environment.

No

attributesFilter
Operator

The join criterion (And/Or) used for 
searching the specified filter criteria.

Possible values:

■ and

■ or (default)

No

attributesFilter
List

The specified comma-separated list of 
name-value pairs used to filter tasks 
based on attribute values (the name is 
the task column name and the value is 
the column value).

See Section 34.4.2, "Example of File 
Containing All Column Constants" 
for an example.

No



Passing Worklist Portlet Parameters

34-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        <parameter id="showAssignmentFilter"
                   value="#{testBean.showAssignmentFilter}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="showStatusFilter" value="#{testBean.showStatusFilter}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="showSearchControl" value="#{testBean.showSearchControl}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="assignmentFilter" value="#{testBean.assignmentFilter}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="viewFilter" value="#{testBean.viewFilter}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="displayColumnsList" value="#{testBean.displayColumnsList}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="sortColumn" value="#{testBean.sortColumn}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="sortOrder" value="#{testBean.sortOrder}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="taskTypesFilterList"
                   value="#{testBean.taskTypesFilterList}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="attributesFilterOperator"
                   value="#{testBean.attributesFilterOperator}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/>
        <parameter id="attributesFilterList"
                   value="#{testBean.attributesFilterList}"
                   xmlns="http://xmlns.oracle.com/adfm/uimodel"/> 
      </parameters>

Example 34–2 shows the page definition code example in consumerPageDef.xml in 
which the task list is consumed as a portlet. The attribute DefaultValue has the 
value of the parameter.

Example 34–2 Task List is Consumed as a Portlet

<variableIterator id="variables"> 
 <variable Name="Worklist1_1_soaURL" Type="java.lang.Object"
 DefaultValue="${'http://<soa_host>:<soa_port>'}" /> 
 </variableIterator>

34.4.1 Assignment Filter Constraints
The following list shows the available assignment filter constraints.

■ My

■ Group

■ My+Group

■ Reportees

■ Creator

■ Owner

■ Reviewer

■ Previous

■ Admin



Passing Worklist Portlet Parameters

Configuring Task List Portlets 34-21

34.4.2 Example of File Containing All Column Constants
Example 34–3 shows a file example that contains all column constants that can be 
passed in the displayColumnList parameter. The constant value must be passed. 
For example, for TITLE_COLUMN = "title", the “title” must be passed, not the 
TITLE_COLUMN.

Example 34–3 All Column Constants That Can Be Passed in the displayColumnList 
Parameter

package oracle.bpel.services.workflow.repos.table;

public interface WFTaskConstants 
{
  public static final String TABLE_NAME = "WFTask";
  public static final String TL_TABLE_NAME = "WFTask_TL";
  public static final String HISTORY_TABLE_NAME = "WFTaskHistory"; 
  public static final String HISTORY_TL_TABLE_NAME = "WFTaskHistory_TL"; 
  public static final String ASSIGNEE_TABLE_NAME = "WFAssignee";
  public static final String REVIEWER_TABLE_NAME = "WFReviewer";
  
  public static final String WFCOMMENT_TABLE_NAME = "WFComments";
  public static final String WFATTRIBUTES_TABLE_NAME = "WFMessageAttribute";
  public static final String WFATTACHMENT_TABLE_NAME = "WFAttachment";
  public static final String WFCOLLECTIONTARGET_TABLE_NAME = "WFCollectionTarget";

//table aliases
  public static final String TABLE_ALIAS = "wfn";
  public static final String TL_TABLE_ALIAS = "wfntl";
  public static final String HISTORY_TABLE_ALIAS = "wfnh";
  public static final String HISTORY_TL_TABLE_ALIAS = "wfnhtl";
  public static final String WFCOMMENT_TABLE_ALIAS = "wfc";
  public static final String WFATTRIBUTES_TABLE_ALIAS = "wfma";
  public static final String WFATTACHMENT_TABLE_ALIAS = "wfatt";
  public static final String ASSIGNEE_TABLE_ALIAS = "wfa";
  public static final String REVIEWER_TABLE_ALIAS = "wfr";
  public static final String WFCOLLECTIONTARGET_TABLE_ALIAS = "wfct";

 //task table column
  public static final String ACCESSKEY_COLUMN = "accessKey";
  public static final String APPROVALDURATION_COLUMN = "approvalDuration";
  public static final String ACQUIREDBY_COLUMN = "acquiredBy";
  public static final String ASSIGNEDDATE_COLUMN = "assignedDate";
  public static final String APPROVERS_COLUMN = "approvers";
  public static final String ASSIGNEES_COLUMN = "assignees";
  public static final String ASSIGNEESDISPLAYNAME_COLUMN = "assigneesDisplayName";
  public static final String REVIEWERS_COLUMN = "reviewers";
  public static final String REVIEWERSDISPLAYNAME_COLUMN = "reviewersDisplayName";
  public static final String ASSIGNEEGROUPS_COLUMN = "assigneeGroups";
  public static final String ASSIGNEEGROUPSDISPLAYNAME_COLUMN =
 "assigneeGroupsDisplayName";
  public static final String ASSIGNEEUSERS_COLUMN = "assigneeUsers";
  public static final String ASSIGNEEUSERSDISPLAYNAME_COLUMN =
 "assigneeUsersDisplayName";
  public static final String OUTCOME_COLUMN = "outcome";
  public static final String PARALLELOUTCOMECOUNT_COLUMN = "parallelOutcomeCount";
  public static final String PUSHBACKSEQUENCE_COLUMN = "pushbackSequence";
  public static final String CREATEDDATE_COLUMN = "createdDate";
  public static final String ELAPSEDTIME_COLUMN = "elapsedTime";
  



Passing Worklist Portlet Parameters

34-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  public static final String DIGITALSIGNATUREREQUIRED_COLUMN =
 "digitalSignatureRequired";
  public static final String PASSWORDREQUIREDONUPDATE_COLUMN =
 "passwordRequiredOnUpdate";
  public static final String SECURENOTIFICATION_COLUMN = "secureNotifications";
  public static final String ENDDATE_COLUMN = "endDate";
  public static final String EXPIRATIONDATE_COLUMN = "expirationDate";
  public static final String EXPIRATIONDURATION_COLUMN = "expirationDuration";
  public static final String IDENTITYCONTEXT_COLUMN = "identityContext";
  public static final String FROMUSER_COLUMN = "fromUser";
  public static final String FROMUSERDSIPLAYNAME_COLUMN = "fromUserDisplayName";
  public static final String HASSUBTASK_COLUMN = "hasSubtask";
  public static final String INSHORTHISTORY_COLUMN = "inShortHistory";
  public static final String ISGROUP_COLUMN = "isGroup";
  public static final String LANGUAGE_COLUMN = "language";
  public static final String MAILSTATUS_COLUMN = "mailStatus";
  public static final String MOREINFOROLE_COLUMN = "moreInfoRole";
  public static final String NUMBEROFTIMESMODIFIED_COLUMN =
 "numberOfTimesModified";
  public static final String ORIGINALASSIGNEEUSER_COLUMN = "originalAssigneeUser";
  public static final String REQUESTINFOUSER_COLUMN = "requestInfoUser";
  public static final String STATE_COLUMN = "State";
  public static final String SUBSTATE_COLUMN = "SubState";
  public static final String SYSTEMSTRING1_COLUMN = "systemString1";
  public static final String SYSTEMSTRING2_COLUMN = "systemString2";
  public static final String SYSTEMSTRING3_COLUMN = "SystemString3";
  public static final String TASKGROUPID_COLUMN = "taskGroupId";
  public static final String TASKID_COLUMN = "taskId";
  public static final String VERSION_COLUMN = "version";
  public static final String TASKNUMBER_COLUMN = "taskNumber";
  public static final String UPDATEDBY_COLUMN = "updatedBy";

  public static final String UPDATEDBYDISPLAYNAME_COLUMN = "updatedByDisplayName";
  public static final String UPDATEDDATE_COLUMN = "updatedDate";
  public static final String UPDATEDNOTIFICATIONID_COLUMN =
 "updatedNotificationId";
  public static final String VERSIONREASON_COLUMN = "versionReason";
  public static final String WORKFLOWPATTERN_COLUMN = "workflowPattern";
  public static final String CALLBACKCONTEXT_COLUMN = "callbackContext";
  public static final String CALLBACKID_COLUMN = "callbackId";
  public static final String CALLBACKTYPE_COLUMN = "callbackType";
  public static final String CREATOR_COLUMN = "creator";
  public static final String OWNERUSER_COLUMN = "ownerUser";
  public static final String OWNERGROUP_COLUMN = "ownerGroup";
  public static final String OWNERROLE_COLUMN = "ownerRole";
  public static final String PRIORITY_COLUMN = "priority";
  public static final String DOMAINID_COLUMN = "domainId";
  public static final String INSTANCEID_COLUMN = "instanceId";
  public static final String PROCESSID_COLUMN = "processId";
  public static final String PROCESSNAME_COLUMN = "processName";
  public static final String PROCESSTYPE_COLUMN = "processType";
  public static final String PROCESSVERSION_COLUMN = "processVersion";
  public static final String TITLE_COLUMN = "title";
  public static final String TITLERESOURCEKEY_COLUMN = "titleResourceKey";
  public static final String IDENTIFICATIONKEY_COLUMN = "identificationKey";
  public static final String USERCOMMENT_COLUMN = "userComment";
  public static final String WORKFLOWDESCRIPTORURI_COLUMN =
 "workflowDescriptorURI";
  public static final String TASKDEFINITIONID_COLUMN = "taskDefinitionId";
  public static final String TASKDEFINITIONNAME_COLUMN = "taskDefinitionName";



Passing Worklist Portlet Parameters

Configuring Task List Portlets 34-23

  
  // start columns added for AS11
  public static final String APPLICATIONCONTEXT_COLUMN  = "applicationContext";
  public static final String APPLICATIONNAME_COLUMN  = "applicationName";
  public static final String ASSIGNEETYPE_COLUMN = "assigneeType";
  public static final String CATEGORY_COLUMN = "category";
  public static final String COMPONENTNAME_COLUMN  = "componentName";
  public static final String COMPOSITEDN_COLUMN  = "compositeDN";
  public static final String COMPOSITEINSTANCEID_COLUMN  = "compositeInstanceId";
  public static final String COMPOSITENAME_COLUMN  = "compositeName";
  public static final String COMPOSITEVERSION_COLUMN  = "compositeVersion";
  public static final String CONVERSATIONID_COLUMN  = "conversationId";
  public static final String DUEDATE_COLUMN  = "dueDate";
  public static final String ECID_COLUMN  = "ecId";
  public static final String ISPUBLIC_COLUMN  = "isPublic";
  public static final String ISTESTTASK_COLUMN  = "isTestTask";
  public static final String PARENTCOMPONENTINSTANCEID_COLUMN  =
 "parentComponentInstanceId";
  public static final String PARENTCOMPONENTINSTANCEREFID_COLUMN  =
 "parentComponentInstRefId";
  public static final String INVOKEDCOMPONENT_COLUMN  = "invokedComponent";
  public static final String PARTICIPANTNAME_COLUMN  = "participantName";
  public static final String PERCENTAGECOMPLETE_COLUMN  = "percentageComplete";
  public static final String READBYUSERS_COLUMN  = "readByUsers";
  public static final String STARTDATE_COLUMN  = "startDate";
  public static final String PARENTTASKVERSION_COLUMN  = "parentTaskVersion";
  public static final String TASKGROUPINSTANCEID_COLUMN  = "taskGroupInstanceId";
  public static final String SUBTASKGROUPINSTANCEID_COLUMN  =
 "subTaskGroupInstanceId";
  public static final String AG_ROOTID_COLUMN = "agRootId";
  public static final String AG_MILESTONE_PATH_COLUMN = "agMileStonePath";
  public static final String ROOTTASKID_COLUMN = "rootTaskId";
  public static final String PARENTTASKID_COLUMN = "parentTaskId";
  public static final String SYSTEMSTRINGACTIONS_COLUMN = "systemStringActions";
  public static final String SUBCATEGORY_COLUMN  = "subCategory";
  public static final String CORRELATIONID_COLUMN = "correlationId";
  public static final String TASKDISPLAYURL_COLUMN = "taskDisplayUrl";
  public static final String STAGE_COLUMN = "stage";
  public static final String ASSIGNMENTCONTEXT_COLUMN = "assignmentContext";
  public static final String PREACTIONUSERSTEPS_COLUMN = "preActionUserSteps";
  public static final String AGGREGATIONTASKID_COLUMN = "aggregationTaskId";
  public static final String MDSLABEL_COLUMN = "mdsLabel";
  public static final String ISTEMPLATETASK_COLUMN = "isTemplateTask";
  
  /* Columns for instance locator service */
  public static final String COMPONENTTYPE_COLUMN = "componentType";
  public static final String ACTIVTYNAME_COLUMN = "activityName";
  public static final String ACTIVTYID_COLUMN = "activityId";
  public static final String PROCESSDUEDATE_COLUMN = "processDueDate";
  public static final String THREAD_COLUMN = "thread";
  public static final String PARENTTHREAD_COLUMN = "parentThread";
  public static final String STEP_COLUMN = "step";

  public static final String TASKNAMESPACE_COLUMN = "taskNamespace";
  // SERVERNAME_COLUMN is pseudo column, it does not exist in the table,
  // colunm can be used for sorting on client side by FederatedTaskQuerySerive in
 Ordering
  public static final String SERVERNAME_COLUMN = "serverName"; 
  // end columns added for AS11
  



Passing Worklist Portlet Parameters

34-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  public static final String TEXTATTRIBUTE1_COLUMN = "textAttribute1";
  public static final String TEXTATTRIBUTE2_COLUMN = "textAttribute2";
  public static final String TEXTATTRIBUTE3_COLUMN = "textAttribute3";
  public static final String TEXTATTRIBUTE4_COLUMN = "textAttribute4";
  public static final String TEXTATTRIBUTE5_COLUMN = "textAttribute5";
  public static final String TEXTATTRIBUTE6_COLUMN = "textAttribute6";
  public static final String TEXTATTRIBUTE7_COLUMN = "textAttribute7";
  public static final String TEXTATTRIBUTE8_COLUMN = "textAttribute8";
  public static final String TEXTATTRIBUTE9_COLUMN = "textAttribute9";
  public static final String TEXTATTRIBUTE10_COLUMN = "textAttribute10";
  public static final String FORMATTRIBUTE1_COLUMN = "formAttribute1";
  public static final String FORMATTRIBUTE2_COLUMN = "formAttribute2";
  public static final String FORMATTRIBUTE3_COLUMN = "formAttribute3";
  public static final String FORMATTRIBUTE4_COLUMN = "formAttribute4";
  public static final String FORMATTRIBUTE5_COLUMN = "formAttribute5";
  public static final String URLATTRIBUTE1_COLUMN ="urlAttribute1";
  public static final String URLATTRIBUTE2_COLUMN ="urlAttribute2";
  public static final String URLATTRIBUTE3_COLUMN ="urlAttribute3";
  public static final String URLATTRIBUTE4_COLUMN ="urlAttribute4";
  public static final String URLATTRIBUTE5_COLUMN ="urlAttribute5";
  public static final String DATEATTRIBUTE1_COLUMN ="dateAttribute1";
  public static final String DATEATTRIBUTE2_COLUMN ="dateAttribute2";
  public static final String DATEATTRIBUTE3_COLUMN ="dateAttribute3";
  public static final String DATEATTRIBUTE4_COLUMN ="dateAttribute4";
  public static final String DATEATTRIBUTE5_COLUMN ="dateAttribute5";
  public static final String NUMBERATTRIBUTE1_COLUMN ="numberAttribute1";
  public static final String NUMBERATTRIBUTE2_COLUMN ="numberAttribute2";
  public static final String NUMBERATTRIBUTE3_COLUMN ="numberAttribute3";
  public static final String NUMBERATTRIBUTE4_COLUMN ="numberAttribute4";
  public static final String NUMBERATTRIBUTE5_COLUMN ="numberAttribute5";
  public static final String PROTECTEDTEXTATTRIBUTE1_COLUMN  =
 "protectedTextAttribute1";
  public static final String PROTECTEDTEXTATTRIBUTE2_COLUMN  =
 "protectedTextAttribute2";
  public static final String PROTECTEDTEXTATTRIBUTE3_COLUMN  =
 "protectedTextAttribute3";
  public static final String PROTECTEDTEXTATTRIBUTE4_COLUMN  =
 "protectedTextAttribute4";
  public static final String PROTECTEDTEXTATTRIBUTE5_COLUMN  =
 "protectedTextAttribute5";
  public static final String PROTECTEDTEXTATTRIBUTE6_COLUMN  =
 "protectedTextAttribute6";
  public static final String PROTECTEDTEXTATTRIBUTE7_COLUMN  =
 "protectedTextAttribute7";
  public static final String PROTECTEDTEXTATTRIBUTE8_COLUMN  =
 "protectedTextAttribute8";
  public static final String PROTECTEDTEXTATTRIBUTE9_COLUMN  =
 "protectedTextAttribute9";
  public static final String PROTECTEDTEXTATTRIBUTE10_COLUMN =
 "protectedTextAttribute10";
  public static final String PROTECTEDFORMATTRIBUTE1_COLUMN  =
 "protectedFormAttribute1";
  public static final String PROTECTEDFORMATTRIBUTE2_COLUMN  =
 "protectedFormAttribute2";
  public static final String PROTECTEDFORMATTRIBUTE3_COLUMN  =
 "protectedFormAttribute3";
  public static final String PROTECTEDFORMATTRIBUTE4_COLUMN  =
 "protectedFormAttribute4";
  public static final String PROTECTEDFORMATTRIBUTE5_COLUMN  =
 "protectedFormAttribute5";



Passing Worklist Portlet Parameters

Configuring Task List Portlets 34-25

  public static final String PROTECTEDURLATTRIBUTE1_COLUMN   =
 "protectedUrlAttribute1";
  public static final String PROTECTEDURLATTRIBUTE2_COLUMN   =
 "protectedUrlAttribute2";
  public static final String PROTECTEDURLATTRIBUTE3_COLUMN   =
 "protectedUrlAttribute3";
  public static final String PROTECTEDURLATTRIBUTE4_COLUMN
 ="protectedUrlAttribute4";
  public static final String PROTECTEDURLATTRIBUTE5_COLUMN
 ="protectedUrlAttribute5";
  public static final String PROTECTEDDATEATTRIBUTE1_COLUMN
 ="protectedDateAttribute1";
  public static final String PROTECTEDDATEATTRIBUTE2_COLUMN
 ="protectedDateAttribute2";
  public static final String PROTECTEDDATEATTRIBUTE3_COLUMN
 ="protectedDateAttribute3";
  public static final String PROTECTEDDATEATTRIBUTE4_COLUMN
 ="protectedDateAttribute4";
  public static final String PROTECTEDDATEATTRIBUTE5_COLUMN
 ="protectedDateAttribute5";
 public static final String PROTECTEDNUMBERATTRIBUTE1_COLUMN
 ="protectedNumberAttribute1";
  public static final String PROTECTEDNUMBERATTRIBUTE2_COLUMN
 ="protectedNumberAttribute2";
  public static final String PROTECTEDNUMBERATTRIBUTE3_COLUMN
 ="protectedNumberAttribute3";
  public static final String PROTECTEDNUMBERATTRIBUTE4_COLUMN
 ="protectedNumberAttribute4";
  public static final String PROTECTEDNUMBERATTRIBUTE5_COLUMN
 ="protectedNumberAttribute5";
  
  /*
   * Flexfield columns added for AS11
   */
  public static final String TEXTATTRIBUTE11_COLUMN = "textAttribute11";
  public static final String TEXTATTRIBUTE12_COLUMN = "textAttribute12";
  public static final String TEXTATTRIBUTE13_COLUMN = "textAttribute13";
  public static final String TEXTATTRIBUTE14_COLUMN = "textAttribute14";
  public static final String TEXTATTRIBUTE15_COLUMN = "textAttribute15";
  public static final String TEXTATTRIBUTE16_COLUMN = "textAttribute16";
  public static final String TEXTATTRIBUTE17_COLUMN = "textAttribute17";
  public static final String TEXTATTRIBUTE18_COLUMN = "textAttribute18";
  public static final String TEXTATTRIBUTE19_COLUMN = "textAttribute19";
  public static final String TEXTATTRIBUTE20_COLUMN = "textAttribute20";
  public static final String FORMATTRIBUTE6_COLUMN  = "formAttribute6";
  public static final String FORMATTRIBUTE7_COLUMN  = "formAttribute7";
  public static final String FORMATTRIBUTE8_COLUMN  = "formAttribute8";
  public static final String FORMATTRIBUTE9_COLUMN  = "formAttribute9";
  public static final String FORMATTRIBUTE10_COLUMN = "formAttribute10";
  public static final String URLATTRIBUTE6_COLUMN  ="urlAttribute6";
  public static final String URLATTRIBUTE7_COLUMN  ="urlAttribute7";
  public static final String URLATTRIBUTE8_COLUMN  ="urlAttribute8";
  public static final String URLATTRIBUTE9_COLUMN  ="urlAttribute9";
  public static final String URLATTRIBUTE10_COLUMN ="urlAttribute10";
  public static final String DATEATTRIBUTE6_COLUMN  ="dateAttribute6";
  public static final String DATEATTRIBUTE7_COLUMN  ="dateAttribute7";
  public static final String DATEATTRIBUTE8_COLUMN  ="dateAttribute8";
  public static final String DATEATTRIBUTE9_COLUMN  ="dateAttribute9";
  public static final String DATEATTRIBUTE10_COLUMN ="dateAttribute10";
  public static final String NUMBERATTRIBUTE6_COLUMN  ="numberAttribute6";



Passing Worklist Portlet Parameters

34-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  public static final String NUMBERATTRIBUTE7_COLUMN  ="numberAttribute7";
  public static final String NUMBERATTRIBUTE8_COLUMN  ="numberAttribute8";
  public static final String NUMBERATTRIBUTE9_COLUMN  ="numberAttribute9";
  public static final String NUMBERATTRIBUTE10_COLUMN ="numberAttribute10";
  public static final String PROTECTEDTEXTATTRIBUTE11_COLUMN =
 "protectedTextAttribute11";
  public static final String PROTECTEDTEXTATTRIBUTE12_COLUMN =
 "protectedTextAttribute12";
  public static final String PROTECTEDTEXTATTRIBUTE13_COLUMN =
 "protectedTextAttribute13";
  public static final String PROTECTEDTEXTATTRIBUTE14_COLUMN =
 "protectedTextAttribute14";
  public static final String PROTECTEDTEXTATTRIBUTE15_COLUMN =
 "protectedTextAttribute15";
  public static final String PROTECTEDTEXTATTRIBUTE16_COLUMN =
 "protectedTextAttribute16";
  public static final String PROTECTEDTEXTATTRIBUTE17_COLUMN =
 "protectedTextAttribute17";
 public static final String PROTECTEDTEXTATTRIBUTE18_COLUMN =
 "protectedTextAttribute18";
  public static final String PROTECTEDTEXTATTRIBUTE19_COLUMN =
 "protectedTextAttribute19";
  public static final String PROTECTEDTEXTATTRIBUTE20_COLUMN =
 "protectedTextAttribute20";
  public static final String PROTECTEDFORMATTRIBUTE6_COLUMN  =
 "protectedFormAttribute6";
  public static final String PROTECTEDFORMATTRIBUTE7_COLUMN  =
 "protectedFormAttribute7";
  public static final String PROTECTEDFORMATTRIBUTE8_COLUMN  =
 "protectedFormAttribute8";
  public static final String PROTECTEDFORMATTRIBUTE9_COLUMN  =
 "protectedFormAttribute9";
  public static final String PROTECTEDFORMATTRIBUTE10_COLUMN =
 "protectedFormAttribute10";
  public static final String PROTECTEDURLATTRIBUTE6_COLUMN  =
 "protectedUrlAttribute6";
  public static final String PROTECTEDURLATTRIBUTE7_COLUMN  =
 "protectedUrlAttribute7";
  public static final String PROTECTEDURLATTRIBUTE8_COLUMN  =
 "protectedUrlAttribute8";
  public static final String PROTECTEDURLATTRIBUTE9_COLUMN  =
 "protectedUrlAttribute9";
  public static final String PROTECTEDURLATTRIBUTE10_COLUMN =
 "protectedUrlAttribute10";
  public static final String PROTECTEDDATEATTRIBUTE6_COLUMN  =
 "protectedDateAttribute6";
  public static final String PROTECTEDDATEATTRIBUTE7_COLUMN  =
 "protectedDateAttribute7";
  public static final String PROTECTEDDATEATTRIBUTE8_COLUMN  =
 "protectedDateAttribute8";
  public static final String PROTECTEDDATEATTRIBUTE9_COLUMN  =
 "protectedDateAttribute9";
  public static final String PROTECTEDDATEATTRIBUTE10_COLUMN =
 "protectedDateAttribute10";
  public static final String PROTECTEDNUMBERATTRIBUTE6_COLUMN 
 ="protectedNumberAttribute6";
  public static final String PROTECTEDNUMBERATTRIBUTE7_COLUMN 
 ="protectedNumberAttribute7";
  public static final String PROTECTEDNUMBERATTRIBUTE8_COLUMN 
 ="protectedNumberAttribute8";



Passing Worklist Portlet Parameters

Configuring Task List Portlets 34-27

  public static final String PROTECTEDNUMBERATTRIBUTE9_COLUMN 
 ="protectedNumberAttribute9";
  public static final String PROTECTEDNUMBERATTRIBUTE10_COLUMN
 ="protectedNumberAttribute10";
  
  // TL table related columns
  
  public static final String LOCALE_COLUMN = "locale";  
  
  //assignee table column
  public static final String ASSIGNEE_ASSIGNEE_COLUMN = "assignee";
  
  
  public static final String WFCOMMENT_COMMENTDATE_COLUMN= "commentDate";
  public static final String WFCOMMENT_ACTION_COLUMN= "action";
  public static final String WFCOMMENT_WFCOMMENT_COLUMN= "wfcomment";
  public static final String WFCOMMENT_DISPLAYNAMELANGUAGE_COLUMN=
 "displayNameLanguage";
  public static final String WFCOMMENT_ACL_COLUMN= "acl";
  
  
  public static final String MAXVERSION_COLUMN= "maxVersion";
  public static final String WFATTRIBUTES_NAME_COLUMN= "name";
  public static final String WFATTRIBUTES_STORAGETYPE_COLUMN= "storageType";
  public static final String WFATTRIBUTES_ENCODING_COLUMN= "encoding";
  public static final String WFATTRIBUTES_STRINGVALUE_COLUMN= "stringValue";
  public static final String WFATTRIBUTES_NUMBERVALUE_COLUMN= "numberValue";
  public static final String WFATTRIBUTES_DATEVALUE_COLUMN= "dateValue";
  public static final String WFATTRIBUTES_BLOBVALUE_COLUMN= "blobValue";
  public static final String WFATTRIBUTES_ELEMENTSEQ_COLUMN= "elementSeq";
  
  //attachment columns
  public static final String WFATTACHMENT_ENCODING_COLUMN= "encoding";
  public static final String WFATTACHMENT_URI_COLUMN= "uri";
  public static final String WFATTACHMENT_CONTENT_COLUMN= "content";
  public static final String WFATTACHMENT_NAME_COLUMN= "name";
  public static final String WFATTACHMENT_ACL_COLUMN= "acl";
  
  //collection target columns
  public static final String WFCOLLECTIONTARGET_ID_COLUMN= "id";
  public static final String WFCOLLECTIONTARGET_XPATH_COLUMN= "xpath";
  public static final String WFCOLLECTIONTARGET_COLLECTIONNAME_COLUMN=
 "collectionName";
  public static final String WFCOLLECTIONTARGET_COLLECTIONNAMESPACE_COLUMN=
 "collectionNamespace";  
  public static final String WFCOLLECTIONTARGET_TYPE_COLUMN= "type";
  public static final String WFCOLLECTIONTARGET_TARGETINDEX_COLUMN= "targetIndex";
  public static final String WFCOLLECTIONTARGET_KEYLIST_COLUMN= "keyList";
  public static final String WFCOLLECTIONTARGET_REFERENCEDTASKID_COLUMN=
 "referencedTaskId";
  public static final String WFCOLLECTIONTARGET_TASKAGGREGATIONID_COLUMN=
 "taskAggregationId";
  public static final String WFCOLLECTIONTARGET_ACTION_COLUMN= "action";
  public static final String WFCOLLECTIONTARGET_ACTIONPARAMS_COLUMN=
 "actionParams";

  public static final String ASSIGNEETYPE_SEPARATOR_STRING = ",";
  
}



Passing Worklist Portlet Parameters

34-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Part VI
Part VI Using Binding Components

This section describes how to use binding components.

This part contains the following chapters:

■ Chapter 35, "Getting Started with Binding Components"

■ Chapter 36, "Integrating Enterprise JavaBeans with SOA Composite Applications"

■ Chapter 37, "Using the Direct Binding Invocation API"





35

Getting Started with Binding Components 35-1

35Getting Started with Binding Components

This chapter provides a high-level overview of supported binding component types 
and technologies that you can integrate in a SOA composite application. This chapter 
also provides references to documentation that more fully describes these 
technologies.

This chapter includes the following sections:

■ Section 35.1, "Introduction to Binding Components"

■ Section 35.2, "Introduction to Integrating a Binding Component in a SOA 
Composite Application"

35.1 Introduction to Binding Components
Binding components establish the connection between a SOA composite application 
and the external world. There are two types of binding components:

■ Services

Provide the outside world with an entry point to the SOA composite application. 
The WSDL file of the service advertises its capabilities to external applications. 
These capabilities are used for contacting the SOA composite application 
components. The binding connectivity of the service describes the protocols that 
can communicate with the service (for example, SOAP/HTTP or a JCA adapter).

■ References

Enable messages to be sent from the SOA composite application to external 
services in the outside world.

Figure 35–1 shows the OrderBookingComposite project in the Fusion Order Demo in 
which a service (UpdateOrderStatus) in the Exposed Services swimlane provides the 
entry point to the composite and a reference (BAM_OrderDO) in the External 
References swimlane enables information to be sent to an Oracle Business Activity 
Monitoring (BAM) Server in the outside world.

Figure 35–1 Service and Reference Binding Components



Introduction to Binding Components

35-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Binding components enable you to integrate the following types of technologies with 
SOA composite applications:

■ Web services

■ HTTP binding

■ JCA adapters

■ Oracle Business Activity Monitoring (BAM)

■ Oracle B2B

■ ADF-BC services

■ EJB services

■ Direct binding services

These technologies are described in the following sections.

35.1.1 Web Services
This service enables you to integrate applications with a standards-based web service 
using SOAP over HTTP. Web services are described in the WSDL file.

Dragging a web service into a swimlane of the SOA Composite Editor invokes the 
Create Web Service dialog for specifying configuration properties.

For more information about web services, see Section 2.3.2, "How to Add a WSDL for a 
Web Service."

For information about adding Message Transmission Optimization Mechanism 
(MTOM) attachments to web services, see Section 43.1.1.3, "Adding MTOM 
Attachments to Web Services."

35.1.1.1 WS-AtomicTransaction Support
The Create Web Service dialog also enables you to configure support for 
WS-Coordination and WS-AtomicTransaction (WS-AT) transactions. WS-AT provides 
transaction interoperability between Oracle WebLogic Server and other vendors’ 
transaction services. Interoperability is provided at two levels:

■ Exporting transactions from the local Java Transaction API (JTA) environment for 
a web service request.

■ Importing transactions from a web service request into the local JTA environment. 
This allows for distributed transaction processing between multiple nodes in the 
web services environment.

Figure 35–2 shows the support for WS-AT at the bottom of the Create Web Service 
dialog.



Introduction to Binding Components

Getting Started with Binding Components 35-3

Figure 35–2 WS-AT Support in Create Web Service Dialog

Table 35–1 describes the WS-AT fields. For a description of the remaining fields in the 
Create Web Service dialog, see Section 2.3.2, "How to Add a WSDL for a Web Service."

Table 35–1 WS-AT Fields of the Create Web Service Dialog

Property Description

Transaction 
Participation

Select a value. If you added the web service to the Exposed Services swimlane, 
this action enables external transaction managers to coordinate resources 
hosted on Oracle WebLogic Server over WS-AT. If you added the web service 
to the External References swimlane, this addition enables Oracle WebLogic 
Server transactions to coordinate resources hosted in external environments 
over WS-AT.

■ Never

No transaction context is imported (for services) or exported (for 
references). This is the default value if you add the web service as a 
service binding component in the Exposed Services swimlane. 

■ Supports

If a transaction exists, a transaction context is imported (for services) or 
exported (for references). This information is added to the 
composite.xml file.

■ Mandatory

A transaction context is imported (for services) or exported (for 
references). This information is added to the composite.xml file. For 
exports, a web service exception message is thrown if there is no active 
transaction. For imports, a fault is returned to the client if there is no 
transaction context in the request. 

■ WSDL Driven

This property only displays if you add the web service as a reference 
binding component in the External References swimlane. This is the 
default value.



Introduction to Binding Components

35-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When complete, the composite.xml file displays your WS-AT selections, as shown 
in Example 35–1.

Example 35–1 WS-AT Syntax in composite.xml File

  <service name="Service1" ui:wsdlLocation="BPELProcess1.wsdl">
    <interface.wsdl interface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1)"
                    callbackInterface="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.interface(BPELProcess1Callback)"/>
    <binding.ws port="http://xmlns.oracle.com/Application5_
jws/Project1/BPELProcess1#wsdl.endpoint(Service1/BPELProcess1_pt)">
      <property name="weblogic.wsee.wsat.transaction.flowOption"
                type="xs:string" many="false">SUPPORTS</property>
      <property name="weblogic.wsee.wsat.transaction.version" type="xs:string"
                many="false">WSAT11</property>
    </binding.ws>

If you want to edit your changes, you can right-click the service and select Edit or 
double-click the service in the SOA Composite Editor.

After deployment, you can modify the transaction participation and version values 
through the System MBean Browser. For more information, see Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

For more information about WS-AT and WS-Coordination, see Oracle Fusion 
Middleware Concepts Guide for Oracle Infrastructure Web Services and the WS-AT and 
WS-Coordination specifications, which are available at the following URL:

http://www.oasis-open.org

35.1.1.1.1 Ensuring Participation of BPEL Processes in WS-AT  In addition to setting the 
WS-AT participation property, if a client calls a web service that is a BPEL process, for 
that web service to be enlisted in the caller's transaction, the callee BPEL process must 
have the transaction property set in its composite.xml file.

<property name="bpel.config.transaction">required</property>

This setting ensures that, if an error occurs (such as a database adapter invocation 
failing due to an integrity constraint violation), a transaction rollback is successfully 
completed.

For more information about setting the transaction property, see Section C.1.1, 
"How to Define Deployment Descriptor Properties" and Section 12.1.1, "Oracle BPEL 
Process Manager Transaction Semantics."

35.1.1.1.2 WS-AT Transactions are Not Supported When Optimization is Enabled  You can 
configure a web service binding component as either a service or reference to support 
WS-AT transactions from the Transaction Participation dropdown list of the Create 
Web Service dialog. WS-AT transactions are supported in composite-to-web service 
environments, or vice-versa, with the 
oracle.webservices.local.optimization property set to false.

Version Displays the WS-AT supported version (1.0, 1,1, 1,2, or default). By default, this 
list is only enabled if you select Supports or Mandatory from the Transaction 
Participation list.

Table 35–1 (Cont.) WS-AT Fields of the Create Web Service Dialog

Property Description



Introduction to Binding Components

Getting Started with Binding Components 35-5

WS-AT transactions are not supported in composite-to-composite calls, even with the 
oracle.webservices.local.optimization property set to false.

For more information about the oracle.webservices.local.optimization 
property, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and 
Oracle BPM Suite.

35.1.2 HTTP Binding Service
The HTTP binding service enables you to integrate SOA composite applications with 
HTTP binding.

You drag the HTTP Binding service from the Component Palette into a swimlane of 
the SOA Composite Editor to invoke the HTTP Binding Wizard. This addition enables 
you to configure HTTP binding as follows:

■ As a service binding component in the Exposed Services swimlane to invoke SOA 
composite applications through HTTP POST and GET operations

■ As a reference binding component in the External References swimlane to invoke 
HTTP endpoints through HTTP POST and GET operations

35.1.2.1 Supported Interactions
Table 35–2 shows the supported verbs, payloads, and operations for the inbound and 
outbound directions.

Note: Note the following details about using HTTP binding in a SOA 
composite application.

■ An outbound HTTP binding reference supports only XML as a 
response from an external HTTP endpoint. The response should 
contain the correct XML part name according to outbound 
expectations.

■ You cannot change the httpBinding property for the HTTP 
binding component during runtime in Oracle Enterprise Manager 
Fusion Middleware Control Console.

Table 35–2 Supported Verbs, Payloads, and Operations

Direction Verb Payload Type Operation Supported?

Inbound GET URL-encoded One-way Yes

Inbound GET URL-encoded Request-response Yes

Inbound GET XML One-way No

Inbound GET XML Request-response No

Inbound POST URL-encoded One-way Yes

Inbound POST URL-encoded Request-response Yes

Inbound POST XML One-way Yes

Inbound POST XML Request-response Yes

Outbound GET URL-encoded One-way No

Outbound GET URL-encoded Request-response Yes

Outbound GET XML One-way No



Introduction to Binding Components

35-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 35–3 shows the supported XSD types for the inbound and outbound directions.

The following HTTP headers are not supported in either the inbound or outbound 
direction (that is, you cannot access HTTP headers in the composite and set them in 
the composite):

■ User-agent

■ Content-type

■ Content-length

■ Server

■ Server-port

■ Referrer

■ Authorization

■ MIME-Version

■ Location

35.1.2.2 How to Configure the HTTP Binding Service
You invoke the HTTP Binding Wizard to configure HTTP binding by dragging the 
HTTP Binding icon from the Component Palette. The HTTP Binding Component page 
of the wizard enables you to specify the operation type, verb, and payload type. 
Figure 35–3 provides details.

Outbound GET XML Request-response Yes

Outbound POST URL-encoded One-way No

Outbound POST URL-encoded Request-response Yes

Outbound POST XML One-way No

Outbound POST XML Request-response Yes

Table 35–3 Supported XSDs

Direction XSD Type Supported?

Inbound Simple Yes

Inbound Complex No

Inbound Native No

Outbound Simple Yes

Outbound Complex No

Outbound Native No

Table 35–2 (Cont.) Supported Verbs, Payloads, and Operations

Direction Verb Payload Type Operation Supported?



Introduction to Binding Components

Getting Started with Binding Components 35-7

Figure 35–3 Create HTTP Binding Wizard - HTTP Binding Configuration Page

This page of the wizard enables you to select the following operation types for 
inbound HTTP binding:

■ A one-way operation that sends or receives messages to or from an HTTP 
endpoint

■ A synchronous request-response operation that sends and receives input and 
output messages to and from an HTTP endpoint

For HTTP POST request methods, you can select a payload type of either 
URL-encoded (ampersand-separated name-value pairs) or XML. 

For HTTP GET request methods, the payload type is URL-encoded. 

For HTTP GET or POST request methods for reference binding components, you are 
also prompted to specify the endpoint URL. Support for HTTP authentication and 
secure socket layer (SSL) is also provided.

During the configuration process with the HTTP Binding Wizard, you have the option 
of browsing for an existing request message schema or defining your own schema 
with the links to the right of the URL field on the Messages page. Figure 35–4 provides 
details.

Note: Secure HTTP (HTTPS) is supported in both the inbound and 
outbound directions.



Introduction to Binding Components

35-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 35–4 Create HTTP Binding Wizard - Messages Page

If you select to define your own schema, you are prompted to specify the element 
names, data types, min occurs value, and max occurs value in the Create Schema 
dialog. Figure 35–5 provides details.

Figure 35–5 Create HTTP Binding Wizard - Create Schema Page

At runtime, the concrete WSDL is generated with an HTTP binding and a SOAP 
binding; this is because the SOAP endpoint is used to provide HTTP support. 

35.1.2.3 How to Enable Basic Authentication
Inbound and outbound HTTP binding supports basic authentication. If you want to 
enable basic authentication for inbound HTTP binding, you must attach a security 
policy. Note that inbound HTTP binding can also be used without enabling basic 
authentication.

To enable basic authentication:
1. Right-click the created HTTP binding service in the Exposed Services swimlane 

and select Configure WS Policies. 

2. In the Configure SOA WS Policies dialog, click the Add icon in the Security 
section.



Introduction to Binding Components

Getting Started with Binding Components 35-9

3. Select the oracle/wss_http_token_service_policy policy, and click OK.

4. In the Configure SOA WS Policies dialog, click OK.

35.1.3 JCA Adapters
JCA adapters enable you to integrate services and references with the following 
technologies:

■ Databases

■ File systems

■ FTP servers

■ Message systems such as Advanced Queueing (AQ) and Java Messaging Systems 
(JMS)

■ IBM WebSphere MQ

■ Oracle E-Business Suite

■ TCP/IP sockets

■ Third-party adapters (SAP, PeopleSoft, and others)

Dragging a JCA adapter into a swimlane of the SOA Composite Editor invokes the 
Adapter Configuration Wizard for specifying configuration properties.

35.1.3.1 AQ Adapter
The AQ adapter enables you to interact with a single consumer or multiconsumer 
queue.

Oracle Streams AQ provides a flexible mechanism for bidirectional, asynchronous 
communication between participating applications. Advanced queues are an Oracle 
database feature, and are therefore scalable and reliable. Multiple queues can also 
service a single application, partitioning messages in a variety of ways and providing 
another level of scalability through load balancing.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.2 Database Adapter
The database adapter enables a BPEL process to communicate with Oracle databases 
or third-party databases through JDBC.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.3 File Adapter
The file adapter enables a BPEL process or Oracle Mediator to exchange (read and 
write) files on local file systems. The file contents can be in both XML and non-XML 
data formats.

Note: When calling the file adapter, Oracle BPEL Process Manager 
may process the same file twice when run against Oracle Real 
Application Clusters planned outages. This is because a file adapter is 
a non-XA compliant adapter. Therefore, when it participates in a 
global transaction, it may not follow the XA interface specification of 
processing each file only once.



Introduction to Binding Components

35-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.4 FTP Adapter
The FTP adapter enables a BPEL process or Oracle Mediator to exchange (read and 
write) files on remote file systems through use of the file transfer protocol (FTP). The 
file contents can be in both XML and non-XML data formats.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.5 JMS Adapter
The JMS adapter enables an Oracle BPEL process or Oracle Mediator to interact with a 
Java Messaging System (JMS).

The JMS architecture uses one client interface to many messaging servers. The JMS 
model has two messaging domains:

■ Point-to-point: Messages are exchanged through a queue and each message is 
delivered to only one receiver.

■ Publish-subscribe: Messages are sent to a topic and can be read by many 
subscribed clients.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.6 MQ Adapter
The MQ adapter provides message exchange capabilities between BPEL processes and 
Oracle Mediator and the WebSphere MQ queuing systems.

The Messaging and Queuing Series (MQ Series) is a set of products and standards 
developed by IBM. MQ Series provides a queuing infrastructure that provides 
guaranteed message delivery, security, and priority-based messaging.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.7 Oracle Applications Adapter
The Oracle applications adapter provides connectivity to Oracle Applications. The 
adapter supports all modules of Oracle Applications in Release 12 and Release 11i, 
including selecting custom integration interface types based on the version of Oracle 
E-Business Suite.

For more information, see Oracle Fusion Middleware Adapter for Oracle Applications 
User's Guide.

35.1.3.8 Socket Adapter
The socket adapter enables you to create a client or a server socket, and establish a 
connection. This adapter enables you to model standard or nonstandard protocols for 
communication over TCP/IP sockets. The transported data can be text or binary in 
format. 

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.

35.1.3.9 Third Party Adapter
The third party adapter enables you to integrate third-party adapters such as 
PeopleSoft, SAP, and others into a SOA composite application. These third-party 
adapters produce artifacts (WSDLs and JCA files) that can configure a JCA adapter.

For more information, see Oracle Fusion Middleware User's Guide for Technology Adapters.



Introduction to Binding Components

Getting Started with Binding Components 35-11

35.1.4 Oracle BAM
The Oracle BAM adapter enables you to integrate Java EE applications with Oracle 
BAM Server to send data.

Dragging an Oracle BAM adapter into a swimlane of the SOA Composite Editor 
invokes the Adapter Configuration Wizard for specifying configuration properties.

For more information, see Part X, "Using Oracle Business Activity Monitoring" and 
Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring. 

35.1.5 Oracle B2B
The Oracle B2B service enables you to browse B2B metadata in the MDS repository 
and select document definitions.

Oracle B2B is an e-commerce gateway that enables the secure and reliable exchange of 
transactions between an organization and its external trading partners. Oracle B2B and 
Oracle SOA Suite are designed for e-commerce business processes that require process 
orchestration, error mitigation, and data translation and transformation within an 
infrastructure that addresses the issues of security, compliance, visibility, and 
management. 

Dragging Oracle B2B into a swimlane of the SOA Composite Editor invokes the B2B 
Configuration Wizard for specifying configuration properties.

For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.

35.1.6 ADF-BC Services
The ADF-BC service enables you to integrate Oracle Application Development 
Framework (ADF) applications using service data objects (SDOs) with SOA composite 
applications.

Dragging an ADF-BC Service into a swimlane of the SOA Composite Editor invokes 
the Create ADF-BC Service dialog for specifying configuration properties.

For more information about ADF, see

■ Section 6.2, "Delegating XML Data Operations to Data Provider Services"

■ Section 6.3, "Using Standalone SDO-based Variables"

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development 
Framework

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application 
Development Framework

35.1.7 EJB Services
The EJB service enables Enterprise JavaBeans and SOA composite applications to 
interact by passing SDO parameters (uses a WSDL file to define the interface) or Java 
interfaces (does not use a WSDL file to define the interface).

SDOs enable you to modify business data regardless of how it is physically accessed. 
Knowledge is not required about how to access a particular back-end data source to 
use SDO in a SOA composite application. Consequently, you can use static or dynamic 
programming styles and obtain connected and disconnected access. 



Introduction to Integrating a Binding Component in a SOA Composite Application

35-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Enterprise JavaBeans are server-side domain objects that fit into a standard 
component-based architecture for building enterprise applications with Java. These 
objects become distributed, transactional, and secure components.

Java interfaces eliminate the need for WSDL file definitions. This type of integration 
provides support with the following objects:

■ Native Java objects

■ Java Architecture for XML Binding (JAXB)

Dragging an EJB service into a swimlane of the SOA Composite Editor invokes the 
Create EJB Service dialog for specifying configuration properties.

For more information, see Chapter 36, "Integrating Enterprise JavaBeans with SOA 
Composite Applications."

35.1.8 Direct Binding Services
The direct binding service uses the Direct Binding Invocation API to invoke a SOA 
composite application in the inbound direction and exchange messages over a remote 
method invocation (RMI). This option supports the propagation of both identities and 
transactions across JVMs and uses the T3 optimized path. Both synchronous and 
asynchronous invocation patterns are supported. 

You can also invoke an Oracle Service Bus (OSB) flow or another SOA composite 
application in the outbound direction.

Dragging a direct binding service into a swimlane of the SOA Composite Editor 
invokes the Create Direct Binding Service dialog for specifying configuration 
properties.

For more information about direct binding, see Chapter 37, "Using the Direct Binding 
Invocation API."

For information about the Direct Binding Invocation API, see Oracle Fusion Middleware 
Infrastructure Management Java API Reference for Oracle SOA Suite.

For more information about OSB, see Oracle Fusion Middleware Developer's Guide for 
Oracle Service Bus.

35.2 Introduction to Integrating a Binding Component in a SOA 
Composite Application

You integrate a binding component with a SOA composite application by dragging it 
from the Component Palette. 

35.2.1 How to Integrate a Binding Component in a SOA Composite Application
1. From the Service Adapters section of the Component Palette, drag a binding 

component to the appropriate swimlane. The swimlane in which to drag the 
component is based on the action you want to perform.

■ If you want to provide the outside world with an entry point to the SOA 
composite application, drag the binding component to the Exposed Services 
swimlane.

■ If you want to enable messages to be sent from the SOA composite application 
to external services in the outside world, drag the binding component to the 
External References swimlane.



Introduction to Integrating a Binding Component in a SOA Composite Application

Getting Started with Binding Components 35-13

Figure 35–6 shows a web service being dragged into the composite. This action 
invokes a dialog for specifying various configuration properties.

Figure 35–6 Integration of a Web Service Binding Component into a Composite

For more information about adding binding components, see Section 2.3, "Adding 
Service Binding Components" and Section 2.4, "Adding Reference Binding 
Components."

35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java 
Class

If a SOA composite application uses web service binding to define an endpoint 
reference, the composite cannot be invoked from a JSP/Java class. WS binding is 
defined with the binding.ws port="" location="" tag in the composite.xml 
file. Example 35–2 provides details.

Example 35–2 WS Binding Definition

<service name="client_ep" ui:wsdlLocation="BPEL.wsdl"> 
    <interface.wsdl interface="http://xmlns.oracle.com/Application/Project/ 
      BPEL#wsdl.interface(BPEL)"/> 
    <binding.ws port="http://xmlns.oracle.com/App/BPELProj/ 
      BPELProcess#wsdl.endpoint(bpel_client_ep/BPELProcess_pt)"/> 
  </service> 

Instead, use ADF binding. After deployment of the composite with ADF binding, 
invocation from a JSP/Java class is successful. Example 35–3 provides details.

Example 35–3 ADF Binding Definition

<service name="client_ep" ui:wsdlLocation="BPEL.wsdl"> 
    <interface.wsdl interface="http://xmlns.oracle.com/Application/Project/ 
     BPEL#wsdl.interface(BPEL)"/> 
    <binding.adf serviceName="bpel_client" registryName=""/>   
  </service> 



Introduction to Integrating a Binding Component in a SOA Composite Application

35-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



36

Integrating Enterprise JavaBeans with SOA Composite Applications 36-1

36Integrating Enterprise JavaBeans with SOA
Composite Applications

This chapter describes how to integrate Enterprise JavaBeans with SOA composite 
applications. Integration is achieved through use of service data object (SDO) 
parameters or Java interfaces.

This chapter includes the following sections:

■ Section 36.1, "Introduction to Enterprise JavaBeans Binding Integration with SOA 
Composite Applications"

■ Section 36.2, "Designing an SDO-Based Enterprise JavaBeans Application"

■ Section 36.3, "Creating an Enterprise JavaBeans Service in Oracle JDeveloper"

■ Section 36.4, "Designing an SDO-Based Enterprise JavaBeans Client to Invoke 
Oracle SOA Suite"

■ Section 36.5, "Specifying Enterprise JavaBeans Roles"

■ Section 36.6, "Configuring JNDI Access"

36.1 Introduction to Enterprise JavaBeans Binding Integration with SOA 
Composite Applications

There are two options for integrating Enterprise JavaBeans with SOA composite 
applications:

■ Through use of SDO-based EJBs (uses a WSDL file to define the interface)

■ Through use of Java interfaces (does not use a WSDL file to define the interface)

This chapter describes both options.

You can also use the spring service component to integrate Java interfaces with SOA 
composite applications. For information about using the spring service component, see 
Chapter 49, "Integrating the Spring Framework in SOA Composite Applications."

Note: Support is provided for Enterprise JavaBeans 3.0 and 
Enterprise JavaBeans 2.0 references (that is, when calling Enterprise 
JavaBeans 2.0 beans). Support is not provided for Enterprise 
JavaBeans 2.0 services (that is, when being called with Enterprise 
JavaBeans 2.0 beans).



Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications

36-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

36.1.1 Integration Through SDO-Based EJBs
SDOs enable you to modify business data regardless of how it is physically accessed. 
Knowledge is not required about how to access a particular back-end data source to 
use SDOs in a SOA composite application. Consequently, you can use static or 
dynamic programming styles and obtain connected and disconnected access. 

Enterprise JavaBeans are server-side domain objects that fit into a standard 
component-based architecture for building enterprise applications with Java. These 
objects become distributed, transactional, and secure components.

Many Oracle SOA Suite interfaces are described by WSDL files. Enterprise JavaBeans 
interfaces are described by Java interfaces. Invocations between the two are made 
possible in Oracle SOA Suite by an Enterprise JavaBeans Java interface that 
corresponds to an Oracle SOA Suite WSDL interface.

Through this interface, Oracle SOA Suite provides support for the following:

■ Invoking Enterprise JavaBeans with SDO parameters through an Enterprise 
JavaBeans reference binding component. In this scenario, a SOA composite 
application passes SDO parameters to an external Enterprise JavaBeans 
application.

■ Invoking an Enterprise JavaBeans service binding component through Enterprise 
JavaBeans with SDO parameters. In this scenario, an Enterprise JavaBeans 
application passes SDO parameters into a SOA composite application.

Figure 36–1 provides an overview. 

Figure 36–1 SDO and Enterprise JavaBeans Binding Integration

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration, 
as described in Section 36.3.1, "How to Integrate SDO-based Enterprise JavaBeans with 
SOA Composite Applications." This option requires the use of a WSDL file. Once 
complete, the WSDL interaction is defined in the composite.xml file through the 
interface.wsdl entry, as shown in Example 36–1.

Example 36–1 WSDL File Definition Through interface.wsdl Entry

<service name="PortfolioService">
        <interface.wsdl
 interface="http://bigbank.com/#wsdl.interface(PortfolioService)" />
    <binding.ejb javaInterface="java.class.ejb.com" serviceId="PortfolioService"
                 jarLocation="soaejb.jar"/>

36.1.2 Integration Through Java Interfaces
You can also integrate Enterprise JavaBeans with Oracle SOA Suite through Java 
interfaces, therefore eliminating the need for WSDL file definitions. This type of 
integration provides support with the following objects:

■ Native Java objects

■ Java Architecture for XML Binding (JAXB)

EJB
Application

(invokes
an EJB)

EJB
Application

Service

Exposed
Service

External
References

SOA Composite
ApplicationInvoke with

SDO
Parameters

Invoke with
SDO

Parameters
Reference



Designing an SDO-Based Enterprise JavaBeans Application

Integrating Enterprise JavaBeans with SOA Composite Applications 36-3

Java interfaces differ from SDO interfaces, which are defined in a WSDL file because of 
the XML-centric nature of service components such as Oracle BPEL Process Manager, 
Oracle Mediator, and others. No SDO parameters are required when using Java 
interfaces.

You use the Create EJB Service dialog in Oracle JDeveloper to define this integration, 
as described in Section 36.3.2, "How to Integrate Java Interface-based Enterprise 
JavaBeans with SOA Composite Applications." This option does not require the use of 
a WSDL file. Once complete, the interaction is defined in the composite.xml file 
through the interface.java entry, as shown in Example 36–2.

Example 36–2 Java Interface Definition Through interface.java Entry

<service name="PortfolioService">
   <interface.java interface="com.bigbank.services.MyService" />
   binding.ejb uri="MyJNDI" ejb-version="EJB3"/>

The Java class must be in the project's loader to be available to the user interface. The 
class must be in SCA-INF to be deployed (not all JAR files in the project class path are 
deployed). This typically means that the class must be in the SCA-INF/classes 
directory or in a JAR in the SCA-INF/lib directory. However, it can also be an 
interface from the system class path.

For information about JAXB, see Oracle Fusion Middleware Developer's Guide for Oracle 
TopLink and Chapter 49, "Integrating the Spring Framework in SOA Composite 
Applications."

36.2 Designing an SDO-Based Enterprise JavaBeans Application
This section provides a high-level overview of the steps for designing an Enterprise 
JavaBeans application. For more information, see the following documentation:

■ Oracle Fusion Middleware Programming Enterprise JavaBeans, Version 3.0 for Oracle 
WebLogic Server 

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development 
Framework

■ Oracle JDeveloper online help table of contents for the following topics:

– Enterprise JavaBeans

– SDO for Enterprise JavaBeans/JPA 

Access the help by selecting Help > Table of Contents in Oracle JDeveloper.

36.2.1 How to Create SDO Objects Using the SDO Compiler
Select one of the following options for creating SDO objects:

■ EclipseLink is an open source, object-relational mapping package for Java 
developers. EclipseLink provides a framework for storing Java objects in a 
relational database or converting Java objects to XML documents.

Use EclipseLink to create SDO objects. For instructions on installing, configuring, 
and using EclipseLink to create SDO objects, visit the following URL:

http://wiki.eclipse.org/EclipseLink/Installing_and_Configuring_
EclipseLink



Designing an SDO-Based Enterprise JavaBeans Application

36-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle JDeveloper enables you to create an SDO service interface for JPA entities. 
While this feature is more tailored for use with the Oracle Application 
Development Framework (ADF) service binding in a SOA composite application, 
you can also use this feature with the Enterprise JavaBeans service binding in SOA 
composite applications. The SDO service interface feature generates the necessary 
WSDL and XSD files. If you use this feature, you must perform the following tasks 
to work with the Enterprise JavaBeans service binding:

– Browse for and select this WSDL file in the SOA Resource Browser dialog, 
which is accessible from the WSDL URL field of the Create EJB Service dialog 
(described in Section 36.3, "Creating an Enterprise JavaBeans Service in Oracle 
JDeveloper").

– Add the BC4J Service Runtime library to the SOA project. To add this library, 
double-click the project and select Libraries and Classpath to add the library 
in the Project Properties dialog. You are now ready to design the business 
logic. 

For more information, see the SDO for Enterprise JavaBeans/JPA topic in the 
Oracle JDeveloper online help (this includes instructions on how create to an SDO 
service interface).

36.2.2 How to Create a Session Bean and Import the SDO Objects

To create a session bean and import the SDO objects:
1. Create a simple session bean with the Create Session Bean wizard. For details on 

using this wizard, see the Creating a Session Bean topic in the Oracle JDeveloper 
online help.

2. Import the SDO objects into your project through the Project Properties dialog.

3. Add logic and necessary import and library files. In particular, you must import 
the Commonj.sdo.jar file. JAR files can be added in the Libraries and Classpath 
dialog. This dialog is accessible by double-clicking the project and selecting 
Libraries and Classpath in the Project Properties dialog. You are now ready to 
design the logic. 

4. Expose the method to the remote interface.

36.2.3 How to Create a Profile and an EAR File

To create a profile and an EAR file:
1. Create an Enterprise JavaBeans JAR profile in the Project Properties dialog.

2. Create an application level EAR file in the Application Properties dialog.

36.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean
An Enterprise JavaBeans bean must define the SDO types. Example 36–3 provides 
details.



Designing an SDO-Based Enterprise JavaBeans Application

Integrating Enterprise JavaBeans with SOA Composite Applications 36-5

Example 36–3 Definition of SDO Types

InputStreamReader reader = new InputStreamReader(url.openStream());
StreamSource source = new StreamSource(reader);
List<SDOType> list = ((SDOXSDHelper) XSDHelper.INSTANCE).define(source, null);

The weblogic-ejb-jar.xml file is the descriptor file that must be added in the 
deployment jar. The weblogic-ejb-jar.xml file is automatically created when you 
create a session bean. This file must be modified by adding the following entries 
shown in Example 36–4.

Example 36–4 weblogic-ejb-jar.xml File

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                  
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar
 http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
                  xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

    <weblogic-enterprise-bean>
    <ejb-name>HelloEJB</ejb-name>
    <stateless-session-descriptor>
      <pool>
        <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
      </pool>
    </stateless-session-descriptor>
  </weblogic-enterprise-bean>

    </weblogic-ejb-jar>

Figure 36–2 provides a code example of a session bean with SDO logic defined:

Caution: Where to call define can be nontrivial. You must force the 
types to be defined before remote method invocation (RMI) 
marshalling must occur and in the right helper context. The 
EclipseLink SDO implementation indexes the helper instance with the 
application name or class loader.

When you invoke the Enterprise JavaBeans method, an application 
name is available to the EclipseLink SDO runtime. The EclipseLink 
SDO looks up the context using the application name as the key. 
Ensure that the types are defined when the application name is visible. 
When an Enterprise JavaBeans static block is initialized, the 
application name is not created. Therefore, putting the define in the 
static block does not work if you are using the default application 
name-based context. One way to get the application name initialized 
is to allocate more than two instance beans using the 
weblogic-ejb-jar.xml file.



Designing an SDO-Based Enterprise JavaBeans Application

36-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 36–2 Session Bean with Defined SDO Logic

36.2.5 How to Use Web Service Annotations
To generate the WSDL file, the Enterprise JavaBeans interface must use the following 
web service annotations. Use of these annotations is described in JSR 224: Java API for 
XML-Based Web Services (JAX-WS) 2.0. Visit the following URL for details:

http://www.jcp.org/en/jsr/detail?id=224

In addition, only a document/literal WSDL is currently supported by the Enterprise 
JavaBeans binding layer. 

Table 36–1 describes the annotations to use. 

Table 36–1 Annotations

Name Description

@javax.jws.WebResult; 

@javax.jws.WebParam;

Customizes the mapping of an individual parameter to a web 
service message part and XML element. Both annotations are 
used to map SDO parameters to the correct XML element from 
the normalized message payload.

@javax.jws.Oneway; Denotes a method as a web service one-way operation that has 
only an input message and no output message. The Enterprise 
JavaBeans binding component does not expect any reply in this 
case.



Designing an SDO-Based Enterprise JavaBeans Application

Integrating Enterprise JavaBeans with SOA Composite Applications 36-7

Example 36–5 provides an example of an Enterprise JavaBeans interface with 
annotations.

Example 36–5 Enterprise JavaBeans Interface with Annotations

@Remote
@PortableWebService(targetNamespace = "http://www.example.org/customer-example",
 serviceName = "CustomerSessionEJBService")
@SDODatabinding(schemaLocation = "customer.xsd")
public interface CustomerSessionEJB {
     @WebMethod(operationName="createCustomer")
   @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
   @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
   CustomerType createCustomer();
     @WebMethod(operationName="addPhoneNumber")
   @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
   @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
   CustomerType addPhoneNumber(@WebParam(targetNamespace =
 "http://www.example.org/customer-example", partName = "parameters", name =
 "phone-number")PhoneNumber phNumber);
} 

@javax.xml.ws.Request
Wrapper;

 
@javax.xml.ws.Respons
eWrapper;

Tells the Enterprise JavaBeans binding components whether the 
deserialized object must be unwrapped or whether a wrapper 
must be created before serialization. 

An Enterprise JavaBeans interface can be generated from an 
existing WSDL or obtained by some other means. If the WSDL 
does not exist, it can be generated.

@javax.xml.ws.WebFaul
t;

Maps WSDL faults to Java exceptions. This annotation captures 
the fault element name used when marshalling the JAXB type 
generated from the global element referenced by the WSDL fault 
message.

@oracle.webservices.P
ortableWebService

Specifies the targetNamespace and serviceName used for 
the WSDL. For example:

@PortableWebService(
targetNamespace = "http://hello.demo.oracle/",
serviceName = "HelloService")

The serviceName is used as the WSDL file name. If it is not 
specified in the annotations, the SEI class name is used instead.

Add appropriate method 
parameter annotations

Adds to control how message elements and types are mapped to 
the WSDL. For example, if your interface is in doc/lit/bare 
style, add the following annotations to the methods.

@WebMethod
@SOAPBinding(parameterStyle =
SOAPBinding.ParameterStyle.BARE)

@SDODatabinding Adds to the interface class to use the existing schema instead of 
a generated one. For example:

@SDODatabinding(schemaLocation = 
"etc/HelloService.xsd")

Table 36–1 (Cont.) Annotations

Name Description



Creating an Enterprise JavaBeans Service in Oracle JDeveloper

36-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

36.2.6 How to Deploy the Enterprise JavaBeans EAR File

To deploy the EAR file from Oracle JDeveloper:
1. Select the Application context menu to the right of the application name.

2. Select Deploy and deploy the EAR file to a previously created application server 
connection.

36.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper
This section describes how to create an Enterprise JavaBeans reference binding 
component or Enterprise JavaBeans service binding component in Oracle JDeveloper. 
The Enterprise JavaBeans service enables the Enterprise JavaBeans application to 
communicate with Oracle SOA Suite and Oracle SOA Suite to communicate with 
remote Enterprise JavaBeans. 

This section describes how to create the following types of integrations:

■ Integration through an SDO interface

■ Integration through a Java interface

36.3.1 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite 
Applications

You can create the following types of SDO-based Enterprise JavaBeans integrations 
with SOA composite applications:

■ Invoke SDO-based Enterprise JavaBeans from a SOA composite application

■ Invoke a SOA composite application from Enterprise JavaBeans using SDO 
parameters

To integrate SDO-based Enterprise JavaBeans with SOA composite applications:
1. In the SOA Composite Editor, drag the EJB Service icon into the appropriate 

swimlane, as described in Table 36–2.

2. In the Interface section, click WSDL.

3. See the step in Table 36–3 based on the swimlane in which you dragged the EJB 
Service.

Table 36–2 Swimlane for EJB Service

To Invoke... Drag the EJB Service to this Swimlane... 

SDO-based Enterprise JavaBeans from a SOA 
composite application

External References

A SOA composite application from Enterprise 
JavaBeans using SDO parameters

Exposed Services

Table 36–3 Swimlane Location

If You Dragged the EJB Service to this Swimlane... Then Go To...

External References 3a

Exposed Services 3b



Creating an Enterprise JavaBeans Service in Oracle JDeveloper

Integrating Enterprise JavaBeans with SOA Composite Applications 36-9

a. View the Create EJB Service dialog that displays in the External References 
swimlane, as shown in Figure 36–3.

Figure 36–3 Create EJB Service in External References Swimlane

b. View the Create EJB Service dialog that displays in the Exposed Services 
swimlane, as shown in Figure 36–4.

Figure 36–4 Create EJB Service in Exposed Services Swimlane



Creating an Enterprise JavaBeans Service in Oracle JDeveloper

36-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Enter values appropriate to your environment. The fields that display differ based 
on the swimlane in which you dragged the EJB Service icon. Table 36–4 provides 
details.

Table 36–4 Create EJB Service Dialog

Field Value

Name Accept the default value or enter a different name.

Type Displays the following value:

■ Displays Reference if you dragged this icon into the 
External References swimlane.

■ Displays Service if you dragged this icon into the Exposed 
Services swimlane.

Version Select the version of EJB to support: EJB2 or EJB3 (the default 
selection).

Note: This field only displays if you dragged the EJB Service 
icon into the External References swimlane.

Interface Select WSDL.

JNDI Name Note: This field only displays if you dragged the EJB Service 
icon into the External References swimlane.

Enter the JNDI name of your Enterprise JavaBeans.

Jar File Click the Search icon to select the EJB JAR file created in 
Section 36.2, "Designing an SDO-Based Enterprise JavaBeans 
Application." The SOA Resource Browser dialog searches for 
and displays JAR files starting in the SCA-INF/lib 
subdirectory of the current project directory. The JAR file 
includes the interface class and any supporting classes.

Note: If you select a JAR file outside of the current project, 
Oracle JDeveloper creates a copy of the JAR file in the 
SCA-INF/lib directory of the current project. When prompted, 
click OK to accept. 

Java Interface Click the Browse icon to invoke the Class Browser dialog for 
selecting the fully qualified Java class name of the previously 
created Enterprise JavaBeans interface. This class must exist in 
the selected JAR file. If a JAR file is not specified, it is assumed 
that the class is in the /SCA-INF/classes subdirectory of the 
current project directory.

Note: If you use the Jar File field, you do not need to add a new 
JAR file to the project by selecting Project Properties > Libraries 
and Classpath > Add JAR/Directory from the Application main 
menu.

WSDL URL Note: Ensure that you have created the annotations for the 
Enterprise JavaBeans interface before generating the WSDL file, 
as described in Section 36.2.5, "How to Use Web Service 
Annotations."

Click the second icon to the right to generate a WSDL file that 
represents the Enterprise JavaBeans interface. 

If you created SDO objects through Oracle JDeveloper, as 
described in Section 36.2.1, "How to Create SDO Objects Using 
the SDO Compiler," ensure that you select the WSDL file that 
was automatically generated with this option.

Port Type Select the port type.

Callback Port Type Select the callback port type (for asynchronous services).



Creating an Enterprise JavaBeans Service in Oracle JDeveloper

Integrating Enterprise JavaBeans with SOA Composite Applications 36-11

5. Click OK.

36.3.2 How to Integrate Java Interface-based Enterprise JavaBeans with SOA 
Composite Applications

You can create the following types of Java interface-based Enterprise JavaBeans 
integrations with SOA composite applications:

■ Invoke Java interface-based Enterprise JavaBeans from a SOA composite 
application

■ Invoke a SOA composite application from Enterprise JavaBeans using a Java 
interface

To integrate Java interface-based Enterprise JavaBeans with SOA composite 
applications:
1. Drag an EJB Service icon into the appropriate swimlane:

■ To invoke an Enterprise JavaBeans reference binding component from a SOA 
composite application, drag the icon to the External References swimlane.

■ To invoke a SOA composite application from an Enterprise JavaBeans service 
binding component, drag the icon to the Exposed Services swimlane.

2. In the Interface section, click Java (if it is not already selected).

3. The Create EJB Service dialog displays the fields shown in Figure 36–5.

Figure 36–5 Create EJB Service for Java Interface

4. Enter the details shown in Table 36–5. The fields are the same regardless of the 
swimlane in which you dragged the EJB Service icon.



Creating an Enterprise JavaBeans Service in Oracle JDeveloper

36-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Click OK.

Table 36–5 Create EJB Service Dialog

Field Value

Name Accept the default value or enter a different name.

Type Displays the following value:

■ Displays Reference if you dragged this icon into the 
External References swimlane.

■ Displays Service if you dragged this icon into the Exposed 
Services swimlane.

Version Select the version of EJB to support: EJB2 or EJB3 (the default 
selection).

Note: This field only displays if you dragged the EJB Service 
icon into the External References swimlane.

Interface Select Java.

JNDI Name Enter the JNDI name of your Enterprise JavaBeans.

Jar File Click the Search icon to select the EJB JAR file created in 
Section 36.2, "Designing an SDO-Based Enterprise JavaBeans 
Application." The SOA Resource Browser dialog searches for 
and displays JAR files starting in the SCA-INF/lib 
subdirectory of the current project directory. The JAR file 
includes the interface class and any supporting classes.

Note: If you select a JAR file outside of the current project, 
Oracle JDeveloper creates a copy of the JAR file in the 
SCA-INF/lib directory of the current project. When prompted, 
click OK to accept. 

Java Interface Select one of the following options.

■ Enter the Java interface manually.

■ Click the Browse for Class File icon to invoke the Class 
Browser dialog for selecting the Java interface. 

The class must be available in the runtime classpath. There 
several ways to make the class available in the runtime 
classpath. One method is to put the class in the 
SCA-INF/classes directory or in a JAR file in the 
SCA-INF/lib directory at design time to ensure that it gets 
deployed. However, it can also be an interface from the 
system class path. 

There are several ways to make the class available at 
runtime, but one way is to put the class or JAR into 
SCA-INF at design time so that it gets deployed.

Note: If you use the Jar File field, you do not need to add a 
new JAR file to the project by selecting Project Properties > 
Libraries and Classpath > Add JAR/Directory from the 
Application main menu.

■ Click the Generate Java Interface from a WSDL icon to 
select the WSDL file from which to generate the Java 
interface. This option is the same as described in 
Section 36.3.1, "How to Integrate SDO-based Enterprise 
JavaBeans with SOA Composite Applications."



Specifying Enterprise JavaBeans Roles

Integrating Enterprise JavaBeans with SOA Composite Applications 36-13

36.4 Designing an SDO-Based Enterprise JavaBeans Client to Invoke 
Oracle SOA Suite

To invoke an SDO - Enterprise JavaBeans service from Enterprise JavaBeans, you must 
use the client library. Follow these guidelines to design an Enterprise JavaBeans client.

■ Look up the SOAServiceInvokerBean from the JNDI tree.

■ Get an instance of SOAServiceFactory and ask the factory to return a proxy for 
the Enterprise JavaBeans service interface.

■ You can include a client side Enterprise JavaBeans invocation library 
(fabric-ejbClient.jar or the fabric-runtime.jar file located in the 
Oracle JDeveloper home directory or Oracle WebLogic Server) in the Enterprise 
JavaBeans client application. For example, the fabric-runtime.jar file can be 
located in the JDev_
Home\jdeveloper\soa\modules\oracle.soa.fabric_11.1.1 directory.

If the Enterprise JavaBeans application is running in a different JVM than Oracle 
SOA Suite, the Enterprise JavaBeans application must reference the ejbClient 
library.

Example 36–6 provides an example.

Example 36–6 Enterprise JavaBeans Client Code

Properties props = new Properties();
        props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
        props.put(Context.PROVIDER_URL, "t3://" + HOSTNAME + ":" + PORT);
        InitialContext ctx = new InitialContext(props);
        SOAServiceInvokerBean invoker =
                (SOAServiceInvokerBean)
 
ctx.lookup("SOAServiceInvokerBean#oracle.integration.platform.blocks.sdox.ejb.api.
SOAServiceInvokerBean");

        //--  Create a SOAServiceFactory instance
        SOAServiceFactory serviceFactory = SOAServiceFactory.newInstance(invoker);

        //--  Get a dynamice proxy that is essentially a remote reference
        HelloInterface ejbRemote =
 serviceFactory.createService("MyTestEJBService", HelloInterface.class);

        //--  Invoke methods
        Item item = (Item) DataFactory.INSTANCE.create(Item.class);
        item.setNumber(new BigInteger("32"));
        SayHello sayHello = (SayHello)
 DataFactory.INSTANCE.create(SayHello.class);
        sayHello.setItem(item);

        SayHelloResponse response = ejbRemote.sayHello(sayHello);
        Item reply = response.getResult();

36.5 Specifying Enterprise JavaBeans Roles
To specify role names required to invoke SOA composite applications from any Java 
EE application, you add the roles names in the Enterprise JavaBeans service 
configuration. The Enterprise JavaBeans service checks to see if the caller principal has 
the security role. Example 36–7 provides details.



Configuring JNDI Access

36-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 36–7 Enterprise JavaBeans Roles

<service name="EJBService" ui:wsdlLocation="BPELEJBProcess.wsdl">
    <interface.wsdl
interface="http://xmlns.oracle.com/EJBApplication/EJBProject/BPELEJBProcess#wsdl.i
nt
erface(BPELProcess1)"callbackInterface="http://xmlns.oracle.com/EJBApplication/
EJBProject/BPELEJBProcess#
wsdl.interface(BPELEJBProcessCallback)"/>
<property name="rolesAllowed">Superuser, Admin</property>
    <binding.ejb javaInterface="java.class.ejb.com" serviceId="EJBService"
                 jarLocation="soaejb.jar"/>
</service>

36.6 Configuring JNDI Access
This section describes two methods for configuring JNDI access.

36.6.1 How to Create a Foreign JNDI
Follow these guidelines to configure JNDI access. 

■ You can configure a foreign JNDI provider to link a foreign JNDI tree to your local 
server instance and access the object as if it is local. See Oracle Fusion Middleware 
Programming JNDI for Oracle WebLogic Server.

■ You can also provide JNDI environment variables as the properties for the 
Enterprise JavaBeans reference, as shown in Example 36–8. An Enterprise 
JavaBeans binding component enables you to create your own map or use the 
default EJBBC binding component map. Note that the map property is optional if 
you use EJBBC. For security reasons, the JNDI security credentials must be stored 
in a CSF store and referenced as shown in Example 36–8.

Example 36–8 Environment Variables for Enterprise JavaBeans Reference

<property name=
"java.naming.factory.initial">weblogic.jndi.WLInitialContextFactory</property>
<property name="java.naming.provider.url">t3://host:7001</property>
<property name="oracle.jps.credstore.map">default</property>
<property name="oracle.jps.credstore.key">weblogic</property>

The security credential can also be stored in the credential store framework. For more 
information, see Oracle Fusion Middleware Security Guide.

36.6.2 How to Create a Custom CSF Map for JNDI Lookup
If you create your own credential store framework (CSF) map instead of using the 
default Enterprise JavaBeans BC CSF map, you must modify the Domain_
Home/config/fmwconfig/system-jazn.data.xml file and add the permission 
shown in Example 36–9 to the entry for the fabric-runtime.jar permission grant.

Example 36–9 Permission to Add

<class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
   <name>>context=SYSTEM,mapName=*,keyName=*</name> 
   <actions>*</actions> 
</permission>

You must then restart Oracle WebLogic Server.



Configuring JNDI Access

Integrating Enterprise JavaBeans with SOA Composite Applications 36-15

For more information on CSF, see Oracle Fusion Middleware Security Guide.



Configuring JNDI Access

36-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



37

Using the Direct Binding Invocation API 37-1

37Using the Direct Binding Invocation API

This chapter describes the Direct Binding Invocation API and how it can invoke SOA 
composite applications.

This chapter includes the following sections:

■ Section 37.1, "Introduction to Direct Binding"

■ Section 37.2, "Introduction to the Direct Binding Invocation API"

■ Section 37.3, "Invoking a SOA Composite Application with the Invocation API"

■ Section 37.4, "Samples Using the Direct Binding Invocation API"

37.1 Introduction to Direct Binding
A common way to invoke a composite is to use SOAP over HTTP. This is enabled by 
creating a SOAP service for your composite using web service binding. However, you 
can also use direct binding, which provides a tighter integration alternative. Direct 
binding enables Java clients to directly invoke composite services, bypassing the 
intermediate conversion to XML required with web service binding.

Direct binding provides two types of invocation styles:

■ Inbound direct binding

The direct service binding component allows an external client to send messages 
using the Direct Binding Invocation API, where the Direct Binding Invocation API 
takes the JNDI connection parameters and creates a connection object on behalf of 
the client.

■ Outbound direct binding (or direct reference binding)

The direct reference binding component provides support for sending SOA 
messages directly to external services over RMI. These external services must 
implement the SOA invocation API (the same as the direct inbound invocation 
API).

In the case of direct outbound binding, the connection object is created with the 
JNDI name of the external service bean configured for the binding.

Direct binding must be associated with the interface.wsdl, providing the interface 
clause and, optionally, the callbackInterface clause. The associated WSDL must 
be imported into the composite.

The service binding component also publishes a modified version of the WSDL that 
advertises the direct binding.



Introduction to Direct Binding

37-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Direct Service Binding Component
A sample configuration using the direct service binding component is shown in 
Example 37–1.

Example 37–1 Direct Service Binding Component

<service name="direct2">
      <interface.wsdl
interface="http://xmlns.oracle.com/asyncNonConvDocLit#wsdl.interface(asyncNonConvD
ocLit)"
callbackInterface="http://xmlns.oracle.com/asyncNonConvDocLit#wsdl.interface(async
NonConvDocLitCallback)" xmlns:ns="http://xmlns.oracle.com/sca/1.0"/>
      <binding.direct/>
</service>

Direct Reference Binding Component
The direct reference binding component requires the following information to connect 
to a user-provided SOA invoker:

■ Properties:

A set of properties that defines the DirectConnection for the end service.

■ ConnectionFactory class name: 

The ConnectionFactory class must implement the 
oracle.soa.api.invocation.DirectConnectFactory interface.

■ Address used by the external service:

This address value is not processed by the binding component, but is passed on to 
the service bean during invocation.

■ AddressingVersion (optional): 

The default addressing version used is 2005/08.

■ useSSLForCallback:

Use SSL for the callback JNDI connection. If this flag is set to true, then the WSA 
replyTo header instructs the service to call back at an SSL JNDI port.

A sample configuration is shown in Example 37–2.

Example 37–2 Sample Configuration

<reference name="HelloReference" ui:wsdlLocation="HelloService.wsdl">
  <interface.wsdl
 interface="http://hello.demo.oracle/#wsdl.interface(HelloInterface)"/>
  <binding.direct connection-factory="oracle.soa.api.JNDIDirectConnectionFactory"
   addressingVersion="http://www.w3.org/2005/08/addressing"
   address="soadirect://syncOut"
   useSSLForCallback="false">
  <property
 
name="oracle.soa.api.invocation.direct.bean">MyDirectTestServiceBean#directEjb.Tes
tInvoker</property>
  <property
 
name="java.naming.factory.initial">weblogic.jndi.WLInitialContextFactory</property
>
 <property name="java.naming.provider.url">t3://@host:@port</property>
 </binding.direct>



Introduction to Direct Binding

Using the Direct Binding Invocation API 37-3

</reference>

The direct binding components support both synchronous and asynchronous 
invocation patterns. Figure 37–1 describes a sample synchronous invocation pattern 
and Figure 37–2 describes a sample asynchronous invocation pattern.

Figure 37–1 Sample Synchronous Invocation Patterns

Figure 37–2 Sample Asynchronous Invocation Pattern



Introduction to the Direct Binding Invocation API

37-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

37.2 Introduction to the Direct Binding Invocation API
The different packages used in the Direct Binding Invocation API are as follows:

■ oracle.soa.management.facade.Locator

The oracle.soa.management.facade.Locator interface exposes a method, 
createConnection, which returns a direct connection. The Locator exposes 
the method shown in Example 37–3 for returning the DirectConnection.

Example 37–3 oracle.soa.management.facade.Locator

import java.util.Map;
public interface DirectConnectionFactory {
    DirectConnection createDirectConnection(CompositeDN compositeDN,
 String serviceName) throws Exception;

You can use the LocatorFactory implementation to obtain the 
DirectConnection, as shown in Example 37–4.

Example 37–4 LocatorFactory Implementation

Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname + 
"/soa-infra");
jndiProps.put(Context.INITIAL_CONTEXT_
FACTORY,"weblogic.jndi.WLInitialContextFactory");
jndiProps.put(Context.SECURITY_PRINCIPAL,"weblogic");
jndiProps.put(Context.SECURITY_CREDENTIALS,"welcome1");
jndiProps.put("dedicated.connection","true");
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename, version);
String serviceName = "HelloEntry";
return locator.createDirectConnection(compositedn, serviceName);

■ oracle.soa.api.invocation.DirectConnection

The DirectConnection interface invokes a composite service using direct 
binding.

The DirectConnection.java is shown in Example 37–5.

Example 37–5 DirectConnection.java

import oracle.soa.api.message.Message;
public interface DirectConnection {
    <T> Message<T> request(String operationName, Message<T> message) throws
 InvocationException, FaultException;
    <T> void post(String operationName, Message<T> message) throws
 InvocationException;
    void close();}

■ oracle.soa.api.message.Message

The Message interface encapsulates the data exchanged.

The Message interface.java is shown in Example 37–6.

Example 37–6 Message interface.java

import java.util.List;
import java.util.Map;
import org.w3c.dom.Element;



Introduction to the Direct Binding Invocation API

Using the Direct Binding Invocation API 37-5

public interface Message<T> {
    // Instance-tracking property names
    final static String FLOW_ID;
    final static String CONVERSATION_ID;
    final static String PARENT_ID;
    void setPayload(Payload<T> payload);
    Payload<T> getPayload();
    void addAttachment(Attachment attachment);
    List<Attachment> getAttachments();
    void addHeader(Element header);
    void setHeaders(List<Element> headers);
    List<Element> getHeaders();
    void setProperties(Map<String, Object> properties);
    void setProperty(String name, Object value);
    Map<String, Object> getProperties();
    Object getProperty(String name);
}

For more information about the Facades API, see Oracle Fusion Middleware 
Infrastructure Management Java API Reference for Oracle SOA Suite.

37.2.1 Synchronous Direct Binding Invocation
Direct binding also supports the Synchronous Direct Invocation with the usage of the 
method shown in Example 37–7.

Example 37–7 Synchronous Direct Invocation

<T> Message<T> request(String operationName, Message<T> message)
 throws InvocationException, FaultException

37.2.2 Asynchronous Direct Binding Invocation
Asynchronous invocation relies on the WS-Addressing headers set on the message 
instance. All headers must adhere to the WS-Addressing specification.

The Direct Binding Invocation API allows the clients to specify the WS-Addressing 
ReplyTo SOAP header to communicate a destination by which they can receive 
responses.

An example of the WS-Addressing header used for asynchronous invocation is shown 
in Example 37–8.

Example 37–8 WS-Addressing Header

<wsa:MessageID>D6202742-D9D9-4023-8167-EF0AB81042EC</wsa:MessageID>
   <wsa:ReplyTo xmlns:wsa="http://www.w3.org/2005/08/addressing">
     <wsa:Address>sb://testserver:9001/callback</wsa:Address>
      <wsa:ReferenceParameters>
        <soa:callback xmlns:soa="http://xmlns.oracle.com/soa/direct"
           connection-factory="mytest.MyDirectionConnectionFactory">

Note: The supported addressing version includes:

■ http://www.w3.org/2005/08/addressing

■ http://schemas.xmlsoap.org/ws/2004/08/addressing

■ http://schemas.xmlsoap.org/ws/2003/03/addressing



Invoking a SOA Composite Application with the Invocation API

37-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        <soa:property name="oracle.soa.api.invocation.direct.bean"
           value="myTest.MyDirectConnectionBean"/>
        <soa:property name="java.naming.provider.url" value="t3://test:8001"/>
        <soa:property name="java.naming.factory.initial"
           value="weblogic.jndi.WLInitialContextFactory"/>
        </soa:callback>
      </wsa:ReferenceParameters>
   </wsa:ReplyTo>

The direct binding component is responsible for parsing the addressing headers set on 
the message instance. In this example, there are two headers: wsa:MessageID and 
wsa:ReplyTo. The service binding component makes the following properties 
available for the internal SOA components:

■ tracking.conversationId = D6202742-D9D9-4023-8167-EF0AB81042E

■ replyToAddress = sb://testserver:9001/callback

■ replyToReferenceParameter : element of WSA:ReferenceParameters

37.2.3 SOA Direct Address Syntax
The service paths used with the Direct Binding Invocation API follow the SOA direct 
address pattern:

■ soadirect:/CompositeDN/serviceName, where CompositeDN stands for 
composite distinguished name

In the SOA direct address, the CompositeDN has the following form:

domainName/compositeName[!compositeVersion[*label]]

37.2.4 SOA Transaction Propagation
Direct binding supports the SOA transaction propagation feature. You can invoke this 
feature from the client in the following ways:

■ Begin the Java transaction from the client and, after performing all the database 
operations, perform a commit. You should commit the database operations after a 
successful commit from the client side.

■ Begin the Java transaction from the client side. If a fault is thrown back during any 
operation in the SOA composite, then roll back the transaction from the client side. 
This rolls back all the database operations.

37.3 Invoking a SOA Composite Application with the Invocation API
The Direct Binding component in Oracle JDeveloper, as shown in Figure 37–3, 
provides support for exchanging SOA messages with SOA over RMI.

Note: You must qualify the callback and its property elements 
properly with the SOA direct namespace.



Invoking a SOA Composite Application with the Invocation API

Using the Direct Binding Invocation API 37-7

Figure 37–3 Direct Binding Option

Oracle JDeveloper supports creating a direct service binding and a direct reference 
binding that invokes either an Oracle Service Bus or another SOA composite. 

For more information about the Direct Binding Invocation API, see Section 37.2, 
"Introduction to the Direct Binding Invocation API."

37.3.1 How to Create an Inbound Direct Binding Service
You can invoke a SOA composite application using the Direct Binding option in 
Oracle JDeveloper.

To create an inbound direct binding service:
1. Open Oracle JDeveloper.

2. From the Component Palette, select SOA.

3. From the Service Adapters list, drag the Direct Binding component into the 
Exposed Services swimlane. The Create Direct Binding dialog appears.

4. Enter the details shown in Table 37–1.

Note: For a client to invoke composite services over direct binding, 
its class path must include both soa-infra-mgmt.jar and 
oracle-soa-client-api.jar.

Table 37–1 Direct Binding Service Dialog Fields and Values

Field Value

Name Enter a name.

Type Select Service from the list.

Reference Target This field is disabled when defining this service in the Exposed 
Services swimlane. 

WSDL URL The URL location of the WSDL file. If you have an existing 
WSDL, then click the Find Existing WSDLs option. Otherwise, 
click Generate WSDL from schema(s).



Invoking a SOA Composite Application with the Invocation API

37-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When complete, the Create Direct Binding dialog appears as shown in Figure 37–4.

Figure 37–4 Create Direct Binding Dialog

5. Click OK.

The direct binding service displays in the SOA Composite Editor shown in 
Figure 37–5. The single arrow in a circle indicates that this is a synchronous, 
one-way, direct binding component.

Port Type The port type of the WSDL file. You must select a port from the 
list.

Callback Port Type The callback port type for asynchronous processes.

Use SSL For Callback Select to use SSL for the callback.

Address This field is automatically populated when the WSDL is concrete 
and it has at least one binding that is direct.

Provider URL This field is automatically populated when the WSDL is concrete 
and it has at least one binding that is direct.

Use local JNDI Provider Select to use the local JNDI provider.

copy wsdl and its 
dependent artifacts into the 
project

Deselect this checkbox. If you select this checkbox, the local 
copies of the WSDL file may result in synchronization issues if a 
remote WSDL is updated.

Table 37–1 (Cont.) Direct Binding Service Dialog Fields and Values

Field Value



Invoking a SOA Composite Application with the Invocation API

Using the Direct Binding Invocation API 37-9

Figure 37–5 Direct Binding Service

37.3.2 How to Create an Outbound Direct Binding Reference
You can create an outbound direct binding reference, using the Direct Binding option 
in Oracle JDeveloper, to either invoke a composite application or an Oracle Service 
Bus.

To create an outbound direct binding reference:
1. Open Oracle JDeveloper.

2. From the Component Palette, select SOA.

3. From the Service Adapters list, drag the Direct Binding component into the 
External References swimlane. The Create Direct Binding dialog appears.

4. Enter the details shown in Table 37–2.

Table 37–2 Direct Binding Service Dialog Fields and Values

Field Value

Name Enter a name.

Type Select Reference from the list.

Reference Target Select the reference target on which you want the direct binding 
service to operate:

■ Oracle SOA Composite: Creates a direct binding with a 
SOA composite application as a reference target.

■ Oracle Service Bus: Creates a direct binding with an Oracle 
Service Bus as a reference target.

WSDL URL The URL location of the WSDL file. If you have an existing 
WSDL, then click the Find Existing WSDLs option.

Port Type The port type of the WSDL file. You must select a port from the 
list.



Invoking a SOA Composite Application with the Invocation API

37-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When complete, the Create Direct Binding dialog appears as shown in Figure 37–6. 
For more information about using the Oracle SOA Suite services with Oracle 
Service Bus, see the Oracle SOA Suite Transport (SOA-DIRECT) chapter in Oracle 
Fusion Middleware Developer's Guide for Oracle Service Bus.

Figure 37–6 Create Direct Binding Dialog

5. Click OK.

The direct binding reference displays in the designer shown in Figure 37–7. The 
single arrow in a circle indicates that this is a synchronous, one-way direct binding 
reference component.

Callback Port Type The callback port type for asynchronous processes.

Use SSL For Callback Select to use SSL for the callback.

Address This field is automatically populated when you select a concrete 
WSDL URL and port type. However, you must manually 
populate this field if a nonconcrete WSDL is provided.

Provider URL This field is automatically populated when you select a concrete 
WSDL URL and port type. However, you must manually 
populate this field if a nonconcrete WSDL is provided.

Use local JNDI Provider Select to use the local JNDI provider.

copy wsdl and its 
dependent artifacts into the 
project

Deselect this checkbox. If you select this checkbox, the local 
copies of the WSDL file may result in synchronization issues if a 
remote WSDL is updated.

Table 37–2 (Cont.) Direct Binding Service Dialog Fields and Values

Field Value



Invoking a SOA Composite Application with the Invocation API

Using the Direct Binding Invocation API 37-11

Figure 37–7 Direct Binding Reference

37.3.3  How to Set an Identity for J2SE Clients Invoking Direct Binding
J2SE clients can set an identity while invoking direct binding, as shown in 
Example 37–9.

Example 37–9 Identity Setup for J2SE Clients Invoking Direct Binding

public static void main(String[] args) throws Exception {
       Invoker invoker = new Invoker();
       String payloadXML="<ns1:process
xmlns:ns1=\"http://xmlns.oracle.com/DirectBinding_jws/EchoBPEL/BPELProcess1\">
" +"\n" +
             "<ns1:input>wew</ns1:input>" + "\n"+
              "</ns1:process>" ;

     String serviceAddress = "soadirect:/default/EchoBPEL!1.0/DService1";
    System.out.println("***** test Sync ****");
     DirectConnectionFactory factory =
JNDIDirectConnectionFactory.newInstance();

     Message<Element> m = getAsyncRequest(payloadXML);
     Map<String, Object> props = new HashMap<String, Object>();
     props.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");
     props.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname);
    props.put(Context.SECURITY_PRINCIPAL,"xtest-soa1-user");
 props.put(Context.SECURITY_CREDENTIALS,"welcome1");

     DirectConnection conn = factory.createConnection(serviceAddress,
props);

     DirectConnection conn = getConnection(serviceAddress);
     Document doc = DirectBindingXMLUtil.getDocumentFromString(payloadXML);
            Element element = doc.getDocumentElement();
            Map<String, Element> payload = new HashMap<String, Element>();
            payload.put("payload", element);

     Message<Element> m =
XMLMessageFactory.getInstance().createMessage(payload);



Samples Using the Direct Binding Invocation API

37-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

     List<Element> headers =
createWSAHeaders("payload:BPELSyncTest:msgID:1234567");
     for( Element e : headers)
         m.addHeader(e);

try {
               ctx = new InitialContext(props);
               conn.request("process", m);
           }
           finally
           {
               if (null != ctx) ctx.close();
           }

    //System.out.println(ret);

   } 

The key points in the above example are as follows:

■ The creation of an InitialContext with the security principal/principal 
credentials before invoking the direct connection; this achieves a login. 

■ The close of the InitialContext; this achieves the log out.

try {
               ctx = new InitialContext(props);
               conn.request("process", m);
           }
           finally
           {
               if (null != ctx) ctx.close();
           } 

37.3.4 What You May Need to Know About Invoking SOA Composites on Hosts with the 
Same Server and Domain Names

If one SOA composite application invokes another SOA composite application on 
another host through direct binding, and both composites are on hosts with the same 
server name and domain name, the invocation fails.

This is because the Oracle WebLogic Server transaction subsystem requires the domain 
names and server names to be different for transaction management to work properly.   
The transaction subsystem uses these names to track the location of a server related to 
a transaction. If the two servers in the invocation have the same name, the transaction 
subsystem can mistakenly confuse the two servers.

Ensure that you use hosts with separate server names and domain names.

37.4 Samples Using the Direct Binding Invocation API
Example 37–10 through Example 37–12 provide some examples of how the API is 
used. This section describes how the connection parameter can invoke SOA composite 
applications over direct binding and how message objects can be modified to invoke a 
direct binding invocation.

Example 37–10 Usage of a Connection Parameter

// The JNDIDirectConnectionFactory can be used to establish SOA instance
 connections for exchanging messages over the direct binding.



Samples Using the Direct Binding Invocation API

Using the Direct Binding Invocation API 37-13

DirectConnectionFactory dcFactory = JNDIDirectConnectionFactory.newInstance();
// Connections are created based on the configuration, which is a map of standard
// naming properties, which will be used for the underlying connection lookup.
Map<String, Object> properties = new HashMap<String, Object>();
properties.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
properties.put(Context.PROVIDER_URL, "t3://HOST:PORT");
DirectConnection conn =
    dcFactory.createConnection("soadirect:/default/MyComposite!1.0/MyService",
 properties);

Example 37–11 Usage of Messages

//Messages are created using the MessageFactory 
Message<Element> request = XMLMessageFactory.getInstance().createMessage();

//Message objects are then modified to be used for an invocation 
Map<String, Element> partData; // Define a Map of WSDL part names to matching XML
 Element objects
Payload<Element> payload = PayloadFactory.createXMLPayload(partData);
request.setPayload(payload);
// One-way invocation
conn.post("onewayoperation", request);
// Request-reply invocation
Message<Element> response = conn.request("requestreplyoperation", request);

Example 37–12 Usage of LocatorFactory

//A Sample Java Code
Hashtable jndiProps = new Hashtable();
jndiProps.put(Context.PROVIDER_URL, "t3://" + hostname + ':' + portname +
 "/soa-infra");
jndiProps.put(Context.INITIAL_CONTEXT
-FACTORY,"weblogic.jndi.WLInitialContextFactory");
jndiProps.put(Context.SECURITY_PRINCIPAL,"weblogic"); 
jndiProps.put(Context.SECURITY_CREDENTIALS,"welcome1");
jndiProps.put("dedicated.connection","true");
Locator locator = LocatorFactory.createLocator(jndiProps);
CompositeDN compositedn = new CompositeDN(domainName, compositename, version);
String serviceName = "HelloEntry";
return locator.createDirectConnection(compositedn, serviceName);



Samples Using the Direct Binding Invocation API

37-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Part VII
Part VII Sharing Functionality Across Service

Components

This part describes functionality that can be used by multiple service components.

This part contains the following chapters:

■ Chapter 38, "Creating Transformations with the XSLT Mapper"

■ Chapter 39, "Using Business Events and the Event Delivery Network"





38

Creating Transformations with the XSLT Mapper 38-1

38  Creating Transformations with the XSLT
Mapper

This chapter describes how to use the XSLT Mapper. The XSLT Mapper enables you to 
create data transformations between source schema elements and target schema 
elements in either Oracle BPEL Process Manager or Oracle Mediator. Version 1.0 of 
XSLT is supported.

This chapter includes the following sections:

■ Section 38.1, "Introduction to the XSLT Mapper"

■ Section 38.2, "Creating an XSL Map File"

■ Section 38.3, "Designing Transformation Maps with the XSLT Mapper"

■ Section 38.4, "Testing the Map"

■ Section 38.5, "Demonstrating Features of the XSLT Mapper"

For information on invoking the XSLT Mapper from Oracle BPEL Process Manager, 
see Section 38.2.1, "How to Create an XSL Map File in Oracle BPEL Process Manager." 
For information on invoking the XSLT Mapper from Oracle Mediator, see 
Section 38.2.3, "How to Create an XSL Map File in Oracle Mediator."

38.1 Introduction to the XSLT Mapper
You use the XSLT Mapper to create the contents of a map file. Figure 38–1 shows the 
layout of the XSLT Mapper.



Introduction to the XSLT Mapper

38-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–1 Layout of the XSLT Mapper

The Source and the Target schemas are represented as trees and the nodes in the trees 
are represented using a variety of icons. The displayed icon reflects the schema or 
property of the node. For example:

■ An XSD attribute is denoted with an icon that is different from an XSD element.

■ An optional element is represented with an icon that is different from a mandatory 
element.

■ A repeating element is represented with an icon that is different from a 
nonrepeating element, and so on.

The various properties of the element and attribute are displayed in the Property 
Inspector in the lower right of the XSLT Mapper when the element or attribute is 
selected (for example, type, cardinality, and so on). The Component Palette in the 
upper right of Figure 38–1 is the container for all functions provided by the XSLT 
Mapper. The XSLT Mapper is the actual drawing area for dropping functions and 
connecting them to source and target nodes.

When an XSLT map is first created, the target tree shows the element and attribute 
structure of the target XSD. An XSLT map is created by inserting XSLT constructs and 
XPath expressions into the target tree at appropriate positions. When executed, the 
XSLT map generates the appropriate elements and attributes in the target XSD.

Editing can be done in design view or source view. When a map is first created, you 
are in design view. Design view provides a graphical display and enables editing of 
the map. To see the text representation of the XSLT being created, switch to source 
view. To switch views, click the Source or Design tabs at the bottom of the XSLT 
Mapper.

While in design view, the following pages from the Component Palette can be used:

■ General: Commonly used XPath functions and XSLT constructs.

■ Advanced: More advanced XPath functions such as database and cross-reference 
functions.



Introduction to the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-3

■ User Defined: User-defined functions and templates. This page is visible only 
when the user has templates in their XSL or user-defined external functions 
defined through the preferences pages. 

■ All Pages: Provides a view of all functions in one page.

■ My Components: Contains user favorites and recently-used functions. To add a 
function to your favorites, right-click the function in the Component Palette and 
select Add to Favorites.

While in source view, the XML and the http://www.w3.org/1999/XSL/Transform pages 
can be used.

The XSLT Mapper provides three separate context sensitive menus:

■ The source panel

■ The target panel

■ The center panel

Right-click each of the three separate panels to see what the context menus look like. 

By default, design view shows all defined prefixes for all nodes in the source and 
target trees. You can elect not to display prefixes by selecting Hide Prefixes from the 
context menu in the center panel of the design view. After prefixes are hidden, select 
Show Prefixes to display them again. 

38.1.1 Overview of XSLT Creation
It is important to understand how design view representation of the map relates to the 
generated XSLT in source view. This section provides a brief example. 

After creating an initial map, the XSLT Mapper displays a graphical representation of 
the source and target schemas, as shown in Figure 38–2.

Note: The following functions are only available with Oracle 
Mediator, and not Oracle BPEL Process Manager, in the XSLT Mapper. 

■ getProperty(propertyName as string)

■ setCompositeInstanceTitle(titleElement)

■ getComponentInstanceID()

■ getComponentName()

■ getCompositeInstanceID()

■ getCompositeName()

■ getECID()

For Oracle BPEL Process Manager, you can use these functions in an 
assign activity.



Introduction to the XSLT Mapper

38-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–2 Source and Target Schemas

At this point, no target fields are mapped. Switching to source view displays an empty 
XSLT map. XSLT statements are built graphically in design view, and XSLT text is then 
generated. For example, design view mapping is shown in Figure 38–3.

Figure 38–3 Design View Mapping

The design view results in the generation of the following XSLT statements in source 
view:

■ The OrderDate attribute from the source tree is linked with a line to the 
InvoiceDate attribute in the target tree in Figure 38–3. This results in a value-of 
statement in the XSLT, as shown in Example 38–1.



Introduction to the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-5

Example 38–1 value-of Statement

<xsl:attribute name="InvoiceDate">
  <xsl:value-of select="/ns0:PurchaseOrder/@OrderDate"/>
</xsl:attribute>

■ The First and Last name fields from the source tree in Figure 38–3 are 
concatenated using an XPath concat function. The result is linked to the Name 
field in the target tree. This results in the XSLT statement shown in Example 38–2:

Example 38–2 concat Function

<Name>
    <xsl:value-of select="concat(/ns0:PurchaseOrder/ShipTo/Name/First,
    /ns0:PurchaseOrder/ShipTo/Name/Last)"/>
</Name>

■ Note the inserted XSLT for-each construct in the target tree in Figure 38–3. For 
each HighPriorityItems/Item element in the source tree, a ShippedItems/Item 
element is created in the target tree and ProductName and Quantity are copied for 
each. The XSLT syntax shown in Example 38–3 is generated:

Example 38–3 for-each Construct

<xsl:for-each 
 select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
  <Item>
    <ProductName>
      <xsl:value-of select="ProductName"/>
    </ProductName>
    <Quantity>
      <xsl:value-of select="Quantity"/>
    </Quantity>
   </Item>
</xsl:for-each>

The line linking Item in the source tree to the for-each construct in the target tree 
in Figure 38–3 determines the XPath expression used in the for-each select 
attribute. In general, XSLT constructs have a select or test attribute that is 
populated by an XPath statement typically referencing a source tree element.

Note that the XPath expressions in the value-of statements beneath the for-each 
construct are relative to the XPath referenced in the for-each. In general, the XSLT 
Mapper creates relative paths within for-each statements.

If you must create an absolute path within a for-each construct, you must do this 
within source view. When switching back to design view, it is remembered that the 
path is absolute and the XSLT Mapper does not modify it.



Introduction to the XSLT Mapper

38-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The entire XSLT map generated for this example is shown in Example 38–4:

Example 38–4 Entire XSLT Map

<xsl:template match="/">
  <tns1:Invoice>
    <xsl:attribute name="InvoiceDate">
      <xsl:value-of select="/ns0:PurchaseOrder/@OrderDate"/>
    </xsl:attribute>
    <ShippedTo>
      <Name>
        <xsl:value-of select="concat
(/ns0:PurchaseOrder/ShipTo/Name/First,/ns0:PurchaseOrder/ShipTo/Name/Last)"/>
      </Name>
    </ShippedTo>
    <ShippedItems>
      <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
        <Item>
          <ProductName>
            <xsl:value-of select="ProductName"/>
          </ProductName>
          <Quantity>
            <xsl:value-of select="Quantity"/>
          </Quantity>
        </Item>
      </xsl:for-each>
    </ShippedItems>
  </tns1:Invoice>
</xsl:template>

Subsequent sections of this chapter describe how to link source and target 
elements, add XSLT constructs, and create XPath expressions in design view.

38.1.2 Guidelines for Using the XSLT Mapper
■ A node in the target tree can be linked only once (that is, you cannot have two 

links connecting a node in the target tree).

■ An incomplete function and expression does not result in an XPath expression in 
source view. If you switch from design view to source view with one or more 
incomplete expressions, the Mapper Messages window displays warning 
messages.

Note: In Example 38–3, the fields ProductName and Quantity are 
required fields in both the source and target. If these fields are 
optional in the source and target, it is a good practice to insert an 
xsl:if statement around these mappings to test for the existence of 
the source node. If this is not done, and the source node does not exist 
in the input document, an empty node is created in the target 
document. For example, if ProductName is optional in both the 
source and target, then map them as follows:

<xsl:if test="ProductName">
    <ProductName>
      <xsl:value-of select="ProductName"/>
    </ProductName>
</xsl:if>



Creating an XSL Map File

Creating Transformations with the XSLT Mapper 38-7

■ When you map duplicate elements in the XSLT Mapper, the style sheet becomes 
invalid and you cannot work in the Design view. The Log window shows the 
error messages when you map an element with a duplicate name. Example 38–5 
provides details.

Example 38–5 Duplicate Name Error Messages

Error: This Node is Already Mapped  : 
"/ns0:rulebase/for-each/ns0:if/ns0:atom/ns0:rel" 
  Error: This Node is Already Mapped  : 
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:ind" 
  Error: This Node is Already Mapped  : 
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:var"

Duplicate nodes can be created in design view by surrounding each duplicate 
node with a for-each statement that executes once.

38.2 Creating an XSL Map File
Transformations are performed in an XSL map file in which you map source schema 
elements to target schema elements. This section describes methods for creating the 
XSL map file.

38.2.1 How to Create an XSL Map File in Oracle BPEL Process Manager
A transform activity enables you to create a transformation using the XSLT Mapper in 
Oracle BPEL Process Manager. This tool enables you to map one or more source 
elements to target elements. For example, you can map incoming source purchase 
order schema data to outgoing invoice schema data.

To create an XSL map file in Oracle BPEL Process Manager:
1. From the Component Palette, drag a transform activity into your BPEL process 

diagram. Figure 38–4 provides an example.

Note: You can also create an XSL map file from an XSL style sheet. 
Click New > SOA Tier > Transformations > XSL Map From XSL 
Stylesheet from the File main menu in Oracle JDeveloper.



Creating an XSL Map File

38-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–4 Transform Activity

2. Double-click the transform activity. 

The Transform dialog shown in Figure 38–5 appears.

Figure 38–5 Transform Dialog

3. Specify the following information:

a. Add source variables from which to map elements by clicking the Add icon 
and selecting the variable and part of the variable as needed (for example, a 
payload schema consisting of a purchase order request).



Creating an XSL Map File

Creating Transformations with the XSLT Mapper 38-9

b. Add target variables to which to map elements.

c. Add the target part of the variable (for example, a payload schema consisting 
of an invoice) to which to map.

4. In the Mapper File field, specify a map file name or accept the default name. The 
map file is the file in which you create your mappings using the XSLT Mapper.

5. Click the Add icon (second icon to the right of the Mapper File field) to create a 
mapping. If the file exists, click the Edit icon (third icon) to edit the mapping.

The XSLT Mapper appears.

6. Go to Section 38.1, "Introduction to the XSLT Mapper" for an overview of using the 
XSLT Mapper.

38.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files 
in Oracle BPEL Process Manager

The following steps provide a high level overview of how to create an XSL map in 
Oracle BPEL Process Manager using a po.xsd file and invoice.xsd file.

To create an XSL map file from imported source and target schema files in 
Oracle BPEL Process Manager:
1. In Oracle JDeveloper, select the application project in which you want to create the 

new XSL map.

2. Import the po.xsd and invoice.xsd files into the project (for example, in the 
Structure window of Oracle JDeveloper, right-click Schemas and select Import 
Schemas).

3. Right-click the selected project and select New.

The New Gallery dialog appears.

4. In the Categories tree, expand SOA Tier and select Transformations.

5. In the Items list, double-click XSL Map.

The Create XSL Map File dialog appears. This dialog enables you to create an XSL 
map file that maps a root element of a source schema file or Web Services 
Description Language (WSDL) file to a root element of a target schema file or 
WSDL file. Note the following details:

Note: You can select multiple input variables. The first variable 
defined represents the main XML input to the XSL map. Additional 
variables that are added here are defined in the XSL map as input 
parameters.

Note: If you select a file with a.xslt extension such as 
xform.xslt, it opens the XSLT Mapper to create an XSL file named 
xform.xslt.xsl, even though your intension was to use the 
existing xform.xslt file. A .xsl extension is appended to any file 
that does not have a .xsl extension, and you must create the 
mappings in the new file. As a work around, ensure that your files 
first have an extension of .xsl. If the XSL file has an extension of 
.xslt, then rename it to .xsl.



Creating an XSL Map File

38-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– WSDL files that have been added to the project appear under Project 
WSDL Files.

– Schema files that have been added to the project appear under Project 
Schema Files.

– Schema files that are not part of the project can be imported using the 
Import Schema File facility. Click the Import Schema File icon (first icon 
to the right and above the list of schema files).

– WSDL files that are not part of the project can be imported using the 
Import WSDL File facility. Click the Import WSDL File icon (second icon 
to the right and above the list of schema files).

6. Enter a name for the XSL map file in the File Name field.

7. Select the root element for the source and target trees. In the example in 
Figure 38–6, the PurchaseOrder element is selected for the source root element 
and the Invoice element is selected for the target root element. 

Figure 38–6 Expanded Target Section

8. Click OK.

A new XSL map is created, as shown in Figure 38–7.



Creating an XSL Map File

Creating Transformations with the XSLT Mapper 38-11

Figure 38–7 New XSL Map

9. Save and close the file now or begin to design your transformation. Information on 
using the XSLT Mapper is provided in Section 38.1, "Introduction to the XSLT 
Mapper."

10. From the Component Palette, drag a transform activity into your BPEL process.

11. Double-click the transform activity.

12. Specify the following information:

a. Add source variables from which to map elements by clicking the Add icon 
and selecting the variable and part of the variable as needed (for example, a 
payload schema consisting of a purchase order request).

b. Add target variables to which to map elements.

c. Add the target part of the variable (for example, a payload schema consisting 
of an invoice) to which to map.

13. To the right of the Mapper File field, click the Search icon (first icon) to browse for 
the map file name you specified in Step 6.

14. Click Open.

15. Click OK.

The XSLT Mapper displays your XSL map file.

16. Go to Section 38.1, "Introduction to the XSLT Mapper" for an overview of using the 
XSLT Mapper.

38.2.3 How to Create an XSL Map File in Oracle Mediator
The XSLT Mapper enables you to create an XSL file to transform data from one XML 
schema to another in Oracle Mediator. After you define an XSL file, you can reuse it in 
multiple routing rule specifications. This section provides an overview of creating a 
transformation map XSL file with the XSLT Mapper.

The XSLT Mapper is available from the Application Navigator in Oracle JDeveloper by 
clicking an XSL file or from the Mediator Editor by clicking the transformation icon, as 
described in the following steps. You can either create a new transformation map or 
update an existing one.

Note: You can select multiple input variables. The first variable 
defined represents the main XML input to the XSL map. Additional 
variables that are added here are defined in the XSL map as input 
parameters.



Creating an XSL Map File

38-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To launch the XSLT Mapper from the Mediator Editor and create or update a data 
transformation XSL file, follow these steps.

To create an XSL map file in the Mediator Editor:
1. Open the Mediator Editor.

2. To the left of Routing Rules, click the + icon to open the Routing Rules panel.

The transformation map icon is visible in the routing rules panel. 

3. To the right of the Transform Using field shown in Figure 38–8, click the 
appropriate transformation map icon to open the Transformation Map dialog.

Figure 38–8 Routing Rules

The appropriate Transformation Map dialog displays with options for selecting an 
existing transformation map (XSL) file or creating a new map file. For example, if 
you select the transformation map icon in the Synchronous Reply section, the 
dialog shown in Figure 38–9 appears.

Figure 38–9 Reply Transformation Map Dialog

If the routing rule includes a synchronous reply or fault, the Reply Transformation 
Map dialog or Fault Transformation Map dialog contains the Include Request in 



Creating an XSL Map File

Creating Transformations with the XSLT Mapper 38-13

the Reply Payload option. When you enable this option, you can obtain 
information from the request message. The request message and the reply and 
fault message can consist of multiple parts, meaning you can have multiple source 
schemas. Callback and callback timeout transformations can also consist of 
multiple parts.

Each message part includes a variable. For a reply transformation, the reply 
message includes a schema for the main part (the first part encountered) and an 
in.partname variable for each subsequent part. The include request message 
includes an initial.partname variable for each part.

For example, assume the main reply part is the out1.HoustonStoreProduct 
schema and the reply also includes two other parts that are handled as variables, 
in.HoustonStoreProduct and in.HoustonStoreProduct2. The request message 
includes three parts that are handled as the variables initial.expense, 
initial.expense2, and initial.expense3. Figure 38–10 provides an example.

Figure 38–10 Reply Part

4. Choose one of the following options:

■ Use Existing Mapper File, and then click the Search icon to browse for an 
existing XSLT Mapper file (or accept the default value). 

■ Create New Mapper File, and then enter a name for the file (or accept the 
default value). If the source message in the WSDL file has multiple parts, 
variables are used for each part, as mentioned in Step 3. When the target of a 
transformation has multiple parts, multiple transformation files map to these 
targets. In this case, the mediator’s transformation dialog has a separate panel 
for each target part. For example, here is a request in which the target has 
three parts:

Figure 38–11 provides an example.



Creating an XSL Map File

38-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–11 Request Transformation Map Dialog

5. Click OK.

If you chose Create New Mapper File, the XSLT Mapper opens to enable you to 
correlate source schema elements to target schema elements.

6. Go to Section 38.1, "Introduction to the XSLT Mapper" for an overview of using the 
XSLT Mapper.

38.2.4 What You May Need to Know About Creating an XSL Map File
XSL file errors do not display during a transformation at runtime if you manually 
remove all existing mapping entries from an XSL file except for the basic format data. 
Ensure that you always specify mapping entries. For example, assume you perform 
the following actions:

1. Create a transformation mapping of input data to output data in the XSLT Mapper.

2. Design the application to write the output data to a file using the file adapter.

3. Manually modify the XSL file and remove all mapping entries except the basic 
format data. For example:

<?xml version="1.0" encoding="UTF-8" ?> 
<xsl:stylesheet version="1.0" 
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu 
nctions.Xpath20" 
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/" 
xmlns:ns0="http://xmlns.oracle.com/pcbpel/adapter/file/MediaterDemo/Validation 
UsingSchematron/WriteAccounInfoToFile/" 
xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu 
nctions.ExtFunc" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue 
" 
xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath" 
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.servi 
ce.common.functions.GetRequestHeaderExtnFunction" 
xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath" 
xmlns:imp1="http://www.mycompany.com/MyExample/NewAccount" 
xmlns:tns="http://oracle.com/sca/soapservice/MediaterDemo/ValidationUsingSchem 
atron/CreateNewCustomerService" 
xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRe 
fXPathFunctions" 
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/" 



Creating an XSL Map File

Creating Transformations with the XSLT Mapper 38-15

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:ora="http://schemas.oracle.com/xpath/extension" 
xmlns:inp1="http://www.mycompany.com/MyExample/NewCustomer" 
exclude-result-prefixes="xsi xsl tns xsd inp1 ns0 imp1 plt xp20 bpws orcl dvm 
hwf mhdr ids xref ora"> 
</xsl:stylesheet> 

While the file can still be compiled, the XSL mapping is now invalid.

4. Deploy and create an instance of the SOA composite application.

During instance creation, an exception error occurs when the write operation fails 
because it did not receive any input. However, note that no errors displayed 
during XSL transformation.

38.2.5 What You May Need to Know About Importing a Composite with an XSL File
If you import a SOA archive exported from Oracle Enterprise Manager Fusion 
Middleware Control Console into Oracle JDeveloper by selecting File > Import > SOA 
Archive Into SOA Project, you cannot open any XSL map files because the map 
headers have been removed.

As a work around, perform the following steps:

1. Select File > New > SOA Tier > Transformations > XSL Map From XSL 
Stylesheet, and click OK.

The Create XSL Map File From XSL Stylesheet appears. 

2. In the File Name field, enter a new map name (for this example, 
Transformation_new.xsl).

3. In the XSL Stylesheet to Create From field, enter the name of the map file missing 
the map headers (for this example, Transformation_old.xsl).

4. For the source and target, enter the correct map source and target schema 
information to use for recovering the map header.

5. After successful creation of the new map file, delete the old map file 
(Transformation_old.xsl).

6. Rename the new map file with the recovered map header to the old map file name 
to prevent reference breakage (for this example, rename Transformation_
new.xslt to Transformation_old.xsl).

38.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator 
Without Creating an XSL Map File

If you design a SOA composite application to pass a payload through Oracle Mediator 
without defining any transformation mapping, Oracle Mediator passes the payload 
through. However, for the payload to be passed through successfully, you must ensure 
that your source and target message part names are the same and of the same type. 
Otherwise, the target reference may fail to execute with error messages such as Input 
source like Null or Part not found. 

38.2.7 What Happens If You Receive an Empty Namespace Tag in an Output Message
The XML representation from an XSL file may differ from that used in a scenario in 
which a message is passed through with a transformation being performed or in 
which an assign activity is used, even though the XMLs are syntactically and 
semantically the same. For example, if you use a mediator service component to map 



Designing Transformation Maps with the XSLT Mapper

38-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

an inbound payload that includes an element without a namespace to an outbound 
payload, you may receive an empty namespace tag in the output message. 

<Country xmlns="">US</Country> 

This is the correct behavior. A blank namespace, xmlns="", is automatically added.

38.3 Designing Transformation Maps with the XSLT Mapper
The following sections describe how to use the XSLT Mapper in Oracle BPEL Process 
Manager or Oracle Mediator. 

38.3.1 How to Add Additional Sources
You can add additional sources to an existing XSLT map. These sources are defined as 
global parameters and have schema files defining their structure. Multiple source 
documents may be required in certain instances depending upon the logic of the map. 
For instance, to produce an invoice, the map may need access to both a purchase order 
and a customer data document as input.

Note that XSL has no knowledge of BPEL variables. When you add multiple sources in 
XSL design time, ensure that you also add these multiple sources in the transform 
activity of a BPEL process.

To add additional sources:
1. Right-click the source panel to display the context menu. Figure 38–12 provides 

details.

Figure 38–12 Context Menu

2. Select Add Source.

The Add Source dialog shown in Figure 38–13 appears. 

3. Enter a parameter name for the source (the name can also be qualified by a 
namespace and prefix).



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-17

Figure 38–13 Add Source Dialog

4. In the Source Schema section, click Select to select a schema for the new source.

The Type Chooser dialog appears.

5. Select or import the appropriate schema or WSDL file for the parameter in the 
same manner as when creating a new XSLT map. For this example, the Customer 
element from the sample customer.xsd file is selected.

6. Click OK.

The schema definition appears in the Source Schema section of the Create Source 
as Parameter dialog. 

7. Click OK.

The selected schema is imported and the parameter appears in the source panel 
above the main source. The parameter can be expanded as shown in Figure 38–14 
to view the structure of the underlying schema.

Figure 38–14 Expanded Parameter

The parameter can be referenced in XPath expressions by prefacing it with a $. For 
example, a parameter named CUST appears as $CUST in an XPath expression. 
Nodes under the parameter can also be referenced (for example, 
$CUST/customer/Header/customerid).

38.3.2 How to Perform a Simple Copy by Linking Nodes
To copy an attribute or leaf-element in the source to an attribute or leaf-element in the 
target, drag the source to the target. For example, copy the element PurchaseOrder/ID 



Designing Transformation Maps with the XSLT Mapper

38-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

to Invoice/ID and the attribute PurchaseOrder/OrderDate to Invoice/InvoiceDate, as 
shown in Figure 38–15.

Figure 38–15 Linking Nodes

38.3.3 How to Set Constant Values
Perform the following steps to set a constant value.

To set constant values:
1. Select a node in the target tree.

2. Invoke the context menu by right-clicking the mouse.

3. Select the Set Text menu option.

A menu provides the following selections:

■ <Empty>: Enables you to create an empty node.

■ Enter Text: Enables you to enter text.

4. Select Enter Text.

The Set Text dialog appears.

5. In the Set Text dialog, enter text (for example, Discount Applied, as shown in 
Figure 38–16).

Figure 38–16 Set Text Dialog

6. Click OK to save the text.

A T icon is displayed next to the node that has text associated with it. The 
beginning of the text that is entered is shown next to the node name.

7. To modify the text associated with the node, right-click the node and select Edit 
Text to invoke the Set Text dialog again.

8. Edit the contents and click OK.

For more information about the fields, see the online Help for the Set Text dialog.

9. To remove the text associated with the node, right-click the node and select 
Remove Text.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-19

38.3.4 How to Add Functions
In addition to the standard XPath 1.0 functions, the XSLT Mapper provides many 
prebuilt extension functions and can support user-defined functions and named 
templates. The extension functions are prefixed with oraext or orcl and mimic XPath 
2.0 functions. 

Perform the following steps to view function definitions and use a function.

To add functions:
1. From the Component Palette, select a category of functions (for example, String 

Functions).

2. Right-click an individual function (for example, lower-case).

3. Select Help. A dialog with a description of the function appears, as shown in 
Figure 38–17. You can also click a link at the bottom to access this function’s 
description at the World Wide Web Consortium at www.w3.org.

Figure 38–17 Description of Function

4. Drag a function from the Component Palette to the center panel of the XSLT 
Mapper. You can then connect the source parameters from the source tree to the 
function and the output of the function to a node in the target tree. For the 
following example, drag the concat function from the String section of the 
Component Palette to the center panel.

5. Concatenate PurchaseOrder/ShipTo/Name/First and 
PurchaseOrder/ShipTo/Name/Last. Place the result in Invoice/ShippedTo/Name 
by dragging threads from the first and last names and dropping them on the input 
(left) side on the concat function. 

6. Drag a thread from the ShippedTo name and connect it to the output (right) side 
on the concat function, as shown in Figure 38–18.



Designing Transformation Maps with the XSLT Mapper

38-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–18 Using the Concat Function

38.3.4.1 Editing Function Parameters
To edit the parameters of any function, double-click the function icon to launch the 
Edit Function dialog. For example, to add a new comma parameter so that the output 
of the concat function used in the previous example is Last, First, then click Add to 
add a comma and reorder the parameters to get this output. Figure 38–19 provides 
details.

Figure 38–19 Editing Function Parameters

For more information about how to add, remove, and reorder function parameters, see 
the online Help for the Edit Function dialog.

38.3.4.2 Chaining Functions
Complex expressions can be built by chaining functions (that is, mapping the output 
of one function to the input of another). For example, to remove all leading and 
trailing spaces from the output of the concat function, perform the following steps:

1. Drag the left-trim and right-trim functions into the border area of the concat 
function.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-21

2. Chain them as shown in Figure 38–20 by dragging lines from the output side of 
one function to the input side of the next function.

Chaining can also be performed by dragging and dropping a function onto a 
connecting link.

Figure 38–20 Chaining Functions

38.3.4.3 Using Named Templates
Some complicated mapping logic cannot be represented or achieved by visual 
mappings. For these situations, named templates are useful. Named templates enable 
you to share common mapping logic. You can define the common mapping logic as a 
named template and then use it as often as you want.

You can define named templates in two ways:

■ Add the template directly to your XSL map in source view.

■ Add the template to an external file that you include in your XSL map.

The templates you define appear in the User Defined Named Templates list of the 
User Defined page in the Component Palette. You can use named templates in almost 
the same way as you use other functions. The only difference is that you cannot link 
the output of a named template to a function or another named template; you can only 
link its output to a target node in the target tree.

To create named templates, you must be familiar with the XSLT language. See any 
XSLT book or visit the following URL for details about writing named templates:

http://www.w3.org/TR/xslt

For more information about including templates defined in external files, see 
Section 38.3.6.7, "Including External Templates with xsl:include."

38.3.4.4 Importing User-Defined Functions
You can create and import a user-defined Java function if you have complex 
functionality that cannot be performed in XSLT or with XPath expressions. 

Follow these steps to create and use your own functions. External, user-defined 
functions can be necessary when logic is too complex to perform within the XSL map.



Designing Transformation Maps with the XSLT Mapper

38-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To import user-defined functions:
1. Code and build your functions.

The XSLT Mapper extension functions are coded differently than the Oracle BPEL 
Process Manager extension functions. Two examples are provided in the 
SampleExtensionFunctions.java file of the 
mapper-107-extension-functions sample scenario. Example 38–6 provides 
the text for these functions. To download these and other samples, visit the 
following URL:

https://soasamples.samplecode.oracle.com/

Each function must be declared as a static function. Input parameters and the 
returned value must be declared as one of the following types: 

■ java.lang.String

■ int

■ float

■ double

■ boolean

■ oracle.xml.parser.v2.XMLNodeList

■ oracle.xml.parser.v2.XMLDocumentFragment

Example 38–6 XSLT Mapper Extension Functions

// SampleExtensionFunctions.java
package oracle.sample;
/*
This is a sample XSLT Mapper User Defined Extension Functions implementation
class.
*/
public class SampleExtensionFunctions
{
   public static Double toKilograms(Double lb)
   {
      return new Double(lb.doubleValue()*0.45359237);
   }
   public static String replaceChar(String inputString, String oldChar, String
      newChar )
   {
      return inputString.replace(oldChar.charAt(0), newChar.charAt(0));
   }
}

2. Create an XML extension function configuration file. This file defines the functions 
and their parameters.

This file must have the name ext-mapper-xpath-functions-config.xml. 
See Section B.7, "Creating User-Defined XPath Extension Functions" for more 
information on the format of this file. The file shown in Example 38–7 represents 
the functions toKilograms and replaceChar as they are coded in 
Example 38–6.

Example 38–7 XML Extension Function Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions version="11.1.1"



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-23

 xmlns="http://xmlns.oracle.com/soa/config/xpath" xmlns:sample=
"http://www.oracle.com/XSL/Transform/java/oracle.sample.SampleExtensionFunctions"
 >
      <function name="sample:toKilograms">
             <className>oracle.sample.SampleExtensionFunctions</className>
             <return type="number"/>
             <params>
                    <param name="pounds" type="number"/>
             </params>
             <desc>Converts a value in pounds to kilograms</desc>
      </function>
      <function name="sample:replaceChar">
             <className>oracle.sample.SampleExtensionFunctions</className>
             <return type="string"/>
             <params>
                    <param name="inputString" type="string"/>
                    <param name="oldChar" type="string"/>
                    <param name="newChar" type="string"/>
             </params>
             <desc>Returns a new string resulting from replacing all occurrences
                   of oldChar in this string with newChar</desc>
      </function>
</soa-xpath-functions>

Some additional rules apply to the definitions of XSLT extension functions:

■ The functions need a namespace prefix and a namespace. In this sample, they 
are sample and 
http://www.oracle.com/XSL/Transform/java/oracle.sample.Sam 
pleExtensionFunctions.

■ The function namespace must start with 
http://www.oracle.com/XSL/Transform/java/ for extension 
functions to work with the Oracle XSLT processor.

■ The last portion of the namespace, in this sample 
oracle.sample.SampleExtensionFunctions, must be the fully 
qualified name of the Java class that implements the extension functions.

■ The types and their equivalent Java types shown in Table 38–1 can be used for 
parameter and return values:

3. Create a JAR file containing both the XML configuration file and the compiled 
classes. The configuration file must be contained in the META-INF directory for 
the JAR file. For the example in this section, the directory structure is as follows 
with the oracle and META-INF directories added to a JAR file:

■ oracle

Table 38–1 Types and Equivalent Java Types

XML Configuration File Type Name Java Type

string java.lang.String

boolean boolean

number int, float, double

node-set oracle.xml.parser.v2.XMLNodeList

tree oracle.xml.parser.v2.XMLDocumentFragme
nt



Designing Transformation Maps with the XSLT Mapper

38-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– sample (contains the class file)

■ META-INF

– ext-mapper-xpath-functions-config.xml

The JAR file must then be registered with Oracle JDeveloper.

4. Go to Tools > Preferences > SOA.   

5. Click the Add button and navigate to and select your JAR file. 

6. Restart Oracle JDeveloper.

New functions appear in the Component Palette under the User Defined page in 
the User Defined Extension Functions group. 

7. To make the functions available in the runtime environment, Section B.7.3, "How 
to Deploy User-Defined Functions to Runtime" for details. 

38.3.5 How to Edit XPath Expressions
To use an XPath expression in a transformation mapping, select the Advanced page 
and then the Advanced Function group from the Component Palette and drag 
xpath-expression from the list into the XSLT Mapper. This is shown in Figure 38–21.

Figure 38–21 Editing XPath Expressions

When you double-click the icon, the Edit XPath Expression dialog appears, as shown 
in Figure 38–22. You can press Ctrl+Space to invoke the XPath Building Assistant.

Figure 38–22 Edit XPath Expression Dialog 

Figure 38–23 shows the XPath Building Assistant.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-25

Figure 38–23 The XPath Building Assistant

For more information about using the XPath Building Assistant, see the online Help 
for the Edit XPath Expression dialog and Section B.6, "Building XPath Expressions in 
Oracle JDeveloper."

38.3.6 How to Add XSLT Constructs
While mapping complex schemas, it is essential to be able to add XSLT constructs. For 
instance, you may need to create a node in the target when a particular condition 
exists; this requires the use of an xsl:if statement or an xsl:choose statement. You 
may also need to loop over a node-set in the source such as a list of items in a sales 
order and create nodes in the target XML for each item in the sales order; this requires 
the use of an xsl:for-each statement. The XSLT Mapper provides XSLT constructs 
for performing these and other tasks.

There are two ways to add XSLT constructs such as for-each, if, or choose to the target 
XSLT tree:

To add XSLT constructs from the Component Palette:
1. Select the General page and open the XSLT Constructs group. Figure 38–24 

provides details.

Figure 38–24 XSLT Constructs Available Through the Component Palette



Designing Transformation Maps with the XSLT Mapper

38-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Drag an XSLT construct from the group onto a node in the target tree. If the XSLT 
construct can be applied to the node, it is inserted in the target tree. Note that the 
when and otherwise constructs must be applied to a previously-inserted choose 
node.

To add XSLT constructs through the context menu on the target tree:
1. Right-click the element in the target tree where you want to insert an XSLT 

construct. A context menu is displayed. Figure 38–25 provides details.

Figure 38–25 XSLT Constructs in Available Through the Context Menu

2. Select Add XSL Node and then the XSLT construct you want to insert.

The XSLT construct is inserted. In most cases, an error icon initially appears next to the 
construct. This indicates that the construct requires an XPath expression to be defined 
for it. 

In the case of the for-each construct, for example, an XPath expression defines the 
node set over which the for-each statement loops. In the case of the if construct, the 
XPath expression defines a boolean expression that is evaluated to determine if the 
contents of the if construct are executed.

The XPath expression can be created in the same manner as mapping elements and 
attributes in the target tree. The following methods create an underlying XPath 
expression in the XSLT. You can perform all of these methods on XSLT constructs in 
the target tree to set their XPath expressions:

■ Creating a simple copy by linking nodes

■ Adding functions

■ Adding XPath expressions

The following sections describe specific steps for inserting each supported XSLT 
construct.

38.3.6.1 Using Conditional Processing with xsl:if
In Figure 38–26, note that HQAccount and BranchAccount are part of a choice in the 
PurchaseOrder schema; only one of them exists in an actual instance. To illustrate 
conditional mapping, copy PurchaseOrder/HQAccount/AccountNumber to 
Invoice/BilledToAccount/AccountNumber, only if it exists.

To use conditional processing with xsl:if:
1. In the target tree, select Invoice/BilledToAccount/AccountNumber and right-click 

to invoke the context sensitive menu.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-27

2. Select Add XSL Node > if and connect 
PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/if.

3. Connect PurchaseOrder/HQAccount/AccountNumber to 
Invoice/BilledToAccount/if/AccountNumber.

Figure 38–26 shows the results.

Figure 38–26 Conditional Processing with xsl:if

When mapping an optional source node to an optional target node, it is important to 
surround the mapping with an xsl:if statement that tests for the existence of the 
source node. If this is not done and the source node does not exist in the input 
document, an empty node is created in the target document. For example, note the 
mapping shown in Example 38–8:

Example 38–8 Statement Without xsl:If

<ProductName>
  <xsl:value-of select="ProductName"/>
</ProductName>

If the ProductName field is optional in both the source and target and the element 
does not exist in the source document, then an empty ProductName element is 
created in the target document. To avoid this situation, add an if statement to test for 
the existence of the source node before the target node is created, as shown in 
Example 38–9:

Example 38–9 Statement With xsl:If

<xsl:if test="ProductName">
    <ProductName>
      <xsl:value-of select="ProductName"/>
    </ProductName>
</xsl:if>



Designing Transformation Maps with the XSLT Mapper

38-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

38.3.6.2 Using Conditional Processing with xsl:choose
In this same example, you can copy PurchaseOrder/HQAccount/AccountNumber to 
Invoice/BilledToAccount/AccountNumber, if it exists. Otherwise, copy 
PurchaseOrder/BranchAccount to Invoice/BilledToAccount/AccountNumber.

To use conditional processing with xsl:choose:
1. In the target tree, select Invoice/BilledToAccount/AccountNumber and right-click 

to invoke the context sensitive menu.

2. Select Add XSL Node > choose from the menu.

3. Connect PurchaseOrder/HQAccount/AccountNumber to 
Invoice/BilledToAccount/choose/when to define the condition.

4. Connect PurchaseOrder/HQAccount/AccountNumber to 
Invoice/BilledToAccount/choose/when/AccountNumber.

5. In the target tree, select XSL Add Node > choose and right-click to invoke the 
context sensitive menu.

6. Select Add XSL node > otherwise from the menu.

7. Connect PurchaseOrder/BranchAccount/AccountNumber to 
Invoice/BilledToAccount/choose/otherwise/AccountNumber.

Figure 38–27 shows the results.

Figure 38–27 Conditional Processing with xsl:choose

38.3.6.3 Creating Loops with xsl:for-each
The XSLT Mapper enables you to create loops with the xsl:for-each command. For 
example, copy PurchaseOrder/Items/HighPriorityItems/Item to 
Invoice/ShippedItems/Item.

To create loops with xsl:for-each:
1. In the target tree, select Invoice/ShippedItems/Item and right-click to invoke the 

context sensitive menu.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-29

2. Select Add XSL Node > for-each and connect 
PurchaseOrder/Items/HighPriorityItems/Item to Invoice/ShippedItems/for-each 
to define the iteration.

3. Connect PurchaseOrder/Items/HighPriorityItems/Item/ProductName to 
Invoice/ShippedItems/for-each/Item/ProductName.

4. Connect PurchaseOrder/Items/HighPriorityItems/Item/Quantity to 
Invoice/ShippedItems/for-each/Item/Quantity.

5. Connect PurchaseOrder/Items/HighPriorityItems/Item/USPrice to 
Invoice/ShippedItems/for-each/Item/PriceCharged.

Figure 38–28 shows the results.

Figure 38–28 Creating Loops with xsl:for-each

38.3.6.4 Cloning xsl:for-each
You can create additional loops by cloning an existing xsl:for-each. For example, copy 
all LowPriorityItems to ShippedItems, in addition to HighPriorityItems.

To clone xsl:for-each:
1. Under Invoice/ShippedItems, select for-each.

2. Right-click and select Add XSL Node > Clone ’for-each’.

This inserts a copy of the for-each node beneath the original for-each.

3. Drag PurchaseOrder/Items/LowPriorityItems/Item to the copied for-each to 
define the iteration.

4. Connect PurchaseOrder/Items/LowPriorityItems/Item/ProductName to 
Item/ProductName in the copied for-each.

Notes:

■ Executing an auto map automatically inserts xsl:for-each. To see 
the auto map in use, drag 
PurchaseOrder/Items/LowPriorityItems to 
Invoice/UnShippedItems; for-each is automatically created.

■ Ensure that your design does not include infinite loops. These 
loops result in errors similar to the following displaying during 
deployment and invocation of your application.

ORAMED-04001: 
. . .
oracle.tip.mediator.service.BaseActionHandler requestProcess 
SEVERE: 
failed reference BPELProcess1.bpelprocess1_client operation = 
process



Designing Transformation Maps with the XSLT Mapper

38-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Connect PurchaseOrder/Items/LowPriorityItems/Item/Quantity to 
Item/Quantity in the copied for-each.

6. Connect PurchaseOrder/Items/LowPriorityItems/Item/USPrice to 
Item/PriceCharged in the copied for-each.

38.3.6.5 Applying xsl:sort to xsl:for-each
The XSLT Mapper enables you to add xsl:sort statements to xsl:for-each commands.

To add an xsl:sort statement:
1. Right-click a for-each statement in the target tree.

A context menu appears.

2. Select Add XSL Node > sort. The Sort Edit Dialog is displayed, as shown in 
Figure 38–29.

Figure 38–29 Sort Edit Dialog

3. Select options to add to the sort statement as needed. See the online Help for 
information on options.

4. Click OK. The sort statement is added following the for-each.

5. To set the field on which to sort, drag the necessary sort field node in the source 
tree to the sort node in the target tree. This creates a simple link and sets the XPath 
expression for the select attribute on the xsl:sort.

6. To add additional sort statements, right-click the for-each to add another sort or 
right-click an existing sort node to insert a new sort statement before the selected 
sort node.

7. To edit a sort node, double-click the sort node or right-click and select Edit Sort 
from the context menu. This invokes the Sort Edit Dialog and enables you to 
change the sort options.

38.3.6.6 Copying Nodes with xsl:copy-of
You may need to use the XSLT copy-of construct to copy a node, along with any child 
nodes, from the source to the target tree. This is typically done when working with 



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-31

anyType or any element nodes. Note that anyType and any element and attribute 
nodes cannot be mapped directly. Use copy-of or element and type substitution.

To copy nodes with xsl:copy-of:
1. Select the node in the target tree to be created by the copy-of command.

2. Right-click the node and select Add XSL Node > copy-of.

If the node is not an any element node, a dialog appears requesting you to either 
replace the selected node or replace the children of the selected node.

3. Select the correct option for your application and click OK.

If you select Replace the selected node with the copy-of, a processing directive is 
created immediately following the copy-of in the XSL indicating which node is 
replaced by the copy-of. Without the processing directive in the XSL, the 
conversion back to design view is interpreted incorrectly. For this reason, do not 
remove or edit this processing instruction while in source view.

4. Set the source node for the copy-of by dragging and dropping from the source tree 
or by creating an XPath expression.

38.3.6.7 Including External Templates with xsl:include
You can reuse templates that are defined in external XSL files by including them in the 
current map with an include statement. 

To include external templates with xsl:include:
1. In the target tree, select and right-click the root node.

2. From the menu, select Add Include File.

A dialog prompts you for the include file name.

3. Select the file and click OK.

The file is copied to the same project directory as the existing map file. A relative 
path name is created for it and the include statement instruction is inserted in the 
target tree.

The include file can only contain named template definitions. These are parsed 
and available to you in design view of the Component Palette under the User 
Defined Named Templates category in the User Defined page.

Note: Always create the copy-of command in design view so that 
the correct processing directive can be created in the XSLT Mapper to 
indicate the correct placement of the copy-of command in the target 
tree. 

WARNING: The XSLT Mapper does not currently validate the 
mapping of data performed through use of the copy-of command. 
You must ensure that copy-of is used to correctly map elements to 
the target tree so that the target XML document contains valid data. 
You can test the validity by using the test tool. 



Designing Transformation Maps with the XSLT Mapper

38-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

38.3.7 How to Automatically Map Nodes
Mapping nonleaf nodes starts the auto map feature. The system automatically tries to 
link all relevant nodes under the selected source and target. Try the auto map feature 
by mapping PurchaseOrder/ShipTo/Address to Invoice/ShippedTo/Address. All 
nodes under Address are automatically mapped, as shown in Figure 38–30.

Figure 38–30 Auto Mapping

The behavior of the auto map can be tuned by altering the settings in Oracle 
JDeveloper preferences or by right-clicking the XSLT Mapper and selecting Auto Map 
Preferences. This displays the dialog shown in Figure 38–31.

Figure 38–31 Auto Map Preferences

This dialog enables you to customize your auto mapping as follows:

■ Invoke the automatic mapping feature, which attempts to automatically link all 
relevant nodes under the selected source and target. When disabled, you must 
individually map relevant nodes. 

Note: An oramds:// shared location cannot be referenced for a 
user-defined named template include file.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-33

■ Display and review all potential source-to-target mappings detected by the XSLT 
Mapper, and then confirm to create them. 

■ Be prompted to customize the auto map preferences before the auto map is 
invoked. 

■ Select the Basic or Advanced method for automatically mapping source and target 
nodes. This action enables you to customize how the XSLT Mapper attempts to 
automatically link all relevant nodes under the selected source and target. 

■ Manage your dictionaries. The XSLT Mapper uses the rules defined in a dictionary 
when attempting to automatically map source and target elements.

For more information on the fields, see the online Help for the Auto Map 
Preferences dialog.

Follow these instructions to see potential source mapping candidates for a target node. 

To automatically map nodes:
1. Right-click the target node and select Show Matches.

2. Click OK in the Auto Map Preferences dialog.

The Auto Map dialog appears, as shown in Figure 38–32.

Figure 38–32 Auto Mapping Candidates

For more information on the fields, see the online Help for the Auto Map dialog.

38.3.7.1 Using Auto Mapping with Confirmation
When the Confirm Auto Map Results checkbox shown in Figure 38–31 is selected, a 
confirmation dialog appears. If matches are found, the potential source-to-target 
mappings detected by the XSLT Mapper are displayed, as shown in Figure 38–33. The 
dialog enables you to filter one or more mappings.



Designing Transformation Maps with the XSLT Mapper

38-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–33 Auto Map with Confirmation

For more information about the fields, see the online Help for the Auto Map dialog.

38.3.8 What You May Need to Know About Automatic Mapping
The automatic mapping algorithm depends on existing maps between source and 
target nodes. When maps exist between source and target nodes before executing 
automatic mapping, these existing maps are used to define valid synonyms that are 
used by the algorithm. 

For example, assume you have a simple source and target tree, each with two elements 
called test1 and test2, as shown in Figure 38–34.

Figure 38–34 Source and Target Tree with Two Elements

If no nodes are mapped, the automatic mapping algorithm does not match the names 
test1 and test2. However, if mapping exists between the test1 and test2 nodes, the 
algorithm predefines the names test1 and test2 as synonyms for any additional 
mapping.

In the example in Figure 38–34, if you drag the exampleElement from the source to the 
target, the automatic mapping algorithm maps the test1 node in the source to the test2 



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-35

node in the target because your map previously linked those two names. This results 
in the map shown in Figure 38–35:

Figure 38–35 Results of Dragging exampleElement

38.3.9 How to View Unmapped Target Nodes
You can view a list of target nodes that are currently unmapped to source nodes.

To view unmapped target nodes:
1. In the XSLT Mapper, right-click in the center panel and select Completion Status.

This dialog provides statistics at the bottom about the number of unmapped target 
nodes. This dialog enables you to identify and correct any unmapped nodes before 
you test your transformation mapping logic on the Test XSL Map dialog.

2. In the list, select a target node. The node is highlighted. A checkmark indicates 
that the target node is required to be mapped. If not required, the checkbox is 
empty. 

Figure 38–36 provides an example of the Completion Status dialog.

Note: Nodes are marked as required in the Completion Status dialog 
based on the XSD definition for a node. It is possible that a node 
marked as required is not actually required for a specific mapping if a 
parent node of the required node is optional and is not part of the XSL 
mapping.



Designing Transformation Maps with the XSLT Mapper

38-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–36 Completion Status

38.3.10 How to Generate Dictionaries
A dictionary is an XML file used by automatic mapping. It contains synonyms for field 
names. For instance, assume that the element QtyOrdered should map to the element 
Quantity. The element names QtyOrdered and Quantity are then synonyms for one 
another. If this mapping commonly appears from one map to another, it is a good 
practice to save these synonyms in a dictionary file. After being saved, they can be 
reapplied to another map using automatic mapping.

A dictionary can be created from any existing XSL map and can contain all mappings 
that are not automatically generated by the XSLT Mapper for the existing map.

To generate and use dictionaries:
1. Create an XSL map that contains specific mappings to reuse in other maps.

2. Go to Tools > Preferences > XSL Maps > Auto Map and note the current 
automatic mapping settings.

3. In the XSLT Mapper, right-click the center panel of the XSLT Mapper and select 
Generate Dictionary.

Note: Because dictionary entries are dependent upon the current 
automatic mapping settings, you must make a note of those settings 
for future use. To later reapply a dictionary mapping, it is best to set 
the automatic mapping preferences to those that were in effect at the 
time the dictionary was created. Therefore, it is important to note the 
automatic mapping settings at the time the dictionary is created.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-37

This prompts you for the dictionary name and the directory in which to place the 
dictionary. 

4. Check the Open Dictionary checkbox to view the dictionary after it is created. If 
the dictionary file is empty, this indicates that no fields were mapped that would 
not have been mapped with the current automatic mapping settings.

5. To use the dictionary in another map, load the dictionary by selecting Tools > 
Preferences > XSL Maps > Auto Map.

6. Click Add below the Dictionaries list.

7. Browse for and select the dictionary XML file that was previously created from a 
similar map.

8. Click OK.

9. Before leaving the automatic mapping preferences, modify the mapping settings to 
match those used when creating the dictionary.

10. Click OK.

11. Perform an automatic mapping of whichever portion of the new map corresponds 
to the saved dictionary mappings. 

For more information about automatic mapping, see Section 38.3.7, "How to 
Automatically Map Nodes."

38.3.11 What You May Need to Know About Generating Dictionaries in Which 
Functions are Used

You cannot create a dictionary for mappings in which functions are used. In these 
cases, the dictionary XML instructions are missing for the elements that were 
automatically mapped or which had an XPath function mapping. For example, assume 
you use string functions to map XSDs during design time. If you right-click the center 
panel of the XSLT Mapper and select Generate Dictionary, the dictionary is created, 
but instructions are not created in all places in which the string functions were used 
during mapping.

Note that you can create a dictionary for simple type mappings. 

38.3.12 How to Create Map Parameters and Variables
You can create map parameters and variables. You create map parameters in the 
source tree and map variables in the target tree.

Note the following issues:

■ Parameters are created in the source tree, are global, and can be used anywhere in 
the mappings.

■ Variables are created in the target tree, and are either global or local. The location 
in which they are defined in the target tree determines if they are global or local. 

– Global variables are defined immediately beneath the <target> node and 
immediately above the actual target schema (for example, POAcknowledge). 
Right-click the <target> node to create a global variable. 

– Local variables are defined on a specific node beneath the actual target schema 
(for example, subnode name on schema POAcknowledge). Local variables 
can have the same name provided they are in different scopes. Local variables 



Designing Transformation Maps with the XSLT Mapper

38-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

can only be used in their scopes, while global variables can be used anywhere 
in the mappings.

38.3.12.1 Creating a Map Parameter

To create a map parameter:
1. In the source tree root, right-click and select Add Parameter.

The Add Parameter dialog shown in Figure 38–37 appears.

2. Specify details for the parameter. For this example, a parameter named discount 
with a numeric default value of 0.0 is specified.

Figure 38–37 Add Parameter Dialog

3. Click OK.

38.3.12.2 Creating a Map Variable

To create a map variable:
1. In the target tree, right-click the target tree root or any node and select Add 

Variable. 

The Add Variable dialog shown in Figure 38–38 appears.

2. Specify details.

Since variables appear in the target tree, their XPath expression can be set in the 
same manner as other XSLT constructs in the target tree after inserting the 
variable. Therefore, the only required information in this dialog is a name for the 
variable. To set content for the variable, you must enter it through this dialog. 
Content is handled differently from the XSLT select attribute on the variable.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-39

Figure 38–38 Add Variable Dialog

3. Click OK.

The variable is added to the target tree at the position selected. 

The variable initially has a warning icon beside it. This indicates that its select 
XPath statement is undefined. Define the XPath through linking a source node, 
creating a function, or defining an explicit XPath expression as done for other 
target elements and XSLT constructs. 

38.3.13 How to Search Source and Target Nodes
You can search source and target nodes. For example, you can search in a source node 
named invoice for all occurrences of the subnode named price. 

To search source and target nodes:
1. Right-click a source or target node and select Find from the context menu.

The Find Node dialog shown in Figure 38–39 is displayed.

2. Enter a keyword for which to search.

3. Specify additional details, as necessary. For example:

■ Select Search Annotations if you want annotations text to also be searched.

■ Specify the scope of the search. You can search the entire source or target tree, 
search starting from a selected position, or search within a selected subtree.



Designing Transformation Maps with the XSLT Mapper

38-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–39 Find Node Dialog

The first match found is highlighted, and the Find dialog closes. If no matches are 
found, a message displays on-screen. 

4. Select the F3 key to find the next match in the direction specified. To search in the 
opposite direction, select the Shift and F3 keys.

38.3.14 How to Control the Generation of Unmapped Target Elements
There are five options for controlling the generation of empty elements in the target 
XSL:

■ Do not generate unmapped nodes (default option).

■ Generate empty nodes for all unmapped target nodes.

■ Generate empty nodes for all required, unmapped target nodes.

■ Generate empty nodes for all nillable, unmapped target nodes.

■ Generate empty nodes for all required or nillable, unmapped target nodes.

Set these options as follows:

■ At the global level:

Select Tools > Preferences > XSL Maps. The global setting applies only when a 
map is created.

■ At the map level:

Select XSL Generation Options from the map context menu. Each map can then 
be set independently by setting the options at the map level.

Empty elements are then generated for the selected unmapped nodes. If the 
unmapped node is nillable, it is generated with xsi:nil="true".

Note: You cannot search on functions or text values set with the Set 
Text option.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-41

38.3.15 How to Ignore Elements in the XSLT Document
When the XSLT Mapper encounters any elements in the XSLT document that cannot be 
found in the source or target schema, it cannot process them and displays an Invalid 
Source Node Path error. XSL map generation fails. You can create and import a file 
that directs the XSLT Mapper to ignore and preserve these specific elements during 
XSLT parsing by selecting Preferences > XSL Maps in the Tools main menu of Oracle 
JDeveloper.

For example, preprocessing may create elements named myElement and 
myOtherElementWithNS that you want the XSLT Mapper to ignore when it creates 
the graphical representation of the XSLT document. You create and import a file with 
these elements to ignore that includes the syntax shown in Example 38–10.

Example 38–10 File with Elements to Ignore

<elements-to-ignore>
   <element name="myElement"/>
   <element name="myOtherElementWithNS" namespace="NS"/>
</elements-to-ignore>

You must restart Oracle JDeveloper after importing the file. 

38.3.16 How to Replace a Schema in the XSLT Mapper
You can replace the map source or target schema that currently displays in the XSLT 
Mapper. 

To replace a schema in the XSLT Mapper:
1. In either the source or target panel, right-click and select Replace Schema. 

This opens the Type Chooser dialog shown in Figure 38–40, which enables you to 
select the new source or target schema to use.



Designing Transformation Maps with the XSLT Mapper

38-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–40 Replacing a Schema

2. Select the replacement schema and click OK.

You are then prompted to select to clear expressions in the current map.

3. Select Yes or No. If expressions are not cleared, you may need to correct the map 
in source view before entering design view again.

38.3.17 How to Substitute Elements and Types in the Source and Target Trees
You can substitute elements and types in the source and target trees.

Use element substitution when:

■ An element is defined as the head of a substitution group in the underlying 
schema. The element may or may not be abstract. Any element from the 
substitution group can be substituted for the original element.

■ An element is defined as an any element. Any global element defined in the 
schema can be substituted.

Use type substitution when:

■ A global type is available in the underlying schema that is derived from the type 
of an element in the source or target tree. The global type can then be substituted 
for the original type of the element. Any type derived from an abstract type can be 
substituted for that abstract type.

■ An element in the source or target tree is defined to be of the type anyType. Any 
global type defined in the schema can then be substituted.

Type substitution is supported by use of the xsi:type attribute in XML.

To substitute an element or type in the source and target trees:
1. In the source or target tree, right-click the element for which substitution applies.



Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-43

2. From the context menu, select Substitute Element or Type. If this option is 
disabled, no possible substitutions exist for the element or its type in the 
underlying schema.

The Substitute Element or Type dialog shown in Figure 38–41 appears.

Figure 38–41 Substitute Element or Type Dialog

3. Select either Substitute an element or Substitute a type (only one may be 
available depending upon the underlying schema).

A list of global types or elements that can be substituted displays in the dialog.

4. Select the type or element to substitute.

5. Click OK.

The element or type is substituted for the originally selected element. This 
selection displays differently depending upon whether this is a type or element 
substitution and this is the source or target tree.

■ If the element is in the target tree and type substitution is selected:

The xsi:type attribute is added beneath the original element, as shown in 
Figure 38–42. It is disabled in design view and set to the type value that was 
selected. An S icon displays to indicate the node was substituted. You can map 
to any structural elements in the substituted type.

Figure 38–42 If the Element is in the Target Tree and Type Substitution is Selected

■ If the element is in the source tree and type substitution is selected:

The xsi:type attribute is added beneath the original element, as shown in 
Figure 38–43. An S icon is displayed to indicate the node was substituted. You 
can map from any structural elements in the substituted type.



Designing Transformation Maps with the XSLT Mapper

38-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–43 If the Element is in the Source Tree and Type Substitution is Selected

■ If the element is in the target tree and element substitution is selected:

The original element is replaced in the tree with the substituted element, as 
shown in Figure 38–44. A comment indicates that the original element name 
was added and an S icon displays to indicate the node was substituted. You 
may map to any structural elements in the substituted element.

Figure 38–44 If the Element is in the Target Tree and Element Substitution is Selected

■ If the element is in the source tree and element substitution is selected:

The original element and its possible replacement both display in the source 
tree under a new node named <Element Substitution>, as shown in 
Figure 38–45. An S icon displays to indicate that the node was added. This 
feature enables you to build a map where the source object can contain either 
the original node or a substituted node. You can map to any structural 
elements in the substituted element.

Figure 38–45 If the Element is in the Source Tree and Element Substitution is Selected



Testing the Map

Creating Transformations with the XSLT Mapper 38-45

6. To remove a substituted node, right-click any node with an S icon and select 
Remove Substitution from the context menu.

7. To see all possible nodes where substitution is allowed, right-click the source or 
target tree and select Show Substitution Node Icons.

All nodes where substitution is possible are marked with an * icon, as shown in 
Figure 38–46.

Figure 38–46 All Possible Substitutions

8. To hide the icons, right-click and select Hide Substitution Node Icons.

38.4 Testing the Map
The XSLT Mapper provides a test tool to test the style sheet or map. The test tool can 
be invoked by selecting the Test menu item, as shown in Figure 38–47.

Note: Unlike element substitution, only one type substitution at a 
time can display in the source tree. This does not prevent you from 
writing a map that allows the source to sometimes have the original 
type or the substituted type; you can switch to another type at any 
time. XPath expressions that map to nodes that may not be visible in 
the source tree at any given time are still retained.



Testing the Map

38-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 38–47 Invoking the Test Dialog

38.4.1 How to Test the Transformation Mapping Logic
The Test XSL Map dialog shown in Figure 38–48 enables you to test the transformation 
mapping logic you designed with the XSLT Mapper. The test settings you specify are 
stored and do not need to be entered again the next time you test. Test settings must be 
entered again if you close and reopen Oracle JDeveloper.



Testing the Map

Creating Transformations with the XSLT Mapper 38-47

Figure 38–48 Test XSL Map Dialog

To test the transformation mapping logic:
1. In the Source XML File field, choose to allow a sample source XML file to be 

generated for testing or click Browse to specify a different source XML file.

When you click OK, the source XML file is validated. If validation passes, 
transformation occurs, and the target XML file is created.

If validation fails, no transformation occurs and a message displays on-screen. 

2. Select the Generate Source XML File checkbox to create a sample XML file based 
on the map source XSD schema.

3. Select the Show Source XML File checkbox to display the source XML files for the 
test. The source XML files display in an Oracle JDeveloper XML editor.

If the map has defined parameters, the Parameters With Schema or Parameters 
Without Schema table can appear.

a. If the Parameters With Schema table appears, you can specify an input XML 
file for the parameter using the Browse button. Select the Generate File 
checkbox to generate a file.

b. If the Parameters Without Schema table appears, you can specify a value by 
selecting the Specify Value checkbox and making appropriate edits to the 
Type and Value columns.

4. In the Target XML File field, enter a file name or browse for a file name in which 
to store the resulting XML document from the transformation. 

5. Select the Show Target XML File checkbox to display the target XML file for the 
test. The target XML file displays in an Oracle JDeveloper XML editor. 



Testing the Map

38-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. If you select to show both the source and target XML, you can customize the 
layout of your XML editors. Select Enable Auto Layout in the upper right corner 
and click one of the patterns.

7. Click OK.

The test results shown in Figure 38–49 appear.

For this example, the source XML and target XML display side-by-side with the 
XSL map underneath (the default setting). Additional source XML files 
corresponding to the Parameters With Schema table are displayed as tabs in the 
same area as the main source file. You can right-click an editor and select Validate 
XML to validate the source or target XML against the map source or target XSD 
schema.

Figure 38–49 Test Results

38.4.2 How to Generate Reports
You can generate an HTML report with the following information:

■ XSL map file name, source and target schema file names, their root element names, 
and their root element namespaces

■ Target document mappings

■ Target fields not mapped (including mandatory fields)

■ Sample transformation map execution

Follow these instructions to generate a report.

Note: If the XSL map file contains domain value map (DVM) and 
cross reference (XREF) XPath functions, it cannot be tested. These 
functions cannot be executed during design time; they can only be 
executed during runtime. 



Testing the Map

Creating Transformations with the XSLT Mapper 38-49

1. In the center panel, right-click and select Generate Report.

The Generate Report dialog appears, as shown in Figure 38–50. Note that if the 
map has defined parameters, the appropriate parameter tables appear.

Figure 38–50 The Generate Report Dialog

For more information about the fields, see the online Help for the Generate Report 
dialog.

38.4.2.1 Correcting Memory Errors When Generating Reports
If you attempt to generate a report and receive an out-of-memory error, increase the 
heap size of the JVM as follows.

To increase the JVM heap size:
1. Open the JDev_Oracle_Home\jdev\bin\jdev.conf file.

2. Go to the following section:

# Set the maximum heap to 512M
#
AddVMOption     -Xmx512M

3. Increase the size of the heap as follows (for example, to 1024):

AddVMOption     -Xmx1024M

In addition, you can also unselect the Open Report option on the Generate Report 
dialog before generating the report.



Demonstrating Features of the XSLT Mapper

38-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

38.4.3 How to Customize Sample XML Generation
You can customize sample XML generation by specifying the following parameters. 
Select Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper to 
display the Preferences dialog.

■ Number of repeating elements

Specifies how many occurrences of an element are created if the element has the 
attribute maxOccurs set to a value greater than 1. If the specified value is greater 
than the value of the maxOccurs attribute for a particular element, the number of 
occurrences created for that particular element is the maxOccurs value, not the 
specified number. 

■ Generate optional elements

If selected, any optional element (its attribute minOccurs set to a value of 0) is 
generated the same way as any required element (its attribute minOccurs set to a 
value greater than 0). 

■ Maximum depth

To avoid the occurrence of recursion in sample XML generation caused by 
optional elements, specify a maximum depth in the XML document hierarchy tree 
beyond which no optional elements are generated. 

38.5 Demonstrating Features of the XSLT Mapper
This sample demonstrates the following features of the XSLT mapper:

■ Element and type substitution

■ Multiple sources use

■ New XSL constructs xsl:sort and xsl:copy-of

■ New variable use

In addition to this sample, Oracle provides other transformation samples that are 
available for download from the Oracle Technology Network (OTN). These samples 
are described in Table 38–2. To access these samples, visit the following URL:

https://soasamples.samplecode.oracle.com/

Table 38–2 Transformation Samples

Sample Description

mapper-101-basic-mapping Demonstrates creation and basic editing of an XSLT map.

mapper-102-import-and-test Demonstrates the following XSL mapper features:

■ Import of external XSL

■ Test execution with an overview of XML editor validation

■ Report execution

mapper-104-auto-mapping Demonstrates the automatic mapping feature of the XSLT 
Mapper.

mapper-105-multiple-sources Demonstrates the use of multiple sources. The following topics 
are also covered in the process of creating the map sample.

■ Inserting a cloned for-each

■ Adding predicates to XPath expressions

■ Using variables



Demonstrating Features of the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-51

38.5.1 Opening the Application
You first create the sample application. When complete, the application matches the 
one provided in the WhatsNewApplication directory described in Step 1.

1. Download sample mapper-109-whats-new from OTN.

The sample includes the following files and directories:

■ artifacts/schemas/po.xsd and Attachment.xsd: source schemas

■ artifacts/schemas/invoice.xsd and ReasonCodes.xsd: target 
schemas

■ artifacts/application: starting application for this sample

■ WhatsNewApplication directory: completed sample map

2. Copy the artifacts/application folder to a separate work area.

3. Start Oracle JDeveloper.

4. Click WhatsNewApplication.jws in the artifacts/application folder 
you copied to a separate area.

5. If prompted to migrate files, click Yes.

The WhatsNewApplication displays in the Application Navigator.

38.5.2 Creating a New XSLT Map in the BPEL Process
You now create a new XSLT map with two sources that is invoked from the BPEL 
process included in the WhatsNewApplication application.

1. In the Application Navigator, double-click the ProcessPO2Invoice.bpel BPEL 
process.

2. From the Oracle Extensions section of the Component Palette, drag a Transform 
activity below the SetDiscontinuedProducts assign activity.

3. Double-click the Transform activity.

4. In the Name field of the General tab, enter Po2Invoice.

5. In the Transformation tab, perform the following steps:

mapper-107-extension-functi
ons

Demonstrates the use of user-defined extension functions.

mapper-108-substitution-ma
pping

Demonstrates the use of element substitution when:

■ An element is defined as the head of a substitution group in 
the underlying schema. The element may or may not be 
abstract. Any element from the substitution group can be 
substituted for the original element.

■ An element is defined as an any element. Any global 
element defined in the schema can be substituted for the 
any element. This is subject to any namespace constraints 
placed on the definition of the any element.

mapper-109-whats-new Demonstrates new 11g features in the XSLT Mapper. These 
features are described in Section 38.5.1, "Opening the 
Application" through Section 38.5.7, "Testing the Map."

Table 38–2 (Cont.) Transformation Samples

Sample Description



Demonstrating Features of the XSLT Mapper

38-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. Click the Add icon.

b. From the Source Variable list, select inputVariable.

c. From the Source Part list, select payload.

This variable contains the purchase order that is input to the BPEL process. 

d. Click OK.

e. Click the Add icon a second time and select DiscontinuedList from the 
Source Variable list. The variable is created in the SetDiscontinuedProducts 
assign activity before the transformation activity.

f. Click OK.

g. From the Target Variable list, select outputVariable. This is the invoice that is 
returned from the BPEL process.

h. In the Mapper File field, change the name to xsl/Po2Invoice.

i. Click the Create Mapping icon to the right of the Mapper Name field to create 
and open the mapper file.

The XSLT Mapper opens.

j. From the File menu, select Save All. Your map looks as shown in 
Figure 38–51. Note that the second source is loaded as a parameter with the 
name DiscontinuedList:

Figure 38–51 XSLT Mapper File

38.5.3 Using Type Substitution to Map the Purchase Order Items
You now use type and element substitutions to map the purchase order items to the 
invoice items.

1. In the target tree, expand the tree so that Invoice/Items/Item is visible. Note that 
the Item element has an error icon next to it. 

2. Move the mouse over the element to display a tool tip indicating that this element 
is defined as an abstract type.

To map to the Item element, you must first indicate which type the element takes 
in the final XML output. 

3. Perform the following steps to indicate which type the element takes:

a. Right-click the Item element and select Substitute Element or Type.

The Substitute Element or Type dialog appears.



Demonstrating Features of the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-53

b. Select ShippedItemType from the list and click OK.

The Item element structure is filled out. The xsi:type attribute sets the type of 
the Item element in the target XML.

4. Drag PurchaseOrder/Items to Invoice/Items to invoke the automatic mapper to 
map these nodes. To review automatic mapping functionality, see sample 
mapper-104-auto-mapping. 

When complete, the Item elements in your map now look as shown in 
Figure 38–52:

Figure 38–52 Item Elements in XSLT Mapper

5. From the File menu, select Save All to save the map file.

38.5.4 Referencing Additional Source Elements
You now use the information in the additional source variable, DiscontinuedList, to 
eliminate items that have been discontinued. If the product name for an item is in 
DiscontinuedList, then that item cannot be shipped and is not placed in the final 
shipped item list.

1. Add an if statement above the Item node in the target tree by right-clicking the 
Item node and selecting Add XSL Node > if.

The if statement must test if a discontinued product exists in DiscontinuedList 
with the name of the current item. The item is added only to the shipped items if it 
is not in DiscontinuedList. There are many ways to define the test expression for 
the if statement. One way is described in the following steps.

2. Define the test expression for the if statement by selecting the following (note that 
the method for how variables are set has changed from the previous version of 
Oracle JDeveloper):

a. Add a global variable to the target tree by right-clicking the Invoice node and 
selecting Add Variable.

The Add Variable dialog appears.

b. In the Local Name field, enter DelimitedList. In the following steps, this 
variable is set to a string with a delimited list of discontinued product names. 

c. Click OK.

Note: If you view invoice.xsd, note that ShippedItemType is 
derived from the abstract type ItemType, which is the type of the Item 
element.



Demonstrating Features of the XSLT Mapper

38-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The variable is added with a warning icon next to it.

d. To set the value of the variable, drag the create-delimited-string function from 
the String section of the Component Palette to the center panel.

e. Drag DiscontinuedList/ProductName to the input side of the 
create-delimited-string function.

f. Drag the output side of the create-delimited-string function to the new 
variable named DelimitedList.

g. Double-click the create-delimited-string function to open the Edit Function 
dialog. 

h. In the delimiter field, add the pipe ("|") character. 

i. Click OK.

Note that the input source is referenced in XPath expressions with 
$DiscontinuedList. This source is referenced as an input parameter in XPath 
expressions.

3. To set the XPath expression for the if statement, drag the contains function from 
the String section of the Component Palette to the center panel.

4. Drag the not function from the Logical Functions section of the Component 
Palette to the shaded area surrounding the contains function you added in Step 3.

5. Drag a line from the output side of the contains function to the input side of the 
not function.

6. Drag a line from the output side of the not function to the if statement.

7. Double-click the contains function to open the Edit Function dialog.

8. Enter values for the inputString and searchString, and click OK.

9. From the File menu, select Save All to save the map file.

The map file now looks as shown in Figure 38–53.

Figure 38–53 Mapper File

38.5.5 Using Element Substitution to Map the Shipping Address
You now map a substituted shipping contact element in the source to the ShippedTo 
element in the target.



Demonstrating Features of the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-55

1. Expand the PurchaseOrder/CustomerContacts element in the source to see the 
Contact element. 

Note that this element has an error icon next to it. 

2. Place the mouse over this element to display a tool tip indicating that this element 
is abstract. 

In this situation, you must perform an element substitution to map the element.

3. Right-click the Contact element in the source tree and select Substitute Element or 
Type.

The Substitute Element or Type dialog is displayed with a list of elements in the 
substitution group of the abstract element Contact.

4. Select ShipToContact and click OK.

This is the element that you expect in the input XML. The structure of the 
ShipToContact element is now displayed in the source tree.

5. Expand the ShipToContact/InternationalAddress element in the source tree to 
show the address fields.

6. Expand the ShippedTo element in the target tree to show the target address fields.

Note the similarity in field names here, indicating that the automatic mapper can 
be used.

7. Drag the InternationalAddress element in the source tree to the ShippedTo 
element in the target tree and use the automatic mapper to help map the address 
fields below these elements. 

8. Map any remaining elements not matched by the automatic mapper so that this 
section of the map is as shown in Figure 38–54:

Figure 38–54 XSLT Mapper

9. From the File menu, select Save All to save the map file.

38.5.6 Mapping the Remaining Fields
1. Map PurchaseOrder/ID to Invoice/ID.

2. Expand Invoice/Data to show an any element. 

3. Use the copy-of xsl statement to copy the attachment data from the source to the 
target any element:



Demonstrating Features of the XSLT Mapper

38-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. Right-click the Invoice/Data/any element and select Add XSL Node > 
copy-of. 

The copy-of statement is added and the original any element is grayed out. 
This indicates that it is to be replaced by the nodes selected by the copy-of 
statement.

b. To set the copy-of selection, drag the PurchaseOrder/Attachments element in 
the source tree to the copy-of statement.

4. Perform the following steps to map the PurchaseOrder/Comment field to the 
Invoice/Comment field. Note that the Invoice/Comment field is an anyType 
element.

a. Right-click the Invoice/Comment field and select Substitute Element or Type.

b. Select xsd:string from the list of types provided.

c. Drag the PurchaseOrder/Comment field to the Invoice/Comment field to map 
the fields.

5. Add an XSL sort statement to the for-each statement:

a. Right-click the for-each statement in the target tree and select Add XSL Node 
> sort. 

The Sort Edit dialog appears.

b. Select sort according to data-type Number.

c. Select sort order Descending.

d. Click OK. The sort node is added to the target tree.

e. Drag PurchaseOrder/Items/Item/Price from the source tree to the sort node in 
the target tree.

This sets the field on which to sort.

6. From the File menu, select Save All to save the map file. The map now looks as 
shown in Figure 38–55:

Figure 38–55 XLST Mapper



Demonstrating Features of the XSLT Mapper

Creating Transformations with the XSLT Mapper 38-57

38.5.7 Testing the Map
An XSL map can be tested independently from the BPEL process in Oracle JDeveloper 
using the XSLT Mapper. XML files can be input for each source input to the map.

1. Right-click the center panel and select Test.

The Test XSL Map dialog appears after a warning dialog. The warning indicates 
that you can test the map by creating your own sample input XML. The sample 
XML generator cannot generate sample data for the source tree substitutions. 

A sample input XML file is provided: artifacts/xml/POInput.xml.

2. Follow these steps to select the sample input file for testing:

a. Uncheck the Generate Source XML File checkbox.

b. Click the Browse button for the Source XML File field.

c. Navigate to select the artifacts/xml/POInput.xml file.

A second sample file has been created with discontinued item data. This file is 
artifacts/xml/DiscontinuedItems.xml.

3. Follow these steps to use this file as the second source input.

a. Uncheck the Generate File checkbox to the left of the DiscontinuedList 
parameter name in the Parameters With Schema section of the dialog.

b. Click Browse for the DiscontinuedList parameter and select the 
artifacts/xml/DiscontinuedItems.xml file.

4. Click OK on the Test XSL Mapper dialog to run the test.

A PO2Invoice-Target.xml file is generated by the execution of the map. Note the 
use of xsi:type attributes, the Attachments node created by the copy-of statement, 
and the ordering of items caused by the sort statement in the 
PO2Invoice-Target.xml file. 



Demonstrating Features of the XSLT Mapper

38-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



39

Using Business Events and the Event Delivery Network 39-1

39 Using Business Events and the Event
Delivery Network

This chapter describes how to publish and subscribe to business events in a SOA 
composite application. Business events consist of message data sent as the result of an 
occurrence in a business environment. When a business event is published, other 
service components can subscribe to it.

This chapter includes the following sections:

■ Section 39.1, "Introduction to Business Events"

■ Section 39.2, "Creating Business Events in Oracle JDeveloper"

■ Section 39.3, "Subscribing to or Publishing a Business Event from an Oracle 
Mediator Service Component"

■ Section 39.4, "Subscribing to or Publishing a Business Event from a BPEL Process 
Service Component"

■ Section 39.5, "How to Integrate Oracle ADF Business Component Business Events 
with Oracle Mediator"

For samples that show how to use business events with Oracle Mediator, visit the 
following URL:

https://soasamples.samplecode.oracle.com/

39.1 Introduction to Business Events
You can raise business events when a situation of interest occurs. For example, in a 
loan flow scenario, a BPEL process service component executing a loan process can 
raise a loan completed event at the completion of the process. Other systems within the 
infrastructure of this application can listen for these events and, upon receipt of one 
instance of an event:

■ Use the event context to derive business intelligence or dashboard data.

■ Signal to a mail department that a loan package must be sent to a customer.

■ Invoke another business process.

■ Send information to Oracle Business Activity Monitoring (BAM)

Business events are typically a one-way, fire-and-forget, asynchronous way to send a 
notification of a business occurrence. The business process does not:

■ Rely on any service component receiving the business event to complete.

■ Care if any other service components receive the business event.



Introduction to Business Events

39-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Need to know where subscribers (if any) are and what they do with the data.

These are important distinctions between business events and direct service 
invocations that rely on the Web Services Description Language (WSDL) file contract 
(for example, a SOAP service client). If the author of the event depends on the receiver 
of the event, then messaging typically must be accomplished through service 
invocation rather than through a business event. Unlike direct service invocation, the 
business event separates the client from the server. 

A business event is defined using the event definition language (EDL). EDL is a 
schema used to build business event definitions. Applications work with instances of 
the business event definition.

EDL consists of the following:

■ Global name

Typically a Java package name (for example, 
com.acme.ExpenseReport.created), though this is not required.

■ Payload definition

The most common use for a definition is an XML Schema (XSD). The payload of a 
business event is defined using an XSD. The schema URI is contained in the root 
element of the payload.

Example 39–1 shows an EDL file with two business events in the BugReport event 
definition: bugUpdated and bugCreated. The namespace (BugReport) and 
associated schema file (BugReport.xsd) are referenced. 

Example 39–1 EDL File with Two Business Events

<?xml version = '1.0' encoding = 'UTF-8'?>
<definitions targetNamespace="/model/events/edl/BugReport"
 xmlns:ns0="/model/events/schema/BugReport"
 xmlns="http://schemas.oracle.com/events/edl">
   <schema-import namespace="/model/events/schema/BugReport"
 location="BugReport.xsd"/>

   <event-definition name="bugCreated">
      <content element="ns0:bugCreatedInfo"/>
   </event-definition>

   <event-definition name="bugUpdated">
      <content element="ns0:bugUpdatedInfo"/>
   </event-definition>
</definitions>

These two events are available for subscription in Oracle Mediator.

Business events are deployed to the metadata service (MDS) repository. Deploying a 
business event to MDS along with its artifacts (for example, the XSDs) is known as 
publishing the EDL (or event definition). This action transfers the EDL and its artifacts 
to a shared area in MDS. An object in an MDS shared area is visible to all applications 
in the Resource Palette of Oracle JDeveloper. After an EDL is published, it can be 
subscribed to by other applications. EDLs cannot be unpublished; the definition 
always exists.

A subscription is for a specific qualified name (QName) (for example, 
x.y.z/newOrders). A QName is a tuple (URI, localName) that may be derived 
from a string prefix:localName with a namespace declaration such as 



Creating Business Events in Oracle JDeveloper

Using Business Events and the Event Delivery Network 39-3

xmlns:prefix=URI or a namespace context. In addition, subscriptions can be further 
narrowed down by using content-based filters.

Business events are published in the Event Delivery Network (EDN). The EDN runs 
within every SOA instance. Raised events are delivered by EDN to the subscribing 
service components. Oracle Mediator service components and BPEL process service 
components can subscribe to and publish events.

The EDN has two different implementations:

■ EDN-DB: Uses an Oracle database as a back-end store and depends on 
Oracle-specific features. 

■ EDN-JMS: Uses a generic JMS queue as a back-end store. 

If you are using an Oracle database, Oracle recommends that you use EDN-DB instead 
of EDN-JMS.

39.1.1 Local and Remote Events Boundaries
A single SOA composite application instance can reside in a single container or can be 
clustered across multiple containers. Another application (for example, an Oracle 
Application Development Framework (ADF) Business Component application) can be 
configured to run in the same container as the SOA composite application instance or 
in a different container.

Raising an event from a Java EE application can be done through a local event 
connection or a remote event connection:

■ Local event connection

If the publisher resides on the same Oracle WebLogic Server as the application and 
the publisher uses a local business event connection factory, the event is raised 
through a local event connection. In this scenario, synchronous subscriptions are 
executed synchronously.

■ Remote event connection

If the caller resides in a different container (different JVM) then the application, the 
event is raised through a remote event connection. Only asynchronous 
subscriptions are supported for remote event connections.

You can also raise events through PL/SQL APIs.

If another application (for example, an Oracle ADF Business Component application) 
is configured to run in the same container as the SOA composite application, it is 
optimized to use local event connections. The boundary for events is the application 
instance. When an event is raised in the application instance, subscriptions registered 
in the application instance are executed. Events are not propagated from one 
application instance to another. Propagation can be achieved through an Oracle 
Mediator in both instances, which listens for events and publishes them to a JMS 
queue.

39.2 Creating Business Events in Oracle JDeveloper
This section provides a high-level overview of how to create and subscribe to a 
business event. In this scenario, a business event named NewOrderSubmitted is 
created when a user places an order in a store front application (StoreFrontService 
service). You then create an Oracle Mediator service component to subscribe to this 
business event. 



Creating Business Events in Oracle JDeveloper

39-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

39.2.1 How to Create a Business Event

To create a business event:
1. Create a SOA project as an empty composite.

2. Launch the Event Definition Creation wizard in either of two ways:

a.  In the SOA Composite Editor, click the icon above the designer. Figure 39–1 
provides an example.

Figure 39–1 Event Definition Creation

b. From the File main menu, select New > SOA Tier > Service Components > 
Event Definition.

The Event Definition Creation dialog appears.

3. Enter the details described in Table 39–1.

4. Click the Add icon to add an event.

The Add an Event dialog appears.

5. Click the Search icon to select the payload, and click OK. Figure 39–2 provides 
details.

Table 39–1 Event Definition Creation Wizard Fields and Values

Field Value

Event Definition Name Enter a name. 

Note: Do not enter a forward slash (/) as the event name. This 
creates an event definition file consisting of only an extension for 
a name (.edn).

Directory Displays the directory path.

Namespace Accept the default namespace or enter a value for the namespace 
in which to place the event.



Creating Business Events in Oracle JDeveloper

Using Business Events and the Event Delivery Network 39-5

Figure 39–2 Select the Payload

6. In the Name field, enter a name, as shown in Figure 39–3.

Figure 39–3 Add an Event Dialog

7. Click OK. 

The added event now appears in the Events section, as shown in Figure 39–4.



Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

39-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 39–4 Event Definition Creation Dialog

8. Above the editor, click the cross icon (x) next to event_definition_name.edl 
to close the editor.

9. Click Yes when prompted to save your changes. If you do not save your changes, 
the event is not created and cannot be selected in the Event Chooser window.

The business event is published to MDS and you are returned to the SOA 
Composite Editor. The business event displays for browsing in the Resource 
Palette.

39.3 Subscribing to or Publishing a Business Event from an Oracle 
Mediator Service Component

This section describes how to subscribe to a business event or publish a business event 
from an Oracle Mediator service component.

39.3.1 How to Subscribe to a Business Event

To subscribe to a business event:
1. From the Component Palette, drag a Mediator service component into the SOA 

Composite Editor. This service component enables you to subscribe to the 
business event.

2. In the Name field, enter a name.

3. From the Options list, select Subscribe to Event.

The window is refreshed to display an events table. 

4. Click the Add icon to select an event.

The Event Chooser window appears. 

5. Select the event you created and click OK.

You are returned to the Create Mediator dialog.

6. Select a level of delivery consistency for the event.

■ one and only one



Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

Using Business Events and the Event Delivery Network 39-7

Events are delivered to the subscriber in its own global (that is, JTA) 
transaction. Any changes made by the subscriber within that transaction are 
committed after the event processing is complete. If the subscriber fails, the 
transaction is rolled back. Failed events are retried a configured number of 
times.

■ guaranteed

Events are delivered to the subscriber asynchronously without a global 
transaction. The subscriber can choose to create its own local transaction for 
processing, but it is committed independently of the rest of the event 
processing. The event is guaranteed to be handed to the subscriber, but 
because there is no global transaction, there is a possibility that a system 
failure can cause an event to be delivered more than once. If the subscriber 
throws an exception (or fails in any way), the exception is logged, but the 
event is not resent. 

■ immediate

Events are delivered to the subscriber in the same global transaction and same 
thread as the publisher. The publish call does not return until all immediate 
subscribers have completed processing. If any subscribers throw an exception, 
no additional subscribers are invoked and an exception is thrown to the 
publisher. The transaction is rolled back in case of any error during immediate 
processing.

7. If you want to filter the event, double-click the Filter column of the selected event 
or select the event and click the filter icon (first icon) above the table. This displays 
the Expression Builder dialog. This dialog enables you to specify an XPath filter 
expression. A filter expression specifies that the contents (payload or headers) of a 
message be analyzed before any service is invoked. For example, you can apply a 
filter expression that specifies that a service be invoked only if the message 
includes a customer ID.

When the expression logic is satisfied, the event is accepted for delivery. 

For more information about filters, see Section 20.2.2.7, "How to Specify an 
Expression for Filtering Messages."

Figure 39–5 shows the Create Mediator dialog.



Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

39-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 39–5 Create Mediator Dialog

8. Click OK.

Figure 39–6 shows an icon on the left side that indicates that Oracle Mediator is 
configured for an event subscription.

Figure 39–6 Configuration for Event Subscription

39.3.2 What Happens When You Create and Subscribe to a Business Event
The source code in Example 39–2 provides details about the subscribed event of the 
Oracle Mediator service component.

Example 39–2 Subscribed Event

<component name="OrderPendingEvent">
    <implementation.mediator src="OrderPendingEvent.mplan"/>
    <business-events>
      <subscribe
         xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
         name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
         runAsRoles="$publisher"/>
</business-events>
</component>

While not explicitly demonstrated in this example, you can define XPath filters on 
events. In Example 39–3, the event is accepted for delivery only if the initial deposit is 
greater than 50000:



Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

Using Business Events and the Event Delivery Network 39-9

Example 39–3 Definition of XPath Filters on Events

    <business-events>
        . . .
        . . .
        <filter>
            <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
                 xmlns:ns1="http://xmlns.oracle.com/singleString"
                   <xpath expression= "/be:business-event/be:content/
                   sub1:AccountInfo/Details[@initialDeposit > 50000]" />
        </filter>
      . . .
      . . .
    </business-events>

39.3.3 What You May Need to Know About Subscribing to a Business Event
Subscribers in nondefault revisions of SOA composite applications can still get 
business events. For example, note the following behavior:

1. Create a composite application with an initial Oracle Mediator service component 
named M1 that publishes an event and a second Oracle Mediator service 
component named M2 that subscribes to the event. The output is written to a 
directory.

2. Deploy the composite application as revision 1.

3. Modify the composite application by adding a third Oracle Mediator service 
component named M3 that subscribes to the same event and writes the output to a 
different directory. 

4. Deploy the composite application as revision 2 (the default).

5. Invoke revision 2 of the composite application.

Note that Oracle Mediator M2 writes the output to two files with the same content 
in the directory. As expected, Oracle Mediator M3 picks up the event and writes 
the output successfully to another directory. However, note that Oracle Mediator 
M2 (from revision 1) is also picking up and processing the published event from 
revision 2 of the composite application. Therefore, it creates one more output file 
in the same directory. 

39.3.4 How to Publish a Business Event
You can create a second Oracle Mediator to publish the event that you subscribed to in 
Section 39.3.1, "How to Subscribe to a Business Event."

To publish a business event:
1. Create a second Oracle Mediator service component that publishes the event to 

which the first Oracle Mediator subscribes.

2. Return to the first Oracle Mediator service component.

3. In the Routing Rules section, click the Add icon.

4. Click Service when prompted by the Target Type window.

5. Select the second Oracle Mediator service component.

6. From the File main menu, select Save All.



Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

39-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

39.3.5 How to Configure a Foreign JNDI Provider to Enable Administration Server 
Applications to Publish Events to the SOA Server

This section describes how to configure a foreign JNDI Provider when the publishing 
application (for example, an ADF EAR file) is deployed on the administration server 
instead of the SOA server.

To configure a foreign JNDI provider to enable administration server 
applications to publish events to the SOA Server:
1. Log in to the Oracle WebLogic Server Administration Console.

http://host:port/console

2. In the Domain Structure section, expand Services > Foreign JNDI Providers. 

3. Click Lock & Edit.

4. Click New.

5. In the Name field, enter a name (for example, SOA_JNDI), and click Next.

6. Select the AdminServer checkbox, and click Finish.

7. In the Name column, click the provider name you entered in Step 5.

8. Enter the details shown in Table 39–2, and click Save.

9. Click Links > New.

10. Enter the details shown in Table 39–3, and click OK.

11. Click New.

12. Enter the details shown in Table 39–4, and click OK.

Table 39–2 Configuration Details

Field Description

Initial Context Factory Enter weblogic.jndi.WLInitialContextFactory.

Provider URL Enter t3://hostname:soa_server_port.

User Enter the Oracle WebLogic Server user name.

Password and Confirm 
Password

Enter the password for the Oracle WebLogic Server user name.

Table 39–3 Configuration Details

Field Description

Name Enter SOA_EDNDataSource.

Local Name Enter jdbc/EDNDataSource.

Remote Name Enter jdbc/EDNDataSource.

Table 39–4 Configuration Details

Field Description

Name Enter SOA_EDNLocalTxDataSource.

Local Name Enter jdbc/EDNLocalTxDataSource.



Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

Using Business Events and the Event Delivery Network 39-11

13. Click OK.

14. Click Activate Changes.

15. Modify the FMW_Home/user_projects/domains/domain_
name/bin/setDomainEnv.sh file for Linux (or setDomainEnv.bat file for 
Windows) as follows: 

WLS_JDBC_REMOTE_ENABLED="-Dweblogic.jdbc.remoteEnabled=true"

16. Restart the server.

39.3.6 How to Configure JMS-based EDN Implementations
The following JNDI configuration changes are required when the EDN 
implementation is JMS-based (EDN-JMS). In these scenarios, a generic JMS queue is 
used as the back-end store. These changes enable the remote client (for example, the 
ADF application client) to look up the connection factory before publishing events.

To configure JMS-based EDN Implementations
1. Log in to the Oracle WebLogic Server Administration Console.

http://host:port/console

2. In the Domain Structure section, expand Services > Data Sources.

You must remove the EDN-DB JNDI sources to use EDN-JMS data sources. 

3. Select the following EDN-DB JNDI data sources, and click Remove.

■ jdbc/EDNDataSource

■ jdbc/EDNLocalTxDataSource

If the event publisher is in an application (for example, ADF) running in a 
different cluster or even in a different domain from the SOA server for EDN, you 
must configure a foreign JNDI provider with the local JNDI names for the cluster 
mapping to JNDI names targeted to the SOA Infrastructure. Local and remote 
JNDI names are the same in the links.

4. In the Domain Structure section, expand Services > Foreign JNDI Providers.

5. Click New.

6. In the Name field, enter a name for the foreign JNDI provider.

7. Select targets for the new JNDI provider, and click Finish.

8. In the Name field, click the new JNDI provider.

9. Specify provider settings (the initial context factory, provider URL, and so on), and 
click Save.

10. Click the Links tab.

11. Click New to create a foreign JNDI link.

12. Enter a name, then specify the local and remote JNDI name of 
jms/fabric/EDNConnectionFactory.

Remote Name Enter jdbc/EDNLocalTxDataSource.

Table 39–4 (Cont.) Configuration Details

Field Description



Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component

39-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

13. Repeat Step 12, and specify a name and the local and remote JNDI name of 
jms/fabric/xaEDNConnectionFactory.

14. Repeat Step 12, and specify a name and the local and remote JNDI name of 
jms/fabric/EDNQueue.

Once complete, three links are created. 

15. Restart the targeted servers.

16. Confirm the new JNDI provider links in the JNDI tree view.

If you do not make these configuration changes, errors similar to those shown in 
Example 39–4 occur.

Example 39–4 EDN-JMS Error Messages

<Aug 30, 2010 1:28:46 PM EDT> <Warning>
<oracle.adf.controller.faces.lifecycle.Utils> <BEA-000000> <ADF: Adding the
following JSF error message: [FMWGEN][SQLServer JDBC Driver][SQLServer]Could
not find stored procedure 'edn_internal_publish_event'.

oracle.fabric.common.FabricException: Error enqueueing event:
[FMWGEN][SQLServer JDBC Driver][SQLServer]Could not find stored procedure
'edn_internal_publish_event'.

               at
oracle.integration.platform.blocks.event.saq.SAQRemoteBusinessEventConnection.
enqueueEvent(SAQRemoteBusinessEventConnection.java:86) 

39.3.7 What Happens When You Publish a Business Event
Note that the two Oracle Mediator service components appear in Example 39–5. One 
service component (OrderPendingEvent) subscribes to the event and the other 
service component (PublishOrderPendingEvent) publishes the event.

Example 39–5 Event Subscription and Publication

<component name="PublishOrderPendingEvent">
    <implementation.mediator src="PublishOrderPendingEvent.mplan"/>
    <business-events>
      <publishes 
xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="pub1:NewOrderSubmitted"/>
    </business-events>
  </component>

<component name="OrderPendingEvent">
    <implementation.mediator src="OrderPendingEvent.mplan"/>
    <business-events>
      <subscribe
         xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
         name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
         runAsRoles="$publisher"/>
</business-events>
</component>



Subscribing to or Publishing a Business Event from a BPEL Process Service Component

Using Business Events and the Event Delivery Network 39-13

39.4 Subscribing to or Publishing a Business Event from a BPEL Process 
Service Component

This section describes how to subscribe to a business event or publish a business event 
from a BPEL process service component.

39.4.1 How to Subscribe to a Business Event

To subscribe to a business event:
1. From the Component Palette, drag a BPEL Process service component into the 

SOA Composite Editor.

2. In the Name field, enter a name. Do not change any other default option and click 
OK.

The BPEL process service component is created.

3. Double-click the BPEL process service component. The Oracle BPEL Designer is 
opened. Alternatively, you can also right-click the BPEL process service 
component and click Edit.

4. Drag a Receive activity from the Component Palette into the SOA Composite 
Editor, below the receiveInput activity.

5. Double-click the Receive activity. The Receive dialog opens. Alternatively, you can 
also right-click the Receive activity and click Edit.

6. In the Name field, enter a name.

7. From the Interaction Type list, select Event. The layout of the Receive dialog 
changes.

8. Click the Browse Events icon to the right of the Event field. The Subscribed Events 
dialog appears, as shown in Figure 39–7.

Figure 39–7 Subscribed Events Dialog

9. Click the Add icon to select an event.

Note: The onMessage branch of a pick activity can also be set up to 
receive events from the EDN. For more information about the 
onMessage branch, see Section 14.2, "Creating a Pick Activity to Select 
Between Continuing a Process or Waiting."



Subscribing to or Publishing a Business Event from a BPEL Process Service Component

39-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Event Chooser dialog appears, as shown in Figure 39–8.

Figure 39–8 Event Chooser Dialog

10. Select the event you created and click OK.

You are returned to the Subscribed Events dialog.

11. Select a level of delivery consistency for the event.

■ one and only one

Events are delivered to the subscriber in its own global (that is, JTA) 
transaction. Any changes made by the subscriber within that transaction are 
committed after the event processing is complete. If the subscriber fails, the 
transaction is rolled back. Failed events are retried a configured number of 
times.

■ guaranteed

Events are delivered to the subscriber asynchronously without a global 
transaction. The subscriber can choose to create its own local transaction for 
processing, but it is committed independently of the rest of the event 
processing. The event is guaranteed to be handed to the subscriber, but 
because there is no global transaction, there is a possibility that a system 
failure can cause an event to be delivered more than once. If the subscriber 
throws an exception (or fails in any way), the exception is logged, but the 
event is not resent. 

■ immediate

Events are delivered to the subscriber in the same global transaction and same 
thread as the publisher. The publish call does not return until all immediate 
subscribers have completed processing. If any subscribers throw an exception, 
no additional subscribers are invoked and an exception is thrown to the 
publisher. The transaction is rolled back in case of any error during immediate 
processing.

12. If you want to filter the event, double-click the Filter column of the selected event 
or select the event and click the filter icon (first icon) above the table. This displays 
the Expression Builder dialog. This dialog enables you to specify an XPath filter 
expression. A filter expression specifies that the contents (payload or headers) of a 
message be analyzed before any service is invoked. For example, you can apply a 
filter expression that specifies that a service be invoked only if the order includes 
an order ID.

When the expression logic is satisfied, the event is accepted for delivery.



Subscribing to or Publishing a Business Event from a BPEL Process Service Component

Using Business Events and the Event Delivery Network 39-15

13. Click OK to close the Subscribed Events dialog. You are returned to the Receive 
dialog.

14. Click OK.

Figure 39–9 shows a BPEL process service component that is configured for event 
subscription.

Figure 39–9 BPEL Process Service component Configuration for Event Subscription

39.4.2 How to Publish a Business Event

To publish a business event:
1. Drag an Invoke activity from the Component Palette into the SOA Composite 

Editor, below the Receive activity created in Section 39.4.1, "How to Subscribe to a 
Business Event."

2. Double-click the Invoke activity. The Invoke dialog opens. Alternatively, you can 
also right-click the Invoke activity and click Edit.

3. In the Name field, enter a name.

4. From Interaction Type list, select Event. The layout of the Invoke dialog changes.

5. Click the Browse Events icon to the right of the Event field. The Event Chooser 
window appears.

6. Select the event you created and click OK.

You are returned to the Invoke dialog.

7. Click OK.

Figure 39–10 shows a BPEL process service component that is configured for an 
event subscription and publication. The blue lightning bolt in the circle on the left 
side indicates event subscription. The yellow lightning bolt in the circle on the 
right side indicates event publication. Clicking the blue arrow inside the title 
changes it to display the title of the published event.

Note: Optionally, you can select the Create Instance checkbox, if this 
receive activity is the initiating receive activity that starts the BPEL 
process service component instance. This action enables creation of a 
new BPEL process service component instance for every invocation.

If this receive activity is a midprocess receive activity in which the 
BPEL instance is already started, then this receive activity waits for 
another event to continue the execution of this BPEL instance.



Subscribing to or Publishing a Business Event from a BPEL Process Service Component

39-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 39–10 BPEL Process Service Component Configuration for Event Subscription 
and Publishing

39.4.3 What Happens When You Subscribe to and Publish a Business Event
The source code in Example 39–6 shows how the composite.xml source changes for 
the subscribed and published events of a BPEL process service component.

Example 39–6 Event Subscription and Publication

<component name="EventBPELProcess">
   <implementation.bpel src="EventBPELProcess.bpel"/>
   <property name="configuration.monitorLocation" type="xs:string"
             many="false">EventBPELProcess.monitor</property>
   <business-events>
     <subscribe xmlns:sub1="http://mycompany.com/events/orders"
                name="sub1:OrderReceivedEvent" consistency="oneAndOnlyOne"
                runAsRoles="$publisher"/>
     <publishes xmlns:pub1="http://mycompany.com/events/orders"
                name="pub1:ProductSoldAlert"/>
   </business-events>
</component>

While not explicitly demonstrated in this example, you can define XPath filters on 
events. A filter is typically present in event subscriptions (the subscribe element 
limits the type of event to which this service component is subscribed, and the filter 
section further limits the event to specific content in which the component is 
interested). In Example 39–7, the event is accepted for delivery only if the initial 
deposit is greater than 50000. 

Example 39–7 Definition of XPath Filters on Events

    <business-events>
        . . .
        . . .
        <filter>
            <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
                 xmlns:ns1="http://xmlns.oracle.com/singleString"
                   <xpath expression= "/be:business-event/be:content/
                   sub1:AccountInfo/Details[@initialDeposit > 50000]" />
        </filter>
      . . .
      . . .
    </business-events>

The standard BPEL activities such as receive, invoke, onMessage, and onEvent (in 
BPEL 2.0) are extended with an extra attribute bpelx:eventName, so that the BPEL 
process service component can receive events from the EDN event bus. The schema for 
the eventName attribute is shown in Example 39–8:



Subscribing to or Publishing a Business Event from a BPEL Process Service Component

Using Business Events and the Event Delivery Network 39-17

Example 39–8 The Schema for the Eventname Attribute

<xs:attribute name="eventName" type="xs:QName">
        <xs:annotation>
            <xs:appinfo>
                <tns:parent>
                    <bpel11:onMessage/>
                    <bpel11:receive/>
                    <bpel11:invoke/>
                </tns:parent>
            </xs:appinfo>
        </xs:annotation>
    </xs:attribute>

Example 39–9 shows how the eventName attribute is used in the BPEL source file:

Example 39–9 BPEL Source Code Using eventName Attribute

<receive name="OrderPendingEvent" createInstance="yes"
         bpelx:eventName="ns1:OrderReceivedEvent"/>
<invoke name="Invoke_1" bpelx:eventName="ns1:ProductSoldAlert"/>

If the bpelx:eventName attribute is used in a receive, invoke, onMessage, or 
onEvent (in BPEL 2.0) element, then the standard attributes such as partnerLink, 
operation, or portType attributes are not present. This is because the existence of 
the bpelx:eventName attribute shows that the activity is only interested in receiving 
events from the EDN event bus or publishing events to the EDN event bus.

The XSD file for the BPEL process service component is slightly modified, so that the 
partnerLink, operation, and portTyp attributes are no longer mandatory. The 
Oracle JDeveloper validation logic should enforce the presence of either the 
bpelx:eventName attribute or the partnerLink, operation, and portTyp 
attributes, but not both. Example 39–10 shows the modified schema definition of a 
BPEL receive activity.

Example 39–10 Schema Definition of a BPEL Receive Activity

<complexType name="tReceive">
        <complexContent>
           <extension base="bpws:tExtensibleElements">
                <sequence>
                    <element name="correlations" type="bpws:tCorrelations" 
minOccurs="0"/>
                    <group ref="bpws:activity"/>
                </sequence>
                <!- BPEL mandatory attributes relaxed to optional for supporting 
BPEL-EDN ->
                <attribute name="partnerLink" type="NCName" use="optional"/>
                <attribute name="portType" type="QName" use="optional"/>
                <attribute name="operation" type="NCName" use="optional"/>
                <attribute name="variable" type="NCName" use="optional"/>
            </extension>
        </complexContent>
    </complexType>

The schema definition for the invoke and onMessage activities are modified similarly.



How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

39-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

39.4.4 What You May Need to Know About Subscribing to a Business Event
Note that subscribers in nondefault revisions of SOA composite applications can still 
get business events. For example, note the following behavior:

1. Create a composite application with an initial Mediator service component or 
BPEL process service component named S1 that publishes an event and a second 
Mediator service component or BPEL process service component named S2 that 
subscribes to the event. The output is written to a directory.

2. Deploy the composite application as revision 1.

3. Modify the composite application by adding a third Mediator service component 
or BPEL process service component named s3 that subscribes to the same event 
and writes the output to a different directory.

4. Deploy the composite application as revision 2 (the default).

5. Invoke revision 2 of the composite application.

Note that service component S2 writes the output to two files with the same content in 
the directory. As expected, service component S3 picks up the event and writes the 
output successfully to another directory. However, note that service component S2 
(from revision 1) also picks up and processes the published event from revision 2 of 
the composite application. Therefore, it creates one more output file in the same 
directory.

39.5 How to Integrate Oracle ADF Business Component Business Events 
with Oracle Mediator

This section provides a high-level overview of how to integrate Oracle ADF Business 
Component event conditions with SOA components. The SOA components include 
Mediator service components and BPEL process service components.

To integrate Oracle ADF Business Component business events with SOA 
Components:
1. Create a business component project.

2. Add a business event definition to the project. This action generates an EDL file 
and an XSD file. The XSD file contains the definition of the payload. Ensure also 
that you specify that the event be raised by the Oracle ADF Business Component 
upon creation.

For more information about creating and publishing Oracle ADF Business 
Component business events, see Oracle Fusion Middleware Fusion Developer's Guide 
for Oracle Application Development Framework.

3. Create a SOA composite application and manually copy the EDL and XSD schema 
files to the root directory of the SOA project. For example:

JDeveloper/mywork/SOA_application_name/SOA_project_name

4. Place schema files at the proper relative location from the EDL file based on the 
import.

5. Create a Mediator service component as described in Section 39.3.1, "How to 
Subscribe to a Business Event".

6. In the Event Chooser window, select the EDL file of the event, as described in 
Section 39.3.1, "How to Subscribe to a Business Event."



How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

Using Business Events and the Event Delivery Network 39-19

7. Create a BPEL process service component in the same SOA composite application 
for the Oracle Mediator to invoke. In the Input Element field of the Advanced tab, 
ensure that you select the payload of the Business Component business event XSD 
created in Step 2.

8. Double-click the BPEL process service component.

9. Drag an Email activity into the BPEL process service component.

10. Use the payload of the business event XSD to complete the Subject and Body 
fields.

11. Return to the Oracle Mediator service component in the SOA Composite Editor.

12. Design a second service component to publish the event, such as a BPEL process 
service component or a second Oracle Mediator service component.

SOA composite application design is now complete.



How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

39-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Part VIII
Part VIII  Completing Your Application

This part describes how to complete design of your application.

This part contains the following chapters:

■ Chapter 40, "Enabling Security with Policies"

■ Chapter 41, "Deploying SOA Composite Applications"

■ Chapter 42, "Automating Testing of SOA Composite Applications"





40

Enabling Security with Policies 40-1

40Enabling Security with Policies

This chapter describes how to manage policies during design-time in SOA composite 
applications.

This chapter includes the following sections:

■ Section 40.1, "Introduction to Policies"

■ Section 40.2, "Attaching Policies to Binding Components and Service Components"

40.1 Introduction to Policies
Oracle Fusion Middleware uses a policy-based model to manage and secure Web 
services across an organization. Policies apply security to the delivery of messages. 
Policies can be managed by both developers in a design-time environment and system 
administrators in a runtime environment.

Policies are comprised of one or more assertions. A policy assertion is the smallest unit 
of a policy that performs a specific action. Policy assertions are executed on the request 
message and the response message, and the same set of assertions is executed on both 
types of messages. The assertions are executed in the order in which they appear in the 
policy. 

Table 40–1 describes the supported policy categories. 

Table 40–1 Supported Policy Categories

Category Description

Message Transmission 
Optimization 
Mechanism (MTOM)

Ensures that attachments are in MTOM format. This format enables 
binary data to be sent to and from web services. This reduces the 
transmission size on the wire.

Reliability Supports the WS-Reliable Messaging protocol. This guarantees the 
end-to-end delivery of messages.

Addressing Verifies that simple object access protocol (SOAP) messages include 
WS-Addressing headers in conformance with the WS-Addressing 
specification. Transport-level data is included in the XML message 
rather than relying on the network-level transport to convey this 
information.

Security Implements the WS-Security 1.0 and 1.1 standards. They enforce 
authentication and authorization of users. identity propagation, and 
message protection (message integrity and message confidentiality).

Management Logs request, response, and fault messages to a message log. 
Management policies can also include custom policies.



Attaching Policies to Binding Components and Service Components

40-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Within each category there are one or more policy types that you can attach. For 
example, if you select the reliability category, the following types are available for 
selection:

■ oracle/wsrm10_policy

Supports version 1.0 of the Web Services Reliable Messaging protocol

■ oracle/wsrm11_policy

Supports version 1.1 of the Web Services Reliable Messaging protocol

■ oracle/no_wsrm_policy

Supports the disabling of a globally attached Web Services Reliable Messaging 
policy

For more information about available policies, details about which ones to use in your 
environment, and global policies, see Oracle Fusion Middleware Security and 
Administrator's Guide for Web Services.

40.2 Attaching Policies to Binding Components and Service Components
You can attach or detach policies to and from service binding components, service 
components, and reference binding components in a SOA composite application. Use 
Oracle JDeveloper to attach policies for testing security in a design-time environment. 
When your application is ready for deployment to a production environment, you can 
attach or detach runtime policies in Oracle Enterprise Manager Fusion Middleware 
Control Console.

For more information about runtime management of policies, see Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

40.2.1 How to Attach Policies to Binding Components and Service Components

To attach a policy to a service or reference binding component:
1. In the SOA Composite Editor, right-click a service binding component or reference 

binding component. 

2. Select Configure WS-Policies.

Depending upon the interface definition of your SOA composite application, you 
may be prompted with an additional menu of options. 

■ If the selected service or reference is interfacing with a synchronous BPEL 
process or Oracle Mediator service component, a single policy is used for both 
request and response messages. The Configure SOA WS Policies dialog 
immediately appears. Go to Step 4.

■ If the service or reference is interfacing with an asynchronous BPEL process or 
Oracle Mediator service component, the policies must be configured 
separately for request and response messages. The policy at the callback is 
used for the response sent from service to client. An additional menu is 
displayed. Go to Step 3.

3. Select the type of binding to use:

■ For Request:



Attaching Policies to Binding Components and Service Components

Enabling Security with Policies 40-3

Select the request binding for the service component with which to bind. You 
can only select a single request binding. This action enables communication 
between the binding component and the service component.

When request binding is configured for a service in the Exposed Services 
swimlane, the service acts as the server. When request binding is configured 
for a reference in the External References swimlane, the reference acts as the 
client.

■ For Callback: (only for interactions with asynchronous processes)

Select the callback binding for the service component with which to bind. This 
action enables message communication between the binding component and 
the service component. You can only select a single callback binding.

When callback binding is configured for a service in the Exposed Services 
swimlane, the service acts as the client. When callback binding is configured 
for a reference in the External References swimlane, the reference acts as the 
server.

The Configure SOA WS Policies dialog shown in Figure 40–1 appears. For this 
example, the For Request option was selected for a service binding component. 
The same types of policy categories are also available if you select For Callback.

Figure 40–1 Configure SOA WS Policies Dialog

4. Click the Add icon for the type of policy to attach:

■ MTOM

■ Reliability



Attaching Policies to Binding Components and Service Components

40-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Addressing

■ Security

■ Management

For this example, Security is selected. The dialog shown in Figure 40–2 is 
displayed.

Figure 40–2 Security Policies

5. Place your cursor over a policy name to display a description of policy capabilities.

6. Select the type of policy to attach. 

7. Click OK.

You are returned to the Configure SOA WS Policies dialog shown in Figure 40–3. 
The attached security policy displays in the Security section.



Attaching Policies to Binding Components and Service Components

Enabling Security with Policies 40-5

Figure 40–3 Attached Security Policy

8. If necessary, add additional policies.

You can temporarily disable a policy by deselecting the checkbox to the left of the 
name of the attached policy. This action does not detach the policy.

9. To detach a policy, click the Delete icon.

10. When complete, click OK in the Configure SOA WS Policies dialog.

You are returned to the SOA Composite Editor. 

To attach a policy to a service component:
1. Right-click a service component.

2. Select Configure Component WS Policies.

The Configure SOA WS Policies dialog shown in Figure 40–4 appears.



Attaching Policies to Binding Components and Service Components

40-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 40–4 Configure SOA WS Policies Dialog

3. Click the Add icon for the type of policy to attach.

■ Security

■ Management

The dialog for your selection appears.

4. Select the type of policy to attach.

5. Click OK.

6. If necessary, add additional policies.

7. When complete, click OK in the Configure SOA WS Policies dialog.

For information about attaching policies during runtime in Oracle Enterprise Manager 
Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite.

40.2.2 How to Override Policy Configuration Property Values
Your environment may include multiple clients or servers with the same policies. 
However, each client or server may have their own specific policy requirements. You 
can override the policy property values based on your runtime requirements.

40.2.2.1 Overriding Client Configuration Property Values
You can override the default values of client policy configuration properties on a per 
client basis without creating new policies for each client. In this way, you can override 
client policies that define default configuration values and customize those values 
based on your runtime requirements.

1. Right-click one of the following binding components:

■ A service binding component in the Exposed Services swimlane, and select 
For Callback.

■ A reference binding component in the External References swimlane, and 
select For Request.



Attaching Policies to Binding Components and Service Components

Enabling Security with Policies 40-7

2. Go to the Security and Management sections. These instructions assume you 
previously attached policies in these sections.

Note that the Edit icon is enabled for both sections. Figure 40–5 provides details.

Figure 40–5 Client Policy Selection

3. Click the Edit icon. Note that regardless of which policies you select, the property 
names, values, and overridden values display for all of your attached client 
policies. 

4. In the Override Value column, enter a value to override the default value shown 
in the Value column. Figure 40–6 provides details.

Figure 40–6 Client Policy Override Value

5. Click OK to exit the Config Override Properties dialog.

6. Click OK to exit the Configure SOA WS Policies dialog.

7. Click the Source button in the SOA Composite Editor.

The overriding value is reflected with the property name attribute in the 
composite.xml file, as shown in Example 40–1.

Example 40–1 Client Policy Override Value in composite.xml File

<binding.ws port="http://xmlns.oracle.com/Application26_
jws/Project1/BPELProcess1#wsdl.endpoint(bpelprocess1_client_
ep/BPELProcess1Callback_pt)">
        <wsp:PolicyReference URI="oracle/wss_http_token_client_policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/wss_http_token_over_ssl_client_policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/wss_oam_token_client_policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/wss_saml_token_bearer_over_ssl_client_



Attaching Policies to Binding Components and Service Components

40-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/wss_saml_token_over_ssl_client_policy"
                             orawsp:category="security"
                             orawsp:status="enabled"/>
        <wsp:PolicyReference URI="oracle/log_policy"
                             orawsp:category="management"
                             orawsp:status="enabled"/>
<property name="user.roles.include" type="xs:string" many="false">true</property>
      </binding.ws>

For more information about overriding policy settings, see Oracle Fusion Middleware 
Security and Administrator's Guide for Web Services.

40.2.2.2 Overriding Server Configuration Property Values
You can override the default values of server policy configuration properties on a per 
server basis without creating new policies for each server. In this way, you can 
override server policies that define default configuration values and customize those 
values based on your runtime requirements.

1. Right-click one of the following binding components:

■ A service binding component in the Exposed Services swimlane, and select 
For Request.

■ A reference binding component in the External References swimlane, and 
select For Callback.

2. Go to the Security or Management section. These instructions assume you 
previously attached policies in these sections.

Note that the Edit icon is not enabled by default for both sections. You must 
explicitly select a policy to enable this icon. This is because you can override fewer 
property values for the server. Figure 40–7 provides details.

Figure 40–7 Server Policy Selection

3. Select an attached policy that permits you to override its value, and click the Edit 
icon.

4. In the Override Value column, enter a value to override the default value shown 
in the Value column. Figure 40–8 provides details. If the policy store is 
unavailable, the words no property store found in the store display in red 
in the Value column.



Attaching Policies to Binding Components and Service Components

Enabling Security with Policies 40-9

Figure 40–8 Server Policy Override Value

5. Click OK to exit the Config Override Properties dialog.

6. Click OK to exit the Configure SOA WS Policies dialog.

7. Click the Source button in the SOA Composite Editor.

The overriding value is reflected with the OverrideProperty attribute in the 
composite.xml file, as shown in Example 40–2.

Example 40–2 Server Policy Override Value in composite.xml File

<wsp:PolicyReference URI="oracle/binding_authorization_denyall_policy"
                           orawsp:category="security" orawsp:status="enabled"/>
      <wsp:PolicyReference URI="oracle/binding_authorization_permitall_policy"
                           orawsp:category="security" orawsp:status="enabled"/>
      <wsp:PolicyReference URI="oracle/binding_permission_authorization_policy"
                           orawsp:category="security" orawsp:status="enabled">
        <orawsp:OverrideProperty orawsp:name="permission-class"
                                 orawsp:value="permission-different-class"/>
      </wsp:PolicyReference>

For more information about overriding policy settings, see Oracle Fusion 
Middleware Security and Administrator's Guide for Web Services.



Attaching Policies to Binding Components and Service Components

40-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



41

Deploying SOA Composite Applications 41-1

41 Deploying SOA Composite Applications

This chapter describes the deployment life cycle of SOA composite applications. 
Deployment prerequisite, packaging, preparation, and configuration tasks are 
described. Procedures for deploying composites with Oracle JDeveloper and scripting 
tools and creating configuration plans for moving SOA composite applications to and 
from different environments are also provided.

This chapter includes the following sections:

■ Section 41.1, "Introduction to Deployment"

■ Section 41.2, "Deployment Prerequisites"

■ Section 41.3, "Understanding the Packaging Impact"

■ Section 41.4, "Anatomy of a Composite"

■ Section 41.5, "Preparing the Target Environment"

■ Section 41.6, "Customizing Your Application for the Target Environment Prior to 
Deployment"

■ Section 41.7, "Deploying SOA Composite Applications"

■ Section 41.8, "Postdeployment Configuration"

■ Section 41.9, "Testing and Troubleshooting"

See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite for instructions on deploying SOA composite applications from Oracle Enterprise 
Manager Fusion Middleware Control Console and Oracle Fusion Middleware WebLogic 
Scripting Tool Command Reference for instructions on deploying SOA composite 
applications with the WebLogic Scripting Tool (WLST) utility.

41.1 Introduction to Deployment
This chapter describes the following deployment life cycle topics:

■ Deployment prerequisites

■ Packaging details

■ Anatomy of a composite

■ Target environment preparation

■ Target environment configuration tasks

■ Composite deployment

■ Postdeployment configuration tasks



Deployment Prerequisites

41-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Testing and troubleshooting composite applications

For more information about the deployment life cycle, see Oracle Fusion Middleware 
Administrator's Guide.

41.2 Deployment Prerequisites
This section describes the basic prerequisites required for creating and deploying a 
SOA composite application.

41.2.1 Creating the Oracle SOA Suite Schema
Oracle SOA Suite components require schemas that must be installed in the Oracle or 
Microsoft SQL Server database. You create and load these schemas in your database 
with the Repository Creation Utility (RCU). For information about installing and 
configuring your schemas, see Oracle Fusion Middleware Installation Guide for Oracle 
SOA Suite and Oracle Business Process Management Suite and Oracle Fusion Middleware 
Repository Creation Utility User's Guide.

41.2.2 Creating a SOA Domain
After installation, you use the Oracle Fusion Middleware Configuration Wizard to 
create and configure a new Oracle WebLogic Server domain, and choose products such 
as Oracle SOA Suite to configure in that domain. This new domain contains the 
administration server and other managed servers, depending on the products you 
choose to configure.

For more information, see Oracle Fusion Middleware Installation Guide for Oracle SOA 
Suite and Oracle Business Process Management Suite.

41.2.3 Configuring a SOA Cluster
You can deploy a SOA composite application into a clustered environment. For more 
information on creating and configuring a clustered environment, see Oracle Fusion 
Middleware High Availability Guide.

41.3 Understanding the Packaging Impact
You can separately package all required artifact files within a project of a SOA 
composite application into a SOA archive (SAR) JAR file though use of the following 
tools:

■ Oracle JDeveloper

During deployment on the Deployment Action page, you select the Deploy to 
SAR option. For more information, see Section 41.7.1.1.3, "Deploying the Profile." 

■ ant scripts

Use the ant-sca-package script to package your artifacts. For more 
information, see Section 41.7.5.2.3, "Packaging a SOA Composite Application into 
a Composite SAR File."

■ WLST commands

Use the sca_package script to package your artifacts. For more information, see 
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.



Preparing the Target Environment

Deploying SOA Composite Applications 41-3

A SAR file is a special JAR file that requires a prefix of sca_ (for example, sca_
HelloWorld_rev1.0.jar).

In addition, when you deploy a SOA composite application with the Deploy to 
Application Server option on the Deployment Action page in Oracle JDeveloper, all 
required artifact files within a project are automatically packaged into one of the 
following files: 

■ A self-contained JAR file (for single SOA composite applications)

For more information about self-contained composites, see Section 41.7.1, 
"Deploying a Single SOA Composite in Oracle JDeveloper" and Section 41.7.2, 
"Deploying Multiple SOA Composite Applications in Oracle JDeveloper."

■ A ZIP file of multiple SOA composite applications that share metadata with one 
another

You can deploy and use shared metadata across SOA composite applications. 
Shared metadata is deployed to the SOA Infrastructure on the application server 
as a metadata service (MDS) archive JAR file. The archive file contains all shared 
resources. For more information, see Section 41.7.3, "Deploying and Using Shared 
Metadata Across SOA Composite Applications in Oracle JDeveloper."

41.4 Anatomy of a Composite
When you deploy a SOA composite application in Oracle JDeveloper, the composite is 
packaged in a JAR file (for a single composite application) or a ZIP file (for multiple 
SOA composite applications). These files can include the following artifacts:

■ Binding components and service components.

■ References to B2B agreements, Oracle Web Service Manager (OWSM) policies, and 
human workflow task flows.

■ Metadata such as WSDL and XSD files. All shared metadata is deployed to an 
existing SOA Infrastructure partition on the server. This metadata is deployed 
under the /apps namespace. When you refer to this artifact in Oracle JDeveloper 
using a SOA-MDS connection, the URL is prefixed with oramds.

41.5 Preparing the Target Environment
The target environment is the SOA Infrastructure environment to which you want to 
deploy your SOA composite application. This is typically a development, test, or 
production environment. Depending upon the components, identity service provider, 
and security policies you are using in your composite application, additional 
configuration steps may be required as you move your application from one target 
environment to another. This section describes these tasks. 

41.5.1 Creating Data Sources and Queues
A JDBC data source is an object bound to the JNDI tree that includes a pool of JDBC 
connections. Applications can look up a data source on the JNDI tree and then reserve 
a database connection from the data source. You create queues in which to enqueue 
outgoing messages or dequeue incoming messages. The Oracle JCA adapters listed in 
Table 41–1 require JDBC data sources and queues to be configured before deployment.



Preparing the Target Environment

41-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

41.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter
Example 41–1 provides a script for creating the JMS resource and redeploying the JMS 
adapter.

Example 41–1 Script for Creation of JMS Resource and Redeployment of JMS Adapter

# lookup the JMSModule 
    jmsSOASystemResource = lookup("SOAJMSModule","JMSSystemResource")
        
    jmsResource = jmsSOASystemResource.getJMSResource()
    
    cfbean = jmsResource.lookupConnectionFactory('DemoSupplierTopicCF')
    if cfbean is None:
        print "Creating DemoSupplierTopicCF connection factory"
        demoConnectionFactory =
 jmsResource.createConnectionFactory('DemoSupplierTopicCF')
        demoConnectionFactory.setJNDIName('jms/DemoSupplierTopicCF')
        demoConnectionFactory.setSubDeploymentName('SOASubDeployment')

    topicbean = jmsResource.lookupTopic('DemoSupplierTopic')
    if topicbean is None:
        print "Creating DemoSupplierTopic jms topic"
        demoJMSTopic = jmsResource.createTopic("DemoSupplierTopic")
        demoJMSTopic.setJNDIName('jms/DemoSupplierTopic')
        demoJMSTopic.setSubDeploymentName('SOASubDeployment')
        
try:
    save()
    # activate the changes
    activate(block="true")
    print "jms topic and factory for SOA Fusion Order Demo successfully created"
except:
    print "Error while trying to save and/or activate!!!"
    dumpStack()
    
print "Creating jms adapter connection factory information"
try:
     redeploy('JmsAdapter', '@deployment.plan@', upload='true', stageMode='stage') 
    
except:
    print "Error while modifying jms adapter connection factory"

Table 41–1 Oracle JCA Adapter Tasks

Adapter Configuration Task See Section...

Database adapter JDBC data source “Deployment" of Oracle Fusion Middleware User's 
Guide for Technology Adapters

AQ adapter JDBC data source “Configuring the Data Sources in the Oracle 
WebLogic Server Administration Console" of 
Oracle Fusion Middleware User's Guide for Technology 
Adapters

JMS adapter Queue “Using the Adapter Configuration Wizard to 
Configure Oracle JMS Adapter" of Oracle Fusion 
Middleware User's Guide for Technology Adapters

Note: This script is for demonstration purposes. You may need to 
modify this script based on your environment.



Preparing the Target Environment

Deploying SOA Composite Applications 41-5

41.5.1.2 Script for Creation of the Database Resource and Redeployment of the 
Database Adapter
Example 41–2 provides a script for creating the database resource and redeploying the 
database adapter.

Example 41–2 Script for Creation of the Database Resource and Redeployment of the 
Database Adapter

import os
connect(userName,passWord,'t3://'+wlsHost+':'+adminServerListenPort)
edit()
startEdit()

soaJDBCSystemResource1 = create('DBAdapterTestDataSource',"JDBCSystemResource")
soaJDBCResource1 = soaJDBCSystemResource1.getJDBCResource()
soaJDBCResource1.setName('DBAdapterDataSource')

soaConnectionPoolParams1 = soaJDBCResource1.getJDBCConnectionPoolParams()
soaConnectionPoolParams1.setTestTableName("SQL SELECT 1 FROM DUAL")

soaConnectionPoolParams1.setInitialCapacity(10)
soaConnectionPoolParams1.setMaxCapacity(100)

soaDataSourceParams1 = soaJDBCResource1.getJDBCDataSourceParams()
soaDataSourceParams1.addJNDIName('jdbc/dbSample')
soaDriverParams1 = soaJDBCResource1.getJDBCDriverParams()
soaDriverParams1.setUrl('jdbc:oracle:thin:@'+db_host_name+':'+db_port+':'+db_sid)
soaDriverParams1.setDriverName('oracle.jdbc.xa.client.OracleXADataSource')
soaDriverParams1.setPassword('my_password')

soaDriverProperties1 = soaDriverParams1.getProperties()
soaProperty1 = soaDriverProperties1.createProperty("user")
soaProperty1.setValue('scott')

varSOAServerTarget = '/Servers/'+serverName
soaServerTarget = getMBean(varSOAServerTarget)

soaJDBCSystemResource1.addTarget(soaServerTarget)

dumpStack()

try : 

save()

activate(block="true")

except:
    print "Error while trying to save and/or activate!!!"
    dumpStack()

print "Creating DB adapter resource  information"
try:
     redeploy('DBAdapter', '@deployment.plan@', upload='true', stageMode='stage') 
    

Note: This script is for demonstration purposes. You may need to 
modify this script based on your environment.



Preparing the Target Environment

41-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

except:
    print "Error while modifying db adapter connection factory"

41.5.2 Creating Connection Factories and Connection Pooling
The Oracle JCA adapters are deployed as JCA 1.5 resource adapters in an Oracle 
WebLogic Server container. Adapters are packaged as Resource Adapter Archive 
(RAR) files using a JAR format. When adapters are deployed, the RAR files are used 
and the adapters are registered as connectors with the Oracle WebLogic Server or 
middle-tier platform. The RAR file contains the following:

■ The ra.xml file, which is the deployment descriptor XML file containing 
deployment-specific information about the resource adapter

■ Declarative information about the contract between Oracle WebLogic Server and 
the resource adapter

Adapters also package the weblogic-ra.xml template file, which defines the 
endpoints for connection factories.

For information about creating connection factories and connection pools, see Oracle 
Fusion Middleware User's Guide for Technology Adapters.

41.5.3 Enabling Security
If you are using an identity service provider with human workflow or attaching 
authentication and authorization policies, you must perform additional setup tasks.

■ Identity service provider for human workflow

By default, the identity service uses the embedded LDAP server in Oracle 
WebLogic Server as the default authentication provider. If you are using human 
workflow, you can configure Oracle WebLogic Server to use an alternative identity 
service provider, such as Oracle Internet Directory, Microsoft Active Directory, or 
Sun iPlanet. For more information, see Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite. Note that the embedded LDAP 
server is not supported in clustered environments. 

■ Authentication provider (OWSM policies)

Policies that use certain types of tokens (for example, the username, X.509, and 
SAML tokens) require an authentication provider. For information about selecting 
and configuring an authentication provider, see Oracle Fusion Middleware Security 
and Administrator's Guide for Web Services. 

■ Authorization provider (OWSM policies)

After a user is authenticated, you must verify that the user is authorized to access 
a web service with an authorization policy. You can create an authorization policy 
with several types of assertion templates. For information about authorization 
policies and which resources to protect, see Oracle Fusion Middleware Security and 
Administrator's Guide for Web Services.

41.5.4 Deploying Trading Partner Agreements and Task Flows
If you are using Oracle B2B or a human task, you must perform additional setup tasks.

■ Deploying trading partner agreements

A trading partner agreement defines the terms that enable two trading partners, 
the initiator and the responder, to exchange business documents. It identifies the 



Customizing Your Application for the Target Environment Prior to Deployment

Deploying SOA Composite Applications 41-7

trading partners, trading partner identifiers, document definitions, and channels. 
You must deploy the agreement from the design-time repository to the run-time 
repository. For more information, see Oracle Fusion Middleware User's Guide for 
Oracle B2B.

■ Deploying the task flow

You must deploy the task flow in order to use it in Oracle BPM Worklist.

41.5.5 Creating an Application Server Connection
To deploy a SOA composite application that does not share metadata with another 
composite, use the Create Application Server Connection wizard to create an 
application server connection. For more information, see Section 41.7.1.1.1, "Creating 
an Application Server Connection."

41.5.6 Creating a SOA-MDS Connection
To deploy a SOA composite application that shares metadata with other composites, 
use the Create SOA-MDS Connection wizard to create a connection to a 
database-based MDS server. For more information, see Section 41.7.3.2.1, "Creating a 
SOA-MDS Connection."

41.6 Customizing Your Application for the Target Environment Prior to 
Deployment

Not all customization tasks must be manually performed as you move to and from 
development, test, and production environments. This section describes how to use a 
configuration plan to automatically configure your SOA composite application for the 
next target environment.

41.6.1 Customizing SOA Composite Applications for the Target Environment
As you move projects from one environment to another (for example, from testing to 
production), you typically must modify several environment-specific values, such as 
JDBC connection strings, hostnames of various servers, and so on. Configuration plans 
enable you to modify these values using a single text (XML) file called a configuration 
plan. The configuration plan is created in either Oracle JDeveloper or with WebLogic 
Scripting Tool (WLST) commands. During process deployment, the configuration plan 
searches the SOA project for values that must be replaced to adapt the project to the 
next target environment.

41.6.1.1 Introduction to Configuration Plans
This section provides an overview of creating and attaching a configuration plan:

■ You create and edit a configuration plan file in which you can replace the 
following attributes and properties:

– Any composite, service component, reference, service, and binding properties 
in the SOA composite application file (composite.xml)

– Attribute values for bindings (for example, the location for binding.ws)

– schemaLocation attribute of an import in a WSDL file

– location attribute of an include in a WSDL file

– schemaLocation attribute of an include, import, and redefine in an XSD file



Customizing Your Application for the Target Environment Prior to Deployment

41-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– Any properties in JCA adapter files

– Modify and add policy references for the following:

* Service component

* Service and reference binding components

■ You attach the configuration plan file to a SOA composite application JAR file or 
ZIP file (if deploying a SOA bundle) during deployment with one of the following 
tools:

– Oracle JDeveloper

For more information, see Section 41.7.1.1.3, "Deploying the Profile."

– ant scripts

For more information, see Section 41.7.5.2.4, "Deploying a SOA Composite 
Application."

– WLST commands

For more information, see Oracle Fusion Middleware WebLogic Scripting Tool 
Command Reference.

■ During deployment, the configuration plan file searches the composite.xml, 
WSDL, and XSD files in the SOA composite application JAR or ZIP file for values 
that must be replaced to adapt the project to the next target environment.

41.6.1.2 Introduction to a Configuration Plan File
The following example shows a configuration plan in which you modify the following:

■ An inFileFolder property for composite FileAdaptorComposite is replaced 
with mytestserver/newinFileFolder.

■ A hostname (myserver17) is replaced with test-server and port 8888 is 
replaced with 8198 in the following locations:

– All import WSDLs 

– All reference binding.ws locations 

The composite.xml file looks as shown in Example 41–3:

Example 41–3 composite.xml File

<composite .....>
  <import namespace="http://example.com/hr/"
 location="http://myserver17.us.oracle.com:8888/hrapp/HRAppService?WSDL"
 importType="wsdl"/>
  <service name="readPO">

Note: The configuration plan does not alter XSLT artifacts in the 
SOA composite application. If you want to modify any XSL, do so in 
the XSLT Mapper. Using a configuration plan is not useful. For 
example, you cannot change references in XSL using the configuration 
plan file. Instead, they must be changed manually in the XSLT Mapper 
in Oracle JDeveloper when moving to and from test, development, 
and production environments. This ensures that the XSLT Mapper 
opens without any issues in design time. However, leaving the 
references unchanged does not impact runtime behavior.



Customizing Your Application for the Target Environment Prior to Deployment

Deploying SOA Composite Applications 41-9

    <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/readPO/#wsdl.interface(Read
_ptt)"/>
    <binding.jca config="readPO_file.jca"/>
    <property name="inFileFolder" type="xs:string" many="false"
 override="may">/tmp/inFile</property>
  </service>
  <reference name="HRApp">
    <interface.wsdl
 interface="http://example.com/hr/#wsdl.interface(HRAppService)"/>
    <binding.ws
port="http://example.com/hr/#wsdl.endpoint(HRAppService/HRAppServiceSoapHttpPort)"
 location="http://myserver17.us.oracle.com:8888/hrapp/HRAppService?WSDL"/>
    <binding.java serviceName="{http://example.com/hr/}HRAppService"
 registryName="HRAppCodeGen_JBOServiceRegistry"/>
  </reference>
</composite>

The configuration plan file looks as shown in Example 41–4.

Example 41–4 Configuration Plan File

<?xml version="1.0" encoding="UTF-8"?>
<SOAConfigPlan
 xmlns:jca="http://platform.integration.oracle/blocks/adapter/fw/metadata"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:orawsp="http://schemas.oracle.com/ws/2006/01/policy"
 xmlns:edl="http://schemas.oracle.com/events/edl"
 xmlns="http://schemas.oracle.com/soa/configplan">
  <composite name="FileAdaptorComposite">
    <service name="readPO">
      <binding type="*">
        <property name="inFileFolder">
          <replace>/mytestserver/newinFileFolder</replace>
        </property>
      </binding>
    </service>
  </composite>
  <!-- For all composite replace host and port in all imports wsdls -->
  <composite name="*">
    <import>
      <searchReplace>
        <search>myserver17</search>
        <replace>test-server</replace>
      </searchReplace>
      <searchReplace>
        <search>8888</search>
        <replace>8198</replace>
      </searchReplace>
    </import>
    <reference name="*">
      <binding type="ws">
        <attribute name="location">
          <searchReplace>
            <search>myserver17</search>
            <replace>test-server</replace>
          </searchReplace>
          <searchReplace>
            <search>8888</search>
            <replace>8198</replace>



Customizing Your Application for the Target Environment Prior to Deployment

41-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

          </searchReplace>
        </attribute>
      </binding>
    </reference>
  </composite>
</SOAConfigPlan>

A policy is replaced if a policy for the same URI is available. Otherwise, it is added. 
This is different from properties, which are modified, but not added.

41.6.1.3 Introduction to Use Cases for a Configuration Plan
The following steps provide an overview of how to use a configuration plan when 
moving from development to testing environments:

1. User A creates SOA composite application Foo.

2. User A deploys Foo to a development server, fixes bugs, and refines the process 
until it is ready to test in the staging area.

3. User A creates and edits a configuration plan for Foo, which enables the URLs and 
properties in the application to be modified to match the testing environment.

4. User A deploys Foo to the testing server using Oracle JDeveloper or a series of 
command-line scripts (can be WLST-based). The configuration plan created in Step 
3 modifies the URLs and properties in Foo.

5. User A deploys SOA composite application Bar in the future and applies the same 
plan during deployment. The URLs and properties are also modified.

The following steps provide an overview of how to use a configuration plan when 
creating environment-independent processes:

1. User A creates SOA composite application Foo.

2. User A deploys Foo to their development server, fixes bugs, and refines the 
process until it is ready to test in the staging area.

3. User A creates a configuration plan for Foo, which enables the URLs and 
properties in the process to be modified to match the settings for User A's 
environment.

4. User A checks in Foo and the configuration plan created in Step 3 to a source 
control system. 

5. User B checks out Foo from source control.

6. User B makes a copy of the configuration plan to match their environment and 
applies the new configuration plan onto Foo's artifacts.

7. User B imports the application into Oracle JDeveloper and makes several changes.

8. User B checks in both Foo and configuration plan B (which matches user B's 
environment).

9. User A checks out Foo again, along with both configuration plans.

Note: This use case is useful for users that have their own 
development server and a common development and testing server if 
they share development of the same process. Users that share the 
same deployment environment (that is, the same development server) 
may not find this use case as useful.



Customizing Your Application for the Target Environment Prior to Deployment

Deploying SOA Composite Applications 41-11

41.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper
This section describes how to create and use a configuration plan. In particular, this 
section describes the following:

■ Creating and editing a configuration plan

■ Attaching the configuration plan to a SOA composite application JAR file

■ Validating the configuration plan

■ Deploying the SOA composite application JAR or ZIP file in which the 
configuration plan is included

To create a configuration plan in Oracle JDeveloper:
1. Open Oracle JDeveloper.

2. Right-click the composite.xml file of the project in which to create a configuration 
plan, and select Generate Config Plan. Figure 41–1 provides details.

Figure 41–1 Generate a Configuration Plan

The Composite Configuration Plan Generator dialog appears, as shown in 
Figure 41–2.



Customizing Your Application for the Target Environment Prior to Deployment

41-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–2 Composite Configuration Plan Generator Dialog

3. Create a configuration plan file for editing, as shown in Table 41–2.

4. Click OK.

This creates and opens a single configuration plan file for editing, similar to that 
shown in Example 41–4. You can modify URLs and properties for the 
composite.xml, WSDL, and schema files of the SOA composite application. 
Figure 41–3 provides details.

Figure 41–3 Configuration Plan Editor

Table 41–2 Generate a Configuration Plan

Field Description

Specify the file name (.xml) 
for the configuration plan

Enter a specific name or accept the default name for the 
configuration plan. The file is created in the directory of the 
project and packaged with the SOA composite application JAR 
or ZIP file. 

Note: During deployment, you can specify a different 
configuration file when prompted in the Deploy Configuration 
page of the deployment wizard.

Overwrite existing file Click to overwrite an existing configuration plan file with a 
different file in the project directory.



Customizing Your Application for the Target Environment Prior to Deployment

Deploying SOA Composite Applications 41-13

5. Add values for server names, port numbers, and so on to the existing syntax. You 
can also add replacement-only syntax when providing a new value. You can add 
multiple search and replacement commands in each section.

6. From the File menu, select Save All.

7. Above the editor, click the x to the right of the file name to close the configuration 
plan file.

8. Right-click the composite.xml file again, and select Validate Config Plan.

The Composite Configuration Plan Validator appears, as shown in Figure 41–4.

Figure 41–4 Validate the Configuration Plan

9. Select the configuration plan to validate. This step identifies all search and 
replacement changes to be made during deployment. Use this option for 
debugging only.

10. Note the directory in which a report describing validation results is created, and 
click OK. 

The Log window in Oracle JDeveloper indicates if validation succeeded and lists 
all search and replacement commands to perform during SOA composite 
application deployment. This information is also written to the validation report.

11. Deploy the SOA composite application by following the instructions in one of the 
following sections:

■ Section 41.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper"

■ Section 41.7.2, "Deploying Multiple SOA Composite Applications in Oracle 
JDeveloper"

■ Section 41.7.3, "Deploying and Using Shared Metadata Across SOA Composite 
Applications in Oracle JDeveloper"

During deployment, the Deploy Configuration page shown in Step 4 of 
Section 41.7.1.1.3, "Deploying the Profile" prompts you to select the configuration 
plan to include in the SOA composite application archive.

Note: The old composite.xml, WSDL, and XSD files are not 
replaced with files containing the new values for the URLs and 
properties appropriate to the next environment. Replacement occurs 
only when the SOA composite application is deployed.



Deploying SOA Composite Applications

41-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

12. Select the configuration plan to include with the SOA composite application.

13. Click OK.

41.6.1.5 How to Create a Configuration Plan with the WLST Utility
As an alternative to using Oracle JDeveloper, you can use the WLST command line 
utility to perform the following configuration plan management tasks:

■ Generate a configuration plan for editing:

sca_generatePlan(configPlan, sar, composite, overwrite, verbose)

■ Attach the configuration plan file to the SOA composite application JAR file:

sca_attachPlan(sar, configPlan, overwrite, verbose)

■ Validate the configuration plan:

sca_validatePlan(reportFile, configPlan, sar, composite, overwrite, verbose)

■ Extract a configuration plan packaged with the JAR file for editing:

sca_extractPlan(sar, configPlan, overwrite, verbose)

For information on how to use these commands, see Oracle Fusion Middleware WebLogic 
Scripting Tool Command Reference.

41.6.1.6 How to Attach a Configuration Plan with ant Scripts
As an alternative to using Oracle JDeveloper, you can use ant scripts to attach the 
configuration plan file to the SOA composite application JAR or ZIP file during 
deployment. For instructions, see Section 41.7.5.2.4, "Deploying a SOA Composite 
Application."

41.7 Deploying SOA Composite Applications
This section describes how to deploy the following types of SOA composite 
applications.

■ Deploying a single composite in Oracle JDeveloper

■ Deploying multiple composites in Oracle JDeveloper

■ Deploying and using shared metadata in Oracle JDeveloper

■ Deploying an existing SOA archive in Oracle JDeveloper

■ Managing SOA composite applications with WLST and ant scripts

■ Deploying from Oracle Enterprise Manager Fusion Middleware Control Console

■ Deploying SOA composite applications to a cluster

41.7.1 Deploying a Single SOA Composite in Oracle JDeveloper
Oracle JDeveloper requires the use of profiles for SOA projects and applications to be 
deployed to Oracle WebLogic Server.

41.7.1.1 How to Deploy a Single SOA Composite
This section describes how to deploy a single SOA composite application with Oracle 
JDeveloper.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-15

41.7.1.1.1 Creating an Application Server Connection  You must create a connection to the 
application server to which to deploy a SOA composite application. The following 
instructions describe how to create a connection to Oracle WebLogic Server. For 
information about creating a connection to other application servers such as IBM 
WebSphere Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

To create an application server connection:
1. From the File main menu, select New.

2. In the General list, select Connections.

3. Select Application Server Connection, and click OK.

The Name and Type page appears. 

4. In the Connection Name field, enter a name for the connection.

5. In the Connection Type list, select WebLogic 10.3 to create a connection to Oracle 
WebLogic Server.

6. Click Next.

The Authentication page appears. 

7. In the Username field, enter the user authorized for access to the application 
server.

8. In the Password field, enter the password for this user.

9. Click Next.

The Configuration page appears. 

10. In the Weblogic Hostname (Administration Server) field, enter the host on which 
the Oracle WebLogic Server is installed.

11. In the Port and SSL Port fields, enter the appropriate port values or accept the 
default values.

12. If you want to use SSL, select the Always use SSL checkbox. Table 41–3 describes 
what occurs when you select this checkbox.

13. In the WebLogic Domain field, enter the Oracle SOA Suite domain. For additional 
details about specifying domains, click Help.

14. Click Next.

Table 41–3 Deployment to HTTPS and HTTP Servers

If This Checkbox Is... Then...

Selected An HTTPS server URL must exist to deploy the composite with SSL. 
Otherwise, deployment fails.

If the server has only an HTTP URL, deployment also fails. This option 
enables you to ensure that SSL deployment must not go through a 
non-SSL HTTP URL, and must only go through an HTTPS URL.

Not selected An HTTP server URL must exist to deploy to a non-SSL environment. 
Otherwise, deployment fails.

If the server has both HTTPS and HTTP URLs, deployment occurs 
through a non-SSL connection. This option enables you to force a 
non-SSL deployment from Oracle JDeveloper, even though the server 
is SSL-enabled.



Deploying SOA Composite Applications

41-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

15. Click Test Connection to test your server connection. 

16. If the connection is successful, click Finish. Otherwise, click Back to make 
corrections in the previous dialogs. Even if the connection test is unsuccessful, a 
connection is created.

41.7.1.1.2 Optionally Creating a Project Deployment Profile   A required deployment profile 
is automatically created for your project. The application profile includes the JAR files 
of your SOA projects. If you want, you can create additional profiles.

To create a project deployment profile:
1. In the Application Navigator, right-click the SOA project.

2. Select Project Properties.

 The Project Properties dialog appears.

3. Click Deployment.

4. Click New.

The Create Deployment Profile dialog appears. 

5. Enter the values shown in Table 41–4.

6. Click OK.

The SAR Deployment Profile dialog appears. 

7. Click OK to close the SAR Deployment Profile Properties dialog.

The deployment profile shown in Figure 41–5 displays in the Project Properties 
dialog.

Table 41–4 Create Deployment Profile Dialog Fields and Values

Field Description

Archive Type Select SOA-SAR File.

A SAR is a deployment unit that describes the SOA composite 
application. The SAR packages service components such as 
BPEL processes, business rules, human tasks, and Oracle 
Mediator routing services into a single application. The SAR file 
is analogous to the BPEL suitcase archive of previous releases, 
but at the higher composite level and with any additional 
service components that your application includes (for example, 
human tasks, business rules, and Oracle Mediator routing 
services). 

Name Enter a deployment profile name.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-17

Figure 41–5 Project Profile

41.7.1.1.3 Deploying the Profile  You now deploy the project profile to Oracle WebLogic 
Server. Deployment requires the creation of an application server connection. You can 
create a connection during deployment by clicking the Add icon in Step 10 or before 
deployment by following the instructions in Section 41.7.1.1.1, "Creating an 
Application Server Connection."

To deploy the profile:
1. In the Application Navigator, right-click the SOA project.

2. Select Deploy > project_name.

The value for project_name is the SOA project name. 

The Deployment Action page of the Deploy Project_Name wizard appears. 
Figure 41–6 provides an example.



Deploying SOA Composite Applications

41-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–6 Deployment Action Page

3. Select one of the following deployment options:

■ Deploy to Application Server

Creates a JAR file for the selected SOA project and deploys it to an application 
server such as Oracle WebLogic Server.

■ Deploy to SAR

Creates a SAR (JAR) file of the selected SOA project, but does not deploy it to 
an application server such as Oracle WebLogic Server. This option is useful for 
environments in which:

– Oracle WebLogic Server may not be running, but you want to create the 
artifact JAR file.

– You want to deploy multiple JAR files to Oracle WebLogic Server from a 
batch script. This option offers an alternative to opening all project profiles 
(which you may not have) and deploying them from Oracle JDeveloper.

The page that displays differs based on your selection.

4. Select the deployment option appropriate for your environment.

a. View the Deploy Configuration page shown in Figure 41–7.

Table 41–5 Deployment Target

If You Select... Go to...

Deploy to Application Server Step 4a

Deploy to SAR Step 4b



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-19

Figure 41–7 Deploy Configuration Page for Application Server Deployment

b. View the Deploy Configuration page shown in Figure 41–8.



Deploying SOA Composite Applications

41-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–8 Deploy Configuration Page for SAR Deployment

5. Provide values appropriate to your environment, as described in Table 41–6. If you 
selected to deploy to a server, additional fields display in the page.

Table 41–6 SOA Deployment Configuration Dialog

Field Description

Composite Revision ID Expand to display details about the project.

■ Project Displays the project name.

■ Current Revision ID Displays the current revision ID of the project.

■ New Revision ID Optionally change the revision ID of the SOA composite 
application.

SOA Configuration Plan Expand to display details about the configuration plan.

The configuration plan enables you to define the URL and 
property values to use in different environments. During process 
deployment, the configuration plan is used to search the SOA 
project for values that must be replaced to adapt the project to 
the next target environment.

■ Do not attach Select to not include a configuration plan with the SOA 
composite application JAR file. If you have not created a 
configuration plan, this field is disabled. This is the default 
selection.

■ Configuration_
plan.xml

Select the specific plan. A configuration plan must already exist 
in the SOA project for this selection to be available.

See Section 41.6.1, "Customizing SOA Composite Applications 
for the Target Environment" for instructions on creating a 
configuration plan.

BPEL Monitor Expand to display details about BPEL monitors.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-21

6. Click Next. 

7. If the SOA project you selected for deployment includes a task flow project 
defined for a human task, you are prompted with the Task Flow Deployment 
dialog, as shown in Figure 41–9. 

Otherwise, go to Step 10.

You create or configure an Enterprise Resource Archive (EAR) file for the task flow 
forms of human tasks. The EAR file consists of a Web Resource Archive (WAR) 
profile that you select in the Deployable Task Flow Projects table of this dialog. 

■ Ignore BPEL Monitor 
deployment errors

Note: This checkbox only 
appears if there is at least 
one .monitor file in the 
application.

Deselect this checkbox to display BPEL Monitor deployment 
errors. This checkbox corresponds to the ignoreErrors 
property in the monitor.config BPEL project file. This file 
defines runtime and deployment properties needed to connect 
with Oracle BAM Server to create the Oracle BAM data objects 
and dashboards.

If Oracle BAM Server is unreachable, and ignoreErrors is set 
to true, deployment of the composite does not stop. If set to 
false and Oracle BAM Server is unavailable, deployment fails.

Mark composite revision as 
default

If you do not want the new revision to be the default, you can 
deselect this box. By default, a newly deployed composite 
revision is the default. This revision is instantiated when a new 
request comes in.

The option only displays if you selected Deploy to Application 
Server on the Deployment Action page.

Overwrite any existing 
composites with the same 
revision ID

Select to overwrite any existing SOA composite application of 
the same revision value.

The option only displays if you selected Deploy to Application 
Server on the Deployment Action page.

Use the following SOA 
configuration plan for all 
composites

Click Browse to select the same configuration plan to use for all 
composite applications. This option is used when deploying 
multiple composite applications.

Table 41–6 (Cont.) SOA Deployment Configuration Dialog

Field Description



Deploying SOA Composite Applications

41-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–9 Task Flow Deployment Page

8. Provide values appropriate to your environment, as described in Table 41–7.

Table 41–7 Task Flow Deployment Dialog

Field Description

Application Name Select the EAR file to include in the deployment. This list 
displays all available EAR profiles in the current Oracle 
JDeveloper application. These EAR profiles are used as a 
template to create a new EAR profile to deploy based on the 
WAR profiles selected in the Deployable Task Flow Projects 
table. You can also enter any EAR profile name to deploy.

Deploy to specific 
composite revision & 
partition

Select to append the revision number of the composite to the 
EAR file name. If selected, this checkbox includes the composite 
revision in the EAR name, WAR profile, and context root. This 
option enables you to deploy an application specific to a 
composite revision. 

Add generated profiles to 
application

Select to add the generated EAR profile to the current SOA 
composite application’s EAR deployment profile list. The 
application may have to be saved to persist the generated EAR 
profile. Once the deployment profile is available, you can deploy 
the EAR profile by selecting Application > Deploy. This option 
enables you to avoid using the SOA deployment wizard, if only 
task flow application deployment is necessary.

Overwrite Existing 
Application

Select to overwrite the existing version of the EAR file on the 
server.

Deployable Task Flow 
Projects

Select the task flow project WAR profiles to include in the EAR 
file. The task flow project WAR profiles are grouped in 
accordance with the composites that include the human task 
related to the task flow project. The context root of the WAR 
changes if the Add generated profiles to application checkbox 
is selected.

Note: If you do not select a WAR profile, no task flows are 
deployed.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-23

When you deploy a task form for a human task, as part of notification, the task 
form details are included in an email. For dynamic payloads, this email includes 
the content of the payload as it appears at that particular time.

For information about deploying SOA composite applications with task flows to 
multiple partition environments, see Section 41.7.1.2, "What You May Need to 
Know About Deploying Human Task Composites with Task Flows to Partitions."

9. Click Next.

10. If you selected to deploy to an application server, the Select Server page appears 
for selecting an existing connection to an application server such as Oracle 
WebLogic Server from the list or clicking the Add icon to create a connection to a 
server. Figure 41–10 provides details.

Otherwise, go to Step 15.

■ Projects Select from the list of deployable task flow projects or select the 
Projects checkbox to choose all available task flows. The task 
flows that display are based on the composites included in the 
SOA project or bundle selected for deployment.

■ WAR Profiles Select the task flow project WAR files. Only the most recently 
created or modified task flow of the human task is available for 
selection.

■ App Context Root Displays the application context root directory based on your 
selection for the WAR profile.

Best Practice: It is recommended that task detail applications 
associated with a human workflow composite be deployed only to 
servers that have SOA configured on them, as well as the required 
ADF libraries.

Table 41–7 (Cont.) Task Flow Deployment Dialog

Field Description



Deploying SOA Composite Applications

41-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–10 Select Server Page

11. Click Next.

12. Select the target SOA servers to which to deploy this archive. If there are multiple 
servers or cluster nodes, select to deploy to one or more servers or nodes. 
Figure 41–11 provides details.

13. Select the partition in which to deploy this archive. If the server contains no 
partitions, you cannot deploy this archive. Also, if the server is not in a running 
state, you cannot deploy this archive. By default, a partition named default is 
automatically included with Oracle SOA Suite. You create partitions in the 
Manage Partitions page of Oracle Enterprise Manager Fusion Middleware Control 
Console.

Note: Human workflow artifacts such as task mapped attributes 
(previously known as flex field mappings) and rules (such as vacation 
rules) are defined based on the namespace of the task definition. 
Therefore, the following issues are true when the same SOA 
composite application with a human workflow task is deployed into 
multiple partitions:

■ For the same task definition type, mapped attributes defined in 
one partition are visible in another partition.

■ Rules defined on a task definition in one partition can apply to the 
same definition in another partition.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-25

Figure 41–11 SOA Servers Page

14. Click Next.

15. Review the archive details on the Summary page shown in Figure 41–12, and click 
Finish.

Figure 41–12 Summary Page



Deploying SOA Composite Applications

41-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

16. If you selected to deploy to an application server, view the messages that display 
in the Deployment log window at the bottom of Oracle JDeveloper.

17. Enter the user name and password, and click OK.

If deployment is successful, the following actions occur:

■ A JAR file for the SOA project is created under the deploy folder in Oracle 
JDeveloper with a naming convention of sca_composite_name_revrevision_
number.jar.

■ The project is displayed in the Resource Palette under application_server_
connection_name > SOA > SOA_server_name > partition_name.

■ The project is displayed in the Application Server Navigator under 
application_server_connection_name > SOA > SOA_server_name > 
partition_name.

You are now ready to monitor your application from Oracle Enterprise Manager 
Grid Control Console. See Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite for details.

If deployment is unsuccessful, view the messages that display in the Deployment 
log window and take corrective actions. For more information, see Section 41.9, 
"Testing and Troubleshooting."

For information on creating partitions, see the following documentation:

■ Section 41.7.5.2, "How to Manage SOA Composite Applications with ant 
Scripts"

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle 
BPM Suite

■ Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

41.7.1.2 What You May Need to Know About Deploying Human Task Composites 
with Task Flows to Partitions
To deploy a SOA composite application with a task flow from Oracle JDeveloper to a 
multiple partition environment, select the task flows to be deployed to the same 
partition in which the SOA composite application is being deployed.

When the task flow is deployed using only the EAR profile (deploying the task flow 
using the EAR deployer), the task flow is not partition-aware. Therefore, you must 
modify the hwtaskflow.xml file to include the partition name in the generated EAR 
file (the project version of the file remains unchanged). This file is located under the 
TaskForm project adfmsrc directory (for example, 
HelpDeskRequestTaskFlow\adfmsrc\hwtaskflow.xml). Example 41–5 
provides details. 

Example 41–5 hwtaskflow.xml file Modification

<hwTaskFlows
 xmlns="http://xmlns.oracle.com/bpel/workflow/hwTaskFlowProperties">

Note: If you want to redeploy the same version of a SOA composite 
application, you cannot change the composite name. You can deploy 
with the same revision number if you selected the Overwrite any 
existing composites with the same revision ID checkbox on the 
Deploy Configuration page.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-27

   <ApplicationName>worklist</ApplicationName>
   <LookupType>LOCAL</LookupType>
   <TaskFlowDeploy>false</TaskFlowDeploy>
   <PartitionName>partition2</PartitionName> 

In addition, if you want to reuse the same task flow project for another partition, you 
must change the web context-root.

41.7.2 Deploying Multiple SOA Composite Applications in Oracle JDeveloper
You can deploy multiple SOA composite applications to an application server such as 
Oracle WebLogic Server at the same time by using the SOA bundle profile. This profile 
enables you to include one or more SAR profiles in the bundle and deploy the bundle 
to an application server.

41.7.2.1 How to Deploy Multiple SOA Composite Applications

To deploy multiple SOA composite applications
1. From the Application menu, select Application Properties, as shown in 

Figure 41–13.

Figure 41–13 Application Properties

2. In the Application Properties dialog, click Deployment.

3. Click New.

The Create Deployment Profile dialog appears. 

4. In the Archive Type list, select SOA Bundle.

5. In the Name field, enter a name. 

Note: You cannot deploy multiple SOA applications that are 
dependent upon one another in the same SOA bundle profile. For 
example, if application A calls application B, then you must first 
deploy application B separately.

Note: This section assumes you have created an application server 
connection. If not, see Section 41.7.1.1.1, "Creating an Application 
Server Connection" for instructions.



Deploying SOA Composite Applications

41-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–14 provides details.

Figure 41–14 Select the SOA Bundle

6. Click OK.

7. In the navigator on the left, select the Dependencies node.

8. Select the SARs you want to include in this bundle, as shown in Figure 41–15.

Figure 41–15 Select the SAR

9. Click OK.

10. Click OK to close the Application Properties dialog.

11. Select the Application menu again, then select Deploy > SOA_Bundle_Name.

This invokes the deployment wizard. 

12. See Step 3 on page 41-18 for details about responses to provide.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-29

41.7.3 Deploying and Using Shared Metadata Across SOA Composite Applications in 
Oracle JDeveloper

This section describes how to deploy and use shared metadata across SOA composite 
applications.

41.7.3.1 How to Deploy Shared Metadata
Shared metadata is deployed to the SOA Infrastructure on the application server as a 
JAR file. The JAR file should contain all the resources to share. In Oracle JDeveloper, 
you can create a JAR profile for creating a shared artifacts archive. 

All shared metadata is deployed to an existing SOA Infrastructure partition on the 
server. This metadata is deployed under the /apps namespace. For example, if you 
have a MyProject/xsd/MySchema.xsd file in the JAR file, then this file is deployed 
under the /apps namespace on the server. When you refer to this artifact in Oracle 
JDeveloper using a SOA-MDS connection, the URL becomes 
oramds:/apps/MyProject/xsd/MySchema.xsd.

This section describes how to perform the following tasks:

■ Create a JAR profile and include the artifacts to share

■ Create a SOA bundle that includes the JAR profile

■ Deploy the SOA bundle to the application server

41.7.3.1.1 Create a JAR Profile and Include the Artifacts to Share  

To create a JAR profile and include the artifacts to share:
1. In the Application Navigator, right-click the SOA project.

2. Select Project Properties.

The Project Properties dialog appears.

3. Click Deployment in the navigational tree on the left.

4. Click New.

The Create Deployment Profile dialog appears. 

5. From the Archive Type list, select JAR File.

6. In the Name field, enter a name (for this example, shared_archive is entered).

The Create Deployment Profile dialog looks as shown in Figure 41–16.



Deploying SOA Composite Applications

41-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–16 JAR File Selection

7. Click OK.

The JAR Deployment Profile Properties dialog appears. 

8. Select JAR Options from the navigational tree on the left.

9. Deselect Include Manifest File (META-INF/MANIFEST.MF), as shown in 
Figure 41–17.

This prevents the archive generator from adding the manifest file 
(META-INF/MANIFEST.MF) into the JAR file.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-31

Figure 41–17 JAR File Options

10. Select File Groups > Project Output > Contributors from the navigational tree on 
the left.

11. Deselect the Project Output Directory and Project Dependencies options, as 
shown in Figure 41–18.

This prevents the archive generator from adding the contents of the project output 
and project dependencies into the archive.



Deploying SOA Composite Applications

41-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–18 Contributors

12. Click Add to add a new contributor.

The Add Contributor dialog appears. This dialog enables you to add artifacts to 
your archive.

13. Click Browse.

14. Select the folder in which your artifacts reside, as shown in Figure 41–19. Note that 
this also determines the hierarchy of artifacts in the archive.

Figure 41–19 Artifact Selection



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-33

15. Click Select to close the Choose Directory dialog.

16. Click OK to close the Add Contributor dialog.

17. Select File Groups > Project Output > Filters from the navigational tree on the 
left.

18. Select only the artifacts to include in the archive, as shown in Figure 41–20. For this 
example, the archive contains the following XSD files:

■ SOADemoComposite/xsd/DemoProcess.xsd

■ SOADemoComposite/xsd/Quote.xsd

■ SOADemoComposite/xsd/VacationRequest.xsd

Figure 41–20 Artifacts to Include in the Archive 

19. Click OK to save changes to the JAR deployment profile.

20. Click OK to save the new deployment profile.

21. From the File main menu, select Save All.

41.7.3.1.2 Create a SOA Bundle that Includes the JAR Profile  

To create a SOA bundle that includes the JAR profile:
1. From the Application Menu, select Application Properties > Deployment.

2. Click New to create a SOA bundle profile.

The Create Deployment Profile dialog appears. 

3. From the Archive Type list, select SOA Bundle. A bundle is a collection of 
multiple SOA composite applications.



Deploying SOA Composite Applications

41-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. In the Name field, enter a name (for this example, sharedArtifactBundle is 
entered). Figure 41–21 provides details.

Figure 41–21 SOA Bundle Creation

5. Click OK.

6. Select Dependencies from the navigational tree on the left.

7. Select the JAR file and SOA-SAR profiles you previously created (for this example, 
named shared_archive and sharedArtifactBundle, respectively). You have the 
option of a JAR, a SOA-SAR, or both. Figure 41–22 provides details.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-35

Figure 41–22 Deployment Profile Dependencies

8. Click OK to save the SOA bundle deployment profile changes.

9. Click OK to save the new deployment profile.

10. From the File main menu, select Save All.

41.7.3.1.3 Deploy the SOA Bundle  

To deploy the SOA bundle:
1. Right-click the Application menu and select Deploy > SOA_Bundle_Name.

This invokes the deployment wizard. 

2. See Step 3 on page 41-18 for details about responses to provide.

This deploys the SOA bundle to the application server (shared artifacts are 
deployed to the MDS database of Oracle SOA Suite). 

41.7.3.2 How to Use Shared Metadata
This section describes how to browse and select the shared metadata you created in 
Section 41.7.3.1, "How to Deploy Shared Metadata."

41.7.3.2.1 Creating a SOA-MDS Connection  

To create a SOA-MDS connection:
1. From the File menu, select New > Connections > SOA-MDS Connection.

The Create SOA-MDS Connection dialog shown in Figure 41–23 is displayed.



Deploying SOA Composite Applications

41-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–23 Create SOA-MDS Connection

2. Provide values appropriate to your environment, as shown in Table 41–8.

Table 41–8 Create SOA-MDS Connection Dialog

Field Description

Create Connection In: Ensure that IDE Connection is selected. This option enables the 
connection to display in the Resource Palette and be available to 
multiple applications.

You cannot create a connection with the Application Resources 
option. This selection is disabled.

Connection Name Enter a connection name. Upon successful completion of this 
connection creation, this name displays under SOA-MDS in the 
Resource Palette.

Connection Type Select a connection type. An MDS repository can be file-based or 
database-based. The dialog is refreshed based on your selection. 

■ DB based MDS

For most production environments, you use a 
database-based repository. Most components, such as 
Oracle SOA Suite, require that a schema be installed in a 
database, necessitating the use of a database-based 
repository. To use a database-based repository, you must 
first create it with the Repository Creation Utility.

■ File Based MDS

Choose a database 
connection

Select an existing connection or create a new connection to the 
Oracle SOA Suite database with the MDS schema.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-37

3. Click OK.

You can now browse the connection in the Resource Palette and view shared 
artifacts under the /apps node.

41.7.3.2.2 Creating a BPEL Process  You can now browse and use the shared metadata 
from a different SOA composite application. For this example, you create a BPEL 
process service component in a different application.

To create a BPEL process:
1. Create a new BPEL process service component in a different application.

2. In the Create BPEL Process dialog, click the Browse icon to the right of the Input 
field.

The Type Chooser dialog appears. 

3. In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears. 

4. To the right of the URL field, click the Browse icon.

The SOA Resource Browser dialog appears. 

5. At the top of the dialog, select Resource Palette from the list.

6. Select shared metadata, as shown in Figure 41–24. For this example, the Quote.xsd 
file that you selected to include in the archive in Step 18 of Section 41.7.3.1.1, 
"Create a JAR Profile and Include the Artifacts to Share" is selected.

Select MDS Partition Select the MDS partition (for example, soa-infra).

Test Connection Click to test the SOA-MDS connection. 

Note: Even if the connection test fails, a connection is created.

Status Displays status of the connection test.

Table 41–8 (Cont.) Create SOA-MDS Connection Dialog

Field Description



Deploying SOA Composite Applications

41-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–24 Shared Metadata in the SOA Resource Browser

7. Click OK.

8. In the Import Schema File dialog, click OK.

9. In the Type Chooser dialog, select a node of Quote.xsd (for this example, 
QuoteRequest), and click OK.

10. In the Create BPEL Process dialog, click OK to complete creation. 

11. In the Application Navigator, select the WSDL file for the BPEL process.

12. Click Source.

The WSDL file includes the following definition.

<wsdl:types>
  <schema xmlns="http://www.w3.org/2001/XMLSchema">
    <import namespace="http://www.mycompany.com/ns/salesquote"
 schemaLocation="oramds:/apps/SOADemoComposite/xsd/Quote.xsd" />
  </schema>
</wsdl:types>

13. Continue modeling the BPEL process as necessary.

14. Deploy the SOA composite application that includes the BPEL process.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-39

41.7.4 Deploying an Existing SOA Archive in Oracle JDeveloper
You can deploy an existing SOA archive from the Application Server Navigator in 
Oracle JDeveloper.

41.7.4.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper

To deploy an existing SOA archive from Oracle JDeveloper:
1. From the View menu, select Application Server Navigator.

2. Expand your connection name.

3. Right-click the SOA folder.

4. Select Deploy SOA Archive.

The Deploy SOA Archive dialog shown in Figure 41–25 appears.

Figure 41–25 Deploy SOA Archive Dialog

5. Provide responses appropriate to your environment, as described in Table 41–9.

Notes:

■ The archive must exist. You cannot create an archive in the Deploy 
SOA Archive dialog.

■ These instructions assume you have created an application server 
connection to an Oracle WebLogic Administration Server or 
another supported application server on which the SOA 
Infrastructure is deployed. Creating a connection to an Oracle 
WebLogic Administration Server enables you to browse for SOA 
composite applications deployed in the same domain. From the 
File main menu, select New > Connections > Application Server 
Connection to create a connection.



Deploying SOA Composite Applications

41-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. Click OK.

For more information on deploying and testing SOA composite applications from the 
Application Server Navigator, see Section 2.8, "Managing and Testing a SOA 
Composite Application."

41.7.5 Managing SOA Composite Applications with Scripts
You can also manage SOA composite applications from a command line or scripting 
environment using the WLST scripting utility or ant. These options are well-suited for 
automation and can be easily integrated into existing release processes.

Table 41–9 Create Deployment Profile Dialog Fields and Values

Field Description

SOA Server Select the SOA server to which to deploy the archive.

Partition Select the partition in which to deploy the archive. If 
the server contains no partitions, you cannot deploy 
this archive. By default, a partition named default is 
automatically included with Oracle SOA Suite.

Status Displays the status of the server. If the server is not in 
a running state, you cannot deploy this archive. 

Server URL Displays the URL of the server.

Choose target SOA server(s) to which 
you want to deploy this archive

Select the Oracle WebLogic Administration Server to 
which to deploy the archive.

SOA Archive Click Browse to select a prebuilt SOA composite 
application archive. The archive consists of a JAR file 
of a single application or a SOA bundle ZIP file 
containing multiple applications. 

Configuration Plan (Optional) Click Browse to select a configuration plan to attach to 
the SOA composite application archive. The 
configuration plan enables you to define the URL and 
property values to use in different environments. 
During process deployment, the configuration plan is 
used to search the SOA project for values that must be 
replaced to adapt the project to the next target 
environment.

For information about creating configuration plans, 
see Section 41.6.1.4, "How to Create a Configuration 
Plan in Oracle JDeveloper" or Section 41.6.1.5, "How to 
Create a Configuration Plan with the WLST Utility."

Mark composite revision as default If you do not want the new revision to be the default, 
you can deselect this box. By default, a newly 
deployed composite revision is the default. This 
revision is instantiated when a new request comes in.

Overwrite any existing composites 
with the same revision ID

Select to overwrite (redeploy) an existing SOA 
composite application with the same revision ID. The 
consequences of this action are as follows:

■ A new version 1.0 of the SOA composite 
application is redeployed, overwriting a 
previously deployed 1.0 version. 

■ The older, currently-deployed version of this 
revision is removed (overwritten).

■ If the older, currently-deployed version of this 
revision has running instances, the state of those 
instances is changed to stale.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-41

41.7.5.1 How to Manage SOA Composite Applications with the WLST Utility
You can manage SOA composite applications with the WLST scripting utility. For 
instructions, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

41.7.5.2 How to Manage SOA Composite Applications with ant Scripts
You can manage SOA composite applications with the ant utility. ant is a Java-based 
build tool used by Oracle SOA Suite for managing SOA composite applications. The 
configuration files are XML-based and call out a target tree where various tasks are 
executed.

Table 41–10 lists the ant scripts available in the Middleware_Home\SOA_Suite_
Home\bin directory.

Table 41–10 ant Management Scripts

Script Description

ant-sca-test.xml Automates the testing of SOA composite applications.

ant-sca-compile.xml Compiles a SOA composite application.

ant-sca-package.xml Packages a SOA composite application into a composite SAR 
file.

ant-sca-deploy.xml Deploys a SOA composite application.

ant-sca-deploy.xml 
undeploy

Undeploys a SOA composite application.

ant-sca-deploy.xml 
exportComposite

Exports a composite into a SAR file.

ant-sca-deploy.xml 
exportUpdates

Exports postdeployment changes of a composite into a JAR file.

ant-sca-deploy.xml 
importUpdates

Imports postdeployment changes of a composite.

ant-sca-deploy.xml 
exportSharedData

Exports shared data of a given pattern into a JAR file.

ant-sca-deploy.xml 
removeSharedData

Removes a top-level shared data folder.

ant-sca-mgmt.xml 
startComposite

Starts a SOA composite application.

ant-sca-mgmt.xml 
stopComposite

Stops a SOA composite application.

ant-sca-mgmt.xml 
activateComposite

Activates a SOA composite application.

ant-sca-mgmt.xml 
retireComposite

Retires a SOA composite application.

ant-sca-mgmt.xml 
assignDefaultComposit
e

Assigns a default revision version.

ant-sca-mgmt.xml 
listDeployedComposite
s

Lists deployed SOA composite applications.

ant-sca-mgmt.xml 
listPartitions

Lists all available partitions in the SOA Infrastructure.



Deploying SOA Composite Applications

41-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For additional information about ant, visit the following URL:

http://ant.apache.org

41.7.5.2.1 Testing a SOA Composite Application  Example 41–6 provides an example of 
executing a test case. Test cases enable you to automate the testing of SOA composite 
applications. 

Example 41–6 Testing an Application

ant -f ant-sca-test.xml -Dscatest.input=MyComposite
-Djndi.properties=/home/jdoe/jndi.properties 

Table 41–11 describes the syntax.

ant-sca-mgmt.xml 
listCompositesInParti
tion

Lists all composites in a partition.

ant-sca-mgmt.xml 
createPartition

Creates a partition in the SOA Infrastructure.

ant-sca-mgmt.xml 
deletePartition

Undeploys all composites in a partition before deleting the 
partition.

ant-sca-mgmt.xml 
startCompositesInPart
ition

Starts all composites in a partition.

ant-sca-mgmt.xml 
stopCompositesInParti
tion

Stops all composites in a partition.

ant-sca-mgmt.xml 
activateCompositesInP
artition

Activates all composites in a partition.

ant-sca-mgmt.xml 
retireCompositesInPar
tition

Retires all composites in a partition.

ant-sca-upgrade.xml Migrates BPEL and ESB release 10.1.3 metadata to release 11g.

Note: If any Java code is part of the project, you must manually 
modify the code to pass compilation with an 11g compiler. For 
BPEL process instance data, active data used by the 10.1.3 Oracle 
BPEL Server is not migrated.

Table 41–10 (Cont.) ant Management Scripts

Script Description



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-43

For more information on creating and running tests on SOA composite applications, 
see Chapter 42, "Automating Testing of SOA Composite Applications" and Oracle 
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.7.5.2.2 Compiling a SOA Composite Application  Example 41–7 provides an example of 
compiling a SOA composite application, which validates it for structure and syntax.

Example 41–7 Compiling an Application

ant -f ant-sca-compile.xml
-Dscac.input=/myApplication/myComposite/composite.xml 

Table 41–12 describes the syntax.

Table 41–11 ant Testing Commands

Argument Definition

scatest Possible inputs are as follows:

■ java.passed.home

The script picks this from the environment value of JAVA_HOME. 
Provide this input to override.

■ wl_home

This is the location of Oracle WebLogic Server home (defaults to 
Oracle_Home/.../wlserver_10.3).

■ scatest.input

The name of the composite to test.

■ scatest.format

The format of the output file (defaults to native; the other option 
is junit).

■ scatest.result

The result directory in which to place the output files (defaults to 
temp_dir/out).

■ jndi.properties.input

The jndi.properties file to use. 

jndi. properties Absolute path to the JNDI property file. This is a property file that 
contains JNDI properties for connecting to the server. For example:

java.naming.factory.initial=weblogic.jndi.WLInitialContextFac
tory
java.naming.provider.url=t3://myserver.us.oracle.com:8001/soa
-infra
java.naming.security.principal=weblogic
dedicated.connection=true
dedicated.rmicontext=true

Since a composite test (in a test suite) is executed on the SOA 
Infrastructure, this properties file contains the connection information. 
For this example, these properties create a connection to the SOA 
Infrastructure hosted in myserver.us.oracle.com, port 8001 and 
use a user name of weblogic. You are prompted to specify the 
password.

You typically create one jndi.properties file (for example, in 
/home/myhome/jndi.properties) and use it for all test runs.



Deploying SOA Composite Applications

41-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

41.7.5.2.3 Packaging a SOA Composite Application into a Composite SAR File  Example 41–8 
provides an example of packaging a SOA composite application into a composite SAR 
file. The outcome of this command is a SOA archive. Check the output of the 
command for the exact location of the resulting file.

Example 41–8 Packaging an Application

ant -f ant-sca-package.xml 
-DcompositeDir=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPr
ocessing 
-DcompositeName=POProcessing 
-Drevision=6-cmdline 
-Dsca.application.home=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProces
sing

Table 41–13 describes the syntax.

Table 41–12 ant Compiling Commands

Argument Definition

scac Possible inputs are as follows:

■ java.passed.home

The script picks this from the environment value of JAVA_HOME. 
Provide this input to override.

■ wl_home

This is the location of Oracle WebLogic Server home (defaults to 
Oracle_Home/.../wlserver_10.3).

■ scac.input

The composite.xml file to compile.

■ scac.output

The output file with scac results (defaults to temp_
dir/out.xml).

■ scac.error

The file with scac errors (defaults to temp_dir/out.err).

■ scac.application.home

The application home directory of the composite being compiled. 

■ scac.displayLevel

Controls the level of logs written to scac.output file. The value 
can be 1, 2, or 3 (this defaults to 1).

Table 41–13 ant Packaging Commands

Argument Definition

compositeDir Absolute path of a directory that contains composite artifacts.

compositeName Name of the composite.

revision Revision ID of the composite.

sca.application.ho
me

Optional. Absolute path of the application home directory. This 
property is required if you have shared data.

oracle.home Optional. The oracle.home property.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-45

41.7.5.2.4 Deploying a SOA Composite Application  Example 41–9 provides an example of 
deploying a SOA composite application.

Example 41–9 Deploying an Application

ant -f ant-sca-deploy.xml 
-DserverURL=http://localhost:8001 
-DsarLocation=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPro
cessing\deploy\sca_POProcessing_rev6-cmdline.jar 
-Doverwrite=true 
-Duser=weblogic 
-DforceDefault=true 
-Dconfigplan=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POProc
 essing\demed_cfgplan.xml
-Dpartition=partition.name

Table 41–14 describes the syntax.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–14 ant Deployment Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for 
example, http://myhost10:8001).

sarLocation Absolute path to one the following:

■ SAR file.

■ ZIP file that includes multiple SARs.

overwrite Optional. Indicates whether to overwrite an existing SOA composite 
application on the server.

■ false (default): Does not overwrite the file.

■ true: Overwrites the file.

user Optional. User name to access the composite deployer servlet when 
basic authentication is configured.

password Optional. Password to access the composite deployer servlet when 
basic authentication is configured.

If you enter the user name, you are prompted to enter the password if 
you do not provide it here.

forceDefault Optional. Indicates whether to set the version being deployed as the 
default version for that composite application.

■ true (default): Makes it the default composite.

■ false: Does not make it the default composite.

configplan Absolute path of a configuration plan to be applied to a specified SAR 
file or to all SAR files included in the ZIP file.

sysPropFile Passes in a system properties file that is useful for setting extra system 
properties, for debugging, for SSL configuration, and so on.

If you specify a file name (for example, tmp-sys.properties), you 
can define properties such as the following:

javax.net.debug=all 



Deploying SOA Composite Applications

41-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

41.7.5.2.5 Undeploying a SOA Composite Application  Example 41–10 provides an example 
of undeploying a SOA composite application.

Example 41–10 Undeploying a SOA Composite Application

ant -f ant-sca-deploy.xml undeploy 
-DserverURL=http://localhost:8001 
-DcompositeName=POProcessing 
-Drevision=rev6-cmdline
-Duser=weblogic 
-Dpartition=partition.name

Table 41–15 describes the syntax.

partition Optional. The name of the partition in which to deploy the SOA 
composite application. The default value is default. If you do not 
specify a partition, the composite is automatically deployed into the 
default partition.

Note: Human workflow artifacts such as task mapped attributes 
(previously known as flex field mappings) and rules (such as vacation 
rules) are defined based on the namespace of the task definition. 
Therefore, the following issues are true when the same SOA 
composite application with a human workflow task is deployed into 
multiple partitions:

■ For the same task definition type, mapped attributes defined in 
one partition are visible in another partition.

■ Rules defined on a task definition in one partition can apply to the 
same definition in another partition.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–15 ant Undeployment Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for 
example, http://myhost10:7001).

compositeName Name of the SOA composite application.

revision Revision ID of the SOA composite application.

user Optional. User name to access the composite deployer servlet when 
basic authentication is configured.

If you enter the user name, you are prompted to enter the 
corresponding password.

password Optional. Password to access the composite deployer servlet when 
basic authentication is configured.

Table 41–14 (Cont.) ant Deployment Commands

Argument Definition



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-47

41.7.5.2.6 Exporting a Composite into a SAR File  Example 41–11 provides an example of 
exporting a composite into a SAR file.

Example 41–11 Exporting a Composite into a SAR File

ant -f ant-sca-deploy.xml exportComposite -DserverURL=server.url
 -DupdateType=update.type -DsarFile=sar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Table 41–16 describes the syntax.

Example 41–12 shows how to export a composite without including any 
postdeployment changes.

Example 41–12 Exporting a Composite Without Including Any Postdeployment Changes

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://stabc:8001
 -DupdateType=none
 -DsarFile=/tmp/sca_HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

partition Optional. The name of the partition in which the SOA composite 
application is located. The default value is default. If you do not 
specify a partition, the default partition is searched for the SOA 
composite application. However, no other partitions are searched.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–16 ant Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for 
example, http://stabc:8001).

updateType The type of postdeployment changes to be included:

■ none: No postdeployment changes are included.

■ all: All postdeployment changes are included.

■ property: Property changes are included (binding component 
properties, composite properties such as audit level settings and 
payload validation status, and policy attachments).

■ runtime: Postdeployment runtime changes are included (rules 
dictionary and domain value maps (DVMs)).

sarFile The absolute path of the SAR file to be generated.

compositeName The name of the composite to be exported.

revision The revision of the composite to be exported.

user Optional. The user name for accessing the server when basic 
configuration is configured.

password Optional. The password for accessing the server when basic 
configuration is configured.

Table 41–15 (Cont.) ant Undeployment Commands

Argument Definition



Deploying SOA Composite Applications

41-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 41–13 shows how to export a composite with all postdeployment changes.

Example 41–13 Exporting a Composite With All Postdeployment Changes

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://stabc:8001
 -DupdateType=all
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-all.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Example 41–14 shows how to export a composite with property postdeployment 
updates.

Example 41–14 Exporting a Composite With Property Postdeployment Updates

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://stabc:8001
 -DupdateType=property
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-prop.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Example 41–15 shows how to export a composite with runtime/metadata 
postdeployment updates.

Example 41–15 Exporting a Composite With Runtime/Metadata Postdeployment Updates

ant -f ant-sca-deploy.xml exportComposite -DserverURL=http://stabc:8001
 -DupdateType=runtime
 -DsarFile=/tmp/sca_HelloWorld_rev1.0-runtime.jar
 -DcompositeName=HelloWorld -Drevision=1.0

41.7.5.2.7 Exporting Postdeployment Changes of a Composite into a JAR File  Example 41–16 
provides an example of exporting postdeployment changes of a composite into a JAR 
file.

Example 41–16 Exporting Postdeployment Changes of a Composite into a JAR File

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=server.url
 -DupdateType=update.type -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Table 41–17 describes the syntax.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–17 ant Postdeployment Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for 
example, http://stabc:8001).

updateType The type of postdeployment changes to be exported. 

■ all: Includes all postdeployment changes.

■ property: Includes only property postdeployment changes 
(binding component properties, composite properties such as audit 
level settings and payload validation status, and policy 
attachments).

■ runtime: Includes only runtime (rules dictionary and domain 
value maps (DVMs)).



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-49

Example 41–17 shows how to export all postdeployment updates.

Example 41–17 Exporting All Postdeployment Updates

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://stabc:8001
 -DupdateType=all
 -DjarFile=/tmp/all-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Example 41–18 shows how to export property postdeployment updates.

Example 41–18 Exporting Property Postdeployment Updates

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://stabc:8001
 -DupdateType=property
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

Example 41–19 shows how to export runtime/metadata postdeployment updates.

Example 41–19 Exporting Runtime/Metadata Postdeployment Updates

ant -f ant-sca-deploy.xml exportUpdates -DserverURL=http://stabc:8001
 -DupdateType=runtime
 -DjarFile=/tmp/runtime-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

41.7.5.2.8 Importing Postdeployment Changes of a Composite  Example 41–20 provides an 
example of importing postdeployment changes of a composite.

Example 41–20 Importing Postdeployment Changes of a Composite

ant -f ant-sca-deploy.xml importUpdates -DserverURL=server.url -DjarFile=jar.file
 -DcompositeName=composite.name -Drevision=revision -Duser=user

Table 41–18 describes the syntax.

jarFile The absolute path of the JAR file to be generated.

compositeName The name of the composite to be exported. 

revision The revision of the composite to be exported. 

user Optional. The user name for accessing the server when basic 
configuration is configured.

password Optional. The password for accessing the server when basic 
configuration is configured.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–17 (Cont.) ant Postdeployment Export Commands

Argument Definition



Deploying SOA Composite Applications

41-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 41–21 shows how to import postdeployment changes of a composite.

Example 41–21 Importing Postdeployment Changes of a Composite

ant -f ant-sca-deploy.xml importUpdates -DserverURL=http://stabc:8001
 -DjarFile=/tmp/prop-HelloWorld_rev1.0.jar -DcompositeName=HelloWorld
 -Drevision=1.0

41.7.5.2.9 Exporting Shared Data of a Given Pattern into a JAR File  Example 41–22 provides 
an example of exporting shared data of a given pattern into a JAR file.

Example 41–22 Exporting Shared Data of a Given Pattern into a JAR File

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=server.url
 -DjarFile=jar.file -Dpattern=pattern -Duser=user

Table 41–19 describes the syntax.

Table 41–18 ant Postdeployment Import Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for 
example, http://stabc:8001).

jarFile The absolute path of the JAR file that contains postdeployment 
changes.

compositeName The name of the composite into which the postdeployment changes are 
imported.

revision The revision of the composite to which the postdeployment changes are 
imported.

user Optional. The user name for accessing the server when basic 
configuration is configured.

password Optional. The password for accessing the server when basic 
configuration is configured.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–19 ant Shared Data Export Commands

Argument Definition

serverURL The URL of the server that hosts the SOA Infrastructure application (for 
example, http://stabc:8001).

jarFile The absolute path of the JAR file to be generated.

pattern The file pattern supported by MDS transfer APIs. Use the semicolon 
delimiter (;) if multiple patterns are specified. Exclude the shared data 
namespace /apps in the pattern. For example:

/Project1/**;/Project2/**

 This example exports all documents under /apps/Project1 and 
/apps/Project2.

user Optional. The user name for accessing the server when basic 
configuration is configured.

password The password for accessing the server when basic configuration is 
configured. This parameter is optional.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-51

Example 41–23 shows how to export shared data of a given pattern into a JAR file.

Example 41–23 Exporting Shared Data of a Given Pattern into a JAR File

ant -f ant-sca-deploy.xml exportSharedData -DserverURL=http://stabc:8001
 -DjarFile=/tmp/MySharedData.jar
 -Dpattern="/Project1/**"

41.7.5.2.10 Removing a Top-level Shared Data Folder  Example 41–24 provides an example 
of removing a top-level shared data folder, even if there are composites deployed in 
the service engine.

Example 41–24 Removing a Top-level Shared Data Folder

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=server.url
 -DfolderName=folder.name -Duser=user

Table 41–20 describes the syntax.

Example 41–25 shows how to remove a top-level shared data folder named 
Project1.

Example 41–25 Removing a Top-level Shared Data Folder

ant -f ant-sca-deploy.xml removeSharedData -DserverURL=http://stabc:8001
 -DfolderName=Project1

41.7.5.2.11 Starting a SOA Composite Application  Example 41–26 provides an example of 
starting a SOA composite application.

Example 41–26 Starting an Application

ant -f ant-sca-mgmt.xml startComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
  -DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Table 41–21 describes the syntax.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–20 ant Shared Data Folder Removal Commands

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for 
example, http://myhost10:8001).

foldername The name of the top-level shared data folder to remove.

user Optional. The user name for accessing the server when basic 
configuration is configured.

password Optional. The password for accessing the server when basic 
configuration is configured.

Note: After specifying the user name, enter the password when 
prompted.



Deploying SOA Composite Applications

41-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

41.7.5.2.12 Stopping a SOA Composite Application  Example 41–27 provides an example of 
stopping a SOA composite application.

Example 41–27 Stopping an Application

ant -f ant-sca-mgmt.xml stopComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Table 41–22 describes the syntax.

Table 41–21 ant SOA Composite Application Startup Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies 
the MDS artifacts associated with the application. If the label is not 
specified, the system finds the latest one.

partition Optional. The name of the partition in which the SOA composite 
application is located. The default value is default. If you do not 
specify a partition, the default partition is searched for the SOA 
composite application. However, no other partitions are searched.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–22 ant SOA Composite Application Stop Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies 
the MDS artifacts associated with the application. If the label is not 
specified, the system finds the latest one.

partition Optional. The name of the partition in which the SOA composite 
application is located. The default value is default. If you do not 
specify a partition, the default partition is searched for the SOA 
composite application. However, no other partitions are searched.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-53

41.7.5.2.13 Activating a SOA Composite Application  Example 41–28 provides an example 
of activating a SOA composite application.

Example 41–28 Activating an Application

ant -f ant-sca-mgmt.xml activateComposite -Dhost=myhost -Dport=8001
-Duser=weblogic-DcompositeName=HelloWorld -Drevision=1.0 
-Dpartition=partition.name

Table 41–23 describes the syntax.

41.7.5.2.14 Retiring a SOA Composite Application  Example 41–29 provides an example of 
retiring a SOA composite application.

Example 41–29 Retiring an Application

ant -f ant-sca-mgmt.xml retireComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0 -Dpartition=partition.name

Table 41–24 describes the syntax.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–23 ant SOA Composite Application Activation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies 
the MDS artifacts associated with the application. If the label is not 
specified, the system finds the latest one.

partition Optional. The name of the partition in which the SOA composite 
application is located. The default value is default. If you do not 
specify a partition, the default partition is searched for the SOA 
composite application. However, no other partitions are searched.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–24 ant SOA Composite Application Retirement Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).



Deploying SOA Composite Applications

41-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

41.7.5.2.15 Assigning the Default Version to a SOA Composite Application  Example 41–30 
provides an example of assigning the default version to a SOA composite application.

Example 41–30 Assigning the Default Version to a SOA Composite Application

ant -f ant-sca-mgmt.xml assignDefaultComposite -Dhost=myhost -Dport=8001
-Duser=weblogic -DcompositeName=HelloWorld -Drevision=1.0 
-Dpartition=partition.name

Table 41–25 describes the syntax.

41.7.5.2.16 Listing the Deployed SOA Composite Applications  Example 41–31 provides an 
example of listing the deployed SOA composite applications.

Example 41–31 Listing the Deployed SOA Composite Applications

ant -f ant-sca-mgmt.xml listDeployedComposites -Dhost=myhost -Dport=8001
-Duser=weblogic

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label identifies 
the MDS artifacts associated with the application. If the label is not 
specified, the system finds the latest one.

partition Optional. The name of the partition in which the SOA composite 
application is located. The default value is default. If you do not 
specify a partition, the default partition is searched for the SOA 
composite application. However, no other partitions are searched.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–25 ant SOA Composite Application Default Version Assignment Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

partition Optional. The name of the partition in which the SOA composite 
application is located. The default value is default. If you do not 
specify a partition, the default partition is searched for the SOA 
composite application. However, no other partitions are searched.

Table 41–24 (Cont.) ant SOA Composite Application Retirement Commands

Argument Definition



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-55

Table 41–26 describes the syntax.

41.7.5.2.17 Listing All Available Partitions in the SOA Infrastructure  Example 41–32 provides 
the syntax for listing all available partitions in the SOA Infrastructure.

Example 41–32 Listing All Available Partitions in the SOA Infrastructure

ant -f ant-sca-mgmt.xml listPartitions -Dhost=host -Dport=port -Duser=user

Table 41–27 describes the syntax.

Example 41–33 provides an example of listing all available partitions in the SOA 
Infrastructure.

Example 41–33 Listing All Available Partitions in the SOA Infrastructure

ant -f ant-sca-mgmt.xml listPartitions -Dhost=stabc10 -Dport=8001

41.7.5.2.18 Listing All Composites in a Partition  Example 41–34 provides the syntax for 
listing all composites in a partition.

Example 41–34 Listing All Composites in a Partition

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=host -Dport=port 
-Duser=user -Dpartition=partition.name

Note: After specifying the user name, enter the password when 
prompted.

Table 41–26 ant SOA Composite Application Deployment List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–27 ant SOA Infrastructure Partitioning List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.



Deploying SOA Composite Applications

41-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 41–28 describes the syntax.

Example 41–35 provides an example of listing all composites in a partition named 
myPartition.

Example 41–35 Listing All Composites in a Partition

ant -f ant-sca-mgmt.xml listCompositesInPartition -Dhost=stabc10 -Dport=8001 
-Dpartition=myPartition

41.7.5.2.19 Creating a Partition in the SOA Infrastructure  Example 41–36 provides the 
syntax for creating a partition in the SOA Infrastructure.

Example 41–36 Creating a Partition in the SOA Infrastructure

ant -f ant-sca-mgmt.xml createPartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

Table 41–29 describes the syntax.

Example 41–37 provides an example of creating a partition in the SOA Infrastructure 
named myPartition.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–28 ant Composite Partitioning List Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–29 ant Partition Creation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

partition The name of the partition to create.



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-57

Example 41–37 Creating a Partition in the SOA Infrastructure

ant -f ant-sca-mgmt.xml createPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.20 Deleting a Partition in the SOA Infrastructure  Example 41–38 provides the 
syntax for deleting a partition in the SOA Infrastructure. This command undeploys all 
composites in the partition before deleting the partition.

Example 41–38 Deleting a Partition in the SOA Infrastructure 

ant -f ant-sca-mgmt.xml deletePartition -Dhost=host -Dport=port -Duser=user
-Dpartition=partition.name

Table 41–30 describes the syntax.

Example 41–39 provides an example of deleting a partition in the SOA Infrastructure 
named myPartition.

Example 41–39 Deleting a Partition in the SOA Infrastructure

ant -f ant-sca-mgmt.xml deletePartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.21 Starting All Composites in the Partition  Example 41–40 provides the syntax for 
starting all composites in the partition.

Example 41–40 Starting All Composites in the Partition

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Table 41–31 describes the syntax.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–30 ant Partition Deletion Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

partition The name of the partition to delete.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–31 ant Partition Startup Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).



Deploying SOA Composite Applications

41-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 41–41 provides an example of starting all composites in the partition named 
myPartition.

Example 41–41 Starting All Composites in the Partition

ant -f ant-sca-mgmt.xml startCompositesInPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.22 Stopping All Composites in the Partition  Example 41–42 provides the syntax for 
stopping all composites in the partition.

Example 41–42 Stopping All Composites in the Partition

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Table 41–32 describes the syntax.

Example 41–43 provides an example of stopping all composites in the partition named 
myPartition.

Example 41–43 Stopping All Composites in the Partition

ant -f ant-sca-mgmt.xml stopCompositesInPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.23 Activating All Composites in the Partition  Example 41–44 provides the syntax 
for activating all composites in the partition.

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–32 ant Partition Composite Stop Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

Table 41–31 (Cont.) ant Partition Startup Commands

Argument Definition



Deploying SOA Composite Applications

Deploying SOA Composite Applications 41-59

Example 41–44 Activating All Composites in the Partition

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=host -Dport=port
-Duser=user -Dpartition=partition.name

Table 41–33 describes the syntax.

Example 41–45 provides an example of activating all composites in the partition 
named myPartition.

Example 41–45 Activating All Composites in the Partition

ant -f ant-sca-mgmt.xml activateCompositesInPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.24 Retiring All Composites in the Partition  Example 41–46 provides the syntax for 
retiring all composites in the partition.

Example 41–46 Retiring All Composites in the Partition

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=host -Dport=port
 -Duser=user -Dpartition=partition.name

Table 41–34 describes the syntax.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–33 ant Partition Composite Activation Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.

Note: After specifying the user name, enter the password when 
prompted.

Table 41–34 ant Partition Composite Retirement Commands

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean 
information (for example, weblogic).

password Password for the user name.

partition The name of the partition.



Deploying SOA Composite Applications

41-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 41–47 provides an example of retiring all composites in the partition named 
myPartition.

Example 41–47 Retiring All Composites in the Partition

ant -f ant-sca-mgmt.xml retireCompositesInPartition -Dhost=stabc10 -Dport=8001
-Dpartition=myPartition

41.7.5.2.25 Upgrading a SOA Composite Application  You can use ant to upgrade a SOA 
composite application from 10.1.3 to 11g. For information, see Oracle Fusion Middleware 
Upgrade Guide for Oracle SOA Suite, WebCenter, and ADF.

41.7.5.2.26 How to Manage SOA Composite Applications with ant Scripts  The WebLogic 
Fusion Order Demo application provides an example of using ant scripts to compile, 
package, and deploy the application. You can create the initial ant build files by 
selecting New > Ant > Buildfile from Project from the File main menu.

Figure 41–26 shows the build.properties and build.xml files that display in the 
Application Navigator after creation.

Figure 41–26 ant Build Files

■ build.properties

A file that you edit to reflect your environment (for example, specifying Oracle 
home and Java home directories, setting server properties such as hostname and 
port number to use for deployment, specifying the application to deploy, and so 
on).

■ build.xml

Used by ant to compile, build, and deploy composite applications to the server 
specified in the build.properties file.

1. Modify the build.properties file to reflect your environment.

2. From the Build menu, select Run Ant on project_name.

This builds targets defined in the current project’s build file. 

41.7.6 Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion 
Middleware Control Console

You can deploy SOA composite applications from Oracle Enterprise Manager Fusion 
Middleware Control Console. You must first create a deployable archive in Oracle 
JDeveloper or through the ant or WLST command line tools. The archive can consist 
of a single SOA composite application revision in a JAR file or multiple composite 
application revisions (known as a SOA bundle) in a ZIP file. For more information, see 



Testing and Troubleshooting

Deploying SOA Composite Applications 41-61

Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite.

41.7.7 Deploying SOA Composite Applications to a Cluster
You can deploy a SOA composite application into a clustered environment. For more 
information, see chapter "Configuring High Availability for Oracle Fusion Middleware 
SOA Suite" of the Oracle Fusion Middleware High Availability Guide.

41.8 Postdeployment Configuration
This section describes postdeployment configuration tasks.

41.8.1 Security
For information about securing SOA composite applications, see Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.8.2 Updating Connections
Ensure that any connections that you created to the application server or MDS 
repository are re-created to point to servers applicable to the next target environment. 
For more information, see Section 41.7.1.1.1, "Creating an Application Server 
Connection" and Section 41.7.3.2.1, "Creating a SOA-MDS Connection."

41.8.3 Updating Data Sources and Queues
Ensure that all JDBC data source, queue, and connection factory locations that you 
previously configured are applicable to the next target environment. For more 
information, see Section 41.5.1, "Creating Data Sources and Queues" and Section 41.5.2, 
"Creating Connection Factories and Connection Pooling."

41.8.4 Attaching Policies
You can attach policies to a deployed SOA composite application during runtime in 
Oracle Enterprise Manager Fusion Middleware Control Console. For more 
information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and 
Oracle BPM Suite.

41.9 Testing and Troubleshooting
This section describes how to test and troubleshoot your SOA composite application.

41.9.1 Verifying Deployment
You can verify that you have successfully deployed your SOA composite application 
to the SOA Infrastructure. If successful, the deployed composite displays in the 
Deployed Composites tab of the SOA Infrastructure page of Oracle Enterprise 
Manager Fusion Middleware Control Console. For more information, see Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.9.2 Initiating an Instance of a Deployed Composite
You can initiate an instance of a deployed SOA composite application from the Test 
Instance page in Oracle Enterprise Manager Fusion Middleware Control Console. For 



Testing and Troubleshooting

41-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA 
Suite and Oracle BPM Suite.

41.9.3 Automating the Testing of Deployed Composites
You can create, deploy, and run test cases that automate the testing of SOA composite 
applications. Test cases enable you to simulate the interaction between a SOA 
composite application and its web service partners before deployment in a production 
environment. You create test cases in Oracle JDeveloper and include them in a SOA 
composite application that is then deployed and administered from Oracle Enterprise 
Manager Fusion Middleware Control Console. You then run the test cases from Oracle 
Enterprise Manager Fusion Middleware Control Console.

For information about creating test cases, see Chapter 42, "Automating Testing of SOA 
Composite Applications."

For information about running test cases, see Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite.

41.9.4 Recompiling a Project After Receiving a Deployment Error
If you receive the error shown in Example 41–48 when deploying a SOA composite 
application from Oracle JDeveloper, recompile the project and redeploy the composite. 
This error is intermittent and should not occur again.

Example 41–48 Intermittent Deployment Error Message

Error deploying BPEL suitcase.
error while attempting to deploy the BPEL component file
"/scratch/aime1/work/mw9507/user_projects/domains/WLS_SOAWC/deployed-composites
/ManagementChainParticipantRuleComposite_rev1.0/sca_ManagementChainParticipantR
uleComposite_rev1.0/soa_59d10d76-08a5-41f0-ba89-32dcc2250002";
the exception reported is: java.lang.Exception: BPEL 1.1 compilation failed
 
This error contained an exception thrown by the underlying deployment module.
Verify the exception trace in the log (with logging level set to debug mode).
 
at
com.collaxa.cube.engine.deployment.DeploymentManager.deployComponent(Deployment
Manager.java:197)
at
com.collaxa.cube.ejb.impl.CubeServerManagerBean._deployOrLoadComponent(CubeServ
erManagerBean.java:820)
at
com.collaxa.cube.ejb.impl.CubeServerManagerBean.deployComponent(CubeServerManag
erBean.java:119)

41.9.5 Troubleshooting Common Deployment Errors
This section describes how to troubleshoot common deployment errors.

For information about general composite application troubleshooting issues, see Oracle 
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

41.9.5.1 Common Oracle JDeveloper Deployment Issues
This section provides a list of common deployment issues to check.



Testing and Troubleshooting

Deploying SOA Composite Applications 41-63

■ If you are deploying a single composite application, ensure that you are deploying 
from the Project menu. Right-click the project name in the Application Navigator, 
and select Deploy > SOA_profile_name.

■ If you are deploying multiple composite applications, ensure that you are 
deploying from the Application menu. (Right-click the application name in the 
Application Navigator, and select Deploy > SOA_bundle_profile_name).

■ Once you click Deploy and select the profile name, ensure that the Deployment 
Action page of the deployment wizard is displayed.

■ Optionally enter a new revision ID (optional) and select the configuration plan (if 
any).

■ If the composite application you are deploying is already located on the server 
with the same revision ID, then check the Overwrite any existing composites 
with the same revision ID checkbox in the Deploy Configuration page of the 
deployment wizard. Without selecting this option, deployment fails.

■ If compilation fails, a compiler error occurred, and not a deployment error. You 
only see this error when you compile your project.

■ If compiler messages are not obvious, check the compiler log. A link to this log file 
(scac.log) is displayed in the Messages tab. The message looks similar to that 
shown in Example 41–49.

Example 41–49 Compilation Log Message

Compilation of project 'FirstComposite.jpr' finished. Check '/scratch/myhome/
jdevWorkarea/mywork/Application11/FirstComposite/SCA-INF/classes/scac.log' for
details.

■ After compilation is successful, an SAR/SOA bundle archive is built for the 
composite. For a SAR archive, the message shown in Example 41–50 is displayed 
in the Deployment tab.

Example 41–50 Archive Message

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

For a SOA bundle archive, the message shown in Example 41–51 is displayed in 
the Deployment tab.

Example 41–51 Archive Message

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/SecondComposite/deploy/sca_
SecondComposite_rev1.0.jar
Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar
Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/deploy/soabundle1.zip

■ Ensure that all SAR file URLs look as follows

sca_CompositeName_revRevisionID.jar

For example, sca_FirstComposite_rev1.0.jar.



Testing and Troubleshooting

41-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ After this occurs, Oracle JDeveloper sends the archive binaries to the server. The 
following message is displayed in the Deployment tab. At this point, Oracle 
JDeveloper’s deployment role ends and the server (SOA Infrastructure) takes 
control of deployment.

Deploying sca_FirstComposite_rev1.0.jar to myhost19:7001

■ Upon successful deployment, you see the message shown in Example 41–52 in the 
Deployment tab.

Example 41–52 Successful Deployment Message

Received HTTP response from the server, response code=200 Successfully deployed
archive soa_bundle_name.zip to soa_server_name

■ If deployment fails, the message shown in Example 41–53 is displayed in the 
Deployment tab with an error message (if any) from the server.

Example 41–53 Deployment Error Message

Error deploying the archive. Check server log for more details.
Connection refused.
Elapsed time for deployment: 8 seconds

■ In most cases, the server provides some information about the error that occurred 
on the server. If you do not receive any error message from the server, then check 
soa_server1-diagnostic.log on the server to find additional information 
(where soa_server1 is the name of the managed server). This file is located on 
the server in domain_home/servers/soa_server1/logs. 

41.9.5.2 ant Command Issues
If you execute an ant command such as that shown in Example 41–54 and receive an 
error similar to that shown in Example 41–55, ensure that you set the ANT_HOME 
environment variable to point to the correct ant implementation included with Oracle 
WebLogic Server.

Example 41–54 ant Command Execution

ant -f ant-sca-mgmt.xml getDefaultCompositeRevision
-Dhost=stbcv18.us.oracle.com -Dport=9024 -Duser=FUSION_APPS_PROV_PATCH_APPID
-DcompositeName=AppCmmnCompActivitiesTaskTCAComposite

Example 41–55 ant Command Execution Error

Buildfile: ant-sca-mgmt.xml
     [echo] oracle.home =
/net/myhost.us.oracle.com/scratch/aime1/APPLTOP/PVCRM/fusionapps/soa/bin/.
getDefaultCompositeRevision:
    [input] skipping input as property host has already been set.
    [input] skipping input as property port has already been set.
    [input] skipping input as property user has already been set. 

BUILD FAILED
/net/myhost.us.oracle.com/scratch/aime1/APPLTOP/PVCRM/fusionapps/soa/bin/a
nt-sca-mgmt.xml:153: java.lang.NullPointerException 

For example, set ANT_HOME as shown in Example 41–56.



Testing and Troubleshooting

Deploying SOA Composite Applications 41-65

Example 41–56  ANT_HOME Environment Variable

ANT_HOME=/net/myhost.us.oracle.com/scratch/aime1/APPLTOP/PVCRM/fusionapps/
modules/org.apache.ant_1.7.1

export ANT_HOME

41.9.5.3 Common Configuration Plan Issues
This section provides a list of common configuration plan issues to check.

■ If you selected a configuration plan to deploy, and it is not taking effect on the 
server, open the SAR file containing the configuration plan. You can find the file 
location from the Deployment tab in Oracle JDeveloper. Example 41–57 provides 
details.

Example 41–57 Archive Message

Wrote Archive Module to
/scratch/myhome/jdevWorkarea/mywork/Application11/FirstComposite/deploy/sca_
FirstComposite_rev1.0.jar

■ Open the JAR file and ensure that it contains the soaconfigplan.xml file. This 
file is generated during deployment based on the configuration plan you selected.

■ If this file is not present, try deploying the composite application again to ensure 
that you have correctly selected the configuration plan in the Deploy 
Configuration page of the deployment wizard.

41.9.5.4 Deploying to a Managed Oracle WebLogic Server
If you start a managed Oracle WebLogic Server without starting an Oracle WebLogic 
Administration Server (known as running in independence mode) and attempt to 
deploy a SOA composite application from Oracle JDeveloper, you receive the 
following error:

Deployment cannot continue! No SOA Configured target servers found

The Oracle WebLogic Administration Server must be running. Deployment uses the 
Oracle WebLogic Administration Server connection to identify the servers running 
Oracle SOA Suite. In addition, do not create an application server connection to a 
managed Oracle WebLogic Server; only create connections to an Oracle WebLogic 
Administration Server.

You can also receive a similar error if the condition of the SOA-configured Oracle 
WebLogic Server is not healthy. This condition displays in the Health column of the 
Servers page of Oracle WebLogic Server Administration Console.

Note that you can use WLST to deploy SOA composite applications to a managed 
Oracle WebLogic Server without starting an Oracle WebLogic Administration Server. 
See Section 41.7.5.1, "How to Manage SOA Composite Applications with the WLST 
Utility" for details.

41.9.5.5 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
Deployment from Oracle JDeveloper to a two-way, SSL-enabled Oracle WebLogic 
Server is not supported.



Testing and Troubleshooting

41-66 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

41.9.5.6 Deploying with an Unreachable Proxy Server
You can receive an error similar to that shown in Figure 41–27 during SOA composite 
application deployment if you have a proxy server set in Oracle JDeveloper that is not 
reachable from your host.

Figure 41–27 Deployment Error Message

A valid proxy setting is necessary for accessing a SOA Infrastructure (for example, 
soa_server1) outside the network. If the SOA Infrastructure is within the network, 
perform one of the following actions:

To change the proxy setting:
1. From the Tools menu, select Preferences > Web Browser and Proxy.

2. Perform one of the following tasks if the SOA server is within the network:

a. Deselect Use HTTP Proxy Server if you can directly access the SOA 
Infrastructure without any proxy.

b. In the Exceptions field, enter the hostname of the unreachable SOA server.

41.9.5.7 Increasing Memory to Recover from Compilation Errors
If you receive out-of-memory errors during compilation of a SOA composite 
application, perform the following step to increase memory.

1. Under the scac element, increase the memory setting. For example:

<jvmarg value="-Xmx512M"/>



42

Automating Testing of SOA Composite Applications 42-1

42 Automating Testing of SOA Composite
Applications

This chapter describes how to create, deploy, and run test cases that automate the 
testing of SOA composite applications. Test cases enable you to simulate the 
interaction between a SOA composite application and its web service partners before 
deployment in a production environment. This helps to ensure that a process interacts 
with web service partners as expected by the time it is ready for deployment to a 
production environment.

This chapter includes the following sections:

■ Section 42.1, "Introduction to the Composite Test Framework"

■ Section 42.2, "Introduction to the Components of a Test Suite"

■ Section 42.3, "Creating Test Suites and Test Cases"

■ Section 42.4, "Creating the Contents of Test Cases"

■ Section 42.5, "Deploying and Running a Test Suite"

42.1 Introduction to the Composite Test Framework
Oracle SOA Suite provides an automated test suite framework for creating and 
running repeatable tests on a SOA composite application. 

The test suite framework provides the following features:

■ Simulates web service partner interactions

■ Validates process actions with test data

■ Creates reports of test results

42.1.1 Test Cases Overview
The test framework supports testing at the SOA composite application level. In this 
type of testing, wires, service binding components, service components (such as BPEL 
processes and Oracle Mediator service components), and reference binding 
components are tested.

For more information, see Section 42.3, "Creating Test Suites and Test Cases."

42.1.2 Test Suites Overview
Test suites consist of a logical collection of one or more test cases. Each test case 
contains a set of commands to perform as the test instance is executed. The execution 



Introduction to the Composite Test Framework

42-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

of a test suite is known as a test run. Each test corresponds to a single SOA composite 
application instance.

For more information, see the following:

■ Section 42.3, "Creating Test Suites and Test Cases"

■ Section 42.4, "Creating the Contents of Test Cases"

42.1.3 Emulations Overview
Emulations enable you to simulate the behavior of the following components with 
which your SOA composite application interacts during execution:

■ Internal service components inside the composite

■ Binding components outside the composite

Instead of invoking another service component or binding component, you can specify 
a response from the component or reference.

For more information, see the following:

■ Section 42.2.2, "Emulations"

■ Section 42.4, "Creating the Contents of Test Cases"

42.1.4 Assertions Overview
Assertions enable you to verify variable data or process flow. You can perform the 
following types of assertions:

■ Entire XML document assertions:

Compare the element values of an entire XML document to the expected element 
values. For example, compare the exact contents of an entire loan request XML 
document to another document. The XMLTestCase class in the XMLUnit package 
includes a collection of methods for performing assertions between XML files. For 
more information about these methods, visit the following URL:

http://xmlunit.sourceforge.net

■ Part section of message assertions:

Compare the values of a part section of a message to the expected values. An 
example is a payload part of an entire XML document message. 

■ Nonleaf element assertions:

Compare the values of an XML fragment to the expected values. An example is a 
loan application, which includes leaf elements SSN, email, customerName, and 
loanAmount.

■ Leaf element assertions: 

Compare the value of a selected string or number element or a regular expression 
pattern to an expected value. An example is the SSN of a loan application.

For more information about asserts, see Section 42.2.3, "Assertions."



Introduction to the Components of a Test Suite

Automating Testing of SOA Composite Applications 42-3

42.2 Introduction to the Components of a Test Suite
This section describes and provides examples of the test components that comprise a 
test case. Methods for creating and importing these tests into your process are 
described in subsequent sections of this chapter.

42.2.1 Process Initiation
You first define the operation of your process in a binding component service such as a 
SOAP web service. Example 42–1 defines the operation of initiate to initiate the 
TestFwk SOA composite application. The initiation payload is also defined in this 
section:

Example 42–1 Process Initiation

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:50 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
  <about></about>
  <initiate serviceName="client" operation="initiate" isAsync="true">
    <message>
      <part partName="payload">
        <content>
          <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
            <SSN>111222333</SSN>
            <email>joe.smith@oracle.com</email>
            <customerName>Joe Smith</customerName>
            <loanAmount>20000</loanAmount>
            <carModel>Camry</carModel>
            <carYear>2007</carYear>
            <creditRating>800</creditRating>
          </loanApplication>
        </content>
      </part>
    </message>
  </initiate>
</compositeTest>

42.2.2 Emulations
You create emulations to simulate the message data that your SOA composite 
application receives from web service partners. 

In the test code in Example 42–2, the loan request is initiated with an error. A fault 
message is received in return from a web service partner:

Example 42–2 Emulations

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:29 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
  <about></about>
  <initiate serviceName="client" operation="initiate" isAsync="true">
    <message>
      <part partName="payload">
        <filePath>loanApplication.xml</filePath>
      </part>
    </message>



Introduction to the Components of a Test Suite

42-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  </initiate>
  <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
    <emulate duration="PT0S">
      <fault faultName="ser:NegativeCredit" xmlns:ser="http://services.otn.com">
        <message>
          <part partName="payload">
            <filePath>creditRatingFault.xml</filePath>
          </part>
        </message>
      </fault>
    </emulate>
  </wireActions>
</compositeTest>

Two message files, loanApplication.xml and creditRatingFault.xml, are 
invoked in this emulation. If the loan application request in loanApplication.xml 
contains a social security number beginning with 0, the creditRatingFault.xml 
file returns the fault message shown in Example 42–3:

Example 42–3 Fault Message

<error xmlns="http://services.otn.com">
  Invalid SSN, SSN cannot start with digit '0'.
</error>

For more information, see Section 42.4, "Creating the Contents of Test Cases."

42.2.3 Assertions
You create assertions to validate an entire XML document, a part section of a message, 
a nonleaf element, or a leaf element at a point during SOA composite application 
execution. Example 42–4 instructs Oracle SOA Suite to ensure that the content of the 
customername variable matches the content specified.

Example 42–4 Assertions

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:51 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
  <about></about>
  <initiate serviceName="client" operation="initiate" isAsync="true">
    <message>
      <part partName="payload">
        <content>
          <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
            <SSN>111222333</SSN>
            <email>joe.smith@oracle.com</email>
            <customerName>Joe Smith</customerName>
            <loanAmount>20000</loanAmount>
            <carModel>Camry</carModel>
            <carYear>2007</carYear>
            <creditRating>800</creditRating>
          </loanApplication>
        </content>
      </part>
    </message>
  </initiate>
  <wireActions wireSource="client" operation="initiate">
    <assert comparisonMethod="string">



Creating Test Suites and Test Cases

Automating Testing of SOA Composite Applications 42-5

      <expected>
        <location key="input" partName="payload"
 xpath="/s1:loanApplication/s1:customerName"
 xmlns:s1="http://www.autoloan.com/ns/autoloan"/>
        <simple>Joe Smith</simple>
      </expected>
    </assert>
  </wireActions>
</compositeTest>

For more information, see Section 42.4, "Creating the Contents of Test Cases."

42.2.4 Message Files
Message instance files provide a method for simulating the message data received 
back from web service partners. You can manually enter the received message data 
into this XML file or load a file through the test mode of the SOA Composite Editor. 
For example, the following message file simulates a credit rating result of 900 
returned from a partner:

<rating xmlns="http://services.otn.com">900</rating>

For more information about loading message files into test mode, see Section 42.4, 
"Creating the Contents of Test Cases."

42.3 Creating Test Suites and Test Cases
This section describes how to create test suites and their test cases for a SOA composite 
application. The test cases consist of sets of commands to perform as the test instance 
is executed.

42.3.1 How to Create Test Suites and Test Cases

To create test suites and test cases:
1. Open the SOA Composite Editor.

2. Open the SOA composite application in which to create a test suite.

3. Go to the Application Navigator or Structure window. If the Structure window 
shown in Figure 42–1 does not appear, select Structure from the View main menu.

Note: Do not enter a multibyte character string as a test suite name 
or test case name. Doing so causes an error to occur when the test is 
executed from Oracle Enterprise Manager Fusion Middleware Control 
Console.



Creating Test Suites and Test Cases

42-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 42–1 Structure Window

4. Create a test suite in either of two ways:

a. In the Application Navigator, right-click testsuites and select Create Test 
Suite. Figure 42–2 provides details.

Figure 42–2 Create Test Suite Selection

b. In the Structure window, right-click Test Suites and select Create Test Suite. 
Figure 42–3 provides details.

Figure 42–3 Create Test Suite Selection

5. Enter a test suite name (for example, OrderBookingMainTestsuite of the 
Fusion Order Demo).

6. Click OK.

 The Create Composite Test dialog appears.

7. Enter a test name (for this example, NoErrorSanityTest of the Fusion Order 
Demo is entered) and an optional description. This description displays in the 
Description column of the Test Cases page of the Unit Tests tab in Oracle 
Enterprise Manager Fusion Middleware Control Console.

8. Click OK.



Creating Test Suites and Test Cases

Automating Testing of SOA Composite Applications 42-7

This action creates a test named NoErrorSanityTest.xml in the Application 
Navigator, along with the following subfolders:

■ componenttests

This folder is not used in 11g Release 1.

■ includes

This folder is not used in 11g Release 1.

■ messages

Contains message test files that you load into this directory through the test 
mode user interface.

■ tests

Contains NoErrorSanityTest.xml.

A NoErrorSanityTest.xml folder also displays in the Structure window. 
Figure 42–4 provides details. This indicates that you are in the test mode of the 
SOA Composite Editor. You can create test initiations, assertions, and emulations 
in test mode. No other modifications, such as editing the property dialogs of 
service components or dropping service components into the editor, can be 
performed in test mode.

Figure 42–4 NoErrorSanityTest.xml Folder

The following operating system test suite directory is also created:

C:\JDeveloper\mywork\application_name\project_
name\testsuites\OrderBookingMainTestsuite

The following subdirectories for adding test files are created beneath 
OrderBookingMainTestsuite: componenttests, includes, messages, 
and tests. 



Creating the Contents of Test Cases

42-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9. If you want to exit test mode and return to design mode in the SOA Composite 
Editor, click the last icon below NoErrorSanityTest.xml above the designer. 
Figure 42–5 provides details.

Figure 42–5 Test Mode Exit

10. Save your changes when prompted.

11. Under the testsuites folder in the Application Navigator, double-click 
NoErrorSanityTest.xml to return to test mode. Figure 42–6 provides details.

Figure 42–6 Test Mode Access

The Fusion Order Demo provides examples of using test suites. For more 
information about the Fusion Order Demo, see Chapter 3, "Introduction to the 
SOA Sample Application."

42.4 Creating the Contents of Test Cases
Test cases consist of process initiations, emulations, and assertions. You add these 
actions to test cases in the test mode of the SOA Composite Editor. You create process 
initiations to initiate client inbound messages into your SOA composite application. 
You create emulations to simulate input or output message data, fault data, callback 
data, or all of these types that your SOA composite application receives from web 
service partners. You create assertions to validate entire XML documents, part sections 
of messages, nonleaf elements, and leaf elements as a process is executed.

Notes:

■ Do not edit the filelist.xml files that display under the subfolders 
of the testsuites folder. These files are automatically created 
during design time, and are used during runtime to calculate the 
number of test cases.

■ You cannot create test suites within other test suites. However, 
you can organize a test suite into subdirectories.



Creating the Contents of Test Cases

Automating Testing of SOA Composite Applications 42-9

42.4.1 How to Initiate Inbound Messages

To initiate inbound messages:
You must first initiate the sending of inbound client messages to the SOA composite 
application.

1. Go to the SOA Composite application in test mode. 

2. Double-click the service binding component shown in Figure 42–7 (for this 
example, named initiate).

Figure 42–7 Binding Component Service Access

The Edit Initiate dialog appears.

3. Enter the details shown in Table 42–1:

Figure 42–8 shows this dialog:

Table 42–1 Edit Initiate Dialog Fields and Values

Field Value

Service Displays the name of the binding component service (client).

Operation Displays the operation type of the service binding component 
(initiate).

Part Select the type of inbound message to send (for example, 
payload).

Value Create a simulated message to send from a client:

■ Enter Manually Click to manually enter message data in the Enter Value field. A 
Generate Sample button enables you to automatically generate 
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file 
is added to the messages folder in the Application Navigator.



Creating the Contents of Test Cases

42-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 42–8 Edit Initiate Dialog

Example 42–5 shows an inbound process initiation message from a client:

Example 42–5 Inbound Process Initiation Message

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/12/07 8:36 AM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
  <about/>
  <initiate serviceName="client" operation="initiate" isAsync="true">
    <message>
      <part partName="payload">
        <filePath>loanApplication.xml</filePath>
      </part>
    </message>
  </initiate>
. . .
. . .

The loanApplication.xml referenced in the process initiation file contains a 
loan application payload. Example 42–6 provides details.

Example 42–6 Loan Application Payload

<loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
  <SSN>111222333</SSN>
  <email>joe.smith@oracle.com</email>
  <customerName>Joe Smith</customerName>
  <loanAmount>20000</loanAmount>
  <carModel>Camry</carModel>
  <carYear>2007</carYear>
  <creditRating>800</creditRating>
</loanApplication>

4. Click OK.



Creating the Contents of Test Cases

Automating Testing of SOA Composite Applications 42-11

42.4.2 How to Emulate Outbound Messages

To emulate outbound messages:

You can simulate a message returned from a synchronous web service partner. 

1. Go to the SOA composite application in test mode.

2. Beneath the testsuites folder in the Application Navigator, double-click a test case. 
Figure 42–9 provides details.

Figure 42–9 Test Case Access

The SOA composite application in the SOA Composite Editor is refreshed to 
display in test mode. This mode enables you to define test information. 

3. Double-click the wire of the SOA composite application area to test. For the 
example shown in Figure 42–10, the wire between the LoanBroker process and the 
synchronous CreditRating web service is selected.

Figure 42–10 Wire Access

This displays the Wire Actions dialog shown in Figure 42–11, from which you can 
design emulations and assertions for the selected part of the SOA composite 
application.

Note: The creation of multiple emulations in an instance in a test 
case is supported only if one emulation is for an output message and 
the other is for a callback message.



Creating the Contents of Test Cases

42-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 42–11 Wire Actions Dialog

4. Click the Emulates tab.

5. Click the Add icon.

6. Click Emulate Output.

7. Enter the details described in Table 42–2:

Figure 42–12 shows this dialog:

Table 42–2 Emulate Output Message Dialog Fields and Values

Field Value

Part Select the message part containing the output (for example, 
payload).

Value Create a simulated output message to return from a web service 
partner:

■ Enter Manually Click to manually enter message data in the Enter Value field. A 
Generate Sample button enables you to automatically generate 
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file 
is added to the messages folder in the Application Navigator.

Duration Enter the maximum amount of time to wait for the message to 
be delivered from the web service partner. 



Creating the Contents of Test Cases

Automating Testing of SOA Composite Applications 42-13

Figure 42–12 Emulate Dialog with Emulate Output Selected

Example 42–7 shows a simulated output message from a synchronous web service 
partner that you enter manually or load from a file:

Example 42–7 Simulated Output Message Example

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:26 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
  <about></about>
  <initiate serviceName="client" operation="initiate" isAsync="true">
    <message>
      <part partName="payload">
        <filePath>loanApplication.xml</filePath>
      </part>
    </message>
  </initiate>
  <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
    <emulate duration="PT0S">
      <message>
        <part partName="payload">
          <filePath>creditRatingResult.xml</filePath>
        </part>
      </message>
    </emulate>
  </wireActions>
</compositeTest>

The creditRatingResult.xml message file referenced in the output message 
provides details about the credit rating result.

<rating xmlns="http://services.otn.com">900</rating>



Creating the Contents of Test Cases

42-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8. Click OK.

42.4.3 How to Emulate Callback Messages

To emulate callback messages:

You can simulate a callback message returned from an asynchronous web service 
partner.

1. Access the Wire Actions dialog by following Step 1 through Step 3 of 
Section 42.4.2, "How to Emulate Outbound Messages."

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Callback. This field is only enabled for asynchronous processes.

5. Enter the details described in Table 42–3:

Figure 42–13 shows this dialog:

Note: The creation of multiple emulations in an instance in a test 
case is supported only if one emulation is for an output message and 
the other is for a callback message.

Table 42–3 Emulate Callback Message Fields

Field Value

Callback Operation Select the callback operation (for example, onResult).

Callback Message Displays the callback message name of the asynchronous 
process.

Part Select the message part containing the callback (for example, 
payload).

Value Create a simulated callback message to return from an 
asynchronous web service partner:

■ Enter Manually Click to manually enter message data in the Enter Value field. A 
Generate Sample button enables you to automatically generate 
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file 
is added to the messages folder in the Application Navigator.

Duration Enter the maximum amount of time to wait for the callback 
message to be delivered from the web service partner. 



Creating the Contents of Test Cases

Automating Testing of SOA Composite Applications 42-15

Figure 42–13 Emulate Dialog with Emulate Callback Selected

Example 42–8 shows a simulated callback message from a web service partner. 
You enter this message manually or load it from a file:

Example 42–8 Simulated Callback Message Example

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:27 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
  <about></about>
  <initiate serviceName="client" operation="initiate" isAsync="true">
    <message>
      <part partName="payload">
        <filePath>loanApplication.xml</filePath>
      </part>
    </message>
  </initiate>
  <wireActions wireSource="LoanBroker/LoanService" operation="initiate">
    <emulate callbackOperation="onResult" duration="PT0S">
      <message>
        <part partName="payload">
          <filePath>loanOffer.xml</filePath>
        </part>
      </message>
    </emulate>
  </wireActions>
</compositeTest>

The loanOffer.xml message file referenced in the callback message provides 
details about the credit rating approval. Example 42–9 provides details.



Creating the Contents of Test Cases

42-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 42–9 Credit Rating Approval Details

<loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
  <providerName>Bank Of America</providerName>
  <selected>false</selected>
  <approved>true</approved>
  <APR>1.9</APR>
</loanOffer>

6. Click OK.

42.4.4 How to Emulate Fault Messages

To emulate fault messages:
You can simulate a fault message returned from a web service partner. This simulation 
enables you to test fault handling capabilities in your process. 

1. Access the Wire Actions dialog by following Step 1 through Step 3 of 
Section 42.4.2, "How to Emulate Outbound Messages."

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Fault.

5. Enter the details described in Table 42–4:

Figure 42–14 shows this dialog:

Table 42–4 Emulate Fault Message Fields

Field Value

Fault Select the fault type to return from a partner (for example, 
NegativeCredit).

Fault Message Displays the message name.

Part Select the message part containing the fault (for example, 
payload).

Value Create a simulated fault message to return from a web service 
partner:

■ Enter Manually Click to manually enter message data in the Enter Value field. A 
Generate Sample button enables you to automatically generate 
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file 
is added to the messages folder in the Application Navigator.

Duration Enter the maximum amount of time to wait for the fault message 
to be delivered from the web service partner. 



Creating the Contents of Test Cases

Automating Testing of SOA Composite Applications 42-17

Figure 42–14 Emulate Dialog with Emulate Fault Selected

An example of a simulated fault message from a web service partner that you 
enter manually or load from a file is shown in Section 42.2.2, "Emulations."

6. Click OK.

42.4.5 How to Create Assertions

To create assertions:
You perform assertions to verify variable data or process flow. Assertions enable you 
to validate test data in an entire XML document, a part section of a message, a nonleaf 
element, or a leaf element as a process is executed. This is done by extracting a value 
and comparing it to an expected value. 

1. Access the Wire Actions dialog by following Step 1 through Step 3 of 
Section 42.4.2, "How to Emulate Outbound Messages."

2. Click the Asserts tab.

 Figure 42–15 shows this dialog:

Figure 42–15 Wire Actions Dialog with Asserts Tab Selected



Creating the Contents of Test Cases

42-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Click the Add icon.

The Create Assert dialog appears.

4. Select the type of assertion to perform at the top of the dialog, as shown in 
Table 42–5. If the operation supports only input messages, the Assert Input button 
is enabled. If the operation supports both input and output messages, the Assert 
Input and Assert Output buttons are both enabled. 

5. See the section shown in Table 42–6 based on the type of assertion you want to 
perform.

42.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML 
Document 

To create assertions on a part section, nonleaf element, or entire XML 
document:
This test compares the values to the expected values.

1. Click Browse to select the target part section, nonleaf element, or entire XML 
document to assert.

The Select Assert Target dialog appears. 

2. Select a value, and click OK. For example, select a variable such as payload to 
perform a part section assertion. 

Figure 42–16 shows this dialog. While this example shows how to perform a part 
section assertion, selecting LoanBrokerRequestMessage is an example of an entire 
XML document assertion and selecting loanApplication is an example of a 
nonleaf assertion.

Table 42–5 Assertion Types

Type Description

Assert Input Select to create an assertion in the inbound direction.

Assert Output Select to create an assertion in the outbound direction.

Assert Callback Select to create an assertion on a callback.

Assert Fault Select to assert a fault into the application flow.

Table 42–6 Assertion Types

For an Assertion on... See...

■ A part section of a 
document

■ A nonleaf element

■ An entire XML 
document

Section 42.4.5.1, "Creating Assertions on a Part Section, Nonleaf 
Element, or Entire XML Document"

 A leaf element Section 42.4.5.2, "Creating Assertions on a Leaf Element"

Note: If the message contains multiple parts (for example, payload1, 
payload2, and payload3), you must create separate assertions for each 
part.



Creating the Contents of Test Cases

Automating Testing of SOA Composite Applications 42-19

Figure 42–16 Select a Part Section of a Message

The Create Assert dialog refreshes based on your selection of a variable.

3. Enter details in the remaining fields, as shown in Table 42–7:

Table 42–7 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example, NegativeCredit). 
This field only displays if you select Assert Fault in Step 4.of 
Section 42.4.5, "How to Create Assertions."

Assert Target Displays the assert target you selected in Step 2. 

Compare By Specify the strictness of the comparison.

■ xml-identical: Used when the comparison between the 
elements and attributes of the XML documents must be 
exact. If there is any difference between the two XML 
documents, the comparison fails. For example, the 
comparison fails if one document uses an element name of 
purchaseOrder, while the other uses an element name of 
invoice. The comparison also fails if the child attributes of 
two elements are the same, but the attributes are ordered 
differently in each element.

■ xml-similar: Used when the comparison must be similar in 
content, but does not need to exactly match. For example, 
the comparison succeeds if both use the same namespace 
URI, but have different namespace prefixes. The 
comparison also succeeds if both contain the same element 
with the same child attributes, but the attributes are ordered 
differently in each element.

In both of these examples, the differences are considered 
recoverable, and therefore similar.

For more information about comparing the contents of XML 
files, see the XMLUnit web site:

http://xmlunit.sourceforge.net/userguide/html/a
r01s03.html#The%20Difference%20Engine



Creating the Contents of Test Cases

42-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 42–17 shows this dialog with Assert Input selected:

Figure 42–17 Create Assert Dialog with Assert Input Selected

4. Click OK.

The Wire Actions dialog shown in Figure 42–18 displays your selection.

Part Select the message part containing the XML document (for 
example, payload).

Value Create an XML document whose content is compared to the 
assert target content:

■ Enter Manually Click to manually enter message data in the Enter Value field. A 
Generate Sample button enables you to automatically generate 
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file 
is added to the messages folder in the Application Navigator.

Description Enter an optional description.

Table 42–7 (Cont.) Create Assert Dialog Fields and Values

Field Value



Creating the Contents of Test Cases

Automating Testing of SOA Composite Applications 42-21

Figure 42–18 Wire Actions Dialog with Asserts Tab Selected

5. Click OK.

42.4.5.2 Creating Assertions on a Leaf Element

To create assertions on a leaf element:
This test compares the value to an expected value.

1. Click Browse to select the leaf element to assert.

The Select Assert Target dialog appears. 

2. Select a leaf element, and click OK. For example, select loanAmount to perform an 
assertion. Figure 42–19 provides details.

Figure 42–19 Selection of a Leaf Element

The Create Assert dialog refreshes based on your selection of an entire XML 
document.

3. Enter details in the remaining fields, as shown in Table 42–8:



Creating the Contents of Test Cases

42-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 42–20 shows this dialog with Assert Input selected:

Figure 42–20 Create Assert Dialog

4. Click OK.

Table 42–8 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example, NegativeCredit). 
This field only displays if you select Assert Fault in Step 4 of 
Section 42.4.5, "How to Create Assertions."

Callback Operation Select the type of callback to assert (for example, onResult). This 
field only displays if you select Assert Callback in Step 4 of 
Section 42.4.5, "How to Create Assertions."

Assert Target Displays the variable assert target you selected in Step 2. 

Compare By Select the type of comparison:

■ string: Compares string values

■ number: Compares numeric values

■ pattern-match: Compares a regular expression pattern (for 
example, [0-9]*). Java Development Kit (JDK) regular 
expression (regexp) constructs are supported. For example, 
entering a pattern of ab[0-9]*cd means that a value of 
ab123cd or ab456cd is correct. An asterisk (*) indicates 
any number of occurrences.

Assert Value Enter the value you are expecting. This value is compared to the 
value for the assert target.

Description Enter an optional description.



Deploying and Running a Test Suite

Automating Testing of SOA Composite Applications 42-23

The Wire Actions dialog shown in Figure 42–21 displays your selection.

Figure 42–21 Wire Actions Dialog with Asserts Tab Selected

42.4.6 What You May Need to Know About Assertions
When a test is executed, and the response type returned is different from the type 
expected, the assertion is skipped. For example, you are expecting a fault 
(RemoteFault) to be returned for a specific message, but a response 
(BpelResponseMessage) is instead returned.

As a best practice, always assert and emulate the expected behavior. 

42.5 Deploying and Running a Test Suite
After creating a test suite of test cases, you deploy the suite as part of a SOA composite 
application. You then run the test suites from Oracle Enterprise Manager Fusion 
Middleware Control Console. 

■ For information about deploying a SOA composite application from Oracle 
JDeveloper., see Section 41.7.1.1, "How to Deploy a Single SOA Composite." 

■ For information about deploying a SOA composite application and running a test 
suite from Oracle Enterprise Manager Fusion Middleware Control Console., see 
Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite.

■ For information about using the sca_test WLST command to execute a test 
suite, see Section "sca_test" of Oracle Fusion Middleware WebLogic Scripting Tool 
Command Reference.

■ For information about using the ant-sca-test.xml ant script to execute a test 
suite, see Section 41.7.5.2.1, "Testing a SOA Composite Application."

 



Deploying and Running a Test Suite

42-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Part IX
Part IX Advanced Topics

This part describes advanced topics.

This part contains the following chapters:

■ Chapter 43, "Managing Large Documents and Large Numbers of Instances"

■ Chapter 44, "Working with Domain Value Maps"

■ Chapter 45, "Using Oracle SOA Composer with Domain Value Maps"

■ Chapter 46, "Working with Cross References"

■ Chapter 47, "Defining Composite Sensors"

■ Chapter 48, "Using Two-Layer Business Process Management (BPM)"

■ Chapter 49, "Integrating the Spring Framework in SOA Composite Applications"





43

Managing Large Documents and Large Numbers of Instances 43-1

43Managing Large Documents and Large
Numbers of Instances

This chapter describes the best practices for managing large documents and metadata 
and for managing environments with large numbers of instances in Oracle SOA Suite.

This chapter includes the following sections:

■ Section 43.1, "Best Practices for Handling Large Documents"

■ Section 43.2, "Best Practices for Handling Large Metadata"

■ Section 43.3, "Best Practices for Handling Large Numbers of Instances"

For more information about Oracle SOA Suite tuning and performance, see Oracle 
Fusion Middleware Performance and Tuning Guide.

43.1 Best Practices for Handling Large Documents
This section describes the following scenarios for handling large documents and the 
best practice approach for each scenario. Oracle recommends that you follow these 
best practices before developing and executing large payloads.

43.1.1 Use Cases for Handling Large Documents
This section describes use cases for handling large documents.

43.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads
This section describes use cases for passing binary objects as Base64-encoded text in 
the XML payload.

43.1.1.1.1 SOAP Inline  In this use case, the binary attachments (for example, an image) 
are Base64-encoded as text and then passed inline in the XML document. Table 43–1 
provides details.

Table 43–1 Capabilities

Capability Description

Security Supported.

Filter/Transformation/Assign Use of transformations may lead to slower performance, 
out-of-memory errors, or both.

Fanout Supported.

Binding WS binding sends it as a document object model (DOM).



Best Practices for Handling Large Documents

43-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

43.1.1.1.2 SOAP MTOM  In this use case, the binary attachments (for example, an image) 
are Base64-encoded as text and then passed as a Message Transmission Optimization 
Mechanism (MTOM) document. Table 43–2 provides details.

43.1.1.1.3 Opaque Passed by File/FTP Adapters  In this use case, the binary attachments 
(for example, an image) are Base64-encoded as text and then passed inline in the XML 
document. Table 43–3 provides details.

43.1.1.1.4 Opaque Passed by Oracle B2B   In this use case, the binary attachments (for 
example, an image) are Base64-encoded as text encoded. Table 43–4 provides details.

43.1.1.2  End-to-End Streaming with Attachments
This section describes use cases for end-to-end streaming of attachments.

Oracle BPEL Process 
Manager/Oracle Mediator

Can be decoded in a BPEL process using Java exec.

Table 43–2 Capabilities

Capability Description

Security Supported.

Filter/Transformation/Assign Assign activities are supported.

Fanout Supported.

Binding WS binding materializes the attachment sent as MTOM and 
puts it inside in Base64-encoded format (streaming is not 
supported). Outbound MTOM is not supported.

Oracle BPEL Process 
Manager/Oracle Mediator

No additional work is required.

Table 43–3 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/Assign Pass through.

Fanout Supported.

Binding Adapter encodes it to Base64 format.

Oracle BPEL Process 
Manager/Oracle Mediator

Supported. Opaque content cannot be manipulated in an 
assign or a transformation activity.

Table 43–4 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/Assign Pass through.

Fanout Supported.

Oracle B2B Oracle B2B encodes the native payload to Base64 format. For 
this scenario, you must configure the Oracle B2B binding 
document definition handling to be opaque.

Table 43–1 (Cont.) Capabilities

Capability Description



Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 43-3

43.1.1.2.1 SOAP with Attachments   In this use case, the binary attachments (for instance 
an image) are passed end-to-end as a stream. Table 43–5 provides details.

Working with Streaming Attachments
Oracle Fusion Middleware web services enable you to pass large attachments as a 
stream. Unlike the JAX-RPC API, which treats attachments as if they are entirely in 
memory, streams make the programming model more efficient to use. Streams also 
enhance performance and scalability because there is no need to load the attachment 
into memory before service execution.

As with embedded attachments, streamed attachments conform to the multipart 
MIME binary format. On the wire, messages with streamed attachments are identical 
to any other SOAP message with attachments.

Example 43–1 provides a sample message with a streamed attachment. The first part in 
the message is the SOAP envelope (<SOAP-ENV:Envelope...). The second part is 
the attachment (for this example, myImage.gif).

Example 43–1 Sample Message with a Streamed Attachment

MIME-Version: 1.0

Table 43–5 Capabilities

Capability Description

Security Not supported.

Filter/Transformation/Assign Pass through. You must use an XPath extension function in 
Oracle BPEL Process Manager.

Fanout Not supported.

Binding WS binding creates stream iterators for the SOAP attachment.

Oracle BPEL Process 
Manager/Oracle Mediator

Oracle Mediator can perform a pass through without 
materializing it for synchronous routing rules (asynchronous 
routing rules are not supported). Oracle BPEL Process 
Manager persists it.

Tuning Manage the database tablespace when using with Oracle BPEL 
Process Manager.

WSDL Code for defining 
SOAP with attachments

<mime:part>
   <mime:content part="bin" type=“image/jpeg"/>
</mime:part>

Notes:

■ You cannot stream attachments as part of a web service callback 
response. 

■ Deferred routing rules within Oracle Mediator do not support 
processing of attachments.

■ The spring service component does not support processing MIME 
attachments. Only MTOM attachments are supported.

■ You can use various binding components such as direct binding, 
web services, and so on to process large attachments. However, 
processing large attachments with direct binding is not 
recommended and results in out-of-memory errors.



Best Practices for Handling Large Documents

43-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
Content-Description: This is the optional message description.

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: NotSure/DoesntMatter

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
. . .
<DocumentName>MyImage.gif</DocumentName>
. . .
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

--MIME_boundary
Content-Type: image/gif
Content-Transfer-Encoding: binary
Content-ID: AnythingYoudLike

...binary GIF image...
--MIME_boundary--

Creating Composites that Use MIME Attachments
Perform the following procedures to create composites that use MIME attachments.

To create composites that use MIME attachments:
1. Create a composite using a payload schema (for example, an inbound web service 

wired to an Oracle Mediator wired to an outbound web service).

2. Within the WSDL file of Oracle Mediator, perform the following steps:

a. From the WSDL designer, open the Oracle Mediator WSDL file.

b. Drag and drop bindings into the middle swimlane.

c. Select the RPC binding.

d. Enter a name.

e. Go to Source view of the WSDL and modify the WSDL input and WSDL 
output with MIME multiparts.

<wsdl:input>
      <mime:multipartRelated>
          <mime:part>
              <soap:body parts="payload" use="literal"/>
          </mime:part>
          <mime:part>
              <mime:content part="bin" type="application/octet-stream"/>
          </mime:part>
      </mime:multipartRelated>
</wsdl:input>

f. Add the MIME part in the request/response message.

<wsdl:message name="BPELProcess1RequestMessage">
    <wsdl:part name="payload" element="ns1:purchaseOrder" />
    <!--add below part-->



Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 43-5

    <wsdl:part name="bin" type="xsd:base64Binary"/>
</wsdl:message>

g. Add a namespace in the WSDL definitions.

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/">

When complete, the WSDL that references a MIME attachment is displayed.

<wsdl:definitions
  name="PhotoCatalogService"
  targetNamespace="http://examples.com/PhotoCatalog"
  xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
  xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:types="http://examples.com/PhotoCatalog/types"
  xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
  xmlns:tns="http://examples.com/PhotoCatalog">
  <wsdl:message name="addPhotoRequest">
    <wsdl:part name="photo" type="xsd:hexBinary"/>
  </wsdl:message>
  <wsdl:message name="addPhotoResponse">
    <wsdl:part name="status" type="xsd:string"/>
  </wsdl:message>
  <wsdl:message name="replacePhotoRequest">
    <wsdl:part name="oldPhoto" type="xsd:string"/>
    <wsdl:part name="newPhoto" type="xsd:hexBinary"/>
  </wsdl:message>
  <wsdl:message name="replacePhotoResponse">
    <wsdl:part name="status" type="xsd:string"/>
  </wsdl:message>
  <wsdl:portType name="PhotoCatalog">
    <wsdl:operation name="addPhoto">
      <wsdl:input message="tns:addPhotoRequest"/>
      <wsdl:output message="tns:addPhotoResponse"/>
    </wsdl:operation>
    <wsdl:operation name="replacePhoto">
      <wsdl:input message="tns:replacePhotoRequest"/>
      <wsdl:output message="tns:replacePhotoResponse"/>
    </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name="PhotoCatalogBinding" type="tns:PhotoCatalog">
    <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
    <wsdl:operation name="addPhoto">
      <wsdl:input>
        <mime:multipartRelated>
          <mime:part>
            <soap:body use="literal"/>
          </mime:part>
          <mime:part>
            <mime:content part="photo"
                          type="image/jpeg"/>
          </mime:part>
        </mime:multipartRelated>
      </wsdl:input>
      <wsdl:output>
        <mime:multipartRelated>
          <mime:part>
            <soap:body use="literal"/>



Best Practices for Handling Large Documents

43-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

          </mime:part>
          <mime:part>
            <mime:content part="status" type="text/plain"/>
            <mime:content part="status" type="text/xml"/>
          </mime:part>
        </mime:multipartRelated>
      </wsdl:output>
    </wsdl:operation>
    <wsdl:operation name="replacePhoto">
      <wsdl:input>
        <mime:multipartRelated>
          <mime:part>
            <soap:body parts="oldPhoto" use="literal"/>
          </mime:part>
          <mime:part>
            <mime:content part="newPhoto"
                          type="image/jpeg"/>
          </mime:part>
        </mime:multipartRelated>
      </wsdl:input>
      <wsdl:output>
            <soap:body parts="status" use="literal"/>
      </wsdl:output>
    </wsdl:operation>
  </wsdl:binding>
</wsdl:definitions>

Performance Overhead and Pass Through Attachments
Because Oracle Mediator is stateless, there is no performance overhead with pass 
through attachments. However, Oracle BPEL Process Manager dehydrates 
attachments and has performance overhead, even for pass through attachments. Using 
Oracle BPEL Process Manager for attachments over a period of time, the SOA 
Infrastructure schema can grow to its maximum size and encounter memory issues. It 
is recommended that you extend the database tablespace appropriately for the SOA 
Infrastructure schema to accommodate large attachments. Simultaneously, you can use 
purge scripts to purge completed instances along with the attachments table. For 
information on purge scripts, see Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite.

In scenarios in which one BPEL process calls a second BPEL process within the same 
composite, the second BPEL process does not dehydrate the same attachment again.

In scenarios in which one BPEL process from composite 1 invokes a second BPEL 
process from composite 2 and optimization is disabled, composite 1 makes a SOAP 
call to composite 2. The second BPEL process does dehydrate attachments.

Properties for Streaming Attachments
To stream attachments, add the following properties in the composite.xml file. If 
optimization is enabled, then a native call is used instead of a SOAP call. Example 43–2 
provides details.

Example 43–2 Properties for Streaming Attachments

<binding.ws
port="http://services.otn.com#wsdl.endpoint(MIMEService/MIMEService)"
xmlns:ns="http://xmlns.oracle.com/sca/1.0"
streamIncomingAttachments="true" streamOutgoingAttachments="true">
<!--Add this prop to reference bindings to make a SOAP call. -->
<property name="oracle.webservices.local.optimization">false</property>



Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 43-7

</binding.ws>

For information about the oracle.webservices.local.optimization property, 
see "Managing SOA Composite Application Policies" in the Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

Reading and Encoding SOAP Attachment Content
The ora:getAttachmentContent function reads SOAP attachment content and 
encodes that data in Base64 format in a BPEL process by providing the BPEL variable 
as an argument, which has an href of the SOAP attachment. Example 43–3 shows 
how to use this function:

Example 43–3 ora:getAttachmentContent Function

<copy>
   <from expression="ora:getAttachmentContent('input','bin')"/>
   <to variable="initiateTaskInput" part="payload"
    query="/taskservice:initiateTask/task:task/task:attachment/task:content"/>
</copy>

Example 43–3 copies the attachment content, which has its href stored in the 
"input/bin" variable to the content variable, in Base64-encoded format.

Sending Attachment Streams
Oracle Mediator can pass an attachment stream to only one target receiver. The 
receiver can be another component or a web service/adapter. The second target cannot 
receive the attachment. Oracle BPEL Process Manager supports sending the 
attachment stream to multiple receivers. For Oracle BPEL Process Manager to send a 
stream to multiple receivers, it must read the attachment stream from the database 
using the readBinaryFromFile XPath function and pass the stream to the 
appropriate targets.

Sharing Attachments Using Synchronous Flows
When Oracle BPEL Process Manager-based composites share attachments using 
synchronous flows, it is necessary to use the same end-to-end transaction. This is 
applicable to composites that are colocated and use local/optimized calls. This can be 
achieved by setting the property shown in Example 43–4 on all the called BPEL 
components (callees) in the call chain.

Example 43–4 bpel.config.transaction Property

<property name="bpel.config.transaction" many="false"
type="xs:string">required</property>

If such composites do not execute as part of the same transaction context, the 
attachment data saved by the first BPEL component in the call chain is not visible to 
the other BPEL components in the call chain. In addition, they incur database locking 
and timeout exceptions:

"ORA-02049: timeout: distributed transaction waiting for lock"

Note: Oracle Web Services Manager (OWSM) does not inspect or 
enforce policies on streamed attachments. For more information about 
OWSM, see Oracle Fusion Middleware Security and Administrator's Guide 
for Web Services.



Best Practices for Handling Large Documents

43-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

43.1.1.2.2 Attachment Options of File/FTP Adapters  In this use case, the adapter streams 
the binary data to a database store and publishes an href to the service engine (Oracle 
BPEL Process Manager or Oracle Mediator). Table 43–6 provides details.

Writing Attachments Using an Outbound File Adapter
Example 43–5 shows a sample schema that can be used by the file adapter to write 
attachments to disk.

Example 43–5 Schema for Writing Attachments to Disk

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
            xmlns="http://xmlns.oracle.com/attachment"
            targetNamespace="http://xmlns.oracle.com/attachment"
            elementFormDefault="qualified">
            <xsd:element name="attach">
              <xsd:complexType>
                 <xsd:attribute name="href" type="xsd:string"/>
              </xsd:complexType>
  </xsd:element>
</xsd:schema>

 Use Oracle Mediator in the flow to map the attachment part from the source (Oracle 
Mediator) to the target (file adapter) using an Oracle Mediator assign.

 If you use Oracle BPEL Process Manager, the attachment is written to the dehydration 
store, which slows down the process.

Transforming Attachments with the ora:doStreamingTranslate XPath Function
Use of the ora:doStreamingTranslate XPath function is only recommended 
while transforming attachments within an Oracle BPEL Process Manager/Oracle 
Mediator composite. This function expects the attachment location to be a relative path 
on the server. This function cannot translate incoming attachment streams.

For more information about this function, see Section B.2.6, "doStreamingTranslate."

Table 43–6 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Filters and transformations on the attachment are not 
supported.

Fanout Supported.

Binding The adapter streams the non-XML to the database as a binary 
large object (BLOB) and passes the key to the service engines.

Oracle BPEL Process 
Manager/Oracle Mediator

Supported.

Tuning ■ Extend the database tablespace for the Oracle SOA Suite 
schema.

■ Delete the attachments after message processing 
completion.

Documentation See Oracle Fusion Middleware User's Guide for Technology 
Adapters.



Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 43-9

43.1.1.2.3 Oracle B2B Attachment  In this use case, Oracle B2B stores the binary data to a 
database and publishes an href to the service engine (Oracle BPEL Process Manager 
or Oracle Mediator) based on an Oracle B2B-defined XSD. Oracle B2B protocols define 
the attachment. Table 43–7 provides details.

43.1.1.3 Adding MTOM Attachments to Web Services
Within a SOA composite application, you must attach the Oracle WS-MTOM policy to 
service and reference binding components to receive and send MTOM (MIME binary) 
attachments within Oracle SOA Suite. When a service binding component (defined 
under binding.ws in the composite.xml file) is configured with an Oracle 
WS-MTOM policy, Oracle SOA Suite’s MTOM message handling feature is used. 
When a reference binding component (also defined under binding.ws in the 
composite.xml file) is configured with an Oracle MTOM policy, Oracle SOA Suite 
sends MTOM-compliant messages with attachments.

Note the following issues with MTOM attachments. 

■ When attachments are inline and encoded, Oracle recommends that you not use 
the file adapter to write attachments to a file.

■ The default mtomThreshold value is 1024 bytes and cannot be modified. If an 
attachment is less than 1024 bytes, for outbound configurations, Oracle SOA Suite 
sends it as an inline attachment. If the size is greater than 1024 bytes, then the 
attachment is sent as an attachment part with an href attribute in the message, 
and is sent as a WSDL-defined format on the wire. However, if the incoming 
request (for example, from a different web services provider) has an xop href 
node for small binary data (that is, size is less than 1024 bytes), Oracle SOA Suite 
uses the same href attribute in the payload in the flow trace. For example:

<xop:Include xmlns:xop="http://www.w3.org/2004/08/xop/include"
 href="cid:e29caf23dc8045908451fdfaafa26dce" />

■ If service binding component of a composite does not include an Oracle 
WS-MTOM policy reference, this indicates that the service can accept non-MTOM 
messages. This indicates that the calling composite (the appropriate reference 
binding) does not have an Oracle WS-MTOM policy reference and can send out 
non-MTOM messages to that service.

■ MTOM streaming of attachments is not supported by Oracle SOA Suite.

■ MTOM attachments are supported only with web service bindings. Other 
bindings (for example, HTTP bindings) are not supported.

■ Oracle Mediator pass through scenarios are supported. If Oracle Mediator does 
not contain any transformation or assign statements, it is known as a pass through 

Table 43–7 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Filters and transformations on the attachment are not 
supported.

Fanout Supported.

Binding Oracle B2B passes it as an href key to service engines.

Tuning Extend the database tablespace for the Oracle SOA Suite 
schema.



Best Practices for Handling Large Documents

43-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Oracle Mediator. The message and attachment received are propagated to the 
target without modifying the payload and attachment. Likewise, multiple MTOM 
attachments in the same message can be sent and received by Oracle SOA Suite.

■ Oracle recommends that you not use both streaming and the MTOM message 
handling feature for sending and receiving attachments. Use either streaming or 
the MTOM message handling feature.

■ As a best practice, Oracle recommends that you not use the XSLT Mapper to 
propagate binary data. Instead, use an assign activity. If you must use a style sheet 
to propagate binary data, it is recommended that you use the xsl:copy-of 
instruction (copy-of copies everything, including attributes) or use custom 
functions to copy attributes from source to target.

■ MTOM attachments should not be gigabytes in size. Instead, use the SOAP with 
attachments streaming feature for very large attachments. For more information, 
see Section 43.1.1.2.1, "SOAP with Attachments."

43.1.1.3.1  Outbound Composite SOAP Messages Are Not Optimized If Only a WS-MTOM Policy 
is Used  Unless a SOAP message passed to the dispatch.invoke() call of the SOA 
Infrastructure already contains BinaryTextIml nodes, binary data transmission is 
not optimized on the wire. Therefore, there is no guarantee that binary data 
optimization is always performed when a WS-MTOM policy is configured. The only 
way to ensure that optimization is performed is if the SOA MTOM configuration is 
also specified. The WS-MTOM policy guarantees the proper content-type setting with 
or without the SOA MTOM settings.

For example, assume you create a SOA composite application without 
BinaryTextIml nodes in the SOAP message that consists of the following 
components:

■ A Java API for an XML Web Services (JAX-WS), MTOM-enabled, client service 
binding component

■ An MTOM-enabled BPEL service component

■ A JAX-WS web service reference binding component with MTOM

The JAX-WS, MTOM-enabled, client service binding component invokes the BPEL 
service component. The BPEL service component then invokes the JAX-WS, web 
service, reference binding component. The SOAP message from the JAX-WS client 
service binding component to the BPEL service component is MTOM-optimized. 
However, from the BPEL service component to the JAX-WS, web service reference 
binding component, the message is base64binary-enabled, and not MTOM-optimized.

43.1.1.4 Processing Large XML with Repeating Constructs
This section describes use cases for processing large XML with repeating constructs.

43.1.1.4.1 Debatching with the File/FTP Adapter  In this use case, the inbound adapter 
splits a source document into multiple batches of records, each of which initiates a 
composite instance. Table 43–8 provides details.

Note: If the input is of type text/xml, there is no significant 
decrease in file size when sending files in MTOM format.



Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 43-11

43.1.1.4.2 Chunking with the File/FTP Adapters  In this use case, a loop within a BPEL 
process reads a chunk of records at a time and process (that is, cursor). Table 43–9 
provides details.

43.1.1.5 Processing Large XML Documents with Complex Structures
This section describes use cases for processing very large XML documents with 
complex structures.

43.1.1.5.1 Streaming with the File/FTP Adapters  In this use case, very large XML files are 
streamed through Oracle SOA Suite. Table 43–10 provides details.

Table 43–8 Capabilities

Capability Description

Security  N/A.

Filter/Transformation/Assign Supported.

Fanout Supported.

Binding The file/FTP adapter debatches it to a small chunk based on 
the native XSD (NXSD) definition.

Oracle BPEL Process 
Manager/Oracle Mediator

Supported.

Tuning For repeating structures, XSLT is supported for scenarios in 
which the repeating structure is of smaller payloads compared 
to the overall payload size. Substitution with assign activities is 
preferred, as it performs a shadow copy.

Documentation See Oracle Fusion Middleware User's Guide for Technology 
Adapters.

Table 43–9 Capabilities

Capability Description

Security Supported.

Filter/Transformation/Assign Supported.

Fanout Supported.

Oracle BPEL Process 
Manager/Oracle Mediator

Supported only from Oracle BPEL Process Manager.

Documentation See Oracle Fusion Middleware User's Guide for Technology 
Adapters.

Table 43–10 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Supported, but must optimize to avoid issues.

Fanout Supported.

Binding The adapter streams the payload to a database as an SDOM 
and passes the key to the service engines.

Documentation See Oracle Fusion Middleware User's Guide for Technology 
Adapters.



Best Practices for Handling Large Documents

43-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

43.1.1.5.2 Oracle B2B Streaming  In this use case, large XML files are passed by Oracle 
B2B to Oracle SOA Suite as an SDOM. This only occurs when a large payload size is 
defined in the Oracle B2B user interface. Table 43–11 provides details.

43.1.2 Limitations on Concurrent Processing of Large Documents
This section describes the limitations on concurrent processing of large documents. 

43.1.2.1 Opaque Schema for Processing Large Payloads
There is a limitation when you use an opaque schema for processing large payloads. 
The entire data for the opaque translator is converted to a single Base64-encoded 
string. An opaque schema is generally used for smaller data. For large data, use the 
attachments feature instead of the opaque translator.

43.1.3 General Tuning Recommendations
This section provides general tuning recommendations.

For more information about Oracle SOA Suite tuning and performance, see Oracle 
Fusion Middleware Performance and Tuning Guide.

43.1.3.1 General Recommendations
This section provides general tuning recommendations. 

■ Increase the JTA transaction timeout to 500 seconds in Oracle WebLogic Server 
Administration Console. For instructions, see section "Resolving Connection 
Timeouts" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite 
and Oracle BPM Suite.

■ In Oracle Enterprise Manager Fusion Middleware Control Console, set the audit 
level to Off or Production at the SOA composite application level. See 
Section 43.1.3.2, "Setting Audit Levels from Oracle Enterprise Manager for Large 
Payload Processing" for additional information.

■ Uncomment the following line in setDomainEnv.sh (for Linux) or 
setDomainEnv.bat (for Windows) for JAVA_OPTIONS, and restart the server. If 
this line does not exist, add it. Without this setting, large payload scenarios fail 
with ResourceDisabledException for the dehydration data source.

-Dweblogic.resourcepool.max_test_wait_secs=30

■ Update the heap size in setSOADomainEnv.sh or setDomainEnv.bat as 
follows: 

DEFAULT_MEM_ARGS="-Xms1024m -Xmx2048m"

Table 43–11 Capabilities

Capability Description

Security N/A.

Filter/Transformation/Assign Supported, but must optimize to avoid issues.

Fanout Supported.

Binding Oracle B2B streams the payload to a database as SDOM and 
passes the key to the service engines.

Oracle BPEL Process 
Manager/Oracle Mediator

Can use an XPath extension function to manipulate the 
payload.



Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 43-13

■ Use optimized translation functions, which are available while performing 
transformations and translations of large payloads (for example, 
ora:doTranslateFromNative, ora:doTranslateToNative, 
ora:doStreamingTranslate, and so on). 

For information about these functions, see Appendix B, "XPath Extension 
Functions."

■ Extend data files for handling large attachments. For more information, see the 
Oracle Database Administrator's Guide.

■ If you are processing large documents and run into timeout errors, perform the 
following tasks:

– Increase the timeout property value.

– Increase the Stuck Thread Max Time property value.

Increase the timeout property value as follows:

1. Log in to Oracle Web Services Manager Administration Console.

2. Navigate to Deployments > soa-infra > EJBs.

3. Click each of the following beans, select Configuration, and increase the 
timeout value:

– BpelEngineBean

– BpelDeliveryBean

– CompositeMetaDataServiceBean

Increase the Stuck Thread Max Time property value as follows:

1. Follow the instructions in Chapter "Using the WebLogic 8.1 Thread Pool 
Model" of Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic 
Server.

43.1.3.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload 
Processing
For large payload processing, turn off audit level logging for the specific composite. 
You can set the composite audit level option to Off or Production in Oracle Enterprise 
Manager Fusion Middleware Control Console. If you set the composite audit level 
option to Development, then it serializes the entire large payload into an in-memory 
string, which can lead to an out-of-memory error.

For more information about setting audit levels, see Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

43.1.3.3 Using the Assign Activity in Oracle BPEL Process Manager/Oracle 
Mediator
When using the assign activity in Oracle BPEL Process Manager or Oracle Mediator to 
manipulate large payloads, do not assign the complete message. Instead, assign only 
the part of the payload that you need.

In addition, when using the assign activity in Oracle BPEL Process Manager, Oracle 
recommends using local variables instead of process variables, wherever possible. 
Local variables are limited to the scope of the BPEL process. These get deleted from 
memory and from the database after you close the scope. However, the life cycle of a 
global variable is tied with the instance life cycle. These variables stay in memory or 



Best Practices for Handling Large Documents

43-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

remain on disk until the instance completes. Thus, local variables are preferred to 
process or global variables.

43.1.3.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process 
Manager)
 Oracle recommends that you not perform XSLT transformations on large payloads 
using Oracle Mediator. Doing so results in out-of-memory errors when XSLT 
operations must traverse the entire document. Instead, use Oracle BPEL Process 
Manager.

Until 11g Release 1 11.1.1.3, for XSLT operations in Oracle BPEL Process Manager, the 
result was cached into memory as a whole document in binary XML format. For large 
document processing, this caused out-of-memory errors. Starting with 11g Release 1 
11.1.1.4, a the streamResultToTempFile property has been added. This property 
enables XSLT results to be streamed to a temporary file and then loaded from the 
temporary file. Set streamResultToTempFile to yes when processing large 
payload using XSLT. The default value is no.

This property is applicable when using the following BPEL XPath functions:

■ ora:processXSLT('template','input','properties'?)

■ ora:doXSLTransformForDoc ('template','input','name', 'value')

To configure large XML documents to be processed using XSLT:
1. Create a BPEL common properties schema. For example:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace ="http://schemas.oracle.com/service/bpel/common" 
          xmlns:common = "http://schemas.oracle.com/service/bpel/common"
          xmlns:xs = "http://www.w3.org/2001/XMLSchema"
          elementFormDefault="qualified" blockDefault="#all">
   
  <xs:element name="serviceProperties"  type="common:PropertiesType"/> 
  <xs:element name="anyProperties"  type="common:ArrayOfNameAnyTypePairType"/> 
     <xs:complexType name="NameValuePairType">
    <xs:sequence>
      <xs:element name="name" type="xs:string"/>
      <xs:element name="value" type="xs:string"/>
    </xs:sequence>
   </xs:complexType>
 
   <xs:complexType name="ArrayOfNameValuePairType">
    <xs:sequence>
      <xs:element name="item" type="common:NameValuePairType"
 maxOccurs="unbounded"/>
    </xs:sequence>
   </xs:complexType>
  
   <xs:complexType name="NameAnyTypePairType">
    <xs:sequence>
      <xs:element name="name" type="xs:string"/>
      <xs:element name="value" type="xs:anyType"/>
    </xs:sequence>
   </xs:complexType>
 
   <xs:complexType name="ArrayOfNameAnyTypePairType">
    <xs:sequence>
      <xs:element name="item" type="common:NameAnyTypePairType"



Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 43-15

 maxOccurs="unbounded"/>
    </xs:sequence>
   </xs:complexType>  
 
   <xs:complexType name="PropertiesType">
    <xs:sequence>
      <xs:element name="property" type="common:NameValuePairType"
 maxOccurs="unbounded"/>
    </xs:sequence>
   </xs:complexType>
  
   <xs:complexType name="ArrayOfAnyTypeType">
    <xs:sequence>
      <xs:element name="item" type="xs:anyType" maxOccurs="unbounded"/>
    </xs:sequence>
   </xs:complexType>   
</xs:schema>

2. Within a BPEL process, add the namespace in the import section:

xmlns:common = "http://schemas.oracle.com/service/bpel/common"

3. Create a global variable (for this example, named propertiesXMLVar):

 <variable name="propertiesXMLVar" element="common:anyProperties"/>

4. Set the streamResultToTempFile property to yes. This assign activity should 
exist before using performing an XSLT transformation.

<assign name="Assign_xsltprop">
      <copy>
        <from>
           <common:anyProperties>
             <common:item>
                   <common:name>streamResultToTempFile</common:name>
                   <common:value>yes</common:value>
             </common:item>
           </common:anyProperties>
        </from>
        <to variable="propertiesXMLVar"/>
      </copy>
</assign>

43.1.3.5 Using XSLT Transformations for Repeating Structures
In scenarios in which the repeating structure is of smaller payloads compared to the 
overall payload size, Oracle recommends using XSLT transformation because the 
current XSLT implementation materializes the entire DOM in memory. For example, 
use PurchaseOrder.LineItem.Supplier (a subpart of a large payload).

You can also substitute it with the assign activity, as it performs a shadow copy. 
Although a shadow copy does not materialize DOM, it creates a shadow node to point 
to the source document. 

You can also use the following optimized translation functions while performing 
transformations/translations of large payloads:

■ ora:doTranslateFromNative

■ ora:doTranslateToNative

■ ora:doStreamingTranslate



Best Practices for Handling Large Documents

43-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information about the usage of these functions, see Oracle Fusion Middleware 
User's Guide for Technology Adapters.

43.1.3.6 Processing Large Documents in Oracle B2B
For processing large documents in Oracle B2B, tune the following parameters:

■ mdsCache

■ Cache Size

■ Protocol Message Size

■ Number of threads

■ Stuck Thread Max Time

■ Tablespace

The following sections describe the parameters you must set for processing large 
documents in Oracle B2B:

43.1.3.6.1 MDSInstance Cache Size  To set Metadata Service (MDS) instance cache size, 
the property and value must be added to the $DOMAIN_
HOME/config/soa-infra/configuration/b2b-config.xml file, as shown in 
Example 43–6.

Example 43–6 MDSInstance Cache Size

<property>
 <name>b2b.mdsCache</name>
 <value>200000</value>
 <comment>MDS Instance cache size </comment>
</property>

43.1.3.6.2 Protocol Message Size  If Oracle B2B wants to send or receive more than 10 
MB of message or the import/export configuration is more than 10 MB, then change 
the following setting accordingly at the Oracle WebLogic Server Administration 
Console:

1. In the Domain Structure, select Environment > Servers.

2. In the Name column of the table, select soa_server.

3. Select the Protocols tab.

4. Change the value for Maximum Message Size.

This setting can also be added/modified in the $DOMAIN_
HOME/config/config.xml file next to the server name configuration, as shown in 
Example 43–7.

Example 43–7 max-message-size Property

<name>soa_server1</name>
<max-message-size>150000000</max-message-size> 

43.1.3.6.3 Number of Threads  This parameter helps to improve the message processing 
capability of Oracle B2B and must be set in the $DOMAIN_

Note: By default, max-message-size is not available in the 
config.xml file. 



Best Practices for Handling Large Documents

Managing Large Documents and Large Numbers of Instances 43-17

HOME/config/soa-infra/configuration/b2b-config.xml file. Example 43–8 
provides an example.

Example 43–8 Number of Threads

<property>
  <name>b2b.inboundProcess.threadCount</name>
  <value>5</value>
  <comment></comment>
</property>
<property>
  <name>b2b.inboundProcess.sleepTime</name>
  <value>10</value>
  <comment></comment>
</property>
<property>
  <name>b2b.outboundProcess.threadCount</name>
  <value>5</value>
  <comment></comment>
</property>
<property>
  <name>b2b.outboundProcess.sleepTime</name>
  <value>10</value>
  <comment></comment>
</property>
<property>
  <name>b2b.defaultProcess.threadCount</name>
  <value>5</value>
  <comment></comment>
</property>
<property>
  <name>b2b.defaultProcess.sleepTime</name>
  <value>10</value>
  <comment></comment>
</property> 

43.1.3.6.4 Stuck Thread Max Time  The Stuck Thread Max Time parameter checks the 
number of seconds that a thread must be continually working before the server 
considers the thread stuck. You must change the following setting in the Oracle 
WebLogic Server Administration Console:

1. In the Domain Structure, select Environment > Servers.

2. In the Name column of the table, select soa_server.

3. Select the Tuning tab.

4. Change the value for Stuck Thread Max Time.

43.1.3.6.5 Tablespace  If you must store more than a 150 MB configuration in the data 
file, then you must extend or add the data file to increase the tablespace size, as shown 
in Example 43–9.

Example 43–9 Extension of Data File

ALTER TABLESPACE sh_mds add DATAFILE 'sh_mds01.DBF' SIZE 100M autoextend on next
 10M maxsize unlimited;
ALTER TABLESPACE sh_ias_temp add TEMPFILE 'sh_ias_temp01.DBF' SIZE 100M autoextend
 on next 10M maxsize unlimited;



Best Practices for Handling Large Metadata

43-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

43.1.3.7 Using XPath Functions to Write Large XSLT/XQuery Output to a File 
System
You can use the following functions to write the results of large XSLT/XQuery 
operations to a temp file in a directory system. The document is then loaded from the 
temp file when needed. This eliminates the need for caching an entire document as 
binary XML in memory. 

■ ora:processXSLT

■ ora:doXSLTransformForDoc

With the ora:processXSLT function, you use the properties argument to enable 
this functionality. 

ora:processXSLT('template','input','properties'?)

You retrieve the value of this argument within your XSLT in a way similar to 
extracting data from XSL variables. The properties argument is an XML element of 
the structure shown in Example 43–10. For large payload results (for example, above 
10 MB), set streamResultToTempFile to yes. For small payload results in which 
you do not need to write results to a temp file, leave this property set to its default 
value of no. 

Example 43–10 properties XML

<propertiesXMLVar>
  <common:item  xmlns:common="http://schemas.oracle.com/service/bpel/common">
    <common:name>streamResultToTempFile</common:name>
    <common:value>yes</common:value>
  </common:item>
</propertiesXMLVar>

Within the XSLT, the parameters are accessible through the name of 
streamResultToTempFile and its value of yes.

In Oracle BPEL Process Manager, a literal assign is performed to populate the 
properties for ora:processXSLT('template','input','properties'?).

For more information on using this function, see Section B.2.50, "processXSLT." 

With the ora:doXSLTransformForDoc function, you set the name and value 
properties to enable this functionality. 

ora:doXSLTransformForDoc ('template','input','name', 'value')

With this function, the name of streamResultToTempFile and the value of yes 
are passed.

For more information on using the function, see Section B.2.10, 
"doXSLTransformForDoc." 

43.2 Best Practices for Handling Large Metadata
This section provides recommendations for handling large metadata.

43.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process
There is a limit to the number of activities that can be executed in a BPEL process. 
When you exceed this limit, system memory fills up, which can cause timeouts to 



Best Practices for Handling Large Metadata

Managing Large Documents and Large Numbers of Instances 43-19

occur. For example, with the following parameters, two fault instances occur due to a 
timeout:

■ 100 threads

■ 1 second of think time

■ 1000 incoming request messages

Try to keep the number of incoming request messages at a proper level to ensure 
system memory stability.

43.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)
To deploy BPEL processes that have a large number of activities (for example, 50,000), 
the following settings are required: 

MEM_ARGS: -Xms512m -Xmx1024m -XX:PermSize = 128m -XX:MaxPermSize 
= 256m

Number of Concurrent Threads = 20

Number of Loops = 5 Delay = 100 ms

The above settings enable you to deploy and execute BPEL processes, which use only 
while loops without the flowN activities, successfully.

43.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)
To deploy BPEL processes that have a large number of activities (for example, 50,000), 
the following settings are required:

 USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m 
-XX:MaxPermSize=256m

Number of Concurrent Threads= 10 

Number of Loops=5 Delay=100 ms

Set the StatsLastN property to -1 in the System MBean Browser of Oracle Enterprise 
Manager Fusion Middleware Control Console.

The above settings enable you to deploy and execute BPEL processes, which use the 
flowN activities, successfully.

For more information, see Chapter 9, "Using Parallel Flow in a BPEL Process."

43.2.4 Using a Flow With Multiple Sequences
BPEL processes that have up to 7000 activities can be deployed and executed 
successfully with the following settings:

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m 
-XX:MaxPermSize=256m

43.2.5 Using a Flow with One Sequence
BPEL processes that have up to 7000 activities can be deployed and executed 
successfully with the following settings:

Note: If you deploy BPEL processes with more than 8000 activities, 
Oracle BPEL Process Manager compilation throws errors.



Best Practices for Handling Large Numbers of Instances

43-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m 
-XX:MaxPermSize=512m

43.2.6 Using a Flow with No Sequence
You can deploy and execute BPEL processes that have a large number of activities (for 
example, up to 5000) successfully.

There is a probability that the BPEL compilation may fail for 6000 activities.

43.2.7 Large Numbers of Oracle Mediators in a Composite
Oracle recommends that you not have more than 50 Oracle Mediators in a single 
composite. Increase the JTA Transaction timeout to a high value based on the 
environment.

43.2.8 Importing Large Data Sets in Oracle B2B
Oracle recommends that you do not use browsers for large data set imports, and that 
you use the command-line utility. The following utility commands are recommended 
for large data configuration:

■ purge: This command is used to purge the entire repository.

■ import: This command is used to import the specified ZIP file.

■ deploy: This command is used to deploy an agreement with whichever name is 
specified. If no name is specified, then all the agreements are deployed.

However, the purgeimportdeploy option is not recommended for transferring or 
deploying the Oracle B2B configuration. 

For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.

43.3 Best Practices for Handling Large Numbers of Instances
This section provides recommendations for handling large numbers of instance and 
fault metrics.

43.3.1 Instance and Rejected Message Deletion with the Purge Script
Deleting thousands of instances and rejected messages in Oracle Enterprise Manager 
Fusion Middleware Control Console takes time and can result in a transaction timeout. 
If you must perform this task, use the PL/SQL purge script for instance and rejected 
message deletion.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite. 

43.3.2 Improving the Loading of Pages in Oracle Enterprise Manager Fusion 
Middleware Control Console

You can improve the loading of pages that display large amounts of instance and fault 
data in Oracle Enterprise Manager Fusion Middleware Control Console by setting two 

Note: If you deploy BPEL processes with more than 10,000 activities, 
the Oracle BPEL Process Manager compilation fails.



Best Practices for Handling Large Numbers of Instances

Managing Large Documents and Large Numbers of Instances 43-21

properties in the Display Data Counts section of the SOA Infrastructure Common 
Properties page.

These two properties enable you to perform the following:

■ Disable the fetching of instance and fault count data to improve loading times for 
the following pages:

■ Dashboard pages of the SOA Infrastructure, SOA composite applications, 
service engines, and service components

■ Delete with Options: Instances dialog

These settings disable the loading of all metrics information upon page load. For 
example, on the Dashboard page for the SOA Infrastructure, the values that 
typically appear in the Running and Total fields in the Recent Composite 
Instances section and the Instances column of the Deployed Composites section 
are replaced with links. When these values are large, it can take time to load this 
page and other pages with similar information. 

■ Specify a default time period that is used as part of the search criteria for 
retrieving recent instances and faults for display on the following pages:

■ Dashboard pages and Instances pages of the SOA Infrastructure, SOA 
composite applications, service engines, and service components

■ Dashboard pages of services and references

■ Faults and Rejected Messages pages of the SOA Infrastructure, SOA composite 
applications, services, and references

■ Faults pages of service engines and service components

For more information about setting these properties, see Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.



Best Practices for Handling Large Numbers of Instances

43-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



44

Working with Domain Value Maps 44-1

44Working with Domain Value Maps

This chapter describes how to use domain value maps to map the vocabulary used by 
different domains.

This chapter includes the following sections:

■ Section 44.1, "Introduction to Domain Value Maps"

■ Section 44.2, "Creating Domain Value Maps"

■ Section 44.3, "Editing a Domain Value Map"

■ Section 44.4, "Using Domain Value Map Functions"

■ Section 44.5, "Creating a Domain Value Map Use Case for a Hierarchical Lookup"

■ Section 44.6, "Creating a Domain Value Map Use Case For Multiple Values"

44.1 Introduction to Domain Value Maps
Domain value maps operate on actual data values that transit through the 
infrastructure at runtime. They enable you to map from one vocabulary used in a 
given domain to another vocabulary used in a different domain. For example, one 
domain may represent a city with a long name (Boston), while another domain may 
represent a city with a short name (BO). In such cases, you can directly map the values 
by using domain value maps. A direct mapping of values between two or more 
domains is known as point-to-point mapping. Table 44–1 shows a point-to-point 
mapping for cities between two domains:

Each domain value map typically holds a specific category of mappings among 
multiple applications. For example, one domain value map may hold mappings for 
city codes and another may hold mappings for state codes.

Table 44–1 Point-to-Point Mapping

CityCode CityName

BELG_MN_STLouis BelgradeStLouis

BELG_NC BelgradeNorthCarolina

BO Boston

NP Northport

KN_USA KensingtonUSA

KN_CAN KensingtonCanada



Introduction to Domain Value Maps

44-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Domain value map values are static. You specify the domain value map values at 
design time using Oracle JDeveloper, and then at runtime, the domain value map 
columns are looked up for values.

For information about editing domain value maps at runtime with Oracle SOA 
Composer, see Chapter 45, "Using Oracle SOA Composer with Domain Value Maps."

44.1.1 Domain Value Map Features
This section describes domain value map functionality.

44.1.1.1 Qualifier Support
Qualifiers qualify mappings. A mapping may not be valid unless qualified with 
additional information. For example, a domain value map containing a city 
code-to-city name mapping may have multiple mappings from KN to Kensington 
because Kensington is a city in both Canada and the USA. Therefore, this mapping 
requires a qualifier (USA or Canada) to qualify when the mapping becomes valid, as 
shown in Table 44–2.

You can also specify multiple qualifiers for a domain value map. For example, as 
shown in Table 44–3, BELG to Belgrade mapping can also be qualified with a state 
name.

Note: To dynamically integrate values between applications, you can 
use the cross referencing feature of Oracle SOA Suite. For information 
about cross references, see Chapter 46, "Working with Cross 
References."

Table 44–2 Qualifier Support Example

Country (Qualifier) CityCode CityName

USA BO Boston

USA BELG_NC Belgrade

USA BELG_MN_Streams Belgrade

USA NP Northport

USA KN Kensington

Canada KN Kensington

Table 44–3 Multiple Qualifier Support Example

Country 
(Qualifier) State (Qualifier) CityCode CityName

USA Massachusetts BO Boston

USA North Carolina BELG Belgrade

USA Minnesota BELG Belgrade

USA Alabama NP Northport

USA Kansas KN Kensington

Canada Prince Edward 
Island

KN Kensington



Introduction to Domain Value Maps

Working with Domain Value Maps 44-3

Qualifiers are used only to qualify the mappings. Therefore, the qualifier values cannot 
be looked up.

44.1.1.2 Qualifier Order Support
A qualifier order is used to find the best match during lookup at runtime. The order of 
a qualifier varies from highest to lowest depending on the role of the qualifier in 
defining a more exact match. In Table 44–3, the state qualifier can have a higher order 
than the country qualifier, as a matching state indicates a more exact match.

Domain value maps support hierarchical lookup. If you specify a qualifier value 
during a lookup and no exact match is found, then the lookup mechanism tries to find 
a more generalized match by setting the higher order qualifiers to a "". It proceeds 
until a match is found, or until a match is not found with all qualifiers set to a "". 
Figure 44–1 describes the hierarchical lookup performed for the following lookup in 
Table 44–3.

State=Arkansas, Country=Canada, CityCode=KN_USA

In this example, the State qualifier has a qualifier value of 1 and the Country 
qualifier has a qualifier value of 2.

As shown in Figure 44–1, the lookup mechanism sets the higher order qualifier State 
to the exact lookup value Arkansas and uses Canada|"" for the lower order 
qualifier Country.

Figure 44–1 Hierarchical Lookup Example

When no match is found, the lookup mechanism sets the higher order qualifier State 
to a value of "" and sets the next higher qualifier Country to an exact value of 
Canada.

When no match is found, the lookup mechanism sets the value of the previous higher 
order qualifier Country to a value of "". One matching row is found where 
CityCode is KN_USA and Kensington is returned as a value.

Table 44–4 provides a summary of these steps.

Table 44–4 Domain Value Map Lookup Result

State Country Short Value Lookup Result

Arkansas CANADA|" " KN_USA No Match

" " CANADA KN_USA No Match

" " " " KN_USA Kensington

Level of
Customization

Level of
GeneralizationStep 3 State=" ", Country=" ", CityCode=KN_USA 

Step 2 State=" ", Country=Canada, CityCode=KN_USA 

Step 1 State=Arkansas, Country=Canada, CityCode=KN_USA 



Creating Domain Value Maps

44-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

44.1.1.3 One-to-Many Mapping Support
You can map one value to multiple values in a domain value map. For example, a 
domain value map for payment terms can contain a mapping of payment terms to 
three values, such as discount percentage, discount period, and net credit period, as 
shown in Table 44–5.

44.2 Creating Domain Value Maps
You can create one or more domain value maps in a SOA composite application of 
Oracle JDeveloper, and then at runtime, use it to look up column values.

44.2.1 How to Create Domain Value Maps
You can create a domain value map by using the Create Domain Value Map(DVM) File 
dialog in Oracle JDeveloper.

To create a domain value map:
1. In the Application Navigator, right-click the project in which you want to create a 

domain value map and select New.

The New Gallery dialog is displayed.

2. Expand the SOA Tier node, and then select the Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog is displayed.

4. In the File Name field, enter the name of the domain value map file. For example, 
specify CityCodes to identify a domain value map for city names and city codes.

5. In the Description field, enter a description for the domain value map. For 
example, Mappings of city names and city codes. This field is optional.

6. In the Domain Name field, enter a name for each domain. For example, you can 
enter CityCode in one Domain Name field and CityName in another. Each 
domain name must be unique in a domain value map.

7. In the Domain Value field, enter a value corresponding to each domain. For 
example, enter BO for the CityCode domain and Boston for the CityName 
domain, as shown in Figure 44–2.

Table 44–5 One-to-Many Mapping Support

Payment Term
Discount 
Percentage

Discount 
Period

Net Credit 
Period

GoldCustomerPaymentTerm 10 20 30

SilverCustomerPaymentTerm 5 20 30

RegularPaymentTerm 2 20 30

Note: You can later add more domains to a domain value map by 
using the Domain Value Map Editor.



Creating Domain Value Maps

Working with Domain Value Maps 44-5

Figure 44–2 Populated Create Domain Value Map File Dialog

8. Click OK. 

The Domain Value Map Editor is displayed.

44.2.2 What Happens When You Create a Domain Value Map
A file with extension .dvm is created and appears in the Application Navigator, as 
shown in Figure 44–3.

Figure 44–3 A Domain Value Map File in Application Navigator

 All .dvm files are based on the schema definition (XSD) file shown in Example 44–1.

Example 44–1 XSD File for Domain Value Map Files

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Copyright (c) 2006, Oracle. All rights reserved.  -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                  targetNamespace="http://xmlns.oracle.com/dvm"
                  xmlns:tns="http://xmlns.oracle.com/dvm"
                  elementFormDefault="qualified"
                  attributeFormDefault="unqualified">



Creating Domain Value Maps

44-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<xsd:element name="dvm">
    <xsd:annotation>
      <xsd:documentation>The Top Level Element
      </xsd:documentation>
    </xsd:annotation>
    <xsd:complexType>
      <xsd:sequence>
        <xsd:element name="description" minOccurs="0" type="xsd:string">
          <xsd:annotation>
            <xsd:documentation>The DVM Description.  This is optional
            </xsd:documentation>
          </xsd:annotation>
        </xsd:element>
        <xsd:element name="columns">
          <xsd:annotation>
            <xsd:documentation>This element holds DVM's column List.
            </xsd:documentation>
          </xsd:annotation>
          <xsd:complexType>
            <xsd:sequence>
              <xsd:element name="column" minOccurs="2" maxOccurs="unbounded">
                <xsd:annotation>
                  <xsd:documentation>This represents a DVM Column
                  </xsd:documentation>
                </xsd:annotation>
                <xsd:complexType>
                  <xsd:attribute name="name" use="required" type="xsd:string"/>
                  <xsd:attribute name="qualifier" default="false" 
type="xsd:boolean"
 use="optional"/>
                  <xsd:attribute name="order" use="optional" 
type="xsd:positiveInteger"/>
                </xsd:complexType>
              </xsd:element>
            </xsd:sequence>
          </xsd:complexType>
        </xsd:element>
        <xsd:element name="rows" minOccurs="0">
          <xsd:annotation>
            <xsd:documentation>This represents all the DVM Rows.
            </xsd:documentation>
          </xsd:annotation>
          <xsd:complexType>
            <xsd:sequence>
              <xsd:element name="row" minOccurs="1" maxOccurs="unbounded">
                <xsd:annotation>
                  <xsd:documentation>
                    Each DVM row of values
                  </xsd:documentation>
                </xsd:annotation>
                <xsd:complexType>
                  <xsd:sequence>
                    <xsd:element name="cell" minOccurs="2" maxOccurs="unbounded" 
                       type="xsd:string">
                      <xsd:annotation>
                        <xsd:documentation>This is the value for this row and for
 each column in the same order as defined in Columns.
                        </xsd:documentation>
                      </xsd:annotation>



Editing a Domain Value Map

Working with Domain Value Maps 44-7

                    </xsd:element>
                  </xsd:sequence>
                </xsd:complexType>
              </xsd:element>
            </xsd:sequence>
          </xsd:complexType>
        </xsd:element>
      </xsd:sequence>
      <xsd:attribute name="name" use="required" type="xsd:string"/>
    </xsd:complexType>
  </xsd:element>
  <xsd:annotation>
    <xsd:documentation>This Schema is used to validate the DVM Document got for
 creation and
 update of a DVM.
    </xsd:documentation>
  </xsd:annotation>
</xsd:schema>

44.3 Editing a Domain Value Map
After you have created a domain value map, you can edit it and make adjustments to 
the presentation of data in the Domain Value Map Editor.

44.3.1 How to Add Columns to a Domain Value Map
A domain value map column defines the domain whose values you want to map with 
other domains.

To add a column to a domain value map:
1. Click Add.

2. Select Add Column.

The Create DVM Column dialog is displayed.

3. In the Name field, enter a column name.

4. In the Qualifier field, select True to set this column as a qualifier. Otherwise, select 
False.

5. In the Qualifier Order field, enter a qualifier number. This field is enabled only if 
you selected True in the Qualifier field.

6. Click OK.

44.3.2 How to Add Rows to a Domain Value Map
A domain value map row contains the values of the domains.

To add a row to a domain value map:
1. In the Domain Value Map Editor, click Add.

2. Select Add Row.



Using Domain Value Map Functions

44-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

44.4 Using Domain Value Map Functions
After creating a domain value map, you can use the XPath functions of the domain 
value map to look up appropriate values and populate the targets for the applications 
at runtime.

44.4.1 Understanding Domain Value Map Functions
You can use the dvm:lookupValue and dvm:lookupValue1M XPath functions to 
look up a domain value map for a single value or multiple values at runtime.

44.4.1.1 dvm:lookupValue
The dvm:lookupValue function returns a string by looking up the value for the 
target column in a domain value map, where the source column contains the given 
source value.

■ Example 44–2 shows an example of dvm:lookupValue function syntax.

Example 44–2 dvm:lookupValue Function Syntax

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string, TargetColumnName as string, DefaultValue as string) as
 string

Example 44–3 provides an example of dvm:lookupValue function use.

Example 44–3 dvm:lookupValue Function Use

dvm:lookupValue('cityMap.dvm','CityCodes','BO', 'CityNames',
'CouldNotBeFound')

■ Example 44–4 shows another example of dvm:lookupValue function syntax.

Example 44–4 dvm:lookupValue Function Syntax

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
SourceValue as string, TargetColumnName as string, DefaultValue as string,
(QualifierSourceColumn as string, QualifierSourceValue as string)*) as string

Example 44–5 provides another example of dvm:lookupValue function use.

Example 44–5 dvm:lookupValue Function Use

dvm:lookupValue (’cityMap.dvm’,’CityCodes’,’BO’,’CityNames’,
 ’CouldNotBeFound’, ’State’, ’Massachusetts’)

Arguments
■ dvmMetadataURI - The domain value map URI.

■ SourceColumnName - The source column name.

■ SourceValue - The source value (an XPath expression bound to the source 
document of the XSLT transformation).

■ TargetColumnName - The target column name.

■ DefaultValue - If the value is not found, then the default value is returned.

■ QualifierSourceColumn: The name of the qualifier column.

■ QualifierSourceValue: The value of the qualifier.



Using Domain Value Map Functions

Working with Domain Value Maps 44-9

44.4.1.2 dvm:lookupValue1M
The dvm:lookupValue1M function returns an XML document fragment containing 
values for multiple target columns of a domain value map, where the value for the 
source column is equal to the source value. Example 44–6 provides details.

Example 44–6 dvm:lookupValue1M Function Syntax

dvm:lookupValue1M(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string,(TargetColumnName as string)?)as nodeset 

Arguments
■ dvmMetadataURI - The domain value map URI.

■ SourceColumnName - The source column name.

■ SourceValue - The source value (an XPath expression bound to the source 
document of the XSLT transformation).

■ TargetColumnName - The name of the target columns. At least one column name 
should be specified. The question mark symbol (?) indicates that you can specify 
multiple target column names.

Example 44–7 shows an example of dvm:lookupValue1M function use.

Example 44–7 dvm:lookupValue1M Function Use

dvm:lookupValue1M ('cityMap.dvm','CityCode','BO','CityName',
'CityNickName')

The result is shown in Example 44–8.

Example 44–8 dvm:lookupValue1M Function Result

<CityName>Boston</CityName>
<CityNickName>BeanTown</CityNickName>

44.4.2 How to Use Domain Value Map Functions in Transformations
The domain value map functions can be used for transformations with a BPEL process 
service component or an Oracle Mediator service component. Transformations are 
performed by using the XSLT Mapper, which is displayed when you create an XSL file 
to transform the data from one XML schema to another.

For information about the XSLT Mapper, see Chapter 38, "Creating Transformations 
with the XSLT Mapper."

To use the lookupValue1M function in a transformation:
1. In the Application Navigator, double-click an XSL file to open the XSLT Mapper.

2. In the XSLT Mapper, expand the trees in the Source and Target panes.

3. In the Component Palette, click the down arrow, and then select Advanced.

4. Select DVM Functions, as shown in Figure 44–4.



Using Domain Value Map Functions

44-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 44–4 Domain Value Map Functions in the Component Palette

5. Drag and drop lookupValue1M onto the line that connects the source to the target.

A dvm:lookupValue1M icon appears on the connecting line.

6. Double-click the lookupValue1M icon.

The Edit Function – lookupValue1M dialog is displayed, as shown in Figure 44–5.

Figure 44–5 Edit Function – lookupValue1M Dialog

7. Specify values for the following fields in the Edit Function – lookupValue1M 
dialog:

a. In the dvmLocation field, enter the location URI of the domain value map file 
or click Browse to the right of the dvmLocation field to select a domain value 
map file. You can select an already deployed domain value map from the 
metadata service (MDS) and also from the shared location in MDS. This can be 
done by selecting the Resource Palette.

b. In the sourceColumnName field, enter the name of the domain value map 
column that is associated with the source element value, or click Browse to 



Using Domain Value Map Functions

Working with Domain Value Maps 44-11

select a column name from the columns defined for the domain value map 
you previously selected.

c. In the sourceValue field, enter a value or press Ctrl-Space to use the XPath 
Building Assistant. Press the up and down arrow keys to locate an object in 
the list, and press Enter to select an item.

d. In the targetColumnName field, enter the name of the domain value map 
column that is associated with the target element value, or click Browse to 
select the name from the columns defined for the domain value map you 
previously selected.

e. Click Add to add another column as the target column and then enter the 
name of the column.

A populated Edit Function - lookupValue1M dialog is shown in Figure 44–6.

Figure 44–6 Populated Edit Function – lookupValue1M Dialog

8. Click OK.

The XSLT Mapper is displayed with the lookupValue1M function icon.

9. From the File menu, select Save All.

For more information about selecting deployed domain value maps, see Section 41.7.3, 
"Deploying and Using Shared Metadata Across SOA Composite Applications in 
Oracle JDeveloper."

44.4.3 How to Use Domain Value Map Functions in XPath Expressions
You can use the domain value map functions to create XPath expressions in the 
Expression Builder dialog. You can access the Expression Builder dialog through the 
Filter Expressions or the Assign Values functionality of an Oracle Mediator service 
component.

For information about the Assign Values functionality, see Section 20.2.2.9, "How to 
Assign Values."



Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To use the lookupValue function in the Expression Builder dialog:
1. In the Functions list, select DVM Functions.

2. Double-click the dvm:lookupValue function to add it to the expression field.

3. Specify the various arguments of the lookupValue function. For example: 

dvm:lookupValue('citymap.dvm','CityCodes',$in.Customer/inp1:Customer/Address/Ci
ty,'CityNames','NotFound')

This expression, also shown in Figure 44–7, looks up a domain value map for the 
city name equivalent of a city code. The value of the city code depends on the 
value specified at runtime.

Figure 44–7 Domain Value Map Functions in the Expression Builder Dialog

44.4.4 What Happens at Runtime
At runtime, a BPEL process service component or an Oracle Mediator service 
component uses the domain value map to look up appropriate values.

44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup
This use case demonstrates the hierarchical lookup feature of domain value maps. The 
hierarchical lookup use case consists of the following steps:

1. Files are retrieved from a directory by an adapter service named ReadOrders.

2. The ReadOrders adapter service sends the file data to an Oracle Mediator named 
ProcessOrders.



Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-13

3. The ProcessOrders Oracle Mediator then transforms the message to the structure 
required by the adapter reference. During transformation, Oracle Mediator looks 
up the UnitsOfMeasure domain value map for an equivalent value of the 
Common domain.

4. The ProcessOrders Oracle Mediator sends the message to an external reference 
named WriteOrders.

5. The WriteOrders reference writes the message to a specified output directory.

For downloading the sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com/#mediator

44.5.1 How to Create the HierarchicalValue Use Case
This section provides the design-time tasks for creating, building, and deploying your 
SOA composite application. These tasks must be performed in the order in which they 
are presented.

44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications 
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter Hierarchical and then click Next.

The Name your project page appears.

5. In the Project Name field, enter HierarchicalValue and click Next.

The Configure SOA settings page appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new 
application and the project, and the SOA Composite Editor contains a blank 
composite.

7. From the File menu, select Save All.

44.5.1.2 Task 2: How to Create a Domain Value Map
After creating an application and a project for the use case, you must create a domain 
value map.

To create a domain value map:
1. In the Application Navigator, right-click the HierarchicalValue project and select 

New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the 
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.



Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Create Domain Value Map(DVM) File dialog is displayed.

4. In the File Name field, enter UnitsOfMeasure.dvm.

5. In the Domain Name fields, enter Siebel and Common.

6. In the Domain Value field corresponding to the Siebel domain, enter Ea.

7. In the Domain Value field corresponding to the Common domain, enter Each.

8. Click OK.

The Domain Value Map Editor is displayed.

9. Click Add and then select Add Column.

The Create DVM Column dialog is displayed.

10. In the Name field, enter TradingPartner.

11. In the Qualifier list, select true.

12. In the QualifierOrder field, enter 1 and click OK.

13. Repeat Step 9 through Step 12 to create another qualifier named StandardCode 
with a qualifier order value of 2.

14. Click Add and then select Add Row.

Repeat this step to add two more rows.

15. Enter the information shown in Table 44–6 in the newly added rows of the domain 
value map table.

The Domain Value Map Editor appears, as shown in Figure 44–8.

Table 44–6 Information for Rows of Domain Value Map Table

Siebel Common TradingPartner StandardCode

EC Each OAG

E-RN Each A.C.Networks RN

EO Each ABC Inc RN



Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-15

Figure 44–8 UnitsOfMeasure Domain Value Map

16. From the File menu, select Save All and close the Domain Value Map Editor.

44.5.1.3 Task 3: How to Create a File Adapter Service
After creating the domain value map, you must create a file adapter service named 
ReadOrders to read the XML files from a directory.

To create a file adapter service:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the Exposed Services swimlane.

3. If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page is displayed.

4. In the Service Name field, enter ReadOrders and then click Next.

The Operation page is displayed.

5. In the Operation Type field, select Read File and then click Next.

The File Directories page is displayed.

6. In the Directory for Incoming Files (physical path) field, enter the directory from 
which you want to read the files. 

7. Click Next.

The File Filtering page is displayed.

8. In the Include Files with Name Pattern field, enter *.xml and then click Next.

Note: Oracle Mediator may process the same file twice when run 
against Oracle Real Application Clusters (Oracle RAC) planned 
outages. This is because a file adapter is a non-XA compliant adapter. 
Therefore, when it participates in a global transaction, it may not 
follow the XA interface specification of processing each file only once.



Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The File Polling page is displayed.

9. Change the Polling Frequency field value to 10 seconds and then click Next.

The Messages page is displayed.

10. Click Search.

The Type Chooser dialog is displayed.

11. Click Import Schema File.

The Import Schema File dialog is displayed.

12. Click Search and select the Order.xsd file in the Samples folder.

13. Click OK.

14. Expand the navigation tree to Type Explorer > Imported Schemas > Order.xsd.

15. Select listOfOrder and click OK.

16. Click Next.

The Finish page is displayed.

17. Click Finish.

18. From the File menu, click Save All.

Figure 44–9 shows the ReadOrders service in the SOA Composite Editor.

Figure 44–9 ReadOrders Service in the SOA Composite Editor

44.5.1.4 Task 4: How to Create ProcessOrders Oracle Mediator Component

To create an Oracle Mediator named ProcessOrders:
1. Drag and drop a Mediator icon from the Component Palette to the Components 

section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. In the Name field, enter ProcessOrders.

3. From the Template list, select Define Interface Later. 

4. Click OK.

An Oracle Mediator with name ProcessOrders is created.

5. In the SOA Composite Editor, connect the ReadOrders service to the 
ProcessOrders Oracle Mediator, as shown in Figure 44–10.



Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-17

This specifies the file adapter service to invoke the ProcessOrders Oracle Mediator 
while reading a file from the input directory.

Figure 44–10 ReadOrders Service Connected to the ProcessOrders Oracle Mediator

6. From the File menu, select Save All.

44.5.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter WriteCommonOrder.

5. Click Next.

The Operation page is displayed.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page is displayed.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the 
directory in which you want to write the files.

9. In the File Naming Convention field, enter common_order_%SEQ%.xml and 
click Next.

The Messages page is displayed.

10. Click Search. 

The Type Chooser dialog is displayed.

11. Navigate to Type Explorer > Project Schema Files > Order.xsd, and then select 
listOfOrder.

12. Click OK.

13. Click Next.



Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Finish page is displayed.

14. Click Finish.

Figure 44–11 shows the WriteCommonOrder reference in the SOA Composite 
Editor.

Figure 44–11 WriteCommonOrder Reference in the SOA Composite Editor

15. From the File menu, select Save All.

44.5.1.6 Task 6: How to Specify Routing Rules
You must specify the path that messages take from the ReadOrders adapter service to 
the external reference.

To specify routing rules:
1. Connect the ProcessOrders Oracle Mediator to the WriteCommonOrder reference, 

as shown in Figure 44–12.

Figure 44–12 ProcessOrders Oracle Mediator Connected to the WriteCommonOrder 
Reference

2. Double-click the ProcessOrders Oracle Mediator.

3. To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog is displayed.

4. Select Create New Mapper File and click OK.

A listOfOrder_To_listOfOrder.xsl file is displayed in the XSLT Mapper. 



Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-19

5. Drag and drop the imp1:listOfOrder source element onto the imp1:listOfOrder 
target element.

The Auto Map Preferences dialog is displayed.

6. From the During Auto Map options, deselect Match Elements Considering their 
Ancestor Names.

7. Click OK.

The listOfOrder_To_listOfOrder.xsl file appears, as shown in Figure 44–13. 

Figure 44–13 imp1:listOfOrder To imp1:listOfOrder Transformation

8. In the Component Palette, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue on the line connecting the unitsOfMeasure elements, 
as shown in Figure 44–14.

Figure 44–14 Adding lookupValue Function to imp1:listOfOrder To imp1:listOfOrder.xsl

11. Double-click the lookupvalue icon.

The Edit Function-lookupValue dialog is displayed.

12. To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

13. Select UnitsofMeasure.dvm and click OK.

14. To the right of the sourceColumnName field, click Search.



Creating a Domain Value Map Use Case for a Hierarchical Lookup

44-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Select DVM Column dialog is displayed.

15. Select Siebel and click OK.

16. In the sourceValue column, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:unitOfMeasure

17. To the right of the targetColumnName field, click Search.

The Select DVM Column dialog is displayed.

18. Select Common and click OK.

19. In the defaultValue field, enter "No_Value_Found".

20. Click Add.

A qualifierColumnName row is added.

21. In the qualifierColumnName field, enter "StandardCode".

22. Click Add.

A qualifierValue row is added.

23. In the qualifierValue field, enter the following:

 /imp1:listOfOrder/imp1:order/imp1:baseData/imp1:standard.

24. Click Add to insert another qualifierColumnName row.

25. In the qualifierColumnName field, enter "TradingPartner".

26. Click Add to insert another qualifierValue row.

27. In the qualifierValue field, enter the following:

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:tp.

The Edit Function-lookupValue dialog appears, as shown in Figure 44–15.



Creating a Domain Value Map Use Case for a Hierarchical Lookup

Working with Domain Value Maps 44-21

Figure 44–15 Edit Function-lookupValue Function Dialog: Hierarchical Lookup Use Case

28. Click OK.

The transformation appears, as shown in Figure 44–16.

Figure 44–16 Complete imp1:listOfOrder To imp1:listOfOrder Transformation

29. From the File menu, select Save All and close the listOfOrder_To_listOfOrder.xsl 
file at the top.

44.5.1.7 Task 7: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite 
application. For information on creating an application server connection, see 
Section 41.7.1.1.1, "Creating an Application Server Connection."



Creating a Domain Value Map Use Case For Multiple Values

44-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

44.5.1.8 Task 8: How to Deploy the Composite Application
Deploying the HierarchicalValue composite application to an application server 
consists of the following steps:

■ Creating an application deployment profile.

■ Deploying the application to the application server.

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA 
Composite in Oracle JDeveloper."

44.5.2 How to Run and Monitor the HierarchicalValue Application
After deploying the HierarchicalValue application, you can run it by copying the 
input XML file sampleorder.xml to the input folder. This file is available in the 
samples folder. On successful completion, a file named common_order_1.xml is 
written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion 
Middleware Control Console at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite 
infrastructure.

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA 
Composite in Oracle JDeveloper."

44.6 Creating a Domain Value Map Use Case For Multiple Values
This use case demonstrates the integration scenario for using a domain value map 
lookup between two endpoints to look up multiple values. For example, if the 
inbound value is State, then the outbound values are Shortname of State, Language, 
and Capital. The multivalue lookup use case consists of the following steps:

1. Files are retrieved from a directory by an adapter service named readFile.

2. The readFile adapter service sends the file data to an Oracle Mediator named 
LookupMultiplevaluesMediator.

3. The LookupMultiplevaluesMediator Oracle Mediator then transforms the message 
to the structure required by the adapter reference. During transformation, Oracle 
Mediator looks up the multivalue domain value map for an equivalent value of 
the Longname and Shortname domains.

4. The LookupMultiplevaluesMediator Oracle Mediator sends the message to an 
external reference named writeFile.

5. The writeFile reference writes the message to a specified output directory.

For downloading the sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com/#mediator

44.6.1 How to Create the Multivalue Use Case
This section provides the design-time tasks for creating, building, and deploying your 
SOA composite application. Perform these tasks in the order in which they are 
presented.



Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-23

44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project

To create an Oracle JDeveloper application and project:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications 
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter Multivalue and then click Next.

The Name your project page appears.

5. In the Project Name field, enter Multivalue and click Next.

The Configure SOA settings page appears.

6. From the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is populated with the new 
application and project, and the SOA Composite Editor contains a blank 
composite.

7. From the File menu, select Save All.

44.6.1.2 Task 2: How to Create a Domain Value Map
After creating an application and a project for the use case, you must create a domain 
value map.

To create a domain value map:
1. In the Application Navigator, right-click the Multivalue project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the 
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog is displayed.

4. In the File Name field, enter multivalue.dvm.

5. In the Domain Name fields, enter Longname, Shortname, Language, and 
Capital.

6. In the Domain Value field corresponding to the Longname domain, enter 
Karnataka.

7. In the Domain Value field corresponding to the Shortname domain, enter KA.

8. In the Domain Value field corresponding to the Language domain, enter 
Kannada.

9. In the Domain Value field corresponding to the Capital domain, enter 
Bangalore.

10. Click OK.

The Domain Value Map Editor is displayed.

11. Click Add and then select Add Row.



Creating a Domain Value Map Use Case For Multiple Values

44-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Repeat this step to add two more rows.

12. Enter the information shown in Table 44–7 in the newly added rows of the domain 
value map table:

The Domain Value Map Editor appears, as shown in Figure 44–17.

Figure 44–17 Multivalue Domain Value Map

13. From the File menu, select Save All and close the Domain Value Map Editor.

44.6.1.3 Task 3: How to Create a File Adapter Service
After creating the domain value map, you must create a file adapter service named 
readFile to read the XML files from a directory.

To create a file adapter service:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the Exposed Services swimlane.

3. If the Adapter Configuration wizard Welcome page appears, click Next.

The Service Name page is displayed.

4. In the Service Name field, enter readFile and then click Next. 

Table 44–7 Information for Rows of Domain Value Map Table

Longname Shortname Language Capital

Karnataka KA Kannada Bangalore

Tamilnadu TN Tamil Chennai

Andhrapradesh AP Telugu Hyderbad

Kerala KL Malayalam Trivandram

Note: Oracle Mediator may process the same file twice when run 
against Oracle RAC planned outages. This is because a file adapter is a 
non-XA compliant adapter. Therefore, when it participates in a global 
transaction, it may not follow the XA interface specification of 
processing each file only once.



Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-25

The Adapter Interface page is displayed.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page is displayed.

6. In the Operation Type field, select Read File and then click Next.

The File Directories page is displayed.

7. In the Directory for Incoming Files (physical path) field, enter the directory from 
which you want to read the files. 

8. Click Next.

The File Filtering page is displayed.

9. In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page is displayed.

10. Change the Polling Frequency field value to 1 second and then click Next.

The Messages page is displayed.

11. Click Search.

The Type Chooser dialog is displayed.

12. Click Import Schema File.

The Import Schema File dialog is displayed.

13. Click Search and select the input.xsd file in the Samples folder.

14. Click OK.

15. Expand the navigation tree to Type Explorer > Imported Schemas > input.xsd.

16. Select Root-Element and click OK.

17. Click Next.

The Finish page is displayed.

18. Click Finish.

19. From the File menu, select Save All.

Figure 44–18 shows the readFile service in the SOA Composite Editor.

Figure 44–18 readFile Service in the SOA Composite Editor



Creating a Domain Value Map Use Case For Multiple Values

44-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Oracle Mediator

To create the LookupMultiplevaluesMediator Oracle Mediator:
1. Drag and drop a Mediator icon from the Component Palette to the Components 

section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. In the Name field, enter LookupMultiplevaluesMediator.

3. From the Template list, select Define Interface Later. 

4. Click OK.

An Oracle Mediator with the name LookupMultiplevaluesMediator is created.

5. In the SOA Composite Editor, connect the readFile service to the 
LookupMultiplevaluesMediator Oracle Mediator, as shown in Figure 44–19.

This specifies the file adapter service to invoke the 
LookupMultiplevaluesMediator Oracle Mediator while reading a file from the 
input directory.

Figure 44–19 readFile Service Connected to the LookupMultiplevaluesMediator Oracle 
Mediator

6. From the File menu, select Save All.

44.6.1.5 Task 5: How to Create a File Adapter Reference

To create a file adapter reference:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter writeFile and then click Next. 

The Adapter Interface page is displayed.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page is displayed.



Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-27

6. Click Next.

The Operation page is displayed.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page is displayed.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the 
directory where you want to write the files.

10. In the File Naming Convention field, enter multivalue_%SEQ%.xml and click 
Next.

The Messages page is displayed.

11. Click Search. 

The Type Chooser dialog is displayed.

12. Navigate to Type Explorer > Project Schema Files > output.xsd, and then select 
Root-Element.

13. Click OK.

14. Click Next.

The Finish page is displayed.

15. Click Finish.

Figure 44–20 shows the writeFile reference in the SOA Composite Editor.

Figure 44–20 writeFile Reference in SOA Composite Editor

16. From the File menu, select Save All.

44.6.1.6 Task 6: How to Specify Routing Rules
You must specify the path that messages take from the readFile adapter service to the 
external reference.

To specify routing rules
1. Connect the LookupMultiplevaluesMediator Oracle Mediator to the writeFile 

reference, as shown in Figure 44–21.



Creating a Domain Value Map Use Case For Multiple Values

44-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 44–21 LookupMultiplevaluesMediator Oracle Mediator Connected to the writeFile 
Reference

2. Double-click the LookupMultiplevaluesMediator Oracle Mediator.

3. To the right of the Transform Using field, click the icon.

The Request Transformation Map dialog is displayed.

4. Select Create New Mapper File and click OK.

An Input_To_Output_with_multiple_values_lookup.xsl file is displayed in the 
XSLT Mapper. 

5. Drag and drop the imp1:Root-Element source element to the ns2:Root-Element 
target element.

The Auto Map Preferences dialog is displayed.

6. From the During Auto Map options list, deselect Match Elements Considering 
their Ancestor Names.

7. Click OK.

The Input_To_Output_with_multiple_values_lookup.xsl file appears in the XSLT 
Mapper, as shown in Figure 44–22. 

Figure 44–22 imp1:Root-Element To ns2:Root-Element Transformation

8. In the Component Palette, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue1M in the center panel, as shown in Figure 44–23.



Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-29

Figure 44–23 Adding lookupValue Function to imp1:Root-Element to ns2:Root-Element

11. Double-click the lookupvalue1M icon.

The Edit Function-lookupValue1M dialog is displayed.

12. To the right of the dvmLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

13. Select multivalue.dvm and click OK.

14. To the right of the sourceColumnName field, click Search.

The Select DVM Column dialog is displayed.

15. Select Longname and click OK.

16. In the sourceValue column, enter the following:

/imp1:Root-Element/imp1:Details/imp1:Longname.

17. To the right of the targetColumnName field, click Search.

The Select DVM Column dialog is displayed.

18. Select Shortname and click OK.

19. Click Add.

A targetColumnName row is added.

20. In the targetColumnName field, enter "Language".

21. Click Add to insert another targetColumnName row.

22. In the targetColumnName field, enter "Capital".

The Edit Function-lookupValue dialog appears, as shown in Figure 44–24.



Creating a Domain Value Map Use Case For Multiple Values

44-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 44–24 Edit Function-lookupValue Function Dialog: Multiple Value Lookup Use 
Case

23. Click OK.

The Transformation appears, as shown in Figure 44–25.

Figure 44–25 Complete imp1:Root-Element To ns2:Root-Element Transformation

24. From the File menu, select Save All and close the Input_To_Output_with_
multiple_values_lookup.xsl file.

44.6.1.7 Task 7: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite 
application. For information on creating an application server connection, see 
Section 41.7.1.1.1, "Creating an Application Server Connection."

44.6.1.8 Task 8: How to Deploy the Composite Application
Deploying the Multivalue composite application to an application server consists of 
the following steps:

■ Creating an application deployment profile.

■ Deploying the application to the application server.

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA 
Composite in Oracle JDeveloper."



Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 44-31

44.6.2 How to Run and Monitor the Multivalue Application
After deploying the Multivalue application, you can run it by copying the input XML 
file sampleinput.xml to the input folder. This file is available in the samples folder. 
On successful completion, a file with name multivalue_1.xml is written to the 
specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Fusion 
Middleware Control Console at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite 
infrastructure.

In Oracle Enterprise Manager Fusion Middleware Control Console, you can click 
Multivalue to see the project dashboard.

To view the detailed execution trail, click the instance ID in the instance column. The 
Flow Trace page is displayed.



Creating a Domain Value Map Use Case For Multiple Values

44-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



45

Using Oracle SOA Composer with Domain Value Maps 45-1

45  Using Oracle SOA Composer with Domain
Value Maps

Domain value maps enable you to map values from one vocabulary used in a given 
domain to another vocabulary used in a different domain. In earlier releases, for 
editing a domain value map at runtime, you first had to make the changes in Oracle 
JDeveloper, and then redeploy the domain value map in the application server. Oracle 
SOA Composer now offers support for editing domain value maps at runtime. Oracle 
SOA Composer is an EAR file, which is installed as part of Oracle SOA Suite 
installation. It enables you to manage domain value maps at runtime.

This chapter includes the following sections:

■ Section 45.1, "Introduction to Oracle SOA Composer"

■ Section 45.2, "Viewing Domain Value Maps at Runtime"

■ Section 45.3, "Editing Domain Value Maps at Runtime"

■ Section 45.4, "Saving Domain Value Maps at Runtime"

■ Section 45.5, "Committing Changes at Runtime"

■ Section 45.6, "Detecting Conflicts"

For more information about domain value maps, see Chapter 44, "Working with 
Domain Value Maps."

45.1 Introduction to Oracle SOA Composer
Oracle SOA Composer enables you to work with deployed domain value maps. 
Domain value map metadata can be associated either with a SOA composite 
application, or it can be shared across different composite applications. Figure 45–1 
shows how Oracle SOA Composer enables you to access a domain value map from the 
Metadata Service (MDS) repository.



Introduction to Oracle SOA Composer

45-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–1 Oracle SOA Composer High-Level Deployment Topology

45.1.1 How to Log in to Oracle SOA Composer

To log in to Oracle SOA Composer:
1. Access Oracle SOA Composer at the following location:

http://hostname:port/soa/composer

The Oracle SOA Composer Login page is displayed, as shown in Figure 45–2.

Figure 45–2 Oracle SOA Composer Login Page



Viewing Domain Value Maps at Runtime

Using Oracle SOA Composer with Domain Value Maps 45-3

You must authenticate yourself by entering the login ID and password.

2. In the Username field, enter a user name.

3. In the Password field, enter a password.

4. Click Login.

After you log in to Oracle SOA Composer, you see the Oracle SOA Composer home 
page, as shown in Figure 45–3:

Figure 45–3 Oracle SOA Composer Home Page

You must have the SOADesigner application role to access Oracle SOA Composer 
metadata. By default, all the users with Oracle Enterprise Manager Fusion Middleware 
Control Console administrator privileges have this role. If you log in to Oracle SOA 
Composer without this role, you see the following message:

Currently logged in user is not authorized to modify SOA metadata.
For information about adding the SOADesigner application role to users without 
administrator privileges, see Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite.

45.2 Viewing Domain Value Maps at Runtime
You can view domain value maps at runtime. Perform the following steps to open and 
view a domain value map.

45.2.1 How To View Domain Value Maps at Runtime

To view domain value maps at runtime:
1. From the Open menu, select Open DVM.

The Select a DVM to open dialog appears, as shown in Figure 45–4:



Editing Domain Value Maps at Runtime

45-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–4 Select a DVM to Open Dialog

You can also select a document from the My Edits option that displays recently 
opened documents.

2. Select a domain value map and click Open. You can also double-click a domain 
value map to open it.

The selected domain value map opens in view mode.

You can click Bookmarkable Link to get a direct link to the selected domain value 
map. The Info button provides more information on the selected domain value map.

45.3 Editing Domain Value Maps at Runtime
You can edit domain value maps at runtime. By default, domain value maps open in 
view mode. To edit a domain value map, you must change the mode to an edit session 
by clicking the Edit menu item.

45.3.1 How to Edit Domain Value Maps at Runtime
The domain value map opens in an edit session.

Note: Alternatively, you can also search for a domain value map by 
entering the name of the composite application containing the domain 
value map file in the Search composite field and then clicking the 
Search icon to the right of the field.



Committing Changes at Runtime

Using Oracle SOA Composer with Domain Value Maps 45-5

45.3.1.1 Adding Rows

To add rows:
You can add rows by performing the following steps:

1. Click Add Domain Values.

The Add Domain Values dialog is displayed.

2. Enter values and click OK.

The entered values are added to the domain value map.

45.3.1.2 Editing Rows

To edit rows:
You can edit rows by performing the following steps:

1. Select the row to edit.

2. Click Edit Domain Values.

The Edit Domain Values dialog is displayed.

3. Edit the values as required and click OK.

45.3.1.3 Deleting Rows

To delete rows:
You can delete rows by performing the following steps:

1. Select the rows to delete.

2. Click Delete Domain Values.

45.4 Saving Domain Value Maps at Runtime
Every time a domain value map is opened in an edit session, a sandbox is created per 
domain value map, per user. If you save your changes, then the changes are saved in 
your sandbox. 

45.4.1 How to Save Domain Value Maps at Runtime

To save domain value maps at runtime:
1. Click the Save menu item to save your changes. If your changes are saved 

successfully, you receive a notification message.

You can also revert a domain value map to the last saved state.

2. Click the Revert menu item. A confirmation dialog is displayed. 

3. Click Yes to revert your changes.

45.5 Committing Changes at Runtime
You must commit the changes for saving them permanently. Once you commit the 
changes, runtime picks up the changes and saves them in the MDS repository. In a 
session, you can also save your changes without committing them. In such a case, the 



Detecting Conflicts

45-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

domain value map remains in the saved state. You can reopen the domain value map 
and commit the changes later.

45.5.1 How to Commit Changes at Runtime

To commit changes at runtime:
1. Click the Commit menu option. A confirmation dialog is displayed.

2. Click Yes to commit your changes.

45.6 Detecting Conflicts
Oracle SOA Composer detects conflicts that can occur among concurrent users. If you 
open a domain value map that is being edited by another user, then you see a warning, 
as shown in Figure 45–5.

Figure 45–5 Confirm Dialog for Concurrent Users of a Domain Value Map

However, if you still want to edit the domain value map, you can click Yes and make 
the modifications.

If the other user makes changes to the domain value map and commits the changes, 
you receive a notification message while trying to commit your changes.

If you click Yes and commit your changes, then the changes made by the other user are 
overwritten by your changes.



46

Working with Cross References 46-1

46Working with Cross References

This chapter describes how to use the cross referencing feature of Oracle SOA Suite to 
associate identifiers for equivalent entities created in different applications.

This chapter includes the following sections:

■ Section 46.1, "Introduction to Cross References"

■ Section 46.2, "Introduction to Cross Reference Tables"

■ Section 46.3, "Creating and Modifying Cross Reference Tables"

■ Section 46.4, "Populating Cross Reference Tables"

■ Section 46.5, "Looking Up Cross Reference Tables"

■ Section 46.6, "Deleting a Cross Reference Table Value"

■ Section 46.7, "Creating and Running the Cross Reference Use Case"

■ Section 46.8, "Creating and Running Cross Reference for 1M Functions"

46.1 Introduction to Cross References
Cross references enable you to dynamically map values for equivalent entities created 
in different applications.

When you create or update objects in one application, you may also want to propagate 
the changes to other applications. For example, when a new customer is created in an 
SAP application, you may want to create a new entry for the same customer in your 
Oracle E-Business Suite application named EBS. However, the applications that you 
are integrating may be using different entities to represent the same information. For 
example, for each new customer in an SAP application, a new row is inserted in its 
Customer database with a unique identifier such as SAP_001. When the same 
information is propagated to an Oracle E-Business Suite application and a Siebel 
application, the new row should be inserted with different identifiers such as EBS_
1001 and SBL001. In such cases, you need some type of functionality to map these 
identifiers with each other so that they can be interpreted by different applications to 
be referring to the same entity. This can be done by using cross references.

Note: The cross referencing feature enables you to dynamically 
integrate values between applications, whereas domain value maps 
enable you to specify values at design time and edit values at runtime. 
For more information about domain value maps, see Chapter 44, 
"Working with Domain Value Maps" and Chapter 45, "Using Oracle 
SOA Composer with Domain Value Maps."



Introduction to Cross Reference Tables

46-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

46.2 Introduction to Cross Reference Tables
Cross references are stored in the form of tables. Table 46–1 shows a cross reference 
table containing information about customer identifiers in different applications.

The identifier mapping is also required when information about a customer is updated 
in one application and the changes must be propagated to other applications. You can 
integrate different identifiers by using a common value integration pattern, which 
maps to all identifiers in a cross reference table. For example, you can add one more 
column named Common to the cross reference table shown in Table 46–1. The updated 
cross reference table then appears, as shown in Table 46–2.

Figure 46–1 shows how you can use common value integration patterns to map 
identifiers in different applications.

Figure 46–1 Common Value Integration Pattern Example

A cross reference table consists of two parts: metadata and actual data. The metadata is 
saved as the .xref file created in Oracle JDeveloper, and is stored in the Metadata 
Services (MDS) repository as an XML file. By default, the actual data is stored in the 
XREF_DATA table of the database in the SOA Infrastructure database schema. You can 

Table 46–1 Cross Reference Table Sample

SAP EBS SBL

SAP_001 EBS_1001 SBL001

SAP_002 EBS_1002 SBL002

Table 46–2 Cross Reference Table with Common Column

SAP EBS SBL Common

SAP_001 EBS_1001 SBL001 CM001

SAP_002 EBS_1002 SBL002 CM002

C
O
M
M
O
N   

V
I
E
W 

Cross 
Reference 
Database 

SAP
System

Oracle
E-Business

Suite System

Siebel 
System 

Transform 
Common value 

to Siebel System 

Transform 
Siebel System 

value to  
Common value 

Transform Oracle
E-Business Suite
System value to
Common value

Transform
Common value to 
Oracle E-Business 
Suite System value

Transform
SAP system

value to
Common value 



Introduction to Cross Reference Tables

Working with Cross References 46-3

also generate a custom database table for each cross reference entity. The database 
table depends on the metadata of the cross reference entity.

Consider the following two cross reference entities:

■ ORDER with cross reference columns SIEBEL, COMMON, and EBS, as shown in 
Table 46–3

■ CUSTOMER with cross reference columns EBS, COMMON, and PORTAL, as shown in 
Table 46–4

If you chose to save all the runtime data in one generic table, then the data is stored in 
the XREF_DATA table, as shown in Table 46–5.

This approach has the following advantages:

■ The process of adding, removing, and modifying the columns of the cross 
reference entities is simple.

■ The process of creating and deleting cross reference entities from an application is 
straightforward.

However, this approach has the following disadvantages:

■ A large number of rows are generated in the database because each cross reference 
cell is mapped to a different row in the database. This reduces the performance of 
the queries.

■ In the generic table, the data for the columns XREF_TABLE_NAME and XREF_
COLUMN_NAME is repeated across a large number of rows.

Table 46–3 ORDER Table

Column Name SIEBEL COMMON EBS

Column Value SBL_101 COM_100 EBS_002

Column Value COM_110 EBS_012

Table 46–4 CUSTOMER Table

Column Name EBS COMMON PORTAL

Column Value EBS_201 COM_200 P2002

Table 46–5 XREF_DATA Table

XREF_TABLE_
NAME

XREF_
COLUMN_
NAME ROW_NUMBER VALUE IS_DELETED

ORDER SIEBEL 100012345 SBL_101 N

ORDER COMMON 100012345 COM_100 N

ORDER EBS 100012345 EBS_002 N

ORDER COMMON 110012345 COM_110 N

ORDER EBS 110012345 EBS_012 N

CUSTOMER EBS 200212345 EBS_201 N

CUSTOMER COMMON 200212345 COM_200 N

CUSTOMER PORTAL 200212345 P2002 N



Creating and Modifying Cross Reference Tables

46-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To overcome these problems, you can generate a custom database table for each cross 
reference entity. The custom database tables depend on the metadata of the cross 
reference entities. For example, for the XREF_ORDER table and XREF_CUSTOMER table, 
you can generate the custom database tables shown in Table 46–6 and Table 46–7.

This approach requires you to execute Data Definition Language (DDL) scripts to 
generate the custom database tables. For more information about custom database 
tables, see Section 46.3.3, "How to Create Custom Database Tables."

46.3 Creating and Modifying Cross Reference Tables
You can create cross references tables in a SOA composite application and then use it 
with a BPEL process service component or an Oracle Mediator service component 
during transformations.

46.3.1 How to Create Cross Reference Metadata

To create cross reference metadata:
1. In Oracle JDeveloper, select the SOA project in which you want to create the cross 

reference.

2. Right-click the project and select New.

The New Gallery dialog is displayed.

3. Select SOA Tier from the Categories section, and then select Transformations.

4. Select Cross Reference(XREF) from the Items section.

5. Click OK.

The Create Cross Reference(XREF) File dialog is displayed.

6. In the File Name field, specify the name of the cross reference file. For example, 
specify Customer. 

A cross reference name is used to uniquely identify a cross reference table. Two 
cross reference tables cannot have same name in the cross reference repository. The 
cross reference file name is the name of the cross reference table with an extension 
of .xref. 

7. In the Description field, enter a description for the cross reference. For example:

Cross reference of Customer identifiers.

8. In the End System fields, enter the end system names.

Table 46–6 XREF_ORDER Table

ROW_ID SIEBEL COMMON EBS

100012345 SBL_101 COM_100 EBS_002

110012345 COM_110 EBS_012

Table 46–7 XREF_CUSTOMER Table

ROW_ID EBS COMMON PORTAL

200212345 EBS_201 COM_200 P2002



Creating and Modifying Cross Reference Tables

Working with Cross References 46-5

The end systems map to the cross reference columns in a cross reference table. For 
example, you can change the first end system name to SAP and the second end 
system name to EBS. Each end system name must be unique within a cross 
reference.

A sample Create Cross Reference(XREF) File dialog is displayed in Figure 46–2.

Figure 46–2 Create Cross Reference(XREF) File Dialog

9. Click OK.

The Cross Reference Editor is displayed, as shown in Figure 46–3. You can use this 
editor to modify the cross reference.

Figure 46–3 Cross Reference Editor



Creating and Modifying Cross Reference Tables

46-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

46.3.2 What Happens When You Create a Cross Reference
A file with extension .xref gets created and appears in the Application Navigator. 
All .xref files are based on the schema definition (XSD) file shown in Example 46–1.

Example 46–1 Cross Reference XSD File

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" 
        targetNamespace="http://xmlns.oracle.com/xref"
        xmlns:tns="http://xmlns.oracle.com/xref" elementFormDefault="qualified">
  <element name="xref" type="tns:xrefType"/>
  <complexType name="xrefType">
    <sequence>
      <element name="table">
        <complexType>
          <sequence>
            <element name="description" type="string" minOccurs="0"
                     maxOccurs="1"/>
            <element name="columns" type="tns:columnsType" minOccurs="0"
                     maxOccurs="1"/>
            <element name="rows" type="tns:rowsType" maxOccurs="1"
                     minOccurs="0"/>
          </sequence>
          <attribute name="name" type="string" use="required"/>
        </complexType>
      </element>
    </sequence>
  </complexType>
  
  <complexType name="columnsType">
    <sequence>
      <element name="column" minOccurs="1" maxOccurs="unbounded">
        <complexType>
          <attribute name="name" type="string" use="required"/>
        </complexType>
      </element>
    </sequence>
  </complexType>
  
  <complexType name="rowsType">
    <sequence>
      <element name="row" minOccurs="1" maxOccurs="unbounded">
        <complexType>
          <sequence>
            <element name="cell" minOccurs="1" maxOccurs="unbounded">
              <complexType>
                <attribute name="colName" type="string" use="required"/>
              </complexType>
            </element>
          </sequence>
        </complexType>
      </element>
    </sequence>
  </complexType>
</schema>



Creating and Modifying Cross Reference Tables

Working with Cross References 46-7

46.3.3 How to Create Custom Database Tables
As mentioned previously, all the runtime data by default gets stored in the XREF_
DATA table. If you want to create custom database tables, then perform the following 
steps.

To create custom database tables:
1. From the Optimize list, select Yes in the Cross Reference Editor.

The name of the custom database table to be generated is displayed in the Table 
Name field, as shown in Figure 46–4.

Figure 46–4 Generating Custom Database Tables

The Table Name field is editable and you can change the name of the custom 
table. The custom database table name should be prefixed with xref_. If you do 
not prefix your table name with xref_, then while generating the table, you 
receive the following error message:

Table name should begin with ’xref_’ and cannot be ’xref_data’ or 
’xref_deleted_data’ which are reserved table names for XREF runtime.

2. Click Generate Table DDL. The Optimize XREF dialog is displayed.

3. Select the Generate Drop DDL checkbox to drop the table and associated indexes, 
if a table with the same name already exists. If you select this option and click 
Run, then the Running Drop DDL Warning dialog is displayed with the following 
message:

Running the Drop DDL will remove the table and indexes, do you want to
continue?

4. Click Run. The Run Table DDL dialog is displayed.

5. From the Connection list, select the database connection to use.



Creating and Modifying Cross Reference Tables

46-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

If there is no available connection, then click Create a new database connection to 
open the Create Database Connection dialog, as shown in Figure 46–5. If you want 
to edit an existing connection, then select the connection and click Edit selected 
database connection to open the Edit Database Connection dialog.

Figure 46–5 Create Database Connection Dialog

6. Enter all the required details and click OK. The Connection list of the Run Table 
DDL dialog is now populated.

7. Click OK on the Run Table DDL dialog to run the DDL script.

The Table DDL Run Results dialog displays the execution status of your DDL 
scripts.

For custom database tables, two additional attributes, namely mode and dbtable, are 
added to the schema definition mentioned in Section 46.3.2, "What Happens When 
You Create a Cross Reference." They are added for the table element in the following 
way:

 <attribute name="mode" type="string" default="generic" />
 <attribute name="dbtable" type="string" default="xref_data"/>

46.3.4 How to Add an End System to a Cross Reference Table

To add an end system to a cross reference table:
1. Click Add.

A new row is added.

2. Double-click the newly-added row.

3. Enter the end system name. For example, SBL.



Populating Cross Reference Tables

Working with Cross References 46-9

46.4 Populating Cross Reference Tables
You can create a cross reference table in a SOA composite application in Oracle 
JDeveloper and then use it to look up column values at runtime. However, before 
using a cross reference to look up a particular value, you must populate it at runtime. 
You can use the cross reference XPath functions to populate the cross-reference tables. 
The XPath functions enable you to populate a cross reference column, perform 
lookups, and delete a column value. These XPath functions can be used in the 
Expression Builder dialog to create an expression or in the XSLT Mapper to create 
transformations. For example, you can use the xref:populateXRefRow function to 
populate a cross reference column with a single value and the 
xref:populateXRefRow1M function to populate a cross reference column with 
multiple values. 

You can access the Expression Builder dialog through an assign activity, an XSL 
transformation, or the filtering functionality of a BPEL process service component or 
an Oracle Mediator service component. Figure 46–6 shows how you can select the 
cross reference functions in the Expression Builder dialog.

Figure 46–6 Expression Builder Dialog with Cross Reference Functions

The XSLT Mapper is displayed when you create an XSL file to transform data from one 
XML schema to another. Figure 46–7 shows how you can select the cross reference 
functions in the XSLT Mapper.



Populating Cross Reference Tables

46-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–7 XSLT Mapper Dialog with Cross Reference Functions

A cross reference table must be populated at runtime before using it. By default, the 
data is stored in the XREF_DATA table under the SOA Infrastructure database schema. 
You can use the xref:populateXRefRow function to populate a cross reference 
column with a single value and the xref:populateXRefRow1M function to populate 
a cross reference column with multiple values.

46.4.1 About the xref:populateXRefRow Function
The xref:populateXRefRow function populates a cross reference column with a 
single value. The xref:populateXRefRow function returns a string value, which is 
the cross reference value being populated. For example, as shown in Table 46–8, the 
Order table has the following columns: EBS, Common, and SBL with values E100, 
100, and SBL_001 respectively.

The syntax of the xref:populateXRefRow function is shown in Example 46–2.

Example 46–2 xref:populateXRefRow Function

xref:populateXRefRow(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Note: You can also store the data in a different database schema by 
configuring a data source in the following way:

■ The JNDI name of the data source should be jdbc/xref.

■ The ORACLE_
HOME/rcu/integration/soainfra/sql/xref/createsche
ma_xref_oracle.sql file should be loaded to create the XREF_
DATA table in this data source.

Table 46–8 Cross Reference Table with Single Column Values

EBS Common SBL

E100 100 SBL_001



Populating Cross Reference Tables

Working with Cross References 46-11

Parameters
■ xrefLocation: The cross reference table URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be populated.

■ xrefValue: The value to be populated in the column.

■ mode: The mode in which the xref:populateXRefRow function populates the 
column. You can specify any of the following values: ADD, LINK, or UPDATE. 
Table 46–9 describes these modes.

Table 46–9 xref:populateXRefRow Function Modes

Mode Description Exception Reasons

ADD Adds the reference value and the value to 
be added.

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"EBS","EBS100", "Common","CM001",
"ADD")

Adds the reference value EBS100 in the 
ESB reference column and the value CM001 
in the Common column.

Exceptions can occur for the 
following reasons:

■ The specified cross reference 
table is not found.

■ The specified columns are not 
found.

■ The values provided are empty.

■ The value being added is not 
unique across that column for 
that table.

■ The column for that row 
already contains a value.

■ The reference value exists.

LINK Adds the cross reference value 
corresponding to the existing reference 
value. 

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"Common","CM001","SBL","SBL_
001","LINK") 

Links the value CM001 in the Common 
column to the SBL_001 value in the SBL 
column.

Exceptions can occur for the 
following reasons:

■ The specified cross reference 
table is not found.

■ The specified columns are not 
found.

■ The values provided are empty.

■ The reference value is not 
found.

■ The value being linked exists in 
that column for that table.

UPDATE Updates the cross reference value 
corresponding to an existing reference 
column-value pair. 

For example, the following mode:

xref:populateXRefRow("customers.xref"
,"SBL","SBL_001", "SBL","SBL_
1001","UPDATE")

Updates the value SBL_001 in the SBL 
column to the value SBL_1001.

Exceptions can occur for the 
following reasons:

■ The specified cross reference 
table is not found.

■ The specified columns are not 
found.

■ The values provided are empty.

■ Multiple values are found for 
the column being updated.

■ The reference value is not 
found.

■ The column for that row does 
not have a value.



Populating Cross Reference Tables

46-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 46–10 describes the xref:populateXRefRow function modes and exception 
conditions for these modes.

46.4.2 About the xref:populateXRefRow1M Function
Two values in an end system can correspond to a single value in another system. In 
such a scenario, you should use the xref:populateXRefRow1M function to populate 
a cross reference column with a value. For example, as shown in Table 46–11, the SAP_
001 and SAP_0011 values refer to one value of the EBS and SBL applications. To 
populate columns such as SAP, you can use the xref:populateXRefRow1M 
function.

The syntax of the xref:populateXRefRow1M function is shown in Example 46–3.

Example 46–3 xref:populateXRefRow1M Function

xref:populateXRefRow1M(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters
■ xrefLocation: The cross reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be populated.

■ xrefValue: The value to be populated in the column.

Note: The mode parameter values are case-sensitive and should be 
specified in upper case only, as shown in Table 46–9.

Table 46–10 xref:populateXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

UPDATE Absent

Present

Present

Absent

Absent

Present

Exception

Exception

Success

Table 46–11 Cross Reference Table with Multiple Column Values

SAP EBS SBL

SAP_001

SAP_0011

EBS_1001 SBL001

SAP_002 EBS_1002 SBL002



Populating Cross Reference Tables

Working with Cross References 46-13

■ mode: The mode in which the xref:populateXRefRow function populates the 
column. You can specify either of the following values: ADD or LINK. Table 46–12 
describes these modes:

Table 46–13 describes the xref:populateXRefRow1M function modes and exception 
conditions for these modes.

46.4.3 How to Populate a Column of a Cross Reference Table

To populate a column of a cross reference table:
1. In the XSLT Mapper, expand the trees in the Source and Target panes.

Table 46–12 xref:populateXRefRow1M Function Modes

Mode Description Exception Reasons

ADD Adds the reference value and the value to be 
added. 

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_0011","ADD")

Adds the reference value EBS_1002 in the 
reference column EBS and the value SAP_0011 
in the SAP column.

Exceptions can occur for the 
following reasons:

■ The specified cross 
reference table is not 
found.

■ The specified columns are 
not found.

■ The values provided are 
empty.

■ The value being added is 
not unique across that 
column for that table.

■ The reference value exists.

LINK Adds the cross reference value corresponding 
to the existing reference value.

For example, the following mode:

xref:populateXRefRow1M("customers.xref","
EBS","EBS_1002", "SAP","SAP_002","LINK") 

Links the value SAP_002 in the SAP column to 
the EBS_1002 value in the EBS column. 

Exceptions can occur for the 
following reasons:

■ The specified cross 
reference table is not 
found.

■ The specified columns are 
not found.

■ The values provided are 
empty.

■ The reference value is not 
found.

■ The value being added is 
not unique across the 
column for that table.

Table 46–13 xref:populateXRefRow1M Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception



Populating Cross Reference Tables

46-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Drag and drop a source element to a target element.

3. In the Component Palette, select Advanced.

4. Select XREF Functions.

5. Drag and drop the populateXRefRow function to the line that connects the source 
object to the target object.

A populateXRefRow icon appears on the connecting line.

6. Double-click the populateXRefRow icon.

The Edit Function – populateXRefRow dialog is displayed, as shown in 
Figure 46–8.

Figure 46–8 Edit Function – populateXRefRow Dialog

7. Specify the following values for the fields in the Edit Function – populateXRefRow 
dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference 
file. You can select an already-deployed cross reference from MDS and also 
from a shared location in MDS using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference 
column.

Click Browse to the right of the referenceColumnName field to select a 
column name from the columns defined for the cross reference you previously 
selected.

c. In the referenceValue field, you can manually enter a value or press 
Ctrl-Space to launch the XPath Building Assistant. Press the up and down 
keys to locate an object in the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

Click the Browse icon to the right of the columnName field to select a column 
name from the columns defined for the cross reference you previously 
selected.



Looking Up Cross Reference Tables

Working with Cross References 46-15

e. In the value field, you can manually enter a value or press Ctrl-Space to 
launch the XPath Building Assistant.

f. In the mode field, enter a mode in which you want to populate the cross 
reference table column. For example, enter ADD.

You can also click Browse to select a mode. The Select Populate Mode dialog is 
displayed from which you can select a mode.

8. Click OK.

A populated Edit Function – populateXRefRow dialog is shown in Figure 46–9.

Figure 46–9 Populated Edit Function – populateXRefRow Dialog

46.5 Looking Up Cross Reference Tables
After populating the cross reference table, you can use it to look up a value. The 
xref:lookupXRef and xref:lookupXRef1M functions enable you to look up a 
cross reference for single and multiple values, respectively.

46.5.1 About the xref:lookupXRef Function
You can use the xref:lookupXRef function to look up a cross reference column for a 
value that corresponds to a value in a reference column. For example, the following 
function looks up the Common column of the cross reference tables described in 
Table 46–2 for a value corresponding to the SAP_001 value in the SAP column.

xref:lookupXRef("customers.xref","SAP","SAP_001","Common",true())

The syntax of the xref:lookupXRef function is shown in Example 46–4.

Example 46–4 xref:lookupXRef Function

xref:lookupXRef(xrefLocation as string, xrefReferenceColumnName as string,
xrefReferenceValue as string, xrefColumnName as string, needAnException as
boolean) as string

Parameters
■ xrefLocation: The cross reference URI.



Looking Up Cross Reference Tables

46-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: When the value is set to true, an exception is thrown if the 
value is not found. Otherwise, an empty value is returned. 

Exception Reasons
At runtime, an exception can occur for the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column names are not found.

■ The specified reference value is empty.

■ Multiple values are found.

46.5.2 About the xref:lookupXRef1M Function
You can use the xref:lookupXRef1M function to look up a cross reference column 
for multiple values corresponding to a value in a reference column. The 
xref:lookupXRef1M function returns a node-set containing multiple nodes. Each 
node in the node-set contains a value.

For example, the following function looks up the SAP column of Table 46–11 for 
multiple values corresponding to the EBS_1001 value in the EBS column:

xref:lookupXRef1M("customers.xref","EBS","EBS_1001","SAP",true())

The syntax of the xref:lookupXRefRow1M function is shown in Example 46–5.

Example 46–5 xref:lookupXRefRow1M Function

xref:lookupXRef1M(xrefLocation as String, xrefReferenceColumnName as String,
 xrefReferenceValue as String, xrefColumnName as String, needAnException as
 boolean) as node-set

Parameters
■ xrefLocation: The cross reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: If this value is set to true, an exception is thrown when the 
referenced value is not found. Otherwise, an empty node-set is returned.

Example of the xref:lookupXRefRow1M Function
Consider the Order table shown in Table 46–14 with the following three columns: 
Siebel, Billing1, and Billing2.

Table 46–14 Order Table

Siebel Billing1 Billing2

100 101 102



Looking Up Cross Reference Tables

Working with Cross References 46-17

For 1:1 mapping, the 
xref:lookupPopulatedColumns("Order","Siebel","100","false") 
method returns the values shown in Example 46–6.

Example 46–6 xref:lookupPopulatedColumns Method

<column name="BILLING1">101</column>
<column name="BILLING2">102</column>

In this case, both the columns, Billing1 and Billing2, are populated.

For 1:M mapping, the 
xref:lookupPopulatedColumns("Order","Siebel","110","false") 
method returns the values shown in Example 46–7.

Example 46–7 xref:lookupPopulatedColumns

<column name="BILLING2">111</column>
<column name="BILLING2">112</column>

In this case, Billing1 is not populated.

Exception Reasons
An exception can occur for the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column names are not found.

■ The specified reference value is empty.

46.5.3 About the xref:lookupPopulatedColumns Function
You can use the xref:lookupPopulatedColumns function to look up all the 
populated columns for a given cross reference table, a cross reference column, and a 
value. The xref:lookupPopulatedColumns function returns a node-set with each 
node containing a column name and the corresponding value.

The syntax of the xref:LookupPopulatedColumns function is shown in 
Example 46–8.

Example 46–8 xref:LookupPopulatedColumns Function

xref:LookupPopulatedColumns(xrefTableName as String,xrefColumnName as
 String,xrefValue as String,needAnException as boolean)as node-set

Parameters
■ xrefTableName: The name of the reference table.

■ xrefColumnName: The name of the reference column.

■ xrefValue: The value corresponding to the reference column name.

110 111

112

Table 46–14 (Cont.) Order Table

Siebel Billing1 Billing2



Looking Up Cross Reference Tables

46-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ needAnException: If this value is set to true, then an exception is thrown when 
no value is found in the referenced column. Otherwise, an empty node-set is 
returned.

Exception Reasons
An exception can occur for the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column names are not found.

■ The specified reference value is empty.

46.5.4 How to Look Up a Cross Reference Table for a Value

To look up a cross reference table column:
1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Component Palette, select Advanced.

4. Select XREF Functions.

5. Drag and drop the lookupXRef function to the line that connects the source object 
to the target object.

A lookupXRef icon appears on the connecting line.

6. Double-click the lookupXRef icon.

The Edit Function – lookupXRef dialog is displayed, as shown in Figure 46–10.

Figure 46–10 Edit Function – lookupXRef Dialog

7. Specify the following values for the fields in the Edit Function – lookupXRef 
dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.



Deleting a Cross Reference Table Value

Working with Cross References 46-19

Click Browse to the right of the xrefLocation field to select the cross reference 
file. You can select an already deployed cross reference from MDS and also 
from a shared location in MDS by using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference 
column. 

Click Browse to the right of the referenceColumnName field to select a 
column name from the columns defined for the cross reference you previously 
selected.

c. In the referenceValue field, you can manually enter a value or press 
Ctrl-Space to use the XPath Building Assistant. Press the up and down keys to 
locate an object in the list and press Enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

Click Browse to the right of the columnName field to select a column name 
from the columns defined for the cross reference you previously selected.

e. Click Browse to the right of needException field. The Need Exception dialog 
is displayed. Select Yes to raise an exception if no value is found. Otherwise, 
select No.

8. Click OK.

A populated Edit Function – lookupXRef dialog is shown in Figure 46–11.

Figure 46–11 Populated Edit Function – lookupXRef Dialog

46.6 Deleting a Cross Reference Table Value
You can use the xref:markForDelete function to delete a value in a cross reference 
table. The value in the column is marked as deleted. This function returns true if the 
deletion is successful. Otherwise, it returns false. 

Any column value marked for deletion is treated as if the value does not exist. 
Therefore, you can populate the same column with the xref:populateXRefRow 
function in ADD mode.



Deleting a Cross Reference Table Value

46-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A cross reference table row should have at least two mappings. If you have only two 
mappings in a row and you mark one value for deletion, then the value in another 
column is also deleted.

The syntax for the xref:markForDelete function is shown in Example 46–9.

Example 46–9 xref:markForDelete Function

xref:markForDelete(xrefTableName as string, xrefColumnName as string,
xrefValueToDelete as string) return as boolean

Parameters
■ xrefTableName: The cross reference table name.

■ xrefColumnName: The name of the column from which you want to delete a 
value.

■ xrefValueToDelete: The value to be deleted.

Exception Reasons
An exception can occur for the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column name is not found.

■ The specified value is empty.

■ The specified value is not found in the column.

■ Multiple values are found.

46.6.1 How to Delete a Cross Reference Table Value

To delete a cross reference table value:
1. In the XSLT Mapper, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Component Palette, select Advanced.

4. Select XREF Functions.

5. Drag and drop the markForDelete function to the line that connects the source 
object to the target object.

A markForDelete icon appears on the connecting line.

6. Double-click the markForDelete icon.

The Edit Function – markForDelete dialog is displayed, as shown in Figure 46–12.

Note: Using a column value marked for deletion as a reference value 
in LINK mode of the xref:populateXRefRow function raises an 
error.



Deleting a Cross Reference Table Value

Working with Cross References 46-21

Figure 46–12 Edit Function – markForDelete Dialog

7. Specify the following values for the fields in the Edit Function – markForDelete 
dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click the Search icon to the right of the xrefLocation field to select the cross 
reference file. You can select an already deployed cross reference from MDS 
and also from a shared location in MDS by using the Resource Palette.

b. In the columnName field, enter the name of cross reference table column.

Click the Search icon to the right of the columnName field to select a column 
name from the columns defined for the cross reference you previously 
selected.

c. In the Value field, manually enter a value or press Ctrl-Space to launch the 
XPath Building Assistant. Press the up and down keys to locate an object in 
the list and press Enter to select that object.

A populated Edit Function – markForDelete dialog is shown in Figure 46–13.

Figure 46–13 Populated Edit Function – markForDelete Dialog

8. Click OK.



Creating and Running the Cross Reference Use Case

46-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

46.7 Creating and Running the Cross Reference Use Case
This cross reference use case implements an integration scenario between Oracle EBS, 
SAP, and Siebel instances. In this use case, when an insert, update, or delete operation 
is performed on the SAP_01 table, the corresponding data is inserted or updated in 
the EBS and SBL tables. Figure 46–14 provides an overview of this use case.

Figure 46–14 XrefCustApp Use Case in SOA Composite Editor

For downloading the sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com/#mediator

46.7.1 How to Create the Use Case
This section provides the design-time tasks for creating, building, and deploying your 
SOA Composite application. These tasks should be performed in the order in which 
they are presented.

46.7.1.1 Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:
1. You need the SCOTT database account with password TIGER for this use case. You 

must ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in 
the XrefOrderApp1M/sql directory to unlock the account.

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql 
directory to create the tables required for this use case.

3. Run the create_app_procedure.sql script available in the 
XrefOrderApp1M/sql directory to create a procedure that simulates the various 
applications participating in this integration.

4. Run the createschema_xref_oracle.sql script available in the 
OH/rcu/integration/soainfra/sql/xref/ directory to create a cross 
reference table to store runtime cross reference data.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-23

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to 
the newly created directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file available in the $BEAHOME/META-INF directory 
as follows:

■ Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

■ Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>

This sample uses eis/DB/DBConnection1 to poll the SAP table for new 
messages and to connect to the procedure that simulates Oracle EBS and Siebel 
instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the 
RAR file by using Oracle WebLogic Server Administration Console.

8. Create a data source using the Oracle WebLogic Server Administration Console 
with the following values:

■ jndi-name=jdbc/DBConnection1

■ user=scott

■ password=tiger

■ url=jdbc:oracle:thin:@host:port:service

■ connection-factory 
factory-class=oracle.jdbc.pool.OracleDataSource

9. Create a data source using the Oracle WebLogic Server Administration Console 
with the following values:

■ jndi-name=jdbc/xref

■ user=scott

■ password=tiger

■ url=jdbc:oracle:thin:@host:port:service

■ connection-factory 
factory-class=oracle.jdbc.pool.OracleDataSource

46.7.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications 
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.



Creating and Running the Cross Reference Use Case

46-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. In the Application Name field, enter XrefCustApp, and then click Next.

The Name your SOA project page appears.

5. In the Project Name field, enter XrefCustApp and click Next.

The Configure SOA settings page appears.

6. From the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is updated with the new 
application and project and the SOA Composite Editor contains a blank 
composite.

7. From the File menu, select Save All.

46.7.1.3 Task 3: How to Create a Cross Reference
After creating an application and a project for the use case, you must create a cross 
reference table.

To create a cross reference table:
1. In the Application Navigator, right-click the XrefCustApp project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the 
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter customer.xref.

5. In the End System fields, enter SAP_01 and EBS_i76.

6. Click OK. 

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter SBL_78 as the end system name in the newly added row.

9. Click Add and enter Common as the end system name.

The Cross Reference Editor appears, as shown in Figure 46–15.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-25

Figure 46–15 Customer Cross Reference

10. From the File menu, select Save All and close the Cross Reference Editor.

46.7.1.4 Task 4: How to Create a Database Adapter Service

To create a database adapter service:
1. In the Component Palette, select SOA.

2. Select Database Adapter and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from Schema.

12. In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with SAP_01 table name.

13. Double-click SAP_01.



Creating and Running the Cross Reference Use Case

46-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The selected field is populated with SAP_01.

14. Click OK.

The Select Table page now contains the SAP_01 table.

15. Select SAP_01 and click Next.

The Define Primary Key page is displayed.

16. Select ID as the primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_01] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

20. In the Logical Delete field, select LOGICAL_DEL.

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Figure 46–16 shows the Logical Delete page of the Adapter Configuration wizard.

Figure 46–16 Logical Delete Page: Adapter Configuration Wizard

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-27

25. Click Next.

The Finish page is displayed.

26. Click Finish.

A database adapter service named SAP is created, as shown in Figure 46–17.

Figure 46–17 SAP Database Adapter Service in SOA Composite Editor

27. From the File menu, select Save All.

46.7.1.5 Task 5: How to Create EBS and SBL External References

To create EBS and SBL external references:
1. In the Component Palette, select SOA.

2. Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.



Creating and Running the Cross Reference Use Case

46-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

12. Select POPULATE_APP_INSTANCE, as shown in Figure 46–18.

Figure 46–18 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears, as shown in Figure 46–19.

Figure 46–19 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-29

The Finish page is displayed.

15. Click Finish.

Figure 46–20 shows the EBS reference in the SOA Composite Editor.

Figure 46–20 EBS Reference in SOA Composite Editor

16. From the File menu, select Save All.

17. Repeat Step 2 through Step 16 to create another external reference named SBL.

After completing this task, the SOA Composite Editor appears, as shown in 
Figure 46–21.

Figure 46–21 SBL Reference in SOA Composite Editor

46.7.1.6 Task 6: How to Create the Logger File Adapter External Reference

To create the Logger file adapter external reference:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next. 



Creating and Running the Cross Reference Use Case

46-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Service Name page is displayed.

4. In the Service Name field, enter Logger.

5. Click Next.

The Operation page is displayed.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page is displayed.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the 
directory in which you want to write the files.

9. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

10. Click Search. 

The Type Chooser dialog is displayed.

11. Navigate to Type Explorer > Project Schema Files > SCOTT_POPULATE_APP_
INSTANCE.xsd, and then select OutputParameters.

12. Click OK.

13. Click Next.

The Finish page is displayed.

14. Click Finish.

Figure 46–22 shows the Logger reference in the SOA Composite Editor.

Figure 46–22 Logger Reference in SOA Composite Editor

15. From the File menu. select Save All.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-31

46.7.1.7 Task 7: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component:
1. Drag and drop a Mediator icon from the Component Palette to the Components 

section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. From the Template list, select Define Interface Later.

3. Click OK.

An Oracle Mediator with name Mediator1 is created.

4. Connect the SAP service to the Mediator1, as shown in Figure 46–23.

Figure 46–23 SAP Service Connected to Mediator1

5. From the File menu, select Save All.

6. Drag and drop another Mediator icon from the Component Palette to the 
Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

7. From the Template list, select Interface Definition From WSDL.

8. Deselect Create Composite Service with SOAP Bindings.

9. To the right of the WSDL File field, click Find Existing WSDLs.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is 
available in the Samples folder.

11. Click OK.

12. Click OK.

An Oracle Mediator with name Common is created.



Creating and Running the Cross Reference Use Case

46-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

46.7.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service 
Component
You must specify routing rules for the following operations:

■ Insert

■ Update

■ UpdateID

■ Delete

To create routing rules for an insert operation:
1. Double-click the Mediator1 Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp > Mediators > Common, Services > Common.

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.

7. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='INSERT'

8. Click OK.

9. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK. 

An SAP_TO_COMMON_INSERT.xsl file is displayed in the XSLT Mapper.

12. Drag and drop the top:SAP01 source element to the inp1:Customer target 
element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options, deselect Match Elements Considering their 
Ancestor Names.

14. Click OK.

The transformation is created, as shown in Figure 46–24.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-33

Figure 46–24 SAP_TO_COMMON_INSERT.xsl Transformation

15. From the Component Palette, select Advanced.

16. Select XREF Functions.

17. Drag and drop the populateXRefRow function from the Component Palette to the 
line connecting the top:id and inp1:id elements.

18. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

19. Click Search to the right of the xrefLocation field.

The SOA Resource Lookup dialog is displayed.

20. Select customer.xref and click OK.

21. In the referenceColumnName field, enter "SAP_01" or click Search to select the 
column name.

22. In the referenceValue column, enter 
/top:Sap01Collection/top:Sap01/top:id.

23. In the columnName field, enter "Common" or click Search to select the column 
name.

24. In the value field, enter oraext:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.

Figure 46–25 shows the populated Edit Function – populateXRefRow dialog.



Creating and Running the Cross Reference Use Case

46-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–25 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

26. Click OK.

27. From the File menu, select Save All and close the SAP_TO_COMMON_
INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 46–26.

Figure 46–26 Routing Rules Section with Insert Operation

To create routing rules for an update operation:
1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select Update and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:



Creating and Running the Cross Reference Use Case

Working with Cross References 46-35

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='UPDATE'

7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK. 

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Component Palette, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from the Component Palette to the line 
connecting the top:id and inp1:id elements.

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the 
column name.

20. In the referenceValue column, enter 
/top:Sap01Collection/top:Sap01/top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column 
name.

22. In the needException field, enter true() or click Search to select this mode.

Figure 46–27 shows the populated Edit Function – looupXRef dialog.



Creating and Running the Cross Reference Use Case

46-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–27 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

23. Click OK.

24. From the File menu, select Save All and close the SAP_TO_COMMON_
UPDATE.xsl file.

The Routing Rules section appears, as shown in Figure 46–28.

Figure 46–28 Insert Operation and Update Operation

To create routing rules for an updateID operation:
Perform the following tasks to create routing rules for an updateID operation:

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select updateid and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:



Creating and Running the Cross Reference Use Case

Working with Cross References 46-37

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'UPDATEID'

7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATEID.xsl.

10. Click OK. 

An SAP_TO_COMMON_UPDATEID.xsl file is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Component Palette, select Advanced.

14. Select XREF Functions.

15. Drag and drop the populateXRefRow function from the Component Palette to the 
line connecting the top:id and inp1:id elements.

16. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

17.  To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the 
column name.

20. In the referenceValue column, enter 
/top:Sap01Collection/top:Sap01/top:refId.

21. In the columnName field, enter "SAP_01" or click Search to select the column 
name.

22. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

23. In the mode field, enter "UPDATE" or click Search to select this mode.

Figure 46–29 shows a populated Edit Function – populateXRefRow dialog.



Creating and Running the Cross Reference Use Case

46-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–29 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

24. Drag and drop the lookupXRef function from the Component Palette to the line 
connecting the top:id and inp1:id elements.

25. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

26. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

27. Select customer.xref and click OK.

28. In the referenceColumnName field, enter "SAP_01" or click Search to select the 
column name.

29. In the referenceValue column, enter the following:

xref:populateXRefRow("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:refId,"SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"UPDATE").

30. In the columnName field, enter "COMMON" or click Search to select the column 
name.

31. In the needException field, enter false() or click Search to select this mode.

Figure 46–30 shows a populated Edit Function – lookupXRef dialog.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-39

Figure 46–30 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

32. Click OK.

33. From the File menu, select Save All and close the SAP_TO_COMMON_
UPDATEID.xsl file.

The Routing Rules section appears, as shown in Figure 46–31.

Figure 46–31 Insert, Update, and UpdateID Operations

To create routing rules for a delete operation:
1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > Mediators > Common, Services > Common.

4. Select delete and click OK.

5. Click the Filter icon.



Creating and Running the Cross Reference Use Case

46-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'DELETE'

7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_DELETE.xsl.

10. Click OK. 

A SAP_TO_COMMON_DELETE.xsl file is displayed.

11. Right-click <sources> and select Add Parameter.

The Add Parameter dialog is displayed.

12. In the Local Name field, enter COMMONID.

13. Select Set Default Value.

14. Select Expression.

15. In the XPath Expression field, enter 

xref:lookupXRef("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"COMMON",false()).

16. Click OK.

17. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

18. Click OK.

19. Delete the line connecting top:id and inp1:id.

20. Connect COMMONID to inp1:id.

21. Right-click inp1:id and select Add XSL node and then if.

A new node if is inserted between inp1:customer and inp1:id.

22. Connect top:id to the if node.

23. From the Component Palette, select Advanced.

24. Select XREF Functions.

25. Drag and drop the markForDelete function from the Component Palette to the 
line connecting top:id and the if node.

26. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

27. Click Search to the right of the xrefLocation field.

The SOA Resource Lookup dialog is displayed.

28. Select customer.xref and click OK.

29. In the columnName field, enter "SAP_01" or click Search to select the column 
name.

30. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-41

Figure 46–32 shows a populated Edit Function – markForDelete dialog.

Figure 46–32 Edit Function – markForDelete Dialog: XrefCustApp Use Case

31. Click OK.

The SAP_TO_COMMON_DELETE.xsl file appears, as shown in Figure 46–33.

Figure 46–33 SAP_TO_COMMON_DELETE.xsl

32. From the File menu, select Save All and close the SAP_TO_COMMON_
DELETE.xsl file.

The Routing Rules section appears, as shown in Figure 46–34.



Creating and Running the Cross Reference Use Case

46-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–34 Insert, Update, UpdateID, and Delete Operations

46.7.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
You must specify routing rules for the following operations of the Common Oracle 
Mediator:

■ Insert

■ Delete

■ Update

■ UpdateID

To create routing rules for the insert operation:
1. Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp > References > SBL.

5. Select SBL and click OK.

6. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_SBL_INSERT.xsl.

8. Click OK. 

A COMMON_TO_SBL_INSERT.xsl file is displayed.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-43

9. Drag and drop the inp1:Customers source element to the db:InputParameters 
target element.

The Auto Map Preferences dialog is displayed.

10. Click OK.

The transformation is created, as shown in Figure 46–35.

Figure 46–35 COMMON_TO_SBL_INSERT.xsl Transformation

11. From the File menu, select Save All and close the COMMON_TO_SBL_
INSERT.xsl file.

12. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefCustApp > References > Logger.

15. Select Write and click OK.

16. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter SBL_TO_COMMON_INSERT.xsl.

18. Select Include Request in the Reply Payload.

19. Click OK. 

A SBL_TO_COMMON_INSERT.xsl file is displayed.

20. Connect the inp1:Customers source element to db:X:APP_ID.

21. Drag and drop the populateXRefRow function from the Component Palette to the 
connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter this information in the following fields:

■ xrefLocation: "customer.xref"

■ referenceColumnName: "Common"

■ referenceValue: 
$initial.Customers/inp1:Customers/inp1:Customer/inp1:Id

■ columnName: "SBL_78"

■ value: /db:OutputParameters/db:X_APP_ID



Creating and Running the Cross Reference Use Case

46-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ mode: "LINK"

24. Click OK.

The SBL_TO_COMMON_INSERT.xsl file appears, as shown in Figure 46–36.

Figure 46–36 SBL_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, select Save All and close the SBL_TO_COMMON_
INSERT.xsl file.

26. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30.  In the Expression field, enter the following expression and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

31. In the To section, select Property.

32. Select the jca.file.FileName property and click OK.

33. Click OK.

The insert operation section appears, as shown in Figure 46–37.

Figure 46–37 Insert Operation with SBL Target Service

34. From the File menu, select Save All.

35. Repeat Step 2 through Step 34 to specify another target service named EBS and its 
routing rules.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-45

Figure 46–38 shows the insert operation section with SBL and EBS target services.

Figure 46–38 Insert Operation with SBL and EBS Target Services

To create routing rules for a delete operation:
Perform the following tasks to create the routing rules for a delete operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > References > SBL.

4. Select SBL and click OK.

5. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_DELETE.xsl.

7. Click OK. 

A COMMON_TO_SBL_DELETE.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters 
target element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 46–39.



Creating and Running the Cross Reference Use Case

46-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–39 COMMON_TO_SBL_DELETE.xsl Transformation

10. Drag and drop the lookupXRef function from the Component Palette to the line 
connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

■ xrefLocation: "customer.xref"

■ referenceColumnName: "Common"

■ referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

■ columnName: "SBL_78"

■ needException: false()

13. Click OK.

14. From the File menu, select Save All and close the COMMON_TO_SBL_
DELETE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_DELETE.xsl.

21. Click OK. 

The SBL_TO_COMMON_DELETE.xsl file is displayed.

22. Connect the db:X_APP_ID source element to the db:X:APP_ID target.

23. Drag and drop the markForDelete function from the Component Palette to the 
connecting line.

24. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

25. Enter this information in the following fields:

■ xrefLocation: "customer.xref"

■ columnName: "SBL_78"



Creating and Running the Cross Reference Use Case

Working with Cross References 46-47

■ value: /db:OutputParameters/db:X_APP_ID

26. Click OK.

27. From the File menu, select Save All and close the SBL_TO_COMMON_
DELETE.xsl file.

28. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. In the Expression field, enter the following expression, and click OK.

concat('DELETE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

33. In the To section, select Property.

34. Select the jca.file.FileName property and click OK.

35. Click OK.

The delete operation section appears, as shown in Figure 46–40.

Figure 46–40 Delete Operation with SBL Target Service

36. From the File menu, select Save All.

37. Repeat Step 1 through Step 36 to specify another target service named EBS and 
specify the routing rules.

Figure 46–41 shows the delete operation section with SBL and EBS target services.



Creating and Running the Cross Reference Use Case

46-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–41 Delete Operation with SBL and EBS Target Service

To create routing rules for the update operation:
Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, References > SBL.

4. Select SBL and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATE.xsl.

7. Click OK. 

A COMMON_TO_SBL_UPDATE.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters 
target element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 46–39.

10. Drag and drop the lookupXRef function from the Component Palette to the line 
connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-49

12. Enter this information in the following fields:

■ xrefLocation: "customer.xref"

■ referenceColumnName: "Common"

■ referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

■ columnName: "SBL_78"

■ needException: true()

13. Click OK.

14. From the File menu, select Save All and close the COMMON_TO_SBL_
UPDATE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_UPDATE.xsl.

21. Click OK. 

A SBL_TO_COMMON_UPDATE.xsl file is displayed.

22. Connect the db:X:APP_ID source element to db:X:APP_ID.

23. From the File menu, select Save All and close the SBL_TO_COMMON_
UPDATE.xsl file.

24. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28.  In the Expression field, enter the following expression and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

29. In the To section, select Property.

30. Select the jca.file.FileName property and click OK.

31. Click OK.

The update operation section appears, as shown in Figure 46–42.



Creating and Running the Cross Reference Use Case

46-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–42 Update Operation with SBL Target Service

32. From the File menu, select Save All.

33. Repeat Step 1 through Step 32 to specify another target service named EBS and its 
routing rules.

Figure 46–43 shows the update operation section with SBL and EBS target 
services.

Figure 46–43 Update Operation with SBL and EBS Target Service

To create routing rules for the UpdateID operation:
Perform the following tasks to create routing rules for the UpdateID operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp > References > SBL.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-51

4. Select SBL and click OK.

5. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATEID.xsl.

7. Click OK.

The COMMON_TO_SBL_UPDATEID.xsl file is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters 
target element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 46–39.

10. Drag and drop the lookupXRef function from the Component Palette to the line 
connecting inp1:id and db:X_CUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

■ xrefLocation: customer.xref

■ referenceColumnName: Common

■ referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

■ columnName: SBL_78

■ needException: false()

13. Click OK.

14. From the File menu, select Save All and close the COMMON_TO_SBL_
UPDATEID.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Include Request in the Reply Payload.

21. Click OK. 

The SBL_TO_COMMON_UPDATEID.xsl file is displayed.

22. Connect inp1:Customers source element to the db:X:APP_ID.

23. Drag and drop the populateXRefRow function from the Component Palette to the 
connecting line.



Creating and Running the Cross Reference Use Case

46-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

24. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

25. Enter this information in the following fields:

■ xrefLocation: customer.xref

■ referenceColumnName: Common

■ referenceValue: 
$initial.Customers/inp1:Customers/inp1:Customer/inp1:Id

■ columnName: SBL_78

■ value: /db:OutputParameters/db:X_APP_ID

■ mode: UPDATE

26. Click OK.

27. From the File menu, select Save All and close the SBL_TO_COMMON_
UPDATEID.xsl file.

28. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. In the Expression field, enter the following expression and click OK.

concat('UPDATEID-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

33. In the To section, select Property.

34. Select the jca.file.FileName property and click OK.

35. Click OK.

The updateid operation section appears, as shown in Figure 46–44.

Figure 46–44 Updateid Operation with SBL Target Service

36. From the File menu, select Save All.



Creating and Running the Cross Reference Use Case

Working with Cross References 46-53

37. Repeat Step 1 through Step 36 to specify another target service named EBS and 
specify the routing rules.

Figure 46–45 shows the updateid operation section with the SBL and EBS target 
services.

Figure 46–45 Updateid Operation with SBL and EBS Target Service

46.7.1.10 Task 10: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite 
application. For information on creating an application server connection, see 
Section 41.7.1.1.1, "Creating an Application Server Connection."

46.7.1.11 Task 11: How to Deploy the Composite Application
Deploying the XrefCustApp composite application consists of the following steps:

■ Creating an application deployment profile

■ Deploying the application to the application server

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA 
Composite in Oracle JDeveloper."

46.7.2 How to Run and Monitor the XrefCustApp Application
After deploying the XrefCustApp application, you can run it by using any command 
from the insert_sap_record.sql file present in the XrefCustApp/sql folder. 
On successful completion, the records are inserted or updated in the EBS and SBL 
tables and the Logger reference writes the output to the output.xml file. 

For monitoring the running instance, you can use the Oracle Enterprise Manager 
Fusion Middleware Control Console at the following URL:

http://hostname:port_number/em



Creating and Running Cross Reference for 1M Functions

46-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

where hostname is the host on which you installed the Oracle SOA Suite 
infrastructure and port_number is the port running the service.

46.8 Creating and Running Cross Reference for 1M Functions
The cross reference use case implements an integration scenario between two 
end-system Oracle EBS and SAP instances. In this use case, the order passes from SAP 
to EBS. SAP represents the orders with a unique ID, whereas EBS splits the order into 
two orders: ID1 and ID2. This scenario is created using database adapters. When you 
poll the SAP table for updated or created records, an SAP instance is created. In EBS, 
the instance is simulated by a procedure and the table is populated. Figure 46–46 
provides an overview of this use case.

Figure 46–46 XrefOrderApp Use Case in SOA Composite Editor

For downloading the sample files mentioned in this section, visit the following URL:

https://soasamples.samplecode.oracle.com/#mediator

46.8.1 How to Create the Use Case
This section provides the design-time tasks for creating, building, and deploying your 
SOA composite application. These tasks should be performed in the order in which 
they are presented.

46.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter

To configure the Oracle database and database adapter:
1. You need the SCOTT database account with password TIGER for this use case. You 

must ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in 
the XrefOrderApp1M/sql folder to unlock the account.

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql 
folder to create the tables required for this use case.

3. Run the create_app_procedure.sql script available in the 
XrefOrderApp1M/sql folder to create a procedure that simulates the various 
applications participating in this integration.



Creating and Running Cross Reference for 1M Functions

Working with Cross References 46-55

4. Run the createschema_xref_oracle.sql script available in the Oracle_
Home/rcu/integration/soainfra/sql/xref/ folder to create a cross 
reference table to store runtime cross reference data.

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to 
the newly created directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file, which is available in the 
$BEAHOME/src/oracle/tip/adapter/db/test/deploy/weblogic/META-
INF folder for your SOA application, as follows:

■ Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

■ Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>

This sample uses eis/DB/DBConnection1 to poll the SAP table for new 
messages and to connect to the procedure that simulates Oracle EBS and Siebel 
instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the 
RAR file by using Oracle WebLogic Server Administration Console.

8. Create a data source using the Oracle WebLogic Server Administration Console 
with the following values:

■ jndi-name=jdbc/DBConnection1

■ user=scott

■ password=tiger

■ url=jdbc:oracle:thin:@host:port:service

■ connection-factory 
factory-class=oracle.jdbc.pool.OracleDataSource

9. Create a data source using the Oracle WebLogic Server Administration Console 
with the following values:

■ jndi-name=jdbc/xref

■ user=scott

■ password=tiger

■ url=jdbc:oracle:thin:@host:port:service

■ connection-factory 
factory-class=oracle.jdbc.pool.OracleDataSource

46.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project

To create an Oracle JDeveloper application and a project:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.



Creating and Running Cross Reference for 1M Functions

46-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. In the New Gallery, expand the General node, and select the Applications 
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter XRefOrderApp, and then click Next.

The Name your project page appears.

5. In the Project Name field, enter XRefOrderApp and click Next.

The Configure SOA Settings page appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Application Navigator of Oracle JDeveloper is updated with the new 
application and project and the SOA Composite Editor contains a blank project.

7. From the File menu, select Save All.

46.8.1.3 Task 3: How to Create a Cross Reference
After creating an application and a project for the use case, you must create a cross 
reference table.

To create a cross reference table:
1. In the Application Navigator, right-click the XRefOrderApp project and select 

New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the 
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter order.xref.

5. In the End System fields, enter SAP_05 and EBS_i75.

6. Click OK. 

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter COMMON as the End System name.

The Cross Reference Editor appears, as shown in Figure 46–47.



Creating and Running Cross Reference for 1M Functions

Working with Cross References 46-57

Figure 46–47 Customer Cross Reference

9. From the File menu, select Save All and close the Cross Reference Editor.

46.8.1.4 Task 4: How to Create a Database Adapter Service

To create a database adapter service:
1. In the Component Palette, select SOA.

2. Select Database Adapter and drag it to the Exposed Services swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from the Schema.

12. In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with the SAP_05 table name.

13. Double-click SAP_05.

The selected field is populated with SAP_05.

14. Click OK.



Creating and Running Cross Reference for 1M Functions

46-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Select Table page now contains the SAP_05 table.

15. Select SAP_05 and click Next.

The Define Primary Key page is displayed.

16. Select ID as the primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_05] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

20. In the Logical Delete field, select LOGICAL_DEL.

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Figure 46–16 shows the Logical Delete page of the Adapter Configuration wizard.

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.

25. Click Next.

The Advanced Options page is displayed.

26. Click Next.

The Finish page is displayed.

27. Click Finish.

A database adapter service named SAP is created, as shown in Figure 46–48.

Figure 46–48 SAP Database Adapter Service in SOA Composite Editor



Creating and Running Cross Reference for 1M Functions

Working with Cross References 46-59

28. From the File menu, select Save All.

46.8.1.5 Task 5: How to Create an EBS External Reference

To create an EBS external reference:
1. In the Component Palette, select SOA.

2. Select Database Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from the Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.

12. Select POPULATE_APP_INSTANCE_IM, as shown in Figure 46–49.



Creating and Running Cross Reference for 1M Functions

46-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–49 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears, as shown in Figure 46–50.

Figure 46–50 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.

The Advanced Options page is displayed.

15. Click Next.



Creating and Running Cross Reference for 1M Functions

Working with Cross References 46-61

16. The Finish page is displayed.

17. Click Finish.

Figure 46–51 shows the EBS reference in the SOA Composite Editor.

Figure 46–51 EBS Reference in SOA Composite Editor

18. From the File menu, select Save All.

46.8.1.6 Task 6: How to Create a Logger File Adapter External Reference

To create a Logger file adapter external reference:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the External References swimlane.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next. 

The Service Name page is displayed.

4. In the Service Name field, enter Logger.

5. Click Next.

The Adapter Interface page is displayed.

6. Click Define from operation and schema (specified later).

The Operation page is displayed.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page is displayed.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the 
directory in which you want to write the files.

10. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

11. Click Search. 



Creating and Running Cross Reference for 1M Functions

46-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Type Chooser dialog is displayed.

12. Navigate to Type Explorer > Project Schema Files > SCOTT_POPULATE_APP_
INSTANCE_1M.xsd, and then select OutputParameters.

13. Click OK.

14. Click Next.

The Finish page is displayed.

15. Click Finish.

Figure 46–52 shows the Logger reference in the SOA Composite Editor.

Figure 46–52 Logger Reference in SOA Composite Editor

16. From the File menu. select Save All.

46.8.1.7 Task 7: How to Create an Oracle Mediator Service Component

To create an Oracle Mediator service component:
1. Drag and drop a Mediator icon from the Component Palette to the Components 

swimlane.

The Create Mediator dialog is displayed.

2. From the Template list, select Define Interface Later. 

3. Click OK.

An Oracle Mediator with name Mediator2 is created.

4. Connect the SAP service to Mediator2, as shown in Figure 46–53.



Creating and Running Cross Reference for 1M Functions

Working with Cross References 46-63

Figure 46–53 SAP Service Connected to Mediator2

5. From the File menu. select Save All.

6. Drag and drop a Mediator icon from the Component Palette to the Components 
section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

7. From the Template list, select Interface Definition From WSDL.

8. Deselect Create Composite Service with SOAP Bindings.

9. To the right of the WSDL File field, click Find Existing WSDLs.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is 
available in the Samples folder.

11. Click OK.

12. Click OK.

An Oracle Mediator named Common is created.

46.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component
You must specify routing rules for following operations:

■ Insert

■ Update

To create routing rules for the insert operation:
1. Double-click the Mediator2 Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp > Mediators > Common, Services > Common.

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.



Creating and Running Cross Reference for 1M Functions

46-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='INSERT'

8. Click OK.

9. Next to the Using Transformation field, click the Transformation icon.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK. 

An SAP_TO_COMMON_INSERT.xsl file is displayed.

12. Drag and drop the top:SAP05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options list, deselect Match Elements Considering 
their Ancestor Names.

14. Click OK.

The transformation is created, as shown in Figure 46–54.

Figure 46–54 SAP_TO_COMMON_INSERT.xsl Transformation

15. From the Component Palette, select Advanced.

16. Select XREF Functions.

17. Drag and drop the populateXRefRow1M function from the Component Palette to 
the line connecting the top:id and inp1:id elements.

18. Double-click the populateXRefRow1M icon.

The Edit Function-populateXRefRow dialog is displayed.

19. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

20. Select Order.xref and click OK.

21. In the referenceColumnName field, enter "SAP_05" or click Search to select the 
column name.

22. In the referenceValue column, enter 
/top:Sap05Collection/top:Sap05/top:id.

23. In the columnName field, enter "Common" or click Search to select the column 
name.

24. In the value field, enter orcl:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.



Creating and Running Cross Reference for 1M Functions

Working with Cross References 46-65

Figure 46–55 shows the populated Edit Function – populateXRefRow1M dialog.

Figure 46–55 Edit Function – populateXRefRow1M Dialog: XrefOrderApp Use Case

26. Click OK.

27. From the File menu, select Save All and close the SAP_TO_COMMON_
INSERT.xsl file.

The Routing Rules section appears, as shown in Figure 46–56.

Figure 46–56 Routing Rules Section with Insert Operation

To create routing rules for the update operation:
Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp > Mediators > Common, Services > Common.

4. Select Update and click OK.



Creating and Running Cross Reference for 1M Functions

46-66 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. In the Expression field, enter the following expression:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='UPDATE'

7. Click OK.

8. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK. 

An SAP_TO_COMMON_UPDATE.xsl file is displayed.

11. Drag and drop the top:Sap05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Component Palette, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from the Component Palette to the line 
connecting the top:id and inp1:id elements.

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

17. To the right of the xrefLocation field, click Search.

The SOA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_05" or click Search to select the 
column name.

20. In the referenceValue column, enter 
/top:Sap05Collection/top:Sap05/top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column 
name.

22. In the needException field, enter true() or click Search to select this mode.

Figure 46–57 shows the populated Edit Function – looupXRef dialog.



Creating and Running Cross Reference for 1M Functions

Working with Cross References 46-67

Figure 46–57 Edit Function – looupXRef Dialog: XRefOrderApp Use Case

23. Click OK.

24. From the File menu, select Save All and close the SAP_TO_COMMON_
UPDATE.xsl file.

The Routing Rules section appears, as shown in Figure 46–58.

Figure 46–58 Insert Operation and Update Operation

46.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
You must specify routing rules for the following operations of the Common Oracle 
Mediator:

■ Insert

■ Update



Creating and Running Cross Reference for 1M Functions

46-68 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To create routing rules for the insert operation:
1. Double-click the Common Oracle Mediator.

The Mediator Editor is displayed.

2. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp > References > EBS.

5. Select EBS and click OK.

6. Next to the Transform Using field, click the Transformation icon.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_EBS_INSERT.xsl.

8. Click OK. 

A COMMON_TO_EBS_INSERT.xsl file is displayed.

9. Drag and drop the inp1:Order source element to the db:InputParameters target 
element.

The Auto Map Preferences dialog is displayed.

10. Set the value of the db:X_APP_INSTANCE node on the right side to EBS_i75.

Click OK.

The transformation is created, as shown in Figure 46–59.

Figure 46–59 COMMON_TO_EBS_INSERT.xsl Transformation

11. From the File menu, select Save All and close the COMMON_TO_EBS_
INSERT.xsl file.

12. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefOrderApp > References > Logger.

15. Select Write and click OK.

16. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter EBS_TO_COMMON_INSERT.xsl.



Creating and Running Cross Reference for 1M Functions

Working with Cross References 46-69

18. Select Include Request in the Reply Payload.

19. Click OK. 

An EBS_TO_COMMON_INSERT.xsl file is displayed.

20. Connect the inp1:Order source element to db:X:APP_ID.

21. Drag and drop the populateXRefRow function from the Component Palette to the 
connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter this information in the following fields:

■ xrefLocation: order.xref

■ referenceColumnName: Common

■ referenceValue: 
$initial.Customers/inp1:Customers/inp1:Order/inp1:Id

■ columnName: EBS_75

■ value: /db:OutputParameters/db:X_APP_ID

■ mode: LINK

24. Click OK.

The EBS_TO_COMMON_INSERT.xsl file appears, as shown in Figure 46–60.

Figure 46–60 EBS_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, select Save All and close the EBS_TO_COMMON_
INSERT.xsl file.

26. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30. In the Expression field, enter the following expression and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

31. In the To section, select Property.

32. Select the jca.file.FileName property and click OK.



Creating and Running Cross Reference for 1M Functions

46-70 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

33. Click OK.

The insert operation section appears, as shown in Figure 46–61.

Figure 46–61 Insert Operation with EBS Target Service

34. From the File menu, select Save All.

To create routing rules for the update operation:
Perform the following tasks to create routing rules for the update operation.

1. In the Routing Rules section, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp > References > EBS.

4. Select EBS and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_EBS_UPDATE.xsl.

7. Click OK. 

The COMMON_TO_EBS_UPDATE.xsl file is displayed.

8. Drag and drop the inp1:Orders source element to the db:InputParameters target 
element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created, as shown in Figure 46–39.

10. Drag and drop the lookupXRef function from the Component Palette to the line 
connecting inp1:id and db:X_APP_ID.

11. Double-click the lookupXRef icon.



Creating and Running Cross Reference for 1M Functions

Working with Cross References 46-71

The Edit Function: lookupXRef dialog is displayed.

12. Enter this information in the following fields:

■ xrefLocation: order.xref

■ referenceColumnName: Common

■ referenceValue: /inp1:Customers/inp1:Order/inp1:Id

■ columnName: EBS_i75

■ needException: true()

13. Click OK.

14. From the File menu, select Save All and close the COMMON_TO_EBS_
UPDATE.xsl file.

15. In the Synchronous Reply section, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefOrderApp > References > Logger.

18. Select Write and click OK.

19. Next to the Transform Using field, click the Transformation icon.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter EBS_TO_COMMON_UPDATE.xsl.

21. Click OK. 

The EBS_TO_COMMON_UPDATE.xsl file is displayed.

22. Connect the db:X:APP_ID source element to db:X:APP_ID.

23. From the File menu, select Save All and close the EBS_TO_COMMON_
UPDATE.xsl file.

24. In the Synchronous Reply section, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28. In the Expression field, enter the following expression, and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

29. In the To section, select Property.

30. Select the jca.file.FileName property and click OK.

31. Click OK.

The update operation section appears, as shown in Figure 46–62.



Creating and Running Cross Reference for 1M Functions

46-72 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–62 Update Operation with EBS Target Service

32. From the File menu, select Save All.

46.8.1.10 Task 10: How to Configure an Application Server Connection
An application server connection is required for deploying your SOA composite 
application. For information about creating an application server connection, see 
Section 41.7.1.1.1, "Creating an Application Server Connection."

46.8.1.11 Task 11: How to Deploy the Composite Application
Deploying the XrefOrderApp composite application to the application server consists 
of the following steps:

■ Creating an application deployment profile

■ Deploying the application to the application server

For detailed information about these steps, see Section 41.7.1, "Deploying a Single SOA 
Composite in Oracle JDeveloper."



47

Defining Composite Sensors 47-1

47Defining Composite Sensors

This chapter describes how to define composite sensors in a SOA composite 
application.

This chapter includes the following sections:

■ Section 47.1, "Introduction to Composite Sensors"

■ Section 47.2, "Adding Composite Sensors"

■ Section 47.3, "Monitoring Composite Sensor Data During Runtime"

47.1 Introduction to Composite Sensors
Composite sensors provide a method for implementing trackable fields on messages. 
Composite sensors enable you to perform the following tasks:

■ Monitor incoming and outgoing messages.

■ Specify composite sensor details in the search utility of the Instances page of a 
SOA composite application in Oracle Enterprise Manager Fusion Middleware 
Control Console. This action enables you to locate a particular instance.

■ Publish JMS data computed from incoming and outgoing messages.

You define composite sensors on service and reference binding components in Oracle 
JDeveloper. This functionality is similar to variable sensors in BPEL processes. During 
runtime, composite sensor data is persisted in the database.

47.1.1 Restrictions on Use of Composite Sensors
Note the following restrictions on the use of composite sensors:

■ Functions can only be used with the payload. For example, XPath functions such 
as concat() and others cannot be used with properties.

■ Any composite sensor that uses expressions always captures values as strings. 
This action makes the search possible only with the like comparison operator. 
Also, even if the value is a number, you cannot use other logical operators such as 
<, >, =, and any combination of these. 

■ Composite sensors only support two types of sensor actions: Enterprise Manager 
and JMS.

■ Header-based sensors are only supported for web service bindings.

■ Sensor actions for Oracle B2B, service data objects (SDOs), web services invocation 
framework (WSIF), and Oracle Business Activity Monitoring bindings are not 
supported.



Adding Composite Sensors

47-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Sensor values can only be one of the following types. 

1. The following scalar types:

– STRING 

– NUMBER 

– DATE 

– DATE_TIME

2. Complex XML elements

■ When creating an XPath expression for filtering, all functions that return a node 
set must be explicitly cast as a string: 

xpath20:upper-case(string($in.request/inp1:updateOrderStatus/inp1:orderStatus) 
) = "PENDING"

47.2 Adding Composite Sensors
You add sensors to service or reference binding components of a SOA composite 
application in the SOA Composite Editor.

47.2.1 How to Add Composite Sensors

To add composite sensors:
1. Use one of the following options to add a composite sensor in the SOA Composite 

Editor.

a. Right-click a specific service or reference binding component in the Exposed 
Services or External References swimlane to which to add a composite sensor, 
and select Composite Sensors.

The Composite Sensors dialog for the selected binding component appears, as 
shown in Figure 47–1.

Figure 47–1 Composite Sensors Dialog for the Selected Binding Component



Adding Composite Sensors

Defining Composite Sensors 47-3

b. Click the Add icon.

or

a. Click the Composite Sensor icon above the SOA Composite Editor, as shown 
in Figure 47–2.

Figure 47–2 Composite Sensor Icon

The Composite Sensors dialog for the SOA composite application appears, as 
shown in Figure 47–3.

Figure 47–3 Composite Sensors Dialog

b. Select the specific service or reference to which to add a composite sensor, then 
click the Add icon.

The Create Composite Sensor dialog appears, as shown in Figure 47–4.



Adding Composite Sensors

47-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 47–4 Create Composite Sensor Dialog

2. Enter the details shown in Table 47–1.

Table 47–1 Create Composite Sensor Dialog

Name Description

Name Enter a name for the composite sensor. You must enter a name to enable 
the Edit icon of the Expression field.

Service Displays the name of the service. This field only displays if you are 
creating a composite sensor for a service binding component. This field 
cannot be edited.

Service sensors monitor the messages that the service receives from the 
external world or from another composite application.

Reference Displays the name of the reference. This field only displays if you are 
creating a composite sensor for a reference binding component. This field 
cannot be edited.

Reference sensors monitor the messages that the reference sends to the 
external world or to another composite application. 

Operation Select the operation for the port type of the service or reference.



Adding Composite Sensors

Defining Composite Sensors 47-5

Expression Click the Edit icon to invoke a dropdown list for selecting the type of 
expression to create:

■ Variables: Select to create an expression value for a variable. See 
Section 47.2.2, "How to Add a Variable" for instructions.

■ Expression: Select to invoke the Expression Builder dialog for 
creating an XPath expression. See Section 47.2.3, "How to Add an 
Expression" for instructions.

■ Properties: Select to create an expression value for a normalized 
message header property. These are the same properties that display 
under the Properties tab of the invoke activity, receive activity, reply 
activity, OnEvent branch of a scope activity (in BPEL 2.0), and 
OnMessage branch of a pick activity and a scope activity (in BPEL 
2.0). See Section 47.2.4, "How to Add a Property" for instructions.

Filter Click the Edit icon to invoke the Expression Builder dialog to create an 
XPath filter for the expression. You must first create an expression to 
enable this field.

For example, you may create an expression for tracking purchase order 
amounts over 10,000:

$in.inDict/tns:inDict/ns2:KeyValueOfstringstring/ns2:Value > 
10000.00

Composite Sensor 
Actions

Displays the supported sensor actions. This feature enables you to store 
runtime sensor data. You can select both Enterprise Manager and either 
JMS Queue or JMS Topic.

■ Enterprise Manager

Select to make runtime sensor data searchable in the Instances tab of 
a SOA composite application in Oracle Enterprise Manager Fusion 
Middleware Control Console. This selection is the same as the 
DBSensorAction selection of previous releases.

Note: When Enterprise Manager is selected, sensor data is sent to the 
trackable fields tables. When it is not selected, data is not sent. 
However, in both cases, Oracle Enterprise Manager Fusion 
Middleware Control Console still displays the fields that enable you 
to search for composite instances based on that sensor. 

For more information, see Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite.

■ JMS Queue

Select to store composite sensor data (XML payload) in a JMS queue. 
You must specify the JMS connection factory and queue name. 

■ JMS Topic

Select to store composite sensor data (XML payload) in a JMS topic. 
You must specify the JMS connection factory and topic name.

Notes: The JMS Queue and JMS Topic selections enable the composite 
sensor data (XML payload) to be used by other consumers, including 
Oracle Business Activity Monitoring and Oracle Complex Event 
Processing (CEP). Both selections use the native JMS support provided 
with Oracle WebLogic Server, and not the Oracle SOA Suite JMS adapter 
described in Oracle Fusion Middleware User's Guide for Technology Adapters. 
You can view JMS messages in the Oracle WebLogic Server 
Administration Console.

For information about using sensor data with Oracle Business Activity 
Monitoring, see Chapter 50, "Integrating Oracle BAM with SOA 
Composite Applications."

Table 47–1 (Cont.) Create Composite Sensor Dialog

Name Description



Adding Composite Sensors

47-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Click Apply to add more composite sensors.

4. Click OK when complete.

A composite sensor icon displays on the service or reference binding component, 
as shown in Figure 47–5.

Figure 47–5 Sensor Icon

47.2.2 How to Add a Variable
The Select XPath Expression dialog shown in Figure 47–6 enables you to select an 
element for tracking.

To add a variable:
1. Expand the tree and select the element to track.

Figure 47–6 Variables

2. Click OK when complete.

47.2.3 How to Add an Expression
The Select Properties shown in Figure 47–7 enables you to create an expression for 
tracking.



Adding Composite Sensors

Defining Composite Sensors 47-7

To add an expression:
1. Build an XPath expression of an element to track.

Figure 47–7 Expression

2. Click OK when complete.

47.2.4 How to Add a Property
The Select Property shown in Figure 47–8 enables you to select a normalized message 
header property for tracking.

To add a property:
1. Select a normalized message header property to track.

Figure 47–8 Properties

2. Click OK when complete.



Monitoring Composite Sensor Data During Runtime

47-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

47.3 Monitoring Composite Sensor Data During Runtime
During runtime, composite sensor data can be monitored in Oracle Enterprise 
Manager Fusion Middleware Control Console:

■ Composite sensor data displays in the flow trace of a SOA composite application.

■ Composite sensor data can be searched for in the Instances page of a SOA 
composite application.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite.



48

Using Two-Layer Business Process Management (BPM) 48-1

48Using Two-Layer Business Process
Management (BPM)

This chapter describes how to use two-layer Business Process Management (BPM). 
Two-layer BPM enables you to create dynamic business processes whose execution, 
rather than being predetermined at design time, depends on elements of the context in 
which the process executes. Such elements can include, for example, the type of 
customer, the geographical location, or the channel. 

To illustrate further, assume you have an application that performs multichannel 
banking using various processes. In this scenario, the execution of each process 
depends on the channel for each particular process instance.

This chapter includes the following sections:

■ Section 48.1, "Introduction to Two-Layer Business Process Management"

■ Section 48.2, "Creating a Phase Activity"

■ Section 48.3, "Creating the Dynamic Routing Decision Table"

■ Section 48.4, "Use Case: Two-Layer BPM"

48.1 Introduction to Two-Layer Business Process Management
Two-layer BPM enables you to model business processes using a layered approach. In 
that model, a first level is a very abstract specification of the business process. 
Activities of a first-level process delegate the work to processes or services in a second 
level. Figure 48–1 illustrates this behavior.



Introduction to Two-Layer Business Process Management

48-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 48–1 Two-Layer BPM

In Figure 48–1, the phase I activity of the business process can delegate its work to one 
of the corresponding layer II processes: Task 1.1, Task 1.2, or Task 1.3.

The two-layer BPM functionality enables you to create the key element (namely, the 
phase activity) declaratively.

By using the design time and runtime (DT@RT) functionality of Oracle Business Rules, 
you can add more channels dynamically without having to redeploy the business 
process. DT@RT enables you to add rules (columns) to the dynamic routing decision 
table at runtime. Then, during runtime, business process instances consider those new 
rules and eventually route the requests to a different channel.

The DT@RT functionality of Oracle Business Rules also enables you to modify the 
endpoint reference of a service that is invoked from a phase activity, pointing that 
reference to a different service.

To enable two-layer BPM, follow the steps shown in Table 48–1.

Note: In Oracle Fusion Middleware 11g Release 1 (11.1.1), you can 
use the DT@RT functionality of Oracle Business Rules only through 
the Oracle Business Rules SDK.

For information about using the Oracle Business Rules SDK, see: 

■ Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Oracle Fusion Middleware Java API Reference for Oracle Business Rules

Table 48–1 Steps for Enabling Two-Layer BPM

Step Information

Install Oracle WebLogic 
Server

Oracle WebLogic Server Installation Guide

Design the SOA composite 
application

Section 48.4.1, "Designing the SOA Composite"

Create element-type 
variables named 
InputPhaseVariable 
and OutputPhaseVar

Section 48.4.1, "Designing the SOA Composite"

Phase I Phase II Phase IIILayer l

Layer ll

Task 
1.1

Task 
1.2

Task 
1.3

Task 
2.2

Task 
2.3

Task 
3.1

Task 
3.2



Creating a Phase Activity

Using Two-Layer Business Process Management (BPM) 48-3

48.2 Creating a Phase Activity
In two-layer BPM, a phase is a level-1 activity in the BPEL process. It complements the 
existing higher-level Oracle Business Rules and human task BPEL activities.

You add a phase to a process declaratively in Oracle BPEL Designer by dragging and 
dropping it from the Oracle Extensions section of the Component Palette to the 
process model. Figure 48–2 provides details.

Figure 48–2 Phase Activity in BPEL Designer

48.2.1 How to Create a Phase Activity
You create the phase activity for your composite application after you have created the 
necessary variables, as described in Section 48.4.1, "Designing the SOA Composite."

To create a phase activity:
1. Double-click the Phase activity.

Create a phase activity Section 48.2, "Creating a Phase Activity"

Create and edit the dynamic 
routing decision table

Section 48.3, "Creating the Dynamic Routing Decision Table"

Add assign activities to the 
BPEL process model

Section A.2.2, "Assign Activity"

Create the application 
deployment profile

Chapter 41, "Deploying SOA Composite Applications"

Create an application server 
connection

Section 41.7.1.1.1, "Creating an Application Server Connection"

Deploy the application Chapter 41, "Deploying SOA Composite Applications"

Note: The reference WSDL (layer 2 or called references) must have 
the same abstract WSDL as that for the phase reference that gets 
automatically created.

Table 48–1 (Cont.) Steps for Enabling Two-Layer BPM

Step Information



Creating a Phase Activity

48-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. In the Name field, enter a value.

3. In the Input and Output Variables section, select the Add icon to add input and 
output variables.

4. Select Add Input Variable. The dialog for selecting a variable appears.

5. Select Process > Variables > phaseIn.

6. Click OK. The Phase dialog is displayed with the phaseIn variable populated.

7. From the Input and Output Variables icon, select Add Output Variable. The 
dialog for selecting a variable appears.

8. Select Process > Variables > phaseOut.

9. Click OK. The Phase dialog is displayed with the input and output variable names 
populated.

10. Click OK. The Oracle BPEL Designer displays the BPEL process.

11. From the File menu, select Save All. 

12. Close the BPEL process.

13. Click the composite.xml link about the Oracle BPEL Designer. The SOA 
Composite Editor appears.

48.2.2 What Happens When You Create a Phase Activity
When you create a phase activity, the artifacts described in Table 48–2 are created.

Table 48–2 Artifacts Created with a Phase Activity

Artifact Description

BPEL scope At the location where the user dropped the phase activity in the BPEL 
process, a new BPEL scope is created and inserted into the BPEL process. 
The scope has the name of the phase activity. Within the scope, several 
standard BPEL activities are created. The most important ones are one 
invoke activity to an Oracle Mediator and one receive activity from the 
Oracle Mediator. 

Oracle Mediator 
component

With the SOA composite application of the BPEL process service 
component, a new Oracle Mediator service component is created. The 
Oracle Mediator service component is wired to the phase activity of the 
BPEL component that comprises the level-1 BPEL process where the 
phase activity has been dropped into the process model. The input and 
output of the Oracle Mediator service component is defined by the input 
and output of the phase activity. 

The Oracle Mediator plan (the processing instructions of the Oracle 
Mediator service component) is very simple; it delegates creation of the 
processing instructions to the Oracle Business Rules service component.



Creating a Phase Activity

Using Two-Layer Business Process Management (BPM) 48-5

48.2.3 What Happens at Runtime When You Create a Phase Activity
At runtime, the input of the phase activity is used to evaluate the dynamic routing 
decision table. This is performed by a specific decision component of the phase 
activity. The result of this evaluation is an instruction for the Oracle Mediator. The 
Oracle Mediator routes the request to a service based on instructions from the decision 
component.

48.2.4 What You May Need to Know About Creating a Phase Activity
When creating a phase activity, you must know the following:

■ Rules that you must either configure or create in the decision service. This is based 
on data from the payload that you use to evaluate a rule.

■ For each rule created in the decision service, you must know the corresponding 
endpoint URL that must be invoked when a rule evaluates to true. This endpoint 
URL is used by the Oracle Mediator to invoke the service in layer 2.

For information on specifying endpoints, see Section 48.4.3, "Creating and Editing 
the Dynamic Routing Decision Table."

Oracle Business 
Rules component

Within the SOA composite application of the BPEL process service 
component, a new Oracle Business Rules service component is created 
and wired to the Oracle Mediator component associated with the phase 
activity of the BPEL process service component. The Oracle Business 
Rules service component includes a rule dictionary. The rule dictionary 
contains metadata for such Oracle Business Rules engine artifacts as fact 
types, rulesets, rules, decision tables, and similar artifacts. As part of 
creating the Oracle Business Rules service component, the rule dictionary 
is preinitialized with the following data:

■ Fact Type Model: The data model used for modeling rules. The rule 
dictionary is populated with a fact type model that corresponds to 
the input of the phase activity together with some fixed data model 
that is required as part of the contract between the Oracle Mediator 
and Oracle Business Rules service components.

■ Ruleset: A container of rules used as a grouping mechanism for rules. 
A ruleset can be exposed as a service. One ruleset is created within 
the rule dictionary. 

■ Decision Table: From an Oracle Business Rules engine perspective, a 
decision table is a collection of rules with the same fact type model 
elements in the condition and action part of the rules so that the rules 
can be visualized in a tabular format. The new decision table is 
created within the ruleset.

■ Decision Service: A decision service is created that exposes the 
ruleset as a service of the Oracle Business Rules service component. 
The service interface is used by the Oracle Mediator to evaluate the 
decision table.

Note: In the current release, an asynchronous phase activity is 
supported. A synchronous or one-way phase activity is not supported.

Note: No transformation, assignment, or validation can be 
performed on a payload.

Table 48–2 (Cont.) Artifacts Created with a Phase Activity

Artifact Description



Creating the Dynamic Routing Decision Table

48-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

48.3 Creating the Dynamic Routing Decision Table
A Dynamic Routing Decision Table is a decision table evaluated by Oracle Business 
Rules. Conditions are evaluated on the input data of a phase activity. The result of the 
evaluation is a routing instruction for the Oracle Mediator. 

48.3.1 How to Create the Dynamic Routing Decision Table
After you have created the phase activity, the wizard launches the Oracle Business 
Rules Designer in Oracle JDeveloper for you to edit the Dynamic Routing Decision 
Table. Figure 48–3 shows a sample decision table within the Oracle Business Rules 
Designer.

Figure 48–3 Sample Decision Table

You can leave the decision table empty while modeling the level-2 process phases, and 
complete it after the level-1 process is being deployed using the Business Analyst tool.

Once you have created and edited the Dynamic Routing Decision Table, the new 
level-1 phase activity appears in the BPEL process in Oracle JDeveloper, as illustrated 
in Figure 48–4.

Figure 48–4 Completed Level-1 Phase in Oracle JDeveloper



Use Case: Two-Layer BPM

Using Two-Layer Business Process Management (BPM) 48-7

48.3.2 What Happens When You Create the Dynamic Routing Decision Table
By creating the Dynamic Routing Decision Table, you are configuring the decision 
service to dynamically evaluate the conditions applied to the incoming payload and 
give the corresponding routing rules to the Oracle Mediator. The Oracle Mediator then 
executes these rules when invoking the service in layer 2.

More specifically, here is what happens at design time when you create the Dynamic 
Routing Decision Table:

■ A new decision component is created in the composite of the project.

■ A new rule dictionary is created in the composite project directory.

■ The rule dictionary is populated with a data model that reflects the data model of 
the phase input; that is, the XML schema of the phase input is imported into the 
rule dictionary.

48.4 Use Case: Two-Layer BPM
This section tells you how to build a sample application for routing a customer order. 
Before you build this application, you must download the BPELPhaseActivity sample 
from the following location:

https://soasamples.samplecode.oracle.com/

To run the sample:
1. Install the server as described in Oracle WebLogic Server Installation Guide.

2. Model the sample by performing these tasks:

a. Design the SOA composite as described in Section 48.4.1, "Designing the SOA 
Composite."

b. Create the phase activity as described in Section 48.4.2, "Creating a Phase 
Activity."

c. Create and edit the Dynamic Routing Decision Table as described in 
Section 48.4.3, "Creating and Editing the Dynamic Routing Decision Table."

d. Add assign activities to the BPEL process model as described in Section 48.4.4, 
"Adding Assign Activities to the BPEL Process Model."

3. Deploy the sample with Oracle JDeveloper as described in Section 48.4.5, 
"Deploying and Testing the Sample."

48.4.1 Designing the SOA Composite
You design the SOA composite application in Oracle JDeveloper.

To design the SOA composite:
1. In Oracle JDeveloper, from the File menu, select New. The New Gallery dialog 

appears. By default, Generic Application is selected.

2. Click OK. The Create Generic Application wizard displays the first screen.

3. In the Application Name field, enter BPELPhaseActivity and then click Next. 
The second page of the Create Generic Application wizard appears.

4. In the Project Name field, enter BPELPhaseCustomerRouter.



Use Case: Two-Layer BPM

48-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. In the Project Technologies tab, from the Available section, select SOA and move 
it to the Selected section.

6. Click Next. The third page of the Create Generic Application wizard appears.

7. From the Composite Template list, select Composite With BPEL Process, and 
click Finish. 

The Create BPEL Process dialog appears.

8. In the Name field of the Create BPEL Process dialog, enter 
CustomerRouterBPELProcess.

9. From the Template list, select Synchronous BPEL Process. 

10. Import the CustomerData.xsd schema into the project xsd folder. An XML schema 
definition (XSD) specifies the types of elements and attributes that may appear in 
an XML document, their relationship to each other, the types of data that may be 
in them, and other things.

To import the CustomerData.xsd file:

a. In the Input field, click the Browse Input Elements icon.

The Type Chooser dialog displays.

b. Click the Import Schema File icon, as shown in Figure 48–5.

Figure 48–5 Import Schema File Icon

The Import Schema File dialog displays.

c. To the right of the URL field, click the Browse Resources icon.

The SOA Resource Browser appears.

d. Select File System and, in the Location section, search for CustomerData.xsd 
in the artifacts/schema folder, then click OK.

e. In the Import Schema dialog, ensure the CustomerData.xsd file now appears 
in the URL field and the Copy to Project option is selected, and then click OK.

The Localize Files dialog prompts you to import the CustomerData.xsd 
schema file and any dependent files.

f. Deselect the option Maintain original directory structure for imported files 
and click OK to import the files.

The Type Chooser dialog appears.

g. Expand Project Schema Files > CustomerData.xsd > Customer and then click 
OK, as shown in Figure 48–6.



Use Case: Two-Layer BPM

Using Two-Layer Business Process Management (BPM) 48-9

Figure 48–6 Type Chooser Dialog

11. After importing the CustomerData.xsd schema, open the 
CustomerRouterBPELProcess BPEL process.

To create variables:

1. Click the Variables icon. The Variables dialog appears.

2. Click the Create icon. The Create Variable dialog appears.

3. In the Name field, enter InputPhaseVariable. 

4. Click the Element option.

5. Click the Browse Elements icon. The Type Chooser dialog appears.

6. Select Project Schema Files >CustomerData.xsd > Customer, and then click OK. 
The Create Variable dialog appears with the element name populated.

7. Click OK. The Variables dialog is displayed with the variable name populated.

8. Click the Create icon in the Variables dialog. The Create Variable dialog appears.

9. In the Name field, enter OutputPhaseVariable. 

10. In the Type section, select the Element option.

11. Click the Browse Elements icon. The Type Chooser dialog appears.

12. Select Project Schema Files >CustomerData.xsd > Customer, and then click OK. 
The Create Variable dialog appears with the element name populated.

13. Click OK. The Variables dialog appears with the input and output variable names 
populated.

14. Click OK. The variables have been created and the CustomerRouterBPELProcess 
BPEL process appears.

Note: Phase variables can be of the element type only.



Use Case: Two-Layer BPM

48-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

48.4.2 Creating a Phase Activity

To create a Phase activity:
1. In the CustomerRouterBPELProcess BPEL process, drag and drop a phase activity 

from the Component Palette into the process model, between receiveInput and 
replyOutput. The Phase dialog appears.

2. In the Name field, enter CustomerRoutingPhase_1. 

3. From the Inputs and Outputs Variables icon, select Add Input Variable. The Add 
Input Variable dialog appears.

4. Select Process > Variables > phaseIn, and then click OK. The Phase dialog is 
displayed with the InputPhaseVar variable populated.

5. From the Inputs and Outputs Variables icon, select Add Output Variable. The 
Add Output Variable dialog appears.

6. Select Process > Variables > OutputPhaseVar.

7. Click OK. The Phase dialog displays the input and output variable names.

8. Click OK. The CustomerRouterBPELProcess BPEL process appears.

9. From the File menu, select Save All.

10. Close the CustomerRouterBPELProcess BPEL process.

11. Click composite.xml. The SOA Composite Editor is displayed.

48.4.3 Creating and Editing the Dynamic Routing Decision Table

To create and edit the Dynamic Routing Decision Table:
1. Open the CustomerRouterBPELProcess BPEL process, and double-click the Phase 

activity in the process diagram. The Phase dialog appears.

Note:

■ As part of the phase activity wizard, three components are 
created: Oracle Business Rules, Oracle Mediator, and Dynamic 
Reference.

■ The Oracle Business Rules service component returns an 
executable case for the Oracle Mediator service component, 
because of the rules defined.

■ The Oracle Mediator service component performs routing based 
on the routing rules received from the Oracle Business Rules 
service component.

■ The Dynamic Reference component is the dummy reference for 
the second-level processes.

■ The rule dictionary is populated with the fact type model of the 
Oracle Mediator and the fact type corresponding to the input of 
the phase activity, which in this case is CustomerData.

■ An empty decision table called the Routing Table is created that 
must be edited to provide dynamic routing rules.



Use Case: Two-Layer BPM

Using Two-Layer Business Process Management (BPM) 48-11

2. Click the Edit Dynamic Rules button. The Oracle Business Rules Designer page 
appears.

3. Under Rulesets, click Ruleset_1. The Ruleset_1 page with an empty Routing Table 
appears, as shown in Figure 48–7.

Figure 48–7 Ruleset Page

4. In DecitionTable_1, click the Add icon, then Action, and then Assert New. The 
Actions section of the table appears.

5. In the serviceBindingInfo, specify the SOAP endpoint, replacing the hostname 
and host port with SOA Server details. The sample has localhost as host server 
and 8001 as host port.

■ In the otherwise column, enter the following:

http://hostname:host_port /soa-infra/services/default/CustomerRouter!1.0/
DefaultCustomerRouterService

■ In the Intel column, enter the following:

http://hostname:host_port/soa-infra/services/default/CustomerRouter!1.0/
SilverCustomerRouterService

■ In the Cisco column, enter the following:

http://hostname:host_port/soa-infra/services/default/CustomerRouter!1.0/
GoldCustomerRouterService

■ In the HP column, enter the following:

http://hostname:host_port/soa-infra/services/default/CustomerRouter!1.0/
PlatinumCustomerRouterService



Use Case: Two-Layer BPM

48-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

48.4.4 Adding Assign Activities to the BPEL Process Model
Before deploying the phase activity, you must initialize the phase variables. You do 
this by adding assign activities in the phase in the BPEL process.

To add assign activities to the BPEL process model:
1. Click the CustomerRouterBPELProcess BPEL process. 

2. Drag and drop an Assign activity from the Component Palette into the process 
model between the receiveInput activity and the Phase activity. The Assign 
activity is added to the process model.

3. Double-click the Assign activity. The Assign dialog is displayed.

4. Select the General tab.

5. In the Name field, enter AssignInput.

6. Select the Copy Rules tab. 

7. In the source section, navigate as follows: Variables > Process > Variables > 
inputVariable > payload > ns1:Customer.

8. In the target section, navigate as follows: Variables > Process > Variables > 
inputVariable > payload > ns1:Customer.

9. Drag the source ns1:Customer node to the target ns1:Customer node.

The input copy rule is recorded at the bottom of the Edit Assign dialog, as shown 
in Table 48–3.

10. Click OK. The CustomerRouterBPELProcess process is displayed again.

11. Drag and drop another Assign activity from the Component Palette into the 
process model between the Phase activity and the replyOutput activity. The new 
Assign activity is added to the process model.

12. Double-click the Assign activity. The Assign dialog appears.

13. In the Name field in the General tab, enter AssignOutput.

14. Select the Copy Rules tab. 

15. In the source section, navigate as follows: Variables > Process > Variables > 
OutputPhaseVar > payload > ns1:Customer/ns1:status.

16. In the target section, navigate as follows: Process > Variables > outputVariable > 
payload > client:processResponse > client:result. 

17. Drag the source ns1:status node to the target client:result node.

The output copy rule is recorded, as shown in Table 48–4.

Table 48–3 Input Copy Rule for Adding Assign Activities

From To

inputVariable/payload//ns1:Customer InputPhaseVar///payload/ns1:Customer

Table 48–4 Output Copy Rule for Adding Assign Activities

From To

OutputPhaseVar///ns1:Customer/ns1:status outputVariable/payload//client:processRespo
nse/client:result



Use Case: Two-Layer BPM

Using Two-Layer Business Process Management (BPM) 48-13

18. Click OK. The CustomerRouterBPELProcess BPEL process appears after the input 
and output assign activities are created.

19. From the File menu, select Save All.

48.4.5 Deploying and Testing the Sample
For instructions on deploying the sample, see Section 41.7, "Deploying SOA 
Composite Applications."

For instructions on testing a composite instance in Oracle Enterprise Manager Fusion 
Middleware Control Console, see Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite.



Use Case: Two-Layer BPM

48-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



49

Integrating the Spring Framework in SOA Composite Applications 49-1

49Integrating the Spring Framework in SOA
Composite Applications

This chapter describes how to use the spring framework to integrate components that 
use Java interfaces into SOA composite applications. Oracle SOA Suite uses the spring 
framework functionality provided by the WebLogic Service Component Architecture 
(SCA) of Oracle WebLogic Server. This chapter also describes how to integrate 
components that use Java interfaces with components that use WSDL files in the same 
SOA composite application.

This chapter includes the following sections:

■ Section 49.1, "Introduction to the Spring Service Component"

■ Section 49.2, "Integration of Java and WSDL-Based Components in the Same SOA 
Composite Application"

■ Section 49.3, "Creating a Spring Service Component in Oracle JDeveloper"

■ Section 49.4, "Defining Custom Spring Beans Through a Global Spring Context"

■ Section 49.5, "Using the Predefined Spring Beans"

■ Section 49.6, "Spring Service Component Integration in the Fusion Order Demo"

■ Section 49.7, "JAXB and OXM Support"

For more information about the WebLogic SCA functionality used by Oracle SOA 
Suite, see Oracle Fusion Middleware Developing WebLogic SCA Applications for Oracle 
WebLogic Server.

49.1 Introduction to the Spring Service Component
The spring framework is a lightweight container that makes it easy to use different 
types of services. Lightweight containers can accept any JavaBean, instead of specific 
types of components. 

WebLogic SCA enables you to use the spring framework to create Java applications 
using plain old Java objects (POJOs) and expose components as SCA services and 
references. In SCA terms, a WebLogic spring framework SCA application is a 
collection of POJOs plus a spring SCA context file that wires the classes together with 
SCA services and references.

You can use the spring framework to create service components and wire them within 
a SOA composite application using its dependency injection capabilities. SCA can 
extend spring framework capabilities as follows:



Integration of Java and WSDL-Based Components in the Same SOA Composite Application

49-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Publish spring beans as SCA component services that can be accessed by other 
SCA components or by remote clients

■ Provide spring beans for service references wired to services of other components

Like all service components, spring components have a componentType file. The 
interfaces defined in the componentType file use the interface.java definition to 
identify their service and reference interfaces.

Services are implemented by beans and are targeted in the spring context file. 
References are supplied by the runtime as implicit (or virtual) beans in the spring 
context file.

You can also integrate Enterprise JavaBeans with SOA composite applications through 
use of Java interfaces (with no requirement for SDO parameters). For information, see 
Chapter 36, "Integrating Enterprise JavaBeans with SOA Composite Applications."

For more information about the spring framework, visit the following URL:

http://www.osoa.org/display/Main/SCA+and+Spring+Framework

49.2 Integration of Java and WSDL-Based Components in the Same SOA 
Composite Application

In releases before 11g Release 1 11.1.1.3, components in SOA composite applications 
were entirely WSDL-based. Starting with 11g Release 1 11.1.1.3, you can integrate 
components using Java interfaces and WSDL files in a SOA composite application in 
the SOA Composite Editor. As an example, this integration enables a spring service 
component to invoke an Oracle BPEL Process Manager or an Oracle Mediator service 
component to invoke an Enterprise JavaBean, and so on. 

The following types of component integrations are supported:

■ Java components to WSDL components

If you drag a wire from a Java interface (for example, Enterprise JavaBeans service 
or spring service component) to a component that does not support Java interfaces 
(for example, Oracle Mediator, Oracle BPEL Process Manager, or others) a 
compatible WSDL is generated for the component interfaces. 

■ WSDL components to Java components

If you drag a wire from a WSDL interface to a component that does not support 
WSDL files (for example, a spring service component), a compatible Java interface 
is automatically generated. It is also possible to wire an existing WSDL interface to 
an existing Java interface. In this case, there is no checking of the compatibility 
between the WSDL and Java interfaces. You must ensure that it is correct.

■ Java components to Java components

If you create a spring service component, you can automatically configure it with 
Java interface-based EJB service and reference binding components. No WSDL 
files are required.

49.2.1 Java and WSDL-Based Integration Example
When wiring any two service components (or a service component with a binding 
component), each end of the wire has an interface defined. With XML, those interfaces 
must have the same WSDL definition, and are defined with interface.wsdl in the 
composite.xml file or component.componentType file.



Integration of Java and WSDL-Based Components in the Same SOA Composite Application

Integrating the Spring Framework in SOA Composite Applications 49-3

From the JAX-WS point of view, when wiring a Java interface (which is defined by 
interface.java) to a WSDL interface, it is assumed that the two interfaces are 
compatible. This is typically enforced and automated by Oracle JDeveloper. 

For example, assume you have a Java interface for a service, as shown in 
Example 49–1.

Example 49–1 Java Interface for a Service

public interface PortfolioService {
  public double getPorfolioValue(String portfolioId);
}

Assume the implementation can use an additional StockQuote service that is 
implemented by another component that may be a BPEL process, an external web 
service, or an EJB. Example 49–2 provides details.

Example 49–2 Additional Java Interface for a Service

public interface StockQuote {
  public double getQuote (String symbol);
}

The componentType file for the spring framework lists the PortfolioService 
service and the StockQuote service with the interface.java definitions. 
Example 49–3 provides details.

Example 49–3 componentType File

<componentType xmlns="http://xmlns.oracle.com/sca/1.0">
    <service name="PortfolioService ">
        <interface.java interface="com.bigbank.PortfolioService"/>
    </service>
    <reference name="StockService">
        <interface.java interface="com.bigbank.StockQuote"/>
    </reference>
</componentType>

The implementation class implements the service interface and provides a setter for 
the reference interface. Example 49–4 provides details.

Example 49–4 Implementation of the Service Interface

public class PortfolioServiceImpl implements PortfolioService {
  StockQuote stockQuoteRef;

  public void setStockService (StockQuote ref) {
    stockQuoteRef = ref;
  }

Note: Only use Oracle JDeveloper to create and modify the 
composite.xml, componentType, and spring context files 
described in this section. Do not directly edit these files in Source 
view. These examples are provided to show you how Java interfaces 
and WSDL files are integrated in a SOA composite application. Use of 
Oracle JDeveloper to achieve this functionality is described in 
subsequent sections of this chapter.



Integration of Java and WSDL-Based Components in the Same SOA Composite Application

49-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  public double getPorfolioValue(String portfolioId) {
    //--  use stock service
    //--  return value
  }
}

The spring context file calls out the services and references and binds them to the 
implementation. Example 49–5 provides details.

Example 49–5 Callout of Services and References by the Spring Context

<beans ...>
  <sca:service  name="PortfolioService" type="com.bigbank.PortfolioService"
 target="impl">
  </sca:service>

  <sca:reference  name="StockService" type="com.bigbank.StockQuote">
  </sca:reference>

  <bean id ="impl" class ="com.bigbank.PortfolioServiceImpl">
     <property name="stockService" ref="StockService"/>
  </bean>
</beans>

The composite.xml file of the composite defines the components and references. 
Example 49–6 provides details.

Example 49–6 Definition of Components and References in the composite.xml File

<composite ...>
    <import location="PortfolioService.wsdl" />
    <service name="PortfolioService">
        <interface.wsdl
 interface="http://bigbank.com/#wsdl.interface(PortfolioService)" />
        <binding.ws
 port="http://bigbank.com/#wsdl.endpoint(PortfolioService/PortfolioServicePort)"/>
    </service>
    <wire>
        <source.uri>PortfolioService</source.uri>
        <target.uri>PortfolioComp/PortfolioService</target.uri>
    </wire>
    <component name="PortfolioComp">
        <implementation.spring src="spring-context.xml"/>
    </component>
    <wire>
        <source.uri>PortfolioService/StockService</source.uri>
        <target.uri>StockService</target.uri>
    </wire>
    <reference name="StockService">
        <interface.java interface="com.bigbank.StockQuote"/>
        <binding.ejb uri="StockService#com.bigbank.StockQuote"/>
    </reference>
</composite>

49.2.2 Using Callbacks with the Spring Framework
Oracle SOA Suite uses callbacks for both interface.wsdl and interface.java. 
However, the concept of callbacks does not exist in the spring framework. For Oracle 
SOA Suite services and references, a callback is specified (in the metadata) as a second 
port type for interface.wsdl or a second Java name for interface.java. The 



Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 49-5

spring metadata has only sca:services and sca:references and no way to 
specify a callback.

To design a callback with spring, you must provide sca:services and 
sca:references with a specific name. If you create both a sca:service and 
sca:reference using the naming conventions of someService and 
someServiceCallback, Oracle SOA Suite recognizes this convention and creates a 
single service or reference with a callback.

For example, assume you create the syntax shown in Example 49–7 in the spring 
context file with the spring editor in Oracle JDeveloper:

Example 49–7 Callbacks with the Spring Service Component

<sca:service  name="StockService"
 type="oracle.integration.platform.blocks.java.callback.StockService"
 target="impl" />
 
<sca:reference  name="StockServiceCallback"
 type="oracle.integration.platform.blocks.java.callback.StockServiceReply" />

Oracle SOA Suite automatically creates a single service (in the spring 
componentType file) as shown in Example 49–8:

Example 49–8 Single Service

    <service name="StockService">
      <interface.java
 interface="oracle.integration.platform.blocks.java.callback.StockService"   
           
callbackInterface="oracle.integration.platform.blocks.java.callback.StockServiceRe
ply"/>
    </service>

In the SOA Composite Editor, if a spring interface.java with a callback interface 
is dragged to a WSDL component (for example, Oracle BPEL Process Manager, Oracle 
Mediator, or others), a WSDL with two port types is generated (technically, a wrapper 
WSDL, which is a WSDL that imports two other WSDLs, each having a single port 
type).

If you drag a WSDL or Java interface that has a callback to a spring service component, 
a single interface is displayed in the SOA Composite Editor. However, inside the 
spring editor, you find both a sca:service and sca:reference that have the same 
naming conventions (someService and someServiceCallback).

49.3 Creating a Spring Service Component in Oracle JDeveloper
This section describes how to create a spring service component and wire the 
component as follows in Oracle JDeveloper:

■ To Java interface-based EJB services and references (Java-to-Java integration)

■ To an Oracle Mediator service component (Java-to-WSDL integration)

For an overview of spring service component integration in the Fusion Order Demo, 
see Section 49.6, "Spring Service Component Integration in the Fusion Order Demo."



Creating a Spring Service Component in Oracle JDeveloper

49-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

49.3.1 How to Create a Spring Service Component in Oracle JDeveloper

To create a spring service component in Oracle JDeveloper:
1. From the Component Palette, drag a Spring Context service component into the 

SOA Composite Editor, as shown in Figure 49–1.

Figure 49–1 Spring Context Service Component

The Create Spring dialog is displayed.

2. In the Name field, enter a name for the spring service component. The name 
becomes both the component name and the spring context file name. Figure 49–2 
provides details. 

You can also select Use Existing Context and click Browse to select an existing 
spring file. For example, you may want to import a spring context that was created 
in Oracle JDeveloper, but outside of Oracle SOA Suite. If you browse and select a 
spring context from another project, it is copied to the SOA project.

Figure 49–2 Create Spring Dialog

3. Click OK. 

Note: A standalone spring version of WebLogic SCA is also available 
for use. This version is typically used outside of Oracle SOA Suite. 
This version is accessible by selecting Spring 2.5 JEE from the 
Component Palette while inside the spring editor. 



Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 49-7

A spring icon is displayed in the SOA Composite Editor. 

4. Double-click the icon to display the contents of the spring context in the spring 
editor.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:util="http://www.springframework.org/schema/util"
       xmlns:jee="http://www.springframework.org/schema/jee"
       xmlns:lang="http://www.springframework.org/schema/lang"
       xmlns:aop="http://www.springframework.org/schema/aop"
       xmlns:tx="http://www.springframework.org/schema/tx"
       xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
  <!--Spring Bean defintions go here-->
</beans>

5. From the Component Palette, select Weblogic SCA from the dropdown list.

The list is refreshed to display the selections shown in Figure 49–3.

Figure 49–3 WebLogic SCA Menu

6. Drag a Service icon into the spring editor.

The Insert Service dialog appears.

7. Complete the fields shown in Table 49–1 to define the target bean and Java 
interface.

Table 49–1 Insert Service Dialog

Field Description

name Enter a name.

target Enter the target bean. This action enables you to expose the bean 
as a service.

Note: Ensure that this target exists. There is no validation 
support that checks for the existence of this target.



Creating a Spring Service Component in Oracle JDeveloper

49-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When complete, the Insert Service dialog looks as shown in Figure 49–4.

Figure 49–4 Insert Service Dialog

8. Click OK.

The target bean becomes the service interface in the spring context.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:util="http://www.springframework.org/schema/util"
       xmlns:jee="http://www.springframework.org/schema/jee"
       xmlns:lang="http://www.springframework.org/schema/lang"
       xmlns:aop="http://www.springframework.org/schema/aop"
       xmlns:tx="http://www.springframework.org/schema/tx"
       xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
  <!--Spring Bean defintions go here-->
  <sca:service name="scaserv1" target="ep" 
type="oracle.mypackage.myinterface"/>
</beans>

Note that if you close the spring editor and return to the SOA Composite Editor, 
you see that a handle has been added to the left side of the spring service 
component, as shown in Figure 49–5.

type Enter the Java interface.

Table 49–1 (Cont.) Insert Service Dialog

Field Description



Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 49-9

Figure 49–5 Service Handle

9. Return to the spring editor.

10. Drag a Reference icon from the list shown in Figure 49–3 into the spring editor.

The Insert Reference dialog is displayed. 

11. Complete the dialog, as shown in Table 49–2, and click OK.

When complete, the spring context displays the service and reference in the spring 
editor.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:util="http://www.springframework.org/schema/util"
       xmlns:jee="http://www.springframework.org/schema/jee"
       xmlns:lang="http://www.springframework.org/schema/lang"
       xmlns:aop="http://www.springframework.org/schema/aop"
       xmlns:tx="http://www.springframework.org/schema/tx"
       xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.5.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
 http://www.springframework.org/schema/tool
 http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
 http://xmlns.oracle.com/weblogic/weblogic-sca META-INF/weblogic-sca.xsd">
  <!--Spring Bean defintions go here-->
  <sca:service name="scaserv1" target="ep" 
type="oracle.mypackage.myinterface"/>
  <sca:reference name="scaref1" type="external.bean.myInterface"/>
</beans>

12. Close the spring context file, as shown in Figure 49–6.

Table 49–2 Insert Reference Dialog

Field Description

name Enter a name.

type Enter the Java interface.



Creating a Spring Service Component in Oracle JDeveloper

49-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 49–6 Spring Context File

Note that a handle is added to the right side of the spring service component, as 
shown in Figure 49–7.

Figure 49–7 Reference Handle

13. Drag the left handle into the Exposed Services swimlane to create a service 
binding component, as shown in Figure 49–8.

Figure 49–8 Service Binding Component

You are prompted to select to expose the service as either a web service or as an 
EJB service, as shown in Figure 49–9.

Figure 49–9 Service Type To Create

■ EJB: This exposes the EJB service through a Java interface; this selection does 
not require the use of a WSDL file. 



Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 49-11

■ Web Service: This exposes the web service through a SOAP WSDL interface. If 
you select this option, a WSDL is generated from the Java Interface for 
compatibility with the spring service component.

14. Select to expose this service as either an EJB or Web service. A service is 
automatically created in the Exposed Services swimlane and wired to the spring 
service component (for this example, EJB was selected). Figure 49–10 provides 
details.

Figure 49–10 EJB Service Binding Component Wired to the Spring Service Component

15. Double-click the EJB service to display the automatically completed configuration, 
as shown in Figure 49–11. The configuration details were created from the values 
you entered in the Insert Service dialog in Step 7.

Figure 49–11 EJB Service Dialog in Exposed Services Swimlane

16. Replace the default JNDI name that was automatically generated with the name 
applicable to your environment.

17. Close the dialog.



Creating a Spring Service Component in Oracle JDeveloper

49-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

18. Drag the right handle of the spring service component into the External 
References swimlane to create a reference binding component.

You are prompted with the same spring type option message as shown in Step 13. 

19. Select an option to expose this reference. A reference is automatically created in 
the External References swimlane and wired to the spring service component (for 
this example, EJB was selected). Figure 49–12 provides details.

Figure 49–12 EJB Reference Binding Component Wired to the Spring Service 
Component

20. Double-click the EJB reference to display the automatically completed 
configuration, as shown in Figure 49–13. The configuration details were created 
from the values you entered in the Insert Reference dialog in Step 11.

Figure 49–13 EJB Reference Dialog in External References Swimlane

21. Close the dialog and return to the SOA Composite Editor, as shown in 
Figure 49–14.



Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 49-13

Figure 49–14 Java Interface-Based EJB Service and Reference Binding Components

22. Place the cursor over both the right handle of the service (as shown in 
Figure 49–15) and the left handle of the spring service component (as shown in 
Figure 49–16). The Java interface is displayed. 

Figure 49–15 Java Interface of Service

Figure 49–16 Java Interface of Spring Service Component

23. Perform the same action on the right handle of the spring service component and 
the left handle of the reference binding component to display its Java interface. 

24. If you want to view the interfaces for the spring service component in the 
componentType file, select this file in the Application Navigator. The interfaces 
for both components are defined by interface.java.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 1.0 at [2/27/10 1:13 PM]. -->
<componentType
               xmlns="http://xmlns.oracle.com/sca/1.0"
               xmlns:xs="http://www.w3.org/2001/XMLSchema"
               xmlns:ui="http://xmlns.oracle.com/soa/designer/">
  <service name="scaserv1">
    <interface.java interface="oracle.mypackage.myinterface"/>
  </service>
  <reference name="scaref1">
    <interface.java interface="external.bean.myInterface"/>
  </reference>
</componentType>



Creating a Spring Service Component in Oracle JDeveloper

49-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25. In the Application Navigator, select the composite.xml file to display similar 
details.

 <service name="scaserv1">
    <interface.java interface="oracle.mypackage.myinterface"/>
    <binding.ejb uri="scaserv1_ejb_ep" ejb-version="EJB3"/>
  </service>
  <component name="MySpring">
    <implementation.spring src="MySpring.xml"/>
  </component>
  <reference name="scaref1">
    <interface.java interface="external.bean.myInterface"/>
    <binding.ejb uri="scaref1_ejb_ep" ejb-version="EJB3"/>
  </reference>
  <wire>
    <source.uri>orderprocessor_client_ep</source.uri>
    <target.uri>OrderProcessor/orderprocessor_client</target.uri>
  </wire>
  <wire>
    <source.uri>scaserv1</source.uri>
    <target.uri>MySpring/scaserv1</target.uri>
  </wire>
  <wire>
    <source.uri>MySpring/scaref1</source.uri>
    <target.uri>scaref1</target.uri>
  </wire>
</composite>

26. If you wire the right handle of the spring service component to an XML-based 
component such as Oracle Mediator instead of the Java interface-based EJB 
reference, a compatible WSDL file is generated. The following steps provide 
details.

a. Drag the right handle of the spring service component to the Oracle Mediator, 
as shown in Figure 49–17.

Figure 49–17 Integration of Spring Service Component and Oracle Mediator

b. Click OK when prompted to acknowledge that a compatible interface was 
created from the Oracle Mediator WSDL file.



Creating a Spring Service Component in Oracle JDeveloper

Integrating the Spring Framework in SOA Composite Applications 49-15

Figure 49–18 Java File Creation from the Oracle Mediator WSDL File

If you drag a wire between a Java interface and a WSDL-based component, 
and the WSDL file with the default name (based on the Java Interface name) 
already exists, you are prompted with four options. Click Cancel to cancel 
creation of the wire. Figure 49–19 provides details.

Figure 49–19 Existing WSDL File

c. Place the cursor over both the right handle of the spring service component (as 
shown in Figure 49–20) and the left handle of the Oracle Mediator (as shown 
in Figure 49–21) to display the compatible interface.

Figure 49–20 Spring Service Component Interface

Figure 49–21 Oracle Mediator Interface



Creating a Spring Service Component in Oracle JDeveloper

49-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

d. Double-click the spring service component to display the contents of the 
spring context file in the spring editor.

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:util="http://www.springframework.org/schema/util"
       xmlns:jee="http://www.springframework.org/schema/jee"
       xmlns:lang="http://www.springframework.org/schema/lang"
       xmlns:aop="http://www.springframework.org/schema/aop"
       xmlns:tx="http://www.springframework.org/schema/tx"
       xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
        http://www.springframework.org/schema/util
        http://www.springframework.org/schema/util/spring-util-2.5.xsd
        http://www.springframework.org/schema/aop
        http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
        http://www.springframework.org/schema/jee
        http://www.springframework.org/schema/jee/spring-jee-2.5.xsd
        http://www.springframework.org/schema/lang
        http://www.springframework.org/schema/lang/spring-lang-2.5.xsd
        http://www.springframework.org/schema/tx
        http://www.springframework.org/schema/tx/spring-tx-2.5.xsd
        http://www.springframework.org/schema/tool
        http://www.springframework.org/schema/tool/spring-tool-2.5.xsd
        http://xmlns.oracle.com/weblogic/weblogic-sca 
META-INF/weblogic-sca.xsd">
  <!--Spring Bean defintions go here-->
  <sca:service name="scaserv1" target="ep" 
type="oracle.mypackage.myinterface"/>
  <sca:reference 
type="mediator1.project1.application4.com.oracle.xmlns.Execute_
ptt" name="Mediator1.Mediator1"/>
</beans>

For more information about integrating components that use Java interfaces with 
components that use WSDL files in the same SOA composite application, see 
Section 49.6, "Spring Service Component Integration in the Fusion Order Demo."

Notes:

■ When integrating a component that uses a Java interface with a 
component that uses a WSDL file in the SOA Composite Editor, if 
a specific interface class is not found in the classpath, but the 
source file does exist in the SOA project, the JAR files in the 
SCA-INF/lib directory of the current loader are automatically 
refreshed to discover the interface class.

■ You can also create BPEL process partner links with services that 
uses Java interfaces. You select this type of service in the Service 
Explorer dialog when creating a partner link. For more 
information, see Section 4.3, "Introduction to Partner Links."



Using the Predefined Spring Beans

Integrating the Spring Framework in SOA Composite Applications 49-17

49.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL 
Conversions

When a Java-to-WSDL conversion fails because of a bad Java class and you modify the 
Java code to correct the problem, you must restart Oracle JDeveloper. Not doing so 
results in a Java-to-WSDL conversion failure because the new class does not get 
reloaded.

49.4 Defining Custom Spring Beans Through a Global Spring Context
You can define custom spring beans through a global spring context definition. This 
configuration enables you to define these beans only once, at the global level.

49.4.1 How to Define Custom Spring Beans Through a Global Spring Context

To define custom spring beans through a global spring context:
1. Add the custom spring bean definitions into the following file:

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1/classes/
springse-extension-global-beans.xml

2. Add the corresponding classes in either the lib directory (as a JAR file) or the 
classes directory (as extracted files of the JAR file).

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1/lib | classes

For more information, see the readme.txt file located in the following directory:

SOA_HOME/soa/modules/oracle.soa.ext_11.1.1

49.5 Using the Predefined Spring Beans
Oracle SOA Suite provides the following predefined spring beans:

■ headerHelperBean: For getting and setting header properties.

■ instanceHelperBean: For getting the following information:

■ The instance ID of the composite instance currently running.

■ The instance ID of the component instance currently running.

■ The composite distinguished name (DN) containing the component.

■ The name of the spring service component.

■ loggerBean: For providing context-aware logging messages.

The predefined spring beans are automatically injected into the spring service 
component. However, you must explicitly integrate the predefined spring beans into a 
SOA composite application by providing a reference to the bean in the spring context 
file. 

For an example of how to reference loggerBean and headerHelperBean in a 
spring context file, see Section 49.5.4, "How to Reference Predefined Spring Beans in 
the Spring Context File."

Note: A server restart is required to pick up newly added spring 
beans.



Using the Predefined Spring Beans

49-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

49.5.1 IHeaderHelperBean.java Interface for headerHelperBean
Example 49–9 shows the IHeaderHelperBean.java interface for the 
headerHelperBean bean.

Example 49–9 IHeaderHelperBean.java Interface

package oracle.soa.platform.component.spring.beans;
/**
 * Interface for getting and setting header properties.
 * These properties will be set on the normalized message - and passed on
 * to the respective reference that the local reference is wired to on 
 * composite level.
 * <br/>
 * In order to use this bean from within your context, declare property
 * with ref="headerHelperBean". E.g.
 * &lt;property name="headerHelper" ref="<b>headerHelperBean</b>"/>
 */
public interface IHeaderHelperBean 
{
    /**
     * Get a property from the normalized message header. Note that these
     * properties are defined, and are the same ones, one can get/set via
     * mediator or bpel process
     * @param pKey the property key, case sensitive
     * @return the value, or null in case not found
     */
    public String getHeaderProperty (String pKey);
    /**
     * Set a property on the normalized message header. Note that these
     * properties are defined, and are the same ones, one can get/set via
     * mediator or bpel process
     * @param pKey the property key, case sensitive
     * @param pValue the value to be set
     */
    public void setHeaderProperty (String pKey, String pValue); 
}

49.5.2 IInstanceHelperBean.java Interface for instancerHelperBean
Example 49–10 shows the IInstanceHelperBean.java interface for the 
instanceHelperBean bean.

Example 49–10 IInstanceHelperBean.java Interface

package oracle.soa.platform.component.spring.beans;

import oracle.integration.platform.instance.engine.ComponentInstanceContext;
/**
 * Instancehelper Bean, gives access to composite / component + instance
 information
 * <br/>
 * In order to use this bean from within your context, declare property
 * with ref="instanceHelperBean". E.g.
 * &lt;property name="instanceHelper" ref="<b>instanceHelperBean</b>"/>
 */
public interface IInstanceHelperBean 
{    
  /**
   * Returns the instance id of the composite instance currently running 



Using the Predefined Spring Beans

Integrating the Spring Framework in SOA Composite Applications 49-19

   * @return the composite instance id
   */
  public String getCompositeInstanceId ();
  
  /**
   * Returns the instance id of the component instance currently running 
   * @return the component instance id
   */
  public String getComponentInstanceId ();
  
  /**
   * Returns the composite dn containing this component
   * @return the composite dn
   */
  public String getCompositeDN ();
  
  /**
   * Returns the name of this spring component 
   * @return the component name
   */
  public String getComponentName ();
  
}

49.5.3 ILoggerBean.java Interface for loggerBean
Example 49–11 shows the ILoggerBean.java interface for the loggerBean bean.

Example 49–11 ILoggerBean.java Interface

package oracle.soa.platform.component.spring.beans;

import java.util.logging.Level;

/**
 * Logger bean interface, messages will be logged as
 * [&lt;composite instance id>/&lt;component instance id>] &lt;message>
 * <br/>
 * In order to use this bean from within your context, declare property
 * with ref="loggerBean". E.g.
 * &lt;property name="logger" ref="<b>loggerBean</b>"/>
 * @author clemens utschig
 */
public interface ILoggerBean 
{

  /**
   * Log a message, with Level.INFO
   * @param message
   */
  public void log (String message);
  
  /**
   * Log a message with desired level
   * @param pLevel the log level
   * @param message the message to log
   */
  public void log (Level pLevel, String message);
  
  /**



Using the Predefined Spring Beans

49-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

   * Log a throwable with the desired level
   * @param level the level to log with
   * @param message the message
   * @param th the exception (throwable) to log
   */
  public void log (Level level, String message, Throwable th);
    
}

49.5.4 How to Reference Predefined Spring Beans in the Spring Context File
You create references to the predefined beans in the spring context file. 

To reference predefined spring beans in the spring context file:
1. Open the spring context file in Source view in Oracle JDeveloper.

2. Add references to the loggerBean and headerHelperBean predefined beans.

<?xml version="1.0" encoding="windows-1252" ?>
. . .
. . .
  <!--
    The below sca:service(s) corresponds to the services exposed by the 
    component type file: SpringPartnerSupplierMediator.componentType
  -->  
       
  <!-- expose the InternalPartnerSupplierMediator + EJB as service 
  
    <service name="IInternalPartnerSupplier">
      <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
    </service>

  -->
  <sca:service name="IInternalPartnerSupplier"
        target="InternalPartnerSupplierMediator"
        
type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>

  <!-- expose the InternalPartnerSupplierMediator + Mock as service 

    <service name="IInternalPartnerSupplierSimple">
      <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
    </service>
  
  -->
  <sca:service name="IInternalPartnerSupplierSimple"
        target="InternalPartnerSupplierMediatorSimple"
        
type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>

  <!-- the partner supplier mediator bean with the mock ep -->               
  <bean id="InternalPartnerSupplierMediatorSimple" 
        
class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator" 
        scope="prototype">
        <!-- inject the external partner supplier bean -->
        <property name="externalPartnerSupplier" 



Spring Service Component Integration in the Fusion Order Demo

Integrating the Spring Framework in SOA Composite Applications 49-21

            ref="IExternalPartnerSupplierServiceMock"/>
        <!-- inject the quoteWriter -->   
        <property name="quoteWriter" ref="WriteQuoteRequest"/>
        <!-- context aware logger, globally available bean [ps3] -->
        <property name="logger" ref="loggerBean"/>        
        <!-- headerHelper bean -->
        <property name="headerHelper" ref="headerHelperBean"/>
  </bean>      

  <!-- the partner supplier mediator bean with the ejb -->               
  <bean id="InternalPartnerSupplierMediator" 
        
class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator" 
        scope="prototype">
        <!-- inject the external partner supplier bean -->
        <property name="externalPartnerSupplier" 
            ref="IExternalPartnerSupplierService"/>
        <!-- inject the quoteWriter -->   
        <property name="quoteWriter" ref="WriteQuoteRequest"/>
        <!-- context aware logger, globally available bean [ps3] -->
        <property name="logger" ref="loggerBean"/>      
        <!-- headerHelper bean -->
        <property name="headerHelper" ref="headerHelperBean"/>
  </bean>      
. . .
. . .

This syntax is included in the spring context file of the Partner Supplier Composite 
application of the Fusion Order Demo. For more information about the Fusion 
Order Demo, see Section 49.6, "Spring Service Component Integration in the 
Fusion Order Demo."

49.6 Spring Service Component Integration in the Fusion Order Demo
The Partner Supplier Composite application of the Fusion Order Demo demonstrates 
how the spring service component obtains a price quote from a partner warehouse. 
Figure 49–22 shows the SOA Composite Editor for this composite application. 

Figure 49–22 Partner Supplier Composite with Spring Service Component

IInternalPartnerSupplier is exposed as an external client service in the Exposed 
Services swimlane.

The Oracle Mediator service component PartnerSupplierMediator routes client 
requests differently based on the amount of the quote:

■ Quotes below $2000 are routed to Oracle BPEL Process Manager.



Spring Service Component Integration in the Fusion Order Demo

49-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Requests that are more than $2000 and less than $3000 are routed to the 
SpringPartnerSupplierMediator spring service component. An external EJB 
reference binding component IExternalPartnerSupplierService is invoked to 
obtain a quote. An external file adapter WriteQuoteRequest is invoked for writing 
the quote results to a file.

■ Requests greater than $3000 are routed to the SpringPartnerSupplierMediator 
spring service component. However, these requests are not routed to the external 
EJB reference binding component. Instead they are handled internally by 
implementing the EJB interface. The external file adapter WriteQuoteRequest is 
also invoked for writing the quote results to a file.

 Figure 49–23 provides an overview of this behavior. 

For requests that are more than $2000 and less than $3000, the target bean 
InternalPartnerSupplierMediator is exposed as a service. The Java interface 
IInternalPartnerSupplier is used. In the External References swimlane, the Java 
interface IExternalPartnerSupplierService is exposed as an external EJB for obtaining 
a quote.

For requests that are more than $3000, the target bean 
InternalPartnerSupplierMediatorSimple is exposed as a service. The Java interface 
IInternalPartnerSupplier is used. The internal Java Interface 
IExternalPartnerSupplierServiceMock is used to obtain a quote. The 
IExternalPartnerSupplierService reference in the External References swimlane is not 
invoked.

In the External References swimlane, since the WriteQuoteRequest reference uses a 
WSDL-based file adapter and does not support Java interfaces, a compatible WSDL 
file is generated.



Spring Service Component Integration in the Fusion Order Demo

Integrating the Spring Framework in SOA Composite Applications 49-23

Figure 49–23 Spring Architecture in Fusion Order Demo

Example 49–12 shows the IInternalPartnerSupplier.java file. 
IInternalPartnerSupplier is implemented by InternalSupplierMediator.

Example 49–12 IInternalPartnerSupplier.java

package com.otn.sample.fod.soa.internalsupplier;
import
 com.otn.sample.fod.soa.internalsupplier.exception.InternalSupplierException;
import java.util.List;
/**
 * The interface for the spring based service, with a typed list.
 * 
 *                 !!! ATTENTION !!!
 * This interface was used to generate the wsdl 
 *  (IInternalPartnerSupplierService.wsdl) - DO NOT MODIFY!
 *  
 */
public interface 

IInternalPartnerSupplier 
{
    /**
     * Get a price for a list of orderItems
     * @param pOrderItems the list of orderitems
     * @return the price
     */
    public double getPriceForOrderItemList(List<Orderitem> pOrderItems)

SpringPartnerSupplierMediator Spring Service Component

IExternalPartner-
SupplierService
(EJB)

WriteQuote-
Request
(file)

SpringPartnerSupplierMediator Spring Context

Bean

WriteQuoteRequest

External 
References

Bean

target

target

Quotes >
2000 &
=< 3000

Quotes >
3000

Inject the external 
partner supplier bean 
property name= 
externalPartnerSupplier

IExternalPartnerSupplier
Service (implements the 
EJB interface)

(sca:reference)

(sca:reference)
Inject the quote writer 
property name= 
quoteWriter

Inject the quote 
writer property 
name= quoteWriter

Inject the external partner 
supplier bean 
property name= 
externalPartnerSupplier

InternalPartner-
SupplierMediator

InternalPartner-
SupplierMediator-
Simple

IExternalPartnerSupplierServiceMock 
(implements the EJB interface)

(sca:service)

(sca:service)

IInternalPartner-
Supplier

IInternalPartner-
SupplierSimple



Spring Service Component Integration in the Fusion Order Demo

49-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        throws InternalSupplierException;
    
}

The SpringPartnerSupplierMediator.componentType file in Example 49–13 
shows the services and references defined for the spring service component shown in 
Figure 49–23.

Example 49–13 SpringPartnerSupplierMediator.componentType File

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SOA Modeler version 1.0 at [7/16/09 2:36 PM]. -->
<componentType
               xmlns="http://xmlns.oracle.com/sca/1.0"
               xmlns:xs="http://www.w3.org/2001/XMLSchema"
               xmlns:ui="http://xmlns.oracle.com/soa/designer/">
  <service name="IInternalPartnerSupplier">
    <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
  </service>
  <service name="IInternalPartnerSupplierSimple">
    <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
  </service>
  <reference name="IExternalPartnerSupplierService">
    <interface.java
 interface="com.otn.sample.fod.soa.externalps.IExternalPartnerSupplierService"/>
  </reference>
  <reference name="WriteQuoteRequest">
    <interface.java
interface="writequoterequest.partnersuppliercomposite.weblogicfusionorderdemo.file
.adapter.pcbpel.com.oracle.xmlns.Write_ptt"/>
  </reference>
</componentType>

Example 49–14 shows the SpringPartnerSupplierMediator.xml spring context 
file.

Example 49–14 SpringPartnerSupplierMediator.xml spring context File

<?xml version="1.0" encoding="windows-1252" ?>
<beans xmlns="http://www.springframework.org/schema/beans"
      xmlns:util="http://www.springframework.org/schema/util"
      xmlns:jee="http://www.springframework.org/schema/jee"
      xmlns:lang="http://www.springframework.org/schema/lang"
      xmlns:aop="http://www.springframework.org/schema/aop"
      xmlns:tx="http://www.springframework.org/schema/tx"
      xmlns:sca="http://xmlns.oracle.com/weblogic/weblogic-sca">
       <!--
   The below sca:service(s) corresponds to the services exposed by the
   component type file: SpringPartnerSupplierMediator.componentType
 -->         

<!-- expose the InternalPartnerSupplierMediator + EJB as service

   <service name="IInternalPartnerSupplier">
     <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
   </service>



Spring Service Component Integration in the Fusion Order Demo

Integrating the Spring Framework in SOA Composite Applications 49-25

 -->
 <sca:service name="IInternalPartnerSupplier"
       target="InternalPartnerSupplierMediator"
       type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>

 <!-- expose the InternalPartnerSupplierMediator + Mock as service

   <service name="IInternalPartnerSupplierSimple">
     <interface.java
 interface="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>
   </service>

 -->
 <sca:service name="IInternalPartnerSupplierSimple"
       target="InternalPartnerSupplierMediatorSimple"
       type="com.otn.sample.fod.soa.internalsupplier.IInternalPartnerSupplier"/>

 <!-- the partner supplier mediator bean with the mock ep -->  
              
<bean id="InternalPartnerSupplierMediatorSimple"
       class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
       scope="prototype">

       <!-- inject the external partner supplier bean -->
       <property name="externalPartnerSupplier"
           ref="IExternalPartnerSupplierServiceMock"/>
       <!-- inject the quoteWriter --> 
         
<property name="quoteWriter" ref="WriteQuoteRequest"/>
       <!-- context aware logger, globally available bean [ps3] -->
       <property name="logger" ref="loggerBean"/>               
<!-- headerHelper bean -->
       <property name="headerHelper" ref="headerHelperBean"/>
 </bean>     
 <!-- the partner supplier mediator bean with the ejb --> 
               
<bean id="InternalPartnerSupplierMediator"
       class="com.otn.sample.fod.soa.internalsupplier.InternalSupplierMediator"
       scope="prototype">
       <!-- inject the external partner supplier bean -->
       <property name="externalPartnerSupplier"
           ref="IExternalPartnerSupplierService"/>
       <!-- inject the quoteWriter -->          
<property name="quoteWriter" ref="WriteQuoteRequest"/>
       <!-- context aware logger, globally available bean [ps3] -->
       <property name="logger" ref="loggerBean"/>             
<!-- headerHelper bean -->
       <property name="headerHelper" ref="headerHelperBean"/>
 </bean>     

 <!-- mock bean for the IExternalPartnerSupplierService -->
 <bean id="IExternalPartnerSupplierServiceMock"
      
 class="com.otn.sample.fod.soa.externalps.test.MockExternalPartnerSupplierTest"/>

<!--
   Use a reference from the outside world based on the
   IExternalPartnerSupplierService interface.
   The below is specified on the SpringPartnerSupplierMediator.componentType -
   and wired to an external EJB binding.



Spring Service Component Integration in the Fusion Order Demo

49-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

      <reference name="IExternalPartnerSupplierService">
     <interface.java
 interface="com.otn.sample.fod.soa.externalps.IExternalPartnerSupplierService"/>
   </reference>   -->                
<sca:reference name="IExternalPartnerSupplierService"
       type="com.otn.sample.fod.soa.externalps.IExternalPartnerSupplierService"/>
        <!--
     <reference name="WriteQuoteRequest">
       <interface.java
 
interface="writequoterequest.partnersuppliercomposite.weblogicfusionorderdemo.file
.adapter.pcbpel.com.oracle.xmlns.Write_ptt"/>
     </reference>   -->
 <sca:reference
 
type="writequoterequest.partnersuppliercomposite.weblogicfusionorderdemo.file.adap
ter.pcbpel.com.oracle.xmlns.Write_ptt"
                name="WriteQuoteRequest"/>
</beans> 

For information on downloading and installing the Fusion Order Demo and using the 
Partner Supplier Composite, see Section 3.2, "Setting Up the Fusion Order Demo 
Application."

After download, see the following Fusion Order Demo directory for Java code samples 
used by the Partner Supplier Composite:

CompositeServices\PartnerSupplierComposite\src\com\otn\sample\fod\soa 

49.6.1 How to Use EJBs with Java Vector Type Parameters
Your Java code may include vectors. However, vectors cannot be serialized to XML 
without declaring the content POJOs. The following example provides an overview of 
how to resolve this issue and uses code samples from the Fusion Order Demo.

To use EJBs with Java vector type parameters:
1. Assume your Java code includes vectors, as shown in Figure 49–24. 

Figure 49–24 Vectors

2. Create an EJB binding reference based on the Java interface class and the JNDI 
name. Figure 49–25 provides an example.



Spring Service Component Integration in the Fusion Order Demo

Integrating the Spring Framework in SOA Composite Applications 49-27

Figure 49–25 EJB Binding Reference Creation

3. Wire the EJB reference to the spring service component, as shown in Figure 49–26.

Figure 49–26 EJB Reference Wired to Spring Service Component

A new reference is created in the spring context file. Figure 49–27 provides details.

Figure 49–27 Reference Addition to Spring Context File

4. Enable spring to inject the reference into the class by declaring a public member of 
type IExternalPartnerSupplierService. Figure 49–28 provides details.



JAXB and OXM Support

49-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 49–28 Public Member Declaration

5. Add a property with the name of the member to 
IExternalPartnerSupplierService and refer to the 
ExternalPartnerSupplier reference bean. Figure 49–29 provides details.

Figure 49–29 Property Added with Name of the Member

This converts the vectors to EJB parameters.

49.7 JAXB and OXM Support
Oracle Fusion Middleware provides support for using Java Architecture for XML 
Binding (JAXB) and the EclipseLink O/X-Mapper (OXM) to map Java classes to XML 
data. You can store and retrieve data in memory in any XML format without 
implementing a specific set of XML routines for the program's class structure. This 
support enables you to perform the following: 

■ Map Java objects to XML data

■ Map XML data back to Java objects

For design information about external metadata for JAXB mappings, visit the 
following URL:

http://wiki.eclipse.org/EclipseLink/DesignDocs/277920



JAXB and OXM Support

Integrating the Spring Framework in SOA Composite Applications 49-29

For information about JAXB OXM and the OXM mapping file 
(eclipselink-oxm.xsd), visit the following URLs:

http://wiki.eclipse.org/EclipseLink/FAQ/WhatIsMOXy

http://wiki.eclipse.org/EclipseLink/Examples/MOXy

http://wiki.eclipse.org/Category:XML

You can also map Java classes to XML data when integrating Enterprise JavaBeans 
with SOA composite applications. For more information, see Chapter 36, "Integrating 
Enterprise JavaBeans with SOA Composite Applications."

49.7.1 Extended Mapping Files
Oracle SOA Suite extends JAXB and OXM file support through use of an extended 
mapping (EXM) file. If an EXM file is present in the class path of the design time 
project, then it can be used for Java-to-WSDL conversions. The EXM file provides data 
binding metadata in the following situations:

■ When you cannot add the JAXB annotations into the Java source and must specify 
them separately

■ When scenarios are not covered by JAXB (for example, with top level elements like 
method return types or parameter types)

The external JAXB annotations can be specified either directly in the EXM file or 
included in the separate TopLink JAXB mapping OXM file that can be referred to from 
the EXM file. 

Oracle SOA Suite design time supports placing the EXM file in either the source path 
(SCA-INF/src) or the class path (SCA-INF/classes or a JAR in SCA-INF/lib). 

Placing the EXM file in the source path (SCA-INF/src) enables you to edit the EXM 
using Oracle JDeveloper (files in the class path do not appear in the Application 
Navigator in Oracle JDeveloper). When project compilation is complete, the EXM file 
(and any XML files that it imports) is copied to the class path (SCA-INF/classes) for 
deployment.

If the EXM file is in the source path, it must still be in the same corresponding 
directory structure.

Example 49–15 and Example 49–16 provide examples of EXM files.

Example 49–15 EXM Sample File

<java-web-service-endpoint
           xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
           xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
           databinding="toplink.jaxb">

  <xml-schema-mapping>
       <toplink-oxm-file
 java-package="weblogic.wsee.databinding.internal.test.toplink" 
 file-path="./person-oxm.xml"/>
  </xml-schema-mapping>

<!--
  <web-service name="hello-ws" target-namespace="hello-ns"/>
  <java-methods>
  <java-method name="hello" oxm:xml-mixed="false">



JAXB and OXM Support

49-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

     <oxm:xml-elements>
        <oxm:xml-element type="java.lang.Integer"/>
     </oxm:xml-elements>
     <web-result name="result"/>
     <java-params>
         <java-param oxm:xml-mixed="false">
            <oxm:xml-elements>
              <oxm:xml-element type="java.lang.String"/>
            </oxm:xml-elements>
            <web-param name="request"/>
         </java-param>
     </java-params>
  </java-method>
  </java-methods>
  -->
</java-web-service-endpoint>

Example 49–16 EXM Sample File

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<java-wsdl-mapping
 name="weblogic.wsee.databinding.internal.test.toplink.CollectionMapExtTypeArg"
           xmlns="http://xmlns.oracle.com/weblogic/weblogic-wsee-databinding"
           xmlns:oxm="http://www.eclipse.org/eclipselink/xsds/persistence/oxm"
           databinding="toplink.jaxb">
  <soap-binding parameter-style="BARE"/>
  <java-methods>
  <java-method name="testListOfCustomer">
     <java-params>
         <java-param>
            <oxm:xml-element
 type="weblogic.wsee.databinding.internal.test.toplink.Customer"/>
         </java-param>
     </java-params>
  </java-method>

  <!-- Not implemented by EclipseLink yet
  <java-method name="testMapOfCustomer">
     <java-params>
         <java-param>
            <oxm:xml-element
 xmlns='http://www.eclipse.org/eclipselink/xsds/persistence/oxm'>
              <xml-map>
                        <key type='java.lang.String'/>
                        <value
 type='weblogic.wsee.databinding.internal.test.toplink.Customer'/>
              </xml-map>
            </oxm:xml-element>
         </java-param>
     </java-params>
  </java-method>
  -->

  <java-method name="testMapOfCustomerAdapters">
     <oxm:xml-element
 xmlns='http://www.eclipse.org/eclipselink/xsds/persistence/oxm'>
       <oxm:xml-java-type-adapter
 value='weblogic.wsee.databinding.internal.test.toplink.MapStringIntegerAdapter'/>
     </oxm:xml-element>
     <java-params>



JAXB and OXM Support

Integrating the Spring Framework in SOA Composite Applications 49-31

         <java-param>
            <oxm:xml-element
 xmlns='http://www.eclipse.org/eclipselink/xsds/persistence/oxm'>
              <oxm:xml-java-type-adapter
 
value='weblogic.wsee.databinding.internal.test.toplink.MapStringCustomerAdapter'/>
            </oxm:xml-element>
         </java-param>
     </java-params>
  </java-method>

  <!-- Not implemented: Bare Multi-part -->
  <java-method name="test3Lists">
  <web-method exclude="true"/>
  </java-method>
  </java-methods>
</java-wsdl-mapping>

The EXM schema file for external mapping metadata for the data binding framework 
is available at the following URL: 

http://www.oracle.com/technology/weblogic/weblogic-wsee-databinding/1.1
/weblogic-wsee-databinding.xsd

The data defines the attributes of a particular Java web service endpoint. This schema 
defines three types of XML constructs:

■ Constructs that are analogous to JAX-WS or JSR-181that override or define 
attributes on the service endpoint interface (SEI) and JAXB annotations for the 
value types utilized in the interfaces of the SEI.

■ Additional mapping specifications not available using standard JAX-WS or JAXB 
annotations, primarily for use with the java.util.Collections API.

■ References to external JAXB mapping metadata from a Toplink OXM file.

When a construct is the direct analog of a JAX-WS, JSR-181, or JAXB annotation, the 
comment in the schema contains a notation such as: 

Corresponding Java annotation: javax.jws.WebParam.Mode



JAXB and OXM Support

49-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Part X
Part X  Using Oracle Business Activity

Monitoring

This part describes Oracle Business Activity Monitoring.

This part contains the following chapters:

■ Chapter 50, "Integrating Oracle BAM with SOA Composite Applications"

■ Chapter 51, "Using Oracle BAM Data Control"

■ Chapter 52, "Defining and Managing Oracle BAM Data Objects"

■ Chapter 53, "Creating Oracle BAM Enterprise Message Sources"

■ Chapter 54, "Using Oracle Data Integrator With Oracle BAM"

■ Chapter 55, "Creating External Data Sources"

■ Chapter 56, "Using Oracle BAM Web Services"

■ Chapter 57, "Creating Oracle BAM Alerts"

■ Chapter 58, "Using ICommand"





50

Integrating Oracle BAM with SOA Composite Applications 50-1

50 Integrating Oracle BAM with SOA
Composite Applications

This chapter provides information about using the Oracle BAM Adapter in the SOA 
composite applications using Oracle JDeveloper. 

This chapter contains the following topics:

■ Section 50.1, "Introduction to Integrating Oracle BAM with SOA Composite 
Applications"

■ Section 50.2, "Configuring Oracle BAM Adapter"

■ Section 50.3, "Using Oracle BAM Monitor Express With BPEL Processes"

■ Section 50.4, "Creating a Design Time Connection to an Oracle BAM Server"

■ Section 50.5, "Using Oracle BAM Adapter in a SOA Composite Application"

■ Section 50.6, "Using Oracle BAM Adapter in a BPEL Process"

■ Section 50.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action"

■ Section 50.8, "Integrating SOA Applications and Oracle BAM Using Enterprise 
Message Resources"

50.1 Introduction to Integrating Oracle BAM with SOA Composite 
Applications

The Oracle BAM Adapter is a Java Connector Architecture (JCA)-compliant adapter 
which can be used from a Java EE client to send data and events to the Oracle BAM 
Server. The Oracle BAM Adapter supports the following operations on Oracle BAM 
data objects: inserts, updates, upserts, and deletes. 

The Oracle BAM Adapter can perform these operations over Remote Method 
Invocation (RMI) calls (if they are deployed in the same farm), direct Java object 
invocations (if they are deployed in the same container), or over Simple Object Access 
Protocol (SOAP) (if there is a fire wall between them).

Oracle BAM Adapter is configured in Oracle WebLogic Server Administration Console 
to provide any of these connection pools. See Section 50.2, "Configuring Oracle BAM 
Adapter" for more information.

Some configuration is required to connect SOA composite applications to Oracle BAM. 
See Section 50.4, "Creating a Design Time Connection to an Oracle BAM Server" for 
more information.

Oracle BAM Adapter can be used with various features in SOA composite applications 
by which you can send data to an Oracle BAM Server:



Configuring Oracle BAM Adapter

50-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The Oracle BAM Adapter transfers data from BPEL process monitors to 
automatically generated Oracle BAM data objects. See Section 50.3, "Using Oracle 
BAM Monitor Express With BPEL Processes" for more information.

■ The Oracle BAM Adapter can be used as a reference binding component in a SOA 
composite application. For example, Oracle Mediator can send data to Oracle 
BAM using the Oracle BAM Adapter. See Section 50.5, "Using Oracle BAM 
Adapter in a SOA Composite Application" for more information.

■ The Oracle BAM Adapter can also be used as a partner link in a Business Process 
Execution Language (BPEL) process to send data to Oracle BAM as a step in the 
process. See Section 50.6, "Using Oracle BAM Adapter in a BPEL Process" for more 
information.

■ Oracle BAM sensor actions (which use Oracle BAM Adapter) can be included 
within a BPEL process to publish event-based data to the Oracle BAM data objects. 
See Section 50.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action" for 
more information.

JMS sensor actions on BPEL sensors can be used to feed data to Oracle BAM, and 
circumvent Oracle BAM Adapter. See Section 50.8, "Integrating SOA Applications and 
Oracle BAM Using Enterprise Message Resources" for more information.

JMS sensor actions at the SOA composite application level can be used to feed data to 
Oracle BAM. See Chapter 47, "Defining Composite Sensors" for more information.

50.2 Configuring Oracle BAM Adapter
The Oracle BAM Adapter Java Naming and Directory Interface (JNDI) connection 
pools must be configured when you use the Oracle BAM adapter to connect with the 
Oracle BAM Server at runtime. For information about configuration see "Configuring 
the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite.

Make note of the JDNI names that you configure in the Oracle BAM Adapter 
properties, so that you can use them in the Oracle BAM Adapter wizard, Monitor 
Express configuration, and the Oracle BAM sensor action configuration in Oracle 
JDeveloper.

When using an RMI connection between a SOA composite application and Oracle 
BAM Server, that is, when they are deployed in different domains, trusted domain 
configuration must be done in Oracle WebLogic Server Administrative Console. See 
"Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

50.3 Using Oracle BAM Monitor Express With BPEL Processes
The Monitor Express offering from Oracle BAM provides high level instrumentation of 
BPEL processes, automatically handling Oracle BAM data object deployment and 
population.



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-3

Figure 50–1 Oracle BAM Monitor Express Dashboard

Activity Monitors and Monitoring Objects are used to capture BPEL process metrics, 
which are sent to Oracle BAM Server, and then used for analysis and graphic display. 
All of the connection, design, and deployment configuration is accomplished in Oracle 
JDeveloper.

Monitor Express ships with sample dashboards to demonstrate solutions you can 
build on top of the automatically deployed data objects. You can also build custom 
dashboards on the data objects generated by Monitor Express using Oracle BAM 
Active Studio or with Oracle BAM data controls in an ADF application.

Using the BPEL Designer Monitor view in Oracle JDeveloper, you can create the 
following types of monitors on a BPEL process:

■ Activity Monitors capture running time data for BPEL process activities, scopes, 
and human tasks. Activity Monitors can help identify bottlenecks in the BPEL 
process. See Section 50.3.2, "How to Configure Activity Monitors" for more 
information.

■ Counter monitoring objects capture the date and time when a particular BPEL 
activity event is encountered within the BPEL process. Counters may be useful for 
reporting the number of times a particular activity is executed over a period of 
time. See Section 50.3.4, "How to Configure Counters" for more information.

■ Interval monitoring objects capture the amount of time for the process to go from 
one BPEL activity event to another. Interval monitoring objects can help identify 



Using Oracle BAM Monitor Express With BPEL Processes

50-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

bottlenecks in the BPEL process. See Section 50.3.5, "How to Configure Intervals" 
for more information.

■ Business Indicator monitoring objects capture a snapshot of BPEL variables or 
expressions at a specified activity event in the BPEL process. See Section 50.3.6, 
"How to Configure Business Indicators" for more information.

When the SOA composite application is deployed, the Oracle BAM data objects 
corresponding to the BPEL process monitors are created or updated automatically.

This section contains the following topics:

■ Section 50.3.1, "How to Access BPEL Designer Monitor View"

■ Section 50.3.2, "How to Configure Activity Monitors"

■ Section 50.3.3, "How To Create BPEL Process Monitoring Objects"

■ Section 50.3.4, "How to Configure Counters"

■ Section 50.3.5, "How to Configure Intervals"

■ Section 50.3.6, "How to Configure Business Indicators"

■ Section 50.3.7, "How to Add Existing Monitoring Objects to Activities"

■ Section 50.3.8, "How To Configure BPEL Process Monitors for Deployment"

■ Section 50.3.10, "What You Need To Know About Monitor Express Data Objects"

■ Section 50.3.9, "What You Need to Know About Using the Monitor Express 
Dashboard"

Related Documentation
■ Chapter 52, "Defining and Managing Oracle BAM Data Objects"

■ Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring

50.3.1 How to Access BPEL Designer Monitor View
To access BPEL Designer Monitor view, select Monitor in the BPEL Designer toolbar. 

In Monitor view, the structure pane displays the Monitoring Objects folder. You can 
expand the folder to expose the Business Indicators, Intervals, and Counters folders.



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-5

50.3.2 How to Configure Activity Monitors
Configure and enable Activity Monitors to capture data on start and end times for the 
BPEL process including the individual BPEL activities, scopes, and human tasks.

To configure Activity Monitors:
1. In the Monitor view of a BPEL process, click Activity Monitoring Configuration 

in the BPEL Designer tool bar.

2. In the Activity Monitoring Configuration dialog, select Enable Activity 
Monitoring, and choose the Mode to configure the level of monitoring.

■ The All Activities option captures start and end time data for every activity in 
the BPEL process, including individual activities, scopes, and human tasks. An 
activity starts when the activation event for the activity is begun, and it ends 
when the completion event is finished.

■ The Scopes and Human Tasks Only option captures start and end time data 
for every scope and human task defined in the BPEL process. A scope starts 
when the first activity activation event within the scope is begun, and it ends 
when the final activity completion event within the scope is finished. A 
human task activity starts when the activation event for the human task 

Note: The global Enable Monitoring flag overrides the local setting.



Using Oracle BAM Monitor Express With BPEL Processes

50-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

activity is begun, and it ends when the completion event in the human task 
activity is finished.

■ The Human Tasks Only option captures start and end time data for every 
human task activity defined in the BPEL process.

■ The BPEL Process Only option captures start and end time data for the BPEL 
process.

You can disable Activity Monitors by deselecting the Enable Activity Monitoring 
checkbox.

3. Click OK. 

If Activity Monitors are enabled, data is sent to Oracle BAM data object at runtime. 
See Section 50.3.10, "What You Need To Know About Monitor Express Data 
Objects" for more information about Oracle BAM data objects for monitoring 
objects.

50.3.3 How To Create BPEL Process Monitoring Objects
Use the BPEL Designer Monitor view in Oracle JDeveloper to create BPEL process 
monitoring objects.

To create a BPEL process monitoring object:
1. While in the Monitor view, open a context menu on an activity in the BPEL process 

diagram, select Create, and choose a monitoring object type from the list.

Alternatively, you can use the Monitoring Objects menu, located at the top left 
corner of the BPEL Designer window, to create monitoring objects.

As another alternative, you can open a context menu for each Monitoring Objects 
type folder in the Structure pane to create a monitoring object.



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-7

BPEL process configurable monitoring objects are available in three types: 
Counters, Intervals, and Business Indicators. See the following topics for more 
information.

■ Section 50.3.4, "How to Configure Counters"

■ Section 50.3.5, "How to Configure Intervals"

■ Section 50.3.6, "How to Configure Business Indicators"

2. To enable the BPEL process monitoring objects at run time, verify that the Enable 
Monitoring checkbox, located at the top left corner of the BPEL Designer Monitor 
view, is selected.

Figure 50–2 Enable Monitoring Checkbox

When checked, the Enable Monitoring option in BPEL Designer enables all of the 
monitors and sensors in all BPEL processes in the current SOA composite 
application. It overrides any monitoring object-level enable flags.

When the Enable Monitoring option is not checked, a property called 
enableProcessSensors is added to composite.xml with the value false. 
That property disables all monitors and sensors in all BPEL processes in the 
current SOA composite application.

50.3.4 How to Configure Counters
Every time the BPEL process passes a snapshot of a Counter (which is attached to an 
activity in the BPEL process diagram), data is sent to Oracle BAM. The Counter 
indicates how often a BPEL activity is encountered, and creates a new record in an 
Oracle BAM data object with time data.

Use the Counter dialog to configure a Counter monitoring object.



Using Oracle BAM Monitor Express With BPEL Processes

50-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Enabled checkbox enables or disables this particular monitoring object. If it is not 
enabled, the Counter is not evaluated during the BPEL process, therefore no data is 
sent to Oracle BAM.

To attach a snapshot of a Counter to a BPEL activity, click the Add icon in the Counter 
dialog. Then select an activity from the list.

Next, choose an evaluation event (an event within the activity), by clicking the 
browsing icon.

The Evaluation Event Chooser opens to let you select one or more evaluation events.



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-9

When the Counter snapshot configuration is complete, it is displayed as an N icon 
next to activity in the BPEL process diagram.

The Counter and its snapshot are represented in the structure pane.

50.3.5 How to Configure Intervals
An Interval monitoring object captures the amount of time to go from one activity to 
another in the BPEL process. The start and end times are captured and sent to an 
Oracle BAM data object.

Use the Interval dialog to configure an Interval monitoring object.



Using Oracle BAM Monitor Express With BPEL Processes

50-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Enabled checkbox enables or disables this particular monitoring object. If it is not 
enabled, the Interval is not evaluated during the BPEL process, therefore no data is 
sent to Oracle BAM.

The Start Activity defines the beginning of the Interval. Select a Start Activity from 
the list, and a single selection in the Evaluation Events list. 

End Activity defines the end of the Interval. Select an End Activity from the list, and a 
single selection in the Evaluation Events list.

You can select Associated Indicators if a Business Indicator has been previously 
defined in the BPEL process. Selecting an associated indicator automatically provides 
two snapshots on the selected Business Indicator. This captures the Business Indicator 
metrics at the start and at the end of the Interval. 



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-11

The Interval is represented in the structure pane.

On execution, the Interval start and end times are sent to Oracle BAM as a new record 
in a data object. See Section 50.3.10, "What You Need To Know About Monitor Express 
Data Objects" for information about the Oracle BAM data objects.

An empty Interval, one in which the start and end activities and evaluation events are 
the same, is valid, and it can be used to label Business Indicator snapshots. The 
Interval can be used to uniquely identify multiple snapshots for a single Business 
Indicator. Instead of configuring snapshots in the Business Indicator dialog, you can 
create an empty Interval for each snapshot you want to create for a Business Indicator, 
and select the Business Indicator’s indicator reference in each Interval.

50.3.6 How to Configure Business Indicators
A Business Indicator monitoring object captures a snapshot of BPEL variables, 
specified by the metrics in the Business Indicator, or evaluates expressions, when the 
events specified in the Business Indicator are encountered in the BPEL process.

Use the Business Indicator dialog to configure a Business Indicator monitoring object.

Note: If you plan to include an associated indicator snapshot in the 
Interval, it is not recommended to use the main or receiveInput 
activities at the Activate evaluation event as the start or end points, 
because the variables in the XPath expression might not yet be 
populated.

BPEL activities of type receive, typically named receiveInput, 
allow the process to wait for a matching message to arrive. The 
arriving message is copied to a variable specified in the definition of 
the activity. The copy operation occurs between the activate and 
complete evaluation events, and not before or on activate. 
Therefore, caution must be taken when defining monitoring object 
snapshots on BPEL activities of type receive, especially if the 
activate evaluation event is chosen.



Using Oracle BAM Monitor Express With BPEL Processes

50-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Enabled checkbox enables or disables this particular monitoring object. If it is not 
enabled, the configured expression in the Business Indicator is not evaluated during 
the BPEL process, therefore no data is sent to Oracle BAM.

Metrics are defined to evaluate an expression or variable when the events specified in 
the Business Indicator are encountered in the BPEL process.

Click the green plus icon to configure a metric. Metrics have a name, data type, and 
XPath expression. 

You can enter an expression directly in the XPath field, or click Edit to open the Metric 
configuration dialog, and click Edit to use the Expression Builder.



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-13

Snapshots associate the Business Indicator with activities in the BPEL process. The 
snapshot tells the BPEL process at what point to evaluate the Business Indicator 
metrics. To create a snapshot, click the green plus icon.

Evaluation Events indicate at what point during the activity to evaluate the Business 
Indicator metrics. Select a Snapshot in the table and click Edit to select one or more 
evaluation events. You can pick multiple evaluation events within the BPEL activity on 
which to evaluate the metric.

When the configuration is saved, a Business Indicator icon is displayed in the top right 
corner of the associated activity in the BPEL process diagram.

Note: You can use empty Interval monitoring objects to uniquely 
identify snapshots of a particular Business Indicator. See 
Section 50.3.5, "How to Configure Intervals" for more information.

Note: Configuring a snapshot on the main or receiveInput 
activities at the Activate evaluation event is not recommended 
because the variables in the XPath expression might not yet be 
populated.



Using Oracle BAM Monitor Express With BPEL Processes

50-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Business Indicator is also represented in the structure pane with its metrics and 
snapshots.

On execution, when a Business Indicator is encountered in the BPWL process, the 
metrics are evaluated and results sent to Oracle BAM as new records in a data object. 
See Section 50.3.10, "What You Need To Know About Monitor Express Data Objects" 
for information about the Oracle BAM data objects.

50.3.7 How to Add Existing Monitoring Objects to Activities
You can add previously created Counters and Business Indicators to activities in the 
BPEL process with a shortcut menu provided in the BPEL Designer Monitor view. This 
creates a new snapshot in the selected Counter or Business Indicator.

To add a monitor to an activity:
1. Right-click the activity to which you want to add the monitor, and select Add.

2. Select Counter or Business Indicator.

3. Select one or more monitoring objects in the dialog and click OK. Press Shift-click 
to select multiple monitoring objects.



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-15

4. An icon appears within the activity boundary.

50.3.8 How To Configure BPEL Process Monitors for Deployment
When any BPEL process in the current SOA composite application contains 
monitoring objects, during the deployment of that composite, Oracle BAM data objects 
are created in Oracle BAM Server in the location specified in the monitor.config 
file.

Deployment is incremental, meaning that existing data objects are not deleted, and 
columns are added to data objects when required by the monitoring object 
configuration. See Section 50.3.10, "What You Need To Know About Monitor Express 
Data Objects" for details about the data objects.

To configure deployment properties:
In the Application Navigator project folder, open the monitor.config file for 
editing. 

Note: The monitor.config file is created on demand. If there are 
no monitors configured in the BPEL process, there is no 
monitor.config file.

The monitor.config file does not appear automatically in Oracle 
JDeveloper Application Navigator when the first monitor object is 
created. The user must save all of the files in the project (using Save 
All), and then refresh the Application Navigator.



Using Oracle BAM Monitor Express With BPEL Processes

50-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The monitor.config file defines deployment and runtime properties needed to 
connect with Oracle BAM Server to create and populate the data objects.

The default monitor.config file is shown in the following example.

<?xml version="1.0" encoding="UTF-8"?>
<MonitorConfig>
  <Connection>
    <BAM dataObjectsFolder="/Samples/Monitor Express/"
         adapterConnectionFactoryJNDI="eis/bam/rmi" batch="true"
         deploymentProtocol="http">
    </BAM>
  </Connection>
  <Deployment ignoreErrors="true"/>
</MonitorConfig> 

The properties are described in Table 50–1.

Define only one Connection block per BPEL project.

Caution: Do not edit the BPELProcess.monitor file. It is an 
internal file, and it must not be edited manually. It stores the metadata 
for all of the BPEL process monitors in the specific BPEL process.



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-17

Table 50–1 Monitor Configuration Properties

Property Default Description

dataObjectsFolder /Samples/Monitor 
Express/

Path to the location of the data 
objects for the monitors 
configured in all of the BPEL 
process for the SOA composite 
application. If the directory does 
not exist, it is created during 
deployment. The path is relative 
to the root data object folder in 
Oracle BAM Server. 

Note that there is only one data 
objects folder per SOA 
composite application. The 
application can contain many 
BPEL processes. All of the data 
objects associated with all of the 
BPEL processes in the 
application are created in this 
location.

adapterConnectionFactoryJNDI eis/bam/rmi Oracle BAM Adapter connection 
pool configured in Oracle 
WebLogic Server Administration 
Console. Oracle BAM Adapter 
must be configured before 
deployment and runtime.

When using the RMI protocol, as 
when Oracle SOA Server and 
Oracle BAM Server are deployed 
in separate domains, you must 
also configure trusted domain 
credentials for both Oracle SOA 
Server and Oracle BAM Server 
domains.

See Section 50.2, "Configuring 
Oracle BAM Adapter" and Oracle 
Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and 
Oracle BPM Suite for more 
information.

batch true Indicates that batching using 
Oracle BAM Adapter is enabled. 
See Oracle Fusion Middleware 
Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite 
for information about batching 
configuration properties.

deploymentProtocol http The only valid value is http.



Using Oracle BAM Monitor Express With BPEL Processes

50-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

50.3.9 What You Need to Know About Using the Monitor Express Dashboard
Oracle BAM provides a sample dashboard that you can use to monitor your BPEL 
process out of the box.

The Monitor Express dashboard and data object samples allow users to enable Oracle 
BAM for your SOA composite applications in relatively few steps from within Oracle 
JDeveloper. The ready-to-use dashboards provide a single integrated view to track Key 
Performance Indicators (KPIs) in real-time and promote operational efficiency. The 
rich user experience for monitoring is delivered by BPEL Monitor instrumentation in 
Oracle JDeveloper.

The data objects are located in the Samples/Monitors/ data object directory in 
Oracle BAM Architect, and the sample reports are located in the Shared 
Reports/Samples/Monitor Express/ folder in Oracle BAM Active Viewer.

If the samples are not installed on your system, the installation script and instructions 
are located in the SOA_ORACLE_HOME/bam/samples/bam/monitorexpress 
directory.

50.3.10 What You Need To Know About Monitor Express Data Objects
Oracle BAM data objects are deployed automatically when a SOA composite 
application containing enabled BPEL process monitors is deployed. Preseeded sample 
data objects are present in the Samples/Monitor Express/ directory.

You can use these data objects to construct Oracle BAM dashboards. See Oracle Fusion 
Middleware User's Guide for Oracle Business Activity Monitoring for information about 
creating dashboards in Oracle BAM Active Studio.

You can add columns and indexes to the data objects using Oracle BAM Architect. The 
custom columns and indexes you add in Oracle BAM Architect are preserved when a 
revised SOA composite application containing changes to BPEL process monitor 
configuration is deployed. See Chapter 52, "Defining and Managing Oracle BAM Data 
Objects" for information about adding columns and indexes.

If a data object already exists in the configured location at deployment time, it is used 
as is, or updated with the appropriate additional columns to accommodate messages 
from the BPEL process monitors.

ignoreErrors true If Oracle BAM Server is 
unreachable or there are any 
problems with the deployment 
of the Oracle BAM data objects, 
and this property is set to true, 
deployment of the composite 
does not halt. If set to false and 
Oracle BAM Server is 
unavailable, the deployment 
fails.

This property corresponds to the 
Ignore BPEL Monitor 
deployment errors checkbox in 
the deployment configuration 
wizard.

Table 50–1 (Cont.) Monitor Configuration Properties

Property Default Description



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-19

 Oracle BAM data objects cannot be changed if they are in use. If there are Oracle BAM 
dashboards open against BPEL process monitor data objects, and the data objects 
require changes upon deployment, the data object updates fail.

Oracle BAM Adapter Configuration
BPEL process monitors use Oracle BAM Adapter to convey messages to Oracle BAM 
Server. At deployment time, if Oracle BAM Server is unreachable, deployment fails. If 
Oracle BAM Server is unreachable at runtime, the retry behavior is determined by the 
Oracle BAM Adapter configuration. See Section 50.2, "Configuring Oracle BAM 
Adapter" and "Configuring Oracle BAM Adapter" in Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

See the following sections for a detailed description of the data objects and 
troubleshooting information.

■ Section 50.3.10.1, "Understanding the COMPONENT Data Object"

■ Section 50.3.10.2, "Understanding the COUNTER Data Object"

■ Section 50.3.10.3, "Understanding the INTERVAL Data Object"

■ Section 50.3.10.4, "Understanding Business Indicator Data Objects"

■ Section 50.3.10.5, "Troubleshooting"

50.3.10.1 Understanding the COMPONENT Data Object
The COMPONENT data object is the main dimension table. It compiles information 
about how long a BPEL process instance takes to run, and if it has failed at least once.

This data object is always populated when at least one monitoring object is configured 
or if you have activity monitoring enabled.

Note: Do not change the existing monitoring data object column 
names.

Table 50–2 COMPONENT Data Object Fields

Column Name Description

COMPOSITE_INSTANCE_ID SCA composite instance ID number.

COMPONENT_INSTANCE_ID SCA component instance ID number. For 
BPEL it is the BPEL instance ID number.

DOMAIN_NAME The partition name.

COMPOSITE_NAME The name of the SOA composite application.

COMPOSITE_REVISION The revision number of the SOA composite 
application.

COMPOSITE_LABEL SOA composite application internal label. 

This label is created every time you deploy 
even if you override the revision ID.

COMPONENT_TYPE The component type (BPEL, for a BPEL 
process, for example).

COMPONENT_NAME The component display name (The name of a 
BPEL process, for example).



Using Oracle BAM Monitor Express With BPEL Processes

50-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

50.3.10.2 Understanding the COUNTER Data Object
The COUNTER data object contains data captured by all of the Counter monitoring 
objects encountered in the BPEL processes.

COMPONENT_START_TIME The date and time that the component started 
running.

COMPONENT_END_TIME The date and time that the component 
stopped running.

COMPONENT_FAULT_FLAG Indicates whether the component has faulted 
at least once. 1=faulted, 0=no fault.

FAULT_NAME Name of the last fault that occurred.

COMPONENT_RUNNING_FLAG Indicates whether the component is currently 
running. 1=the component is running, 0=the 
component is not running.

COMPONENT_RUNNING_TIME_IN_SEC The calculated length of time between 
COMPONENT_START_TIME and COMPONENT_
END_TIME in seconds.

COMPONENT_RUNNING_TIME_IN_MIN The calculated length of time between 
COMPONENT_START_TIME and COMPONENT_
END_TIME in minutes.

COMPONENT_COMPLETED_NO_FAULT_FLAG Indicates whether the component completed 
with no faults. 1=completed with no fault, 
0=either did not complete yet, or did complete 
with fault.

COMPONENT_INCOMPLETE_FLAG Indicates that the component has not 
completed, and has faulted at least once. 
1=has not completed, and has faulted at least 
once, 0=otherwise.

Table 50–3 COUNTER Data Object Fields

Column Name Description

COMPOSITE_INSTANCE_ID SCA composite instance ID number.

COMPONENT_INSTANCE_ID SCA component instance ID number. For BPEL it is the 
BPEL instance ID number.

DOMAIN_NAME Lookup to DOMAIN_NAME field in COMPONENT data 
object.

COMPOSITE_NAME Lookup to COMPOSITE_NAME field in COMPONENT data 
object.

COMPOSITE_REVISION Lookup to COMPOSITE_REVISION field in COMPONENT 
data object.

COMPOSITE_LABEL Lookup to COMPOSITE_LABEL field in COMPONENT data 
object.

COMPONENT_TYPE Lookup to COMPONENT_TYPE field in COMPONENT data 
object.

COMPONENT_NAME Lookup to COMPONENT_NAME field in COMPONENT data 
object.

COMPONENT_START_TIME Lookup to COMPONENT_START_TIME field in 
COMPONENT data object.

Table 50–2 (Cont.) COMPONENT Data Object Fields

Column Name Description



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-21

50.3.10.3 Understanding the INTERVAL Data Object
The INTERVAL data object contains data captured by all of the Interval monitoring 
objects and Activity Monitors configured in the BPEL processes.

COMPONENT_END_TIME Lookup to COMPONENT_END_TIME field in COMPONENT 
data object.

COMPONENT_FAULT_FLAG Lookup to COMPONENT_FAULT_FLAG field in 
COMPONENT data object.

FAULT_NAME Lookup to FAULT_NAME field in COMPONENT data object.

COUNTER_NAME The name of the Counter monitoring object.

SUBCOMPONENT_ID An internal value that is used as a key field.

SUBCOMPONENT_TYPE Type of the sub-component (sequence indicates a BPEL 
sequence activity, for example) where the Counter data was 
captured. The human task type is used for Human Task 
activities.

SUBCOMPONENT_NAME Name of the sub-component (receiveInput, for example) 
where the Counter data was captured. In BPEL it is the 
name of the activity.

EVALUATION_EVENT The event within the life cycle of the BPEL activity (activate, 
for example) at which the data is captured.

SNAPSHOT_TIME Date and time when the Counter data was captured.

Table 50–4 INTERVAL Data Object Fields

Column Name Description

COMPOSITE_INSTANCE_ID SCA composite instance ID number.

COMPONENT_INSTANCE_ID SCA component instance ID number. For BPEL it is the 
BPEL instance ID number.

DOMAIN_NAME Lookup to DOMAIN_NAME field in COMPONENT data 
object.

COMPOSITE_NAME Lookup to COMPOSITE_NAME field in COMPONENT 
data object.

COMPOSITE_REVISION Lookup to COMPOSITE_REVISION field in 
COMPONENT data object.

COMPOSITE_LABEL Lookup to COMPOSITE_LABEL field in COMPONENT 
data object.

COMPONENT_TYPE Lookup to COMPONENT_TYPE field in COMPONENT 
data object.

COMPONENT_NAME Lookup to COMPONENT_NAME field in COMPONENT 
data object.

COMPONENT_START_TIME Lookup to COMPONENT_START_TIME field in 
COMPONENT data object.

COMPONENT_END_TIME Lookup to COMPONENT_END_TIME field in 
COMPONENT data object.

COMPONENT_FAULT_FLAG Lookup to COMPONENT_FAULT_FLAG field in 
COMPONENT data object.

Table 50–3 (Cont.) COUNTER Data Object Fields

Column Name Description



Using Oracle BAM Monitor Express With BPEL Processes

50-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

50.3.10.4 Understanding Business Indicator Data Objects
The data objects containing data captured by all of the Business Indicator metrics 
configured in a BPEL process are named BI_Partition_Name_Composite_Name_
BPELPROCESS_Name.

FAULT_NAME Lookup to FAULT_NAME field in COMPONENT data 
object.

INTERVAL_NAME Display name of the Interval monitoring object, or the 
name of the activity, human task, or scope being 
monitored by Activity Monitors.

INTERVAL_TYPE Indicates the type of BPEL process monitor where the 
data was captured.

CUSTOM indicates an Interval monitoring object 
configured with custom start and end times. Interval 
monitoring objects are described in Section 50.3.5, 
"How to Configure Intervals."

SUBCOMPONENT indicates an Activity Monitor. Activity 
Monitors are described in Section 50.3.2, "How to 
Configure Activity Monitors."

INTERVAL_START_TIME Date and time recorded when the Interval or Activity 
Monitor start activity was encountered.

INTERVAL_END_TIME Date and time recorded when the Interval or Activity 
Monitor end activity was encountered.

START_SUBCOMPONENT_ID An internal value that is used as a key field.

START_SUBCOMPONENT_TYPE The type of the BPEL process activity being monitored 
by an interval. The human task type is used for 
Human Task activities.

START_SUBCOMPONENT_NAME The display name of the process activity being 
monitored by an interval.

START_EVALUATION_EVENT The event within the life cycle of the BPEL activity 
(activate, for example) at which the data is captured.

END_SUBCOMPONENT_ID An internal value that is used as a key field.

END_SUBCOMPONENT_TYPE The type of the BPEL process activity being monitored 
by an interval. The human task type is used for 
Human Task activities.

END_SUBCOMPONENT_NAME The display name of the process activity being 
monitored by an interval.

END_EVALUATION_EVENT The event within the life cycle of the BPEL activity 
(activate, for example) at which the data is captured.

SUBCOMPONENT_CREATOR For future use.

INTERVAL_RUNNING_FLAG Indicates if the Interval or Activity Monitor end 
activity is running. 1 indicates that the end activity has 
not been encountered. 0 indicates otherwise.

INTERVAL_RUNNING_TIME_IN_SEC The length of time between the INTERVAL_START_
TIME and INTERVAL_END_TIME in seconds.

INTERVAL_RUNNING_TIME_IN_MIN The length of time between the INTERVAL_START_
TIME and INTERVAL_END_TIME in minutes.

Table 50–4 (Cont.) INTERVAL Data Object Fields

Column Name Description



Using Oracle BAM Monitor Express With BPEL Processes

Integrating Oracle BAM with SOA Composite Applications 50-23

A separate data object is created for each BPEL process in the SOA composite 
application that contains Business Indicator monitoring objects.

If a Business Indicator is referenced by an Interval monitoring object, some of the data 
related to the Interval (INTERVAL_NAME, INTERVAL_START_FLAG, and INTERVAL_
END_FLAG) is captured in the Business Indicator data object.

Note: If one of the metrics fails at the time of evaluation (snapshot) 
the data is not sent to Oracle BAM; however, the remaining metrics 
configured in the Business Indicator are evaluated at the snapshot. If 
the failed Business Indicator metric is encountered at another 
snapshot, the BPEL engine attempts to evaluate it.

Table 50–5 Business Indicator Data Object Fields

Column Name Description

COMPOSITE_INSTANCE_ID SCA composite instance ID number.

COMPONENT_INSTANCE_ID SCA component instance ID number. For BPEL it is the 
BPEL instance ID number.

DOMAIN_NAME Lookup to DOMAIN_NAME field in COMPONENT data 
object.

COMPOSITE_NAME Lookup to COMPOSITE_NAME field in COMPONENT 
data object.

COMPOSITE_REVISION Lookup to COMPOSITE_REVISION field in 
COMPONENT data object.

COMPOSITE_LABEL Lookup to COMPOSITE_LABEL field in COMPONENT 
data object.

COMPONENT_TYPE Lookup to COMPONENT_TYPE field in COMPONENT 
data object.

COMPONENT_NAME Lookup to COMPONENT_NAME field in COMPONENT 
data object.

COMPONENT_START_TIME Lookup to COMPONENT_START_TIME field in 
COMPONENT data object.

COMPONENT_END_TIME Lookup to COMPONENT_END_TIME field in 
COMPONENT data object.

COMPONENT_FAULT_FLAG Lookup to COMPONENT_FAULT_FLAG field in 
COMPONENT data object.

FAULT_NAME Lookup to FAULT_NAME field in COMPONENT data 
object.

BI_NAME Name of the Business Indicator.

SNAPSHOT_TIME Date and time recorded when the Business Indicator 
data was captured.

SUBCOMPONENT_ID An internal value that is used as a key field.

SUBCOMPONENT_TYPE Type of the subcomponent (invoke indicates a BPEL 
invoke activity, for example) where the Business 
Indicator data was captured. The human task type is 
used for Human Task activities.

SUBCOMPONENT_NAME Name of the subcomponent (callbackClient, for 
example) where the Business Indicator data was 
captured



Using Oracle BAM Monitor Express With BPEL Processes

50-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

50.3.10.5  Troubleshooting
This section contains Monitor Express troubleshooting information.

50.3.10.5.1 Controlling Oracle BAM Data Object Size  

In Oracle BAM Server data objects, older data can be purged with an alert rule, so that 
the data object does not grow too large.

See Chapter 57, "Creating Oracle BAM Alerts" for general information alerts, and see 
Section F.3.8, "Delete rows from a Data Object" for information about configuring the 
delete action.

50.3.10.5.2 Using the Logs  

Monitor Express runtime logs messages using the 
oracle.soa.bpel.engine.sensor logger. For more information, see Configuring 

EVALUATION_EVENT The event within the life cycle of the BPEL activity 
(activate, for example) at which the data is captured.

INTERVAL_NAME The name of the Business Indicator-instrumented 
Interval monitoring object that lead to the Business 
Indicator data capture. 

The field is null if the data was captured within an 
Activity Monitor.

INTERVAL_START_FLAG Indicates whether the data was captured at the Interval 
start activity. 1=yes, NULL=otherwise.

The field is null if the data was captured within an 
Activity Monitor.

INTERVAL_END_FLAG Indicates whether the data was captured at the Interval 
end activity. 1=yes, NULL=otherwise.

The field is null if the data was captured within an 
Activity Monitor.

LATEST Indicates (with value "Y") the latest snapshot of a 
Business Indicator record for a particular 
composite/component instance (based on 
COMPOSITE_INSTANCE_ID and COMPONENT_
INSTANCE_ID).

Allows the creation of dashboards that filter Business 
Indicator records so only the latest is used (a Business 
Indicator can have many snapshots in the same 
process, but LATEST indicates the most recent at any 
point in time).

METRIC_NAME Contains the result of the XPath expression evaluated 
in the NAME metric. 

Each METRIC_NAME field is the data type configured in 
the metric.

The NAME portion of these column names is the display 
name of the metrics configured in the Business 
Indicators.

There are as many METRIC_NAME fields as there are 
metrics configured in the BPEL process. 

Metric names must be unique within a BPEL process to 
avoid name collisions in this data object.

Table 50–5 (Cont.) Business Indicator Data Object Fields

Column Name Description



Creating a Design Time Connection to an Oracle BAM Server

Integrating Oracle BAM with SOA Composite Applications 50-25

Log Files in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and 
Oracle BPM Suite.

50.4 Creating a Design Time Connection to an Oracle BAM Server
You must create a connection to an Oracle BAM Server to browse the available data 
objects and construct transformations while you are designing your applications in 
Oracle JDeveloper.

50.4.1 How to Create a Connection to an Oracle BAM Server
You create a connection to an Oracle BAM Server to browse data objects available on 
that server.

To create a connection to an Oracle BAM Server:
1. From the File main menu in Oracle JDeveloper, select New.

The New Gallery dialog box opens.

2. From the General category, choose Connections.

3. From the Items list, select BAM Connection, and click OK.

The BAM Connection wizard opens.

4. Ensure that Application Resources is selected.

5. Provide a name for the connection.

6. Click Next.

7. Enter the connection information about the Oracle BAM Server host described in 
Table 50–6.

Note:  Oracle BAM Server connections should be created in 
Application Resources, directly, or by copying an existing connection 
from the Resource Catalog.

Table 50–6 Oracle BAM Server Connection Information

Field Description

BAM Web Host Enter the name of the host on which the Oracle BAM Report 
Server and web applications are installed. In most cases, the 
Oracle BAM web applications host and Oracle BAM Server host 
are the same.

BAM Server Host Enter the name of the host on which the Oracle BAM Server is 
installed.

User Name Enter the Oracle BAM Server user name.

Password Enter the password of the user name.

HTTP Port Enter the port number or accept the default value of 9001. This is 
the HTTP port for the Oracle BAM web applications host. 

JNDI Port Enter the port number or accept the default value of 9001. The 
JNDI port is for the Oracle BAM report cache, which is part of 
the Oracle BAM Server.

Use HTTPS Select this checkbox to use secure HTTP (HTTPS) to connect to 
the Oracle BAM Server during design time. Otherwise, HTTP is 
used.



Using Oracle BAM Adapter in a SOA Composite Application

50-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8. Click Next.

9. Test the connection by clicking Test Connection. If the connection was successful, 
the following message appears:

Testing HTTP connection ... success.
Testing Data Object browsing ... success.
Testing JNDI connection ... success.
 
3 of 3 tests successful.

10. Click Finish.

50.5 Using Oracle BAM Adapter in a SOA Composite Application
The Oracle BAM Adapter is used as a reference that enables the SOA composite 
application to send data to an Oracle BAM Server external to the SOA composite 
application.

50.5.1 How to Use Oracle BAM Adapter in a SOA Composite Application
You can add Oracle BAM Adapter references that enable the SOA composite 
application to send data to Oracle BAM Servers external to the SOA composite 
application.

To add an Oracle BAM Adapter reference:
1. In the Component Palette, select SOA.

2. Drag the BAM Adapter to the right swim lane.

This launches the Adapter Configuration wizard.

3. In the Service Name page, provide a Service Name and an optional Description.

4. In the Data Object Operation and Keys page, 

a. Select a Data Object using the BAM Data Object Chooser dialog box.

When you click Browse the Data Object Chooser dialog box opens allowing 
you to browse the available Oracle BAM Server connections in the BAM Data 
Object Explorer tree. Select a data object and click OK.

b. Choose an Operation from the list.

Insert adds a row to the data object.

Upsert inserts new data into an existing row in a data object if the row exists. 
If the row does not exist a new row is created. You must select a key from the 
Available column to upsert rows in a data object.

Delete removes a row from the data object. You must select a key from the 
Available column to delete rows in a data object.

Update inserts new data into an existing row in a data object. You must select 
a key from the Available column to update rows in a data object.

c. Provide an appropriate display name in the Operation Name field for this 
operation in your SOA composite application.

d. To select Enable Batching select the checkbox.

The data cached in memory by the Oracle BAM Adapter of the Oracle BPEL 
Process Manager runtime is flushed (sent) to Oracle BAM Server periodically. 



Using Oracle BAM Adapter in a BPEL Process

Integrating Oracle BAM with SOA Composite Applications 50-27

The Oracle BAM component may decide to send data before a batch timeout if 
the cache has some data objects between automatically defined lower and 
upper limit values.

Batching properties are configured in BAMCommonConfig.xml. See Oracle 
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite for more information.

5. In the JNDI Name page, specify the JNDI Name for the Oracle BAM Server 
connection.

The JNDI name is configured in the Oracle WebLogic Server Administration 
Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more 
information.

6. Click Finish.

50.6 Using Oracle BAM Adapter in a BPEL Process
The Oracle BAM Adapter is used as a partner link in a BPEL process to send data to 
Oracle BAM as a step in the process.

For more information, see Section 4.3, "Introduction to Partner Links."

50.6.1 How to Use Oracle BAM Adapter in a BPEL Process
You can add the Oracle BAM Adapter to a BPEL process to send data to Oracle BAM 
as a step in the process. The Oracle BAM Adapter is used as a partner link and 
connected to an activity in the BPEL process.

To add an Oracle BAM partner link:
1. In the SOA Composite Editor in Oracle JDeveloper, double-click the BPEL process 

icon to open it in the BPEL Process Designer.

2. In the Component Palette, expand the BPEL Services panel.

3. Drag and drop the Oracle BAM Adapter into the Partner Links swim lane on the 
right side of the BPEL Process Designer.

4. In the Adapter Configuration wizard, enter a display name in the Service Name 
field and click Next.

When the wizard completes, a Web Services Description Language (WSDL) file by 
this name appears in the Application Navigator for the BPEL process or Oracle 
Mediator message flow. This file includes the adapter configuration settings you 
specify with this wizard.

5. In the Data Object Operation and Keys page, 

a. Select a Data Object using the BAM Data Object Chooser dialog box.

When you click Browse the Data Object Chooser dialog box opens allowing 
you to browse the available Oracle BAM Server connections in the BAM Data 
Object Explorer tree. Select a data object and click OK.

b. Choose an Operation from the list.

Insert adds a row to the data object.

Upsert inserts new data into an existing row in a data object if the row exists. 
If the row does not exist a new row is created.



Integrating BPEL Sensors Using Oracle BAM Sensor Action

50-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Delete removes a row from the data object.

Update inserts new data into an existing row in a data object.

c. Provide an appropriate display name in the Operation Name field for this 
operation in your SOA composite application.

d. To select Enable Batching select the checkbox.

The data cached in memory by the Oracle BAM Adapter of the Oracle BPEL 
Process Manager runtime is flushed (sent) to Oracle BAM Server periodically. 
The Oracle BAM component may decide to send data before a batch timeout if 
the cache has some data objects between automatically defined lower and 
upper limit values.

Batching properties are configured in BAMCommonConfig.xml. See Oracle 
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite for more information.

6. In the JNDI Name page, specify the JNDI Name for the Oracle BAM Server 
connection.

The JNDI name is configured in the Oracle WebLogic Server Administration 
Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite for more 
information.

7. Click Finish.

8. Create a new Process Variable in the BPEL process of type Message Type, and 
browse the Type Chooser dialog box to select the WDSL for the data object you 
want to write to on the Oracle BAM Server.

For more information about using the Oracle BPEL Process Manager see 
Chapter 4, "Getting Started with Oracle BPEL Process Manager."

9. In the BPEL Process add an activity that you can use to map the source data to the 
new variable you created.

10. In the BPEL Process add an Invoke activity to send data to the Oracle BAM 
Adapter partner link you created. Add the variable you just created as the Input 
Variable.

11. Save all of the project files.

50.7 Integrating BPEL Sensors Using Oracle BAM Sensor Action
You can create sensor actions in Oracle BPEL Process Manager to publish sensor data 
into existing data objects on an Oracle BAM Server. When you create the sensor action, 
you can select an Oracle BPEL Process Manager variable sensor or activity sensor to 
get the data from and the data object in Oracle BAM Server in which you want to 
publish the sensor data.

The Oracle BAM Adapter supports batching of operations, but behavior with batching 
is different from behavior without batching. As the Oracle BAM Adapter is applied to 
BPEL sensor actions, the Oracle BAM sensor action is not part of the BPEL transaction. 
When batching is enabled, BPEL does not wait for an Oracle BAM operation to 
complete. It is an asynchronous call.

When batching is disabled, BPEL waits for the Oracle BAM operation to complete 
before proceeding with the BPEL process, but it does not roll back or stop when there 
is an exception from Oracle BAM. The Oracle BAM sensor action logs messages to the 



Integrating BPEL Sensors Using Oracle BAM Sensor Action

Integrating Oracle BAM with SOA Composite Applications 50-29

same sensor action logger as BPEL. See "Configuring Oracle BAM Batching Properties" 
in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite for information about batching behavior.

These instructions assume you have installed and configured Oracle BAM. 

50.7.1 How to Create a Sensor
Before you can create an Oracle BAM sensor action, you must first create a sensor in 
the BPEL process. You must create a sensor before creating a Oracle BAM sensor 
action.

■ Variable sensor

Restrictions: A Variable sensor’s variable must be defined in a standalone XSD. 
This variable must not be defined inline in the WSDL file. If the variable has 
message parts, then there must be only one message part.

■ An Activity sensor containing exactly one sensor variable

Restrictions: Because you map the sensor data to a single Oracle BAM Server data 
object, the Activity sensor must contain only one variable. All of the Variable 
sensor restrictions also apply.

For more information about creating sensors, see Section 18.2, "Configuring Sensors 
and Sensor Actions in Oracle JDeveloper."

50.7.2 How to Create an Oracle BAM Sensor Action
When you create the Oracle BAM sensor action, you select the BPEL variable sensor or 
activity sensor from which to get data, and you select the data object in Oracle BAM 
Server to which you want to publish the sensor data.

To create an Oracle BAM sensor action:
1. Go to your BPEL process in Oracle JDeveloper.

2. Select Monitor from the BPEL Designer menu in the upper right corner.

Notes: Connection factory configuration must be completed before 
using Oracle BAM sensor actions. Also, if the Oracle BAM Adapter is 
using credentials rather than a plain text user name and password, in 
order for the Oracle BAM Adapter (including Oracle BAM sensor 
actions used in BPEL) to connect to the Oracle BAM Server the 
credentials must also be established and mapped. See "Configuring 
the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite for more information.

Note: Any sensor that does not conform to these rules are be filtered 
from the Oracle BAM sensor action configuration dialog box. Also, if a 
sensor is created conforming to the restrictions, but the variable is 
deleted (rendering the sensor invalid), it does not appear in Oracle 
BAM sensor action configuration dialog box.



Integrating BPEL Sensors Using Oracle BAM Sensor Action

50-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. In the Structure window, select and right-click Sensor Actions. 

If the Structure window is not open, select View > Structure Window to open it.

4. Select Create > BAM Sensor Action.

The Create Sensor Action dialog box appears.



Integrating BPEL Sensors Using Oracle BAM Sensor Action

Integrating Oracle BAM with SOA Composite Applications 50-31

5. Enter the details described in Table 50–7:

Table 50–7 Create Sensor Action Dialog Box Fields and Values

Field Description

Action Name Enter a unique and recognizable name for the sensor action.

Enable Select this option to enable the sensor action. When disabled no 
sensor action data is sent to Oracle BAM.

Sensors can be also be disabled using the Oracle Fusion 
Middleware Control console.

Sensor Select a BPEL sensor to monitor. This is the sensor that you 
created in Section 50.7.1, "How to Create a Sensor" for mapping 
sensor data to a data object in Oracle BAM Server. 

Data Object Click the Browse icon to open the BAM Data Object Chooser 
dialog box to select the data object in Oracle BAM Server in 
which you want to publish the sensor data. 

If you have not created a connection to Oracle BAM Server to 
select data objects, click the icon in the upper right corner of the 
BAM Data Object Chooser dialog box.

Operation Select to Delete, Update, Insert, or Upsert a row in the Oracle 
BAM Server database. Upsert first attempts to update a row if it 
exists. If the row does not exit, it is inserted. 



Integrating BPEL Sensors Using Oracle BAM Sensor Action

50-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Available Keys/Selected 
Keys

If you selected the Delete, Update, or Upsert operation, you 
must also select a column name in the Oracle BAM Server 
database to use as a key to determine the row with which this 
sensor object corresponds. A key can be a single column or a 
composite key consisting of multiple columns. Select a key and 
click the > button. To select all, click the >> button. 

Map File Provide a file name to create a mapping between the sensor data 
(selected in the Sensor list) and the Oracle BAM Server data 
object (selected in the Data Object list). You can also invoke a 
mapper dialog box by clicking the Create Mapping icon (second 
icon) or Edit Mapping icon (third icon). 

Filter Enter an XPath expression to filter sensor action data that is sent 
to Oracle BAM. At runtime the XPath expression entered in the 
field is evaluated, and it must return true for the sensor action to 
be fired.

Enter filter logic as a boolean expression. A filter enables you to 
monitor sensor data within a specific range. For example, you 
may want to monitor loan requests in which the loan amount is 
greater that $100,000. In this case, you can enter an expression 
such as the following:

boolean(/s:actionData/s:payload/s:variableData/s:data/a
utoloan:loanAmount > 100000)

See Figure 18–9, "Creating a Sensor Action with a Filter" for an 
example.

BAM Connection Factory 
JNDI

Specify the JNDI name for the Oracle BAM Server connection 
factory. 

The JNDI name is configured in the Oracle WebLogic Server 
Administration Console. See "Configuring the Oracle BAM 
Adapter" in Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite for more information.

Enable Batching The data accumulated by the Oracle BAM component of the 
Oracle BPEL Process Manager runtime is flushed (sent) to Oracle 
BAM Server periodically. The Oracle BAM component may 
decide to send data before a batch timeout if the queue has some 
data objects between automatically defined lower and upper 
limit values.

If batching is enabled, performance is dramatically improved, 
but there is no transaction guarantee. The BPEL process 
continues to run without waiting for the data to get to the Oracle 
BAM Server.

If batching is not enabled, the BPEL process waits until the 
Oracle BAM Server confirms that the record operation was 
completed; however, if there is a failure, the exception from 
Oracle BAM Server is logged and the BPEL process continues. 
BPEL does not roll back the operation or stop when there is an 
exception from Oracle BAM.

See "Configuring Oracle BAM Batching Properties" in Oracle 
Fusion Middleware Administrator's Guide for Oracle SOA Suite and 
Oracle BPM Suite for information about batching behavior.

WARNING:  If you restart Oracle BPEL Server, any messages 
currently being batched are lost. Ensure that all messages have 
completed batching before restarting Oracle BPEL Server.

Table 50–7 (Cont.) Create Sensor Action Dialog Box Fields and Values

Field Description



Integrating SOA Applications and Oracle BAM Using Enterprise Message Resources

Integrating Oracle BAM with SOA Composite Applications 50-33

6. Click OK to close the Create Sensor Action dialog box.

You must complete the XSLT mapping the sensor action XML schema to the Oracle 
BAM data object schema. 

50.8 Integrating SOA Applications and Oracle BAM Using Enterprise 
Message Resources

You can use BPEL JMS sensor actions to send data to Oracle BAM from a SOA 
composite application by way of a JMS topic or queue, using Oracle BAM Enterprise 
Message Sources. 

You can also use the generic JMS adapter at the SOA composite or BPEL level, and 
Enterprise Message Sources can read that data into Oracle BAM.

XSL must be used to transform the payload from the BPEL JMS sensor action. You can 
use the advanced XML processing option in Oracle BAM Enterprise Message Sources, 
including using XSL, to get to any attribute or node in the XML.

See the following documentation for more information:

■ Chapter 53, "Creating Oracle BAM Enterprise Message Sources"

■ Section 18.2, "Configuring Sensors and Sensor Actions in Oracle JDeveloper."

■ "Oracle JCA Adapter for JMS" in Oracle Fusion Middleware User's Guide for 
Technology Adapters

Notes: After you click the Create Mapping or Edit Mapping, or the 
OK button on the Create Sensor Action dialog box, you must 
explicitly save the BPEL file.



Integrating SOA Applications and Oracle BAM Using Enterprise Message Resources

50-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



51

Using Oracle BAM Data Control 51-1

51 Using Oracle BAM Data Control

Oracle BAM data control is a binding component in the Oracle ADF Model with 
support for Active Data Services. This chapter provides information about creating 
and using Oracle BAM data control.

For more comprehensive information about using Oracle ADF Model data binding 
and Active Data Services, refer to Oracle Fusion Middleware Fusion Developer's Guide for 
Oracle Application Development Framework.

This chapter contains the following topics:

■ Section 51.1, "Introduction to Oracle BAM Data Control"

■ Section 51.2, "Creating Projects That Can Use Oracle BAM Data Controls"

■ Section 51.3, "Creating Oracle BAM Server Connections"

■ Section 51.4, "Exposing Oracle BAM with Oracle ADF Data Controls"

■ Section 51.5, "Creating Oracle BAM Data Control Queries"

■ Section 51.6, "Using Oracle BAM Data Controls in ADF Pages"

■ Section 51.7, "Deploying Applications With Oracle BAM Data Controls"

51.1 Introduction to Oracle BAM Data Control
Oracle BAM data control allows ADF developers to build applications with a dynamic 
user interface that changes based on real-time business events. Oracle BAM data 
control is used to bind data from Oracle BAM data objects to databound UI 
components in an ADF page.

Oracle BAM data control abstracts a query on Oracle BAM data objects using standard 
metadata interfaces to describe the Oracle BAM data collections. Using JDeveloper, 
you can view that information as icons which you can drag and drop onto a page. 
Using those icons, you can create databound UI components (for JSF JSP pages) by 
dragging and dropping them from the Data Controls panel onto the visual editor for a 
page. JDeveloper automatically creates the metadata that describes the bindings from 
the page to the Oracle BAM data objects. At runtime, the ADF Model layer reads the 
metadata information from appropriate XML files for both the data controls and 
bindings and implements the connection between your user interface and Oracle BAM 
data objects. Note that Oracle BAM data control is read-only.

For general information about Oracle ADF data controls, and information about ADS 
(active data services), see Oracle Fusion Middleware Fusion Developer's Guide for Oracle 
Application Development Framework.



Creating Projects That Can Use Oracle BAM Data Controls

51-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

51.2 Creating Projects That Can Use Oracle BAM Data Controls
Oracle BAM data control must to be hosted by a valid ADF web application. Also, a 
limited set of ADF Faces components support active data, therefore a limited set of 
ADF Faces components can make use of the main functionality of an Oracle BAM data 
control. Refer to Oracle JDeveloper ADF documentation for information about creating 
ADF web applications, including a list of components that support active data.

Note that an Oracle BAM data control can still be used by view components that do 
not support active data.

Oracle BAM data control requires that the project contain the ADF Faces and ADF 
Page Flow technologies. The Fusion Web Application (ADF) template in JDeveloper 
contains these technologies.

51.3 Creating Oracle BAM Server Connections
You must create a connection to Oracle BAM to browse the available data objects in 
JDeveloper. This connection information is automatically used during deployment and 
runtime. See Section 50.4, "Creating a Design Time Connection to an Oracle BAM 
Server" for details on creating the connection.

51.3.1 How to Modify Oracle BAM Data Control Connections to Oracle BAM Servers
Each Oracle BAM data control has an associated Oracle BAM connection. When a 
connection has changed name or has been removed from the application resources, 
you get an error when you attempt to use any data controls that are associated with 
the connection. You can do one of the following to resolve the lost connection:

■ Create a new Oracle BAM connection with the same name as the connection that is 
referred to by the data control. See Section 51.3, "Creating Oracle BAM Server 
Connections" for more information.

■ Update the current project’s DataControls.dcx file with the name of a new or 
existing Oracle BAM connection. See Section 51.3.1.1, "How to Associate a BAM 
Data Control with a New Oracle BAM Connection" for more information.

Note: Oracle BAM data control only uses connections that appear in 
the Application Resources panel. It does not find connections in the 
Resource Palette. Oracle JDeveloper facilitates copying connections 
from Resource Palette to the Application Resources panel of your 
application.

Note: To create an Oracle BAM data control against an SSL-enabled 
Oracle BAM Server Oracle JDeveloper must be started with the 
-J-Djavax.net.ssl.trustStore option, which should point to 
the location of the key store. The connection to Oracle BAM Server 
cannot be created without this option.

Example:

C:\jdevrc1\jdeveloper\jdev\bin>jdev 
-J-Djavax.net.ssl.trustStore=C:\jdevrc1\wlserver_
10.3\server\lib\DemoTrust.jks



Creating Oracle BAM Server Connections

Using Oracle BAM Data Control 51-3

51.3.1.1 How to Associate a BAM Data Control with a New Oracle BAM Connection
To change the Oracle BAM connection associated with a particular data control you 
must edit the DataControls.dcx file in the current project. Change the connection 
attribute of the BAMDataControl element with the name of the desired Oracle BAM 
connection.

To modify the Oracle BAM connection in an Oracle BAM data control:
1. Optionally, create a new Oracle BAM connection in the application.

If you do not have a BAM connection in the Application Resources to use for this 
data control, create a new one. See Section 51.3, "Creating Oracle BAM Server 
Connections" for more information.

2. Locate the DataControls.dcx file in the project, and open it for editing.

The DataControls.dcx file is located in the Application Sources directory under the 
node named for the project. 

Each project in a ADF application has a DataControl.dcx file associated with it. 
Each DataControls.dcx file may have one or more data control definitions. If the 
current project does not contain the definition for the data control you want to 
modify, look through the other projects in the current application to locate it.

3. In the Source view, locate the appropriate data control definition, and locate the 
BAMDataControl element within it.

In the source view find the AdapterDataControl block with the id that matches the 
display name of your data control.

4. Change the connection attribute to the name of the new Oracle BAM 
connection.

5. Save and close the DataControls.dcx file.



Exposing Oracle BAM with Oracle ADF Data Controls

51-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

51.4 Exposing Oracle BAM with Oracle ADF Data Controls
Once you have created your Oracle BAM data objects and established a connection to 
an Oracle BAM server from JDeveloper, you can use JDeveloper to create data controls 
that provide the information needed to declaratively bind UI components to those 
data objects. Data controls consist of many XML metadata files that define the 
capabilities of the service that the bindings can work with at runtime.

See Chapter 52, "Defining and Managing Oracle BAM Data Objects" for information 
about creating Oracle BAM data objects. For information about creating a connection 
to your Oracle BAM instance, see Section 51.3, "Creating Oracle BAM Server 
Connections."

51.4.1 How to Create Oracle BAM Data Controls
You create Oracle BAM data controls from within the Application Navigator of 
JDeveloper.

To create a data control:
1. In the Application Navigator, Application Resources panel, expand the data object 

folders in the Oracle BAM Server connection.

2. Right-click the Oracle BAM data object for which you want to create a data 
control, and select Create Data Control from the context menu.

3. Complete the BAM Data Control wizard to create the data control query.

See Section 51.5, "Creating Oracle BAM Data Control Queries" for more 
information.

51.4.2 What Happens in Your Project When You Create an Oracle BAM Data Control
When you create a data control based on an Oracle BAM data object, the data control 
contains a representation of a query on all of the selected fields that is constructed 
based on the groupings, aggregates, filters, parameters, and additional calculated 
fields that you configure using the BAM Data Control wizard in JDeveloper.



Creating Oracle BAM Data Control Queries

Using Oracle BAM Data Control 51-5

For the data control to work directly with the service and the bindings, JDeveloper 
creates the following metadata XML files:

■ Data control definition file (DataControls.dcx)

■ Structure definition files for every structured object that this service exposes

■ Design time XML files

JDeveloper also adds the icons to the Data Controls panel that you can use to create 
data bound UI components. 

51.4.2.1 How an Oracle BAM Data Control Appears in the Data Controls Panel
The Data Controls panel lists all the data controls that have been created for the 
application’s business services and exposes all the queries that are available for 
binding to UI components. The panel is a direct representation of the structure of the 
data to be returned by the data control. By editing the data control, you can change the 
elements displayed in the panel.

Figure 51–1 Data Controls Panel in Oracle JDeveloper

51.5 Creating Oracle BAM Data Control Queries
You can design a databound user interface by dragging an item from the Data Controls 
panel and dropping it on a page as a specific UI component. When you use Oracle 
BAM data controls to create a UI component, JDeveloper automatically creates the 
various code and objects needed to bind the component to the data control you 
selected.

You can create an Oracle BAM data control query using the Oracle BAM Data Control 
wizard. The wizard lets you choose between creating a flat query or a group query.

The following sections explain how to use each page in the wizard to create your 
query:

■ Section 51.5.1, "How to Choose a Query Type"

■ Section 51.5.2, "How to Create Parameters"

■ Section 51.5.4, "How to Create Calculated Fields"

■ Section 51.5.5, "How to Select, Organize, and Sort Fields"

■ Section 51.5.6, "How to Create Filters"



Creating Oracle BAM Data Control Queries

51-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Section 51.5.7, "How to Select and Organize Groups"

■ Section 51.5.8, "How to Create Aggregates"

51.5.1 How to Choose a Query Type
On the Name page of the Oracle BAM Data Control wizard, in addition to naming the 
data control and selecting the metadata XML files location, you can choose to create 
either a flat query or a group query.

In the BAM Data Control Name field, enter a display name for the data control.

In the Directory Name field, enter the directory in which the data control metadata 
XML files are saved.

The Data Object path displays the location of the data object from which the query is 
built.

Select Group Query when you want to create groups and aggregates of data to display 
in trees or charts. The Collapsed checkbox, enabled only when Group Query is 
selected, makes the structure of the group query flat.

Select Flat Query when you want to show the data in a flat table or list.

In New records position select whether the new records are added to the beginning or 
end of the graph. For example, if you want new bars to appear on the right side of a 
bar graph, select At the end. If you want new rows inserted at the top of a list, select 
At the beginning.

Select the Connect to BAM using ADF credentials checkbox to connect to Oracle 
BAM Server at runtime using the credentials in the ADF application containing the 
Oracle BAM data control. This feature takes advantage of row-level security provided 
by Oracle BAM Server by using the ADF application user’s identity to display only the 
data that the user is permitted to see. 

To use this feature, both Oracle BAM Server and the ADF server must use the same 
credential store. When this feature is disabled (unchecked) the runtime connects to 
Oracle BAM Server using the credentials provided in the Oracle BAM connection, 
specified in Oracle JDeveloper or Oracle Enterprise Manager Fusion Middleware 
Control Console.



Creating Oracle BAM Data Control Queries

Using Oracle BAM Data Control 51-7

For more information about row-level security, see Section 52.6, "Creating Security 
Filters."

51.5.2 How to Create Parameters
On the Parameters page of the Oracle BAM Data Control wizard you can create 
parameters that are used to pass values to filters on the Filters page of the wizard. For 
more information about creating filters see Section 51.5.6, "How to Create Filters."

For information about passing values to parameters, see Section 51.5.3, "How to Pass 
Values to Parameters."

To create parameters:
1. Click Add to add a parameter.

Click the Add icon above and to the right of the Parameters box.

2. To rename the parameter enter the text in the Name field.

3. Select the data type from the Type list.

Table 51–1 Oracle BAM and Java Type Mapping

Java Type Oracle BAM Type

java.lang.Integer Integer

java.lang.String String



Creating Oracle BAM Data Control Queries

51-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

*The Field parameter type is used in charts for specifying groups at runtime. This 
parameter type allows the user to choose which field in the data object to group 
by. See the following topics for more information:

■ Section 51.5.7, "How to Select and Organize Groups"

■ Section 51.5.3, "How to Pass Values to Parameters"

4. To provide a default value for the parameter when loading the data control query, 
select Enable Default Value and choose a default value.

To enter a default value for the parameter, select one of the available defaults, or 
select the first option and enter a value in the field.

■ ALL returns rows containing all values.

■ NULL returns rows containing null values.

■ BLANK returns rows containing blank string values.

51.5.3 How to Pass Values to Parameters
The operation setParameters appears in the Oracle BAM data control structure 
every time an Oracle BAM data control query is created with parameters.

To pass parameters to an Oracle BAM data control, the setParameters operation 
must be called in Oracle BAM data control before the query is executed.

One of the many ways that can be done is by using an ADF parameter form. For more 
information, see Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle 
Application Development Framework.

java.util.Date DateTime, Timestamp

java.lang.Boolean Boolean

java.lang.BigDecimal Decimal

jave.lang.Double Float

Field*

Table 51–1 (Cont.) Oracle BAM and Java Type Mapping

Java Type Oracle BAM Type



Creating Oracle BAM Data Control Queries

Using Oracle BAM Data Control 51-9

51.5.4 How to Create Calculated Fields
Calculated fields allow you to create new columns based on data derived from existing 
fields without updating the physical data object. Use the Oracle BAM Data Control 
wizard Calculated Fields page to create them.

To create calculated fields:
1. Click Add to add a calculated field.

Click the Add icon above and to the right of the box.

The new default field name appears in the list of calculations. You can rename it 
later, after entering a valid expression.

2. To enter an expression, choose an expression from the expressions list, and click 
Insert Expr.

Complete the expression in the right-hand box, and click Validate to check the 
syntax of your expression.

There are several preformed expressions available. See Oracle Fusion Middleware 
User’s Guide for Oracle Business Activity Monitoring for examples and more 
information about each expression.

3. Click Rename to change the display name of a calculated field.



Creating Oracle BAM Data Control Queries

51-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. To use a data object field in a calculation, select the field from the field list, and 
click Insert Field.

51.5.4.1 Creating Groups in Calculated Fields
You can create groups in the calculations page.

To create groups on calculations:
1. Select a calculation in the calculations list.

2. Click Group By.



Creating Oracle BAM Data Control Queries

Using Oracle BAM Data Control 51-11

3. Choose a field to group by, and click OK.

You can use the up and down arrows to change the group order.

51.5.5 How to Select, Organize, and Sort Fields
To deselect all of the fields, uncheck the ALL checkbox, and select individual fields.

The field at the top of the list appears in the left-most column of the final table in the 
ADF page. To change the order in which the fields appear, select a field and use the 
blue arrows to move it up or down the list.

To apply sorting on a field, click the sorting type in the Sorting column, and choose a 
new sorting type from the list.

51.5.6 How to Create Filters
You can apply filters to both Group Query and Flat Query types of Oracle BAM data 
controls. Add combinations of entries and headers to create complex filter expressions.

51.5.6.1 How to Create Filter Headers

To create a sub-header under an existing header:
1. In the Filters page of the Create BAM Data Control wizard, select a header under 

which to add the sub-header, and click Add Header.

You can select the main header at the top of the filter expression to create a 
sub-header under it.

2. To change the operator (default ALL), select the header, and click Edit. For the 
following operator options, data is returned when:

■ ALL. All of the included entries are true.

■ NONE. None of the included entries are true.

■ AT LEAST ONE. At least one and maybe more of the included entries are 
true.

■ NOT ALL. Some or none of the included entries are true, but not all of the 
included entries are true.

3. Select an operator from the Filters list, and click OK.

Note: If you use Active Data, sorting is preserved on Update, Upsert 
operations, but not on Insert operations.



Creating Oracle BAM Data Control Queries

51-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

51.5.6.2 How to Create Filter Entries

To create a filter entry:
1. In the Filters page of the Create BAM Data Control wizard, select a header under 

which to add the filter entry.

For information about creating headers in the filter expression see Section 51.5.6.1, 
"How to Create Filter Headers."

2. Click Add Filter Entry.

The Add Filter Entry dialog opens.

3. Choose a field from the Field list.

4. Choose an expression from the Comparison list. Choices include: 

■ is equal to returns rows containing an exact value match. 

See Section 51.5.6.3, "Entering Comparison Values" for information on 
configuring comparison values.

■ is not equal to returns rows containing all values except specified value.

■ is less than returns rows containing values less than specified value.

■ is less than or equal to returns rows containing values less than or equal to 
specified value.

■ is greater than returns rows containing values greater than specified value.

■ is greater than or equal to returns rows containing values greater than or 
equal to specified value.

■ is like returns rows containing values that match a string pattern. Include an 
underscore (_) as a wildcard for a single character in a string and a percent 
symbol (%) as a wildcard for one character or more. Wildcard characters can 
be combined, for example, %mm _00 would return all columns (35mm 200, 
35mm 400, 35mm 800). Do not enter any spaces in the expression since spaces 
are treated as characters in the data match.

■ is not like returns rows containing values that do not match a string pattern.

■ is null returns rows containing values where the column is null. If you select 
this comparison, your filter configuration is complete. Click OK to create the 
filter. For numeric data types, nulls are not returned for filters returning values 
equal to zero. In other words, zeroes are not treated as null values. A null 
represents missing data in the field.

■ is not null returns rows containing values where the column is not null. If you 
select this comparison, your filter configuration is complete. Click OK to 
create the filter. For numeric data types, nulls are not returned for filters 
returning values equal to zero. In other words, zeroes are not treated as null 
values. A null represents missing data in the field.

■ is in list returns rows containing values included in a list. To build a list, click 
Edit. Type a value in the field and click Add to add it to the list. Add as many 
values as needed. Click Browse to choose values currently present in the Data 
Object. Click Remove to remove a value. Click OK to close the dialog.

■ is not in list returns rows containing values not included in the list. To build a 
list, click Edit. Type a value in the field and click Add to add it to the list. Add 
as many values as needed. Click Browse to choose values currently present in 



Creating Oracle BAM Data Control Queries

Using Oracle BAM Data Control 51-13

the Data Object. Click Remove to remove a value. Click OK to close the 
dialog.

■ is within a time interval returns rows containing values that occur within the 
specified time interval. Configure the time interval using the provided lists. 
Select a Type, enter a multiplier in the field and select a Unit.

When filtering on a datetime or timestamp field, you can enable Active Now 
to keep the displayed time interval current as time passes. Configure the 
Active Now Interval to specify how often to refresh the display. See 
Section 51.5.6.4, "Using Active Now" for more information.

■ is within the current time period returns rows containing values that occur 
within the current specified time unit. Select a Unit from the list.

When filtering on a datetime or timestamp field, you can enable Active Now 
to keep the displayed time period current as time passes. See Section 51.5.6.4, 
"Using Active Now" for more information.

■ is within a time period returns rows containing values that occur within the 
specified time period. Configure the time period using the provided lists. 
Enter a value in the Offset field, select a Unit, and select a Type.

When filtering on a datetime or timestamp field, you can enable Active Now 
to keep the displayed time period current as time passes. See Section 51.5.6.4, 
"Using Active Now" for more information.

5. Click OK to add the entry to the filter expression.

51.5.6.3 Entering Comparison Values
For most Comparison values you must choose Value, Field, or Calculation from the 
Value list.

Only the following comparisons do not require a comparison value:

■ is null

■ is not null

■ is in list

■ is not in list

■ is within a time in interval

■ is within the current time period

■ is within a time period

51.5.6.3.1 Comparison With a Value  If you select Value, do one of the following:

■ Click Browse to see a list of values present in the data object. Select a value from 
the list. Up to 50 values display in the list. The field can be left blank to create a 
filter on a blank string.

Note: If there are more than 50 values in the field, not all of the 
values are shown in the Browse list. Your Oracle Business Activity 
Monitoring administrator can configure the number of rows to display 
in the list. See the Oracle Business Activity Monitoring Installation Guide 
for more information.



Creating Oracle BAM Data Control Queries

51-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Manually enter a value in the field.

51.5.6.3.2 Comparison With a Calculation  If you select Calculation, enter an expression in 
the field to compare with the first field. 

For example, if you create a list view using the sample Call Center data object and 
create a filter with the following attributes:

■ Field. Total

■ Comparison. is equal to

■ Value. Calculation

■ Calculation field. Quantity*2

This filter yields only those rows where the value in the Total column is equal to twice 
the value in the Quantity column.

51.5.6.3.3 Comparison With a Field  If you select Field, select a field from the last list to 
compare with the field selected in the Field list.

51.5.6.3.4 Comparison with a Parameter  If you select Parameter, select a parameter from 
the list at the right. Creating a filter using a parameter allows the user to change the 
filter values at runtime.

The list contains the parameters you created in the Parameters step of the Create 
Oracle BAM Data Control wizard. For more information about creating parameters see 
Section 51.5.2, "How to Create Parameters."

51.5.6.4 Using Active Now
The Active Now feature in data filtering enables you to display in your views a 
segment of the data that is always within a defined time window. As time passes, the 
view is updated with the data within the defined time interval in the filter. Older data 
is removed from the view and newer data is added as time passes.

Active Now is available when you choose one of the following comparison 
expressions:

■ is within a time interval

■ is within the current time period

■ is within a time period

Active Now behaves differently depending on which comparison expression you 
choose.

When you choose is within a time interval, you can control how often the data is 
refreshed using the Active Now Interval setting.

For example, if you create a filter using is within a time interval, previous type, 1, 
Hours unit, and Active Now, set the Active Now Interval to 60 seconds, and the 
current time is 3:25 p.m., data from 2:25 p.m. - 3:25 p.m. is displayed in the view. When 
the current time changes to 3:26 p.m., data from 2:26 p.m. - 3:26 p.m. is displayed in 
the view. Every 60 seconds the oldest minute of data is removed from the view and the 
newest minute is added.

When you choose is within the current time period or is within a time period, the 
data is refreshed when the time period changes.

For example, when you create a filter using is within the current time period, the 
Hours unit, and Active Now, and the current time is 3:25 p.m., only data from 3:00 



Creating Oracle BAM Data Control Queries

Using Oracle BAM Data Control 51-15

p.m. - 3:59 p.m. is displayed in the view until the current time is 4:00 p.m. At 4:00 p.m. 
all the data from 3:00 p.m. - 3:59 p.m. is removed from the view, and data that 
accumulates during the 4:00 p.m. - 4:59 p.m. time interval is displayed in the view.

51.5.7 How to Select and Organize Groups

To specify a group:
1. In the Groups page of the Create BAM Data Control wizard, select one or more 

fields in the Group Fields list.

If you created a Field parameter, it appears in the list. See Section 51.5.2, "How to 
Create Parameters" for more information about creating field parameters.

To group by numeric fields, first select Show Numeric Fields at the bottom of the 
list.

2. To change the display order in which the groups are presented in a graph, select a 
sorting option from the Sorting list for any selected field.

3. If a datetime field is selected in the Fields list, several options are enabled for 
configuring Time Groups on the right side of the wizard page.

See Section 51.5.7.1, "How to Configure Time Groups and Time Series" for more 
information.

51.5.7.1 How to Configure Time Groups and Time Series
You can create a chart where the grouping (x axis) is based on a datetime field.

To configure time groups:
1. In the Groups page of the Create BAM Data Control wizard, select a single field of 

type datetime in the Group Fields list.

This action enables the Time Groups options on the right side of the wizard page.

2. Select Continuous Time Series to display empty groups for time intervals where 
no data is available.

There may be time gaps where the data object did not have entries. The 
Continuous Time Series feature adds groups to the result whose values are zero, so 
that when the results are shown on the graph, the x axis represents a smooth time 
series.

Continuous Time Series is valid only if you have chosen a single datetime field to 
group by. Continuous Time Series is not supported if any additional group fields 
are selected.

3. Select either Use Time Series or Use Time Groups.

■ Use Time Series displays the data from the first datetime data point available 
in the data object to the last in the configured time interval.

■ Use Time Groups displays data grouped into a set number of time intervals. 
For example, if you select Month from the time unit list, all data from January 
from all years where data is available are grouped in one data point on the 
chart.

4. Select a time unit from the list.

If you selected Use Time Groups, the groups are described in the following list.

– Year displays groups for all of the years where data is available.



Using Oracle BAM Data Controls in ADF Pages

51-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– Quarter displays four groups representing the quarters of a year 
(January-March, April-June, July-September, and October-December).

– Month displays twelve groups representing the months of the year.

– Week displays 52 groups representing the weeks in a year.

– Day of Year displays groups representing the 365 possible days in a year.

– Day of Month displays 31 groups representing the possible days of a month.

– Day of Week displays seven groups representing the days of the week.

– Hour displays 24 groups representing the hours of a day.

– Minute displays 60 groups representing the minutes in an hour.

– Second displays 60 groups representing the seconds in a minute.

5. Enter a quantity of the time unit to group by. For example, entering a 2 next to the 
Month time unit displays the groups in two month increments (January and 
February are grouped as one data point on the chart).

6. Click Next or Finish.

51.5.8 How to Create Aggregates

To specify an aggregate on a field:
1. In the Aggregates page of the Create BAM Data Control wizard, select a field in 

the Fields list.

The valid Summary Functions for the data type of that field are enabled.

2. Select one or more valid Summary Functions.

The expressions appear in the Summary Values list.

51.5.9 How to Modify the Query
To edit the Oracle BAM data control query, right click the data control node, and select 
Edit Definition. The Edit BAM Data Control wizard opens and you can jump to any 
page to edit that part of the query.

51.6 Using Oracle BAM Data Controls in ADF Pages
Oracle BAM data controls can be used in all ADF Faces components. Only a subset of 
ADF Faces components are ADS (active data service) capable. Refer to Oracle Fusion 
Middleware Web User Interface Developer's Guide for Oracle Application Development 
Framework for information about ADF Faces components that support ADS.

Oracle BAM data control instances use the resources of the Oracle BAM Server 
instance they are connected to. Those resources are released when the data control is 
released. In order to release those resources in a timely fashion it is required that you 
use Oracle BAM data controls within bounded ADF task flows with Data Control 
Scope set to isolated. It is recommended that you set the session time out in 
web.xml to a reasonable value so that resources are released in a timely way. Refer to 
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application 
Development Framework for information about the general life cycle of data controls.



Deploying Applications With Oracle BAM Data Controls

Using Oracle BAM Data Control 51-17

51.6.1 How to Use an Oracle BAM Data Control in a JSF Page

To use an Oracle BAM data control in a JSF page:
1. Set the default browser:

a. In the JDeveloper Tools menu, select Preferences.

b. In the Preferences dialog, select Web Browser and Proxy.

c. Choose a default browser by entering the path to the browser’s executable in 
the Browser Command Line field, enter any applicable proxy information, 
and click OK.

2. Create a bounded ADF Task Flow:

■ Right click project, select New, select JSF under the Web Tier category, and 
select ADF Task Flow in Items list.

■ Make sure the Create as Bounded Task Flow option is checked.

■ Drag and drop View from Components in the Component Palette to the ADF 
Task Flow editor.

■ Drag and drop data-control-scope under Source Elements in the Component 
Palette to the ADF Task Flow editor.

■ Change the Data Control Scope to isolated in the Property Inspector.

3. Create a JSF Page Fragment by double-clicking in the View you previously 
dropped in the ADF Task Flow editor.

4. Drag and drop an accessor node from the Data Controls panel to the JSF page 
editor.

5. Select a data visualization component.

A subset of ADF components support active data. See the Oracle Fusion Middleware 
Fusion Developer's Guide for Oracle Application Development Framework for more 
information about binding data controls with data visualization components.

6. Save all, and in the Oracle JDeveloper toolbar, click Run Project.

51.7 Deploying Applications With Oracle BAM Data Controls
At runtime, Oracle BAM data control must use the Oracle BAM connection to connect 
to Oracle BAM Server.

Deployment to the Integrated WebLogic Server is automatic; however, deployment to 
a standalone Oracle WebLogic Server requires some extra steps. See Section 51.7.1, 

Note: Oracle BAM data control instance sharing is not supported. 
When two or more ADF Faces components must display the same 
data, and are bound to the same Oracle BAM data control definition, 
make sure to wrap each ADF Faces component in a bounded ADF 
task flow, and set the Data Control Scope to isolated. See Oracle 
Fusion Middleware Web User Interface Developer's Guide for Oracle 
Application Development Framework for more information.

When using an Oracle BAM data control with setParamters inside 
the task flow, you must pass the parameter to the task flow and ensure 
that the method gets called before the query call.



Deploying Applications With Oracle BAM Data Controls

51-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

"How to Deploy to Oracle WebLogic Server in Development Mode," and Section 51.7.2, 
"How to Deploy to a Production Mode Oracle WebLogic Server," for more information

See Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development 
Framework for more information about deploying Fusion Web applications.

51.7.1 How to Deploy to Oracle WebLogic Server in Development Mode
Before deployment to a development-mode Oracle WebLogic Server, verify that the 
Java system property jps.app.credential.overwrite.allowed to true during 
Oracle WebLogic Server startup.

Add the following to the JAVA_PROPERTIES entry in the ORACLE_HOME/user_
projects/domains/domain/bin/setDomainEnv.sh file:

-Djps.app.credential.overwrite.allowed=true 

Post-deployment configuration is not required.

51.7.2 How to Deploy to a Production Mode Oracle WebLogic Server
Before and after deploying an ADF application with Oracle BAM data controls to a 
production-mode Oracle WebLogic Server you must do the following steps:

1. The application must be deployed using MDS (Metadata Data Services). To enable 
MDS:

a. Create and/or register your MDS Repository.

b. Edit the adf-config.xml file to add the following block:

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
<mds-config xmlns="http://xmlns.oracle.com/mds/config" 

version="11.1.1.000">
<persistence-config>
<metadata-store-usages>
<metadata-store-usage default-cust-store="true" 

deploy-target="true" id="myRepos">
</metadata-store-usage>

</metadata-store-usages>
</persistence-config>        

</mds-config>
</adf-mds-config>

c. Deploy the application to Oracle WebLogic Server after choosing the 
appropriate repository during deployment from the MDS Repository dialog 
that opens.

2. After deployment, the Oracle BAM connection must be re-created in Oracle Fusion 
Middleware Control Console.

Go to the ADF Connections Configuration page, and create a BAM connection.

a. Open the Oracle Enterprise Manager Fusion Middleware Control Console 
(http://host:port_number/em).

b. In the left pane select Deployments, then select your application.

c. In the right pane, select Application Deployment and select ADF -> 
Configure ADF Connections in the menu.

d. Select BAM in the Connection Type list.



Deploying Applications With Oracle BAM Data Controls

Using Oracle BAM Data Control 51-19

e. Enter the Connection Type to be the same as the one defined in Oracle 
JDeveloper.

f. Select Create Connection to add a new row under BAM Connections.

g. Select the new connection and click the Edit icon, specify the appropriate 
values for all connection parameters in the dialog, and click OK.

The Oracle BAM Web Tier is the location where report server is running. The 
valid values for BAM Webtier Protocol are http and https.

You must enter the same Connection Name as the Oracle BAM connection 
that was configured for design time (see Section 50.4, "Creating a Design Time 
Connection to an Oracle BAM Server").

h. Click Apply and re-run the page.



Deploying Applications With Oracle BAM Data Controls

51-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



52

Defining and Managing Oracle BAM Data Objects 52-1

52 Defining and Managing Oracle BAM Data
Objects

This chapter contains the information needed to create and manage data objects, 
including assigning permissions, managing folders, creating security filters, and 
adding dimensions and hierarchies.

This chapter includes the following sections:

■ Section 52.1, "Introduction to Oracle BAM Data Objects"

■ Section 52.2, "Defining Data Objects"

■ Section 52.3, "Creating Permissions on Data Objects"

■ Section 52.4, "Viewing Existing Data Objects"

■ Section 52.5, "Using Data Object Folders"

■ Section 52.6, "Creating Security Filters"

■ Section 52.7, "Creating Dimensions"

■ Section 52.8, "Renaming and Moving Data Objects"

■ Section 52.9, "Creating Indexes"

■ Section 52.10, "Clearing Data Objects"

■ Section 52.11, "Deleting Data Objects" 

52.1 Introduction to Oracle BAM Data Objects
Data objects are tables that store raw data in the database. Each data object has a 
specific layout which can be a combination of data fields, lookup fields, and calculated 
fields. 

The data objects are used to create reports in Oracle BAM Active Studio, active data 
visualization components in ADF applications, among other uses. For more 
information about how data objects are used see "Creating and Managing Reports" in 
Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring and 
Chapter 51, "Using Oracle BAM Data Control."

The data objects you define are based on the types of data available from Enterprise 
Message Sources (EMS) that you can define in Oracle BAM Architect. You must define 
columns in the data object. The data object contains no data when you create it. You 
must load or stream data into data objects using the technologies discussed in the 
following topics:

■ Chapter 50, "Integrating Oracle BAM with SOA Composite Applications"



Defining Data Objects

52-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Chapter 53, "Creating Oracle BAM Enterprise Message Sources"

■ Chapter 54, "Using Oracle Data Integrator With Oracle BAM"

■ Chapter 55, "Creating External Data Sources"

■ Chapter 56, "Using Oracle BAM Web Services"

Data objects can also be accessed and updated by Oracle BAM alerts. See Chapter 57, 
"Creating Oracle BAM Alerts" for more information.

52.2 Defining Data Objects
Data objects are defined using Oracle BAM Architect. See the following topics for more 
information:

■ Section 52.2.1, "How to Define a Data Object"

■ Section 52.2.2, "How to Add Columns to a Data Object"

■ Section 52.2.3, "How to Add Lookup Columns to a Data Object"

■ Section 52.2.4, "How to Add Calculated Columns to a Data Object"

■ Section 52.2.5, "How to Add Time Stamp Columns to a Data Object"

■ Section 52.2.6, "What You May Need to Know About System Data Objects"

■ Section 52.2.7, "What You May Need to Know About Oracle Data Integrator Data 
Objects"

52.2.1 How to Define a Data Object

To define a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Click Create Data Object.

3. Enter a name for the data object.

4. Enter the path to the location in the folder tree in which to store the data object. 
Click Browse to use the Select a Folder dialog.

5. Optionally, enter a description of the data object.

6. If this data object is loaded from an External Data Source (EDS) select the External 
Data Source checkbox and configure the following:

WARNING: Do not read or manipulate data directly in the 
database. All access to data must be done using Oracle BAM 
Architect or the Oracle BAM Active Data Cache API.

Caution: A single or double quotation mark in an Oracle BAM object 
name, such as a data object, report, or enterprise message source 
name, causes a runtime error.

Do not include single or double quotation marks in an Oracle BAM 
object name. 



Defining Data Objects

Defining and Managing Oracle BAM Data Objects 52-3

■ Select an External Data Source from the list. EDS definitions are configured on 
the External Data Sources screen. See Chapter 55, "Creating External Data 
Sources" for more information.

■ Select the External Table Name.

7. Add columns to the data object using the Add a field or Add one or more lookup 
fields options. 

See Section 52.2.2, "How to Add Columns to a Data Object" and Section 52.2.3, 
"How to Add Lookup Columns to a Data Object" for more information.

8. Click Create Data Object when you are finished adding columns or lookup 
columns.

52.2.2 How to Add Columns to a Data Object

To add columns to a data object:
1. In a data object you are creating or editing, click Add a field.

2. Specify the column name, data type, maximum size (scale for decimal columns), 
whether it is nullable, whether it is public, and tip text.

If you are adding a column in a data object based on an External Data Source you 
must also supply the External field name.

The data types include:

■ String. Text columns containing a sequence of characters.

A string with a max size greater than 0 and less than or equal to 2000 becomes 
an Oracle database data type VARCHAR field. If the max size is less than zero 
or greater than 2000 the string field is stored as a CLOB. To get a CLOB field, 
just define a string field with a max size greater than 2000.

■ Integer. Numeric columns containing whole numbers from -2,147,483,648 to 
2,147,483,648.

■ Float. Double-precision floating point numbers. 

The Oracle BAM Float type does not map to the Oracle database Float type. 
Oracle BAM Float truncates numeric data that has very high precision. If you 
do not want to see loss of precision use the Oracle BAM Decimal type 
(NUMBER in Oracle database) with the scale you want. 

■ Decimal. Numbers including decimal points with scale number defined. The 
number is stored as a string which uses a character for each digit in the value. 

The Oracle BAM Decimal data type is stored as a NUMBER (38, X) in the 
Oracle database. The first argument, 38, is the precision, and this is 
hard-coded. The second argument, X, is the scale, and you can adjust this 
value. The scale value cannot be greater than 38.

■ Boolean. Boolean columns with true or false values.

Note: Only the tables that belong to the user are shown when a data 
object is created on an EDS.

Creating a data object with multiple time stamp fields on an EDS is 
not supported.



Defining Data Objects

52-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Auto-incrementing integer. Automatically incremented integer column.

■ DateTime. Dates and times combined as a real number.

■ Timestamp. Date time stamp generated to milliseconds. A data object can 
contain only one time stamp field. See Section 52.2.5, "How to Add Time 
Stamp Columns to a Data Object" for more information.

A DateTime field is stored as an Oracle database data type DATE. A 
Timestamp field is stored as an Oracle database data type TIMESTAMP(6). 
Depending on how the Timestamp field is populated, Oracle BAM may fill in 
the time stamp value for you. For instance, in Oracle BAM Architect you 
cannot specify the value for Timestamp when adding a row, but if the value 
for Timestamp is specified in an ICommand import file, the specified value is 
added as the value of Timestamp instead of the current time.

■ Calculated. Calculated columns are generated by an expression and saved as 
another data type. See Section 52.2.4, "How to Add Calculated Columns to a 
Data Object" for more information.

Keep adding columns using Add a field and Add one or more lookup fields until 
all the required columns are listed. Click Remove to remove a column in the data 
object.

3. Click Save changes.

52.2.3 How to Add Lookup Columns to a Data Object
You can add lookup columns to a data object. This performs lookups on key columns 
in a specified data object to return columns to the current data object. You can match 
multiple columns and return multiple lookup columns.

To add a lookup column to a data object:
1. In a data object you are creating or editing, click Add one or more lookup fields.

The Define Lookup Field dialog opens.

2. Select the data object to use for the lookup.

3. Select the lookup columns from the data object. You can select one or more 
columns by holding down the Shift or Control key when selecting. Selecting 
multiple columns creates multiple lookup columns in the data object. These are the 
columns you want to return.

4. Select the column to match from the lookup data object.

5. Select the column to match from the current data object. You must have previously 
created other columns in this data object so that you have a column to select.

6. Click Add.

The matched column names are displayed in the list. You can click Remove to 
remove any matched pairs you create.

7. You can repeat steps 4 through 6 to create multiple matched columns. This is also 
known as a composite key.

8. Click OK to save your changes and close the dialog.

The new lookup columns are added to the data object. Click Modify Lookup Field 
in Layout > Edit Layout page to make changes to a lookup column. Multiple 
selection of return columns is possible when defining a new lookup but not when 
modifying an existing one.



Defining Data Objects

Defining and Managing Oracle BAM Data Objects 52-5

You can click Remove to remove any lookups you create.

52.2.4 How to Add Calculated Columns to a Data Object
When creating calculated columns in a data object you can use operators and 
expression functions, combined with column names, to produce a new column.

Table 52–1 Describes the operators you can use to build calculated columns.

The Oracle Fusion Middleware User’s Guide for Oracle Business Activity Monitoring 
provides the syntax and examples for expressions you can use in a calculated column.

Numbers of type Decimal require a "D" character suffix when used in a calculated 
column (field). See Oracle Fusion Middleware User's Guide for Oracle Business Activity 
Monitoring for more information.

Column names containing any special characters, such as the operators listed in 
Table 52–1 double quotation marks, or spaces, must be surrounded with curly braces 

Note: Oracle Business Activity Monitoring supports two types of 
schema models: unrelated tables or star schemas. Any other kind of 
schema that does not conform to these models may result in 
performance issues or deadlocks. Snowflake dimensions 
(daisy-chained lookups) are not supported.

Supported:

Table 1 (with no lookups to any other tables)
Table 1 > Lookup > Table 2

Not supported:

Table 1 > Lookup > Table 2 > Lookup > Table 3

Table 52–1 Operators Used in Calculated Columns

Operator Function

+ (plus sign) Add

- (minus sign) Subtract

* (asterisk) Multiply

/ (slash) Divide

% (percent sign) Modulus

() (parentheses) Parentheses determine the order of operations

&& (double ampersand) Logical AND

!= (exclamation point and equal sign) Logical NOT

|| (double pipe) Logical OR 

For example

if ((CallbackClientTime == NULL) ||
(ReceiveInputTime == NULL)) then (-1) else
(CallbackClientTime-ReceiveInputTime)

== (double equal sign) Equality

= (equal sign) Assignment



Creating Permissions on Data Objects

52-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

{}. If column names contain only numbers, letters and underscores and begin with a 
letter or underscore they do not need curly braces. For example, if the column name is 
Sales+Costs, the correct way to enter this in a calculation is {Sales+Costs}.

Double quotation marks must be escaped with another set of double quotation marks 
if used inside double quotation marks. For example, Length("""Hello World, "" 
I said").

52.2.5 How to Add Time Stamp Columns to a Data Object
You can create a date time stamp column generated to milliseconds by selecting the 
Timestamp data type. This column in the data object must be empty when the data 
object is populated by the Oracle BAM ADC so that the time stamp data can be 
created.

52.2.6 What You May Need to Know About System Data Objects
The System data objects folder contains data objects used to run Oracle Business 
Activity Monitoring. You should not make any changes to these data objects, except 
for the following:

■ Custom Parameters lets you define global parameters for Action Buttons.

■ Action Form Templates lets you define HTML forms for Action Form views.

■ Chart Themes lets you add or change color themes for view formatting.

■ Matrix Themes lets you add or change color themes for the Matrix view.

■ Util Templates lets you define templates that are used by Action Form views to 
transform content.

For more information about matrix and color themes, Action Buttons, and Action 
Forms see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.

52.2.7 What You May Need to Know About Oracle Data Integrator Data Objects
If you install the integration files for Oracle BAM and Oracle Data Integrator, three 
data objects are created in Oracle BAM Architect: Context, Scenarios and Variables in 
the /System/ODI/ folder. These data objects should not be deleted from Oracle BAM 
Architect, and their configuration should not be changed.

52.3 Creating Permissions on Data Objects
You can add permissions for users and groups on data objects. When users have at 
least a read permissions on a data object they can choose the data object when creating 
reports.

52.3.1 How to Create Permissions on a Data Object

To add permissions on a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object.

WARNING: If you enter a calculated column with incorrect syntax 
in a data object, you could lose the data object definition.



Creating Permissions on Data Objects

Defining and Managing Oracle BAM Data Objects 52-7

The general information for the data object is displayed in the right frame.

3. Click Permissions.

4. Click Edit Permissions. 

Alternatively you can copy permissions from another data object. See 
Section 52.3.3, "How to Copy Permissions from Other Data Objects" for more 
information.

5. Click the Restrict access to Data Object to certain users or groups checkbox.

The list of users and groups and permissions is displayed.

6. You can choose to display the following by choosing an option:

■ Show all users and groups

■ Show only users and groups with permissions

■ Show users only

■ Show groups only

7. You can set permissions for the entire list by clicking the buttons at the top of the 
list. 

The permissions are Read, Update, and Delete. You can set permissions for 
individual users or groups in the list by clicking the checkbox in the permission 
column that is next to the user or group name.

Members of the Administrator role have all permissions to all data objects, and 
their permissions cannot be edited.

8. After indicating the permissions with selected checkboxes, click Save changes.

A message is displayed to confirm that your changes are saved.

9. Click Continue to display the actions for the data object.

52.3.2 How to Add a Group of Users
Users assigned to the Administrator role have access to all data objects. The 
Administrator role overrides the data object permissions.

To add a group to the list:
1. Click Add a group to the list.

2. Type the Windows group name in the field. The group must previously exist as a 
domain group.

3. Click OK.

The group is added to the list.

52.3.3 How to Copy Permissions from Other Data Objects
You can copy the permissions from another data object and then make additional 
changes to the permissions before saving.

Note: Delete and Update permissions are not effective unless a user 
is also granted the Read permission.



Viewing Existing Data Objects

52-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

In Oracle BAM Architect for a data object, click Permissions and then click Copy from. 
Select the data object that contains the permissions to copy and click OK. You can edit 
the copied permissions and click Save changes.

To copy permissions from another data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Click the data object to add a security filter to.

The general information for the data object is displayed in the right frame.

3. Click Permissions.

4. Click Copy from.

The Choose Data Object dialog opens.

5. Select the data object that contains the permissions to copy and click OK. 

6. If the data object previously had no permissions assigned, select the Restrict 
access to Data Object checkbox. 

7. You can edit the copied permissions or add a group to the list.

8. Click Save changes.

52.4 Viewing Existing Data Objects
This section describes how to view information about data objects.

52.4.1 How to View Data Object General Information
The general information of a data object displays the owner, when it was created, 
when it was last modified, and the row count.

To view the general information of a data object:
■  Click the data object in the list. 

If you are currently viewing the layout or contents of a data object, click General.

The general information is displayed in the right frame. It contains the following 
information:

■ Created. Date and time the data object was created.

■ Last modified. Date and time the data object was last modified.

■ Row count. Number of rows of data in the data object.

■ Location. Location of the data object.

■ Type. Type of the data object.

■ Data Object ID. The ID used to identify the data object. This is based on the 
name although the ID is used throughout the system so that you can edit the 
name without affecting any dependencies.



Viewing Existing Data Objects

Defining and Managing Oracle BAM Data Objects 52-9

52.4.2 How to View Data Object Layouts
The layout describes the columns in a data object. The columns are described by name, 
column ID, data type, maximum length allowed, scale, nullable, public, calculated, 
text tip, and lookup.

To view the layout of a data object:
1. Select the data object.

2. The general information is displayed in the right frame.

3. Click Layout.

The layout information is displayed in the right frame. It contains the following 
information:

■ Field name. Name of the column.

■ Field ID. Generated by the system.

■ External name. External column name from the External Data Source (only 
appears in data objects based on External Data Sources).

■ Field type. Data type of the column.

■ Max length. Maximum number of characters allowed in column value.

■ Scale. Number of digits on the right side of the decimal point.

■ Nullable. Whether the data type can contain null values.

■ Public. This setting determines if the column is available in Oracle BAM 
Active Studio to use in a report. If the box is unchecked, the column does not 
appear in Oracle BAM Active Studio. This is useful for including columns for 
calculations in data objects that should not appear in reports.

■ Lookup. Displays specifics of a lookup column.

■ Calculated. Displays the expression of a calculated column.

■ Tip Text. Helpful information about the column.

52.4.3 How to View Data Object Contents
You can view the rows of data stored in a data object by viewing the data object 
contents. You can also edit the contents of the data object.

To view the contents of a data object:
1. Select the data object.

The general information is displayed in the right frame.

2. Click Contents.

Note: If the row count is over 500,000 rows, an approximate row 
count is displayed in the General information for increased 
performance purposes. The approximate row count is accurate within 
5-10% of the actual count. If you want to view an exact row count 
instead of the approximation, click Show exact count. The exact count 
is displayed. This could take a few minutes if the data object has 
millions of rows.



Using Data Object Folders

52-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The first 100 rows of the data object display in the right frame. 

(To change this default, update the Architect_Content_PageSize property. 
See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle 
BPM Suite for information.)

Oracle BAM Architect displays the total number of rows in the data object and the 
number of rows that are available for viewing. For better server performance, the 
number of rows shown in Oracle BAM Architect is limited by configuration 
properties.

When internal data objects are displayed in No row number mode (default), you 
can view all of the records in the data object using the navigation tools.

When internal data objects are displayed in Show row numbers mode, you can 
view a limited number of records. This number is 64000 by default, and can be 
changed by modifying the ADCMaxViewsetRowCount property in 
BAMServerConfig.xml.

When external data objects are displayed in either mode, you can view a limited 
number of records. This number is 64000 by default, and can be changed by 
modifying the Import_Maxsize property in BAMServerConfig.xml.

3. Click Next, Previous, First, and Last to go to other sets of rows.

Rows are listed with a Row ID column. Displaying only Row ID provides faster 
paging for large data objects. Row IDs are assigned one time in each row and 
maintain a continuous row count when you clear and reload a data object.

You can click Show row numbers to display an additional column containing a 
current row count starting at 1. Click No row numbers to hide the row count 
column again.

4. Click Refresh to get the latest available contents.

52.5 Using Data Object Folders
You can organize data objects by creating folders and subfolders for them. When you 
create a folder for data objects, you can assign permissions by associating users and 
actions with the folder.

52.5.1 How to Create Folders
You can create new folders for organizing data objects. Then you can move or create 
data objects into separate folders for different purposes or users. After creating folders, 
you can set folder permissions to limit which users can view the data objects it 
contains.

To create a new folder:
1. Select Data Objects from the Oracle BAM Architect function list.

The current data object folders display in a tree hierarchy.

2. Click Create subfolder.

A field for naming the new folder is displayed.

3. Enter a name for the folder and click Create folder.

The folder is created as a subfolder under the Data Objects folder and a message is 
displayed confirming that the new folder was created.



Using Data Object Folders

Defining and Managing Oracle BAM Data Objects 52-11

4. Click Continue to view the folder.

52.5.2 How to Open Folders

To open a folder:
1. Expand the tree of folders by clicking the + (plus sign) next to the Data Objects 

folder. 

The System subfolders contain data objects for running Oracle Business Activity 
Monitoring. For more information about these data objects see Section 52.2.6, 
"What You May Need to Know About System Data Objects."

2. Click the link next to a folder to open it.

The folder is opened, and the data objects in the folder are shown in the list 
underneath the folder tree. The general properties for the folder display in the 
right frame and the following links apply to the current folder:

View. Displays the general properties of this folder such as name, date created, 
date last modified, user who last modified it. View is selected when you first click 
a folder.

Create subfolder. Creates another folder within the selected folder.

Delete. Removes the selected folder and all the data objects it contains.

Rename. Changes the folder name.

Move. Moves this folder to a new location, for example, as a subfolder under 
another folder.

Permissions. Sets permissions on this folder.

Create Data Object. Creates a data object in this folder.

52.5.3 How to Set Folder Permissions
When you create a folder, you can set permissions on it so that other users can access 
the data objects contained in the folder.

To set permissions on a folder:
1. In the Data Objects folder, select the folder to change permissions on.

2. Click Permissions.

3. Click Edit permissions.

4. Select the Restrict access to Data Object to certain users or groups checkbox.

The list of users and groups and permissions is displayed.

5. You can choose to display the following by selecting an option:

■ Show all users and groups

■ Show only users and groups with permissions

■ Show users only

■ Show groups only

6. You can set permissions for the entire list by clicking the column headers at the top 
of the list. 



Using Data Object Folders

52-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The permissions are Read, Update, and Delete. You can set permissions for 
individual users or groups in the list by selecting the checkbox in the permission 
column that is next to the user or group name.

7. After indicating the permissions with selected checkboxes, click Save changes.

A message is displayed to confirm that your changes are saved.

8. Click Continue to display the actions for the data object.

To add a group to the list:
1. Click the Add a group to the list link.

2. Type the Windows group name in the field. The group must previously exist as a 
domain group.

3. Click OK.

The group is added to the list.

52.5.4 How to Move Folders

To move a folder:
1. Select the folder to move.

2. Click Move.

3. Click Browse to select the new location for the folder.

4. Click OK to close the dialog.

5. Click Move folder.

The folder is moved.

6. Click Continue.

52.5.5 How to Rename Folders

To rename a folder:
1. Select the folder to rename.

2. Click Rename.

3. Enter a new name and click Rename folder.

The folder is renamed. You must assign unique folder names within a containing 
folder.

4. Click Continue.

52.5.6 How to Delete Folders
When you delete a folder, you also delete all of the data objects in the folder.

Note: Delete and Update permissions are not effective unless a user 
is also granted the Read permission.



Creating Security Filters

Defining and Managing Oracle BAM Data Objects 52-13

To delete a folder:
1. Select the folder to delete.

2. Click Delete.

A message is displayed to confirm deletion of the folder and all of its contents.

3. Click OK.

The folder is deleted.

4. Click Continue.

52.6 Creating Security Filters
You can add security filters to data objects so that only specific users can view specific 
rows in the data object. This can be useful when working with data objects that contain 
sensitive or confidential information that is not intended for all report designers or 
report viewers.

Security filters perform a lookup using another data object, referred to as a security 
data object, containing user names or group names. Before you can add a security 
filter, you must create a security data object containing the user names or group names 
and the value in the column to allow for each user name or each group name. Security 
data objects cannot contain null values.

If the user has a view open, and you change that user's security filter, it does not effect 
the currently open view. If the user reopens that view, it has the new security filter 
settings applied. Security filter settings are used to construct the query behind the 
view at view construction time, so changes to a security filter are not seen by 
previously created views.

52.6.1 How to Create a Security Filter

To add a security filter to a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to add a security filter to.

The general information for the data object is displayed in the right frame.

3. Select Security Filters.

If the data object includes security filters, the filter name is displayed and you can 
expand and view the information.

4. Click Add filter.

The fields for defining the security filter display.

5. Enter the following information:

Name of this Security Filter. Type a name for this filter.

Security Data Object. Select the name of the security data object containing the 
mapped columns.

Type of identification. Select either By user or By group from the dropdown list. 
The security data object must include either domain or local users or groups 
mapped to values in the identification column.

Identification column in Security Data Object. Select the name of the column for 
containing user names or group names.



Creating Security Filters

52-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Match column in Security Data Object. Select the column to match in the security 
data object.

Match column in this Data Object. Select the name of the column to match in this 
data object.

6. Click Add.

7. Select the OR or AND condition when multiple security filters are created on a 
data object.

By default the security filters are applied with an OR condition, meaning that if 
there is a match in one security data object, then the user or group identified can 
access the data object. The AND condition requires that the user or group be 
identified in all of the security data objects to access the data object protected by 
the filters.

Security Filters: An Example
For example, to add a security filter to the following data object, you need a security 
data object containing Region information to perform the security lookup.

Sample data object:

Security data object:

When the bwright account views a report that accesses the data object with a security 
filter applied based on Region ID and Region, it is only able to access information for 
jsmith and bwright. It is not able to view the breid information because it is not able to 

Note: If there are more than two security filters, you cannot use both 
AND and OR. You must either use AND or OR for all of the filters.

User Region Sales

John Smith 1 $55,000

Bob Wright 1 $43,000

Betty Reid 2 $38,000

Login Region ID

DomainName\jsmith 1

DomainName\jsmith 2

DomainName\bwright 1

DomainName\breid 2



Creating Dimensions

Defining and Managing Oracle BAM Data Objects 52-15

view data for the same region. However, the jsmith account is set up to view data in 
both region 1 and 2.

52.6.2 How to Copy Security Filters from Other Data Objects
You can copy security filters from another data object and apply them to the data 
object you are editing.

To copy security filters from another data object:

1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to add a security filter to.

The general information for the data object is displayed in the right frame.

3. Select Security Filters.

If the data object includes security filters, the filter name is displayed and you can 
expand and view the information.

4. Click Copy from. 

The Choose Data Object dialog opens.

5. Select the data object that contains the security filters to copy and click OK. 

6. You can make changes to the security filters by viewing the filter details and 
clicking Edit.

7. Click Save.

52.7 Creating Dimensions
In Oracle BAM Architect, you can add dimensions to data objects to define drill paths 
for charts in Oracle BAM Active Studio. Dimensions contain columns in a hierarchy. 
When a hierarchy is selected in chart, the end user can drill down and up the hierarchy 
of information. When a user drills down in a chart, they can view data at more and 
more detailed levels.

Hierarchies are an attribute of a dimension in a data object. Multiple dimensions can 
be created in each data object. Each column in a data object can belong to one 
dimension only. You can create and edit multiple, independent hierarchies.

To use hierarchies as drill paths in charts, the report designer must select the hierarchy 
to use as the drill path. To create a dimension, you must select multiple columns to 
save as a dimension. Then you organize the columns into a hierarchy.

The following is a sample dimension and hierarchy:

52.7.1 How to Create a Dimension

To add a dimension and hierarchy:
1. Select Data Objects from the Oracle BAM Architect function list.

Dimension Hierarchy

Sales Category

 Brand

 Description



Creating Dimensions

52-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Select the data object to add a dimension to.

The general information for the data object is displayed in the right frame.

3. Select Dimensions.

4. Click Add a new dimension.

5. Enter a dimension name.

6. Enter a description for the dimension. A description is required for drilling 
configuration.

7. Select the column names to include in the dimension. An example is Sales, 
Category, Brand, and Description.

The column names are moved from the Data Objects Fields list to the Dimension 
Fields list to show that they are selected.

8. Click Save.

9. Click Continue.

The new dimension is listed. You must still define a hierarchy for the columns.

10. Click Add new hierarchy.

11. Enter a hierarchy name.

12. Enter a description for the hierarchy.

13. Select the column names to define as attributes for the dimension. An example is 
Sales remains in the Dimension Field list, and you click Category, Brand, and 
Description to arrange them in a general to more specific order. The order that you 
click the columns is the order that they are listed in the Hierarchy Field list. 
Arrange the more general grouping column at the top of the Hierarchy Fields list 
and the most granular column at the bottom of the Hierarchy Fields list.

14. Click Save.

15. Click Continue.

The new hierarchy is listed. You can edit or remove hierarchies and dimensions by 
clicking the links. You can also continue defining multiple hierarchies for the 
dimension or add new dimensions to the data object.

52.7.2 How to Create a Time Dimension
If your dimension contains a time date data type column, you can select the time levels 
to include in the hierarchy.

To select time levels:
1. In a dimension containing a time date data type column, add a hierarchy.

2. Select the time date data type column. If you are editing existing time levels, click 
Edit Time Levels.

The Time Levels Definition dialog opens.

3. Click the levels to include in the hierarchy. The levels include:

■ Year. Year in a four digit number.

■ Quarter. Quarter of four quarters starting with quarter one representing 
January, February, March.



Creating Indexes

Defining and Managing Oracle BAM Data Objects 52-17

■ Month. Months one through 12, starting with January.

■ Week of the Year. Numbers for each week starting with January 1st.

■ Day of the Year. Numbers for each day of the year starting with January 1st.

■ Day of the Month. Numbers for each day of the month.

■ Day of the Week. Numbers for each day of the week, starting from Sunday to 
Saturday.

■ Hour. Numbers from one to twenty four.

■ Minute. Numbers from one to 60.

■ Second. Numbers from one to 60.

4. Click OK to close the dialog.

52.8 Renaming and Moving Data Objects
You can rename and move a data object without editing or clearing the data object. If 
you only want to change the data object name or description, use the Rename option.

52.8.1 How to Rename a Data Object

To rename a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to rename.

The general information for the data object is displayed in the right frame.

3. Select Rename/Move.

4. Enter the new name, tip text, and description for the data object.

5. Click Save changes.

52.8.2 How to Move a Data Object

To move a data object:
1. Select Data Objects from the list.

2. Select the data object to rename.

The general information for the data object is displayed in the right frame.

3. Select Rename/Move.

4. Click Browse to enter the new location for the data object.

5. Click Save changes.

52.9 Creating Indexes
Indexes improve performance for large data objects containing many rows. Without 
any indexes, accessing data requires scanning all rows in a data object. Scans are 
inefficient for very large data objects. Indexes can help find rows with a specified value 
in a column. 



Clearing Data Objects

52-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

If the data object has an index for the columns requested, the information is found 
without having to look at all the data. Indexes are most useful for locating rows by 
values in columns, aggregating data, and sorting data.

52.9.1 How to Create an Index
You can add indexes to data objects by selecting columns to be indexed as you are 
creating a data object.

To add an index:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to add an index to.

3. Select Indexes.

4. Click Add Index. 

The Add Index dialog opens.

5. Enter a Name and Description for the index

6. Add as many columns as needed to create an index for the table. 

Click a column in the list on the right to remove the column from the index.

7. Click OK.

The index is added and is named after the columns it contains. You can create 
multiple indexes. To remove an index you created, click Remove Index next to the 
Index name.

52.10 Clearing Data Objects
Clearing a data object removes the current contents without deleting the data object 
from the Oracle BAM ADC.

52.10.1 How to Clear a Data Object

To clear a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to clear.

The general information for the data object is displayed in the right frame.

3. Click Clear.

52.11 Deleting Data Objects
When deleting data objects, you must remove referrals to the data object from reports 
and alerts that are using it. If the data object is in use by an active alert or report, it 
cannot be deleted in Oracle BAM Architect.

52.11.1 How to Delete a Data Object

To delete a data object:
1. Select Data Objects from the Oracle BAM Architect function list.



Deleting Data Objects

Defining and Managing Oracle BAM Data Objects 52-19

2. Click the data object to delete.

The general information for the data object is displayed in the right frame.

3. Click Delete.



Deleting Data Objects

52-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



53

Creating Oracle BAM Enterprise Message Sources 53-1

53 Creating Oracle BAM Enterprise Message
Sources

This chapter contain the information required to create Enterprise Message Sources 
(EMS) in the Oracle BAM Architect application.

This chapter includes the following sections:

■ Section 53.1, "Introduction to Enterprise Message Sources"

■ Section 53.2, "Creating Enterprise Message Sources"

■ Section 53.3, "Using Enterprise Message Sources"

■ Section 53.4, "Using Foreign JMS Providers"

■ Section 53.5, "Use Case: Creating an EMS Against Oracle Streams AQ JMS 
Provider"

53.1 Introduction to Enterprise Message Sources
Enterprise Message Sources (EMS) are used by applications to provide direct Java 
Message Service (JMS) connectivity to the Oracle BAM Server. JMS is the standard 
messaging API for passing data between application components and allowing 
business integration in heterogeneous and legacy environments.

The EMS does not configure Extract Transform and Load (ETL) scenarios, but rather 
maps from a message directly to a data object on the Oracle BAM Server; however, you 
can still use XML Stylesheet Language (XSL) to perform a transformation in between. 
Each EMS connects to a specific JMS topic or queue, and the information is delivered 
into a data object in the Oracle BAM Active Data Cache. The Oracle BAM Architect 
web application is used to configure EMS definitions.

The following JMS providers are supported:

■ Messaging for Oracle WebLogic Server

■ Non-Oracle certified JMS providers:

– IBM WebSphere MQ 6.0

– Tibco JMS

– Apache ActiveMQ

See Section 53.4, "Using Foreign JMS Providers" for more information.

The following message types are supported:

■ Map message



Creating Enterprise Message Sources

53-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Text message with XML payload

The following XML formatting options are supported for Text message transformation:

■ Pre-processing

■ Message specification

■ Column value (Column values can be provided either as elements or attributes in 
the XML payload.)

To view the existing EMS definitions, select Enterprise Message Sources from the 
Oracle BAM Architect function list.

Figure 53–1 Oracle BAM Architect Function List

53.2 Creating Enterprise Message Sources
When you define an EMS, you specify all of the fields in the messages to be received. 
Some messaging systems have a variable number of user-defined fields, while other 
systems have a fixed number of fields.

For any string type field, you can apply formatting to that field to break apart the 
contents of the field into separate, individual fields. This is useful for messaging 
systems where you cannot create user-defined fields and the entire message body is 
received as one large field. The formatting specifications allow you to specify the path 
to a location in the XML tree, and then extract the attributes or tags as fields.

Before defining an EMS, you must be familiar with the third party application 
providing the messages so that you can specify the message source connection details 
in Oracle BAM Architect. 

Furthermore, note that the JMS server (where you host queues/topics) can be 
configured on a different system than that which hosts the Oracle BAM Server. (For 
Oracle Advanced Queuing (AQ) it is acceptable to host on the same server as Oracle 
BAM because the database hosts the JMS server, but for other cases it is recommended 
to host the JMS server on another system).

53.2.1 How to Create an Enterprise Message Source

To define an EMS:
1. Select Enterprise Message Sources from the Oracle BAM Architect function list 

(see Figure 53–1).

2. Click Create.



Creating Enterprise Message Sources

Creating Oracle BAM Enterprise Message Sources 53-3

3. Using Table 53–1 as a guide, enter the appropriate values in each of the fields. 
Examples given are for connecting to Messaging for Oracle WebLogic Server.

4. If you are using TextMessage type, configure the appropriate parameters in the 
XML Formatting sections, using Table 53–2 as a guide.

Caution: A single or double quotation mark in an Oracle BAM object 
name, such as a data object, report, or EMS name, causes a runtime 
error. Do not include single or double quotation marks in an Oracle 
BAM object name. 

Do not configure two Enterprise Message Sources on the same topic or 
queue. If you require two Enterprise Message Sources on the same 
Queue, each EMS must have different Message Selector value 
specified; otherwise, the messages are duplicated on both of the 
Enterprise Message Sources.

If a non-Oracle WebLogic Server JMS server is used (such as Tibco) 
then the durable subscription name should not be repeated in any of 
the Enterprise Message Sources created. Some JMS servers do not 
allow the clients to have multiple ConnectionFactory for a single topic 
destination, and Oracle BAM does not support the ability to reuse the 
same ConnectionFactory for the same topic. 



Creating Enterprise Message Sources

53-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. To configure the DateTime Specification in the Source Value Formatting section, 
see Section 53.2.2, "How to Configure DateTime Specification." 

Note that when DateTime Specification is disabled (not checked), the incoming 
value must be in xsd:dateFormat. That is, xsd:dateFormat 
([-]CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]) is the default format when 
DateTime Specification is not configured.

Valid value patterns for xsd:dateTime include:

■ 2001-10-26T21:32:52

■ 2001-10-26T21:32:52+02:00

■ 2001-10-26T19:32:52Z

■ 2001-10-26T19:32:52+00:00

■ -2001-10-26T21:32:52

■ 2001-10-26T21:32:52.12679

6. Map fields from the source message to the selected data object in the Source to 
Data Object Field Mapping section.

a. Click Add to add a mapped field.

b. Select the Key checkbox if the field is a key.

c. Enter the source tag or attribute name in the Tag/Attr name field.

d. Select the target data object field from the Data Object Field list.



Creating Enterprise Message Sources

Creating Oracle BAM Enterprise Message Sources 53-5

7. Click Save to save the EMS.

Note: When a timestamp field is included in an EMS payload, the 
following must be considered:

Inserting null in a timestamp field might not be in the control of a 
client like EMS.

When no value is given for a timestamp field (as in Oracle BAM 
Architect), EMS assigns the current datetime.

When the incoming timestamp value does not adhere to the 
xsd:dateTime or the datetime format specified in the EMS, the 
current datetime is inserted.

Table 53–1 EMS Configuration Parameters

Parameter Description

Name A unique display name that appears in the EMS list in Oracle 
BAM Architect.

Initial Context Factory The initial context factory to be used for looking up specified 
JMS connection factory or destination. For example:

weblogic.jndi.WLInitialContextFactory

JNDI Service Provider URL Configuration information for the service provider to use. Used 
to set javax.naming.Context.PROVIDER_URL property and 
passed as an argument to initialContext(). An incorrect provider 
URL is the most common cause of errors. For example:

t3://localhost:7001

Topic/Queue 
ConnectionFactory Name

The name used in a JNDI lookup of a previously created JMS 
connection factory. For example:

jms/QueueConnectionFactory

Topic/Queue Name The name used in the JNDI lookup of a previously created JMS 
topic or queue. For example:

jms/demoQueue

jms/demoTopic

JNDI Username The identity of the principal for authenticating the JNDI service 
caller. This user must have RMI login permissions.

Used to set javax.naming.Context.SECURITY_PRINCIPAL and 
passed to initialContext().

JNDI Password The identity of the principal for authenticating the JNDI service 
caller.

Used to set javax.naming.Context.SECURITY_CREDENTIALS 
and passed to initialContext().

JMS Message Type TextMessage or MapMessage.

If TextMessage is selected, XML is used to specify the contents of 
the payload, and an additional set of XML Formatting 
configuration parameters must be completed. See Table 53–2 for 
more information.



Creating Enterprise Message Sources

53-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Durable Subscriber Name Enter the name of the subscriber, for example, 
BAMFilteredSubscription. The Durable Subscriber Name should 
match the event-publisher subscriber name property if it is 
provided.

A durable subscription can preserve messages published on a 
topic while the subscriber is not active. It enables Oracle BAM to 
be disconnected from the JMS provider for periods of time, and 
then reconnect to the provider and process messages that were 
published during the disconnected period.

See Section 53.3.3, "How to Subscribe and Unsubscribe 
Enterprise Message Sources" for information about 
unsubscribing an EMS from a durable subscription once the 
EMS is started.

Message Selector (Optional) A single name-value pair (currently only one name-value pair is 
supported) that allows an application to have a JMS provider 
select, or filter, messages on its behalf using application-specific 
criteria. When this parameter is set, the application-defined 
message property value must match the specified criteria for it 
to receive messages. To set message property values, use 
stringProperty() method on the Message interface.

he name value pair format should be name=value, for example, 
message=mymessage. The equals sign (=) is the name-value 
pair separator.

Data Object Name Data object in Oracle BAM in which to deposit message data. 
Operations can be performed on only one data object per EMS. 
The data object can have Lookup columns.

Click Browse to choose a data object.

Operation Select the operation from the list:

Insert inserts all new data as new rows

Upsert merges data into existing rows

Update updates existing rows

Delete removes rows from the data object

Batching Specify whether the EMS communicates with the Oracle BAM 
Active Data Cache API with batching enabled. Batching allows 
multiple messages to be inserted using a single Text Message. If 
Batching is disabled (the default state), each row read from JMS 
would be sent to the Active Data Cache as a separate unit and 
not part of a batch of rows.

Batching properties are contained in configuration files. See 
Oracle Fusion Middleware Administrator's Guide for Oracle SOA 
Suite and Oracle BPM Suite for more information.

Transaction Enabling Transaction ensures that the operation is atomic when 
Batching is enabled (Batching allows multiple messages to be 
inserted using a single Text Message).

Transaction itself does not have any impact on Active Data 
Cache batching, but setting Transaction to true ensures that all of 
the messages in Messaging Batching (when many messages are 
batched in a single batch) are part of an atomic operation. See 
Message Batching inTable 53–2.

Start when BAM Server 
starts

Specify whether the EMS starts reading messages and sending 
them to the Active Data Cache as soon as the Oracle BAM Server 
starts (or restarts). 

Table 53–1 (Cont.) EMS Configuration Parameters

Parameter Description



Creating Enterprise Message Sources

Creating Oracle BAM Enterprise Message Sources 53-7

53.2.2 How to Configure DateTime Specification
To configure DateTime Specification:

1. Select the DateTime Specification checkbox as shown in Figure 53–2.

2. Enter the date and time pattern in the Pattern field.

You can select one of the suggested supported patterns provided in the dropdown 
list, or enter it manually into the text box.

You must supply a valid date and time pattern that adheres to the Java 
SimpleDateFormat. Table 53–3 provides the syntax elements for 
SimpleDateFormat, and Table 53–4 provides some examples.

JMS Username (Optional)

JMS Password (Optional)

You can optionally provide this information when a new JMS 
connection is created by a connection factory. Used to 
authenticate a connection to a JMS provider for either 
application-managed or container-managed authentication.

Table 53–2 EMS XML Formatting Configuration Parameters

Parameter Description

Pre-Processing XSL transformation can be applied to an incoming Text Message 
before message retrieval and column mapping are done. See 
Section 53.2.3, "How to Use Advanced XML Formatting" for 
more information.

XML names can be qualified. If qualified, select the Namespace 
Qualified box and enter the namespace URI in the field.

Message Element Name The parent element that contains column values in either its 
sub-elements or attributes.

XML names can be qualified. If qualified, select the Namespace 
Qualified box and enter the namespace URI in the field.

Message Batching Multiple messages can be batched in a single JMS message. If 
this is the case, a wrapper element must be specified as the 
containing element in Batch Element Name.

If qualified, select the Namespace Qualified box and enter the 
namespace URI in the field.

Column Value Column values can be provided using either elements or 
attributes in an XML payload. Specify which column value type 
is provided in the payload.

Table 53–1 (Cont.) EMS Configuration Parameters

Parameter Description



Creating Enterprise Message Sources

53-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Optionally, you can enter the locale information in the Language, Country, and 
Variant fields.

Note: If you are sending datetime/timestamp data to an Oracle BAM 
EMS through Oracle AQ JMS, the following must be considered while 
configuring DateTime Specification:

The default datetime formats in Oracle database are specified either 
explicitly, with the NLS session parameters NLS_DATE_FORMAT, NLS_
TIMESTAMP_FORMAT, and NLS_TIMESTAMP_TZ_FORMAT, or 
implicitly, with the NLS session parameter NLS_TERRITORY.

If trigger processing code (PL/SQL) does not override the date format 
with explicit formatting, the dates are formatted according to the 
format specified by NLS parameters for the database session, and sent 
accordingly to EMS. This means that the EMS DateTime Specification 
must have the equivalent format of NLS parameters to parse and 
interpret the incoming data.

However, problems arise on the EMS side if a database administrator 
changes the NLS parameters. It is always safe to use explicit 
formatting using the to_char() function, rather than rely on the 
default NLS parameters specified format.

A line such as this example in Trigger processing code

  '<HIREDATE>' || :new.HIREDATE || '</HIREDATE>' ||

should be changed to something similar to

  '<HIREDATE>' || to_char(:new.HIREDATE, 'MM/dd/yy HH24:MI:SS') || 
'</HIREDATE>' ||

The corresponding format selected from EMS DateTime Specification 
drop down is MM/dd/yy H:mm:ss.

Similarly, for timestamp data, if the format selected on the database 
side with the to_char() function is MM/dd/yy HH24:MI:SS.FF, 
the corresponding EMS DateTime Specification format is MM/dd/yy 
H:mm:ss:SSS.

Note: When you explicitly select the HH:mm:ss datetime format, the 
default value 1/1/1970 is inserted for the date, EMS ignores the date 
value.

When you explicitly select only the date (excluding the hour, minute, 
and second) as the datetime format, then the date is inserted with its 
hour, minute, and second set to 12:00:00 AM. EMS ignores the time 
value.



Creating Enterprise Message Sources

Creating Oracle BAM Enterprise Message Sources 53-9

Figure 53–2 EMS Configuration Source Value Formatting Section

The examples in Table 53–4 show how date and time patterns are interpreted in the 
United States locale. The date and time used in all of the examples are 2001-07-04 
12:08:56 local time in the U.S. Pacific Time time zone.

Table 53–3 Syntax Elements for SimpleDateFormat

Symbol Meaning Presentation Example

G Era Text AD

y Year Number 2003

M Month Text or Number July; Jul; 07

w Week in year (1-53) Number 27

W Week in month (1-5) Number 2

D Day in year (1-365 or 1-364) Number 189

d Day in a month Number 10

F Day of week in month (1-5) Number 2

E Day in week Text Tuesday; Tue

a AM/PM marker Text AM

H Hour (0-23) Number 0

k Hour (1-24) Number 24

K Hour (0-11 AM/PM) Number 0

h Hour (1-12 AM/PM) Number 12

m Minute in an hour Number 30

s Second in a minute Number 55

S Millisecond (0-999) Number 978

z Time zone General time zone Pacific Standard Time; PST; 
GMT-08:00

Z Time zone RFC 822 time zone -0800

’ Escape for text Delimiter MMM ’’01 -> Jul ’01

Table 53–4 Date and Time Pattern Examples

Date and Time Pattern Result

"yyyy.MM.dd G 'at' HH:mm:ss z" 2001.07.04 AD at 12:08:56 PDT



Creating Enterprise Message Sources

53-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

53.2.3 How to Use Advanced XML Formatting
The Advanced formatting options allow an EMS to contain a user-supplied XSL 
Transformation (XSLT) for each formatted field in the message.

Uses for XSLT include:

■ Handling of hierarchical data. The Data Flow does not handle hierarchical data. 
The XSLT can flatten the received XML into a single record with repeating fields.

■ Handling of message queues that contain messages of multiple types in a single 
queue. The Data Flow requires that all records from the Message Receiver be of the 
same schema. The EMS output can be defined as a combined superset of the 
message schemas that are received, and the XSL transformation can identify each 
message type and map it to the superset schema as appropriate.

■ Handling of XML that, while not expressing hierarchical data, does contain 
needed data at multiple levels in the XML. EMS formatting can only read from one 
level with the XML. The XSL transformation can identify the data needed at 
various levels in the input XML and output it all in new XML that contains all of 
the data combined at one level.

To specify an XSL transformation:
1. In an EMS that you are defining or editing, select Pre-Processing in the XML 

Formatting section.

2. Click Advanced formatting options.

The Advanced Formatting dialog opens.

3. Type or paste the XSL markup for the transformation for the XML in this field. You 
might want to write the XSL markup in another editing tool and then copy and 
paste the code into this dialog.

4. In the Sample XML to transform field, type sample XML to test the 
transformation against. The sample XML is not saved in this dialog and is not 
displayed if you close and open this dialog.

"EEE, MMM d, ’’ yy" Wed, Jul 4, '01

"h:mm a" 12:08 PM

"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02001.July.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss Z" Wed, 4 Jul 2001 12:08:56 -0700

"yyMMddHHmmssZ" 010704120856-0700

"yyyy-MM-dd'T'HH:mm:ss.SSSZ" 2001-07-04T12:08:56.235-0700

Table 53–4 (Cont.) Date and Time Pattern Examples

Date and Time Pattern Result



Using Enterprise Message Sources

Creating Oracle BAM Enterprise Message Sources 53-11

5. Click Verify transformation syntax to validate the XSL syntax.

6. Click Test transformation on sample XML to test your transformation. 

The results are displayed in the field underneath the links. If any errors are found 
in the XSL syntax, the sample XML syntax, or during the transformation, the error 
text is shown in this field.

53.3 Using Enterprise Message Sources
The Enterprise Message Sources page in Oracle BAM Architect is used to view the 
EMS definition, and perform operations on it. Select any EMS in the Enterprise 
Message Sources list to display information about it and work with it.

Use the links displayed at the top of the EMS definition page (the pane on the right 
side of the browser window) to perform operations on the EMS.

The following topics describe the available operations:

■ Section 53.3.1, "How to Edit, Copy, and Delete Enterprise Message Sources"

■ Section 53.3.2, "How to Start and Stop Enterprise Message Sources"

■ Section 53.3.3, "How to Subscribe and Unsubscribe Enterprise Message Sources"

■ Section 53.3.4, "How to Test Enterprise Message Sources"

■ Section 53.3.5, "How to Refresh Enterprise Message Sources"

■ Section 53.3.6, "How to Monitor Enterprise Message Source Metrics"

53.3.1 How to Edit, Copy, and Delete Enterprise Message Sources
Use the Edit, Copy, and Delete links on an individual EMS definition page to edit, 
copy, or delete the current EMS definition.

53.3.2 How to Start and Stop Enterprise Message Sources
Use the Start and Stop links on an individual EMS definition page to start and stop the 
EMS, which makes the consumer inactive in Stopped status.

For a durable subscribed EMS, clicking on Stop only makes the consumer inactive. It 
does not unsubscribe the EMS from a durable subscription. See Section 53.3.3, "How to 
Subscribe and Unsubscribe Enterprise Message Sources" for more information.

By default the EMS starts when the Oracle BAM Server is started.

Click Edit to change the Start when BAM Server starts property.



Using Enterprise Message Sources

53-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

53.3.3 How to Subscribe and Unsubscribe Enterprise Message Sources
Use the Unsubscribe link on an individual EMS definition page to unsubscribe a 
durable subscribed EMS.

For a durable subscribed EMS, clicking on Stop only makes the consumer inactive 
with Stopped status. 

Clicking on Unsubscribe unsubscribes it and the EMS status displays as 
Unsubscribed.

For non-durable subscribed EMS, clicking Unsubscribe does not have any effect. A 
message is displayed that the feature is not applicable in this case.

See Table 53–1 for information about configuring the Durable Subscriber Name 
property.

53.3.4 How to Test Enterprise Message Sources
Use the Test link on an individual EMS definition page to test the EMS definition 
against the data source and the mapped data object fields. The test results appear in 
the Status field in the EMS definition.

The status is reflected in the Status field as Test OK if the test is done successfully, or 
Test failed - exception are displayed when there is a problem. Also, when the 
Test link is clicked:

■ If the EMS is started already, then it stops it and starts it again.

■ If the EMS is in a stopped state, then it starts and stops again.

53.3.5 How to Refresh Enterprise Message Sources
Use the Refresh link on an individual EMS definition page to refresh the EMS 
definition page. Typically a user refreshes the page to obtain the current status of the 
EMS.

53.3.6 How to Monitor Enterprise Message Source Metrics
Use the Metrics link on an individual EMS definition page to monitor selected EMS 
statistics. The Metrics page displays the Total Messages Received, Total Messages 
committed in ADC, and Total Messages Lost counters. These values are accumulated 
since last start or reset.

Total Messages Lost is calculated by subtracting Total Messages committed in ADC 
from Total Messages Received.

Click Refresh to see these latest counter values.

Click Reset to set counter values to zero.



Using Foreign JMS Providers

Creating Oracle BAM Enterprise Message Sources 53-13

53.4 Using Foreign JMS Providers
Oracle WebLogic Server provides support for integrating non-Oracle WebLogic Server 
(foreign) JMS providers with applications deployed in it, such as Oracle BAM. Foreign 
JMS providers have their own JMS client and Java Naming and Directory Interface 
(JNDI) Client APIs. some configuration must be done to identify these depedencies 
and make these APIs available on Oracle WebLogic Server so that JMS resources 
hosted on a remote provider can be looked up by application deployed in Oracle 
WebLogic Server.

See "Configuring Foreign Server Resources to Access Third-Party JMS Providers" in 
Oracle Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server for 
more information.

Section 53.5.3, "Creating a Foreign JMS Server" in the "Use Case: Creating an EMS 
Against Oracle Streams AQ JMS Provider" provides a detailed example.

The high level configuration steps are:

1. Make the JMS and JNDI client library of the foreign the provider available to 
applications deployed on Oracle WebLogic Server.

Identify the JMS and JNDI client Java Archive (JAR) files of the foreign provider 
and place them in the DOMAIN_HOME/lib directory.

2. Create a foreign server using Oracle WebLogic Server Administration Console. 

Go to JMS Modules in Oracle WebLogic Server Administration Console, and 
create a new module.

Inside this module, click New, select Foreign Server, and create a new foreign 
server by navigating through all of the pages.

Provide appropriate JNDI properties for the remote provider for the foreign server 
definition.

3. Create JMS resources (that is, connection factories and destinations) for the foreign 
JMS server.

Inside the Foreign Server link, select the Destination tab and create links for

■ Remote ConnectionFactory

■ Remote Destination (Queue/Topic)

Local JNDI names configured for these destinations must be used while 
configuring EMS to consume messages from these destinations.

4. Configure an EMS definition in Oracle BAM Architect to consume messages from 
foreign destinations.

The whole process of accessing JMS resources hosted on foreign providers is 
transparent to Oracle BAM Server. After the previous steps have been followed 
correctly, remote destinations from foreign JMS providers are published on the 
local WL server JNDI tree, so that applications deployed on the server (like Oracle 
BAM EMS) can look them up, just like any other collocated Oracle WebLogic 
Server JMS resource. Oracle WebLogic Server takes care of communicating with 
the appropriate foreign JMS provider at runtime.



Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

53-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

53.5 Use Case: Creating an EMS Against Oracle Streams AQ JMS 
Provider

The following are the steps to configure Oracle Streams AQ JMS Provider (AQ-JMS) in 
Oracle WebLogic Server, and an EMS definition in Oracle BAM Architect.

1. Creating a JMS Topic in AQ-JMS.

2. Creating a Data Source in Oracle WebLogic Server.

3. Creating a Foreign JMS Server.

4. Defining an EMS in Oracle BAM Architect.

5. Inserting and Updating Records in the SQL Table.

53.5.1 Creating a JMS Topic in AQ-JMS
Open a SQLplus command prompt and do the following:

1. Login as sysdba

sqlplus sys as sysdba

2. Enter the password for the system dba account when prompted.

3. Create and execute the following scripts in the following order (see Example 53–1, 
Example 53–2, and Example 53–3 for the contents of the scripts).

@<SCRIPT_PATH>/usertabletopiccreation.sql
@<SCRIPT_PATH>/createtable.sql
@<SCRIPT_PATH>/createtrigger.sql

The scripts do the following things:

a. Creates a fresh schema under user MyChannelDemoUser.

b. Creates a JMS a topic in AQ-JMS.

c. Creates a SQL table by name EMP.

d. Creates a trigger that publishes messages to AQ-JMS topic on inset/update on 
EMP.

Example 53–1 Contents of usertabletopiccreation.sql

DROP USER MyChannelDemoUser CASCADE;
 
GRANT connect, resource,AQ_ADMINISTRATOR_ROLE TO MyChannelDemoUser IDENTIFIED BY
 MyChannelDemoPassword;
GRANT execute ON sys.dbms_aqadm TO MyChannelDemoUser;
GRANT execute ON sys.dbms_aq    TO MyChannelDemoUser;
GRANT execute ON sys.dbms_aqin  TO MyChannelDemoUser;
GRANT execute ON sys.dbms_aqjms TO MyChannelDemoUser;
 
connect MyChannelDemoUser/MyChannelDemoPassword;
 
BEGIN
--dbms_aqadm.stop_queue( queue_name => 'MY_TOPIC' );
--dbms_aqadm.drop_queue( queue_name  => 'MY_TOPIC');
--DBMS_AQADM.DROP_QUEUE_TABLE (queue_table => 'TTab');
dbms_aqadm.create_queue_table( queue_table => 'TTab', queue_payload_type =>
 'sys.aq$_jms_text_message', multiple_consumers => true );
dbms_aqadm.create_queue( queue_name  => 'MY_TOPIC', queue_table => 'TTab' );



Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

Creating Oracle BAM Enterprise Message Sources 53-15

dbms_aqadm.start_queue( queue_name => 'MY_TOPIC' );
END;
/

Example 53–2 Contents of createtable.sql

connect MyChannelDemoUser/MyChannelDemoPassword;

CREATE TABLE EMP ( EMPNO NUMBER(4), ENAME VARCHAR2(10),  JOB VARCHAR2(9), MGR
 NUMBER(4), HIREDATE DATE, SAL NUMBER(7,2), COMM NUMBER(7,2), DEPTNO NUMBER(2) );

quit;

Example 53–3 Contents of createtrigger.sql

connect MyChannelDemoUser/MyChannelDemoPassword;
create or replace
trigger employee AFTER INSERT OR Update ON EMP
 FOR each row
    declare
       xml_complete varchar2(1000);
       v_enqueue_options dbms_aq.enqueue_options_t;
       v_message_properties dbms_aq.message_properties_t;
       v_msgid raw(16);
       temp sys.aq$_jms_text_message;
       v_recipients        dbms_aq.aq$_recipient_list_t;
       
    Begin
         temp:=sys.aq$_jms_text_message.construct;
 xml_complete :=
 '<?xml version="1.0"?>' ||
 '<row>' ||
 '<EMPNO>' || :new.EMPNO || '</EMPNO>' ||
 '<ENAME>' || :new.ENAME || '</ENAME>' ||
 '<JOB>' || :new.JOB || '</JOB>' ||
 '<MGR>' || :new.MGR || '</MGR>' ||
 '<HIREDATE>' || :new.HIREDATE || '</HIREDATE>' ||
 '<SAL>' || :new.SAL || '</SAL>' ||
 '<COMM>' || :new.COMM || '</COMM>' ||
 '<DEPTNO>' || :new.DEPTNO || '</DEPTNO>' ||
 '</row>' ;
 temp.set_text(xml_complete);
      dbms_aq.enqueue(queue_name => 'MY_TOPIC',
         enqueue_options => v_enqueue_options,
         message_properties => v_message_properties,
         payload => temp,
         msgid => v_msgid );
  End ;
/
quit;

53.5.2 Creating a Data Source in Oracle WebLogic Server
You can skip this step if a data source exists. An existing data source can also be reused 
in this section.

1. Open Oracle WebLogic Server Administration Console at

 http://hostname:7001/console

where hostname is the name of the system where Oracle BAM Server is installed.



Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

53-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. After logging into the console click the Data Sources link in the JDBC section, and 
click New.

3. Enter a name for the data source (For example, BAMAQDataSource).

4. Enter a JNDI name from the data source (for example, jdbc/oracle/bamaq). 
This name is used to configure the foreign JMS server.

5. Select Oracle to be the Database Type.

6. Select Oracle's Driver (Thin) for Database Driver field, and click Next.

7. Uncheck Support Global Transaction, and click Next.

8. Enter your database SID in the Database Name field (for example, ORCL).

9. Enter the hostname of the system where the database is installed as the Host 
Name (for example, localhost).

10. Enter data base port number (for example, 1521).

11. Enter the user name (for example, MyChannelDemoUser).

12. Enter the password, and click Next.

13. Click Test Configuration to test the configuration.

14. After it is successful, click Finish.

53.5.3 Creating a Foreign JMS Server

To create a foreign JMS server:
1. Add as an Oracle WebLogic Server JMS module.

a. In the Oracle WebLogic Server Administration Console, from the home page, 
go to the JMS Modules page.

b. Click New to create an Oracle WebLogic Server JMS module.

c. Enter a name for the JMS module (for example, BAMAQsystemModule).

d. Click Next and assign appropriate targets.

e. Click Next, and click Finish.

2. Add an AQ-JMS foreign server to the JMS module.

a. Select the JMS module that you just created.

b. Click New, and go to the list of JMS resources to add.

c. Select the Foreign Server option, and click Next.

d. Enter a name for the foreign server (for example, BAMAQForeignServer), 
and click Finish.

3. Configure the AQ-JMS foreign server.

a. Select the AQ-JMS foreign server that you created.

b. In the JNDI Initial Context Factory field, enter

oracle.jms.AQjmsInitialContextFactory

c. In the JNDI Properties area, enter

datasource=datasource_jndi_location



Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

Creating Oracle BAM Enterprise Message Sources 53-17

where datasource_jndi_location is the JNDI location of your data 
source (for example, jdbc/oracle/bamaq).

4. Add connection factories to the AQ-JMS foreign server.

a. Select the AQ-JMS foreign server that you created.

b. Select the Connection Factories tab.

c. Enter a name for the connection factory. This is a logical name referenced by 
Oracle WebLogic Server.

d. In the Local JNDI Name field, enter the local JNDI name that is used by The 
Oracle BAM EMS to look up this connection factory (For example, 
jms/BAMAQTopicCF).

e. In the Remote JNDI Name field, enter:

- TopicConnectionFactory (select for this use case)
- QueueConnectionFactory
- ConnectionFactory

f. Click OK.

5. Add destinations to the AQ-JMS foreign server.

a. Select the AQ-JMS foreign server that you created.

b. Select the Destinations tab.

c. Enter a name for this destination. This is a logical name referenced by Oracle 
WebLogic Server, and it has nothing to do with the destination name.

d. In the Local JNDI Name field, enter the local JNDI name that is used by the 
Oracle BAM EMS to lookup this destination (for example, jms/BAMAQTopic).

e. In the Remote JNDI Name field, if the destination is a queue, enter the 
following value:

Queues/queue_name

If the destination is a topic enter the following value:

Topics/topic_name

f. Click OK.

6. Restart Oracle WebLogic Server.

53.5.4 Defining an EMS in Oracle BAM Architect
1. Open Oracle BAM Architect, and select Enterprise Message Sources in the 

dropdown list.

2. Enter the message source information you just created.

3. Enter the Initial Context Factory value:

weblogic.jndi.WLInitialContextFactory

4. Enter the JNDI provider URL:

t3://hostname:7001

5. Enter the Connection Factory Name (for example, jms/BAMAQTopicCF).

6. Enter the Destination Name (for example, jms/BAMAQTopic).



Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

53-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. Choose the Oracle BAM data object to send the values received from AQ-JMS 
server.

8. Complete the source-to-data object field mapping so that data from the incoming 
XML can be mapped to an appropriate field in selected data object.

53.5.5 Inserting and Updating Records in the SQL Table
Now you can test the functionality end to end by inserting or updating some records 
in the EMP database table.

You can use SQLPlus to run SQL queries.

Now you should see the values from the record being inserted into data object.

For example,

insert into emp values (25,'Ford','ANALYST',7566,sysdate,60000,3000,20);

update emp set ENAME='McOwen' where ENAME='Ford'; 



54

Using Oracle Data Integrator With Oracle BAM 54-1

54Using Oracle Data Integrator With
Oracle BAM

This chapter provides information about the Oracle Data Integrator integration with 
Oracle Business Activity Monitoring.

This chapter includes the following sections:

■ Section 54.1, "Introduction to Using the Oracle Data Integrator With Oracle 
Business Activity Monitoring"

■ Section 54.2, "Installing the Oracle Data Integrator Integration Files"

■ Section 54.3, "Using Oracle BAM Knowledge Modules"

■ Section 54.4, "Creating the Oracle BAM Target"

■ Section 54.5, "Reverse Engineering the Oracle BAM Schema"

■ Section 54.6, "Updating the Oracle Data Integrator External Data Source 
Definition"

■ Section 54.7, "Launching Oracle Data Integrator Scenarios From Oracle BAM 
Alerts"

■ Section 54.8, "Running Oracle Data Integrator Agent as a Daemon or a Microsoft 
Windows Service With Oracle BAM Embedded"

Oracle Data Integrator documentation is located on the Oracle Technology Network 
web site at the following location:

http://www.oracle.com/technetwork/middleware/data-integrator

54.1 Introduction to Using the Oracle Data Integrator With Oracle 
Business Activity Monitoring

This document assumes the following:

■ The Oracle database is installed and you can connect to it.

■ Oracle BAM is installed and running.

■ Oracle Data Integrator installed and the basic configuration is done (the Oracle 
Data Integrator Master repository is created, repository connections are 
configured, Work repositories are created and connected, and any source 
topologies are configured).

■ If Oracle Data Integrator is installed on a separate host, Java 1.6 must be installed 
on the Oracle Data Integrator host before you can work with the Oracle BAM and 
Oracle Data Integrator integration.



Installing the Oracle Data Integrator Integration Files

54-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When using Oracle Data Integrator with Oracle BAM, keep the following in mind:

■ Within the Oracle Data Integrator interface you must add quotation marks around 
field names that contain spaces.

■ Oracle Data Integrator cannot insert data into Oracle BAM read-only fields of type 
Lookup, Calculated, Auto-incrementing integer, and Timestamp. These fields are 
automatically populated. Although Oracle Data Integrator enables you to select 
these fields as target fields, running Oracle Data Integrator with these fields 
populated throws an exception.

■ Do not use Oracle BAM as a staging area (for example, if Oracle BAM is used as a 
source (as when using a loading knowledge module), do not use this source as 
staging area, and if Oracle BAM is being used as a target (as when using an 
integration knowledge module) do not use that target as staging area.

54.2 Installing the Oracle Data Integrator Integration Files
There are two ways to set up the Oracle BAM and Oracle Data Integrator integration. 

The first method uses an installation script, typically when Oracle Data Integrator and 
Oracle BAM are deployed on the same system or the same network file system 
(Section 54.2.1, "How to Install Integration Files Using the Script").

The second method uses manual steps to configure the properties and copy the 
required files to the Oracle Data Integrator directories (Section 54.2.2, "How to 
Manually Install Integration Files"). This method is typically used if you are unable to 
map the ODI_HOME drive from the system where Oracle BAM is installed (usually 
when Oracle Data Integrator and Oracle BAM are installed in different network or file 
system).

The logs contain information about the installation and the integration messages. See 
Section 54.2.3, "Using the Logs" for more information.

Recommended Memory Settings for Using Oracle Data Integrator with Oracle 
BAM
The default memory settings for Oracle Data Integrator are included in the 
odiparams.sh script (or odiparams.bat for windows). The values for the ODI_
INIT_HEAP and ODI_MAX_HEAP properties default to 32M and 256M. It is 
recommended that you change these values to 256 M and 1024 M respectively. This 
enhances Oracle Data Integrator performance. Otherwise, Oracle Data Integrator 
OutOfMemory errors may occur, especially when running memory intensive tasks.

54.2.1 How to Install Integration Files Using the Script
Use the installation script when you have Oracle Data Integrator and Oracle BAM 
installed on the same system or the same network file system.

A log file called utility.log is created if there is a problem with the installation. 
The file location is controlled by the utility.logging.properties file. See 
Section 54.2.3, "Using the Logs" for more information.

To install the integration files:
1. Verify that Oracle BAM Server is running and reachable from the Oracle Data 

Integrator host.

2. On the Oracle BAM host, go to the ORACLE_HOME\bam\config directory and 
edit the bam_odi_configuration.properties file.



Installing the Oracle Data Integrator Integration Files

Using Oracle Data Integrator With Oracle BAM 54-3

■ ODI_HOME 

This property identifies the path to the Oracle Data Integrator home directory.

The default value on Linux is /scratch/$user/ODI_HOME/oracledi.

On Microsoft Windows systems, use the short 8-character name convention. 
Also, use double back-slashes (\\) to denote a directory separator. For 
example, C:\Program Files\ODI_HOME\oracledi would appear as:

ODI_HOME = C:\\Progra~1\\ODI_HOME\\oracledi

■ WL_SERVER 

This property identifies the Oracle WebLogic Server folder name on the Oracle 
BAM system.

The default value is wlserver_10.3.

3. Execute bam_odi_configuration.sh (or bam_odi_configuration.bat on 
a Microsoft Windows host) in ORACLE_HOME\bam\bin.

Enter the values as prompted by the script. You must have the Oracle Data 
Integrator Master and Oracle Data Integrator Work repository account credentials 
to complete the script execution.

Note that the prompts displayed with [value] have default values in the brackets. 
Press Enter to choose the default. If there is no bracketed default value displayed, 
an input value is required, or the script stops.

The script creates the resources required in the Oracle BAM web applications, sets 
the Oracle BAM configuration properties in Oracle Data Integrator, generates a 
Oracle WebLogic Server client Java Archive (JAR) to deploy to the Oracle Data 
Integrator system, and copies all of the required files into the appropriate Oracle 
Data Integrator directories.

Note: If Oracle BAM Server and Oracle Data Integrator are deployed 
on two different hosts, then you must map the Oracle Data Integrator 
drive on the Oracle BAM system, and then set the
ODI_HOME path using that mapped drive to successfully make use of 
the integration configuration scripts. If drive mapping is not possible 
see Section 54.2.2, "How to Manually Install Integration Files."

Note: The configuration script does the following steps:

1. Recreates the Oracle Data Integrator EDS enterprise data sources.

2. Modifies the odiparams.sh file.

3. Copies the Oracle BAM JAR files and knowledge modules.

In an existing working Oracle Data Integrator environment, you need 
only to copy the Oracle BAM artifacts. To do this run the script with 
the copy-only command line parameter. When the script finds the 
command line parameter it performs only step 3 above and skip the 
other steps. For example:

sh bam_odi_configuration.sh copy-only



Installing the Oracle Data Integrator Integration Files

54-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

While the script is running the following message may appear: "Trying to contact 
Oracle BAM Server. It may take few minutes." If Oracle BAM Server cannot be 
reached, the script retries the connection multiple times.

Now you can create an Oracle BAM target in the Oracle Data Integrator Topology 
Manager. See Section 54.4, "Creating the Oracle BAM Target" for instructions.

54.2.2 How to Manually Install Integration Files
Use these steps if Oracle Data Integrator and Oracle BAM Server are installed on hosts 
in different networks, or for any reason you cannot use the script in your environment.

There are four major steps to this process:

1. Set JAVA_HOME

2. Create External Data Sources for Oracle Data Integrator

3. Set Oracle Data Integrator Configuration Properties

4. Copy files to Oracle Data Integrator Directories

5. Generate the Oracle WebLogic Server Client JAR

Set JAVA_HOME
The environment variable JAVA_HOME must be set to Java version 1.6.x in the 
environment in which an Oracle Data Integrator application is invoked. This means 
that Java version 1.6.x must be installed on the host. To set the environment variable:

On Microsoft Windows, go to the Control Panel, click the System icon. In the System 
Properties, go to the Advanced tab, and then click the Environment Variables button. 
In the Environment Variables window, create or modify a variable named JAVA_HOME 
for the user (upper box), and set the value to the path for the Java installation (for 
example: c:\PROGRA~1\Java\jdk1.6.0_12). Click OK. When you launch Oracle 
Data Integrator, be sure to do it from a fresh command prompt, to pick up the new 
environment variable.

On UNIX, follow the procedure for the shell script to create the environment variable 
JAVA_HOME. This can be done in a startup script (such as .cshrc in the user's home 
directory) or on the command line before invoking Oracle Data Integrator.

Create External Data Sources for Oracle Data Integrator
Create the external data sources in Oracle BAM Architect.

1. Open Oracle BAM Architect and select the External Data Sources page.

Note: If you cannot use the script in your environment, use the 
instructions in Section 54.2.2, "How to Manually Install Integration 
Files."

Note: Every time bam_odi_configuration.sh is run, a backup 
of the BAMODIConfig.xml file is created in the same directory with a 
time stamp, and the old file is overwritten with the new file. If you 
made any changes to the property settings in the old version of 
BAMODIConfig.xml, those changes must be made again in the latest 
version.



Installing the Oracle Data Integrator Integration Files

Using Oracle Data Integrator With Oracle BAM 54-5

2. Click Create, and configure the two external data sources (ODI_Master and ODI_
Work) with the values shown in Table 54–1 and Table 54–2.

Set Oracle Data Integrator Configuration Properties
Modify the ODI_JAVA_OPTIONS and ODI_ADDITIONAL_CLASSPATH values in the 
odiparams.sh(bat) file located in ODI_HOME/bin as shown in Example 54–1 and 
Example 54–2.

Example 54–1 ODI_JAVA_OPTIONS Modification

On Microsoft Windows:

SET ODI_JAVA_OPTIONS=-Djava.security.policy=server.policy
 -Djava.util.logging.config.file=../lib/bam_odi.logging.properties

On Linux:

SET ODI_JAVA_OPTIONS="-Djava.security.policy=server.policy
 -Djava.util.logging.config.file=../lib/bam_odi.logging.properties"

Example 54–2 ODI_ADDITIONAL_CLASSPATH Modification

SET ODI_ADDITIONAL_CLASSPATH=../lib/weblogic/wlfullclient.jar

Copy files to Oracle Data Integrator Directories
This procedure copies several JAR files, logging properties files, and knowledge 
modules into the Oracle Data Integrator directories.

Table 54–1 ODI_Master external data source values

Property Value

External Data Source Name ODI_Master

Driver oracle.jdbc.driver.OracleDriver

Login Oracle Data Integrator Master repository account user name

Password Oracle Data Integrator Master repository account password

Connection String jdbc:oracle:thin:ip_address:port_number:db_service_name

Table 54–2 ODI_Work external data source values

Property Value

External Data Source Name ODI_Work

Driver oracle.jdbc.driver.OracleDriver

Login Oracle Data Integrator Work repository account user name

Password Oracle Data Integrator Work repository account password

Connection String jdbc:oracle:thin:ip_address:port_number:db_service_name



Installing the Oracle Data Integrator Integration Files

54-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. Copy the following files from 
ORACLE_HOME/bam/modules/oracle.bam_11.1.1 to
ODI_HOME/lib:

■ oracle-bam-common.jar

■ oracle-bam-etl.jar

■ oracle-bam-adc-ejb.jar

2. Copy the following files from 
ORACLE_HOME/bam/modules/oracle.bam.thirdparty_11.1.1 to 
ODI_HOME/lib:

■ commons-codec-1.3.jar

■ xstream-1.1.3.jar

3. Copy the following file from 
ORACLE_HOME/modules/oracle.odl_11.1.1 to 
ODI_HOME/lib:

■ ojdl.jar

4. Copy the following file from 
ORACLE_HOME/modules/oracle.jps_11.1.1 to 
ODI_HOME/lib:

■ jps-api.jar

5. Copy the following file from 
ORACLE_HOME/modules/oracle.dms_11.1.1 to 
ODI_HOME/lib:

■ dms.jar

6. Copy the following file from 
ORACLE_HOME/modules to 
ODI_HOME/lib:

■ org.jaxen_1.1.1.jar

7. Copy the following file from 
ORACLE_HOME/bam/config to 
ODI_HOME/lib:

■ bam.odi.logging.properties

8. Copy the following file from 
ORACLE_HOME/bam/ODI/config to 
ODI_HOME/lib/config:

■ BAMODIConfig.xml

9. Copy all of the XML files from 
ORACLE_HOME/bam/odi/knowledge_modules to 
ODI_HOME/impexp.

Generate the Oracle WebLogic Server Client JAR
1. Generate a wlfullclient.jar file using the Oracle WebLogic Server 

JarBuilder tool. See "Using the WebLogic JARBuilder tool" in Oracle Fusion 
Middleware Programming Stand-alone Clients for Oracle WebLogic Server for 
instructions.

2. Create a subdirectory called ODI_HOME/oracledi/lib/weblogic.



Using Oracle BAM Knowledge Modules

Using Oracle Data Integrator With Oracle BAM 54-7

3. Copy wlfullclient.jar into ODI_HOME/oracledi/lib/weblogic.

54.2.3 Using the Logs

Install Log
Part of the installation process uses Oracle BAM ICommand, and the logs associated 
with this process are written to files in the same directory where the configuration 
script is run (ORACLE_HOME\bam\bin).

The logging properties for installation logs are configured in the 
utility.logging.properties file in the same directory. The default logging level 
is set to INFO.

Runtime Log
The bam_odi.logging.properties file is used to configure logging for messages 
that occur when Oracle Data Integrator is running with Oracle BAM. This file is 
located in ODI_HOME/lib.

54.3 Using Oracle BAM Knowledge Modules
Knowledge modules are generic code templates containing the sequence of commands 
necessary for a data integration pattern. A knowledge module contains the knowledge 
required by Oracle Data Integrator to perform a specific set of tasks against a specific 
storage technology. It defines methods related to a given storage technology and it 
enables processes generation for that technology.

There are different knowledge modules for loading (from the source data store), 
integration (to target data store), checking, reverse-engineering, journalizing and 
creating services. All knowledge modules work by generating code to be executed at 
runtime by knowledge module Interpreter.

There is a set of knowledge modules specific to Oracle BAM functionality within 
Oracle Data Integrator. These knowledge modules are installed in the ODI_
HOME/oracledi/impexp directory when the integration files are installed. To use 
these Oracle BAM-specific knowledge modules, you must import them into the 
appropriate projects in the Oracle Data Integrator Designer application. Table 54–3 
describes the Oracle BAM-specific knowledge modules.

For information about importing knowledge modules, see "Importing a KM" in Oracle 
Data Integrator User’s Guide. Oracle Data Integrator documentation is located on the 
Oracle Technology Network web site at the following location:

http://www.oracle.com/technetwork/middleware/data-integrator

Table 54–3 Oracle BAM Knowledge Modules

Knowledge Module Description

CKM Get Oracle BAM Metadata A check knowledge module that is used internally before 
integration knowledge module steps. This check knowledge 
module is the default knowledge module in Oracle BAM 
technology, and it is automatically acquired by Oracle Data 
Integrator. This check knowledge module creates two arrays 
which are later used by Oracle BAM-specific integration 
knowledge modules in the same Java session.

This knowledge module has no options.



Using Oracle BAM Knowledge Modules

54-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

IKM SQL to Oracle BAM 
(delete)

An integration knowledge module that can delete rows 
from Oracle BAM data objects by sending matching key 
column values. It has the following options:

COMMIT_SIZE

BATCH_SIZE

DATETIME_PATTERN

KEY_CONDITION

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

IKM SQL to Oracle BAM (insert) An integration knowledge module that can insert rows to 
Oracle BAM data objects from heterogeneous data sources. 
It has the following options:

BATCH_SIZE

COMMIT_SIZE

CREATE_TARG_TABLE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

IKM SQL to Oracle BAM 
(looksert natural)

An integration knowledge module that can insert rows into 
Oracle BAM data objects from heterogeneous data sources. 
It differs from IKM SQL to Oracle BAM (insert) by also 
inserting new entries in dimension tables (that is, the data 
object to which the lookup column refers) if it does not yet 
exist. 

Looksert integration knowledge modules do an insert into 
an Oracle BAM target based on a lookup field. Typically, 
this is used to load a fact table in a star schema. (A star 
schema is characterized by one or more very large fact 
tables that contain the primary information in the data 
warehouse, and some much smaller dimension tables (or 
lookup tables), each of which contains information about 
the entries for a particular attribute in the fact table.)

This integration knowledge module is provided for better 
performance. It has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

NON_KEY_MATCHING

Table 54–3 (Cont.) Oracle BAM Knowledge Modules

Knowledge Module Description



Using Oracle BAM Knowledge Modules

Using Oracle Data Integrator With Oracle BAM 54-9

IKM SQL to Oracle BAM 
(looksert surrogate)

An integration knowledge module that can insert rows into 
Oracle BAM data objects from heterogeneous data sources. 
It is similar to IKM SQL to Oracle BAM (looksert natural) 
and differs in using a surrogate key instead of a natural key 
between a fact data object and dimension object.

Looksert integration knowledge modules do an insert into 
an Oracle BAM data object based on a lookup field. 
Typically, this used to load a fact table in a star schema. (A 
star schema is characterized by one or more very large fact 
tables that contain the primary information in the data 
warehouse, and some much smaller dimension tables (or 
lookup tables), each of which contains information about 
the entries for a particular attribute in the fact table.)

If the value for a lookup field does not exist in the relevant 
dimension table, the value is automatically inserted.

This integration knowledge module must be used with 
LKM Get Source Metadata and CKM Get Oracle BAM 
Metadata.

This knowledge module has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

NON_KEY_MATCHING

IKM SQL to Oracle BAM 
(update)

An integration knowledge module that can update rows in 
Oracle BAM data objects from heterogeneous data sources. 
It has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

Table 54–3 (Cont.) Oracle BAM Knowledge Modules

Knowledge Module Description



Using Oracle BAM Knowledge Modules

54-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

IKM SQL to Oracle BAM 
(upsert)

An integration knowledge module that can merge (upsert) 
rows (that is, update a data object if matching row exists or 
insert data object if a new row) to Oracle BAM data objects 
from heterogeneous data sources. It has the following 
options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

Note: During execution, the number of upsert operations 
are reported in the No. of Updates field, because the Oracle 
Data Integrator Operator user interface does not have a No. 
of Upserts field. Furthermore, the count for all of the inserts 
and updates to the Oracle BAM database are reported in the 
Updates field, and are not reported separately.

LKM Get Source Metadata A loading knowledge module. This is not a traditional 
loading knowledge module because it does not load any 
data from the source to staging area. Instead it simply 
gathers the metadata that is required by the integration 
knowledge module IKM SQL to Oracle BAM (looksert 
surrogate).

IKM ORACLE to BAM (looksert surrogate) performs the 
task of loading directly from a SQL source into the Oracle 
BAM target. In doing so, it uses the metadata provided by 
LKM Get Source Metadata.

This knowledge module has no options.

LKM Oracle BAM to SQL A loading knowledge module that allows client applications 
to load data from Oracle BAM. 

If using an Oracle BAM loading knowledge module as a 
source in an interface (for example LKM Oracle BAM to 
SQL), the user must change the default execute on button 
for each mapped field in the target to staging area. If left at 
the default source, erroneous results may occur. 
Technologies that do not allow for a staging area, such as 
Oracle BAM, should not have transformations performed 
on them. 

It has the following options:

DELETE_TEMPORARY_OBJECTS

DROP_PURGE

LAST_BAM_TASK

Table 54–3 (Cont.) Oracle BAM Knowledge Modules

Knowledge Module Description



Using Oracle BAM Knowledge Modules

Using Oracle Data Integrator With Oracle BAM 54-11

Table 54–4 describes the parameters used in Oracle BAM knowledge modules.

RKM Oracle BAM A customized reverse engineering knowledge module for 
Oracle BAM. It has the following options:

GET_COLUMNS

GET_FOREIGN_KEYS

GET_INDEXES

GET_PRIMARY_KEYS

LOG_FILE_NAME

USE_LOG

Table 54–4 Oracle BAM Knowledge Module Parameters

Parameter Description

BATCH_SIZE The maximum number of records which are sent as a batch 
across from the client to the server.

The batch size that is used to send batches from the client to the 
server. As larger hosts are used with bigger Java Virtual Machine 
sizes, this parameter can be increased to improve performance.

Default value: 1024

COMMIT_SIZE The maximum number of records in a single transaction. The 
default, 0, means commit all input records in one transaction. A 
positive, nonzero, value denotes that the maximum number of 
records to be committed at a time.

Negative values for this option are invalid.

Default value: 0

CREATE_TARG_TABLE Select this option to create the target data object on Oracle BAM 
Server.

DATETIME_PATTERN This option and Locale specifications (for example, LOCALE_
LANGUAGE, LOCALE_COUNTRY, and LOCALE_VARIANT) 
are used to construct a Java SimpleDateFormat object which is 
used in parsing the date and time data strings.

See Section 53.2.2, "How to Configure DateTime Specification" 
for information about SimpleDateFormat.

DELETE_TEMPORARY_
OBJECTS

Set this option to NO to retain temporary objects after integration. 
This option is useful for debugging.

DROP_PURGE Set this option to YES to not only drop the work table, but purge 
it as well. When a table is dropped, it is recoverable in the 
database's recycle bin. When the table is dropped and purged, it 
is permanently deleted.

GET_COLUMNS Set to Yes to reverse engineer the columns.

GET_FOREIGN_KEYS Set to Yes to reverse engineer the foreign keys.

GET_INDEXES Set to Yes to reverse engineer the indexes.

GET_PRIMARY_KEYS Set to Yes to reverse engineer the primary keys.

Table 54–3 (Cont.) Oracle BAM Knowledge Modules

Knowledge Module Description



Using Oracle BAM Knowledge Modules

54-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

KEY_CONDITION Set this option to match one or more corresponding rows from 
source to target. Use the following operators: *, =, !=, <, <=, >, 
>=. The match value (that is, the where clause value) should be 
supplied as the mapping value for the target data store’s key 
field in the Diagram tab for the interface in Oracle Data 
Integrator Designer.

Note that when the * operator is chosen as the KEY_
CONDITION option value, all rows are deleted from the target 
data store, regardless of its key field's mapping value.

LAST_BAM_TASK Use this option to manage the life cycle of the Oracle BAM JDBC 
connection. If this task is the last Oracle BAM task in the work 
flow, it closes the JDBC connection; otherwise, it leaves the 
connection open.

LOCALE_COUNTRY The country option is a valid ISO Country Code. These codes are 
the upper-case, two-letter codes as defined by ISO-3166. 

This option plus LOCALE_LANGUAGE and LOCALE_VARIANT are 
used to construct a Java Locale object.

LOCALE_LANGUAGE The language option is a valid ISO Language Code. These codes 
are the lower-case, two-letter codes as defined by ISO-639. 

This option plus LOCALE_COUNTRY and LOCALE_VARIANT are 
used to construct a Java Locale object.

LOCALE_VARIANT The variant option is a vendor or browser-specific code. For 
example, use WIN for Windows, MAC for Macintosh, and POSIX 
for POSIX. Where there are two variants, separate them with an 
underscore, and put the most important one first. For example, a 
Traditional Spanish collation might construct a locale with 
parameters for language, country and variant as: es, ES, 
Traditional_WIN.

This option plus LOCALE_LANGUAGE and LOCALE_
COUNTRY are used to construct a Java Locale object.

LOG_FILE_NAME Specify when USE_LOG is set to Yes. Specify the path and file 
name of the log. Be sure to set this property value properly (that 
is, choose a location where user has write permissions) before 
running the reverse engineering.

NON_KEY_MATCHING Determines if the incoming non-key column values are to be 
compared to the non-key column values in the dimension table.

If NON_KEY_MATCHING is set to true, if the incoming non-key 
column values match those in the dimension table, the row is 
inserted into the fact table (which is the target data store). 
Otherwise, that row insert fails, which might even lead to the 
entire transaction being rolled back (in case COMMIT_SIZE was 
set to 0). A COMMIT_SIZE of 1 results in only this row being 
rolled back and ignored, and all other row inserts progress as 
usual.

If NON_KEY_MATCHING is set to false and lookup succeeds, 
incoming non-key column values for the dimension table are 
ignored.

USE_LOG Set to Yes if you want the reverse-engineering process log 
details in a log file. Specify the log file location using the LOG_
FILE_NAME option.

Table 54–4 (Cont.) Oracle BAM Knowledge Module Parameters

Parameter Description



Creating the Oracle BAM Target

Using Oracle Data Integrator With Oracle BAM 54-13

54.4 Creating the Oracle BAM Target
This section details the steps for creating an Oracle BAM target using the Oracle Data 
Integrator Topology Manager.

For more information about using Oracle Data Integrator, see the Oracle Data 
Integrator documentation located on the Oracle Technology Network web site at:

http://www.oracle.com/technetwork/middleware/data-integrator

54.4.1 How to Create the Oracle BAM Target

To create an Oracle BAM Target in Oracle Data Integrator:
1. Open the Oracle Data Integrator Topology Manager.

2. Go to Physical Architecture > Technologies > Oracle BAM.

3. Right-click and choose Insert Data Server.

4. Configure the following in the Data Server Definition tab:

■ Name: Oracle BAM target name

■ Server (Data Server): leave blank

■ User: Oracle BAM Administrator user name

■ Password: Oracle BAM Administrator password

5. Configure the following in the JDBC tab:

■ JDBC Driver: any_text_will_do

■ JDBC URL: instance1:hostname:port_number

The instance1 string can be any string.

The hostname value must be the same as the ServerName property value in 
the BAMCommonConfig.xml file, and the port_number value must be the 
same as the ServerPort property value in the BAMCommonConfig.xml file.

■ Do not use the Test button in this dialog, because it is not functional for the 
integration between Oracle BAM and Oracle Data Integrator. After you 
successfully reverse engineer the data objects in the Oracle BAM model, then 
you can verify that the connection information is correct.

6. Click OK.

7. Configure the following in the Physical Data Server dialog:

■ In the Physical Schema Definition tab:

– Modify the Local Object Mask to be %OBJECT.

■ In the Context tab:

– Create a new row which automatically introduces a row with the Context 
name Global. 

For that row, the Logical Schema value is initially <Undefined>. You 
must select the <Undefined> text and replace it with the display name 
for Oracle BAM. 

– Type in a display name for the Oracle BAM target such as BAM_TARGET as 
the name of a new Logical Schema. Oracle Data Integrator automatically 
creates the logical schema.



Reverse Engineering the Oracle BAM Schema

54-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Click OK.

54.5 Reverse Engineering the Oracle BAM Schema
You must be able to see the Oracle BAM schema in Oracle Data Integrator before you 
can do any operations on a particular Oracle BAM data object. To accomplish this, the 
Oracle BAM schema (that is, all of the data objects in Oracle BAM) must be reverse 
engineered using the RKM Oracle BAM knowledge module described in Table 54–3.

To reverse engineer the Oracle BAM schema:
1. Create a Model on the Oracle BAM target created in Section 54.4, "Creating the 

Oracle BAM Target."

2. Configure the following in the Definition tab:

■ Technology: Oracle BAM target

■ Logical Schema: BAM_TARGET

3. Configure the following in the Reverse tab:

■ Choose Customized reverse.

■ Context: Global

■ Select your KM: RKM Oracle BAM

4. Click Reverse to begin reverse engineering.

You can monitor the reverse engineering process by viewing its progress in Oracle 
Data Integrator Operator. 

The reverse engineering produces a reverse.log file. The name and location of 
the log file can be changed in the LOG_FILE_NAME option. 

Any of the knowledge module options can be changed on this tab (they are 
described in Table 54–4).

5. When reverse engineering is complete, the metadata for the Oracle BAM schema 
appears in Oracle Data Integrator Designer, under the Oracle BAM target node.

54.6 Updating the Oracle Data Integrator External Data Source Definition
When you install the Oracle BAM integration files for Oracle Data Integrator with a 
correctly populated properties file, you are not required to do any other configuration 
in Oracle BAM. Two external data source (EDS) definitions are created during the 
installation process, and they are populated with the correct values to connect Oracle 
BAM Server with the ODI_Master and ODI_Work repositories in Oracle Data 
Integrator. These Oracle Data Integrator-specific EDS definitions must never be 
deleted.

There are cases in which you must update the Oracle Data Integrator EDS definitions:

■ If you change the Oracle Data Integrator login credentials, you must update the 
Oracle Data Integrator EDS definitions in Oracle BAM Architect.

Note: Because this reverse engineering is not done using a JDBC 
driver, it is not possible to right-click a data store and view its data.



Running Oracle Data Integrator Agent as a Daemon or a Microsoft Windows Service With Oracle BAM Embedded

Using Oracle Data Integrator With Oracle BAM 54-15

■ If the ODI_Master or ODI_Work repositories are moved to different hosts after the 
initial installation, you must update the corresponding EDS definitions in Oracle 
BAM Architect.

54.6.1 How to Update the Oracle Data Integrator External Data Source Definitions

To update the Oracle Data Integrator external data source definitions:
1. Open Oracle BAM Architect, and go to the External Data Sources page.

Figure 54–1 Opening External Data Source Page in Oracle BAM Architect

2. Select ODI_Master or ODI_Work, and click Edit.

Figure 54–2 Editing the ODI_Master External Data Source

3. Update the Login, Password, or Connection String parameters as needed, and 
click Save.

54.7 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts
Alerts created in Oracle BAM can launch Oracle Data Integrator scenarios when 
specified conditions are met. See Section F.3.10, "Run an Oracle Data Integrator 
Scenario" for more information.

54.8 Running Oracle Data Integrator Agent as a Daemon or a Microsoft 
Windows Service With Oracle BAM Embedded

There are several ways to run Oracle Data Integrator scenarios in which Oracle BAM 
functionality has been embedded. This section provides information about configuring 
Oracle BAM if you run the Oracle Data Integrator agent as a daemon or a Microsoft 
Windows Service.



Running Oracle Data Integrator Agent as a Daemon or a Microsoft Windows Service With Oracle BAM Embedded

54-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. On the Oracle BAM host, go to the ORACLE_
HOME\bam\ODI\tools\wrapper\conf directory.

2. Copy the two files contained in that directory (snpsagent.conf.bam and 
readme.txt) to the host on which the Oracle Data Integrator agent runs as a 
daemon or service, in the ODI_HOME\tools\wrapper\conf directory.

3. Follow the instructions in the readme.txt file in that directory to configure the 
Oracle Data Integrator agent to run with Oracle BAM.

The agent.bat (or agent.sh) file picks up the same environment variables as do 
the other Oracle Data Integrator applications (such as Designer, Topology, Operator). 
As long as the Oracle Data Integrator integration installation has been performed on 
the Oracle Data Integrator directory in which the agent script runs, no additional 
steps are needed to run the Oracle Data Integrator agent as a standalone application or 
as a daemon or service.



55

Creating External Data Sources 55-1

55 Creating External Data Sources

This chapter contains the information needed to create and manage External Data 
Sources (EDS).

This chapter contains the following topics:

■ Section 55.1, "Introduction to External Data Sources"

■ Section 55.2, "Creating External Data Sources"

■ Section 55.3, "External Data Source Example"

■ Section 55.4, "Use Case: Creating an EDS Against Oracle Business Intelligence 
Enterprise Edition"

55.1 Introduction to External Data Sources
An External Data Source (EDS) is a connection to an external database. An EDS 
usually contains data that does not change very much or data that is too large to bring 
into the Oracle BAM Active Data Cache (ADC). 

The EDS definition in Oracle BAM acts as a pointer to the external data. For example, 
looking up the customer name based on a customer code in a customer management 
system. The customer name-code mapping is fairly static so that bringing that external 
data into Oracle BAM is not required.

EDS definitions can be exported and imported using ICommand, but you cannot 
import or edit the contents using ICommand or Oracle BAM Architect.

Passwords are entered in clear text. You cannot use DSNs (data source names).

To view the existing EDS:

■ Select External Data Sources from the Oracle BAM Architect function list.

Figure 55–1 Oracle BAM Architect Function List



Creating External Data Sources

55-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

55.2 Creating External Data Sources
Oracle BAM external data sources are created, edited, and deleted using Oracle BAM 
Architect.

55.2.1 How to Create an External Data Source

To define an EDS:
1. Select External Data Sources from the Oracle BAM Architect function list.

2. Click Create.

3. Enter a name and a description for the EDS.

4. Enter Driver, for example, oracle.jdbc.driver.OracleDriver for Oracle.

5. Enter database user credentials in the Login and Password fields.

6. Enter Connection string/URL, for example

jdbc:oracle:thin:@db_host_name:db_port:db_instance

55.2.2 What You May Need to Know About Oracle Data Integrator External Data 
Sources

If you install the integration files for Oracle BAM and Oracle Data Integrator, two EDS 
definitions are created in Oracle BAM Architect: ODI_Master and ODI_Work. These 
EDS definitions cannot be deleted from Oracle BAM Architect, and their configuration 
should not be changed unless you are updating your Oracle Data Integrator host.

55.2.3 How to Edit an External Data Source

To edit an EDS:
1. Select External Data Sources from the Oracle BAM Architect function list.

2. Select the EDS to edit.

The EDS properties display.

3. Select Edit.

4. Make the changes and click Save.

Caution: A single or double quotation mark in an Oracle BAM object 
name, such as a data object, report, or enterprise message source 
name, causes a runtime error.

Do not include single or double quotation marks in an Oracle BAM 
object name. 



External Data Source Example

Creating External Data Sources 55-3

55.2.4 How to Delete an External Data Source

To delete an EDS:
1. Select External Data Sources from the Oracle BAM Architect function list.

2. Select the EDS to delete.

The data source properties display.

3. Select Delete.

4. Click OK to confirm deletion of the data source.

The data source is deleted.

55.3 External Data Source Example
This example uses the sample SCOTT user account and the EMP table in the Oracle 
database. You may need to unlock the account before proceeding with this example.

Step 1: Create an EDS
1. Select External Data Sources from the Oracle BAM Architect function list.

2. Click Create.

3. Enter myDataSource in the External Data Source Name field.

4. Enter My Example External Data Source in the Description field.

5. Enter Microsoft ODBC for Oracle in the Driver field.

6. Enter scott in the Login field and tiger in the Password field.

This sample account comes with your Oracle database installation. If you do not 
have this sample account you can create a new account and use it for this example.

7. Enter server=net_service_name in the Connection string/URL. 

This entry must be a Net Service Name defined in your tnsnames.ora file.

8. Click Save.

9. Click Continue. 

The EDS information is displayed on the screen.

Step 2: Create a Data Object using the EDS
1. Select Data Objects from the Oracle BAM Architect function list.

2. Click Create Data Object.

3. Enter Employees in the Name for new Data Object field.

4. Leave the slash (/) in the Location for new Data Object field. 

The data object appears in the top level Data Objects folder.

5. Leave the Tip text field blank.

Note: If the EDS definitions ODI_Master and ODI_Work appear in 
Oracle BAM Architect, do not delete them. These EDS definitions are 
used by the integration between Oracle BAM and Oracle Data 
Integrator



Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition

55-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. Enter Oracle Database Sample EMP Table in the Description field.

7. Select the External Data Source checkbox.

8. Select myDataSource from the External Data Source list.

9. Enter emp in the External Table Name field.

10. Add the following fields to the data object:

Keep default settings for field attributes not specified in the table.

11. Click Create Data Object.

12. Click Continue.

13. Click Contents to view the contents of the data object

 The data in the Employees data object should match the data in the Oracle 
database sample EMP table.

55.4 Use Case: Creating an EDS Against Oracle Business Intelligence 
Enterprise Edition

The following are the steps to configure an EDS definition in Oracle BAM Architect to 
work with Oracle Business Intelligence Enterprise Edition.

1. Get the bijdbc.jar file and add it to the Oracle WebLogic Server class path.

Add the JAR to WEBLOGIC_CLASSPATH in

WLS_HOME/wlserver 10.3/common/bin/commEnv.cmd

2. Create an EDS in Oracle BAM Architect with the following details:

Driver: oracle.bi.jdbc.AnaJdbcDriver

Login: User name for the Oracle Business Intelligence Server

Password: Password for the Oracle Business Intelligence Server

Connection String/URL:
jdbc:oraclebi://host_name:port_number/catalog=catalog_name;

For example: jdbc:oraclebi://bihost:9703/catalog=Paint;

See "Step 1: Create an EDS" on page 55-3 for an example EDS configuration.

Table 55–1 Fields in Employees Data Object

Field External Field Name Field Type

ename ename String

empno empno Integer

job job String

mgr mgr Integer

hiredate hiredate DateTime

sal sal Decimal

comm comm Decimal

deptno deptno Integer



Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition

Creating External Data Sources 55-5

3. Create a data object based on this EDS. See "Step 2: Create a Data Object using the 
EDS" on page 55-3 for an example.



Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition

55-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



56

Using Oracle BAM Web Services 56-1

56Using Oracle BAM Web Services

The Oracle BAM web services are part of the Oracle BAM technologies that feeds data 
to the Oracle BAM Server. This chapter provides information about using the Oracle 
BAM web services.

This chapter includes the following sections:

■ Section 56.1, "Introduction to Oracle BAM Web Services"

■ Section 56.2, "Using the DataObjectOperations Web Services"

■ Section 56.3, "Using the DataObjectDefinition Web Service"

■ Section 56.4, "Using the ManualRuleFire Web Service"

■ Section 56.5, "Using the ICommand Web Service"

56.1 Introduction to Oracle BAM Web Services
The Oracle BAM web services allow users to build applications that publish data to 
the Oracle BAM Server for use in real-time charts and dashboards. Any client that can 
talk to standard web services can use these APIs to publish data to Oracle BAM. The 
Oracle BAM web services interfaces allow integration of Oracle BAM with other 
components such as Oracle BPEL Process Manager and Oracle Mediator, and they 
facilitate SOA composite application development. 

The data objects in the Oracle BAM Server are available using the Oracle BAM web 
services. There are several other meta objects that are available using the ICommand 
web service.

External web services can be called by an Oracle BAM alert rule. See Section 57.2, 
"Creating Alert Rules" for more information.

Oracle BAM provides the following static untyped web service APIs:

■ DataObjectOperations10131 allows clients developed for Oracle BAM 10.1.3.x 
servers to make web service calls to DataObjectOperations on Oracle BAM 11g 
servers.

■ DataObjectOperationsByID allows developers to interact with data objects by 
their ID (for example, _Call_Center).

Note: This option cannot be used for complex processing of 
messages, performing lookups in Oracle BAM Active Data Cache to 
augment the data, or initial bulk uploads to set up a star schema.



Using the DataObjectOperations Web Services

56-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ DataObjectOperationsByName allows developers to interact with data objects by 
their display names (for example, Call Center).

■ DataObjectDefinition performs operations to get, create, delete, and update 
definitions of Data Objects.

■ ManualRuleFire is used by other Oracle BAM services to launch rules created in 
Oracle BAM Active Studio. 

■ ICommand is a DOS command-line utility that provides a set of commands that 
perform various operations on items in the Oracle BAM Server. The ICommand 
web service exposes all of the ICommand functionality through a web service.

These services can be discovered within an Oracle BAM Server using a WSIL interface.

56.2 Using the DataObjectOperations Web Services
The DataObjectOperations web service allows users to manipulate the Data Objects in 
the Oracle BAM Server by inserting, updating, deleting and upserting rows into the 
Data Objects.

The following operations are supported by the DataObjectOperations web service 
interfaces.

■ Batch performs batch operations on a data object. Batch is not supported for 
DataObjectOperationsByName web service.

■ Delete removes a row from the data object.

■ Get fetches the details from a data object per the specifications in the XML 
payload. Get is only available in DataObjectOperationsByName web service. 

■ Insert adds a row to the data object. 

■ Upsert inserts new data into an existing row in a data object if the row exists. If the 
row does not exist a new row is created. 

■ Update inserts new data into an existing row in a data object. 

The request and response messages vary depending on the operation used. See 
Section E.1, "DataObjectOperations10131," Section E.2, 
"DataObjectOperationsByName," and Section E.3, "DataObjectOperationsByID" for 
information about using the operations supported by each of the web services.

56.2.1 How to Use the DataObjectOperations Web Services
To use the DataObjectOperations web service, create a web service proxy in your 
application in Oracle JDeveloper.

The Web Services Description Language (WSDL) files for the DataObjectOperations 
web services are available at the following URLs on the system where Oracle BAM 
web services are installed.

http://host_
name:7001/OracleBAMWS/Services/DataObject/DataObjectOperations.asmx?WSDL

http://host_name:7001/OracleBAMWS/WebServices/DataObjectOperationsByID?WSDL

http://host_name:7001/OracleBAMWS/WebServices/DataObjectOperationsByName?WSDL



Using the DataObjectDefinition Web Service

Using Oracle BAM Web Services 56-3

When the web service proxy is created, you see it in the Application Navigator under 
the Application Sources folder in your project as shown in Figure 56–1.

Figure 56–1 DataObjectOperations Web service proxy in Application Sources

56.3 Using the DataObjectDefinition Web Service
The DataObjectDefinition web service allows a web service client to create, update, 
delete, and get data object definitions.

The following operations are supported by DataObjectDefinition web service.

■ Create creates a data object. For more information see Section E.4.1, "Create."

■ Delete removes a data object from the server. For more information see 
Section E.4.2, "Delete."

■ Get returns the definition of an existing data object. For more information see 
Section E.4.3, "Get."

■ Update changes the definition of a data object. For more information see 
Section E.4.4, "Update."

The request and response messages vary depending on the operation used. See 
Section E.4, "DataObjectDefinition Operations" for more information.

56.3.1 How to Use the DataObjectDefinition Web Service
To use the DataObjectDefinition web service you create a web service proxy in your 
application in Oracle JDeveloper.

The WSDL file for the DataObjectDefinition web service is available at the following 
URL on the system where Oracle BAM web services are installed.

http://host_name:7001/OracleBAMWS/WebServices/DataObjectDefinition?WSDL

When the web service proxy is created, you see it in the Application Navigator under 
the Application Sources folder in your project as shown in Figure 56–2.

Note: The default port for Oracle BAM web services on the 
Administration Server is 7001. On managed servers the default port 
number is 9001.

Note: The default port for Oracle BAM web services on the 
Administration Server is 7001. On managed servers the default port 
number is 9001.



Using the ManualRuleFire Web Service

56-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 56–2 DataObjectDefinition Web service proxy in Application Sources

56.4 Using the ManualRuleFire Web Service
The ManualRuleFire web service allows users to launch rules in the Oracle BAM 
Server. FireRuleByName is the available operation. See Section E.5, "ManualRuleFire 
Operations" for details.

56.4.1 How to Use the ManualRuleFire Web Service
To use the ManualRuleFire web service, you create a web service proxy in your 
application in Oracle JDeveloper.

The WSDL file for the ManualRuleFire web service is available at the following URL 
on the system where Oracle BAM web services are installed.

http://host_name:7001/OracleBAMWS/WebServices/ManualRuleFire?WSDL

When the web service proxy is created, you see it in the Application Navigator under 
the Application Sources folder in your project.

56.5 Using the ICommand Web Service
ICommand is available as a web service for application developers who want to 
interact with ICommand features over HTTP.

The ICommand web service includes most of the same features as the command-line 
utility. For example, you can use it to:

■ Delete a data object

■ Import rows into a data object

■ Export a report

The key differences revolve around the fact that the web service cannot access files on 
the remote system. Therefore, you cannot pass in a file name when using the import 
command or the export command.

Instead, you must pass in the import content inline. Similarly, you receive the 
export content inline.

Commands other than import and export generally work the same as with the 
command-line utility.

Note: The default port for Oracle BAM web services on the 
Administration Server is 7001. On managed servers the default port 
number is 9001.



Using the ICommand Web Service

Using Oracle BAM Web Services 56-5

For more information about the commands and parameters provided by ICommand, 
see Appendix G, "Oracle BAM ICommand Operations and File Formats."

The ICommand web service has a single method, called Batch. It takes a single input 
parameter, which is a string containing a set of commands in the syntax described in 
Section G.3, "Format of Command File." The return value is a string containing the 
results of executing each command, in the log syntax described in Section G.4, "Format 
of Log File."

56.5.1 How to Use the ICommand Web Service
The WSDL file for the ICommand web service is available on the system where Report 
Server has been installed. It is available at the following URL:

http://host_name:7001/OracleBAMWS/WebServices/ICommand?WSDL

Example 56–1 Deleting a Data Object (Input)

<OracleBAMCommands>
<Delete type="dataobject" name="/test123"/>

</OracleBAMCommands>

Note: The default port for Oracle BAM web services on the 
Administration Server is 7001. On managed servers the default port 
number is 9001.



Using the ICommand Web Service

56-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



57

Creating Oracle BAM Alerts 57-1

57 Creating Oracle BAM Alerts

This chapter describes how to create alerts in Oracle BAM.

This chapter contains the following topics:

■ Section 57.1, "Introduction to Creating Alerts"

■ Section 57.2, "Creating Alert Rules"

■ Section 57.3, "Creating Alert Rules From Templates"

■ Section 57.4, "Creating Alert Rules With Messages"

■ Section 57.5, "Creating Complex Alerts"

■ Section 57.6, "Using Alert History"

■ Section 57.7, "Launching Alerts by Invoking Web Services"

■ Section 57.8, "Calling an External Action"

■ Section 57.9, "Sending Alerts to External E-mail Accounts"

57.1 Introduction to Creating Alerts
Alerts are launched by a set of specified events and conditions, known as a rule. Alerts 
can be launched by data changing in a report or can send a report to users daily, 
hourly, or at set intervals. Events in an alert rule can be an amount of time, a specific 
time, or a change in a specific report. Conditions restrict the alert rule to an event 
occurring between two specific times or dates. As a result of events and conditions, 
reports can be sent to users through email.

Alerts can be created in both the Oracle BAM Architect and Oracle BAM Active Studio 
web applications.

Alerts are shown in the Alert Rules table. In Oracle BAM Active Studio the table 
includes a Last Launched column that indicates the last time the alert rule was fired. 
Each alert name is accompanied by an icon indicating its status as described in 
Table 57–1.

Figure 57–1 Alert Rules Table in Oracle BAM Architect



Creating Alert Rules

57-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Note that inactive and expired alerts behave differently. An alert can be deactivated 
only if it is running. This behavior is a benefit to users who do not want to receive 
alerts for some time interval, but want to retain the ability to activate the alert at a 
convenient time. Alerts that are not active, but still valid (displayed with the Normal 
icon) can be activated again.

Those alerts that are expired have run for the specified condition and do not run again. 
They cannot be activated to run again. However, if you want to reuse an expired alert, 
double click the alert, update the definition to make it a valid rule, and save the alert 
rule definition. The alert is reloaded and is ready to fire again.

57.2 Creating Alert Rules
A rule specifies the events and conditions under which an alert fires.

57.2.1 How to Create an Alert Rule
This section describes how to create Oracle BAM alert rules in Oracle BAM Architect. 
The procedure is the same in Oracle BAM Active Studio.

To create a rule:
1. Select Alerts in the Oracle BAM Architect function list.

In Oracle BAM Active Studio, select the Alerts tab.

2. Click Create A New Alert.

Table 57–1 Alert Rule Icons

Icon Description

Normal indicates that the alert is active and fires under the 
conditions specified in the rule.

Invalid indicates that an alert has become orphaned or broken 
due to some error. This icon is displayed when an alert cannot be 
loaded properly into the Event Engine. The rule might require 
correction.

For example, when a report is deleted and an alert based on this 
report still exists, that alert cannot be loaded properly.

This icon appears only when rules are loaded into the Event 
Engine (on restarts). Alerts displayed with this icon do not fire 
again until they are edited and corrected.

Expired means that the alert does not fire again. This icon is seen 
in time based alerts which fire only one time, after the alert has 
fired. However, these alerts can be edited and reused, resetting 
the state to Normal.

Note: If any changes to the time or time zone are made on the Oracle 
BAM Server system, the Oracle BAM Server application must be 
restarted or time-based alerts misfire.

Note: An alert fires only if its triggering event conditions are met 
from the point in time the alert is defined (or reenabled) and forward. 
An alert does not fire if its conditions were met before it was defined, 
or while it was disabled.



Creating Alert Rules

Creating Oracle BAM Alerts 57-3

The Rule Creation and Edit dialog box opens.

3. Click Create A Rule. 

4. Enter a name for the rule.

5. Select an event that launches the alert.

See Section F.1, "Events" for descriptions of each event.

6. Click Next.

7. Select one or more conditions, if needed.

See Section F.2, "Conditions" for descriptions of each condition.

8. Select one or more actions. See Section F.3, "Actions" for descriptions of each 
action.

9. In the rule expression, click each underlined item and specify a value to complete 
the alert rule.

For example, click select report, and choose a report in the dialog box that opens. 
Other values you define include user names receiving reports, dates and times, 
time intervals, and filter expressions for a specific field. To continue adding 
conditions or actions, click the last line in the expression and then select another 
condition or action.

You can click the Back and Next buttons to go between the events page and the 
page containing actions and conditions, and make changes to those parts of the 
rule expression you have constructed.

10. You can click the Frequency Constraint button to set a limit to how often an alert 
can launch.

The default frequency constraint for alerts is five seconds. Type a number and 
select a time measurement such as seconds, minutes, or hours, and click OK. To 
turn off the frequency constraint, uncheck the Constraint Enabled checkbox. For 
more information about frequency constraint see Section F.4, "Frequency 
Constraint."

11. Click Delete this expression to remove lines from the alert rule.

12. Click OK.

The alert rule is added to list and is active.

57.2.2 How to Activate Alerts
When you create an alert rule, it is automatically active. If you want an alert to be 
temporarily inactive but you do not want to delete it, you can turn it off by deselecting 
the Activate checkbox.

To change the activity status of an alert rule:
1. Select Alerts from the Oracle BAM Architect function list.

Caution: A single or double quotation mark in an Oracle BAM object 
name, such as a data object, report, or enterprise message source 
name, causes a runtime error.

Do not include single or double quotation marks in an Oracle BAM 
object name. 



Creating Alert Rules From Templates

57-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Select the Activate checkbox for the alert rule.

A checked box means the alert rule is active.

An unchecked box means the alert rule is inactive.

Selecting the Activate checkbox does not cause an alert to launch, it only enables the 
rule so that if the specified event occurs, the alert launches.

An exclamation mark on the alert icon indicates it has launched and is not valid again, 
or because items that it references are missing and it cannot launch.

57.2.3 How to Modify Alert Rules
When you modify alert rules created from a template, you can add new lines and 
select conditions and actions the same as when you build alert rules without 
templates.

To modify an alert rule:
1. Select the alert rule to edit.

2. Click Edit in the Alert Actions list.

The Rule Creation and Edit dialog box opens.

3. Make changes to the alert and click OK.

57.2.4 How to Delete an Alert

To delete an alert:
1. Select the alert to delete.

2. Click Delete in the Alert Actions list.

A dialog box opens to confirm alert deletion.

3. Click OK.

The alert is deleted.

57.3 Creating Alert Rules From Templates
Alert rule templates are a convenient preselected group of events and conditions based 
on some common use cases.

57.3.1 How to Create Alert Rules From Templates

To create an alert rule from a template:
1. Click Create A New Alert.

The Create Alert Rule dialog box opens.

2. Click Create A Rule From A Template. 

3. Enter a name for the alert rule.

4. Select a template from the list.

5. In the Rule Expression box, click each underlined item and specify a value to 
complete the alert rule. For example, click select report, and choose a report in the 



Creating Alert Rules With Messages

Creating Oracle BAM Alerts 57-5

dialog box that opens. Other values you define include user names receiving 
reports, dates and times, time intervals, and filter expressions for a specific field.

6. You can click Frequency Constraint to specify how often an alert can launch. The 
default frequency constraint for alerts is five seconds. Enter a number and select a 
time measurement such as seconds, minutes, or hours, and click OK.

7. You can click Modify this rule to modify the rule without using the template. This 
provides more options for creating rules. 

8. Click OK.

The alert rule is added to list and is active.

57.4 Creating Alert Rules With Messages
You can create alert rules that send messages. The messages can contain information 
such as report names, links to reports, and user names. Messages can also include 
variables that are set when the alert is launched, such as the time that an event 
occurred and the data that launched the event. To use data variables, the event must be 
based on data.

57.4.1 How to Create an Alert Rule With a Message
You can create alert rules that send messages. The messages can contain information 
such as report names, links to reports, and user names. Messages can also include 
variables that are set when the alert is launched, such as the time that an event 
occurred and the data that launched the event. To use data variables, the event must be 
based on data.

To create an alert rule that includes a message:
1. Start building an alert rule.

2. Select the action Send a message via email.

3. Click create message in the rule expression.

The Alert Message dialog box opens.

4. Enter a subject in the Subject line.

5. Enter the message in the Message Text box.

6. Include special fields into the message.

Special fields are listed in the box in the lower left corner of the Alert Message 
dialog box. The special fields listed change when reports are selected on the right 
side of the dialog box.

To insert a special field into the message:

a. Select a special field from the list.

b. Click Insert into subject or Insert into text.

You can insert multiple values of the same type, for example, multiple links to 
different reports.

■ Send Report Name inserts name of selected report.

■ Send Report Owner inserts owner name of selected report.

■ Send Report Link inserts link to selected report.



Creating Complex Alerts

57-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Changed Report Name inserts name of the changed report.

■ Changed Report Owner inserts Owner Name Of Changed Report.

■ Target User inserts user name of message recipient.

■ Date/Time Sent inserts date and time of message sent.

7. Click OK.

57.5 Creating Complex Alerts
You can create nested rules with many actions and chained rules that launch other 
rules.

You can chain rules by creating two types of rules:

■ A dependent rule that must be launched by another rule.

■ A rule with an action to launch a dependent rule.

57.5.1 How to Create a Dependent Rule

To create dependent rules:
1. Create a rule that includes the event When this rule is launched. No value is 

required for this event.

2. Create a rule that includes the action Launch a rule or Launch rule if an action 
fails. The Launch rule if action fails applies to any of the actions contained in the 
rule.

3. Click select rule in the action.

The Select Dependent Rule dialog box opens.

4. Select a dependent rule. Only rules that include the When this rule is launched 
event are displayed in the list.

5. Click OK.

To handle a failing action, add the action Launch rule if action fails. For example, if a 
rule is supposed to send a message, and for some reason the message does not send, 
you could launch another rule to notify you.

57.6 Using Alert History
Alert history is available in Oracle BAM Active Studio providing a list of alert rules 
triggered and their status messages.



Using Alert History

Creating Oracle BAM Alerts 57-7

57.6.1 How to View Alert History
You can view recent history of alert activity on the Alerts tab in Oracle BAM Active 
Studio. The Alerts History list displays the 25 most recent alerts launched.

In the Alerts History list, you can view the names of recently launched alerts, any 
messages associated with the alerts, the users who created the alerts, and the time and 
date that the alert rules were triggered.

In the case of alert rules that send e-mail, the Alerts History list only displays the alert 
if the user currently logged in is an alert e-mail recipient. It is not listed in the Alerts 
History list--even if the user is the creator of the alert--if the user is not a recipient of 
the alert.

However, if an alert fails to send a message to an alert recipient, the message is logged 
with the alert owner's name, so that the owner can see the error message in the Alerts 
History pane and take corrective action if necessary. A non-existing name cannot be 
logged as the alert recipient's name.

Alerts History Messages
The Message column of the Alerts History list provides information about the success 
or failure of alert delivery. The successful alert is shown with a green checkmark next 
to the message. The unsuccessful alert is displayed with a red x icon and a message 
indicating how the alert failed at the time of loading or processing. Click the x icon for 
additional information about the error.

If a report is deleted that is referenced by an alert, there is no warning to the user. 
When the alert is triggered, the error message "Error occurred while sending e-mail" is 
given with no specific error regarding broken references to the deleted report. When 
deleting reports, it is important to verify that the report is not referenced by an alert, or 
this error occurs.



Launching Alerts by Invoking Web Services

57-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

57.6.2 How to Clear Alert History
When many alerts are actively launching and the alert history list becomes long, you 
might want to clear your alert history list.

To clear the alert history:
1. On the Alerts tab, click Clear alert history.

A message is displayed to confirm to clear alert history.

2. Click OK.

The alert history list is deleted. New alerts launched after clearing appear in the 
alert history list.

57.7 Launching Alerts by Invoking Web Services
You can use the alerts web service to manually launch alerts. For more information, 
refer to:

http://host:http_port/OracleBAMWS/WebServices/ManualRuleFire?wsdl

You define the rule name using the format:

username.alertname

57.8 Calling an External Action
Call an External Action is used to develop a custom action. For users whose 
requirements cannot be fulfilled by the actions provided by Oracle BAM, this feature is 
used to extend the action set.

External actional actions are not seen in the Oracle BAM Alerts user interface by 
default. They must be registered with Oracle BAM before they are seen in the user 
interface.

To do this task, the EventEngine interface must be implemented and you must 
develop an action around it. That means you must write Java code, bundle the 
compiled code in a JAR file. Then register it in Oracle BAM Architect as an action in 
the System/Alerts/External Actions data object.

Call an External Action action is not required to invoke Web services. The action was 
used in this way in pre 11g releases, but was replaced by Call a Web Service action in 
Oracle BAM 11g. Call a Web Service action has a more sophisticated Web services 
client, which is dynamic and can invoke any service by reading WSDLs at runtime.

Note: Oracle BAM Active Studio URLs used in alerts and report 
links contain a virtual directory using the product build number for 
caching and performance purposes. This directory must be included 
in links, and it is not recommended to edit these links. Links created 
with a previous version of Oracle BAM do not work after a product 
upgrade. The alert requires editing or the report shortcut must be 
copied again.



Sending Alerts to External E-mail Accounts

Creating Oracle BAM Alerts 57-9

57.9 Sending Alerts to External E-mail Accounts
Alerts from Oracle BAM can be sent to e-mail accounts that are unknown to Oracle 
BAM if a property is set in the Oracle BAM common configuration file. 

This feature is available only for the actions Send a report via email and Send a 
message via email.

To send alerts to external e-mail accounts:

1. Set the property AlertActionAllowExternalEmail to true in the 
BAMCommonConfig.xml configuration file.

See "Configuring Advanced Properties" in Oracle Fusion Middleware Administrator's 
Guide for Oracle SOA Suite and Oracle BPM Suite for information about editing 
Oracle BAM configuration files.

2. Restart Oracle BAM.

3. Create an alert rule containing an action that sends messages to users.

4. Click select user and enter the e-mail addresses in the And/Or external email 
addresses box, separating the addresses with semicolons.



Sending Alerts to External E-mail Accounts

57-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



58

Using ICommand 58-1

58 Using ICommand

This chapter provides usage information for the ICommand command-line utility. 

This chapter includes the following sections:

■ Section 58.1, "Introduction to ICommand"

■ Section 58.2, "Executing ICommand"

■ Section 58.3, "Specifying the Command and Option Syntax"

■ Section 58.4, "Using Command-line-only Parameters"

■ Section 58.5, "Running ICommand Remotely"

58.1 Introduction to ICommand
ICommand is a command-line utility (and web service) that provides a set of 
commands that perform various operations on items in the Active Data Cache. You 
can use ICommand to export, import, rename, clear, and delete items from Active Data 
Cache. The commands can be contained in an input XML file, or a single command 
can be entered on the command line. Informational and error messages may be output 
to either the command window or to an XML file.

For more information about using the ICommand web service, see Section 56.5, "Using 
the ICommand Web Service."

For information about individual commands and their parameters see Appendix G, 
"Oracle BAM ICommand Operations and File Formats."

58.2 Executing ICommand
ICommand can be executed using the ORACLE_HOME\bam\bin\icommand.bat file 
on the Microsoft Windows platform and ORACLE_HOME\bam\bin\icommand.sh 
shell script on UNIX platforms.

Just entering icommand on the command line provides the user with a summary of 
the ICommand operations and parameters.

Before attempting to execute ICommand, the JAVA_HOME environment variable must 
be set to point to the root directory of the supported version of Java Development Kit 
(see the Oracle BAM support matrix on Oracle Technology Network web site for 
supported JDK versions).



Specifying the Command and Option Syntax

58-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

58.3 Specifying the Command and Option Syntax
The basic structure of the ICommand command line entry is as follows:

icommand -username user_name -cmd command_name -name value -type value [-parameter 
value]

All parameters given on the command line are in the following form:

-parameter value

The parameter portion is not case sensitive. If the value portion contains spaces or 
other special characters, it must be enclosed in double quotation marks. For example

icommand -cmd export -name "/Samples/Call Center" -type dataobject 
-file C:\CallCenter.xml

It is required to use quotation marks around report names and file names that contain 
spaces and other special characters.

For some parameters, the value may be omitted. See Section G.2, "Detailed Operation 
Descriptions," for information about individual parameter values.

58.3.1 How to Specify the Security Credentials
ICommand requires users to provide security credentials when running operations. If 
no security credentials have been specified in the configuration file, ICommand 
securely prompts for a user name and password.

To use default credentials, add the ICommand_Default_User_Name and 
ICommand_Default_Password properties to the WLS_HOME/user_
projects/domains/base_domain/config/fmwconfig/servers/bam_
server1/applications/oracle-bam_
11.1.1/config/BAMICommandConfig.xml file. For example:

<ICommand_Default_User_Name>user_name</ICommand_Default_User_Name>
<ICommand_Default_Password>password</ICommand_Default_Password>

However, command line entries always override the properties specified in the 
configuration file.

The user name and password for running ICommand operations can come from the 
configuration file, command line prompts, or command line options as follows:

Note: When Oracle BAM is installed, ICommand looks for the 
Oracle BAM Server on port 9001 by default. If the Oracle BAM Server 
port number is changed from the default during the setup and 
configuration of Oracle BAM, then the user must manually change the 
port number from 9001 to the new port number in the file 
BAMICommandConfig.xml.

The property to change is

<ServerPort>9001</ServerPort>

The BAMICommandConfig.xml file is located in WLS_HOME/user_
projects/domains/base_
domain/config/fmwconfig/servers/bam_
server1/applications/oracle-bam_11.1.1/config/.



Specifying the Command and Option Syntax

Using ICommand 58-3

■ If the user name and password are only specified in the configuration file (that is, 
-username parameter is not used in the command line), then the ICommand_
Default_User_Name and ICommand_Default_Password values in the 
configuration file are used.

■ If only the user name is specified in the configuration file and the password is not, 
then the user name value is used, and ICommand prompts the user for the 
password at the command line.

■ If user name is specified on the command line, then that value is used, and 
ICommand prompts the user for a password. The password prompt occurs 
regardless of any properties specified in the configuration file. For example:

icommand -cmd export -name TestDO -file C:\TestDO.xml -username user_name

58.3.2 How to Specify the Command
On the command line, commands are specified by the value of the cmd parameter. 
Options for the command are specified by additional parameters. For example

icommand -cmd export -name TestDO 
-type dataobject -file C:\TestDO.xml

In an XML command file, commands are specified by the XML tag. Options for the 
command are given as XML attribute values of the command tag, in the form 
parametername=value.

Command names and parameter values (except for Active Data Cache item names) are 
not case sensitive.

For information about individual commands and their parameters see Appendix G, 
"Oracle BAM ICommand Operations and File Formats."

58.3.3 How to Specify Object Names
Whenever an object name is specified in a command, the following rules apply.

General rules
When specified on a command line, if the name contains spaces or characters that have 
special meaning to DOS or UNIX, the name must be quoted according to the rules for 
command lines.

When specified in an XML command file, if the name contains characters that have 
special meaning within XML, the standard XML escaping must be used.

Data Objects
If the Data Object is not at the root, the full path name must be given, as in the 
following example:

/MyFolder/MySubfolder/MyDataObject 

If the Data Object is at the root, the leading slash (/) is optional. The following two 
examples are equivalent:

/MyDataObject
MyDataObject



Specifying the Command and Option Syntax

58-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Data Object Folders
To specify a folder in Data Objects you must include the prefix 
/public/DataObject/ at the beginning of the path to the folder.

/public/DataObject/MyFolder/MySubfolder

Reports and Report Folders
The full path name plus the appropriate prefix must be specified as in the following 
examples.

For shared reports the /public/Report/ prefix must be included as shown here:

"/public/Report/Subfolder1/My Report"

For private reports the /private:user_name/Report/ prefix must be included:

"/private:jsmith/Report/Subfolder1/My Report"

The /private:user_name/ part of the prefix may be omitted if the user running 
ICommand is the user that owns the report.

"Report/Subfolder1/My Report"

The path information without the public or private prefix is saved in the export 
file.

Similarly, a report folder can be specified using the appropriate prefix.

/public/Report/Subfolder1

/private:jsmith/Report/Subfolder1

Alert Rules
Either the name of the Alert, or the full name of the Alert may be specified. The 
following two examples are equivalent for Alerts if the user running ICommand is the 
user that owns Alert1:

Alert1

/private:user_name/Rule/Alert1

If the user running ICommand is not the owner of Alert1, then only the second form 
may be used.

All other object types
Specify the full name of the object.

58.3.4 How to Specify Multiple Parameter Targets
Instead of creating a separate command line for each Active Data Cache object type, 
such as Dataobject, Folder, Report, and Rule, on which to execute a particular 
command, ICommand enables you to pass parameter values to several object types in 
the same command line.

For example:

icommand -cmd export -type all -report,rule,folder:owner 1
-dataobject,folder:permissions 1 -systemobjects 1 -file filename.xml



Using Command-line-only Parameters

Using ICommand 58-5

In this example, while exporting all of the objects in the system, the command passes 
owner = 1 to the report, rule, and folder Active Data Cache object types. The command 
also passes permissions = 1 to the dataobject and folder object types. The comma (,) 
separates the object types and the parameter is listed after a colon (:).

Supplying multiple values in the example single command line gives the same results 
as the following three commands:

icommand -cmd export -type report -owner 1 ...
icommand -cmd export -type rule -owner 1 ...
icommand -cmd export -type folder -owner 1 ...

58.4 Using Command-line-only Parameters
The following parameters can appear only on the command line:

■ Cmd

-cmd commandname

Optional parameter that specifies a single command to be executed. Any 
parameters needed for the command must also be on the command line.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them 
must be present.

■ Cmdfile

-cmdfile file_name

Optional parameter that specifies the name of the file that contains commands to 
be processed. Because this is an XML file, it would usually have the XML 
extension, although that is not required.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them 
must be present.

■ Debug

-debug flag

Optional parameter that indicates whether extra debugging information is to be 
output if there is an error. Any value other than 0 (zero), or the absence of any 
value, indicates that debugging information is to be output. If this parameter is not 
present, no debugging information is output.

■ Domain

-domain domain_name

Optional parameter that specifies the domain name to use to login to the Active 
Data Cache (the name of the computer on which the Active Data Cache server is 
running).

If this parameter is omitted, main is used, which means the server information is 
obtained from the ServerName property in the ICommand.exe.config file.

If the reserved value ADCInProcServer is used, then ICommand directly 
accesses the Active Data Cache database (which must be local on the same system 
on which ICommand is running) rather than contacting the Active Data Cache 
server. This option is necessary only when the Active Data Cache server is not 
running; otherwise corruption of the database could occur. The information about 



Running ICommand Remotely

58-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

the location and structure of the Active Data Cache database is obtained from 
various keys in the ICommand.exe.config file.

■ Logfile

-logfile file_name

Optional parameter that specifies the name of the file to which results and errors 
are logged. If the file does not exist, it is created. If the file does exist, any contents 
are overwritten. Because this is an XML file, it would usually have the XML 
extension, although that is not required.

If this parameter is not present, results and errors are output to the console.

See Section G.4, "Format of Log File" for more information about the log file 
format.

■ Logmode

-logmode mode

Optional parameter that indicates whether an existing log file is to be overwritten 
or appended to. The possible values for this parameter are append or 
overwrite. In either case, if the log file does not exist it is created.

If this parameter is not present, overwrite is assumed.

Note that because it is XML that is being added to the log file, if the append 
option is used the XML produced may not be strictly legal, as there is no top level 
root tag in the XML produced by successive appends (ICommand appends the 
same tag each time it is run). It is left up to the user to handle this.

■ Username

-username user_name

Optional parameter that specifies the username that the command should run as. 
There is no password parameter.

ICommand requires users to specify security credentials when running 
commands. ICommand securely prompts for a user name and password. If the 
-username parameter is specified on the command line, ICommand prompts the 
user for the password only.

58.5 Running ICommand Remotely
You can run ICommand from a remote system (where Oracle BAM is installed) and 
execute the commands on a server located remotely. To run ICommand remotely, add 
the properties ServerName and ServerPort in WLS_HOME/user_
projects/domains/base_domain/config/fmwconfig/servers/bam_
server1/applications/oracle-bam_
11.1.1/config/BAMICommandConfig.xml, as shown below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<BAMICommand>
<ServerName>host_name</ServerName>
<ServerPort>7001</ServerPort>
<Communication_Protocol>t3</Communication_Protocol>
<SensorFactory>oracle.bam.common.statistics.noop.SensorFactoryImpl</SensorFactor

y>
<GenericSatelliteChannelName>invm:topic/oracle.bam.messaging.systemobjectnotific

ation</GenericSatelliteChannelName>



Running ICommand Remotely

Using ICommand 58-7

</BAMICommand>

The Oracle BAM version installed on the remote system should be same as the Oracle 
BAM Server version (that is, both servers should be from the same label).



Running ICommand Remotely

58-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Part XI
Part XI  Using Oracle User Messaging Service

This part describes how to use Oracle User Messaging Service.

This part contains the following chapters:

■ Chapter 59, "Oracle User Messaging Service"

■ Chapter 60, "Sending and Receiving Messages using the User Messaging Service 
EJB API"

■ Chapter 61, "Sending and Receiving Messages using the User Messaging Service 
Java API"

■ Chapter 62, "Sending and Receiving Messages using the User Messaging Service 
Web Service API"

■ Chapter 63, "Parlay X Web Services Multimedia Messaging API"

■ Chapter 64, "User Messaging Preferences"





Oracle User Messaging Service 59-1

59
Oracle User Messaging Service

This chapter describes Oracle User Messaging Service (UMS). 

This chapter includes the following section:

■ Section 59.1, "Introduction to User Messaging Service"

59.1 Introduction to User Messaging Service
Oracle User Messaging Service enables two-way communication between users and 
deployed applications. Key features include:

■ Support for a variety of messaging channels—Messages can be sent and received 
through Email, IM (XMPP), SMS (SMPP), and Voice. Messages can also be 
delivered to a user’s SOA/WebCenter Worklist.

■ Two-way Messaging—In addition to sending messages from applications to users 
(referred to as outbound messaging), users can initiate messaging interactions 
(inbound messaging). For example, a user can send an email or text message to a 
specified address; the message is routed to the appropriate application which can 
then respond to the user or invoke another process according to its business logic.

■ User Messaging Preferences—End users can use a web interface to define 
preferences for how and when they receive messaging notifications. Applications 
immediately become more flexible; rather than deciding whether to send to a 
user’s email address or instant messaging client, the application can simply send 
the message to the user, and let UMS route the message according to the user’s 
preferences.

■ Robust Message Delivery—UMS keeps track of delivery status information 
provided by messaging gateways, and makes this information available to 
applications so that they can respond to a failed delivery. Or, applications can 
specify one or more failover addresses for a message in case delivery to the initial 
address fails. Using the failover capability of UMS frees application developers 
from having to implement complicated retry logic.

■ Pervasive integration within Fusion Middleware: UMS is integrated with other 
Fusion Middleware components providing a single consolidated bi-directional 
user messaging service.

– Integration with Oracle BPEL—Oracle JDeveloper includes pre-built BPEL 
activities that enable messaging operations. Developers can add messaging 
capability to a SOA composite application by dragging and dropping the 
necessary activity into any workflow.



Introduction to User Messaging Service

59-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– Integration with Oracle Human Workflow—UMS enables the Human 
Workflow engine to send actionable messages to and receive replies from 
users over email.

– Integration with Oracle BAM—Oracle BAM uses UMS to send email alerts in 
response to monitoring events.

– Integration with Oracle WebCenter—UMS APIs are available to developers 
building applications for Oracle WebCenter Spaces. The API is a realization of 
Parlay X Web Services for Multimedia Messaging, version 2.1, a standard web 
service interface for rich messaging.

59.1.1 Components
There are three types of components that comprise the Oracle User Messaging Service. 
These components are standard Java EE applications, making it easy to deploy and 
manage them using the standard tools provided with Oracle WebLogic Server.

■ UMS Server: The UMS Server orchestrates message flows between applications 
and users. The server routes outbound messages from a client application to the 
appropriate driver, and routes inbound messages to the correct client application. 
The server also maintains a repository of previously sent messages in a persistent 
store, and correlates delivery status information with previously sent messages.

■ UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting 
content to the various protocols supported by UMS. Drivers can be deployed or 
undeployed independently of one another depending on what messaging 
channels are available in a given installation.

■ UMS Client applications: UMS client applications implement the business logic of 
sending and receiving messages. A UMS client application might be a SOA 
application that sends messages as one step of a BPEL workflow, or a WebCenter 
Spaces application that can send messages from a web interface.

In addition to the components that comprise UMS itself, the other key entities in a 
messaging environment are the external gateways required for each messaging 
channel. These gateways are not a part of UMS or Oracle WebLogic Server. Since UMS 
Drivers support widely-adopted messaging protocols, UMS can be integrated with 
existing infrastructures such as a corporate email servers or XMPP (Jabber) servers. 
Alternatively, UMS can connect to outside providers of SMS or text-to-speech services 
that support SMPP or VoiceXML, respectively.

59.1.2 Architecture
The system architecture of Oracle User Messaging Service is shown in Figure 59–1.

For maximum flexibility, the components of UMS are separate Java EE applications. 
This allows them to be deployed and managed independently of one another. For 
example, a particular driver can be stopped and reconfigured without affecting 
message delivery on all other channels.

Exchanges between UMS client applications and the UMS Server occur as 
SOAP/HTTP web service requests for web service clients, or through Remote EJB and 
JMS calls for BPEL messaging activities. Exchanges between the UMS Server and UMS 
Drivers occur through JMS queues.

Oracle UMS server and drivers are installed alongside SOA or BAM in their respective 
WebLogic Server instances. A WebCenter installation includes the necessary libraries 
to act as a UMS client application, invoking a server deployed in a SOA instance.



Introduction to User Messaging Service

Oracle User Messaging Service 59-3

Figure 59–1 UMS architecture



Introduction to User Messaging Service

59-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



60

Sending and Receiving Messages using the User Messaging Service EJB API 60-1

60Sending and Receiving Messages using the
User Messaging Service EJB API

This chapter describes how to use the User Messaging Service (UMS) EJB API to 
develop applications, and describes how to build two sample applications, 
usermessagingsample-ejb.ear and usermessagingsample-echo-ejb.ear.

This chapter includes the following sections:

■ Section 60.1, "Introduction to the UMS Java API"

■ Section 60.2, "Creating a UMS Client Instance"

■ Section 60.3, "Sending a Message"

■ Section 60.4, "Receiving a Message"

■ Section 60.5, "Using the UMS Enterprise JavaBeans Client API to Build a Client 
Application"

■ Section 60.6, "Using the UMS Enterprise JavaBeans Client API to Build a Client 
Echo Application"

■ Section 60.7, "Creating a New Application Server Connection"

60.1 Introduction to the UMS Java API
The UMS Java API supports developing applications for Enterprise JavaBeans clients. 
It consists of packages grouped as follows:

■ Common and Client Packages

Note: The User Messaging Service EJB API (described in this 
chapter) is deprecated. Use the User Messaging Service Java API 
instead, as described in Chapter 61, "Sending and Receiving Messages 
using the User Messaging Service Java API".

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.



Creating a UMS Client Instance

60-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– oracle.sdp.messaging

– oracle.sdp.messaging.filter: A MessageFilter is used by an 
application to exercise greater control over what messages are delivered to it.

■ User Preferences Packages

– oracle.sdp.messaging.userprefs

– oracle.sdp.messaging.userprefs.tools

60.1.1 Creating a Java EE Application Module
There are two choices for a Java EE application module that uses the UMS Enterprise 
JavaBeans Client API:

■ Enterprise JavaBeans Application Module - Stateless Session Bean - This is a back 
end, core message-receiving or message-sending application.

■ Web Application Module - This is for applications that have an HTML or web 
front end.

Whichever application module is selected uses the UMS Client API to register the 
application with the UMS Server and subsequently invoke operations to send or 
retrieve messages, status, and register or unregister access points. For a complete list 
of operations refer to the UMS Javadoc.

The samples with source code are available on Oracle Technology Network (OTN).

60.2 Creating a UMS Client Instance
This section describes the requirements for creating a UMS Enterprise JavaBeans 
Client. You can create a MessagingEJBClient instance by using the code in the 
MessagingClientFactory class.

When creating an application using the UMS Enterprise JavaBeans Client, the 
application must be packaged as an EAR file, and the 
usermessagingclient-ejb.jar module bundled as an Enterprise JavaBeans 
module.

60.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative 
Approach

Example 60–1 shows code for creating a MessagingEJBClient instance using the 
programmatic approach:

Example 60–1 Programmatic Approach to Creating a MessagingEJBClient Instance

ApplicationInfo appInfo = new ApplicationInfo();
appInfo.setApplicationName("SampleApp");
appInfo.setApplicationInstanceName("SampleAppInstance");
MessagingClient mClient =
 MessagingClientFactory.createMessagingEJBClient(appInfo);

You can also create a MessagingEJBClient instance using a declarative approach. 
The declarative approach is normally the preferred approach since it enables you to 
make changes at deployment time. 

You must specify all the required Application Info properties as environment entries 
in your Java EE module's descriptor (ejb-jar.xml or web.xml).



Sending a Message

Sending and Receiving Messages using the User Messaging Service EJB API 60-3

Example 60–2 shows code for creating a MessagingEJBClient instance using the 
declarative approach:

Example 60–2 Declarative Approach to Creating a MessagingEJBClient Instance

MessagingClient mClient = MessagingClientFactory.createMessagingEJBClient();

60.2.2 API Reference for Class MessagingClientFactory
The API reference for class MessagingClientFactory can be accessed from the 
Javadoc.

60.3 Sending a Message
You can create a message by using the code in the MessageFactory class and 
Message interface of oracle.sdp.messaging. 

The types of messages that can be created include plaintext messages, multipart 
messages that can consist of text/plain and text/html parts, and messages that include 
the creation of delivery channel (DeliveryType) specific payloads in a single 
message for recipients with different delivery types.

60.3.1 Creating a Message
This section describes the various types of messages that can be created.

60.3.1.1 Creating a Plaintext Message
Example 60–3 shows how to create a plain text message using the UMS Java API.

Example 60–3 Creating a Plaintext Message Using the UMS Java API

Message message = MessageFactory.getInstance().createTextMessage("This is a Plain 
Text message.");
Message message = MessageFactory.getInstance().createMessage();
message.setContent("This is a Plain Text message.", "text/plain");

60.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML 
Parts)
Example 60–4 shows how to create a multipart or alternative message using the UMS 
Java API.

Example 60–4 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessageFactory.getInstance().createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
mp_partPlain.setContent("This is a Plain Text part.", "text/plain");
mp.addBodyPart(mp_partPlain);
MimeBodyPart mp_partRich = new MimeBodyPart();
mp_partRich
        .setContent(
                "<html><head></head><body><b><i>This is an HTML 
part.</i></b></body></html>",
                "text/html");
mp.addBodyPart(mp_partRich);
message.setContent(mp, "multipart/alternative");



Sending a Message

60-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

60.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for 
Recipients with Different Delivery Types
When sending a message to a destination address, there can be multiple channels 
involved. Oracle UMS application developers are required to specify the correct 
multipart format for each channel.

Example 60–5 shows how to create delivery channel (DeliveryType) specific 
payloads in a single message for recipients with different delivery types. 

Each top-level part of a multiple payload multipart/alternative message should 
contain one or more values of this header. The value of this header should be the name 
of a valid delivery type. Refer to the available values for DeliveryType in the enum 
DeliveryType.

Example 60–5 Creating Delivery Channel-specific Payloads in a Single Message for 
Recipients with Different Delivery Types

Message message = MessageFactory.getInstance().createMessage();
 
// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");
 
// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setContent("Text content for SMS.", "text/plain");
 
part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");
 
// add first part
mp.addBodyPart(part1);
 
// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setContent("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent("<html><head></head><body><b><i>" + "HTML content for 
EMAIL/IM." +
"</i></b></body></html>", "text/html");
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, "multipart/alternative");
 
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");
 
// add second part
mp.addBodyPart(part2);
 
// set the content of the message
message.setContent(mp, "multipart/alternative");
 
// set the MultiplePayload flag to true
message.setMultiplePayload(true);

60.3.2 API Reference for Class MessageFactory
The API reference for class MessageFactory can be accessed from the Javadoc.



Sending a Message

Sending and Receiving Messages using the User Messaging Service EJB API 60-5

60.3.3 API Reference for Interface Message
The API reference for interface Message can be accessed from the Javadoc.

60.3.4 API Reference for Enum DeliveryType
The API reference for enum DeliveryType can be accessed from the Javadoc.

60.3.5 Addressing a Message
This section describes type of addresses and how to create address objects.

60.3.5.1 Types of Addresses
There are two types of addresses, device addresses and user addresses. A device address 
can be of various types, such as email addresses, instant messaging addresses, and 
telephone numbers. User addresses are user IDs in a user repository. 

60.3.5.2 Creating Address Objects
You can address senders and recipients of messages by using the class 
AddressFactory to create Address objects defined by the Address interface. 

60.3.5.2.1 Creating a Single Address Object  Example 60–6 shows code for creating a 
single Address object:

Example 60–6 Creating a Single Address Object

Address recipient = 
AddressFactory.getInstance().createAddress("Email:john.doe@oracle.com");

60.3.5.2.2 Creating Multiple Address Objects in a Batch  Example 60–7 shows code for 
creating multiple Address objects in a batch:

Example 60–7 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john.doe@oracle.com", 
"IM:jabber|john.doe@oracle.com"};
Address[] recipients = AddressFactory.getInstance().createAddress(recipientsStr);

60.3.5.2.3 Adding Sender or Recipient Addresses to a Message  Example 60–8 shows code 
for adding sender or recipient addresses to a message:

Example 60–8 Adding Sender or Recipient Addresses to a Message

Address sender = 
AddressFactory.getInstance().createAddress("Email:john.doe@oracle.com");
Address recipient = 
AddressFactory.getInstance().createAddress("Email:jane.doe@oracle.com");
message.addSender(sender);
message.addRecipient(recipient);

60.3.5.3 Creating a Recipient with a Failover Address
Example 60–9 shows code for creating a recipient with a failover address:

Example 60–9 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john.doe@oracle.com, 
IM:jabber|john.doe@oracle.com";



Receiving a Message

60-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Address recipient = 
AddressFactory.getInstance().createAddress(recipientWithFailoverStr);

60.3.5.4 API Reference for Class AddressFactory
The API reference for class AddressFactory can be accessed from the Javadoc.

60.3.5.5 API Reference for Interface Address
The API reference for interface Address can be accessed from the Javadoc.

60.3.6 Retrieving Message Status
You can use Oracle UMS to retrieve message status either synchronously or 
asynchronously. 

60.3.6.1 Synchronous Retrieval of Message Status
To perform a synchronous retrieval of current status, use the following flow from the 
MessagingClient API:

String messageId = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus(messageId);

or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
 address[] is an array of one or more of the recipients set in the message.

60.3.6.2 Asynchronous Notification of Message Status
To retrieve an asynchronous notification of message status, perform the following:

1. Implement a status listener.

2. Register a status listener (declarative way)

3. Send a message (messagingClient.send(message);)

4. The application automatically gets the status through an onStatus(status) 
callback of the status listener.

60.4 Receiving a Message
This section describes how an application receives messages. To receive a message you 
must first register an access point. From the application perspective there are two 
modes for receiving a message, synchronous and asynchronous.

60.4.1 Registering an Access Point
AccessPoint represents one or more device addresses to receive incoming messages. 
An application that wants to receive incoming messages must register one or more 
access points that represent the recipient addresses of the messages. The server 
matches the recipient address of an incoming message against the set of registered 
access points, and routes the incoming message to the application that registered the 
matching access point.

You can use AccessPointFactory.createAccessPoint to create an access point 
and MessagingClient.registerAccessPoint to register it for receiving 
messages.



Receiving a Message

Sending and Receiving Messages using the User Messaging Service EJB API 60-7

To register an SMS access point for the number 9000: 

AccessPoint accessPointSingleAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999: 

AccessPoint accessPointRangeAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

60.4.2 Synchronous Receiving
You can use the method MessagingClient.receive to synchronously receive 
messages. This is a convenient polling method for light-weight clients that do not want 
the configuration overhead associated with receiving messages asynchronously. This 
method returns a list of messages that are immediately available in the application 
inbound queue.

It performs a nonblocking call, so if no message is currently available, the method 
returns null. 

60.4.3 Asynchronous Receiving
Asynchronous receiving involves many tasks, including configuring MDBs and 
writing a Stateless Session Bean message listener. See the sample application 
usermessagingsample-echo for detailed instructions.

60.4.4 Message Filtering
A MessageFilter is used by an application to exercise greater control over what 
messages are delivered to it. A MessageFilter contains a matching criterion and an 
action. An application can register a series of message filters; they are applied in order 
against an incoming (received) message; if the criterion matches the message, the 
action is taken. For example, an application can use MessageFilters to implement 
necessary blacklists, by rejecting all messages from a given sender address.

You can use MessageFilterFactory.createMessageFilter to create a message 
filter, and MessagingClient.registerMessageFilter to register it. The filter is 
added to the end of the current filter chain for the application. When a message is 
received, it is passed through the filter chain in order; if the message matches a filter's 
criterion, the filter's action is taken immediately. If no filters match the message, the 
default action is to accept the message and deliver it to the application.

For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessageFilterFactory.createMessageFilter("spam",
 MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

To reject messages from email address spammer@foo.com:

Note: A single invocation does not guarantee retrieval of all 
available messages. You must poll to ensure receiving all available 
messages.



Using the UMS Enterprise JavaBeans Client API to Build a Client Application

60-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

MessageFilter senderFilter =
 MessageFilterFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

60.5 Using the UMS Enterprise JavaBeans Client API to Build a Client 
Application

This section describes how to create an application called usermessagingsample, a web 
client application that uses the UMS Enterprise JavaBeans Client API for both 
outbound messaging and the synchronous retrieval of message status. 
usermessagingsample also supports inbound messaging. Once you have deployed and 
configured usermessagingsample, you can use it to send a message to an email client.

Of the two application modules choices described in Section 60.1.1, "Creating a Java EE 
Application Module," this sample focuses on the Web Application Module (WAR), 
which defines some HTML forms and servlets. You can examine the code and 
corresponding XML files for the web application module from the provided 
usermessagingsample-src.zip source. The servlets uses the UMS Enterprise 
JavaBeans Client API to create an UMS Enterprise JavaBeans Client instance (which in 
turn registers the application's info) and sends messages. 

This application, which is packaged as an Enterprise Archive file (EAR) called 
usermessagingsample-ejb.ear, has the following structure:

■ usermessagingsample-ejb.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

– weblogic-application.xml -- Descriptor file that contains the 
import of the oracle.sdp.messaging shared library.

■ usermessagingclient-ejb.jar -- Contains the Message Enterprise 
JavaBeans Client deployment descriptors.

* META-INF

–    ejb-jar.xml

–    weblogic-ejb-jar.xml

■ usermessagingsample-web.ear -- Contains the web-based front-end and 
servlets.

* WEB-INF

–    web.xml

–    weblogic.xml

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.



Using the UMS Enterprise JavaBeans Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service EJB API 60-9

The prebuilt sample application, and the source code (usermessagingsample-src.zip) 
are available on OTN.

60.5.1 Overview of Development
The following steps describe the process of building an application capable of 
outbound messaging using usermessagingsample-ejb.ear as an example:

1. Section 60.5.2, "Configuring the Email Driver"

2. Section 60.5.3, "Using JDeveloper 11g to Build the Application"

3. Section 60.5.4, "Deploying the Application"

4. Section 60.5.5, "Testing the Application"

60.5.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform outbound 
messaging and status retrieval, configure the email driver as follows:

■ Enter the name of the SMTP mail server as the value for the 
OutgoingMailServer property.

60.5.3 Using JDeveloper 11g to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile, 
and deploy usermessagingsample through the following steps:

60.5.3.1 Opening the Project
1. Unzip usermessagingsample-src.zip, to the JDEV_

HOME/communications/samples/ directory. This directory must be used for 
the shared library references to be valid in the project. 

2. Open usermessagingsample.jws (contained in the .zip file) in Oracle 
JDeveloper.

Note: This sample application is generic and can support outbound 
messaging through other channels when the appropriate messaging 
drivers are deployed and configured.

Note: If you choose to use a different directory, you must update the 
oracle.sdp.messaging library source path to JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar.



Using the UMS Enterprise JavaBeans Client API to Build a Client Application

60-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 60–1 Oracle JDeveloper Main Window 

In the Oracle JDeveloper main window, the project appears.

3. Satisfy the build dependencies for the sample application by ensuring the "Oracle 
UMS Client" library is used by the Web module.

1. In the Application Navigator, right-click web module 
usermessagingsample-web, and select Project Properties.

2. In the left pane, select Libraries and Classpath.

Figure 60–2 Verifying Libraries 

3. Click OK.

4. Verify that the usermessagingclient-ejb project exists in the application. This is an 
Enterprise JavaBeans module that packages the messaging client beans used by 
UMS applications. The module allows the application to connect with the UMS 
server.



Using the UMS Enterprise JavaBeans Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service EJB API 60-11

5. Explore the Java files under the usermessagingsample-web project to see how the 
messaging client APIs are used to send messages, get statuses, and synchronously 
receive messages. The application info that is registered with the UMS Server is 
specified programmatically in SampleUtils.java in the project 
(Example 60–10).

Example 60–10 Application Information

      ApplicationInfo appInfo = new ApplicationInfo();
      appInfo.setApplicationName(SampleConstants.APP_NAME);
      appInfo.setApplicationInstanceName(SampleConstants.APP_INSTANCE_NAME);
      appInfo.setSecurityPrincipal(request.getUserPrincipal().getName());

60.5.4 Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the 
navigation pane and selecting New. Follow the instructions in Section 60.7, 
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample application, 
Deploy, usermessagingsample, to, and SOA_server (Figure 60–3).

Figure 60–3 Deploying the Project

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application. 

Before you can run the sample, you must configure any additional drivers in 
Oracle User Messaging Service and optionally configure a default device for the 
user receiving the message in User Messaging Preferences. 

60.5.5 Testing the Application
Once usermessagingsample has been deployed to a running instance of Oracle 
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows: 
http://host:http-port/usermessagingsample/. For example, enter 
http://localhost:7001/usermessagingsample/ into the browser’s 
navigation bar. 

Note: Refer to Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite for more information. 



Using the UMS Enterprise JavaBeans Client API to Build a Client Application

60-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When prompted, enter login credentials. For example, username weblogic. The 
browser page for testing messaging samples appears (Figure 60–4).

Figure 60–4 Testing the Sample Application

2. Click Send sample message. The Send Message page appears (Figure 60–5).

Figure 60–5 Addressing the Test Message

3. As an optional step, enter the sender address in the following format:

Email:sender_address. 

For example, enter Email:sender@oracle.com.

4. Enter one or more recipient addresses. For example, enter 
Email:recipient@oracle.com. Enter multiple addresses as a 
comma-separated list as follows:



Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service EJB API 60-13

Email:recipient_address1, Email:recipient_address2.

If you have configured user messaging preferences, you can address the message 
simply to User:username. For example, User:weblogic.

5. As an optional step, enter a subject line or content for the email.

6. Click Send. The Message Status page appears, showing the progress of transaction 
(Message received by Messaging engine for processing in Figure 60–6). 

Figure 60–6 Message Status

7. Click Refresh to update the status. When the email message has been delivered to 
the email server, the Status Content field displays Outbound message delivery to 
remote gateway succeeded.

60.6 Using the UMS Enterprise JavaBeans Client API to Build a Client 
Echo Application

This section describes how to create an application called usermessagingsample-echo, 
a demo client application that uses the UMS Enterprise JavaBeans Client API to 
asynchronously receive messages from an email address and echo a reply back to the 
sender. 

This application, which is packaged as a Enterprise Archive file (EAR) called 
usermessagingsample-echo-ejb.ear, has the following structure:

■ usermessagingsample-echo-ejb.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.



Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

60-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– weblogic-application.xml -- Descriptor file that contains the 
import of the oracle.sdp.messaging shared library.

■ usermessagingclient-ejb.jar -- Contains the Message Enterprise 
JavaBeans Client deployment descriptors.

* META-INF

–    ejb-jar.xml

–    weblogic-ejb-jar.xml

■ usermessagingsample-echo-ejb.jar -- Contains the application session 
beans (ClientSenderBean, ClientReceiverBean) that process a received message 
and return an echo response.

* META-INF

–    ejb-jar.xml

–    weblogic-ejb-jar.xml

■ usermessagingsample-echo-web.war -- Contains the web-based 
front-end and servlets.

* WEB-INF

–    web.xml

–    weblogic.xml

The prebuilt sample application, and the source code 
(usermessagingsample-echo-src.zip) are available on OTN.

60.6.1 Overview of Development
The following steps describe the process of building an application capable of 
asynchronous inbound and outbound messaging using 
usermessagingsample-echo-ejb.ear as an example:

1. Section 60.6.2, "Configuring the Email Driver"

2. Section 60.6.3, "Using JDeveloper 11g to Build the Application"

3. Section 60.6.4, "Deploying the Application"

4. Section 60.6.5, "Testing the Application"

60.6.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform inbound and 
outbound messaging and status retrieval, configure the email driver as follows:

■ Enter the name of the SMTP mail server as the value for the OutgoingMailServer 
property.

■ Enter the name of the IMAP4/POP3 mail server as the value for the 
IncomingMailServer property. Also, configure the incoming user name, and 
password.

Note: This sample application is generic and can support inbound 
and outbound messaging through other channels when the 
appropriate messaging drivers are deployed and configured.



Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service EJB API 60-15

60.6.3 Using JDeveloper 11g to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile, 
and deploy usermessagingsample-echo through the following steps:

60.6.3.1 Opening the Project
1. Unzip usermessagingsample.echo-src.zip, to the JDEV_

HOME/communications/samples/ directory. This directory must be used for 
the shared library references to be valid in the project. 

2. Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle 
JDeveloper.

In the Oracle JDeveloper main window, the project appears (Figure 60–7).

Figure 60–7 Oracle JDeveloper Main Window

3. Verify that the build dependencies for the sample application have been satisfied 
by checking that the following library has been added to the 
usermessagingsample-echo-web and usermessagingsample-echo-ejb 
modules.

■ Library: oracle.sdp.messaging, Classpath: JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar. This is the Java library used by UMS and applications 
that use UMS to send and receive messages.

Perform the following steps for each module:

Note: If you choose to use a different directory, you must update the 
oracle.sdp.messaging library source path to JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar.



Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

60-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. In the Application Navigator, right-click the module and select Project 
Properties.

2. In the left pane, select Libraries and Classpath (Figure 60–8).

Figure 60–8 Verifying Libraries

3. Click OK.

4. Verify that the usermessagingclient-ejb project exists in the application. This is an 
Enterprise JavaBeans module that packages the messaging client beans used by 
UMS applications. The module allows the application to connect with the UMS 
server.

5. Explore the Java files under the usermessagingsample-echo-ejb project to see how 
the messaging client APIs are used to asynchronously receive messages 
(ClientReceiverBean), and send messages (ClientSenderBean). 

6. Explore the Java files under the usermessagingsample-echo-web project to see 
how the messaging client APIs are used to register and unregister access points.

7. Note that the application info that is registered with the UMS Server is specified 
declaratively in the usermessagingclient-ejb project’s ejb-jar.xml file. 
(Example 60–11).

Example 60–11 Application Information

            <env-entry>
                <env-entry-name>sdpm/ApplicationName</env-entry-name>
                <env-entry-type>java.lang.String</env-entry-type>
                <env-entry-value>UMSEchoApp</env-entry-value>
            </env-entry>
            <env-entry>
                <env-entry-name>sdpm/ApplicationInstanceName</env-entry-name>
                <env-entry-type>java.lang.String</env-entry-type>
                <env-entry-value>UMSEchoAppInstance</env-entry-value>
            </env-entry>
 
            <env-entry>
               <env-entry-name>sdpm/ReceivingQueuesInfo</env-entry-name>
                <env-entry-type>java.lang.String</env-entry-type>
    
<env-entry-value>OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMAppDefRcvQ1<



Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service EJB API 60-17

/env-entry-value>
            </env-entry>
 
            <env-entry>
               <env-entry-name>
               sdpm/MessageListenerSessionBeanJNDIName 
                </env-entry-name>
                <env-entry-type>java.lang.String</env-entry-type>
                <env-entry-value> 
                  ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
            </env-entry>
            <env-entry>
                <env-entry-name>
                sdpm/MessageListenerSessionBeanHomeClassName</env-entry-name>
                <env-entry-type>java.lang.String</env-entry-type>
                <env-entry-value>
                oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal
                 </env-entry-value>
              </env-entry>
              <env-entry>
                <env-entry-name>  
                sdpm/StatusListenerSessionBeanJNDIName  
               </env-entry-name>
                <env-entry-type>java.lang.String</env-entry-type>
                
<env-entry-value>ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
            </env-entry>
            <env-entry>
                
<env-entry-name>sdpm/StatusListenerSessionBeanHomeClassName</env-entry-name>
                <env-entry-type>java.lang.String</env-entry-type>
                
<env-entry-value>oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal</env-e
ntry-value>
            </env-entry>

8. Note that the Application Name (UMSEchoApp) and Application Instance Name 
(UMSEchoAppInstance) are also used in the Message Selector for the 
MessageDispatcherBean MDB, which is used for asynchronous receiving of 
messages and statuses placed in the application receiving queue (Example 60–12).

Example 60–12 Application Information

<activation-config-property>
  <activation-config-property-name>
    messageSelector
  </activation-config-property-name>
  <activation-config-property-value>
    appName='UMSEchoApp' or sessionName='UMSEchoApp-UMSEchoAppInstance'
  </activation-config-property-value>
</activation-config-property>
            

Note: If you chose a different Application Name and Application 
Instance Name for your own application, remember to update this 
message selector. Asynchronous receiving does not work, otherwise.



Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

60-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

60.6.4 Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the 
navigation pane and selecting New. Follow the instructions in Section 60.7, 
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample-echo application, 
Deploy, usermessagingsample-echo, to, and SOA_server (Figure 60–9).

Figure 60–9 Deploying the Project

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application. 

Before you can run the sample you must configure any additional drivers in 
Oracle User Messaging Service and optionally configure a default device for the 
user receiving the message in User Messaging Preferences. 

60.6.5 Testing the Application
Once usermessagingsample-echo has been deployed to a running instance of Oracle 
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows: 
http://host:http-port/usermessagingsample-echo/. For example, 
enter http://localhost:7001/usermessagingsample-echo/ into the 
browser’s navigation bar. 

When prompted, enter login credentials. For example, username weblogic. The 
browser page for testing messaging samples appears (Figure 60–10).

Note: Refer to Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite for more information. 



Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service EJB API 60-19

Figure 60–10 Testing the Sample Application

2. Click Register/Unregister Access Points. The Access Point Registration page 
appears (Figure 60–11).

Figure 60–11 Registering an Access Point

3. Enter the access point address in the following format:

EMAIL:server_address. 

For example, enter EMAIL:myserver@example.com.

4. Select the Action Register and Click Submit. The registration status page appears, 
showing "Registered" in Figure 60–12). 



Creating a New Application Server Connection

60-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 60–12 Access Point Registration Status

5. Send a message from your messaging client (for email, your email client) to the 
address you just registered as an access point in the previous step. 

If the UMS messaging driver for that channel is configured correctly, you should 
expect to receive an echo message back from the usermessagingsample-echo 
application.

60.7 Creating a New Application Server Connection
Perform the following steps to create an Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and 
selecting New, Connections, and Application Server Connection (Figure 60–13).

Figure 60–13 New Application Server Connection

2. Name the connection SOA_server and click Next (Figure 60–14).

3. Select WebLogic 10.3 as the Connection Type.

Figure 60–14 New Application Server Connection



Creating a New Application Server Connection

Sending and Receiving Messages using the User Messaging Service EJB API 60-21

4. Enter the authentication information. A typical value for user name is weblogic.

5. In the Connection dialog, enter the hostname, port, and SSL port for the SOA 
admin server, and enter the name of the domain for WLS Domain. 

6. Click Next.

7. In the Test dialog, click Test Connection. 

8. Verify that the message Success! appears.

The Application Server Connection has been created.



Creating a New Application Server Connection

60-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



61

Sending and Receiving Messages using the User Messaging Service Java API 61-1

61Sending and Receiving Messages using the
User Messaging Service Java API

This chapter describes how to use the User Messaging Service (UMS) client API to 
develop applications. This API serves as a programmatic entry point for Fusion 
Middleware application developers to incorporate messaging features within their 
enterprise applications.

Because the API provides a plain old java (POJO/POJI) programming model, this 
eliminates the needs for application developers to package and implement various 
Java EE modules (such as an EJB module) in an application to access UMS features. 
This reduces application development time because developers can create applications 
to run in a Java EE container without performing any additional packaging of 
modules, or obtaining specialized tools to perform such packaging tasks.

Consumers of the UMS Java API are not required to use any Java EE mechanism such 
as environment entries or other Java EE deployment descriptor artifacts. Besides the 
overhead involved in maintaining Java EE descriptors, many client applications 
already have a configuration framework that does not rely on Java EE descriptors.

This chapter includes the following sections:

■ Section 61.1, "Introduction to the UMS Java API"

■ Section 61.2, "Creating a UMS Client Instance and Specifying Runtime Parameters"

■ Section 61.3, "Sending a Message"

■ Section 61.4, "Retrieving Message Status"

■ Section 61.5, "Receiving a Message"

■ Section 61.6, "Configuring for a Cluster Environment"

■ Section 61.7, "Configuring Security"

■ Section 61.8, "Threading Model"

■ Section 61.9, "Using the UMS Client API to Build a Client Application"

■ Section 61.10, "Using the UMS Client API to Build a Client Echo Application"

■ Section 61.11, "Creating a New Application Server Connection"



Introduction to the UMS Java API

61-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

61.1 Introduction to the UMS Java API
The UMS Java API is exposed as a POJO/POJI API. Consumers of the API can get an 
instance of a MessagingClient object using a factory method. The consumers do not 
need to deploy any EJB or other Java EE modules in their applications, but must 
ensure that the UMS libraries are available in an application’ s runtime class path. The 
deployment is as a shared library, "oracle.sdp.messaging".

The UMS Java API consists of packages grouped as follows:

■ Common and Client Packages

– oracle.sdp.messaging

– oracle.sdp.messaging.filter: A MessageFilter is used by an 
application to exercise greater control over what messages are delivered to it.

The samples with source code are available on Oracle Technology Network (OTN).

61.2 Creating a UMS Client Instance and Specifying Runtime Parameters
This section describes the requirements for creating a UMS Client. You can create a 
MessagingClient instance by using the code in the MessagingClientFactory class. 
Specifically, use the MessagingClientFactory.createMessagingClient() 
method to create the instance. 

Client applications can specify a set of parameters at runtime when instantiating a 
client object. For example, you configure a MessagingClient instance by specifying 
parameters as a map of key-value pairs in a java.util.Map<String, Object>. 
Among other things, the configuration parameters serve to identify the client 
application, point to the UMS server, and establish security credentials. Client 
applications are responsible for storing and loading the configuration parameters 
using any available mechanism. 

Table 61–1 lists some configuration parameters that may be set for the Java API. In 
typical use cases, most of the parameters do not need to be provided and the API 
implementation uses sensible default values.

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.

Table 61–1 Configuration Parameters Specified at Runtime

Parameter Notes

APPLICATION_NAME Optional. By default, the client is identified by 
its deployment name. This identifier can be 
overridden by specifying a value for key 
ApplicationInfo.APPLICATION_NAME.

APPLICATION_INSTANCE_NAME Optional. Only required for certain clustered 
use cases or to take advantage of session-based 
routing.



Creating a UMS Client Instance and Specifying Runtime Parameters

Sending and Receiving Messages using the User Messaging Service Java API 61-3

A MessagingClient cannot be reconfigured after it is instantiated. Instead, a new 
instance of the MessagingClient class must be created using the new configuration.

To release resources used by the MessagingClient instance when it is no longer 
needed, call MessagingClientFactory.remove(client). If you do not call this 
method, some resources such as worker threads and JMS listeners may remain active.

Example 61–1 shows code for creating a MessagingClient instance using the 
programmatic approach:

Example 61–1 Programmatic Approach to Creating a MessagingClient Instance

Map<String, Object> params = new HashMap<String, Object>();
// params.put(key, value);  // if optional parameters need to be specified.
MessagingClient messagingClient = 
MessagingClientFactory.createMessagingClient(params); 

A MessagingClient cannot be reconfigured after it is instantiated. Instead, you 
must create a new instance of the MessagingClient class using the desired 
configuration.

61.2.1 API Reference for Class MessagingClientFactory
The API reference for class MessagingClientFactory can be accessed from the 
Javadoc.

SDPM_SECURITY_PRINCIPAL Optional. By default, the client's resources are 
available to any application with the same 
application name and any security principal. 
This behavior can be overridden by specifying 
a value for key ApplicationInfo.SDPM_
SECURITY_PRINCIPAL. If a security principal 
is specified, then all subsequent requests 
involving the application's resources (messages, 
access points, and so on.) must be made using 
the same security principal. 

MESSAGE_LISTENER_THREADS
STATUS_LISTENER_THREADS

Optional. When listeners are used to receive 
messages or statuses asynchronously, the 
number of listener worker threads can be 
controlled by specifying values for the 
MessagingConstants.MESSAGE_LISTENER_
THREADS and 
MessagingConstants.STATUS_LISTENER_
THREADS keys. 

RECEIVE_ACKNOWLEDGEMENT_MODE
LISTENER_ACKNOWLEDGEMENT_MODE

Optional. When receiving messages, you can 
control the reliability mode by specifying 
values for the 
MessagingConstants.RECEIVE_
ACKNOWLEDGEMENT_MODE (synchronous 
receiving) and MessagingConstants.
LISTENER_ACKNOWLEDGEMENT_MODE 
(asynchronous receiving) keys. 

Table 61–1 (Cont.) Configuration Parameters Specified at Runtime

Parameter Notes



Sending a Message

61-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

61.3 Sending a Message
The client application can create a message object using the MessagingFactory class 
of oracle.sdp.messaging. MessagingFactory is a factory class to create various 
messaging objects. (You can use other methods in this class to create Addresses, 
AccessPoints, MessageFilters, and MessageQueries. See the Javadoc for these 
methods).

The client application can then send the message. The API returns a String identifier 
that the client application can later use to retrieve message delivery status. The status 
returned is the latest known status based on UMS internal processing and delivery 
notifications received from external gateways.

The types of messages that can be created include plaintext messages, multipart 
messages that can consist of text/plain and text/html parts, and messages that include 
the creation of delivery channel (DeliveryType) specific payloads in a single 
message for recipients with different delivery types.

61.3.1 Creating a Message
This section describes the various types of messages that can be created.

61.3.1.1 Creating a Plaintext Message
Example 61–2 shows how to create a plaintext message using the UMS Java API.

Example 61–2 Creating a Plaintext Message Using the UMS Java API

Message message = MessagingFactory.createTextMessage("This is a Plain Text 
message.");
Message message = MessagingFactory.createMessage();
message.setContent("This is a Plain Text message.", "text/plain");

61.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML 
Parts)
Example 61–3 shows how to create a multipart or alternative message using the UMS 
Java API.

Example 61–3 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessagingFactory.createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
mp_partPlain.setContent("This is a Plain Text part.", "text/plain");
mp.addBodyPart(mp_partPlain);
MimeBodyPart mp_partRich = new MimeBodyPart();
mp_partRich
        .setContent(
                "<html><head></head><body><b><i>This is an HTML 
part.</i></b></body></html>",
                "text/html");
mp.addBodyPart(mp_partRich);
message.setContent(mp, "multipart/alternative");



Sending a Message

Sending and Receiving Messages using the User Messaging Service Java API 61-5

61.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for 
Recipients with Different Delivery Types
When sending a message to a destination address, there could be multiple channels 
involved. Oracle UMS application developers are required to specify the correct 
multipart format for each channel.

Example 61–4 shows how to create delivery channel (DeliveryType) specific 
payloads in a single message for recipients with different delivery types. 

Each top-level part of a multiple payload multipart/alternative message should 
contain one or more values of this header. The value of this header should be the name 
of a valid delivery type. Refer to the available values for DeliveryType in the enum 
DeliveryType.

Example 61–4 Creating Delivery Channel-specific Payloads in a Single Message for 
Recipients with Different Delivery Types

Message message = MessagingFactory.createMessage();
 
// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");
 
// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setContent("Text content for SMS.", "text/plain");
 
part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");
 
// add first part
mp.addBodyPart(part1);
 
// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setContent("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent("<html><head></head><body><b><i>" + "HTML content for 
EMAIL/IM." +
"</i></b></body></html>", "text/html");
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, "multipart/alternative");
 
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");
 
// add second part
mp.addBodyPart(part2);
 
// set the content of the message
message.setContent(mp, "multipart/alternative");
 
// set the MultiplePayload flag to true
message.setMultiplePayload(true);

61.3.2 API Reference for Class MessagingFactory
The API reference for class MessagingFactory can be accessed from the Javadoc.



Sending a Message

61-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

61.3.3 API Reference for Interface Message
The API reference for interface Message can be accessed from the Javadoc.

61.3.4 API Reference for Enum DeliveryType
The API reference for enum DeliveryType can be accessed from the Javadoc.

61.3.5 Addressing a Message
This section describes type of addresses and how to create address objects.

61.3.5.1 Types of Addresses
There are two types of addresses, device addresses and user addresses. A device address 
can be of various types, such as email addresses, instant messaging addresses, and 
telephone numbers. User addresses are user IDs in a user repository. 

61.3.5.2 Creating Address Objects
You can address senders and recipients of messages by using the class 
MessagingFactory to create Address objects defined by the Address interface. 

61.3.5.2.1 Creating a Single Address Object  Example 61–5 shows code for creating a 
single Address object:

Example 61–5 Creating a Single Address Object

Address recipient = MessagingFactory.createAddress("Email:john.doe@oracle.com");

61.3.5.2.2 Creating Multiple Address Objects in a Batch  Example 61–6 shows code for 
creating multiple Address objects in a batch:

Example 61–6 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john.doe@oracle.com", 
"IM:jabber|john.doe@oracle.com"};
Address[] recipients = MessagingFactory.createAddress(recipientsStr);

61.3.5.2.3 Adding Sender or Recipient Addresses to a Message  Example 61–7 shows code 
for adding sender or recipient addresses to a message:

Example 61–7 Adding Sender or Recipient Addresses to a Message

Address sender = MessagingFactory.createAddress("Email:john.doe@oracle.com");
Address recipient = MessagingFactory.createAddress("Email:jane.doe@oracle.com");
message.addSender(sender);
message.addRecipient(recipient);

61.3.5.3 Creating a Recipient with a Failover Address
Example 61–8 shows code for creating a recipient with a failover address:

Example 61–8 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john.doe@oracle.com, 
IM:jabber|john.doe@oracle.com";
Address recipient = MessagingFactory.createAddress(recipientWithFailoverStr);



Retrieving Message Status

Sending and Receiving Messages using the User Messaging Service Java API 61-7

61.3.5.4 API Reference for Class MessagingFactory
The API reference for class MessagingFactory can be accessed from the Javadoc.

61.3.5.5 API Reference for Interface Address
The API reference for interface Address can be accessed from the Javadoc.

61.3.6 User Preference Based Messaging 
When sending a message to a user recipient (to leverage the user's messaging 
preferences), you can pass facts (current values) for various business terms in the 
message as metadata. The UMS server matches the supplied facts in the message 
against conditions for business terms specified in the user's messaging filters. 

Figure 61–9 shows how to specify a user recipient and supply facts for business terms 
for the user preferences in a message. For a complete list of supported business terms, 
refer to Chapter 64, "User Messaging Preferences."

Example 61–9 User Preference Based Messaging

Message message = MessagingFactory.createMessage();
// create and add a user recipient
Address userRecipient1 = MessagingFactory.createAddress("USER:sampleuser1");
message.addRecipient(userRecipient1);
// specify business term facts
message.setMetaData(Message.NAMESPACE_NOTIFICATION_PREFERENCES, "Customer
Name", "ACME");
//  where "Customer Name" is the Business Term name, and "ACME" is the
Business Term value (i.e, fact).

61.4 Retrieving Message Status
After sending a message, you can use Oracle UMS to retrieve the message status either 
synchronously or asynchronously. 

61.4.1 Synchronous Retrieval of Message Status
To perform a synchronous retrieval of current status, use the following flow from the 
MessagingClient API:

String messageId = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus(messageId);

or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
 address[] is an array of one or more of the recipients set in the message.

Note: All facts must be added as metadata in the 
Message.NAMESPACE_NOTIFICATION_PREFERENCES namespace. 
Metadata in other namespaces are ignored (for resolving user 
messaging preferences). 



Retrieving Message Status

61-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

61.4.2 Asynchronous Receiving of Message Status
When asynchronously receiving status, the client application specifies a Listener 
object and an optional correlator object. When incoming status arrives, the listener’ s 
onStatus callback is invoked. The originally-specified correlator object is also passed 
to the callback method. 

61.4.2.1 Creating a Listener Programmatically
Listeners are purely programmatic. You create a listener by implementing the 
oracle.sdp.messaging.Listener interface. You can implement it as any 
concrete class - one of your existing classes, a new class, or an anonymous or inner 
class. 

The following code example shows how to implement a status listener:

import oracle.sdp.messaging.Listener;
 
    public class StatusListener implements Listener {

      @Override
      public void onMessage(Message message, Serializable correlator) {
      }  
      @Override
      public void onStatus(Status status, Serializable correlator) {
          System.out.println("Received Status: " + status + " with optional 
correlator: " +
 
correlator);
      }
    }

You pass a reference to the Listener object to the setStatusListener or send 
methods, as described in "Default Status Listener" and "Per Message Status Listener". 
When a status arrives for your message, the UMS infrastructure invokes the Listener's 
onStatus method as appropriate.

61.4.2.2 Default Status Listener
The client application typically sets a default status listener (Example 61–10). When the 
client application sends a message, delivery status callbacks for the message invoke 
the default listener’s onStatus method. 

Example 61–10 Default Status Listener

messagingClient.setStatusListener(new MyStatusListener());
messagingClient.send(message);

61.4.2.3 Per Message Status Listener
In this approach, the client application sends a message and specifies a Listener object 
and an optional correlator object (Example 61–11). When delivery status callbacks are 
available for that message, the specified listener’s onStatus method is invoked. The 
originally-specified correlator object is also passed to the callback method. 

Example 61–11 Per Message Status Listener

messagingClient.send(message, new MyStatusListener(), null);



Receiving a Message

Sending and Receiving Messages using the User Messaging Service Java API 61-9

61.5 Receiving a Message
This section describes how an application receives messages. To receive a message you 
must first register an access point. From the application perspective there are two 
modes for receiving a message, synchronous and asynchronous.

61.5.1 Registering an Access Point
The client application can create and register an access point, specifying that it wants 
to receive incoming messages sent to a particular address. Since the client application 
has not specified any message listeners, any received messages are held by UMS. The 
client application can then invoke the receive method to fetch the pending messages. 
When receiving messages without specifying an access point, the application receives 
messages for any of the access points that it has registered. Otherwise, if an access 
point is specified, the application receives messages sent to that access point.

AccessPoint represents one or more device addresses to receive incoming messages. 
An application that wants to receive incoming messages must register one or more 
access points that represent the recipient addresses of the messages. The server 
matches the recipient address of an incoming message against the set of registered 
access points, and routes the incoming message to the application that registered the 
matching access point.

You can use MessagingFactory.createAccessPoint to create an access point 
and MessagingClient.registerAccessPoint to register it for receiving 
messages.

To register an SMS access point for the number 9000: 

AccessPoint accessPointSingleAddress =
 MessagingFactory.createAccessPoint(AccessPoint.AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999: 

AccessPoint accessPointRangeAddress =
 MessagingFactory.createAccessPoint(AccessPoint.AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

61.5.2 Synchronous Receiving
A receive is a nonblocking operation. If there are no pending messages for the 
application or access point, the call returns immediately with an empty list. Receive is 
not guaranteed to return all available messages, but may return only a subset of 
available messages for efficiency reasons.

You can use the method MessagingClient.receive to synchronously receive 
messages. This is a convenient polling method for light-weight clients that do not want 
the configuration overhead associated with receiving messages asynchronously. This 
method returns a list of messages that are immediately available in the application 
inbound queue.

It performs a nonblocking call, so if no message is currently available, the method 
returns null. 



Receiving a Message

61-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

61.5.3 Asynchronous Receiving
When asynchronously receiving messages, the client application registers an access 
point and specifies a Listener object and an optional correlator object. When 
incoming messages arrive at the specified access point address, the listener’ s 
onMessage callback is invoked. The originally-specified correlator object is also 
passed to the callback method. 

61.5.3.1 Creating a Listener Programmatically
Listeners are purely programmatic. You create a listener by implementing the 
oracle.sdp.messaging.Listener interface. You can implement it as any 
concrete class - one of your existing classes, a new class, or an anonymous or inner 
class. 

The following code example shows how to implement a message listener:

import oracle.sdp.messaging.Listener;
 
    public class MyListener implements Listener {
 
      @Override
      public void onMessage(Message message, Serializable correlator) {
          System.out.println("Received Message: " + message + " with optional 
correlator: " +
correlator);
      }  
      @Override
      public void onStatus(Status status, Serializable correlator) {
          System.out.println("Received Status: " + status + " with optional 
correlator: " +
correlator);
      }
     
    }

You pass a reference to the Listener object to the setMessageListener or 
registerAccessPoint methods, as described in "Default Message Listener" and 
"Per Access Point Message Listener". When a message arrives for your application, the 
UMS infrastructure invokes the Listener's onMessage method.

61.5.3.2 Default Message Listener
The client application typically sets a default message listener (Example 61–12). This 
listener is invoked for any delivery statuses for messages sent by this client application 
that do not have an associated listener. When Oracle UMS receives messages 
addressed to any access points registered by this client application, it invokes the 
onMessage callback for the client application’s default listener.

To remove a default listener, call this method with a null argument. 

Example 61–12 Default Message Listener

messagingClient.setMessageListener(new MyListener());

Note: A single invocation does not guarantee retrieval of all 
available messages. You must poll to ensure receiving all available 
messages.



Configuring for a Cluster Environment

Sending and Receiving Messages using the User Messaging Service Java API 61-11

See the sample application usermessagingsample-echo for detailed instructions 
on asynchronous receiving.

61.5.3.3 Per Access Point Message Listener
The client application can also register an access point and specify a Listener object 
and an optional correlator object (Example 61–13). When incoming messages arrive at 
the specified access point address, the specified listener’ s onMessage method is 
invoked. The originally-specified correlator object is also passed to the callback 
method. 

Example 61–13 Per Access Point Message Listener

messagingClient.registerAccessPoint(accessPoint, new MyListener(), null);

61.5.4 Message Filtering
A MessageFilter is used by an application to exercise greater control over what 
messages are delivered to it. A MessageFilter contains a matching criterion and an 
action. An application can register a series of message filters; they are applied in order 
against an incoming (received) message; if the criterion matches the message, the 
action is taken. For example, an application can use MessageFilters to implement 
necessary blacklists, by rejecting all messages from a given sender address.

You can use MessagingFactory.createMessageFilter to create a message 
filter, and MessagingClient.registerMessageFilter to register it. The filter is 
added to the end of the current filter chain for the application. When a message is 
received, it is passed through the filter chain in order; if the message matches a filter's 
criterion, the filter's action is taken immediately. If no filters match the message, the 
default action is to accept the message and deliver it to the application.

For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessagingFactory.createMessageFilter("spam",
 MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

To reject messages from email address spammer@foo.com:

MessageFilter senderFilter =
 MessagingFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

61.6 Configuring for a Cluster Environment
The API supports an environment where client applications and the UMS server are 
deployed in a cluster environment. For a clustered deployment to function as 
expected, client applications must be configured correctly. The following rules apply:

■ Two client applications are considered to be instances of the same application if 
they use the same ApplicationName configuration parameter. Typically this 
parameter is synthesized by the API implementation and does not need to be 
populated by the application developer. 

■ Instances of the same application share most of their configuration, and artifacts 
such as Access Points and Message Filters that are registered by one instance are 
shared by all instances.

■ The ApplicationInstanceName configuration parameter enables you to 
distinguish instances from one another. Typically this parameter is synthesized by 



Configuring Security

61-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

the API implementation and does not need to be populated by the application 
developer. Refer to the Javadoc for cases in which this value must be populated. 

■ Application sessions are instance-specific. You can set the session flag on a 
message to ensure that any reply is received by the instance that sent the message.

■ Listener correlators are instance-specific. If two different instances of an 
application register listeners and supply different correlators, then when instance 
A’ s listener is invoked, correlator A is supplied; when instance B’ s listener is 
invoked, correlator B is supplied.

61.7 Configuring Security
Client applications may need to specify one or more additional configuration 
parameters (described in Table 61–1) to establish a secure listener.

61.8 Threading Model
Client applications that use the UMS Java API are usually multithreaded. Typical 
scenarios include a pool of EJB instances, each of which uses a MessagingClient 
instance; and a servlet instance that is serviced by multiple threads in a web container. 
The UMS Java API supports the following thread model:

■ Each call to MessagingClientFactory.createMessagingClient returns a 
new MessagingClient instance.

■ When two MessagingClient instances are created by passing parameter maps 
that are equal to MessagingClientFactory.createMessagingClient, they 
are instances of the same client. Instances created by passing different parameter 
maps are instances of separate clients.

■ An instance of MessagingClient is not thread safe when it has been obtained 
using MessagingClientFactory.createMessagingClient. Client 
applications must ensure that a given instance is used by only one thread at a 
time. They may do so by ensuring that an instance is only visible to one thread at a 
time, or by synchronizing access to the MessagingClient instance.

■ Two instances of the same client (created with identical parameter maps) do share 
some resources – notably they share Message and Status Listeners, and use a 
common pool of Worker threads to execute asynchronous messaging operations. 
For example, if instance A calls setMessageListener(), and then instance B 
calls setMessageListener(), then B's listener is the active default message 
listener.

The following are typical use cases:

■ To use the UMS Java API from an EJB (either a Message Driven Bean or a Session 
Bean) application, the recommended approach is to create a MessagingClient 
instance in the bean’ s ejbCreate (or equivalent @PostConstruct) method, 
and store the MessagingClient in an instance variable in the bean class. The EJB 
container ensures that only one thread at a time uses a given EJB instance, which 
ensures that only one thread at a time accesses the bean’ s MessagingClient 
instance.

■ To use the UMS Java API from a Servlet, there are several possible approaches. In 
general Web containers create a single instance of the servlet class, which may be 
accessed by multiple threads concurrently. If a single MessagingClient instance 
is created and stored in a servlet instance variable, then access to the instance must 
be synchronized. 



Using the UMS Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service Java API 61-13

Another approach is to create a pool of MessagingClient instances that are 
shared among servlet threads. 

Finally, you can associate individual MessagingClient instances with 
individual HTTP Sessions. This approach allows increased concurrency compared 
to having a single MessagingClient for all servlet requests. However, it is 
possible for multiple threads to access an HTTP Session at the same time due to 
concurrent client requests, so synchronization is still required in this case.

61.8.1 Listener Threading
You can achieve asynchronous listening by spawning one or more worker threads that 
listen to the configured JMS queues for incoming messages and statuses. By default, 
one worker thread is spawned for incoming messages, and one worker thread is 
spawned for incoming status notifications (assuming at least one message or status 
listener is registered, respectively). Client applications can increase the concurrency of 
asynchronous processing by configuring additional worker threads. This is done by 
specifying integer values for the MessagingConstants.MESSAGE_LISTENER_
THREADS and MessagingConstants.STATUS_LISTENER_THREADS keys, settings 
these values to the desired number of worker threads in the configuration parameters 
used when creating a MessagingClient instance.

61.9 Using the UMS Client API to Build a Client Application
This section describes how to create an application called usermessagingsample, a web 
client application that uses the UMS Client API for both outbound messaging and the 
synchronous retrieval of message status. usermessagingsample also supports inbound 
messaging. Once you have deployed and configured usermessagingsample, you can use 
it to send a message to an email client.

This sample focuses on a Web Application Module (WAR), which defines some HTML 
forms and servlets. You can examine the code and corresponding XML files for the 
web application module from the provided usermessagingsample-src.zip 
source. The servlets uses the UMS Client API to create an UMS Client instance (which 
in turn registers the application's information) and sends messages. 

This application, which is packaged as a Enterprise ARchive file (EAR) called 
usermessagingsample.ear, has the following structure:

■ usermessagingsample.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

– weblogic-application.xml -- Descriptor file that contains the 
import of the oracle.sdp.messaging shared library.

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.



Using the UMS Client API to Build a Client Application

61-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ usermessagingsample-web.ear -- Contains the web-based front-end and 
servlets.

* WEB-INF

–    web.xml

–    weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-src.zip) 
are available on OTN.

61.9.1 Overview of Development
The following steps describe the process of building an application capable of 
outbound messaging using usermessagingsample.ear as an example:

1. Section 61.9.2, "Configuring the Email Driver"

2. Section 61.9.3, "Using JDeveloper 11g to Build the Application"

3. Section 61.9.4, "Deploying the Application"

4. Section 61.9.5, "Testing the Application"

61.9.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform outbound 
messaging and status retrieval, configure the email driver as follows:

■ Enter the name of the SMTP mail server as the value for the 
OutgoingMailServer property.

61.9.3 Using JDeveloper 11g to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile, 
and deploy usermessagingsample through the following steps:

61.9.3.1 Opening the Project
1. Unzip usermessagingsample-src.zip, to the JDEV_

HOME/communications/samples/ directory. This directory must be used for 
the shared library references to be valid in the project. 

2. Open usermessagingsample.jws (contained in the .zip file) in Oracle 
JDeveloper.

Note: This sample application is generic and can support outbound 
messaging through other channels when the appropriate messaging 
drivers are deployed and configured.

Note: If you choose to use a different directory, you must update the 
oracle.sdp.messaging library source path to JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar.



Using the UMS Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service Java API 61-15

Figure 61–1 Oracle JDeveloper Open Application Window 

In the Oracle JDeveloper main window, the project appears.

Figure 61–2 Oracle JDeveloper Main Window 

3. Satisfy the build dependencies for the sample application by ensuring the "Oracle 
UMS Client" library is used by the Web module.

1. In the Application Navigator, right-click web module 
usermessagingsample-web, and select Project Properties.

2. In the left pane, select Libraries and Classpath.



Using the UMS Client API to Build a Client Application

61-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 61–3 Verifying Libraries 

3. Click OK.

4. Explore the Java files under the usermessagingsample-web project to see how the 
messaging client APIs are used to send messages, get statuses, and synchronously 
receive messages. The MessagingClient instance is created in 
SampleUtils.java in the project.

61.9.4 Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the 
navigation pane and selecting New. Follow the instructions in Section 61.11, 
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample application, 
Deploy, usermessagingsample, to, and SOA_server (Figure 61–4).

Figure 61–4 Deploying the Project

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application. 

Before you can run the sample, you must configure any additional drivers in 
Oracle User Messaging Service and optionally configure a default device for the 
user receiving the message in User Messaging Preferences. 



Using the UMS Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service Java API 61-17

61.9.5 Testing the Application
Once usermessagingsample has been deployed to a running instance of Oracle 
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows: 
http://host:http-port/usermessagingsample/. For example, enter 
http://localhost:7001/usermessagingsample/ into the browser’s 
navigation bar. 

When prompted, enter login credentials. For example, username weblogic. The 
browser page for testing messaging samples appears (Figure 61–5).

Figure 61–5 Testing the Sample Application

2. Click Send sample message. The Send Message page appears (Figure 61–6).

Note: Refer to Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite for more information. 



Using the UMS Client API to Build a Client Application

61-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 61–6 Addressing the Test Message

3. As an optional step, enter the sender address in the following format:

Email:sender_address. 

For example, enter Email:sender@oracle.com.

4. Enter one or more recipient addresses. For example, enter 
Email:recipient@oracle.com. Enter multiple addresses as a 
comma-separated list as follows:

Email:recipient_address1, Email:recipient_address2.

If you have configured user messaging preferences, you can address the message 
simply to User:username. For example, User:weblogic.

5. As an optional step, enter a subject line or content for the email.

6. Click Send. The Message Status page appears, showing the progress of transaction 
(Message received by Messaging engine for processing in Figure 61–7). 

Figure 61–7 Message Status



Using the UMS Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service Java API 61-19

7. Click Refresh to update the status. When the email message has been delivered to 
the email server, the Status Content field displays Outbound message delivery to 
remote gateway succeeded., as illustrated in Figure 61–8.

Figure 61–8 Checking the Message Status

61.10 Using the UMS Client API to Build a Client Echo Application
This section describes how to create an application called usermessagingsample-echo, 
a demo client application that uses the UMS Client API to asynchronously receive 
messages from an email address and echo a reply back to the sender. 

This application, which is packaged as a Enterprise Archive file (EAR) called 
usermessagingsample-echo.ear, has the following structure:

■ usermessagingsample-echo.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

– weblogic-application.xml -- Descriptor file that contains the 
import of the oracle.sdp.messaging shared library.

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.



Using the UMS Client API to Build a Client Echo Application

61-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ usermessagingsample-echo-web.war -- Contains the web-based 
front-end and servlets. It also contains the listener that processes a received 
message and returns an echo response

* WEB-INF

–    web.xml

–    weblogic.xml

The prebuilt sample application, and the source code 
(usermessagingsample-echo-src.zip) are available on OTN.

61.10.1 Overview of Development
The following steps describe the process of building an application capable of 
asynchronous inbound and outbound messaging using 
usermessagingsample-echo.ear as an example:

1. Section 61.10.2, "Configuring the Email Driver"

2. Section 61.10.3, "Using JDeveloper 11g to Build the Application"

3. Section 61.10.4, "Deploying the Application"

4. Section 61.10.5, "Testing the Application"

61.10.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform inbound and 
outbound messaging and status retrieval, configure the email driver as follows:

■ Enter the name of the SMTP mail server as the value for the OutgoingMailServer 
property.

■ Enter the name of the IMAP4/POP3 mail server as the value for the 
IncomingMailServer property. Also, configure the incoming user name, and 
password.

61.10.3 Using JDeveloper 11g to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile, 
and deploy usermessagingsample-echo through the following steps:

61.10.3.1 Opening the Project
1. Unzip usermessagingsample-echo-src.zip, to the JDEV_

HOME/communications/
samples/ directory. This directory must be used for the shared library references 
to be valid in the project. 

Note: This sample application is generic and can support inbound 
and outbound messaging through other channels when the 
appropriate messaging drivers are deployed and configured.

Note: If you choose to use a different directory, you must update the 
oracle.sdp.messaging library source path to JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar.



Using the UMS Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service Java API 61-21

2. Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle 
JDeveloper (Figure 61–9).

Figure 61–9 Opening the Project

In the Oracle JDeveloper main window the project appears (Figure 61–10).

Figure 61–10 Oracle JDeveloper Main Window

3. Verify that the build dependencies for the sample application have been satisfied 
by checking that the following library has been added to the 
usermessagingsample-echo-web module.



Using the UMS Client API to Build a Client Echo Application

61-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Library: oracle.sdp.messaging, Classpath: JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar. This is the Java library used by UMS and applications 
that use UMS to send and receive messages.

Perform the following steps for each module:

1. In the Application Navigator, right-click the module and select Project 
Properties.

2. In the left pane, select Libraries and Classpath (Figure 61–11).

Figure 61–11 Verifying Libraries

3. Click OK.

4. Explore the Java files under the usermessagingsample-echo-web project to see 
how the messaging client APIs are used to register and unregister access points, 
and how the EchoListener is used to asynchronously receive messages.

61.10.4 Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the 
navigation pane and selecting New. Follow the instructions in Section 61.11, 
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample-echo application, 
Deploy, usermessagingsample-echo, to, and SOA_server (Figure 61–12).

Figure 61–12 Deploying the Project

3. Verify that the message Build Successful appears in the log.



Using the UMS Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service Java API 61-23

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application. 

Before you can run the sample you must configure any additional drivers in 
Oracle User Messaging Service and optionally configure a default device for the 
user receiving the message in User Messaging Preferences. 

61.10.5 Testing the Application
Once usermessagingsample-echo has been deployed to a running instance of Oracle 
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows: 
http://host:http-port/usermessagingsample-echo/. For example, 
enter http://localhost:7001/usermessagingsample-echo/ into the 
browser’s navigation bar. 

When prompted, enter login credentials. For example, username weblogic. The 
browser page for testing messaging samples appears (Figure 61–13).

Figure 61–13 Testing the Sample Application

2. Click Register/Unregister Access Points. The Access Point Registration page 
appears (Figure 61–14).

Note: Refer to Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite for more information. 



Creating a New Application Server Connection

61-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 61–14 Registering an Access Point

3. Enter the access point address in the following format:

EMAIL:server_address. 

For example, enter EMAIL:myserver@example.com.

4. Select the Action Register and Click Submit. The registration status page appears, 
showing "Registered" in Figure 61–15). 

Figure 61–15 Access Point Registration Status

5. Send a message from your messaging client (for email, your email client) to the 
address you just registered as an access point in the previous step. 

If the UMS messaging driver for that channel is configured correctly, you should 
expect to receive an echo message back from the usermessagingsample-echo 
application.

61.11 Creating a New Application Server Connection
Perform the following steps to create an Application Server Connection.



Creating a New Application Server Connection

Sending and Receiving Messages using the User Messaging Service Java API 61-25

1. Create a new Application Server Connection by right-clicking the project and 
selecting New, Connections, and Application Server Connection (Figure 61–16).

Figure 61–16 New Application Server Connection

2. Name the connection SOA_server and click Next (Figure 61–17).

3. Select WebLogic 10.3 as the Connection Type.

Figure 61–17 New Application Server Connection

4. Enter the authentication information. A typical value for user name is weblogic.

5. In the Connection dialog, enter the hostname, port, and SSL port for the SOA 
admin server, and enter the name of the domain for WLS Domain. 

6. Click Next.

7. In the Test dialog, click Test Connection. 

8. Verify that the message Success! appears.

The Application Server Connection has been created.



Creating a New Application Server Connection

61-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



62

Sending and Receiving Messages using the User Messaging Service Web Service API 62-1

62Sending and Receiving Messages using the
User Messaging Service Web Service API

This chapter describes how to use the User Messaging Service (UMS) Web Service API 
to develop applications. This API serves as a programmatic entry point for Fusion 
Middleware application developers to implement UMS messaging applications that 
run in a remote container relative to the UMS server (for example, UMS applications in 
an Oracle Fusion Applications environment).

This chapter includes the following sections:

■ Section 62.1, "Introduction to the UMS Web Service API"

■ Section 62.2, "Creating a UMS Client Instance and Specifying Runtime Parameters"

■ Section 62.3, "Sending a Message"

■ Section 62.4, "Retrieving Message Status"

■ Section 62.5, "Receiving a Message"

■ Section 62.6, "Configuring for a Cluster Environment"

■ Section 62.7, "Configuring Security"

■ Section 62.8, "Threading Model"

■ Section 62.9, "Sample Chat Application with Web Services APIs"

■ Section 62.10, "Creating a New Application Server Connection"

62.1 Introduction to the UMS Web Service API
The UMS Web Service API is functionally identical to the Java API. The JAX-WS and 
JAXB bindings of the web service types and interfaces are named similarly to the 
corresponding Java API classes, but are in their own package space. Classes from the 
two APIs are not interoperable. 

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.



Creating a UMS Client Instance and Specifying Runtime Parameters

62-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Consumers of the API can get an instance of a MessagingClient object using a 
factory method. The deployment is as a shared library, "oracle.sdp.client".

The UMS Web Service API consists of packages grouped as follows:

■ Common and Client Packages

– oracle.ucs.messaging.ws

– oracle.ucs.messaging.ws.types

■ Web Service API Web Service Definition Language (WSDL) files:

– messaging.wsdl:defines the operations invoked by a Web service client.

– listener.wsdl:defines the callback operations that a client must implement to 
receive asynchronous message or status notifications.

The samples with source code are available on Oracle Technology Network (OTN).

62.2 Creating a UMS Client Instance and Specifying Runtime Parameters
This section describes the requirements for creating a UMS Client. You can create a 
instance of oracle.ucs.messaging.ws.MessagingClient by using the public 
constructor. Client applications can specify a set of parameters at runtime when 
instantiating a client object. For example, you configure a MessagingClient instance 
by specifying parameters as a map of key-value pairs in a java.util.Map<String, 
Object>. Among other things, the configuration parameters serve to identify the Web 
Service endpoint URL identifying the UMS server to communicate with, and other 
Web Service-related information such as security policies. Client applications are 
responsible for storing and loading the configuration parameters using any available 
mechanism. 

You are responsible for mapping the parameters to/from whatever configuration 
storage mechanism is appropriate for your deployment. The MessagingClient class 
uses the specified key/value pairs for configuration, as well as passing through all 
parameters to the underlying JAX-WS service. Any parameters recognized by JAX-WS 
are valid. Table 62–1 lists the most common configuration parameters:

Table 62–1 Configuration Parameters Specified at Runtime

Key Use

javax.xml.ws.BindingProvider.ENDP
OINT_ADDRESS_PROPERTY

Endpoint URL for the remote UMS WS. This is 
typically 
"http://<host>:<port>/ucs/messaging/webse
rvice".

javax.xml.ws.BindingProvider.USEN
AME_PROPERTY

Username to be asserted in WS-Security 
headers when relevant

oracle.ucs.messaging.ws.ClientCon
stants.POLICIES

Set of OWSM WS-Security policies to attach to 
the client's requests. These must match the 
policies specified on the server side.

oracle.wsm.security.util.SecurityConstants.C
onfig.KEYSTORE_RECIPIENT_ALIAS_
PROPERTY

Used for OWSM policy attachment. Specifies an 
alternate alias to use for looking up encryption 
and signing keys from the credential store.

oracle.wsm.security.util.SecurityConstants.Cl
ientConstants.WSS_CSF_KEY

Used for OWSM policy attachment. Specifies a 
credential store key to use for looking up 
remote username/password information from 
the Oracle Web Services Management 
credential store map.



Sending a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 62-3

A MessagingClient cannot be reconfigured after it is instantiated. Instead, a new 
instance of the MessagingClient class must be created using the new configuration.

Example 62–1 shows code for creating a MessagingClient instance using 
username/token security, using the programmatic approach:

Example 62–1 Programmatic Approach to Creating a MessagingClient Instance, 
Username/Token Security

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(ClientConstants.POLICIES, new String[] {"oracle/wss11_username_token_
with_message_protection_client_policy"});
config.put(BindingProvider.USERNAME_PROPERTY, "user1");
config.put(oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_
LOCATION, oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_LOC_
SUBJECT);
config.put(oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_CSF_KEY,
 "user1-passkey");
config.put(MessagingConstants.APPLICATION_NAME, "MyUMSWSApp");
mClient = new MessagingClient(config);

Example 62–2 shows code for creating a MessagingClient instance using SAML 
token security, using the programmatic approach:

Example 62–2 Programmatic Approach to Creating a MessagingClient Instance, SAML 
Token Security

HashMap<String, Object> config = new HashMap<String, Object>();
config.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://example.com:8001/ucs/messaging/webservice");
config.put(ClientConstants.POLICIES, new String[] {"oracle/wss11_saml_token_
identity_switch_with_message_protection_client_policy"});
config.put(BindingProvider.USERNAME_PROPERTY, "user1");
config.put(oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_
LOCATION, oracle.wsm.security.util.SecurityConstants.Config.CLIENT_CREDS_LOC_
SUBJECT);
config.put(oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_
ALIAS_PROPERTY, "example.com");
config.put(MessagingConstants.APPLICATION_NAME, "MyUMSWSApp");
mClient = new MessagingClient(config);

A MessagingClient cannot be reconfigured after it is instantiated. Instead, you 
must create a new instance of the MessagingClient class using the desired 
configuration.

Factory methods are provided for creating Web Service API types in the class 
"oracle.ucs.messaging.ws.MessagingFactory".

62.3 Sending a Message
Invoking the send method causes the message to be delivered to UMS and processed 
accordingly. The send method returns a String message identifier that the client 
application can later use to retrieve message delivery status, or to correlate with 
asynchronous status notifications that are delivered to a Listener. The status returned 
is the latest known status based on UMS internal processing and delivery notifications 
received from external gateways.



Sending a Message

62-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The types of messages that can be created include plaintext messages, multipart 
messages that can consist of text/plain and text/html parts, and messages that include 
the creation of delivery channel (DeliveryType) specific payloads in a single 
message for recipients with different delivery types.

62.3.1 Creating a Message
This section describes the various types of messages that can be created.

62.3.1.1 Creating a Plaintext Message
Example 62–3 shows how to create a plaintext message using the UMS Web Service 
API.

Example 62–3 Creating a Plaintext Message Using the UMS Web Service API

Message message = MessagingFactory.createTextMessage("This is a Plain Text
 message.");
Message message = MessagingFactory.createMessage();
message.setContent(new DataHandler(new StringDataSource("This is a Plain Text
 message.", "text/plain; charset=UTF-8")));

62.3.1.2 Creating a Multipart/Mixed Message (with Text and Binary Parts)
Example 62–4 shows how to create a multipart/mixed message using the UMS Web 
Service API.

Example 62–4 Creating a Multipart/Mixed Message Using the UMS Web Service API

Message message = MessagingFactory.createMessage();
MimeMultipart mp = new MimeMultipart("mixed");
 
// Create the first body part
MimeBodyPart mp_partPlain = new MimeBodyPart();
StringDataSource plainDS = new StringDataSource("This is a Plain Text part.",
 "text/plain; charset=UTF-8");
mp_partPlain.setDataHandler(new DataHandler(plainDS));
mp.addBodyPart(mp_partPlain);
 
byte[] imageData; 
// Create or load image data in the above byte array (code not shown for brevity)
 
// Create the second body part
MimeBodyPart mp_partBinary = new MimeBodyPart();
ByteArrayDataSource binaryDS = new ByteArrayDataSource(imageData, "image/gif");
mp_partBinary.setDataHandler(binaryDS);
mp.addBodyPart(mp_partBinary);
 
message.setContent(new DataHandler(mp, mp.getContentType()));

62.3.1.3 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML 
Parts)
Example 62–5 shows how to create a multipart/alternative message using the UMS 
Web Service API.

Example 62–5 Creating a Multipart/Alternative Message Using the UMS Web Service API

Message message = MessagingFactory.createMessage();
MimeMultipart mp = new MimeMultipart("alternative");



Sending a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 62-5

MimeBodyPart mp_partPlain = new MimeBodyPart();
StringDataSource plainDS = new StringDataSource("This is a Plain Text part.", 
"text/plain; charset=UTF-8");
mp_partPlain.setDataHandler(new DataHandler(plainDS));
mp.addBodyPart(mp_partPlain);

MimeBodyPart mp_partRich = new MimeBodyPart();
StringDataSource richDS = new StringDataSource(
    "<html><head></head><body><b><i>This is an HTML part.</i></b></body></html>",
    "text/html");
mp_partRich.setDataHandler(new DataHandler(richDS));
mp.addBodyPart(mp_partRich);

message.setContent(new DataHandler(mp, mp.getContentType())); 

62.3.1.4 Creating Delivery Channel-Specific Payloads in a Single Message for 
Recipients with Different Delivery Types
When sending a message to a destination address, there could be multiple channels 
involved. Oracle UMS application developers are required to specify the correct 
multipart format for each channel.

Example 62–6 shows how to create delivery channel (DeliveryType) specific 
payloads in a single message for recipients with different delivery types. 

Each top-level part of a multiple payload multipart/alternative message should 
contain one or more values of this header. The value of this header should be the name 
of a valid delivery type. Refer to the available values for DeliveryType in the enum 
DeliveryType.

Example 62–6 Creating Delivery Channel-specific Payloads in a Single Message for 
Recipients with Different Delivery Types

Message message = MessagingFactory.createMessage();
 
// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");
 
// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setDataHandler(new DataHandler(new StringDataSource("Text content for SMS.",
 "text/plain; charset=UTF-8")));
part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");
// add first part
mp.addBodyPart(part1);
 
// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setDataHandler(new DataHandler(new StringDataSource("Text
 content for EMAIL/IM.", "text/plain; charset=UTF-8")));
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setDataHandler(new DataHandler(new
 StringDataSource("<html><head></head><body><b><i>" + "HTML content for EMAIL/IM."
 +
    "</i></b></body></html>", "text/html; charset=UTF-8")));
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, part2_mp.getContentType());
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");



Sending a Message

62-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");
// add second part
mp.addBodyPart(part2);
 
// set the content of the message
message.setContent(new DataHandler(mp, mp.getContentType()));
    
// set the MultiplePayload flag to true 
MimeHeader multiHeader = new MimeHeader();
multiHeader.setName(oracle.sdp.messaging.Message.HEADER_SDPM_MULTIPLE_PAYLOAD);
multiHeader.setValue(Boolean.TRUE.toString());
message.getHeaders().add(multiHeader);

62.3.2 API Reference for Interface Message
The API reference for interface Message can be accessed from the Javadoc.

62.3.3 API Reference for Enum DeliveryType
The API reference for enum DeliveryType can be accessed from the Javadoc.

62.3.4 Addressing a Message
This section describes type of addresses and how to create address objects.

62.3.4.1 Types of Addresses
There are two types of addresses, device addresses and user addresses. A device address 
can be of various types, such as email addresses, instant messaging addresses, and 
telephone numbers. User addresses are user IDs in a user repository. 

62.3.4.2 Creating Address Objects
You can address senders and recipients of messages by using the class 
MessagingFactory to create Address objects defined by the Address interface. 

62.3.4.2.1 Creating a Single Address Object  Example 62–7 shows code for creating a 
single Address object:

Example 62–7 Creating a Single Address Object

Address recipient = MessagingFactory.createAddress("Email:john.doe@oracle.com");

62.3.4.2.2 Creating Multiple Address Objects in a Batch  Example 62–8 shows code for 
creating multiple Address objects in a batch:

Example 62–8 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john.doe@oracle.com", "IM:john.doe@oracle.com"};
Address[] recipients = MessagingFactory.createAddress(recipientsStr);

62.3.4.2.3 Adding Sender or Recipient Addresses to a Message  Example 62–9 shows code 
for adding sender or recipient addresses to a message:

Example 62–9 Adding Sender or Recipient Addresses to a Message

Address sender = MessagingFactory.createAddress("Email:john.doe@oracle.com");
Address recipient = MessagingFactory.createAddress("Email:jane.doe@oracle.com");
message.addSender(sender);



Sending a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 62-7

message.addRecipient(recipient);

62.3.4.3 Creating a Recipient with a Failover Address
Example 62–10 shows code for creating a recipient with a failover address:

Example 62–10 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john.doe@oracle.com, 
IM:john.doe@oracle.com";
Address recipient = MessagingFactory.createAddress(recipientWithFailoverStr);

62.3.4.4 Recipient Types
The WS API provides support for sending and receiving messages with To/Cc/Bcc 
recipients for use with the email driver:

■ To send a message and specify a Cc/Bcc recipient, create the 
oracle.ucs.messaging.ws.Address object using 
oracle.ucs.messaging.ws.MessagingFactory.buildAddress method. 
The arguments are the address value (for example, user@domain.com), delivery 
type (for example, DeliveryType.EMAIL), and email mode (for example, "Cc" or 
"Bcc").

■ To determine the recipient type of an existing address object, for example in a 
received message, use the 
oracle.ucs.messaging.ws.MessagingFactory.getRecipientType 
method, passing it the Address object. It returns a string indicating the recipient 
type.

62.3.4.5 API Reference for Class MessagingFactory
The API reference for class MessagingFactory can be accessed from the Javadoc.

62.3.4.6 API Reference for Interface Address
The API reference for interface Address can be accessed from the Javadoc.

62.3.5 User Preference Based Messaging 
When sending a message to a user recipient (to leverage the user's messaging 
preferences), you can pass facts (current values) for various business terms in the 
message as metadata. The UMS server matches the supplied facts in the message 
against conditions for business terms specified in the user's messaging filters. 

Example 62–11 shows how to specify a user recipient and supply facts for business 
terms for the user preferences in a message. For a complete list of supported business 
terms, refer to Chapter 64, "User Messaging Preferences."

Example 62–11 User Preference Based Messaging

Message message = MessagingFactory.createMessage();
// create and add a user recipient

Note: All facts must be added as metadata in the 
oracle.sdp.messaging.Message.NAMESPACE_NOTIFICATION_
PREFERENCES namespace. Metadata in other namespaces are ignored 
(for resolving user messaging preferences). 



Retrieving Message Status

62-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Address userRecipient1 = MessagingFactory.createAddress("USER:sampleuser1");
message.addRecipient(userRecipient1);
// specify business term facts
MessagingFactory.setMetadata(message, oracle.sdp.messaging.Message.NAMESPACE_
NOTIFICATION_PREFERENCES, "Customer Name", "ACME");
//  where "Customer Name" is the Business Term name, and "ACME" is the
Business Term value (i.e, fact).

62.4 Retrieving Message Status
After sending a message, you can use Oracle UMS to retrieve the message status either 
synchronously or asynchronously. 

62.4.1 Synchronous Retrieval of Message Status
To perform a synchronous retrieval of current status, use the following flow from the 
MessagingClient API:

String messageId = messagingClient.send(message);
List<Status> statuses = messagingClient.getStatus(messageId, null)

or,

List<Status> statuses = messagingClient.getStatus(messageId, addresses) --- where
addresses is a "List<Address>" of one or more of the recipients set in the 
message.

62.4.2 Asynchronous Receiving of Message Status
To receive statuses asynchronously, a client application must implement the Listener 
Web service as described in listener.wsdl. There is no constraint on how the 
listener endpoint must be implemented. For example, one method is to use the 
javax.xml.ws.Endpoint JAX-WS Service API to publish a web service endpoint. 
This mechanism is available in Java SE 6 and does not require the consumer to 
explicitly define a Java EE servlet module.

However, a servlet-based listener implementation is acceptable as well. 

When sending a message, the client application can provide a reference to the listener 
endpoint, consisting of the endpoint URL and a SOAP interface name. As statuses are 
generated during the processing of the message, the UMS server invokes the listener 
endpoint’ s onStatus method to notify the client application.

62.4.2.1 Creating a Listener Programmatically
Listeners are purely programmatic. You create a listener by implementing the 
oracle.ucs.messaging.ws.Listener interface. You can implement it as any 
concrete class - one of your existing classes, a new class, or an anonymous or inner 
class. 

The following code example shows how to implement a status listener:

@PortableWebService(serviceName="ListenerService",
targetNamespace="http://xmlns.oracle.com/ucs/messaging/",
endpointInterface="oracle.ucs.messaging.ws.Listener",
wsdlLocation="META-INF/wsdl/listener.wsdl",
portName="Listener")
public class MyListener implements Listener {
  public MyListener() {
  }



Receiving a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 62-9

    
  @Override
  public void onMessage(Message message, byte[] correlator) throws 
MessagingException {
    System.out.println("I got a message!");  
  }

  @Override
  public void onStatus(Status status, byte[] correlator) throws MessagingException 
{
    System.out.println("I got a status!");
  }
}

62.4.2.2 Publish the Callback Service
When the To publish the callback service, you can either declare a servlet in web.xml 
in a web module within your application, or use the JAX-WS javax.xml.ws.Endpoint 
class's publish method to programmatically publish a WS endpoint (Example 62–12):

Example 62–12 Publish the Callback Service

Listener myListener = new MyListener();
String callbackURL = "http://host:port/umswscallback";
Endpoint myEndpoint = javax.xml.ws.Endpoint.publish(callbackURL, myListener);

62.4.2.3 Stop a Dynamically Published Endpoint
To stop a dynamically published endpoint, call the stop() method on the Endpoint 
object returned from Endpoint.publish() (Example 62–13).

Example 62–13 Stop a Dynamically Published Endpoint

// When done, stop the endpoint, ideally in a finally block or other reliable 
cleanup mechanism
myEndpoint.stop();

62.4.2.4 Registration
Once the listener web service is published, you must register the fact that your client 
has such an endpoint. There are the following relevant methods in the 
MessagingClient API:

■ setStatusListener(ListenerReference listener)

■ send(Message message, ListenerReference listener, byte[] 
correlator)

setStatusListener() registers a "default" status listener whose callback is 
invoked for any incoming status messages. A listener passed to send() is only 
invoked for status updates related to the corresponding message.

62.5 Receiving a Message
This section describes how an application receives messages. To receive a message you 
must first register an access point. From the application perspective there are two 
modes for receiving a message, synchronous and asynchronous.



Receiving a Message

62-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

62.5.1 Registering an Access Point
The client application can create and register an access point, specifying that it wants 
to receive incoming messages sent to a particular address. When registering an access 
point, the client application can provide a reference to the listener endpoint, consisting 
of the endpoint URL and a SOAP interface name. As messages arrive, the UMS server 
invokes the listener endpoint’ s onMessage method to notify the client application.

The client application can then invoke the receive method to fetch the pending 
messages. When receiving messages without specifying an access point, the 
application receives messages for any of the access points that it has registered. 
Otherwise, if an access point is specified, the application receives messages sent to that 
access point.

AccessPoint represents one or more device addresses to receive incoming messages. 
An application that wants to receive incoming messages must register one or more 
access points that represent the recipient addresses of the messages. The server 
matches the recipient address of an incoming message against the set of registered 
access points, and routes the incoming message to the application that registered the 
matching access point.

You can use MessagingFactory.createAccessPoint to create an access point 
and MessagingClient.registerAccessPoint to register it for receiving 
messages.

To register an SMS access point for the number 9000: 

AccessPoint accessPointSingleAddress =
 MessagingFactory.createAccessPoint(AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999: 

AccessPoint accessPointRangeAddress =
 MessagingFactory.createAccessPoint(AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");
messagingClient.registerAccessPoint(accessPointRangeAddress);

62.5.2 Synchronous Receiving
Receive is a nonblocking operation. If there are no pending messages for the 
application or access point, the call returns immediately with an empty list. Receive is 
not guaranteed to return all available messages, but may return only a subset of 
available messages for efficiency reasons.

You can use the method MessagingClient.receive to synchronously receive 
messages. This is a convenient polling method for light-weight clients that do not want 
the configuration overhead associated with receiving messages asynchronously. This 
method returns a list of messages that are immediately available in the application 
inbound queue.

It performs a nonblocking call, so if no message is currently available, the method 
returns null. 

Note: A single invocation does not guarantee retrieval of all 
available messages. You must poll to ensure receiving all available 
messages.



Receiving a Message

Sending and Receiving Messages using the User Messaging Service Web Service API 62-11

62.5.3 Asynchronous Receiving
To receive messages asynchronously, a client application must implement the 
Listener web service as described in listener.wsdl. There is no constraint on 
how the listener endpoint must be implemented. For example, one mechanism is using 
the javax.xml.ws.Endpoint JAX-WS Service API to publish a Web service 
endpoint. This mechanism is available in Java SE 6 and does not require the consumer 
to explicitly define a Java EE servlet module. However, a servlet-based listener 
implementation is also acceptable.

62.5.3.1 Creating a Listener Programmatically
Listeners are purely programmatic. You create a listener by implementing the 
oracle.ucs.messaging.ws.Listener interface. You can implement it as any 
concrete class - one of your existing classes, a new class, or an anonymous or inner 
class.

The following code example shows how to implement a message listener:

@PortableWebService(serviceName="ListenerService",
targetNamespace="http://xmlns.oracle.com/ucs/messaging/",
endpointInterface="oracle.ucs.messaging.ws.Listener",
wsdlLocation="META-INF/wsdl/listener.wsdl",
portName="Listener")
public class MyListener implements Listener {
  public MyListener() {
  }
    
  @Override
  public void onMessage(Message message, byte[] correlator) throws 
MessagingException {
    System.out.println("I got a message!");  
  }

  @Override
  public void onStatus(Status status, byte[] correlator) throws MessagingException 
{
    System.out.println("I got a status!");
  }
}

You pass a reference to the Listener object to the setMessageListener or 
registerAccessPoint methods, as described in "Default Message Listener" and 
"Per Access Point Message Listener". When a message arrives for your application, the 
UMS infrastructure invokes the Listener's onMessage method.

62.5.3.2 Default Message Listener
The client application typically sets a default message listener (Example 62–14). This 
listener is invoked for any delivery statuses for messages sent by this client application 
that do not have an associated listener. When Oracle UMS receives messages 
addressed to any access points registered by this client application, it invokes the 
onMessage callback for the client application’s default listener.

To remove a default listener, call this method with a null argument. 

Example 62–14 Default Message Listener

messagingClient.setMessageListener(new MyListener());



Configuring for a Cluster Environment

62-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

62.5.3.3 Per Access Point Message Listener
The client application can also register an access point and specify a Listener object 
and an optional correlator object (Example 62–15). When incoming messages arrive at 
the specified access point address, the specified listener’ s onMessage method is 
invoked. The originally-specified correlator object is also passed to the callback 
method. 

Example 62–15 Per Access Point Message Listener

messagingClient.registerAccessPoint(accessPoint, new MyListener(), null);

62.5.4 Message Filtering
A MessageFilter is used by an application to exercise greater control over what 
messages are delivered to it. A MessageFilter contains a matching criterion and an 
action. An application can register a series of message filters; they are applied in order 
against an incoming (received) message; if the criterion matches the message, the 
action is taken. For example, an application can use MessageFilters to implement 
necessary blacklists, by rejecting all messages from a given sender address.

You can use MessagingFactory.createMessageFilter to create a message 
filter, and MessagingClient.registerMessageFilter to register it. The filter is 
added to the end of the current filter chain for the application. When a message is 
received, it is passed through the filter chain in order; if the message matches a filter's 
criterion, the filter's action is taken immediately. If no filters match the message, the 
default action is to accept the message and deliver it to the application.

For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessagingFactory.createMessageFilter("spam",
 FilterFieldType.SUBJECT, null, FilterActionType.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

To reject messages from email address spammer@foo.com:

MessageFilter senderFilter =
 MessagingFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

62.6 Configuring for a Cluster Environment
The API supports an environment where client applications and the UMS server are 
deployed in a cluster environment. For a clustered deployment to function as 
expected, client applications must be configured correctly. The following rules apply:

■ Two client applications are considered to be instances of the same application if 
they use the same ApplicationName configuration parameter. 

■ The ApplicationInstanceName configuration parameter enables you to 
distinguish instances from one another.

■ Application sessions are instance-specific. You can set the session flag on a 
message to ensure that any reply is received by the instance that sent the message.

■ Listener correlators are instance-specific. If two different instances of an 
application register listeners and supply different correlators, then when instance 
A’ s listener is invoked, correlator A is supplied; when instance B’ s listener is 
invoked, correlator B is supplied.



Configuring Security

Sending and Receiving Messages using the User Messaging Service Web Service API 62-13

62.7 Configuring Security
The following sections discuss security considerations:

■ Section 62.7.1, "Client and Server Security"

■ Section 62.7.2, "Listener/Callback Security"

62.7.1 Client and Server Security
There are two supported security modes for the UMS Web Service: Security Assertions 
Markup Language (SAML) tokens and username tokens. 

The supported SAML-based policy is "oracle/wss11_saml_token_with_message_
protection_client_policy". This policy establishes a trust relationship between the client 
application and the UMS server based on the exchange of cryptographic keys. The 
client application is then allowed to assert a user identity that is respected by the UMS 
server. To use SAML tokens for WS-Security, some keystore configuration is required 
for both the client and the server. See Example 62–2 for more details about configuring 
SAML security in a UMS Web service client.

The supported username token policy is "oracle/wss11_username_token_with_
message_protection_client_policy". This policy passes an encrypted 
username/password token in the WS-Security headers, and the server authenticates 
the supplied credentials. It is highly recommended that the username and password 
be stored in the Credential Store, in which case only a Credential Store key must be 
passed to the MessagingClient constructor, ensuring that credentials are not 
hard-coded or stored in an unsecure manner. See Example 62–1 for more details about 
configuring SAML security in a UMS Web service client.

62.7.2 Listener/Callback Security
Username token and SAML token security are also supported for the Listener callback 
web services. When registering a listener, the client application must supply 
additional parameters specifying the security policy and any key or credential lookup 
information that the server requires to establish a secure connection.

Example 62–16 illustrates how to establish a secure callback endpoint using username 
token security:

Example 62–16 Establishing a Secure Callback Endpoint Using Username Token 
Security

MessagingClient client = new MessagingClient(clientParameters);
...
ListenerReference listenerRef = new ListenerReference();
// A web service implementing the oracle.ucs.messaging.ws.Listener
// interface must be available at the specified URL.
listenerRef.setEndpoint(myCallbackURL);
Parameter policyParam = new Parameter();
policyParam.setName(ClientConstants.POLICY_STRING);
policyParam.setValue("oracle/wss11_username_token_with_message_protection_client_
policy");
listenerRef.getParameters.add(policyParam);
// A credential store entry with the specified key must be 
// provisioned on the server side so it will be available when the callback
// is invoked.
Parameter csfParam = new Parameter();
csfParam.setName(oracle.wsm.security.util.SecurityConstants.ClientConstants.WSS_
CSF_KEY);



Threading Model

62-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

csfParam.setValue("callback-csf-key"); 
listenerRef.getParameters.add(csfParam);
client.setMessageListener(listenerRef);

62.8 Threading Model
Instances of the WS MessagingClient class are not thread-safe due to the underlying 
services provided by the JAX-WS stack. You are responsible for ensuring that each 
instance is used by only one thread at a time.

62.9  Sample Chat Application with Web Services APIs
This chapter describes how to create, deploy and run the sample chat application with 
Web Services APIs provided with Oracle User Messaging Service on OTN. 

This chapter contains the following sections:

■ Section 62.9.1, "Overview"

■ Section 62.9.2, "Running the Pre-Built Sample"

■ Section 62.9.3, "Testing the Sample"

62.9.1 Overview
This sample demonstrates how to create a web-based chat application to send and 
receive messages through email, SMS, or IM. The sample uses the Web Service APIs to 
interact with a User Messaging server. You define an application server connection in 
Oracle JDeveloper, and deploy and run the application.

The application is provided as a pre-built Oracle JDeveloper project that includes a 
simple Web chat interface.

62.9.1.1 Provided Files
The following files are included in the sample application:

■ usermessagingsample-ws-src.zip – the archive containing the source code and 
Oracle JDeveloper project files.

■  usermessagingsample-ws.ear - the pre-built sample application that can be 
deployed to the container.

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.

Note: To learn about the architecture and components of Oracle User 
Messaging Service, see Oracle Fusion Middleware Getting Started with 
Oracle SOA Suite.



Sample Chat Application with Web Services APIs

Sending and Receiving Messages using the User Messaging Service Web Service API 62-15

62.9.2 Running the Pre-Built Sample
Perform the following steps to run and deploy the pre-built sample application:

1. Extract "usermessagingsample-ws-src.zip" and open 
usermessagingsample-ws.jws in Oracle JDeveloper.

Figure 62–1 Opening the Project in Oracle JDeveloper

In the Oracle JDeveloper main window the project appears.



Sample Chat Application with Web Services APIs

62-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 62–2 Oracle JDeveloper Main Window

The application contains one Web module. All of the source code for the 
application is in place. 

2. Satisfy the build dependencies for the sample application by ensuring the "Oracle 
UMS Client" library is used by the Web module.

1. In the Application Navigator, right-click web module 
usermessagingsample-ws-war, and select Project Properties.

2. In the left pane, select Libraries and Classpath.



Sample Chat Application with Web Services APIs

Sending and Receiving Messages using the User Messaging Service Web Service API 62-17

Figure 62–3 Adding a Library

3. Click OK.

3. Create an Application Server Connection by right-clicking the project in the 
navigation pane and selecting New. Follow the instructions in Section 62.10, 
"Creating a New Application Server Connection".

4. Deploy the project by selecting the usermessasgingsample-ws project, Deploy, 
usermessasgingsample-ws, to, and SOA_server (Figure 62–4).

Figure 62–4 Deploying the Project

5. Verify that the message Build Successful appears in the log.

6. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application. 

62.9.3 Testing the Sample
Perform the following steps to run and test the sample:

1. Open a web browser.

2. Navigate to the URL of the application as follows, and log in:



Sample Chat Application with Web Services APIs

62-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

http://host:port/usermessagingsample-ws/

The Messaging Web Services Sample web page appears (Figure 62–5). This page 
contains navigation tabs and instructions for the application.

Figure 62–5 Messaging Web Services Sample Web Page

3. Click Configure and enter the following values (Figure 62–6):

■ Specify the Web Service endpoint. For example, 
http://example.com:8001/ucs/messaging/webservice

■ Specify the Username and Password.

■ Specify a Policy (required if the User Messaging Service instance has WS 
security enabled).



Sample Chat Application with Web Services APIs

Sending and Receiving Messages using the User Messaging Service Web Service API 62-19

Figure 62–6 Configuring the Web Service Endpoints and Credentials

4. Click Save.

5. Click Manage.

6. Enter an address and optional keyword at which to receive messages 
(Figure 62–7). 

Figure 62–7 Registering an Access Point

7. Click Start.

Verify that the message Registration operation succeeded appears.

8. Click Chat (Figure 62–8).



Creating a New Application Server Connection

62-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9. Enter recipients in the To: field in the format illustrated in Figure 62–8.

10. Enter a message.

11. Click Send.

12. Verify that the message is received.

Figure 62–8 Running the Sample

62.10 Creating a New Application Server Connection
Perform the following steps to create an Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and 
selecting New, Connections, and Application Server Connection (Figure 62–9).

Figure 62–9 New Application Server Connection



Creating a New Application Server Connection

Sending and Receiving Messages using the User Messaging Service Web Service API 62-21

2. Name the connection SOA_server and click Next (Figure 62–10).

3. Select WebLogic 10.3 as the Connection Type.

Figure 62–10 New Application Server Connection

4. Enter the authentication information. A typical value for user name is weblogic.

5. In the Connection dialog, enter the hostname, port, and SSL port for the SOA 
admin server, and enter the name of the domain for WLS Domain. 

6. Click Next.

7. In the Test dialog, click Test Connection. 

8. Verify that the message Success! appears.

The Application Server Connection has been created.



Creating a New Application Server Connection

62-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Parlay X Web Services Multimedia Messaging API 63-1

63
Parlay X Web Services Multimedia

Messaging API

This chapter describes the Parlay X Multimedia Messaging Web Service that is 
available with Oracle User Messaging Service and how to use the Parlay X Web 
Services Multimedia Messaging API to send and receive messages through Oracle 
User Messaging Service. 

This chapter includes the following sections:

■ Section 63.1, "Introduction to Parlay X Messaging Operations"

■ Section 63.2, "Send Message Interface"

■ Section 63.3, "Receive Message Interface"

■ Section 63.4, "Oracle Extension to Parlay X Messaging"

■ Section 63.5, "Parlay X Messaging Client API and Client Proxy Packages"

■ Section 63.6, "Sample Chat Application with Parlay X APIs"

63.1 Introduction to Parlay X Messaging Operations
The following sections describe the semantics of each of the supported operations 
along with implementation-specific details for the Parlay X Gateway. The following 

Note: To learn about the architecture and components of Oracle User 
Messaging Service, see Oracle Fusion Middleware Getting Started with 
Oracle SOA Suite.

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.

Note: Oracle User Messaging Service also ships with a Java client 
library that implements the Parlay X API.



Send Message Interface

63-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

tables, describing input/output message parameters for each operation, are taken 
directly from the Parlay X specification. 

Oracle User Messaging Service implements a subset of the Parlay X 2.1 Multimedia 
Messaging specification. Specifically Oracle User Messaging Service supports the 
SendMessage and ReceiveMessage interfaces. The MessageNotification and 
MessageNotificationManager interfaces are not supported.

63.2 Send Message Interface
The SendMessage interface enables you to send a message to one or more recipient 
addresses by using the sendMessage operation, or get the delivery status for a 
previously sent message by using the getMessageDeliveryStatus operation. The 
following requirements apply:

■ A recipient address must conform to the address format requirements of Oracle 
User Messaging Service (in addition to being a valid URI). The general format is 
delivery_type:protocol_specific_address, such as 
email:user@domain, sms:5551212 or im:user@jabberdomain. 

■ Certain characters are not allowed in URIs; if it is necessary to include them in an 
address they can be encoded or escaped. Refer to the JavaDoc for java.net.URI 
for details on how to create a properly encoded URI.

■ While the WSDL specifies that sender addresses can be any string, Oracle User 
Messaging Service requires that they be valid Messaging addresses. 

■ Oracle User Messaging Service requires that you specify sender addresses on a 
per-delivery type basis. So for a sender address to apply to a recipient of a given 
delivery type, say EMAIL, the sender address must also have delivery type of 
EMAIL. Since this operation allows multiple recipient addresses but only one 
sender address, the sender address only applies to the recipients with the same 
delivery type. 

■ Oracle User Messaging Service does not support the MessageNotification 
interface, and therefore do not produce delivery receipts, even if a receiptRequest 
is specified. In other words, the receiptRequest parameter is ignored. 

63.2.1 sendMessage Operation
Table 63–1 describes message descriptions for the sendMessageRequest input in the 
sendMessage operation.

Table 63–1 sendMessage Input Message Descriptions

Part Name Part Type Optional Description

addresses xsd:anyURI[0..unbounded] No Destination address for this 
Message.

senderAddress xsd:string Yes Message sender address. This 
parameter is not allowed for all 
3rd party providers. The Parlay X 
server must handle this according 
to a SLA for the specific 
application and its use can 
therefore result in a 
PolicyException.



Send Message Interface

Parlay X Web Services Multimedia Messaging API 63-3

Table 63–2 describes sendMessageResponse output messages for the sendMessage 
operation.

63.2.2 getMessageDeliveryStatus Operation
The getMessageDeliveryStatus operation gets the delivery status for a 
previously sent message. The input "requestIdentifier" is the "result" value from a 
sendMessage operation. This is the same identifier that is referred to as a Message ID 
in other Messaging documentation.

Table 63–3 describes the getMessageDeliveryStatusRequest input messages for 
the getMessageDeliveryStatus operation.

Table 63–4 describes the getMessageDeliveryStatusResponse output messages for the 
getMessageDeliveryStatus operation.

subject xsd:string Yes Message subject. If mapped to 
SMS, this parameter is used as the 
senderAddress, even if a separate 
senderAddress is provided.

priority MessagePriority Yes Priority of the message. If not 
present, the network assigns a 
priority based on the operator 
policy.Charging to apply to this 
message.

charging common:
ChargingInformation

Yes Charging to apply to this message.

receiptRequest common:SimpleReference Yes Defines the application endpoint, 
interface name and correlator that 
is used to notify the application 
when the message has been 
delivered to a terminal or if 
delivery is impossible.

Table 63–2 sendMessageResponse Output Message Descriptions

Part Name Part Type Optional Description

result xsd:string No This correlation identifier is used 
in a getMessageDeliveryStatus 
operation invocation to poll for 
the delivery status of all sent 
messages.

Table 63–3 getMessageDeliveryStatusRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No Identifier related to the delivery 
status request.

Table 63–1 (Cont.) sendMessage Input Message Descriptions

Part Name Part Type Optional Description



Receive Message Interface

63-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

63.3 Receive Message Interface
The ReceiveMessage interface has three operations. The getReceivedMessages 
operation polls the server for any messages received since the last invocation of 
getReceivedMessages. Note that getReceivedMessages does not necessarily 
return any message content; it generally only returns message metadata. 

The other two operations, getMessage and getMessageURIs, are used to retrieve 
message content.

63.3.1 getReceivedMessages Operation
This operation polls the server for any received messages. Note the following 
requirements:

■ The registration ID parameter is a string that identifies the endpoint address for 
which the application wants to receive messages. See the discussion of the 
ReceiveMessageManager interface for more details. 

■ The Parlay X specification says that if the registration ID is not specified, all 
messages for this application should be returned. However, the WSDL says that 
the registration ID parameter is mandatory. Therefore our implementation treats 
the empty string ("") as the "not-specified" value. If you call getReceivedMessages 
with the empty string as your registration ID, you get all messages for this 
application. Therefore the empty string is not an allowed value of registration ID 
when calling startReceiveMessages. 

■ According to the Parlay X specification, if the received message content is "pure 
ASCII text", then the message content is returned inline within the 
MessageReference object, and the messageIdentifier (Message ID) element is null. 
Our implementation treats any content with Content-Type "text/plain", and with 
encoding "us-ascii" as "pure ASCII text" for the purposes of this operation. As per 
the MIME specification, if no encoding is specified, "us-ascii" is assumed, and if no 
Content-Type is specified, "text/plain" is assumed. 

■ The priority parameter is currently ignored. 

Table 63–5 describes the getReceivedMessagesRequest input messages for the 
getReceivedMessages operation.

Table 63–4 getMessageDeliveryStatusResponse Output Message Descriptions

Part Name Part Type Optional Description

result DeliveryInformation
[0..unbounded]

Yes An array of status of the messages 
that were previously sent. Each 
array element represents a sent 
message, its destination address 
and its delivery status.

Table 63–5 getReceivedMessagesRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No Identifies the off-line provisioning 
step that enables the application to 
receive notification of Message 
reception according to the 
specified criteria.



Receive Message Interface

Parlay X Web Services Multimedia Messaging API 63-5

Table 63–6 describes the getReceivedMessagesResponse output messages for the 
getReceivedMessages operation.

63.3.2 getMessage Operation
The getMessage operation retrieves message content, using a message ID from a 
previous invocation of getReceivedMessages. There is no SOAP body in the response 
message; the content is returned as a single SOAP attachment. 

Table 63–7 describes the getMessageRequest input messages for the getMessage 
operation.

There are no getMessageResponse output messages for the getMessage operation.

63.3.3 getMessageURIs Operation
The getMessageURIs retrieves message content as a list of URIs. Note the following 
requirements:

■ These URIs are HTTP URLs that can be dereferenced to retrieve the content. 

■ If the inbound message has a Content-Type of "multipart", then there are multiple 
URIs returned, one per subpart. If the Content-Type is not "multipart", then a 
single URI are returned. 

■ Per the Parlay X specification, if the inbound messages a body text part, defined as 
"the message body if it is encoded as ASCII text", it is returned inline within the 

priority MessagePriority Yes The priority of the messages to 
poll from the Parlay X gateway. 
All messages of the specified 
priority and higher are retrieved. 
If not specified, all messages shall 
be returned, that is, the same as 
specifying "Low."

Table 63–6 getReceivedMessagesResponse Output Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No Identifies the off-line provisioning 
step that enables the application to 
receive notification of Message 
reception according to the 
specified criteria.

priority MessagePriority Yes The priority of the messages to 
poll from the Parlay X gateway. 
All messages of the specified 
priority and higher are retrieved. 
If not specified, all messages shall 
be returned. This is equal to 
specifying Low.

Table 63–7 getMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

messageRefIdentifier xsd:string No The identity of the message.

Table 63–5 (Cont.) getReceivedMessagesRequest Input Message Descriptions

Part Name Part Type Optional Description



Oracle Extension to Parlay X Messaging

63-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

MessageURI object. For the purposes of our implementation, you define this 
behavior as follows: 

– If the message's Content-Type is "text/*" (any text type), and if the charset 
parameter is "us-ascii", then the content is returned inline in the MessageURI 
object. There are no URIs returned since there is no content other than what is 
returned inline. 

– If the message's Content-Type is "multipart/" (any multipart type), and if the 
first body part's Content-Type is "text/" with charset "us-ascii", then that part 
is returned inline in the MessageURI object, and there are no URIs returned 
corresponding to that part. 

– Per the MIME specification, if the charset parameter is omitted, the default 
value of "us-ascii" is assumed. If the Content-Type header is not specified for 
the message, then a Content-Type of "text/plain" is assumed. 

Table 63–8 describes the getMessageURIsRequest input messages for the 
getMessageURIs operation.

Table 63–9 describes the getMessageURIsResponse output messages for the 
getMessageURIs operation.

63.4 Oracle Extension to Parlay X Messaging
The Parlay X Messaging specification leaves certain parts of the messaging flow 
undefined. The main area that is left undefined is the process for binding a client to an 
address for synchronous receiving (through the ReceiveMessage interface). 

Oracle User Messaging Service includes an extension interface to Parlay X to support 
this process. The extension is implemented as a separate WSDL in an Oracle XML 
namespace to indicate that it is not an official part of Parlay X. Clients can choose to 
not use this additional interface or use it in some modular way such that their core 
messaging logic remains fully compliant with the Parlay X specification.

63.4.1 ReceiveMessageManager Interface
ReceiveMessageManager is the Oracle-specific interface for managing client 
registrations for receiving messages. Clients use this interface to start and stop 
receiving messages at a particular address. (This is analogous to the concept of 
registering/unregistering access points in the Messaging API). 

Table 63–8 getMessageURIsRequest Input Message Descriptions

Part Name Part Type Optional Description

messageRefIdentifier xsd:string No The identity of the message to 
retrieve.

Table 63–9 getMessageURIsResponse Output Message Descriptions

Part Name Part Type Optional Description

result MessageURI No Contains the complete message, 
consisting of the textual part of 
the message, if such exists, and a 
list of file references for the 
message attachments, if any.



Oracle Extension to Parlay X Messaging

Parlay X Web Services Multimedia Messaging API 63-7

63.4.1.1 startReceiveMessage Operation
Invoking this operation allows a client to bind itself to a given endpoint for receiving 
messages. Note the following requirements:

■ An endpoint consists of an address and an optional "criteria", defined by the 
Parlay X specification as the first white space-delimited token of the message 
subject or content. 

■ In addition to the endpoint information, the client also specifies a "registration ID" 
when invoking this operation; this ID is just a unique string which can be used 
later to refer to this particular binding in the stopReceiveMessage and 
getReceivedMessages operations. 

■ If an endpoint is already registered by another client application, or the 
registration ID is already being used, a Policy Error results. 

■ Certain characters are not allowed in URIs; if it is necessary to include them in an 
address they can be encoded/escaped. See the javadoc for java.net.URI for details 
on how to create a properly encoded URI. For example, when registering to 
receive XMPP messages you must specify an address such as 
IM:jabber|user@example.com, however the pipe (|) character is not allowed 
in URIs, and must be escaped before submitting to the server. 

■ There is no guarantee that the server can actually receive messages at a given 
endpoint address. That depends on the overall configuration of Oracle User 
Messaging Service, particularly the Messaging drivers that are deployed in the 
system. No error is indicated if a client binds to an address where the server 
cannot receive messages. 

The startReceiveMessage operation has the following inputs and outputs:

Table 63–10 describes the startReceiveMessageRequest input messages for the 
startReceiveMessage operation.

There are no startReceiveMessageResponse output messages for the 
startReceiveMessage operation.

63.4.1.2 stopReceiveMessage Operation
Invoking this operation removes the previously-established binding between a client 
and a receiving endpoint. The client specifies the same registration ID that was 
supplied when startReceiveMessage was called to identify the endpoint binding 
that is being broken. If there is no corresponding registration ID binding known to the 
server for this application, a Policy Error results.

Table 63–11 describes the stopReceiveMessageRequest input messages for the 
stopReceiveMessage operation.

Table 63–10 startReceiveMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No A registration identifier.

messageService
ActivationNumber

xsd:anyURI No Message Service Activation 
Number.

criteria xsd:string Yes Descriptive string.



Parlay X Messaging Client API and Client Proxy Packages

63-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

There are no stopReceiveMessageResponse output messages for the 
stopReceiveMessage operation.

63.5 Parlay X Messaging Client API and Client Proxy Packages
While it is possible to assemble a Parlay X Messaging Client using only the Parlay X 
WSDL files and a web service assembly tool, prebuilt web service stubs and interfaces 
are provided for the supported Parlay X Messaging interfaces. Due to difficulty in 
assembling a web service with SOAP attachments in the style mandated by Parlay X, 
Oracle recommends the use of the provided API rather than starting from WSDL.

For a complete listing of the classes available in the Parlay X Messaging API, see the 
Messaging JavaDoc. The main entry points for the API are through the following client 
classes:

■ oracle.sdp.parlayx.multimedia_
messaging.send.SendMessageClient

■ oracle.sdp.parlayx.multimedia_
messaging.receive.ReceiveMessageClient

■ oracle.sdp.parlayx.multimedia_messaging.extension.receive_
manager.ReceiveMessageManager

Each client class allows a client application to invoke the operations in the 
corresponding interface. Additional web service parameters such as the remote 
gateway URL and any required security credentials, are provided when an instance of 
the client class is constructed. See the Javadoc for more details. The security credentials 
are propagated to the server using standard WS-Security headers, as mandated by the 
Parlay X specification. 

The general process for a client application is to create one of the client classes above, 
set the necessary configuration items (endpoint, username, password), then invoke 
one of the business methods (for example, SendMessageClient.sendMessage(), 
and so on). For examples of how to use this API, see the Messaging samples on Oracle 
Technology Network (OTN), and specifically 
usermessagingsample-parlayx-src.zip.

63.6  Sample Chat Application with Parlay X APIs
This chapter describes how to create, deploy and run the sample chat application with 
Parlay X APIs provided with Oracle User Messaging Service on OTN. 

Table 63–11 stopReceiveMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No A registration identifier.

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.



Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 63-9

This chapter contains the following sections:

■ Section 63.6.1, "Overview"

■ Section 63.6.2, "Running the Pre-Built Sample"

■ Section 63.6.3, "Testing the Sample"

■ Section 63.6.4, "Creating a New Application Server Connection"

63.6.1 Overview
This sample demonstrates how to create a web-based chat application to send and 
receive messages through email, SMS, or IM. The sample uses standards-based Parlay 
X Web Service APIs to interact with a User Messaging server. The sample application 
includes web service proxy code for each of three web service interfaces: the 
SendMessage and ReceiveMessage services defined by Parlay X, and the 
ReceiveMessageManager service which is an Oracle extension to Parlay X. You define 
an application server connection in Oracle JDeveloper, and deploy and run the 
application.

The application is provided as a pre-built Oracle JDeveloper project that includes a 
simple web chat interface.

63.6.1.1 Provided Files
The following files are included in the sample application:

■ Project – the directory containing the archived Oracle JDeveloper project files.

■ Readme.txt. 

■ Release notes

63.6.2 Running the Pre-Built Sample
Perform the following steps to run and deploy the pre-built sample application:

1. Open the usermessagingsample-parlayx.jws (contained in the .zip file) in Oracle 
JDeveloper.

In the Oracle JDeveloper main window the project appears.

Note: To learn about the architecture and components of Oracle User 
Messaging Service, see Oracle Fusion Middleware Getting Started with 
Oracle SOA Suite.



Sample Chat Application with Parlay X APIs

63-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 63–1 Oracle JDeveloper Main Window

2. In Oracle JDeveloper, select File > Open..., then navigate to the directory above 
and open workspace file "usermessagingsample-parlayx.jws".

This opens the precreated JDeveloper application for the Parlay X sample 
application. The application contains one web module. All of the source code for 
the application is in place. You must configure the parameters that are specific to 
your installation.

3. Satisfy the build dependencies for the sample application by ensuring the "Oracle 
UMS Client" library is used by the Web module.

1. In the Application Navigator, right-click web module 
usermessagingsample-parlayx-war, and select Project Properties.

2. In the left pane, select Libraries and Classpath.



Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 63-11

Figure 63–2 Adding a Library

3. Click OK.

4. Create an Application Server Connection by right-clicking the project in the 
navigation pane and selecting New. Follow the instructions in Section 63.6.4, 
"Creating a New Application Server Connection".

5. Deploy the project by selecting the usermessasgingsample-parlayx project, 
Deploy, usermessasgingsample-parlayx, to, and SOA_server (Figure 63–3).

Figure 63–3 Deploying the Project

6. Verify that the message Build Successful appears in the log.

7. Enter the default revision and click OK.

8. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application. 

Before you can run the sample you must configure any additional drivers in 
Oracle User Messaging Service and configure a default device for the user 
receiving the message in User Messaging Preferences, as described in the 
following sections.



Sample Chat Application with Parlay X APIs

63-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

63.6.3 Testing the Sample
Perform the following steps to run and test the sample:

1. Open a web browser.

2. Navigate to the URL of the application as follows, and log in:

http://host:port/usermessagingsample-parlayx/

The Messaging Parlay X Sample web page appears (Figure 63–4). This page 
contains navigation tabs and instructions for the application.

Figure 63–4 Messaging Parlay X Sample Web Page

3. Click Configure and enter the following values (Figure 63–5):

■ Specify the Send endpoint. For example, 
http://localhost:port/sdpmessaging/parlayx/SendMessageServ
ice

■ Specify the Receive endpoint. For example, 
http://localhost:port/sdpmessaging/parlayx/ReceiveMessageS
ervice 

■ Specify the Receive Manager endpoint. For example, 
http://localhost:port/sdpmessaging/parlayx/ReceiveMessageM
essageService

■ Specify the Username and Password.

■ Specify a Policy (required if the User Messaging Service instance has WS 
security enabled).

Note: Refer to Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite for more information. 



Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 63-13

Figure 63–5 Configuring the Web Service Endpoints and Credentials

4. Click Save.

5. Click Manage.

6. Enter a Registration ID to specify the registration and address at which to receive 
messages (Figure 63–6). You can also use this page to stop receiving messages at 
an address.

Figure 63–6 Specifying a Registration ID

7. Click Start.

Verify that the message Registration operation succeeded appears.

8. Click Chat (Figure 63–7).

9. Enter recipients in the To: field in the format illustrated in Figure 63–7.

10. Enter a message.

11. Click Send.

12. Verify that the message is received.



Sample Chat Application with Parlay X APIs

63-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 63–7 Running the Sample

63.6.4 Creating a New Application Server Connection
Perform the following steps to create an Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and 
selecting New, Connections, and Application Server Connection (Figure 63–8).



Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 63-15

Figure 63–8 New Application Server Connection

2. Name the connection SOA_server and click Next (Figure 63–9).

3. Select WebLogic 10.3 as the Connection Type.

Figure 63–9 New Application Server Connection

4. Enter the authentication information. The typical value for username is 
weblogic.

5. In the Connection dialog, enter the hostname, port and SSL port for the SOA 
admin server, and enter the name of the domain for the Oracle WebLogic Server 
Domain. 

6. Click Next.

7. On the Test dialog, click Test Connection. 

8. Verify that the message Success! appears.

The Application Server Connection has been created.



Sample Chat Application with Parlay X APIs

63-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



User Messaging Preferences 64-1

64
User Messaging Preferences

This chapter describes the User Messaging Preferences that are packaged with Oracle 
User Messaging Service. It describes how to work with messaging channels and to 
create contact rules using messaging filters. 

This chapter includes the following sections:

■ Section 64.1, "Introduction to User Messaging Preferences"

■ Section 64.2, "How to Manage Messaging Channels"

■ Section 64.3, "Creating Contact Rules using Filters"

■ Section 64.4, "Configuring Settings"

64.1 Introduction to User Messaging Preferences
User Messaging Preferences allows a user who has access to multiple channels 
(delivery types) to control how, when, and where they receive messages. Users define 
filters, or delivery preferences, that specify which channel a message should be 
delivered to, and under what circumstances. Information about a user's devices and 
filters are stored in any database supported for use with Oracle Fusion Middleware.

For an application developer, User Messaging Preferences provide increased 
flexibility. Rather than an application needing business logic to decide whether to send 
an email or SMS message, the application can just send to the user, and the message is 
delivered according to the user's preferences.

Since preferences are stored in a database, this information is shared across all 
instances of User Messaging Preferences in a domain.

The oracle.sdp.messaging.userprefs package contains the User Messaging 
Preferences API classes. For more information, refer to the Javadoc.

64.1.1 Terminology
User Messaging Preferences defines the following terminology:

■ Channel: the transport type, for example, email, voice, or SMS. Also, generally, a 
physical channel, such as a phone, or PDA.

■ Channel address: one of the addresses that a channel can communicate with.

Note: To learn about the architecture and components of Oracle User 
Messaging Service, see Oracle Fusion Middleware Getting Started with 
Oracle SOA Suite.



Introduction to User Messaging Preferences

64-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Filters: a set of notification delivery preferences. 

■ System term: a pre-defined business term that cannot be extended by the 
administrator.

■ Business term: a rule term defined and managed by the system administrator 
through Enterprise Manager. Business terms can be added, defined, or deleted.

■ Rule term: a system term or a business term.

■ Operators: comparison operators equals, does not equal, contains, or does not contain.

■ Facts: data passed in from the message to be evaluated, such as time sent, or sender.

■ Rules Engine: the User Messaging Preferences component that processes and 
evaluates filters.

■ Comparison: a rule term and the associated comparison operator.

■ Action: the action to be taken if the specified conditions in a rule are true, such as 
Broadcast to All, Failover, or Do not Send to Any Channel.

64.1.2 Configuration of Notification Delivery Preferences
User Messaging Preferences allows configuration of notification delivery preferences 
based on the following:

■ a set of well-defined rule terms (system terms or business terms)

■ a set of channel and the corresponding addresses supported by Oracle User 
Messaging Service

■ a set of User Messaging Preferences filters that are transparently handled by a 
rules engine

One use case for notification delivery preference is for bugs entered into a bug 
tracking system. For example, user Alex wants to be notified through SMS and EMAIL 
channels for bugs filed against his product with priority = 1 by a customer type = 
Premium. For all other bugs with priority > 1, he only wants to be notified by EMAIL. 
Alex’s preferences can be stated as follows:

Example 64–1 Notification Delivery Preferences

Rule (1): if (Customer Type = Premium) AND (priority = 1) then notify [Alex] using
 SMS and EMAIL.

Rule (2): if (Customer Type = Premium) AND (priority > 1) then notify [Alex] using
EMAIL.
 
A runtime service, the Oracle Rules Engine, evaluates the filters to process the 
notification delivery of user requests.

64.1.3 Delivery Preference Rules
A delivery preference rule consists of rule comparisons and rule actions. A rule 
comparison consists of a rule term (a system term or a business term) and the 
associated comparison operators. A rule action is the action to be taken if the specified 
conditions in a rule are true.

64.1.3.1 Data Types
Table 64–2 lists data types supported by User Messaging Preferences. Each system 
term and business term must have an associated data type, and each data type has a 



Introduction to User Messaging Preferences

User Messaging Preferences 64-3

set of pre-defined comparison operators. Administrators cannot extend these 
operators.

64.1.3.2 System Terms
Table 64–2 lists system terms, which are pre-defined business terms. Administrators 
cannot extend the system terms.

64.1.3.3 Business Terms
Business terms are rule terms defined and managed by the system administrator 
through Oracle Application Server 11g Enterprise Manager. For more information on 
adding, defining, and deleting business terms, refer to Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite. A business term consists of a key, a data 
type, an optional description, and an optional List of Values (LOV). 

Table 64–3 lists the pre-defined business terms supported by User Messaging 
Preferences.

Table 64–1 Data Types Supported by User Messaging Preferences

Data Type
Comparison 
Operators Supported Values

Date <, >, between, <=, >= Date is accepted as a java.util.Date object 
or string representing the number of 
milliseconds since the standard base time 
known as "the epoch", namely January 1, 1970, 
00:00:00 GMT (in essence, the value from 
java.util.Date.getTime() or 
java.util.Calendar.getTime()).

Time ==, !=, between A 4-digit integer to represent time of the day 
in HHMM format. First 2-digit is the hour in 
24-hour format. Last 2-digit is minutes.

Number (Decimal) <, >, between, <=, >=, 
isMultipleOf, 
isNotMultipleOf

A java.lang.Double object or a string 
representing a floating decimal point number 
with double precision.

String ==, !=, contains, not 
contains

Any arbitrary string.

Note: The String data type does not support regular expressions. 

The Time data type is only available to System Terms.

Table 64–2 System Terms Supported by User Messaging Preferences

System Term Data Type Supported Values

Date Date Date is accepted as a java.util.Date object 
or string representing the number of 
milliseconds since the standard base time 
known as "the epoch", namely January 1, 1970, 
00:00:00 GMT (in essence, the value from 
java.util.Date.getTime() or 
java.util.Calendar.getTime()).

Time Time A 4-digit integer to represent time of the day 
in HHMM format. First 2-digit is the hour in 
24-hour format. Last 2-digit is minutes.



Introduction to User Messaging Preferences

64-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

64.1.4 Rule Actions
For a given rule, a User Messaging Preferences user can define one of the following 
actions:

■ Broadcast to All: send a broadcast message to all channels in the broadcast 
address list.

■ Failover: Send a message serially to channels in the address list until one 
successful message is sent. This means performing a send to the next channel 

Table 64–3 Pre-defined Business Terms for User Messaging Preferences

Business Term Data Type

Service Name String

Process Name String

System Code String

Error Code String

Occurrence Count Number (Decimal)

Organization String

Time Number (Decimal)

Priority String

Application String

Application Type String

Expiration Date Date

From String

To String

Customer Name String

Customer Type String

Status String

Amount Number (Decimal)

Due Date Date

Process Type String

Expense Type String

Total Cost Number (Decimal)

Processing Time Number (Decimal)

Order Type String

Service Request Type String

Group Name String

Source String

Classification String

Duration Number (Decimal)

User String

Role String



How to Manage Messaging Channels

User Messaging Preferences 64-5

when the current channel returns a failure status. User Messaging Preferences 
does not allow a user to specify a channel-specific status code or expiration time.

■ Do not send to Any Channel: Do not send a message to any channel.

■ Default address: if no action is defined, a message is sent to a default address or 
addresses, as defined in the Messaging Channels page in Enterprise Manager.

64.2 How to Manage Messaging Channels
Any channel that a user creates is associated with that user’s system ID. In Oracle User 
Messaging Service, channels represent both physical channels, such as mobile phones, 
and also email client applications running on desktops, and are configurable on the 
The Messaging Channels tab (Figure 64–1).

Figure 64–1 Messaging Channels Tab

The Messaging Channels tab enables users to perform the following tasks:

64.2.1 Creating a Channel
To create a channel:

1. Click Create (Figure 64–2).

Figure 64–2 The Create Icon

2. Enter a name for the channel in the Name field (Figure 64–3).

3. Select the channel’s transport type from the Type dropdown menu.

4. Enter the number or address appropriate to the transport type you selected.

Tip: User Messaging Preferences does not provide a filter action that 
instructs "do not send to a specified channel." A best practice is to 
specify only positive actions, and not negative actions in rules.



How to Manage Messaging Channels

64-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Select the Default checkbox to set the channel as a default channel. You can have 
multiple default channels.

Figure 64–3 Creating a Channel

6. Click OK to create the channel. The channel appears on the Channels page. The 
Channels page enables you to edit or delete the channel. 

64.2.2 Editing a Channel
To edit a channel, select it from the Channels list and click Edit (Figure 64–4). The 
editing page appears for the channel, which enables you to change the channel 
properties described in Section 64.2.1, "Creating a Channel".

Figure 64–4 Edit a Channel

Certain channels are based on information retrieved from your user profile in the 
identity store, and this address cannot be modified by User Messaging Preferences 



Creating Contact Rules using Filters

User Messaging Preferences 64-7

(Figure 64–5). The only operation that can be performed on such as channel is to make 
it the default.

Figure 64–5 Edit a Identity Store-Backed Channel

64.2.3 Deleting a Channel
To delete a channel, select it and click Delete (Figure 64–6).

Figure 64–6 The Delete Icon

64.2.4 Setting a Default Channel
You can configure one or more channels as default channels. Email is preconfigured as 
a default for receiving notifications. You can add or remove a channel as a default 
channel.

To set an additional channel as a default, select it, click Edit, and then click Set as 
default channel. A checkmark (Figure 64–7) appears next to the selected channel, 
designating it as a default means of receiving notifications. Repeat this procedure to 
add additional default channels, if required.

Figure 64–7 The Default Icon

64.3 Creating Contact Rules using Filters
The Messaging Filters tab (Figure 64–8) enables users to build filters that specify not 
only the type of notifications they want to receive, but also the channel through which 
to receive these notifications through a combination of comparison operators (such as 
is equal to, is not equal to), business terms that describe the notification type, content or 
source, and finally, the notification actions, which send the notifications to all 
channels, block channels from receiving notifications, or send notifications to the first 
available channel.



Creating Contact Rules using Filters

64-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 64–8 Messaging Filters Tab

Figure 64–9 illustrates the creation of a filter called Travel Filter, by a user named 
weblogic, for handling notifications regarding Customers during his travel. 
Notifications that match all of the filter conditions are first directed to his "Business 
Mobile" channel. Should this channel become unavailable, Oracle User Messaging 
Service transmits the notifications as e-mails since the next available channel selected 
is Business Email.



Creating Contact Rules using Filters

User Messaging Preferences 64-9

Figure 64–9 Creating a Filter

64.3.1 Creating Filters
To create a filter:

1. Click Create (Figure 64–2). The Create Filter page appears (Figure 64–9).

2. Enter a name for the filter in the Filter Name field.

3. If needed, enter a description of the filter in the Description field.

4. Select whether notifications must meet all of the conditions or any of the 
conditions by selecting either the All of the following conditions or Any of the 
following conditions options.

5. Define the filter conditions using the lists and fields of the Condition section as 
follows: 

a. Select the notification's attributes. Refer to Table 64–3 for a list of these 
attributes.

b. Combine the selected condition type with one of the comparison operators 
described in Table 64–1. 

c. Add appropriate values describing the attributes or operators. 

For instance, if you select the Date attribute, select one of the comparison 
operators and then select the appropriate dates from the date chooser. 

6. Click Add (Figure 64–6) to add the attribute and the comparison operators to the 
table. 



Configuring Settings

64-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. Repeat these steps to add more filter conditions. To delete a filter condition, click 
Delete (Figure 64–6).

8. Select one of the following delivery rules:

■ Send Messages to all Selected Channels -- Select this option to send messages 
to every listed channel. 

■ Send to the First Available Channel (Failover in the order) -- Select this 
option to send messages matching the filter criteria to a preferred channel (set 
using the up and down arrows) or to the next available channel. 

■ Send No Messages -- Select this option to block the receipt of any messages 
that meet the filter conditions.

9. To set the delivery channels, select a channel from the Add Notification Channel 
list and then click Add (Figure 64–6). To delete a channel, click Delete 
(Figure 64–6).

10. If needed, use the up and down arrows to prioritize channels. If available, the 
top-most channel receives messages meeting the filter criteria if you select Send to 
the First Available Channel.

11. Click OK to create the filter. Clicking Cancel discards the filter.

64.3.2 Editing a Filter
To edit a filter, first select it and then click Edit (Figure 64–9). The editing page appears 
for the filter, which enables you to add or change the filter properties described in 
Section 64.3.1, "Creating Filters".

64.3.3 Deleting a Filter
To delete a filter, first select it and then click Delete (Figure 64–6).

64.4 Configuring Settings
The Settings tab (Figure 64–10), accessed from the upper right area, enables users to 
set the following parameters: 

■ Accessibility Mode: select Standard or Screen Reader.

■ Locale Source: select From Identity Store or From Your Browser.



Configuring Settings

User Messaging Preferences 64-11

Figure 64–10 Configuring Settings



Configuring Settings

64-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Part XII
Part XII  Appendices

This part describes Oracle SOA Suite appendixes.

This part contains the following appendixes:

■ Appendix A, "BPEL Process Activities and Services"

■ Appendix B, "XPath Extension Functions"

■ Appendix C, "Deployment Descriptor Properties"

■ Appendix D, "Understanding Sensor Public Views and the Sensor Actions XSD"

■ Appendix E, "Oracle BAM Web Services Operations"

■ Appendix F, "Oracle BAM Alert Rule Options"

■ Appendix G, "Oracle BAM ICommand Operations and File Formats"

■ Appendix H, "Normalized Message Properties"

■ Appendix I, "Interfaces Implemented By Rules Dictionary Editor Task Flow"

■ Appendix J, "Oracle User Messaging Service Applications"

■ Appendix K, "Oracle SOA Suite Properties Road Map"





BPEL Process Activities and Services A-1

A
BPEL Process Activities and Services

This appendix describes the activities and services that you use when designing a 
BPEL process in a SOA composite application.

This appendix includes the following sections:

■ Section A.1, "Introduction to Activities and Components"

■ Section A.2, "Introduction to BPEL 1.1 and 2.0 Activities"

■ Section A.3, "Introduction to BPEL Services"

■ Section A.4, "Publishing and Browsing the Oracle Service Registry"

■ Section A.5, "Providing Design-time Governance with the Oracle Enterprise 
Repository"

■ Section A.6, "Validating When Loading a Process Diagram"

A.1 Introduction to Activities and Components
When you expand SOA Components in the Component Palette of Oracle BPEL 
Designer, service components are displayed. Figure A–1 shows the components that 
display for a BPEL 1.1 process. A BPEL 2.0 process also shows the same components.

Figure A–1 SOA Components

See the following sections for additional details.

■ BPEL process

See Part II, "Using the BPEL Process Service Component"

■ Business rule

 See Part IV, "Using the Business Rules Service Component"

■ Human task



Introduction to BPEL 1.1 and 2.0 Activities

A-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 Part V, "Using the Human Workflow Service Component"

■ Mediator

 See Part III, "Using the Oracle Mediator Service Component"

A.2 Introduction to BPEL 1.1 and 2.0 Activities
This section provides a brief overview of BPEL activities and provides references to 
other documentation that describes how to use these activities.

Oracle BPEL Designer includes BPEL 1.1 and BPEL 2.0 activities that are available for 
adding in a BPEL process. These activities enable you to perform specific tasks within 
a process. Some activities are available in both BPEL 1.1 and BPEL 2.0. Others are 
available in only BPEL 1.1 or BPEL 2.0.

To access these activities, go to the Component Palette of Oracle BPEL Designer. The 
activities display under either of two categories:

■ BPEL Constructs: Displays core activities (also known as constructs) provided by 
standard BPEL 1.1 and 2.0 functionality. The activities in this category are 
displayed under additional subcategories of Web Service, Activities, and 
Structured Activities in BPEL 1.1 and Web Service, Basic Activities, and 
Structured Activities in BPEL 2.0.

■ Oracle Extensions: Displays extension activities that add value and ease of use to 
BPEL 1.1 and 2.0 functionality

Table A–1 lists the available activities.

Table A–1 BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under...
Supported in 
BPEL 1.1 Supported in BPEL 2.0 For More Information

Assign BPEL Constructs Yes Yes Section A.2.2, "Assign 
Activity"

Assert Oracle Extensions Yes No Section A.2.3, "Assert 
Activity"

Bind Entity Oracle Extensions Yes No Section A.2.4, "Bind Entity 
Activity"

Compensate BPEL Constructs Yes Yes Section A.2.5, 
"Compensate Activity"

CompensateScope BPEL Constructs No Yes Section A.2.6, 
"CompensateScope 
Activity"

Create Entity Oracle Extensions Yes No Section A.2.7, "Create 
Entity Activity"

Dehydrate Oracle Extensions Yes Yes Section A.2.8, "Dehydrate 
Activity"

Email Oracle Extensions Yes Yes Section A.2.9, "Email 
Activity"

Empty BPEL Constructs Yes Yes Section A.2.10, "Empty 
Activity"

Exit BPEL Constructs No Yes

Note: Replaces the 
terminate activity in 
BPEL 2.0.

Section A.2.11, "Exit 
Activity"



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-3

Flow BPEL Constructs Yes Yes Section A.2.12, "Flow 
Activity"

FlowN Oracle Extensions Yes No

Note: Replaced by the 
forEach activity in BPEL 
2.0

Section A.2.13, "FlowN 
Activity"

forEach BPEL Constructs No Yes

Note: Replaces the 
FlowN activity in BPEL 
2.0.

Section A.2.14, "forEach 
Activity"

If BPEL Constructs No Yes

Note: Replaces the 
switch activity in BPEL 
2.0.

Section A.2.15, "If 
Activity"

IM Oracle Extensions Yes Yes Section A.2.16, "IM 
Activity"

Invoke BPEL Constructs Yes Yes Section A.2.17, "Invoke 
Activity"

Java Embedding Oracle Extensions Yes Yes Section A.2.18, "Java 
Embedding Activity"

Partner Link BPEL Constructs Yes Yes Section A.2.19, "Partner 
Link Activity"

Phase Oracle Extensions Yes Yes Section A.2.20, "Phase 
Activity"

Pick BPEL Constructs Yes Yes Section A.2.21, "Pick 
Activity"

Receive BPEL Constructs Yes Yes Section A.2.22, "Receive 
Activity"

Receive Signal Oracle Extensions Yes Yes Section A.2.23, "Receive 
Signal Activity"

Remove Entity Oracle Extensions Yes No Section A.2.24, "Remove 
Entity Activity"

RepeatUntil BPEL Constructs No Yes Section A.2.25, 
"RepeatUntil Activity"

Replay Oracle Extensions Yes Yes Section A.2.26, "Replay 
Activity"

Reply BPEL Constructs Yes Yes Section A.2.27, "Reply 
Activity"

Rethrow BPEL Constructs No Yes Section A.2.28, "Rethrow 
Activity"

Scope BPEL Constructs Yes Yes Section A.2.29, "Scope 
Activity"

Sequence BPEL Constructs Yes Yes Section A.2.30, "Sequence 
Activity"

Signal Oracle Extensions Yes Yes Section A.2.31, "Signal 
Activity"

Table A–1 (Cont.) BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under...
Supported in 
BPEL 1.1 Supported in BPEL 2.0 For More Information



Introduction to BPEL 1.1 and 2.0 Activities

A-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information about activities, see the Business Process Execution Language for 
Web Services Specification Version 1.1 or the Web Services Business Process Execution 
Language Specification Version 2.0 by visiting the following URL:

http://www.oasis-open.org

A.2.1 Tabs Common to Many Activities
While each activity performs specific tasks, many activities include tabs that enable 
you to perform similar tasks. This section describes these common tabs.

A.2.1.1 Annotations Tab
The Annotations tab displays on all activities and enables you to provide descriptions 
in activities in the form of code comments and name and pair value assignments.

Note that the Annotations tab does not provide a method for changing the order of 
annotations. As a work around, change the order of annotations in the Source view of 
the project’s BPEL file in Oracle BPEL Designer.

A.2.1.2 Assertions Tab
The Assertions tab displays in invoke, receive, reply, and the onMessage branches of 
pick and scope activities. A set of assertions are executed upon receipt of a callback 
message at a request-response operation in these activities. The assertions specify an 

SMS Oracle Extensions Yes Yes Section A.2.32, "SMS 
Activity"

Switch BPEL Constructs Yes No

Note: Replaced by the if 
activity in BPEL 2.0.

Section A.2.33, "Switch 
Activity"

Terminate BPEL Constructs Yes No

Note: Replaced by the 
exit activity in BPEL 2.0

Section A.2.34, "Terminate 
Activity"

Throw BPEL Constructs Yes Yes Section A.2.35, "Throw 
Activity"

Transform Oracle Extensions Yes Yes Section A.2.36, "Transform 
Activity"

User Notification Oracle Extensions Yes Yes Section A.2.37, "User 
Notification Activity"

Validate Oracle Extensions 
(in BPEL 1.1)

BPEL Constructs 
(in BPEL 2.0)

Yes Yes Section A.2.38, "Validate 
Activity"

Voice Oracle Extensions Yes Yes Section A.2.39, "Voice 
Activity"

Wait BPEL Constructs Yes Yes Section A.2.40, "Wait 
Activity"

While BPEL Constructs Yes Yes Section A.2.41, "While 
Activity"

Table A–1 (Cont.) BPEL 1.1 and 2.0 Constructions and Extensions

Activity Display Under...
Supported in 
BPEL 1.1 Supported in BPEL 2.0 For More Information



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-5

XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from 
the activity. This provides an alternative to using a potentially large number of switch, 
assign, and throw activities after a partner callback.

For more information, see the online help for this tab and Section 11.14, "Throwing 
Faults with Assertion Conditions."

A.2.1.3 Correlations Tab
The Correlations tab displays in invoke, receive, and reply activities, the onMessage 
branch of pick activities, and the OnMessage branch of scope activities. Correlation 
sets address complex interactions between a process and its partners by providing a 
method for explicitly specifying correlated groups of operations within a service 
instance. A set of correlation tokens is defined as a set of properties shared by all 
messages in the correlated group. 

For more information, see the online help for this tab and Section 8.5, "Using 
Correlation Sets in an Asynchronous Service."

A.2.1.4 Documentation Tab
The Documentation tab enables you to embed human documentation in the activities 
of a BPEL file. These comments only display in the source code of the BPEL file. 
Example A–1 provides details.

Example A–1 Documentation Tab

<invoke>
. . .
   <documentation>
      Invokes the credit rating service partner link
   </documentation>
. . .

A.2.1.5 Headers Tab
The Headers tab displays in invoke, receive, and reply activities, and the onMessage 
branch of pick and scope (for BPEL 1.1) activities. You create header variables for use 
with the Advanced Queuing (AQ), File, FTP, MQ, and Java Message Service (JMS) 
adapters.

For more information, see the online help for this tab and Oracle Fusion Middleware 
User's Guide for Technology Adapters

A.2.1.6 Properties Tab
The Properties tab displays in invoke, receive, and reply activities, and the onMessage 
branch of pick and scope activities.You can define normalized message header 
properties for Oracle BPEL Process Manager, Oracle Mediator, Oracle JCA adapters, 
and Oracle B2B. 

For more information, see the online help for this tab and Appendix H, "Normalized 
Message Properties."

Note: This tab is only available in BPEL 1.1 projects.

Note: This tab is only available in BPEL 2.0 projects.



Introduction to BPEL 1.1 and 2.0 Activities

A-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A.2.1.7 Skip Condition Tab
The Skip Condition tab displays in most activities and enables you to specify an 
XPath expression that, when evaluated to true, causes the activity to be skipped. This 
extension provides an alternative to the case pattern of a switch activity that you use to 
make an activity conditional.

For more information, see the online help for this tab and Section 10.5, "Specifying 
XPath Expressions to Bypass Activity Execution."

A.2.1.8 Source and Targets Tabs
The Sources and Targets tabs enable you to define the source and target activities to 
execute in a flow activity. This feature enables you to synchronize the execution of 
activities within a flow activity to ensure that a target activity only executes after a 
source activity have completed.

For more information, see the online help for this tab and Section 9.2.3, "Synchronizing 
the Execution of Activities in a Flow Activity."

A.2.1.9 Timeout Tab
The Timeout tab displays in receive activities and provides a timeout setting for 
request-response operations. This provides an alternative to the onMessage and 
onAlarm branches of a pick activity that you must use when you want to specify a 
time out duration for partner callbacks.

For more information, see the online help for this tab and Section 14.3, "Setting 
Timeouts for Request-Response Operations in Receive Activities."

A.2.2 Assign Activity
This activity provides a method for data manipulation, such as copying the contents of 
one variable to another. Copy operations enable you to transfer information between 
variables, expressions, endpoints, and other elements. 

Figure A–2 shows the Copy Rules tab of the Assign dialog for BPEL 1.1. You drag the 
source node to the target node to create a BPEL copy rule from the source to the target 
node. This action creates a line that connects the source and target types. The copy rule 
is displayed in the From and To sections at the bottom of the dialog.

Note: This tab is only available in BPEL 1.1 projects.

Note: This tab is only available in BPEL 1.1 projects.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-7

Figure A–2 Copy Rules Tab of Assign Activity Dialog

The Select Insertion Mode list above the source node section enables you to insert the 
next copy rule you create either after or before the rule selected at the bottom of the 
dialog.

Icons display above the target node that enable you to perform the following tasks 
(from left to right) on target nodes.

■ Expression icon: Drag this icon to a target node to invoke the Expression Builder 
dialog for assigning an XPath expression to that node.

■ Literal (BPEL 2.0 specification) icon or XML Fragment (BPEL 1.1 specification) 
icon: Drag this icon to a target node to invoke a dialog for assigning a literal (if the 
BPEL project supports the BPEL 2.0 specification) or XML fragment (if the BPEL 
project supports the BPEL 1.1 specification) to that target node.

■ Remove icon: Drag this icon to a target node to create a bpelx:remove extension 
rule.

■ Rename icon: Drag this icon to rename a target node. This adds a bpelx:rename 
extension rule with an elementTo attribute.

■ Recast icon: Drag this icon to recast a target node. This adds a bpelx:rename 
extension rule with a typeCastTo attribute. This results in an xsi:type 
attribute in the XML output.

You can also change a selected copy rule to a bpelx extension type 
(bpelx:copyList, bpelx:insertAfter, bpelx:insertBefore, or 
bpelx:append). 

The method of selection differs between BPEL 1.1 and BPEL 2.0.

Figure A–3 shows how you select an extension type in BPEL 1.1. You select a copy 
rule, select the Copy dropdown list, and then select the appropriate extension.



Introduction to BPEL 1.1 and 2.0 Activities

A-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–3 Copy Rule Converted to bpelx Extension in BPEL 1.1

Figure A–4 shows how you select an extension type in BPEL 2.0. You right-click a copy 
rule, select Change rule type, and then select the appropriate extension.

Figure A–4 Copy Rule Converted to bpelx Extension in BPEL 2.0

For more information about manipulating XML data with bpelx extensions, see 
Section 6.14, "Manipulating XML Data with bpelx Extensions."

In the From and To XPath fields, you can also place your cursor over the icon to the 
left of the source type to display the operation being performed (for example, copy, 



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-9

append, and so on). Each operation type is represented by a different icon. You can 
also right-click a copy rule to display a list of actions to perform:

■ Edit 'From' Expression or Edit 'To' Expression: Select this option to edit XPath 
expression values when the created copy rule contains a query for the source or 
target node. This selection invokes the Expression Builder dialog. The menu 
option that displays is based on the current content of your copy rule selection.

■ ignoreMissingFromData: Select this option to toggle the 
ignoreMissingFromData attribute on the copy rule on and off. When toggled 
on, this suppresses any bpel:selectionFailure standard faults.

■ insertMissingToData: Select this option to toggle the insertMissingToData 
attribute on the copy rule on and off.

■ keepSrcElementName (in BPEL 2.0 projects only): Select this option to toggle the 
keepSrcElementName attribute on the copy rule on and off. This option enables 
you to replace the element name of the destination (as selected by the to-spec) 
with the element name of the source.

■ Change Rule Type (in BPEL 2.0 projects only): Select this option to change the 
type of the selected rule to one of the BPEL extension rules: bpelx:copyList, 
bpelx:insertAfter, bpelx:insertBefore, or bpelx:append.

■ Delete rule: Select this option to delete the selected rule.

For more information about the ignoreMissingFromData, insertMissingToData, and 
keepSrcElementName attributes, see Section 6.14.7, "How to Use Assign Extension 
Attributes."

The icons above the To section enable you to delete, move up, and move down a 
selected copy rule.

For more information about the assign activity, see the online Help for the Copy Rules 
dialog and Chapter 6, "Manipulating XML Data in a BPEL Process."

A.2.3 Assert Activity
This activity enables you to perform an assertion on a specified expression. 

This is a standalone activity in which to specify assertions. You can also specify 
assertions from the Assertions tab in invoke activities, receive activities, and the 
onMessage branch of pick and scope activities.

Figure A–5 shows the Assert dialog. 

Note: If an assign activity contains multiple bpelx:append 
settings, it must be split into two assign activities. Otherwise, 
bpelx:append is moved to the end of the list each time, which can 
cause problems. As a work around, move it manually.

Note: This activity is only supported in BPEL 1.1 projects.



Introduction to BPEL 1.1 and 2.0 Activities

A-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–5 Assert Dialog

For more information about the standalone assert activity, see Section 11.14.7, 
"Assertion Conditions in a Standalone Assert Activity" and Section 11.14.10, "What 
Happens When You Create Assertion Conditions."

A.2.4 Bind Entity Activity
This activity enables you to select the entity variable to act as the data handle to access 
and plug in different data provider service technologies.

The entity variable can be used with an Oracle Application Development Framework 
(ADF) Business Component data provider service using service data object 
(SDO)-based data. The entity variable enables you to specify BPEL data operations to 
be performed by an underlying data provider service. The data provider service 
performs the data operations in a data store behind the scenes and without use of 
other data store-related features provided by Oracle BPEL Process Manager (for 
example, the database adapter). This action enhances Oracle BPEL Process Manager 
runtime performance and incorporates native features of the underlying data provider 
service during compilation and runtime.

Figure A–6 shows the Bind Entity dialog. 

Note: This activity is only supported in BPEL 1.1 projects.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-11

Figure A–6 Bind Entity Dialog

A.2.5 Compensate Activity
This activity invokes compensation on an inner scope activity that has successfully 
completed. This activity can be invoked only from within a fault handler or another 
compensation handler. Compensation occurs when a process cannot complete several 
operations after completing others. The process must return and undo the previously 
completed operations. For example, assume a process is designed to book a rental car, 
a hotel, and a flight. The process books the car and the hotel, but cannot book a flight 
for the correct day. In this case, the process performs compensation by unbooking the 
car and the hotel.

The compensation handler is invoked with the compensate activity, which names the 
scope on which the compensation handler is to be invoked. 

Figure A–7 shows the Compensate dialog in BPEL 1.1. You can perform the following 
tasks:

■ Click the General tab to provide the activity with a meaningful name.

■ Select the scope activity on which the compensation handler is to be invoked.



Introduction to BPEL 1.1 and 2.0 Activities

A-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–7 Compensate Dialog

In BPEL 2.0, the Compensate dialog does not include a Skip Condition tab.

For more information about the compensate activity, see Section 11.12, "Using 
Compensation After Undoing a Series of Operations."

A.2.6 CompensateScope Activity
This activity enables you to start compensation on a specified inner scope that has 
already completed successfully. This activity must only be used from within a fault 
handler, another compensation handler, or a termination handler.

Figure A–8 shows the CompensateScope dialog.

Figure A–8 CompensateScope Dialog

Note: This activity is only supported in BPEL 2.0 projects.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-13

For more information about the compensateScope activity, see Section 11.12, "Using 
Compensation After Undoing a Series of Operations"

A.2.7 Create Entity Activity
This activity enables you to create an entity variable. The entity variable can be used 
with an Oracle ADF Business Component data provider service using SDO-based 
data.

Figure A–9 shows the Create Entity dialog. 

Figure A–9 Create Entity Dialog

For more information, see Section 6.2, "Delegating XML Data Operations to Data 
Provider Services."

A.2.8 Dehydrate Activity
By default, dehydration points are set on activities such as a wait and a receive. The 
dehydrate activity enables you to explicitly specify a dehydration point. This activity 
acts as a dehydration point to automatically maintain long-running asynchronous 
processes and their current state information in a database while they wait for 
asynchronous callbacks. Storing the process in a database preserves the process and 
prevents any loss of state or reliability if a system shuts down or a network problem 
occurs. This feature increases both BPEL process reliability and scalability.

The bpelx:dehydrate extension implements dehydration. For BPEL projects that 
support BPEL version 1.1, the syntax is as follows:

<bpelx:dehydrate name="DehydrateInstance"/>

For BPEL projects that support BPEL version 2.0, the syntax is as shown in 
Example A–2.

Note: This activity is only supported in BPEL 1.1 projects.



Introduction to BPEL 1.1 and 2.0 Activities

A-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example A–2 bpelx:dehydrate Extension in BPEL 2.0

<extensionActivity>
      <bpelx:dehydrate name="DehydrateInstance"/>
 </extensionActivity>

Figure A–10 shows the Dehydrate dialog in BPEL 2.0. 

Figure A–10 Dehydrate Dialog

In BPEL 1.1, the Dehydrate dialog includes a Skip Condition tab.

A.2.9 Email Activity
This activity enables you to send an email notification about an event.

For example, an online shopping business process of an online bookstore sends a 
courtesy email message to you after the items are shipped. The business process calls 
the notification service with your user ID and notification message. The notification 
service gets the email address from Oracle Internet Directory.

Figure A–11 shows the Email dialog in BPEL 1.1 and BPEL 2.0.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-15

Figure A–11 Email Dialog

For more information about the email activity, see Section 17.3.1, "How To Configure 
the Email Notification Channel."

A.2.10 Empty Activity
This activity enables you to insert a no-operation instruction into a process. This 
activity is useful when you must use an activity that does nothing (for example, when 
a fault must be caught and suppressed). 

Figure A–12 shows the Empty dialog in BPEL 1.1. 

Figure A–12 Empty Dialog

In BPEL 2.0, the Empty dialog includes a Documentation tab and does not include a 
Skip Condition tab.

For more information about the empty activity, see Section 11.10.8, "How to Create an 
Empty Activity to Insert No-Op Instructions into a Business Process."



Introduction to BPEL 1.1 and 2.0 Activities

A-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A.2.11 Exit Activity
This activity enables you to immediately end all currently running activities on all 
parallel branches without involving any termination handling, fault handling, or 
compensation handling mechanisms.

Figure A–13 shows the Exit dialog.

Figure A–13 Exit Dialog

For more information about the exit activity, see Section 11.13.2, "Immediately Ending 
a Business Process Instance with the Exit Activity in BPEL 2.0"

A.2.12 Flow Activity
This activity enables you to specify one or more activities to be performed 
concurrently. A flow activity completes when all activities in the flow have finished 
processing. Completion of a flow activity includes the possibility that it can be skipped 
if its enabling condition is false.

For example, assume you use a flow activity to enable two loan offer providers 
(United Loan service and Star Loan service) to start in parallel. In this case, the flow 
activity contains two parallel activities – the sequence to invoke the United Loan 
service and the sequence to invoke the Star Loan service. Each service can take an 
arbitrary amount of time to complete their loan processes.

Figure A–14 shows an initial flow activity with its two panels for parallel processing. 
You drag activities into both panels to create parallel processing. When complete, a 
flow activity looks like that shown in Figure A–15.

Note: This activity replaces the terminate activity in BPEL 2.0 
projects.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-17

Figure A–14 Flow Dialog (At Time of Creation)

Figure A–15 Flow Dialog (After Design Completion)

You can also synchronize the execution of activities within a flow activity. This ensures 
that certain actives only execute after other activities have completed. 

For more information about the flow activity, see Section 9.2, "Creating a Parallel 
Flow."

A.2.13 FlowN Activity
This activity enables you to create multiple flows equal to the value of N, which is 
defined at runtime based on the data available and logic within the process. An index 
variable increments each time a new branch is created, until the index variable reaches 
the value of N.

Note: Oracle's BPEL implementation executes flows in the same, 
single execution thread of the BPEL process and not in separate 
threads.

Note: This activity is replaced by the forEach activity in BPEL 2.0 
projects.



Introduction to BPEL 1.1 and 2.0 Activities

A-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–16 shows the FlowN dialog.

Figure A–16 FlowN Dialog

For more information about the flowN activity, see Section 9.3.1, "Customizing the 
Number of Flow Activities with the flowN Activity in BPEL 1.1."

A.2.14 forEach Activity
This activity enables you to process multiple sets of activities sequentially or in 
parallel. The forEach activity executes its contained (child) scope activity exactly N+1 
times, where N equals the final counter value minus the starting counter value that 
you specify in the Counter Values tab of the For Each dialog. While other structured 
activities such as a flow activity can have any type of activity as its contained activity, 
the forEach activity can only use a scope activity.

Figure A–17 shows a forEach activity with its contained scope.

Note: This activity replaces the flowN activity in BPEL 2.0 projects.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-19

Figure A–17 forEach Activity

For more information about the forEach activity, see Section 9.3.2, "Processing Multiple 
Sets of Activities with the forEach Activity in BPEL 2.0."

A.2.15 If Activity
This activity enables you to define conditional behavior for specific activities to decide 
between two or more branches. Only one activity is selected for execution from a set of 
branches. 

Figure A–18 shows an if activity with the following defined if, elseif, and else 
branches.

Figure A–18 If Activity

Note: This activity replaces the switch activity in BPEL 2.0 projects.



Introduction to BPEL 1.1 and 2.0 Activities

A-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information about the if activity, see Section 10.2.2, "Defining Conditional 
Branching with the If Activity in BPEL 2.0."

A.2.16 IM Activity
This activity enables you to send an automatic, asynchronous instant message (IM) 
notification to a user, group, or destination address. Figure A–19 shows the IM dialog 
in BPEL 1.1.

Figure A–19 IM Dialog

In BPEL 2.0, the IM dialog does not include a Skip Condition tab.

For more information, see Section 17.3.2, "How to Configure the IM Notification 
Channel."

A.2.17 Invoke Activity
This activity enables you to specify an operation you want to invoke for the service 
(identified by its partner link). The operation can be one-way or request-response on a 
port provided by the service. You can also automatically create variables in an invoke 
activity. An invoke activity invokes a synchronous web service or initiates an 
asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this 
port to submit required data and receive a response. For synchronous callbacks, only 
one port is needed for both the send and the receive functions.

The invoke activity supports the bpelx:inputProperty and 
bpelx:outputProperty that facilitate the passing of properties through the SOAP 
header and the obtaining of SOA runtime system properties for useful information 
such as the tracking.compositeInstanceId and tracking.conversationId.

Figure A–20 shows the Invoke dialog in BPEL 1.1. You can perform the following 
tasks: 

■ Provide the activity with a meaningful name. 

■ Select the partner link for which to specify an operation.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-21

■ Select the operation to be performed.

■ Automatically create a variable or select an existing variable in which to transport 
the data (payload).

Figure A–20 Invoke Dialog

In BPEL 2.0, the Invoke dialog does not include an Assertions tab, Timeout tab, or 
Skip Condition tab.

For more information about the invoke activity, see the following:

■ Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

■ Section 7.2.2.3, "Invoke Activity for Performing a Request"

■ Section 8.2.1.2, "Adding an Invoke Activity"

■ Section 11.9.2, "How to Return a Fault in an Asynchronous Interaction"

■ Section 11.14, "Throwing Faults with Assertion Conditions"

A.2.18 Java Embedding Activity
This activity enables you to add custom Java code to a BPEL process using the Java 
BPEL exec extension bpelx:exec. This is useful when you have Java code that can 
perform a function, and want to use this existing code instead of starting over. In BPEL 
2.0 projects, the bpelx:exec extension and Java code are wrapped in an 
<extensionActivity> element. 

Figure A–21 shows the Edit Java Embedding dialog in BPEL 1.1.



Introduction to BPEL 1.1 and 2.0 Activities

A-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–21 Edit Java Embedding Dialog

In BPEL 2.0, the Invoke dialog does not include the Skip Condition tab.

For more information about the Java embedding activity, see Chapter 13, 
"Incorporating Java and Java EE Code in a BPEL Process."

A.2.19 Partner Link Activity
This service enables you to define the external services with which your process 
interacts. A partner link type characterizes the conversational relationship between 
two services by defining the roles played by each service in the conversation and 
specifying the port type provided by each service to receive messages within the 
conversation. For example, if you are creating a process to interact with a Credit 
Rating Service and two loan provider services (United Loan and Star Loan), you create 
partner links for all three services.

Figure A–22 shows the Partner Link dialog in BPEL 1.1. You provide the following 
details:

■ A meaningful name for the service.

■ The web services description language (WSDL) file of the external service.

■ The actual service type (defined as Partner Link Type).

■ The role of the service (defined as Partner Role).

■ The role of the process requesting the service (defined as My Role).



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-23

Figure A–22 Partner Link Activity

In BPEL 2.0, the Partner Link dialog also includes the Documentation tab.

For more information about partner links, see Chapter 8, "Invoking an Asynchronous 
Web Service from a BPEL Process."

A.2.20 Phase Activity
This activity creates Oracle Mediator and business rules service components for 
integration with a BPEL process. You create message request input and message 
response output variables and design business rules for evaluating variable content for 
the BPEL process. 

When you complete these tasks, the following activities and service components are 
created:

■ An assign activity that includes the message request input and message response 
output variables.

■ An invoke activity, which is automatically designed to invoke an Oracle Mediator 
partner link in the BPEL process.

■ The Oracle Mediator partner link, which is automatically designed to route the 
message request input variable to the business rules service component in the SOA 
composite application of which this BPEL process is a part. The business rules 
service component displays in the SOA Composite Editor. Oracle Mediator also 
displays as a service component in the SOA Composite Editor.

■ The business rules service component, which evaluates the content of the message 
request input variable and returns the results in the message response output 
variable to Oracle Mediator. Oracle Mediator then makes a routing decision and 
routes the message to the correct target destinations.

Figure A–23 shows Phase dialog in BPEL 1.1.



Introduction to BPEL 1.1 and 2.0 Activities

A-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–23 Phase Dialog

In BPEL 2.0, the Phase dialog includes the Documentation tab and does not include 
the Skip Condition tab.

For more information, see Chapter 48, "Using Two-Layer Business Process 
Management (BPM)."

A.2.21 Pick Activity
This activity waits for the occurrence of one event in a set of events and performs the 
activity associated with that event. The occurrence of the events is often mutually 
exclusive (the process either receives an acceptance or rejection message, but not both). 
If multiple events occur, the selection of the activity to perform depends on which 
event occurred first. If the events occur nearly simultaneously, there is a race and the 
choice of activity to be performed is dependent on both timing and implementation.

The pick activity provides an OnMessage branch. When you double-click the 
OnMessage icon in BPEL 1.1, the dialog shown in Figure A–24 appears.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-25

Figure A–24 OnMessage Dialog

In BPEL 2.0, the OnMessage dialog includes a Documentation tab and does not 
include a Skip Condition tab or an Assertions tab.

The two branches of the pick activity are as follows:

■ onMessage (automatically displays below the Pick activity icon)

Contains the code for receiving a reply, for example, from a loan service.

■ onAlarm (does not automatically display; you must manually add this branch by 
selecting the Pick activity icon and clicking the Add OnAlarm icon)

Contains the code for a timeout, for example, after one minute.

Whichever branch completes first is executed; the other branch is not executed. The 
branch that has its condition satisfied first is executed. 

Figure A–25 shows the OnAlarm dialog of the pick activity in BPEL 1.1.



Introduction to BPEL 1.1 and 2.0 Activities

A-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–25 OnAlarm Branch Dialog of a Pick Activity

In BPEL 2.0, the OnAlarm dialog includes a Documentation tab and does not include 
a Skip Condition tab.

If you add correlations to an OnMessage branch, the correlations syntax is placed after 
the assign activity syntax. The correlation syntax must go before the assign activity.

As a work around, perform the following steps:

1. Create a correlation set in Oracle JDeveloper.

2. Assign this to the OnMessage branch.

3. Complete the remaining design tasks.

4. Before making or deploying the BPEL process, move the correlation syntax before 
the assign activity in the BPEL source code.

For more information about the pick activity, see the following:

■ Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

■ Section 11.14, "Throwing Faults with Assertion Conditions"

■ Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or 
Waiting"

■ Section 14.6, "Setting Timeouts for Synchronous Processes"

A.2.22 Receive Activity
This activity specifies the partner link from which to receive information and the port 
type and operation for the partner link to invoke. This activity waits for an 
asynchronous callback response message from a service, such as a loan application 

Note: You can also create onMessage branches in BPEL 1.1 scope 
activities and onAlarm branches in BPEL 1.1 and 2.0 scope activities. 
Expand the Scope activity in Oracle JDeveloper, and browse the icons 
on the left side to find the branch you want to add.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-27

approver service. While the BPEL process is waiting, it is dehydrated (compressed and 
stored) until the callback message arrives. The contents of this response are stored in a 
response variable in the process.

The receive activity supports the bpelx:property extensions that facilitate the 
passing of properties through the SOAP header, and the obtaining of SOA runtime 
system properties for useful information such as tracking.compositeInstanceId and 
tracking.conversationId.

Figure A–26 shows the Receive dialog in BPEL 1.1. You can perform the following 
tasks:

■ Provide a meaningful name. 

■ Select the partner link service for which to specify an operation.

■ Select the operation to be performed.

■ Automatically create a variable or select an existing variable in which to transport 
the callback response.

Figure A–26 Receive Dialog

In BPEL 2.0, the Receive dialog includes a Documentation tab and does not include a 
Skip Condition tab, Timeout tab, or Assertions tab. 

For more information about the receive activity, see the following:

■ Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

■ Section 8.2.1.3, "Adding a Receive Activity"

■ Section 11.14, "Throwing Faults with Assertion Conditions"

■ Section 14.3, "Setting Timeouts for Request-Response Operations in Receive 
Activities"



Introduction to BPEL 1.1 and 2.0 Activities

A-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A.2.23 Receive Signal Activity
Use this activity in detail processes to wait for the notification signal from the master 
process to begin processing and use in a master process to wait for the notification 
signal from all detail processes indicating that processing has completed.

Figure A–27 shows the Receive Signal dialog in BPEL 1.1 and BPEL 2.0.

Figure A–27 Receive Signal Dialog

For more information, see Chapter 15, "Coordinating Master and Detail Processes."

A.2.24 Remove Entity Activity
This activity enables you to remove an entity variable. This action removes the row.

Figure A–28 shows the Remove Entity dialog.

Note: This activity is only supported in BPEL 1.1 projects.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-29

Figure A–28 Remove Entity Dialog

A.2.25 RepeatUntil Activity
Use this activity if the body of an activity must be performed at least once. The XPath 
expression condition in the repeatUntil activity is evaluated after the body of the 
activity completes. The condition is evaluated repeatedly (and the body of the activity 
processed) until the provided boolean condition is true. Figure A–29 shows the 
Remove Entity dialog.

Figure A–29 Repeat Until Dialog

For more information about the repeatUntil activity, see, Section 10.4, "Creating a 
repeatUntil Activity to Define Conditional Branching."

Note: This activity is only supported in BPEL 2.0 projects.



Introduction to BPEL 1.1 and 2.0 Activities

A-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A.2.26 Replay Activity
This activity enables you to re-execute the activities inside a selected scope.

Figure A–30 shows the Replay dialog in BPEL 2.0.

Figure A–30 Replay Dialog

In BPEL 1.1, the Replay dialog includes a Skip Condition tab and does not include a 
Documentation tab, Targets tab, or Sources tab. For more information about the 
replay activity, see Section 11.11, "Re-executing Activities in a Scope Activity with the 
Replay Activity."

A.2.27 Reply Activity
This activity allows the process to send a message in reply to a message that was 
received through a receive activity. The combination of a receive activity and a reply 
activity forms a request-response operation on the WSDL port type for the process.

Figure A–31 shows the Reply dialog in BPEL 1.1.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-31

Figure A–31 Reply Dialog

In BPEL 2.0, the Reply dialog includes a Documentation tab and does not include a 
Skip Condition tab or Assertions tab.

For more information about the reply activity, see the following:

■ Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

■ Section 11.9.1, "How to Return a Fault in a Synchronous Interaction"

A.2.28 Rethrow Activity
This activity enables you to rethrow a fault originally captured by the immediately 
enclosing fault handler.

Figure A–32 shows a rethrow activity within a fault handler (catch activity).

Note: This activity is only supported in BPEL 2.0 projects.



Introduction to BPEL 1.1 and 2.0 Activities

A-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–32 Rethrow Activity

For more information about rethrowing faults, see Section 11.8, "Rethrowing Faults 
with the Rethrow Activity."

A.2.29 Scope Activity
This activity consists of a collection of nested activities that can have their own local 
variables, fault handlers, compensation handlers, and so on. A scope activity is 
analogous to a { } block in a programming language.

Each scope has a primary activity that defines its behavior. The primary activity can be 
a complex structured activity, with many nested activities within it to arbitrary depth. 
The scope is shared by all the nested activities.

Figure A–33 shows the Scope dialog in BPEL 1.1. Define appropriate activities inside 
the scope activity.

Figure A–33 Scope Dialog

In BPEL 2.0, the Scope dialog includes a Documentation tab and does not include a 
Skip Condition tab.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-33

Fault handling is associated with a scope activity. The goal is to undo the incomplete 
and unsuccessful work of a scope activity in which a fault has occurred. You define 
catch activities in a scope activity to create a set of custom fault-handling activities. 
Each catch activity is defined to intercept a specific type of fault.

Figure A–34 shows the Add Catch icon inside a scope activity. Figure A–35 shows the 
catch activity area that appears when you click the Add Catch icon. Within the area 
defined as Drop Activity Here, you drag additional activities to create fault handling 
logic to catch and manage exceptions.

For example, a client provides a social security number to a Credit Rating service 
when applying for a loan. This number is used to perform a credit check. If a bad 
credit history is identified or the social security number is identified as invalid, an 
assign activity inside the catch activity notifies the client of the loan offer rejection. The 
entire loan application process is terminated with a terminate activity.

Figure A–34 Creating a Catch Branch

Figure A–35 Catch Activity Icon

For more information about the scope activity and fault handling, see the following:

■ Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

■ Section 11.10, "Using a Scope Activity to Manage a Group of Activities"

A.2.30 Sequence Activity
This activity enables you to define a collection of activities to be performed in 
sequential order. For example, you may want the following activities performed in a 
specific order:

■ A customer request is received in a receive activity. 



Introduction to BPEL 1.1 and 2.0 Activities

A-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The request is processed inside a flow activity that enables concurrent behavior.

■ A reply message with the final approval status of the request is sent back to the 
customer in a reply activity.

A sequence activity makes the assumption that the request can be processed in a 
reasonable amount of time, justifying the requirement that the invoker wait for a 
synchronous response (because this service is offered as a request-response operation).

When this assumption cannot be made, it is better to define the customer interaction as 
a pair of asynchronous message exchanges.

When you double-click the Sequence icon, the activity area shown in Figure A–36 
appears. Drag and define appropriate activities inside the sequence activity.

Figure A–36 Sequence Activity

For more information about the sequence activity, see the following:

■ Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

■ Section 9.2, "Creating a Parallel Flow"

A.2.31 Signal Activity
This activity is used in a master process to notify detail processes to perform 
processing at runtime and used in detail processes to notify a master process that 
processing has completed. Figure A–37 shows the Signal dialog in BPEL 1.1 and BPEL 
2.0.

Figure A–37 Signal Dialog

For more information, see Chapter 15, "Coordinating Master and Detail Processes."



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-35

A.2.32 SMS Activity
This activity enables you to send a short message system (SMS) notification about an 
event.

Figure A–38 shows the SMS dialog in BPEL 1.1.

Figure A–38 SMS Dialog

In BPEL 2.0, the SMS dialog does not include a Skip Condition tab.

For more information about the SMS activity, see Section 17.3.3, "How to Configure the 
SMS Notification Channel."

A.2.33 Switch Activity
This activity consists of an ordered list of one or more conditional branches defined in 
a case branch, followed optionally by an otherwise branch. The branches are 
considered in the order in which they appear. The first branch whose condition is true 
is taken and provides the activity performed for the switch. If no branch with a 
condition is taken, then the otherwise branch is taken. If the otherwise branch is not 
explicitly specified, then an otherwise branch with an empty activity is assumed to be 
available. The switch activity is complete when the activity of the selected branch 
completes.

A switch activity differs in functionality from a flow activity. For example, a flow 
activity enables a process to gather two loan offers at the same time, but does not 
compare their values. To compare and make decisions on the values of the two offers, 
a switch activity is used. The first branch is executed if a defined condition (inside the 
case branch) is met. If it is not met, the otherwise branch is executed.

Figure A–39 shows a switch activity with the following defined branches.

Note: The fax and pager activities are not supported in 11g.

Note: This activity is replaced by the if activity in BPEL 2.0 projects.



Introduction to BPEL 1.1 and 2.0 Activities

A-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–39 Switch Activity

For more information about the switch activity, see the following:

■ Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"

■ Section 10.2.1, "Defining Conditional Branching with the Switch Activity in BPEL 
1.1"

A.2.34 Terminate Activity
A terminate activity enables you to end the tasks of an activity (for example, the fault 
handling tasks in a catch branch). For example, if a client’s bad credit history is 
identified or a social security number is identified as invalid, a loan application 
process is terminated, and the client’s loan application document is never submitted to 
the service loan providers. 

Figure A–40 shows several terminate activities in the otherwise branch of a switch 
activity.

Figure A–40 Terminate Activity

For more information about the terminate activity, see Section 11.13.1, "Stopping a 
Business Process Instance with the Terminate Activity in BPEL 1.1."

Note: This activity is replaced by the exit activity in BPEL 2.0 
projects.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-37

A.2.35 Throw Activity
This activity generates a fault from inside the business process.

Figure A–41 shows the Throw dialog.

Figure A–41 Throw Dialog

In BPEL 2.0, the Throw dialog includes a Documentation tab and does not include a 
Skip Condition tab.

For more information about the throw activity, see Section 11.7, "Throwing Internal 
Faults."

A.2.36 Transform Activity
This activity enables you to create a transformation that maps source elements to 
target elements (for example, incoming purchase order data into outgoing purchase 
order acknowledgment data).

Figure A–42 shows the Transform dialog in BPEL 1.1. This dialog enables you to 
perform the following tasks:

■ Define the source and target variables and parts to map.

■ Specify the transformation mapper file.

■ Click the second icon (the Add icon) to the right of the Mapper File field to access 
the XSLT Mapper for creating a new XSL file for graphically mapping source and 
target elements. Click the Edit icon (third icon) to edit an existing XSL file.



Introduction to BPEL 1.1 and 2.0 Activities

A-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–42 Transform Dialog

In BPEL 2.0, the Transform dialog includes a Documentation tab and does not include 
a Skip Condition tab.

For more information about the transform activity, see Chapter 38, "Creating 
Transformations with the XSLT Mapper."

A.2.37 User Notification Activity
This activity enables you to design a BPEL process in which you do not explicitly 
select a notification channel during design time, but simply indicate that a notification 
must be sent. The channel to use for sending notifications is resolved at runtime based 
on preferences defined by the end user in the User Messaging Preferences user 
interface of the Oracle User Messaging Service. This moves the responsibility of 
notification channel selection from Oracle BPEL Designer to the end user. If the end 
user does not select a preferred channel or rule, email is used by default for sending 
notifications to that user. Figure A–43 shows the User Notification dialog in BPEL 1.1.



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-39

Figure A–43 User Notification Dialog

In BPEL 2.0, the User Notification dialog does not include a Skip Condition tab.

For more information, see Section 17.4, "Allowing the End User to Select Notification 
Channels."

A.2.38 Validate Activity
This activity enables you to validate variables in the list. The variables are validated 
against their XML schema. 

Figure A–44 shows the Validate dialog in BPEL 1.1.

Figure A–44 Validate Dialog

In BPEL 2.0, the Validate dialog includes a Documentation tab, Targets tab, and 
Sources tab, and does not include a Skip Condition tab.



Introduction to BPEL 1.1 and 2.0 Activities

A-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information about the validate activity, see Section 6.15, "Validating XML 
Data."

A.2.39 Voice Activity
This activity enables you to send a telephone voice notification about an event.

Figure A–45 shows the Voice dialog in BPEL 1.1.

Figure A–45 Voice Dialog

In BPEL 2.0, the Voice dialog does not include a Skip Condition tab.

For more information about the voice activity, see Section 17.3.4, "How to Configure 
the Voice Notification Channel."

A.2.40 Wait Activity
This activity allows a process to specify a delay for a certain period or until a certain 
deadline is reached. A typical use of this activity is to invoke an operation at a certain 
time. This activity enables you to wait for a given time period or until a certain time 
has passed. Exactly one of the expiration criteria must be specified.

Figure A–46 shows the Wait dialog in BPEL 1.1. 



Introduction to BPEL 1.1 and 2.0 Activities

BPEL Process Activities and Services A-41

Figure A–46 Wait Dialog

In BPEL 2.0, the Wait dialog includes a Documentation tab and does not include a 
Skip Condition tab.

For more information about the wait activity, see Section 14.4, "Creating a Wait 
Activity to Set an Expiration Time."

A.2.41 While Activity
This activity supports repeated performance of a specified iterative activity. The 
iterative activity is repeated until the given while condition is no longer true.

Figure A–47 shows the While dialog in BPEL 1.1. You can enter expressions in this 
dialog.

Figure A–47 While Dialog



Introduction to BPEL Services

A-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

In BPEL 2.0, the While dialog includes a Documentation tab and does not include a 
Skip Condition tab.

For more information about the while activity, see Section 10.3, "Creating a While 
Activity to Define Conditional Branching."

A.3 Introduction to BPEL Services
BPEL processes can communicate with web-based applications and clients through 
web services, JCA adapters, Oracle B2B services, Oracle Business Activity Monitoring, 
and partner links.

To access BPEL services:
1. In the Component Palette of Oracle BPEL Designer, expand BPEL Services to 

display the services.

For more information about the adapters described in the following sections, see 
Oracle Fusion Middleware User's Guide for Technology Adapters.

A.3.1 ADF-BC Service
This service connects Oracle Application Development Framework (ADF) applications 
using SDOs with the SOA platform. 

A.3.2 AQ Adapter
This adapter acts as both a dequeue (inbound) and enqueue (outbound) messaging 
adapter. In the inbound direction, the adapter polls the queues for messages to 
dequeue from a destination. In the outbound direction, the adapter enqueues 
messages to the queue for subscribers to dequeue.

A.3.3 Oracle B2B
This adapter enables you to browse B2B metadata in the Metadata Service (MDS) 
repository and select document definitions.

Oracle B2B is an e-commerce gateway that enables the secure and reliable exchange of 
transactions between an organization and its external trading partners. Oracle B2B and 
Oracle SOA Suite are designed for e-commerce business processes that require process 
orchestration, error mitigation, and data translation and transformation within an 
infrastructure that addresses the issues of security, compliance, visibility, and 
management.

For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.

A.3.4 Oracle BAM Adapter
This adapter integrates Java EE applications with Oracle BAM Server to send data. 
This adapter is used as a reference binding component in a SOA composite 
application.

For more information, see Oracle Fusion Middleware User's Guide for Oracle Business 
Activity Monitoring and Part X, "Using Oracle Business Activity Monitoring".



Introduction to BPEL Services

BPEL Process Activities and Services A-43

A.3.5 Database Adapter
This adapter enables a BPEL process to communicate with Oracle databases or 
third-party databases through JDBC. To access an existing relational schema, you use 
the Adapter Configuration Wizard to do the following:

■ Import a relational schema and map it as an XML schema (XSD).

■ Abstract SQL operations such as SELECT, INSERT, and UPDATE as web services.

While your BPEL process deals with XML and invokes web services, database rows 
and values are queried, inserted, and updated.

A.3.6 Direct Binding Service
This service uses the Direct Binding API to invoke a SOA composite application in the 
inbound direction and exchange messages over a remote method invocation (RMI). 
This option supports the propagation of both identities and transactions across JVMs 
and uses the T3 optimized path. Both synchronous and asynchronous invocation 
patterns are supported.

You can also invoke an Oracle Service Bus (OSB) flow or another SOA composite 
application in the outbound direction.

For more information about the Direct Binding Invocation API, see Oracle Fusion 
Middleware Infrastructure Management Java API Reference for Oracle SOA Suite and 
Chapter 37, "Using the Direct Binding Invocation API."

For more information about OSB, see Oracle Fusion Middleware Developer's Guide for 
Oracle Service Bus.

A.3.7 EJB Service
This service enables you to send and receive messages through Enterprise JavaBeans 
(EJBs). 

For more information, see Chapter 36, "Integrating Enterprise JavaBeans with SOA 
Composite Applications."

A.3.8 File Adapter
This adapter acts as both an inbound and outbound adapter. In the inbound direction, 
the adapter polls for files in a directory to retrieve and process. In the outbound 
direction, the adapter creates files in a directory.

A.3.9 FTP Adapter
This adapter acts as both an inbound and outbound adapter. In the inbound direction, 
the adapter polls for files in a directory to retrieve and process. In the outbound 
direction, the adapter creates files in a directory. 

A.3.10 HTTP Binding
This service enables you to integrate SOA composite applications with HTTP binding. 
This service enables you to invoke SOA composite applications through HTTP POST 
and GET operations, and invoke HTTP endpoints through HTTP POST and GET 
operations. 

For more information, see Section 35.1.2, "HTTP Binding Service."



Publishing and Browsing the Oracle Service Registry

A-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A.3.11 JMS Adapter
This adapter acts as both a consume (inbound) and produce (outbound) messaging 
adapter. In the inbound direction, the adapter polls (consumes) messages from a JMS 
destination. In the outbound direction, the adapter sends (produces) messages to a 
JMS destination.

A.3.12 MQ Adapter
This adapter provides message exchange capabilities between BPEL processes and the 
IBM MQSeries messaging software.

A.3.13 Oracle Applications
This adapter provides comprehensive, bidirectional, multimodal, synchronous, and 
asynchronous connectivity to Oracle Applications. The adapter supports all modules 
of Oracle Applications in Release 12 and Release 11i, including selecting custom 
integration interface types based on the version of Oracle E-Business Suite. The 
adapter provides real-time and bidirectional connectivity to Oracle Applications 
through interface tables, views, application programming interfaces (APIs), and XML 
Gateway. The adapter inserts data into Oracle Applications using interface tables and 
APIs. To retrieve data from Oracle Applications, the adapter uses views. In addition, it 
uses XML Gateways for bidirectional integration with Oracle Applications. XML 
Gateways are also used to insert and receive Open Application Group Integration 
Specification (OAGIS)-compliant documents from Oracle Applications.

A.3.14 Socket Adapter
This adapter enables you to model standard or nonstandard protocols for 
communication over TCP/IP sockets. You can use this adapter to create a client or 
server socket, and establish a connection. The data that is transported can be text or 
binary.

A.3.15 Third Party Adapter
This adapter enables you to integrate third-party adapters into a SOA composite 
application. These third-party adapters produce artifacts (WSDLs and JCA files) that 
can configure a JCA adapter.

A.3.16 Web Service
This service enables you to connect to standards-based services using SOAP over 
HTTP.

For more information, see Section 2.3, "Adding Service Binding Components."

A.4 Publishing and Browsing the Oracle Service Registry
The Oracle Service Registry (OSR) provides a common standard for publishing and 
discovering information about web services. This section describes how to configure 
OSR against a separately installed Oracle SOA Suite environment.

You can use Oracle SOA Suite with the following versions of OSR:

■ OSR 11g

■ OSR 10.3 (with Oracle WebLogic Server 10.3)



Publishing and Browsing the Oracle Service Registry

BPEL Process Activities and Services A-45

■ OSR 10.1.3

For more information about OSR, visit the following URL:

http://www.oracle.com/technetwork/middleware/registry/overview/index.ht
ml

A.4.1 How to Publish a Business Service
This section provides an overview of how to publish a business service. For specific 
instructions, see the documentation at the following URL:

http://www.oracle.com/technetwork/middleware/registry/overview/index.ht
ml

You can also access the documentation by clicking the Registry Documentation icon 
in the upper right corner of the page.

To publish a business service:
1. Go to the Registry Control:

http://hostname:port/registry/uddi/web

2. Click Publish > WSDL.

3. Log in when prompted.

4. Complete the fields on this page to specify the access point URL and publish the 
WSDL for the business service.

A.4.2 How to Create a Connection to the Registry

To create a connection to the registry:
1. Go to Oracle JDeveloper.

2. Select File > New > Connections > UDDI Registry Connection to create a UDDI 
connection.

3. Enter a connection name.

4. Enter an inquiry endpoint URL. For example:

http://myhost.us.oracle.com:7001/registry/uddi/inquiry

Notes:

■ This section does not describe how to configure OSR against the 
embedded Oracle WebLogic Server in Oracle JDeveloper.

■ OSR 10.3 deploys to the 10.3.0.0 version of Oracle WebLogic 
Server.

■ OSR 10.3 does not support the 10.3.1.0 version of Oracle WebLogic 
Server.

Note: If you later change your endpoint location, you must also 
update the WSDL location in the Registry Control. Otherwise, UDDI 
invocation fails during runtime. See section Section A.4.4.1, "Changing 
Endpoint Locations in the Registry Control."



Publishing and Browsing the Oracle Service Registry

A-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Ensure that the Business View option is selected.

6. Click Next.

7. Click Test Connection.

8. If successful, click Finish. Otherwise, click the Back button and correct your 
errors.

A.4.3 How to Configure a SOA Project to Invoke a Service from the Registry

To configure a SOA project to invoke a service from the registry:
1. Open the SOA project in which to create a reference to the business service.

2. Drag a Web Service icon into the External References swimlane.

The Create Web Service dialog appears. 

3. To the right of the WSDL URL field, click the icon to select a WSDL.

4. From the list at the top, select Resource Palette.

5. Expand the navigational tree.

6. Expand UDDI Registry > Business Services.

7. Select the published business service, and click OK. Figure A–48 provides details.

Figure A–48 Business Service

The UDDI Deployment Options dialog appears.

8. Select one of the following deployment options:

■ Dynamically resolve the SOAP endpoint location at runtime

■ Dynamically resolve the concrete WSDL location at runtime



Publishing and Browsing the Oracle Service Registry

BPEL Process Activities and Services A-47

Figure A–49 provides details.

Figure A–49 UDDI Deployment Options Dialog

9. Click OK. 

You are returned to the Create Web Service dialog.

10. See the following section based on your selection in the UDDI Deployment 
Options dialog.

■ Section A.4.3.1, "Dynamically Resolving the SOAP Endpoint Location"

■ Section A.4.3.2, "Dynamically Resolving the WSDL Endpoint Location"

A.4.3.1 Dynamically Resolving the SOAP Endpoint Location
1. Complete the remaining fields in the Create Web Service dialog, and click OK.

The Create Web Service dialog looks as shown in Figure A–50.

Figure A–50 Create Web Service Dialog - SOAP Endpoint Location

2. Wire the reference with the appropriate service component.

3. In the SOA Composite Editor, click Source.

The composite.xml file shows the serviceKey. The property dynamically 
resolves the endpoint binding location at runtime.



Publishing and Browsing the Oracle Service Registry

A-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<property name="oracle.soa.uddi.servicekey" type="xs:string" many="false">uddi:
 d3611b59-1c79-478e-9ae5-874007eb20c4">

4. If you want, you can also resolve the SOAP endpoint location by explicitly adding 
the oracle.soa.uddi.servicekey property in the Property Inspector. This 
action dynamically resolves the SOAP endpoint location at runtime for any 
external reference to a web service. Figure A–51 provides details.

a. Highlight the reference binding component in the External References 
swimlane.

b. In the Property Inspector, expand the Properties section.

c. Click the Add icon.

d. In the Name list, select oracle.soa.uddi.servicekey.

e. In the Value field, specify the value for oracle.soa.uddi.servicekey from the 
composite.xml file.

Figure A–51 serviceKey Properties

A.4.3.2 Dynamically Resolving the WSDL Endpoint Location
1. Complete the remaining fields in the Create Web Service dialog, and click OK.

The Create Web Service dialog looks as shown in Figure A–52.



Publishing and Browsing the Oracle Service Registry

BPEL Process Activities and Services A-49

Figure A–52 Create Web Service Dialog - WSDL Endpoint Location

2. Wire the reference with the appropriate service component.

3. In the SOA Composite Editor, click Source.

The composite.xml file shows that the WSDL location is an abstract URL of 
orauddi:/uddi_service_key instead of a concrete URL (such as a HTTP 
URL). The orauddi protocol dynamically resolves the WSDL location at runtime.

<location="orauddi:/uddi:d3689250-6ff5-11de-af2b-76279200af27">

A.4.3.3 Resolving Endpoints
Oracle SOA Suite invokes a service for resolving an endpoint. Examples and 
descriptions are shown in Table A–2.

Table A–2 Resolving Endpoints

Endpoint 
Resolutions Description Example

Normalized 
message UDDI 
serviceKey

The OSR UDDI 
serviceKey is specified in 
the normalized message 
property within an Oracle 
Mediator or an Oracle BPEL 
Process Manager assign 
activity (serviceKey). 

For example, with Oracle Mediator:

<copy 
target="$out.property.oracle.soa.uddi.serviceKey"
value="uddi:10a55fa0-99e8-11df-9edf-7d5e3ef09eda"/>

Normalized 
message 
endpointURI

The normalized message 
endpointURI property is 
specified within an Oracle 
Mediator or an Oracle BPEL 
Process Manager assign 
activity (endpointURI).

For example, with Oracle Mediator:

<copy target="$out.property.endpointURI"
value="http://hostname:8001/soa-infra/services
/partition/Project/endpoint_ep"/>



Publishing and Browsing the Oracle Service Registry

A-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The failover scenario for resolving endpoints is as follows.

■ Normalized message UDDI serviceKey

– Any error on the endpoint access

* Log a severe error

* Return an error to the user

■ Normalized message endpointURI

– Any error on the endpoint access

* Log a severe error

* Return an error to the user

■ composite.xml UDDI serviceKey

– Error on an OSR connection

* Log a severe error

* Use the composite.xml endpointURI if it is coded

* Else, return an error to the user

– Error for an invalid serviceKey in the connection

* Log a severe error

* Use the composite.xml endpointURI if it is coded

composite.xml 
UDDI serviceKey

The OSR UDDI 
serviceKey property 
(oracle.soa.uddi.serv
iceKey) is specified in the 
binding component section 
of composite.xml.

Note: This can be 
overwritten in Oracle 
Enterprise Manager Fusion 
Middleware Control 
Console.

<binding.ws
 port="http://xmlns.oracle.com/UDDIPublishApplication
 /Proj/BPELProcess1#wsdl.endpoint(bpelprocess1_client
 _ep/BPELProcess1_pt)"
 . . .>
 <property name="oracle.soa.uddi.serviceKey"
 type="xs:string"
 many="false">uddi:31040650-9ce7-11df-9ee1-7d5e3e
 f09eda</property>
</binding.ws>

composite.xml 
endpointURI

The endpointURI 
property is specified within 
the binding component 
section of composite.xml.

Note: This can be 
overwritten in Oracle 
Enterprise Manager Fusion 
Middleware Control 
Console.

<binding.ws
 port="http://xmlns.oracle.com/UDDIPublishApplica
 tion/Project/BPELProcess1#wsdl.endpoint(bpelproc
 ess1_client_ep/BPELProcess1_pt)"
 . . . >
 <property name="oracle.soa.uddi.endpointURI"
 value="http://hostname:8001/soa-infra/services/
 Partition/Project/bpelprocess1_client_ep"</property>
</binding.ws>

composite.xml 
concrete WSDL 
endpoint location

The endpoint location is 
specified in the concrete 
WSDL in the binding 
component section of 
composite.xml.

<binding.ws
 port="http://xmlns.oracle.com/UDDIPublishApplication
 /Project/BPELProcess1#wsdl.endpoint(bpelprocess1_
 client_ep/BPELProcess1_pt)"
 location="http://hostname:8001/soa-infra/services
 /Partition/Project/bpelprocess1_client_ep?wsdl"
 soapVersion="1.1">

Table A–2 (Cont.) Resolving Endpoints

Endpoint 
Resolutions Description Example



Publishing and Browsing the Oracle Service Registry

BPEL Process Activities and Services A-51

* Else, return an error to the user

– Error on the endpoint access

* Log a warning error

* Use a second (or third) binding template if it exists.

* Else, fail over to the composite.xml endpointURI

■ composite.xml endpointURI

– Error on the endpoint access

* Log a warning error

* Fail over to the composite.xml concrete WSDL endpoint location

■ composite.xml concrete WSDL endpoint location

– Error on the endpoint access

* Log a severe error

* Return an error to the user

A.4.4 How To Configure the Inquiry URL, UDDI Service Key, and Endpoint Address for 
Runtime

You can set the inquiry URL, UDDI service key, and endpoint address during runtime 
in Oracle Enterprise Manager Fusion Middleware Control Console.

To configure the inquiry URL, service key, and endpoint reference for runtime:
1. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

2. Specify values for the following properties:

■ In the SOA Infrastructure Common Properties page, specify the same UDDI 
inquiry URL that you specified in the Create UDDI Registry Connection 
wizard. For information, see section "Configuring SOA Infrastructure 
Properties" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA 
Suite and Oracle BPM Suite.

■ In the Properties page of the reference binding component, you can change the 
endpoint reference and service key values created during design time. For 
information, see section "Configuring Service and Reference Binding 
Component Properties" of Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite.

3. Restart the SOA Infrastructure.

4. Exit Oracle Enterprise Manager Fusion Middleware Control Console.

5. To see endpoint statistics, return to the Registry Control.

6. Go to the Manage page and check statistics to see the increase in the number of 
invocations when not cached (the first time).

Caching of WSDL URLs occurs by default during runtime. If a WSDL URL is 
resolved using the orauddi protocol, subsequent invocations retrieve the WSDL 
URLs from cache, and not from OSR. When an endpoint WSDL obtained from 
cache is no longer reachable, the cache is refreshed and OSR is contacted to 
retrieve the new endpoint WSDL location. As a best practice, Oracle recommends 
that you undeploy services that are no longer required in Oracle Enterprise 
Manager Fusion Middleware Control Console and used by the SOA Infrastructure. 



Publishing and Browsing the Oracle Service Registry

A-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Endpoint services that are shut down or retired (but not undeployed) are still 
reachable. Therefore, the cache is not refreshed.

If you move the business service WSDL from one host to another, ensure that you 
change the location in the Registry Control. No change is required in Oracle 
JDeveloper or Oracle Enterprise Manager Fusion Middleware Control Console.

You can optionally increase the amount of time that the WSDL URL is available in 
cache for inquiry by the service key. For more information, see "Configuring 
Service and Reference Binding Component Properties" of Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

A.4.4.1 Changing Endpoint Locations in the Registry Control
The Registry Control provides an option for changing the endpoint location. This is a 
two-step process. The following steps provide an overview. For more specific details, 
see the Oracle Service Registry documentation:

http://www.oracle.com/technetwork/middleware/registry/overview/index.ht
ml

To update WSDL bindings:
1. Log in to Registry Control.

2. Click Search > Business.

3. Click Add Name.

4. In the Name field, enter a search criteria.

5. Click Find.

6. In the search results, click the business name that is displayed.

7. On the right side, click the Services tab.

8. Click the service name from the list of services.

9. At the bottom, click the Edit button.

10.  On the right side, click the Bindings tab.

11. In the list of bindings, select the notepad icon next to the description column.

Oracle Service Registry is now in edit mode for bindings. 

12. In the Access Point field, change the required URL, and save your changes. 
Figure A–53 provides details.

Note: In 11g, caching occurs automatically. If you are using Oracle 
SOA Suite 10.1.3, caching is supported by setting the 
CacheRegistryWSDL property to true in bpel.xml. Setting this 
property to false disables caching.



Publishing and Browsing the Oracle Service Registry

BPEL Process Activities and Services A-53

Figure A–53 Service and Binding Changes

To update WSDL binding overview documentation:
1. Within the Registry Control, click Search.

2. In the tModel name field, enter the name and click Find tModel.

3. In the name column, click the name with the description wsdl:type representing 
portType.

4. Ensure that WSDL details are shown correctly.

5. Click the Edit button.

6. On the right side, click the Overview doc tab.

7. Under the Add description button, click the Edit icon.

8. Enter the new URL. 

9. Click Update and save the changes. Figure A–54 provides details.

Figure A–54 WSDL URL Verification

10. To verify, navigate to the service and ensure that the WSDL URL is pointing to a 
new location. 



Publishing and Browsing the Oracle Service Registry

A-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A.4.4.2 Publishing WSDLs from Multiple SOA Partitions
Follow these steps if you want to publish WSDLs from multiple SOA partitions using 
the Registry Control, and access them using a separate serviceKey and bindings.

To publish WSDLs from multiple SOA partitions:
1. Log in to Registry Control.

http://host:port/registry/uddi/web

2. Publish the WSDL from the first partition.

3. Publish the WSDL from the second partition.

a. Click Publish > WSDL.

b. Enter values in the Business key and WSDL location (URI) fields.

c. Select the Advanced Mode checkbox.

d. Click Publish.

e. In the navigation tree in the left pane, select the endpoint, bindings, and port 
type, and ensure that the "new" mode option is selected. Figure A–55 provides 
details.

Figure A–55 Advanced Mode

f. Click Publish.

A.4.5 How to Publish WSDLs to UDDI for Multiple Partitions
The following limitations exist for publishing WSDL services from Oracle Enterprise 
Manager Fusion Middleware Control Console.

■ You cannot publish the same service with the same target namespace from 
different SOA partitions or from different hosts.

■ There is no option for entering your own service key.

Instead, use the Registry Console to publish the same WSDL service deployed to 
different partitions to OSR.

To publish WSDLs to UDDI for multiple partitions:
1. Log in to the Registry Console.

2. Publish the WSDL of the first partition.



Validating When Loading a Process Diagram

BPEL Process Activities and Services A-55

3. Rename the above-mentioned service name to a unique name.

4. Publish the WSDL of the second partition.

This creates two separate services in OSR.

A.5 Providing Design-time Governance with the Oracle Enterprise 
Repository

The Oracle Enterprise Repository provides design-time governance in support of the 
service life cycle, delivering capabilities for the storage and management of metadata 
for composites, services, business processes, and other IT-related assets. 

Oracle Enterprise Repository acts as the central source of Oracle SOA Suite 
information, providing all participants in the service life cycle with a human-centric 
discovery environment for planned, existing, and retired services.

Oracle Enterprise Repository provides role-based links to the artifact stores of the 
assets that it describes and links to design documents, justification documents, test 
plans, support plans, policies, and other forms of documentation.

From an integrated development environment (IDE) such as Oracle JDeveloper, you 
can perform the following tasks:

■ Harvest Oracle SOA Suite project artifacts, including BPEL, WSDL, XSD, and 
XSLT files and file directories. After harvesting, the Oracle Enterprise Repository 
automatically creates assets, populates asset metadata, and generates relationship 
links based on the information in the artifact files. 

■ Browse for assets and artifacts available in the Oracle Enterprise Repository.

■ View asset details such as description, usage history, expected savings, and 
relationships.

■ Download an asset's artifacts (that is, payload) into your project. Typically, an asset 
payload is the functionality that you need for using a service (such as a WSDL file) 
or incorporating it into your code base (such as a binary or a BPEL file).

■ Consume a WSDL file or a service from the Oracle Enterprise Repository.

For more information about these tasks and how to configure and use Oracle 
Enterprise Repository with an IDE, see the Oracle Fusion Middleware Integration Guide 
for Oracle Enterprise Repository.

For more information about harvesting from Oracle JDeveloper, see the Oracle Fusion 
Middleware Configuration Guide for Oracle Enterprise Repository.

A.6 Validating When Loading a Process Diagram
You may see an icon (a yellow triangle with an exclamation point) indicating invalid 
settings as you create and open activities such as a scope or an assign for the first time. 
The settings are invalid because you have not yet entered details. 

To turn this option off for the current project, do the following:

1. Right-click the BPEL diagram and select Display > Diagram Properties.

2. Deselect the Enable Automatic Validation option.

3. Click OK.

4. Select Save All from the File main menu.



Validating When Loading a Process Diagram

A-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



B

XPath Extension Functions B-1

BXPath Extension Functions

This appendix describes the XPath extension functions. Oracle provides XPath 
functions that use the capabilities built into Oracle SOA Suite and XPath standards for 
adding new functions.

This appendix includes the following sections:

■ Section B.1, "SOA XPath Extension Functions"

■ Section B.2, "BPEL XPath Extension Functions"

■ Section B.3, "Oracle Mediator XPath Extension Functions"

■ Section B.4, "Advanced Functions"

■ Section B.5, "Workflow Service Functions"

■ Section B.6, "Building XPath Expressions in Oracle JDeveloper"

■ Section B.7, "Creating User-Defined XPath Extension Functions"

For additional information about XPath functions, visit the following URL:

http://www.w3.org

B.1 SOA XPath Extension Functions
This section describes the following types of SOA XPath extension functions:

■ Database functions

■ Date functions

■ Mathematical functions

■ String functions

B.1.1 Database Functions
This section describes the following database functions:

B.1.1.1 lookup-table
This function returns a string based on the SQL query generated from the parameters.

The string is obtained by executing: 

SELECT outputColumn FROM table WHERE inputColumn = key

against the data source that can be either a JDBC connect string 
(jdbc:oracle:thin:username/password@host:port:sid) or a data source 



SOA XPath Extension Functions

B-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

JNDI identifier. Only the Oracle thin driver is supported if the JDBC connect string is 
used. 

Example: oraext:lookup-table('employee','id','1234','last_
name','jdbc:oracle:thin:xyz/xyz@localhost:1521:ORCL')

Signature: 

oraext:lookup-table(table, inputColumn, key, outputColumn, data 
source)

Arguments: 

■ table - The table from which to draw the data.

■ inputColumn - The column within the table.

■ key - The key value of the input column.

■ outputColumn - The column to output the data.

■ data source - The source of the data.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.1.2 query-database
This function returns a node set by executing the SQL query against the specified 
database.

Signature: 

oraext:query-database(sqlquery as string, rowset as boolean, row 
as boolean, data source as string)

Arguments: 

■ sqlquery - The SQL query to perform.

■ rowset - Indicates if the rows should be enclosed in an element.

■ row - Indicates if each row should be enclosed in an element.

■ data source - Either a JDBC connect string 
(jdbc:oracle:thin:username/password@host:port:sid) or a JNDI 
name for the database.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.1.3 sequence-next-val
Returns the next value of an Oracle sequence.

The next value is obtained by executing the following:

SELECT sequence.nextval FROM dual



SOA XPath Extension Functions

XPath Extension Functions B-3

against a data source that can be either a JDBC connect string 
(jdbc:oracle:thin:username/password@host:port:sid) or a data source 
JNDI identifier. Only the Oracle thin driver is supported if a JDBC connect string is 
used. 

Example: oraext:sequence-next-val('employee_id_
sequence','jdbc:oracle:thin:xyz/xyz@localhost:1521:ORCL')

Signature: 

oraext:sequence-next-val(sequence as string, data source as 
string)

Arguments: 

■ sequence - The sequence number in the database.

■ data source - Either a JDBC connect string or a data source JNDI identifier.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.2 Date Functions
This section describes the following functions:

B.1.2.1 add-dayTimeDuration-to-dateTime
This function returns a new date time value adding dateTime to the given duration.

If the duration value is negative, then the resulting value precedes dateTime.

Signature: 

xpath20:add-dayTimeDuration-from-dateTime(dateTime as string, 
duration as string)

Arguments: 

■ dateTime as string - The dateTime to which the function adds the duration, 
in string format.

■ duration as string - The duration to add to the dateTime, or subtract if the 
duration is negative, in string format.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.2 current-date
This function returns the current date in the ISO format of YYYY-MM-DD.

Signature: 

xpath20:current-date(object)



SOA XPath Extension Functions

B-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Arguments: 

■ Object - The time in standard format.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.3 current-dateTime
This function returns the current datetime value in the ISO format of 
CCYY-MM-DDThh:mm:ssTZD.

Signature: 

xpath20:current-dateTime(object)

Arguments: 

■ object - The time in standard format.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.4 current-time
This function returns the current time in ISO format. The format is hh:mm:ssTZD.

Signature: 

xpath20:current-time(object)

Arguments: 

■ object - The time in standard format.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.5 day-from-dateTime
This function returns the day from dateTime. The default day is 1.

Signature: 

xpath20:day-from-dateTime(object)

Arguments: 

■ object - The time in standard format as a string.

Property IDs:



SOA XPath Extension Functions

XPath Extension Functions B-5

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.6 format-dateTime
This function returns the formatted string of dateTime using the format provided.

Signature: 

xpath20:format-dateTime(dateTime as string, format as string)

Arguments: 

■ dateTime - The dateTime to be formatted.

■ format - The format for the output.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.7 hours-from-dateTime
This function returns the hour from dateTime. The default hour is 0.

Signature: 

xpath20:hours-from-dateTime(dateTime as string)

Arguments: 

■ dateTime - The string with the date and time.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.8 implicit-timezone
This function returns the current time zone in the ISO format of +/- hh:mm, 
indicating a deviation from Coordinated Universal Timezone (UTC).

Signature: 

xpath20:implicit-timezone(object)

Arguments: 

■ object - The time in standard format.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20



SOA XPath Extension Functions

B-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.1.2.9 minutes-from-dateTime
This function returns the minute from dateTime. The default minute is 0.

Signature: 

xpath20:minutes-from-dateTime(dateTime as string)

Arguments: 

■ dateTime as string - The date and time.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.10 month-from-dateTime
This function returns the month from dateTime. The default month is 1 (January).

Signature: 

xpath20:month-from-dateTime(dateTime as string)

Arguments: 

■ dateTime as string - The dateTime to be formatted.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.11 seconds-from-dateTime
This function returns the second from dateTime. The default second is 0.

Signature: 

xpath20:seconds-from-dateTime(dateTime as string)

Arguments: 

■ dateTime as a string - The dateTime as a string.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.12 subtract-dayTimeDuration-from-dateTime
This function returns a new dateTime value after subtracting the duration from 
dateTime.

If the duration value is negative, then the resulting dateTime value follows 
input-dateTime value.

Signature: 



SOA XPath Extension Functions

XPath Extension Functions B-7

xpath20:subtract-dayTimeDuration-from-dateTime(dateTime as 
string, duration as string)

Arguments: 

■ dateTime as string - The dateTime from which the function subtracts the 
duration, in string format.

■ duration as string - The duration to subtract from the dateTime, or to add 
if the duration is negative, in string format.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

B.1.2.13 timezone-from-dateTime
This function returns the time zone from dateTime. The default time zone is 
GMT+00:00.

Signature: 

xpath20:timezone-from-dateTime(dateTime as string)

Arguments: 

■ dateTime as string - The dateTime for which this function returns a time 
zone.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.14 year-from-dateTime
This function returns the year from dateTime.

Signature: 

xpath20:year-from-dateTime(dateTime as string)

Arguments: 

■ dateTime - The dateTime as a string.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.3 Mathematical Functions
This section describes the following function.



SOA XPath Extension Functions

B-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.1.3.1 abs
This function returns the absolute value of inputNumber.

If the inputNumber is not negative, the inputNumber is returned. If the 
inputNumber is negative, the negation of inputNumber is returned.

Example: abs(-1) returns 1.

Signature: 

xpath20:abs(inputNumber as number)

Arguments: 

■ inputNumber as number - The number for which the function returns an 
absolute value.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4 String Functions
This section describes the string functions.

B.1.4.1 compare
This function returns the lexicographical difference between inputString and 
compareString by comparing the unicode value of each character of both the 
strings.

This function returns -1 if inputString lexicographically precedes the 
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the 
compareString.

Example: xpath20:compare('Audi', 'BMW') returns -1

Signature: 

xpath20:compare(inputString as string, compareString as string)

Arguments: 

■ variableName - The source variable for the data.

■ propertyName - The qualified name (QName) of the property.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20



SOA XPath Extension Functions

XPath Extension Functions B-9

B.1.4.2 compare-ignore-case
This function returns the lexicographical difference between inputString and 
compareString while ignoring case and comparing the unicode value of each 
character of both the strings.

This function returns -1 if inputString lexicographically precedes the 
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the 
compareString.

Example: xpath20:compare-ignore-case('Audi','bmw') returns -1

Signature: 

xp:compare-ignore-case(inputString as string, compareString as 
string)

Arguments: 

■ inputString - The string of data to be searched.

■ CompareString - The string to compare against the input string.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4.3 create-delimited-string
This function returns a delimited string created from nodeSet delimited by a 
delimiter.

Signature: 

oraext:create-delimited-string(nodeSet as node-set, delimiter as 
string)

Arguments: 

■ nodeSet - The node set to convert into a delimited string.

■ delimiter - The character that separates the items in the output string; for 
example, a comma or a semicolon.

Property IDs:

■ namespace-uri:   
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.4 ends-with
This function returns true if inputString ends with searchString.

Example: xpath20:ends-with('XSL Map','Map') returns true

Signature: 



SOA XPath Extension Functions

B-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

xpath20:ends-with(inputString as string, searchString as string)

Arguments: 

■ inputString - The string of data to be searched.

■ searchString - The string for which the function searches.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4.5 format-string
This function returns the message formatted with the arguments passed. At least one 
argument is required and supports up to a maximum of 10 arguments.

Example: oraext:format-string('{0} + {1} = {2}','2','2','4') 
returns '2 + 2 = 4'

Signature: 

oraext:format-string(string,string,string...)

Arguments: 

■ string - One of the strings to be used in the formatted output.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.6 get-content-as-string
This function returns the XML representation of the input element.

Signature: 

oraext:get-content-as-string(element as node-set)

Arguments: 

■ element as node-set - The input element that the function returns as an XML 
representation.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.7 get-content-from-file-function
This function returns the content of the file.

Signature: 

oraext:get-content-from-file-function(object)



SOA XPath Extension Functions

XPath Extension Functions B-11

Arguments: 

■ object:  The object.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.8 get-localized-string
This function returns the locale-specific string for the key. This function uses language, 
country, variant, and resource bundle to identify the correct resource bundle. All 
parameters must be in string format. Use the string() function to convert any 
parameter values to strings before sending them to get-localized-string.

The resource bundle is obtained by resolving resourceLocation against the 
resourceBaseURL. The URL is assumed to be a directory only if it ends with /. 

Usage: oraext:get-localized-string(resourceBaseURL as string, 
resourceLocation as string, resource bundle as string, language 
as string, country as string, variant as string, key as string)

Example: 
oraext:get-localized-string('file:/c:/','','MyResourceBundle','e
n','US','','MSG_KEY') returns a locale-specific string from a resource bundle 
'MyResourceBundle' in the C:\ directory

Signature: 

oraext:get-localized-string(resourceURL,resourceLocation,resourc
eBundleName,language,country,variant,messageKey)

Arguments: 

■ resourceURL - The URL of the resource.

■ resourceLocation - The subdirectory location of the resource.

■ resourceBundleName - The name of the ZIP file containing the resource bundle.

■ language - The language of the localized output.

■ country - The country of the localized output.

■ variant - The language variant of the localized output.

■ messageKey - The message key in the resource bundle.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.9 index-within-string
This function returns the zero-based index of the first occurrence of searchString 
within the inputString.

This function returns -1 if searchString is not found.



SOA XPath Extension Functions

B-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example: oraext:index-within-string('ABCABC, 'B') returns 1

Signature: 

oraext:index-within-string(inputString as string, searchString 
as string)

Arguments: 

■ inputString - The string of data to be searched.

■ searchString - The string for which the function searches in inputString.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.10 last-index-within-string
This function returns the zero-based index of the last occurrence of searchString 
within inputString.

This function returns -1 if searchString is not found.

Example: oraext:last-index-within-string('ABCABC', 'B') returns 4

Signature: 

oraext:last-index-within-string(inputString as string, 
searchString as string)

Arguments: 

■ inputString - The string of data to be searched.

■ searchString - The string for which the function searches in the inputString.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.11 left-trim
This function returns the value of inputString after removing all the leading white 
spaces.

Example: oraext:left-trim('  account  ') returns 'account  '

Signature: 

oraext:left-trim(inputString)

Arguments: 

■ inputString - The string to be left-trimmed.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc



SOA XPath Extension Functions

XPath Extension Functions B-13

■ namespace-prefix: oraext

B.1.4.12 lower-case
This function returns the value of inputString after translating every character to its 
lower-case correspondent.

Example: xpath20:lower-case('ABc!D') returns 'abc!d'

Signature: 

xpath20:lower-case(inputString)

Arguments: 

■ inputString - The string of data that is in lowercase.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4.13 matches
This function returns true if intputString matches the regular expression pattern 
regexPattern.

Example: xpath20:matches('abracadabra', '^a.*a$') returns true

Signature: 

xpath20:matches(intputString, regexPattern)

Arguments: 

■ inputString - The string of data that must be matched.

■ regexPattern - The regular expression pattern.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4.14 right-trim
This function returns the value inputString after removing all the trailing white 
spaces.

Example: oraext:right-trim('  account  ') returns '  account'

Signature: 

oraext:right-trim(inputString as string)

Arguments: 

■ inputString - The input string to be right-trimmed.

Property IDs:



BPEL XPath Extension Functions

B-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.15 upper-case
This function returns the value of inputString after translating every character to its 
uppercase correspondent.

Example: xpath20:upper-case('abCd0') returns 'ABCD0'

Signature: 

xpath20:upper-case(inputString as string)

Arguments: 

■ inputString - The string of data that is in uppercase.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.2 BPEL XPath Extension Functions
This section describes the following BPEL XPath extension functions.

B.2.1 addQuotes
This function returns the content of a string with single quotes added.

Signature:

ora:addQuotes(string)

Arguments: 

■ string - The string to which this function adds quotes.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.2 appendToList

This function appends to a node list. The node list with which to append should not be 
null or empty.

Signature:

Note: The appendToList function is deprecated. Oracle 
recommends that you use the bpelx:copyList extension of an 
assign activity to append data to a node list.



BPEL XPath Extension Functions

XPath Extension Functions B-15

ora:appendToList('variableName', 'partName'?, 'locationPath'?, 
Object)

Arguments: 

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of 
the document fragment representing the entire part) to identify the root of a 
subtree within the document fragment representing the part (optional).

■ Object - The object can be either a list or a single item. If the object is a list, this 
function appends each item in the list. Each appended item is either an element, or 
an element with the string value of the node created.

Property IDs:

■ deprecated

Use the bpelx:copyList or bpelx:append extension activity to append to a 
list.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.3 copyList

This function copies a node list or a node. The node list to be copied to should not be 
null or empty.

Signature:

ora:copyList('variableName', 'partName'?, 'locationPath'?, 
Object)

Arguments: 

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of 
the document fragment representing the entire part) to identify the root of a 
subtree within the document fragment representing the part (optional).

■ Object - The object can be either a list or a single item. If the object is a list, each 
item in the list is copied. Each item to be copied is either an element, or an element 
with the string value of the node created.

Property IDs:

■ deprecated

Use the bpelx:copyList extension activity to append to a list.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

Note: While the copyList function is still available for use, Oracle 
recommends that you use the bpelx:copyList extension to copy a 
node list or a node. For more information, see Section 6.14.6, "How to 
Use bpelx:copyList."



BPEL XPath Extension Functions

B-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ namespace-prefix: ora

B.2.4 countNodes

This function returns the size of the elements as an integer.

Signature:

ora:countNodes('variableName', 'partName'?, 'locationPath'?)

Arguments: 

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of 
the document fragment representing the entire part) to identify the root of a 
subtree within the document fragment representing the part (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.5 doc
This function returns the content of an XML file. 

Signature:

ora:doc('fileName','xpath'?)

Arguments: 

■ fileName - The name of the XML file.

■ xpath - The path to the file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.6 doStreamingTranslate
This function translates using the streaming XPath APIs. It uses a unique concept 
called batching so that the transformation engine does not materialize the result of a 
transformation into memory. Therefore, it can handle arbitrarily large payloads of the 
order of gigabytes. However, it can only handle forward-only XSL constructs such as 
for-each. The targetType can be SDOM or ATTACHMENT.

Signature: 

ora:doStreamingTranslate('input SDOM or attachment element', 
'streaming xpath context', 'SDOM or ATTACHMENT', 'attachment 
element?')

Note: While the countNodes function is still available for use, 
Oracle recommends that you use version 1.0 of the XPath count() 
function to return the size of the elements as an integer.



BPEL XPath Extension Functions

XPath Extension Functions B-17

Arguments:

■ input SDOM or attachment element

■ streaming xpath context

■ SDOM or ATTACHMENT

■ attachment element

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.7 doTranslateFromNative
This function translates the input data to XML, where the input can be a string, 
attachment, or element that contains Base64-encoded data. The targetType can be 
DOM, ATTACHMENT or SDOM. 

Signature: 

ora:doTranslateFromNative('input','nxsdTemplate','nxsdRoot','tar
getType','attachment element?')

Arguments: 

■ input - The input data of the XPath function.

■ nxsdTemplate - The NXSD schema to use to translate the input data to XML 
format.

■ nxsdRoot - The root element in the native XSD (NXSD) schema.

■ targetType - Decides how the XPath function translates the native data into 
XML.

■ attachment element - This is the attachment for the returned XML. This 
parameter is optional. 

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.8 doTranslateToNative
This function translates the input DOM to a string or attachment. The targetType 
can be STRING or ATTACHMENT 

Signature: 

ora:doTranslateToNative('input','nxsdTemplate','nxsdRoot','targe
tType','attachment element?')

Arguments: 

■ input - The input data of the XPath function. The data can either be DOM or 
SDOM data that must be translated to a native format such as comma-separated 
values (CSV).

The input node is usually the root element of the incoming DOM. Example B–1 
provides details.



BPEL XPath Extension Functions

B-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example B–1 doTranslateToNative Function

med:doTranslateToNative($in.request/inp1:Root-Element, 'xsd/address_csv.xsd', 
@ 'Root-Element','STRING')" 

However, the input node can be a subelement and not the root element of the 
incoming DOM. Example B–2 provides details.

Example B–2 doTranslateToNative Function

med:doTranslateToNative($in.request/inp1:requestToNative/ns1:Root-Element, 
 'xsd/address_csv.xsd', 'Root-Element','ATTACHMENT', 
 $in.request/inp1:requestToNative/inp1:attachment)

In these situations, you must set the following property in the schema node of the 
NXSD for this function to execute properly.

nxsd:useArrayIdentifiers="true" 

Note that this setting can adversely impact the performance of this function for 
very large inputs (in which case, use the dostreamingxlate function).

■ nxsdTemplate - The NXSD schema to use to translate the input data to XML 
format.

■ nxsdRoot - The root element in the NXSD schema.

■ targetType - Decides how the XPath function translates the native data into 
XML.

■ attachment element - This is the attachment for the returned XML. This 
parameter is optional. 

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.9 doXSLTransform
This function implements WS-BPEL 2.0's doXSLTransform function that supports 
multiple parameters of XSLT. When using this function, the XSL template match must 
not be set to root (which is /). It must be the root element.

Signature: 

ora:doXSLTransform('url_to_
xslt',input,['paramQname',paramValue]*)

Arguments: 

■ url_to_xslt - Specifies the XSL style sheet URL.

■ input - Specifies the input variable name.

■ paramQname - Specifies the parameter QName.

■ paramValue - Specifies the value of the parameter.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora



BPEL XPath Extension Functions

XPath Extension Functions B-19

B.2.10 doXSLTransformForDoc
This function is a complement XPath function to doXSLTransform(). It aims to 
perform the transformation when the XSLT template matches the document.

Example B–3 shows the doXSLTransformForDoc function.

Example B–3 doXSLTransformForDoc Functions

<function name="ora:doXSLTransformForDoc">
  <className>com.collaxa.cube.xml.xpath.functions.xml.DoXSLTransformForDocument
  </className>
  <return type="node-set"/>
  <params>
   <param name="template" type="string"/>
   <param name="input" type="string"/>
   <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>
  </params>
  <desc resourceKey="PI_FUNCTION_DESC_DOXSLTRANSFORM_FOR_DOC"></desc>
  <detail resourceKey="PI_FUNCTION_DESC_LONG_DOXSLTRANSFORM_FOR_DOC">
        This function is a complement xpath function to doXSLTransform(). It aims
 to do the transformation when the xslt template matching the
document. The signature of this function is <i>ora:doXSLTransformForDoc('url_to_
xslt',input,['paramQname',paramValue]*)</i>.
        </detail>
  <group>BPEL XPath Extension Functions</group>
 </function>

Signature: 

ora:doXSLTransformForDoc('url_to_
xslt',input,['paramQname',paramValue]*)

Arguments: 

■ url_to_xslt - Specifies the XSL style sheet URL.

■ input - Specifies the input variable name.

■ paramQname - Specifies the parameter QName.

■ paramValue - Specifies the value of the parameter.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

You can use the ora:doXSLTransformForDoc function to write the results of large 
XSLT/XQuery operations to a temporary file in a directory system. The document is 
then loaded from the temporary file when needed. This eliminates the need for 
caching an entire document as binary XML in memory. 

For more information, see Section 43.1.3.7, "Using XPath Functions to Write Large 
XSLT/XQuery Output to a File System."

B.2.11 formatDate
This function converts standard XSD date formats to characters suitable for output.

Signature: 

ora:formatDate('dateTime','format')



BPEL XPath Extension Functions

B-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Arguments: 

■ dateTime - Contains a date-related value in XSD format. For nonstring 
arguments, this function behaves as if a string() function were applied. If the 
argument is not a date, the output is an empty string. If it is a valid XSD date and 
some fields are empty, this function attempts to fill unspecified fields. For 
example, 2003-06-10T15:56:00.

■ format - Contains a string formatted according to 
java.text.SimpleDateFormat format.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.12 generateGUID
Generates a unique GUID.

Signature:

ora:generateGUID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.13 getApplicationName
This function returns the application name.

Signature: 

ora:getApplicationName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.14 getAttachmentContent
This function gets the attachment content from an href function.

Signature: 

ora:getAttachmentContent(varName[, partName[, query]])

Arguments: 

■ varName - Specifies the source variable for the data.

■ partName - (Optional) Specifies the part to select from the variable.

■ query - (Optional) Specifies an absolute location path (with / meaning the root of 
the document fragment representing the entire part) to identify the root of a 
subtree within the document fragment representing the part.



BPEL XPath Extension Functions

XPath Extension Functions B-21

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.15 getComponentName
This function returns the component name. 

Signature: 

ora:getComponentName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.16 getComponentInstanceID
This function returns the component instance ID. 

Signature: 

ora:getComponentInstanceID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.17 getCompositeName
This function returns the composite name. 

Signature: 

ora:getCompositeName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.18 getCompositeInstanceID
This function returns the BPEL process composite instance ID. 

Signature: 

ora:getCompositeInstanceID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora



BPEL XPath Extension Functions

B-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.2.19 getCompositeURL
This function returns the composite URL.

Signature: 

ora:getCompositeURL() 

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.20 getContentAsString
This function returns the content of an element as an XML string.

Signature: 

ora:getContentAsString(element elementAsNodeList)

Arguments: 

■ element - The element (source of the data).

■ elementAsNodeList - The element as the node list.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.21 getConversationId
This function returns the conversation ID.

Signature:

ora:getConversationId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.22 getCreator
This function returns the instance creator.

Signature:

ora:getCreator()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora



BPEL XPath Extension Functions

XPath Extension Functions B-23

B.2.23 getCurrentDate
This function returns the current date as a string.

Signature:

ora:getCurrentDate('format'?)

Argument: 

■ format - (Optional) Specifies a string formatted according to 
java.text.SimpleDateFormat format (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

For more information, see Section 6.12.1, "How to Assign a Date or Time."

B.2.24 getCurrentDateTime
This function returns the current date time as a string.

Signature:

ora:getCurrentDateTime('format'?)

Argument: 

■ format - (Optional) Specifies a string formatted according to 
java.text.SimpleDateFormat format (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.25 getCurrentTime
This function returns the current time as a string.

Signature:

ora:getCurrentTime('format'?)

Argument: 

■ format - (Optional) Specifies a string formatted according to 
java.text.SimpleDateFormat format (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.26 getDomainId
This function returns the current domain ID.

Signature: 

ora:getDomainId()

Arguments: There are no arguments for this function.



BPEL XPath Extension Functions

B-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.27 getECID
This function returns the execution context ID (ECID).

Signature:

ora:getECID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.28 getElement
This function returns an element using index from the array of elements.

Signature:

ora:getElement('variableName', 'partName', 'locationPath', 
index)

Arguments: 

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (required).

■ locationPath - Provides an absolute location path (with / meaning the root of 
the document fragment representing the entire part) to identify the root of a 
subtree within the document fragment representing the part (required).

■ index - Dynamic index value. The index of the first node is 1.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.29 getFaultAsString
This function returns the fault as a string value.

Signature:

ora:getFaultAsString()

Arguments: There are no arguments for this function. 

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.30 getFaultName
This function returns the fault name.



BPEL XPath Extension Functions

XPath Extension Functions B-25

Signature:

ora:getFaultName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.31 getGroupIdsFromGroupAlias
This function returns a List of user IDs for a group alias specified in the 
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getGroupIdsFromGroupAlias(String aliasName)

Arguments: 

■ aliasName - The alias for a list of users or groups.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.32 getInstanceId
This function returns the instance ID.

Signature:

ora:getInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.33 getNodeValue
This function returns the value of a DOM node as a string.

Signature:

ora:getNodeValue(node)

Arguments: 

■ node - The DOM node.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora



BPEL XPath Extension Functions

B-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.2.34 getNodes
This function gets a node list. This is implemented as an alternate to 
bpws:getVariableData, which does not return a node list.

Signature:

ora:getNodes('variableName', 'partName'?, 'locationPath'?)

Arguments: 

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of 
the document fragment representing the entire part) to identify the root of a 
subtree within the document fragment representing the part (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.35 getOwnerDocument
This function returns the document object associated with the node.

Signature: 

ora:getOwnerDocument(node)

Arguments: 

■ node - Specifies the XML node.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.36 getParentComponentInstanceID
This function returns the BPEL process instance parent component instance ID. 

Signature: 

ora:getParentComponentInstanceID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.37 getPreference
This function returns the value of a property specified in the preferences section of the 
BPEL suitcase descriptor.

Signature:

ora:getPreference(preferenceName)



BPEL XPath Extension Functions

XPath Extension Functions B-27

Arguments: 

■ preferenceName - The name of the preference as specified in the BPEL suitcase 
descriptor.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.38 getProcessId
This function returns the ID of the current BPEL process.

Signature: 

ora:getProcessId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.39 getProcessOwnerId
This function returns the ID of the user who owns the process, if specified in the 
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getProcessOwnerId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.40 getProcessURL
This function returns the root URL of the current BPEL process.

Signature:

ora:getProcessURL()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.41 getProcessVersion
This function returns the current process version.

Signature:

ora:getProcessVersion()



BPEL XPath Extension Functions

B-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.42 getUserAliasId
This function returns the user ID for an alias specified in the TaskServiceAliases 
section of the BPEL suitcase descriptor. 

Signature:

ora:getUserAliasId (String aliasName)

Arguments: 

■ aliasName - The alias for a list of users or groups.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.43 getUserIdsFromGroupAlias
This function returns a List of user IDs for a group alias specified in the 
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getUserIdsFromGroupAlias( String aliasName )

Arguments:

■ aliasName - Alias name of the group.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.44 setCompositeInstanceTitle
This function sets a title to the composite instance that can later be used as one of the 
criteria in searching the instances. This function returns the same string that is passed 
as the argument. 

Signature:

med:setCompositeInstanceTitle(title)

Arguments: 

■ title - Specifies the composite instance title. This can be specified as an XPath 
expression on the message payload.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora



BPEL XPath Extension Functions

XPath Extension Functions B-29

B.2.45 instanceOf
This function extracts arbitrary values from BPEL variables. 

Signature:

ora:instanceOf(an_xpath_expression, 'typeQName')

Arguments:

■ an_xpath_expression - An XPath expression that returns an element.

■ typeQName - The QName of a globally-declared XSD type.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.46 integer
This function returns the content of the node as an integer.

Signature:

ora:integer(node)

Arguments: 

■ node - The input node.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.47 parseEscapedXML
This function parses a string to DOM.

Signature:

oratext:parseEscapedXML(contentString)

Arguments: 

■ contentString - The string that this function parses to a DOM.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: oratext

B.2.48 parseXML
This function parses a string to a DOM element. 

Signature:

oratext:parseXML(contentString)

Arguments: 

■ contentString - The string that this function parses to a DOM element.

Property IDs:



BPEL XPath Extension Functions

B-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: oratext

B.2.49 processXQuery
This function returns the result of an XQuery transformation. 

Signature:

ora:processXQuery('template','context'?)

Arguments: 

■ template - The XSLT template.

■ input - The input data to be transformed.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.50 processXSLT
This function returns the result of an XSLT transformation using the Oracle XDK XSLT 
processor.

Example B–4 shows the 11g version of processXSLT.

Example B–4 11g Version of processXSLT

<function name="ora:processXSLT">
 <className>com.collaxa.cube.xml.xpath.functions.xml.GetElementFromXDKXSLTFunction
 </className>
  <return type="node-set"/>
  <params>
   <param name="template" type="string"/>
   <param name="input" type="string"/>
   <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>
  </params>
  <desc resourceKey="PI_FUNCTION_DESC_PROCESSXSLT"></desc>
  <detail resourceKey="PI_FUNCTION_DESC_LONG_PROCESSXSLT">
        This function returns result of XSLT transformation by using Oracle XDK
        XSLT processor. 
        </detail>
  <group>BPEL XPath Extension Functions</group>
 </function>

Example B–5 shows the 10g version of processXSLT, which is provided for backward 
compatiblity.

Example B–5 10g Version of processXSLT

<function name="xdk:processXSLT">
 <className>com.collaxa.cube.xml.xpath.functions.xml.GetElementFromXDKXSLTFunction
 </className>
  <return type="node-set"/>
  <params>
   <param name="template" type="string"/>
   <param name="input" type="string"/>
   <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>



BPEL XPath Extension Functions

XPath Extension Functions B-31

  </params>
  <desc resourceKey="PI_FUNCTION_DESC_PROCESSXSLT"></desc>
  <detail resourceKey="PI_FUNCTION_DESC_LONG_PROCESSXSLT">
   This is same as 11g, for backward compatiablity this function uses the
   old 10.1.2 namespace. This function returns the result of XSLT transformation
   by using Oracle XDK XSLT processor. 
            </detail>
  <group>BPEL XPath Extension Functions</group>
 </function>

Signature:

11g version of the signature:

ora:processXSLT('template','input','properties'?)

10g version of the signature:

xdk:processXSLT('template','input','properties'?)

Arguments: 

■ template - The XSLT template. Both HTTP and file URLs are supported.

■ input - The input data to be transformed.

■ properties - The properties that translate to XSL parameters that can be 
accessed within the XSL map using the construct <xsl:param 
name="paramName"/>. The properties are defined as follows:

1. Create a params.xsd file to define the name-value pair (every property is a 
name-value pair). For example:

<?xml version="1.0" encoding="windows-1252" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
            xmlns="http://schemas.oracle.com/service/bpel/common"
            targetNamespace="http://schemas.oracle.com/service/bpel/common"
            elementFormDefault="qualified">
  <!-- Root Element for Parameters -->
  <xsd:element name="parameters">
    <xsd:complexType>
      <xsd:sequence>
        <!-- Each Parameter is represented by an "item" node that contains
             one unique name and a string value
        -->
        <xsd:element name="item" minOccurs="1" maxOccurs="unbounded">
          <xsd:complexType>
            <xsd:sequence>
              <xsd:element name="name" type="xsd:string"/>
              <xsd:element name="value" type="xsd:string"/>
            </xsd:sequence>
          </xsd:complexType>
        </xsd:element>
      </xsd:sequence>
    </xsd:complexType>
  </xsd:element>
</xsd:schema>

2. Create a SetParams.xsl file to populate the properties. Within the XSLT, the 
parameters are accessible through their names. For this example, the 
parameter names are userName and location, and the values are jsmith 
and CA, respectively.

<?xml version="1.0" encoding="UTF-8" ?>



BPEL XPath Extension Functions

B-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<?oracle-xsl-mapper
  <mapSources>
    <source type="XSD">
      <schema location="TestXSLParams.xsd"/>
      <rootElement name="TestXSLParamsProcessRequest"
 namespace="http://xmlns.oracle.com/TestXSLParams"/>
    </source>
  </mapSources>
  <mapTargets>
    <target type="XSD">
      <schema location="params.xsd"/>
      <rootElement name="ArrayOfNameAnyTypePairType"
 namespace="http://schemas.oracle.com/service/bpel/common"/>
    </target>
  </mapTargets>
  <!-- GENERATED BY ORACLE XSL MAPPER 10.1.3.1.0(build 061009.0802) AT [WED
 APR 18 14:35:04 PDT 2007]. -->
?>
<xsl:stylesheet version="1.0"
                xmlns:ns2="http://schemas.oracle.com/service/bpel/common"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services
.functions.Xpath20"

                
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
                xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
                xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:ehdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.esb.server.
headers.ESBHeaderFunctions"
                xmlns:ns0="http://www.w3.org/2001/XMLSchema"
                
xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services
.functions.ExtFunc"
                
xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
                xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
                xmlns:ns1="http://xmlns.oracle.com/TestXSLParams"
                exclude-result-prefixes="xsl ns0 ns1 ns2 xp20 bpws ora ehdr
 orcl ids hwf">
  <xsl:template match="/">
    <ns2:parameters>
      <ns2:item>
        <ns2:name>
          <xsl:value-of select="'userName'"/>
        </ns2:name>
        <ns2:value>
          <xsl:value-of select="'jsmith'"/>
        </ns2:value>
      </ns2:item>
      <ns2:item>
        <ns2:name>
          <xsl:value-of select="'location'"/>
        </ns2:name>
        <ns2:value>
          <xsl:value-of select="'CA'"/>
        </ns2:value>
      </ns2:item>
    </ns2:parameters>
  </xsl:template>
</xsl:stylesheet>



BPEL XPath Extension Functions

XPath Extension Functions B-33

3. Invoke SetParams.xsl from the .bpel file. For example:

– Within assign activity initializeXSLParameters, you initialize the 
parameter variable from the specific BPEL variable whose information 
you want to access from within the XSLT.

– Within assign activity executeXSLT, you invoke the XSLT with the 
parameters as the properties (third) argument of the function 
processXSLT.

For example:

<process name="TestXSLParams"
 . . .
 . . .
   <sequence name="main">
      <receive name="receiveInput" partnerLink="client"
         portType="client:TestXSLParams" operation="initiate"
         variable="inputVariable" createInstance="yes"/>
      <assign name="initializeXSLParameters">
         <bpelx:annotation>
            <bpelx:pattern>transformation</bpelx:pattern>
         </bpelx:annotation>
         <copy>
            <from expression="ora:processXSLT ('SetParams.xsl',
               bpws:getVariableData('inputVariable','payload'))"/>
            <to variable="propertiesXMLVar"/>
            </copy>
      </assign>
      <assign name="executeXSLT">
         <bpelx:annotation>
             <bpelx:pattern>transformation</bpelx:pattern>
         </bpelx:annotation>

         <copy>
            <from expression="ora:processXSLT('TestXSLParams.xsl',
               bpws:getVariableData('inputVariable','payload'),
               bpws:getVariableData('propertiesXMLVar'))"/>
             <to variable="outputVariable" part="payload"/>
         </copy>
      </assign>
      <invoke name="callbackClient" partnerLink="client"
         portType="client:TestXSLParamsCallback"
         operation="onResult"
         inputVariable="outputVariable"/>
   </sequence>
</process>

4. In BPEL, you use the properties to process the XSLT function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora (for 11g)

■ namespace-prefix: xdk (for 10g)

You can use the ora:processXSLT function to write the results of large 
XSLT/XQuery operations to a temporary file in a directory system. The document is 
then loaded from the temporary file when needed. This eliminates the need for 
caching an entire document as binary XML in memory. 



BPEL XPath Extension Functions

B-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see Section 43.1.3.7, "Using XPath Functions to Write Large 
XSLT/XQuery Output to a File System."

B.2.51 processXSLTAttachment
This function returns the results of XSLT transformation by using the Oracle XDK 
XSLT processor. This function also supports transformations from and to XML 
attachments. 

Signature: 

ora:processXSLTAttachment('template','input','href'?,'properties
'?)

Example B–6 provides an example of signature use.

Example B–6 Signature

<function name="ora:processXSLTAttachment">
<className>com.collaxa.cube.xml.xpath.functions.xml.
 GetElementFromXSLTAttachmentFunction</className>
  <return type="node-set"/>
  <params>
   <param name="template" type="string"/>
   <param name="input" type="string"/>
   <param name="href" type="string" minOccurs="0"/>
   <param name="properties" type="string" minOccurs="0" maxOccurs="unbounded"/>
  </params>
  <desc resourceKey="PI_FUNCTION_DESC_processXSLTAttachment"></desc>
  <detail resourceKey="PI_FUNCTION_DESC_LONG_processXSLTAttachment">

Arguments: 

■ template - The XSLT template.

■ input - The input data to be transformed.

■ href - The location of the actual data.

■ properties - The properties that translate to XSL parameters that can be 
accessed within the XSL map using the construct <xsl:param 
name="paramName"/>.  See Section B.2.50, "processXSLT" for information on 
defining this argument.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.52 processXSQL
This function returns the result of the XSQL request.

Signature:

ora:processXSQL('template','input','properties'?)

Arguments: 

■ template - The XSLT template.

■ input - The input data to be transformed.



BPEL XPath Extension Functions

XPath Extension Functions B-35

■ properties - The properties that translate to XSL parameters that can be 
accessed within the XSL map using the construct <xsl:param 
name="paramName"/>.  See Section B.2.50, "processXSLT" for information on 
defining this argument.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.53 readBinaryFromFile
This function reads data from a file.

Signature:

ora:readBinaryFromFile(fileName)

Arguments: 

■ fileName - The file name from which to read data.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.54 readFile
This function returns the content of the file.

Signature:

ora:readFile('fileName','nxsdTemplate'?,'nxsdRoot'?)

Arguments: 

■ fileName - The name of the file. This argument can also be an HTTP URL. 

This function by default reads files relative to the suitcase JAR file for the process. 
If the file to read is located in a different directory path, you must specify an extra 
directory slash ( /) to indicate that this is an absolute path. For example:

ora:readFile(’file:///c:/temp/test.doc’)

If you specify only two directory slashes (//), you receive an error similar to that 
shown in Example B–7:

Example B–7 Error Message with readFile Function

XPath expression failed to execute.
Error while processing xpath expression,
the expression is "ora:readFile("file://c:/temp/test.doc")",
the reason is c. Verify the xpath query. 

■ nxsdTemplate - The NXSD template for the output.

■ nxsdRoot -The NXSD root.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora



BPEL XPath Extension Functions

B-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.2.55 writeBinaryToFile
This function writes the binary bytes of a variable (or part of the variable) to a file of 
the given file name.

Signature:

ora:writeBinaryToFile(varName[, partName[, query]])

Arguments: 

■ varName - The name of the variable.

■ partName - The name of the part in the messageType variable.

■ query - The query string to a child of the root element.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.56 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0
This section describes BPEL extension functions.

Table B–1 lists the BPEL extension functions supported by either version 1.1 or version 
2.0 of the BPEL specification. If a function is supported by a specific version, it 
displays for selection in the BPEL Extension Functions list of the Expression Builder 
dialog in Oracle JDeveloper. Otherwise, it does not appear. BPEL version 1.1 functions 
use the namespace prefix bpws. BPEL version 1.1 functions use the namespace prefix 
bpel. 

B.2.56.1 getLinkStatus
This function returns a boolean value indicating the status of the link. If the status of 
the link is positive, the value is true. Otherwise, the value is false. This function can 
only be used in a join condition. 

The linkName argument refers to the name of an incoming link for the activity 
associated with the join condition.

Signature:

Note: Currently, the readFile function does not support the 
functionality to access files on a web server that requires 
authorization. If you tried to access such a file, then you get the 
following error:

java.io.IOException: Server returned HTTP response 
code: 401 for URL

Table B–1 BPEL Extension Functions Supported in BPEL 1.1 or BPEL 2.0

Function Supported in BPEL 1.1? Supported in BPEL 2.0?

bpws:getLinkStatus Yes No

bpws:getVariableData Yes No

getVariableProperty Yes No

bpel:getVariableProperty No Yes



BPEL XPath Extension Functions

XPath Extension Functions B-37

bpws:getLinkStatus ('linkName')

Arguments: 

■ variableName - The source variable for the data.

■ propertyName - The QName of the property.

Property IDs:

■ namespace-uri: 
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

B.2.56.2 getVariableData
This function extracts arbitrary values from BPEL variables. 

When only the first argument is present, the function extracts the value of the variable, 
which in this case must be defined using an XML schema simple type or element. 
Otherwise, the return value of this function is a node set containing the single node 
representing either an entire part of a message type (if the second argument is present 
and the third argument is absent) or the result of the selection based on the 
locationPath (if both optional arguments are present).

Signature:

bpws:getVariableData ('variableName', 'partName'?, 
'locationPath'?)

Arguments: 

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of 
the document fragment representing the entire part) to identify the root of a 
subtree within the document fragment representing the part (optional).

Property IDs:

■ namespace-uri: 
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

B.2.56.2.1 selectionFailure Fault is Thrown if the Result Node Set is a Size Other Than One 
During Execution  According to the Business Process Execution Language for Web Services 
Specification, if the locationPath argument selects a node set of a size other than one 
during execution, the standard fault bpws:selectionFailure must be thrown by a 
compliant implementation.

For example, the count() function shown in Example B–8 does not work if there are 
multiple entries of product elements under StoreRequest; this causes a 
selectionFailure fault to be thrown.

Example B–8 count() Function Error

count(bpws:getVariableData('inputVariable',
 'payload','/ns2:StoreRequest/ns2:product'))

To make this work, change the syntax to the following: 



BPEL XPath Extension Functions

B-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

"count($inputVariable.payload/ns2:product)"

B.2.56.3 getVariableProperty (For BPEL 1.1)
This function extracts arbitrary values from BPEL variables. The first argument 
specifies the source variable for the data and the second argument identifies the 
QName of the property to select from that variable. If the given property selects a node 
set of a size other than one during execution, the standard fault 
bpws:selectionFailure is thrown.

Signature:

bpws:getVariableProperty ('variableName', 'propertyname')

Arguments: 

■ variableName - The source variable for the data.

■ propertyName - The QName of the property.

Property IDs:

■ namespace-uri: 
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

B.2.56.4 getVariableProperty (For BPEL 2.0)
This function extracts arbitrary values from BPEL variables. The first argument 
specifies the source variable for the data and the second argument identifies the 
QName of the property to select from that variable. If the given property selects a node 
set of a size other than one during execution, the standard fault 
bpws:selectionFailure is thrown.

Signature:

bpel:getVariableProperty ('variableName', 'propertyname')

Arguments: 

■ variableName - The source variable for the data.

■ propertyName - The QName of the property. If the given property selects a node 
set of a size other than one during execution, the standard fault 
selectionFailure is thrown.

Property IDs:

■ namespace-uri: 
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpel

B.2.57 Utility Functions
This section describes the utility functions.

B.2.57.1 batchProcessActive
This function returns the number of active processes in the batch.

Signature:

ora:batchProcessActive(String batchId, String processId)



BPEL XPath Extension Functions

XPath Extension Functions B-39

Arguments: 

■ batchId - The ID of the batch.

■ processId - The ID of the process.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.2 batchProcessCompleted
This function returns the number of completed processes in the batch.

Signature:

ora:batchProcessCompleted(String batchId, String processId)

Arguments: 

■ batchId - The ID of the batch.

■ processId - The ID of the process.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.3 format
This function formats a message using Java's message format.

Signature: 

ora:format(formatStrings, args+)

Arguments: 

■ formatStrings - The string of data to be formatted.

■ args+ - The arguments referenced by the format specifiers in the format string. If 
there are more arguments than format specifiers, the extra arguments are ignored. 
The number of arguments is variable and may be zero.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.4 genEmptyElem
This function generates a list of empty elements for the given QName.

Signature:

ora:genEmptyElem('ElemQName',size?, 'TypeQName'?, xsiNil?)

Arguments: 

■ ElemQName - The first argument is the QName of the empty elements.

■ size - The second optional integer argument for the number of empty elements. If 
missing, the default size is 1.



BPEL XPath Extension Functions

B-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ TypeQName - The third optional argument is the QName, which is the xsi:type 
of the generated empty name. This xsi:type pattern matches SOAPENC:Array. 
If missing or an empty string, the xsi:type attribute is not generated.

■ xsiNil - The fourth optional boolean argument is to specify whether the 
generated empty elements are XSI - nil, provided the element is XSD-nillable. 
The default is false. If missing or false, xsi:nil is not generated.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.5 getChildElement
This function gets a child element for the given element.

Signature:

ora:getChildElement(element, index)

Arguments: 

■ element - The source for the data.

■ index - The integer value of the child element index.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.6 getMessage
This function gets a message based on the arguments.

Signature:

ora:getMessage(locale, relativeLocation, resourceName, 
resourceKey, resourceLocation?)

Arguments: 

■ locale - The locale of the message.

■ relativeLocation - The subdirectory or message.

■ resourceName - The name of the message resource.

■ resourceKey - The key of the resource.

■ resourceLocation - The location of the resource.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.7 max-value-among-nodeset
This function returns the maximum value from a list of input numbers, the node set 
inputNumber.

The node set inputNumber can be a collection of text nodes or elements containing 
text nodes.



BPEL XPath Extension Functions

XPath Extension Functions B-41

In the case of elements, the first text node's value is considered.

Signature: 

oraext:max-value-among-nodeset(inputNumber as node-set)

Arguments: 

■ inputNumber - The node set of input numbers.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.2.57.8 min-value-among-nodeset
This function returns the minimum value from a list of input numbers, the node set 
inputNumbers.

The node set can be a collection of text nodes or elements containing text nodes.

In the case of elements, the first text node's value is considered.

Signature: 

oraext:min-value-among-nodeset(inputNumbers as node-set)

Arguments: 

■ inputNumber - The node set of input numbers.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.2.57.9 square-root
This function returns the square root of inputNumber.

Example: oraext:square-root(25) returns 5

Signature: 

oraext:square-root(inputNumber as number)

Arguments: 

■ inputNumber - The input number for which the function calculates the square 
root.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.2.57.10 translateFromNative
This function translates the input stream to an XML file.



BPEL XPath Extension Functions

B-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments: 

■ string - The data to convert into an XML file.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot - The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.11 translateToNative
Translates the XML to the native data.

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments: 

■ string - The XML file to convert into a string.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot -The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.12 translateFromNativeAttachment
This function translates the input stream to XML. 

Signature:

ora:translateFromNativeAttachment('string','nxsdTemplate'?,'nxsR
oot'?)

Arguments: 

■ string - The data to convert into an XML file.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot - The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.13 translateToNativeAttachment
This function translates XML to the native data. 

Signature:

ora:translateFromNativeAttachment('string','nxsdTemplate'?,'nxsR
oot'?)



Oracle Mediator XPath Extension Functions

XPath Extension Functions B-43

Arguments: 

■ string - The data to convert into an XML file.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot - The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.3 Oracle Mediator XPath Extension Functions
This section describes the Oracle Mediator XPath extension functions.

B.3.1 doStreamingTranslate
This function translates using the streaming XPath APIs. It uses a unique concept 
called batching so that the transformation engine does not materialize the result of 
transformation into memory. Therefore, it can handle arbitrarily large payloads of the 
order of gigabytes. However, it can only handle forward-only XSL constructs such as 
for-each. The targetType can be SDOM or ATTACHMENT.

Signature: 

med:doStreamingTranslate('input','streaming xpath 
context','targetType','attachment element'?)

Arguments:

■ input - The input data of the XPath function. This can be an SDOM or attachment 
element.

■ streaming xpath context

■ targetType - Determines how the XPath function translates the native data into 
XML.

■ attachment element - The attachment for the returned XML. This parameter is 
optional.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: med

Example:

med.doStreamingTranslate($in.request/inp1:request/inp1:sourceAtt
achmentElement,$in.request/inp1:request/inp1:streamingcontext, 
'ATTACHMENT', 
$in.request/inp1:request/inp1:targetAttachmentElement) 

B.3.2 doTranslateFromNative
This function translates the input data to XML, where the input can be a string to 
translate, a file or FTP adapter attachment, an attachment, or an element that contains 
Base64-encoded data. The targetType can be DOM, ATTACHMENT or SDOM. 

Signature: 



Oracle Mediator XPath Extension Functions

B-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

med:doTranslateFromNative('input','nxsdTemplate','nxsdRoot','tar
getType','attachment element'?)

Arguments: 

■ input - The input data of the XPath function. The data is in a native format, such 
as comma-separated values (CSV).

■ nxsdTemplate - The NXSD schema to use to translate the input data to XML 
format.

■ nxsdRoot - The root element in the NXSD schema.

■ targetType - Determines how the XPath function translates the native data into 
XML.

■ attachment element - The attachment for the returned XML. This parameter is 
optional. 

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: med

Example: 

med:doTranslateFromNative(string($in.request/inp1:request/inp1:s
ource),'xsd/address_csv.xsd','Root-Element','DOM') 

B.3.3 doTranslateToNative
This function translates the input DOM to a string or attachment. The targetType 
can be STRING or ATTACHMENT. 

Signature: 

med:doTranslateToNative('input','nxsdTemplate','nxsdRoot','targe
tType','attachment element'?)

Arguments: 

■ input - The input data of the XPath function. The data can either be DOM or SDOM 
data that must be translated to a native format such as comma-separated values 
(CSV).

The input node is usually the root element of the incoming DOM, as shown in 
Example B–9.

Example B–9 Input Node as Root Element in doTranslateToNative Function

med:doTranslateToNative($in.request/inp1:Root-Element, 'xsd/address_csv.xsd', 
 @ 'Root-Element','STRING')" 

However, the input node can also be a subelement and not the root element of the 
incoming DOM, as shown in Example B–10.

Example B–10 Input Node as Subelement in doTranslateToNative Function

med:doTranslateToNative($in.request/inp1:requestToNative/ns1:Root-Element,
 'xsd/address_csv.xsd', 'Root-Element','ATTACHMENT', 
 $in.request/inp1:requestToNative/inp1:attachment)

In this case, you must set the useArrayIdenitifer property to true in the 
schema node of the NXSD, as shown below.



Oracle Mediator XPath Extension Functions

XPath Extension Functions B-45

nxsd:useArrayIdentifiers="true" 

This setting can adversely impact the performance of this function for very large 
inputs. You can use the dostreamingxlate function in this case.

■ nxsdTemplate - The NXSD schema to use to translate the input data to XML 
format.

■ nxsdRoot - The root element in the NXSD schema.

■ targetType - Determines how the XPath function translates the native data into 
XML.

■ attachment element - The attachment for the returned XML. This parameter is 
optional. 

Property IDs::

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: med

Example: 

med:doTranslateToNative($in.request/inp1:Root-Element,'xsd/addre
ss_csv.xsd','Root-Element','STRING') 

B.3.4 getAttachmentContent
This function gets the attachment content and encodes the data into Base64 format.

Signature: 

med:getAttachmentContent(xpathExpr)

Arguments: 

■ xpathExpr - The XPath expression that references the incoming attachment.

Property IDs::

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: med

Example: 

med:getAttachmentContent($in.bin/bin) 

B.3.5 getComponentInstanceID
This function returns the component instance ID.

Signature:

mdhr:getComponentInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.6 getComponentName
This function returns the component name. 



Oracle Mediator XPath Extension Functions

B-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Signature:

mdhr:getComponentName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.7 getCompositeInstanceID
This function returns the composite instance ID. 

Signature:

mdhr:getComponentInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.8 getCompositeName
This function returns the composite name. 

Signature:

mdhr:getCompositeName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.9 getHeader
This function returns the value of an XPath expression from the Oracle Mediator 
message header. 

Signature:

mdhr:getHeader(xpath as string, namespaces as string)

Arguments:  

■ xpath: Refers to the path you traverse from the schema.

■ namespaces: Refers to the abstract container that contains the context of the 
XPath expression. This argument is not optional. Namespace declarations are in 
the following form:

'prefix=namespace;

Note: The getHeader function works only when both parameters 
are specified.



Oracle Mediator XPath Extension Functions

XPath Extension Functions B-47

Note the semicolon after the namespace declaration. For example:

getHeader("in.header.ns9_name/ns9:name/ns9:first","ns9=http//exmaple.com;")

In the XSLT Mapper in Oracle JDeveloper, drag the getHeader function into the 
mapper. In the Edit Function - getHeader dialog, click Add. The namespaces 
argument is added for you to enter the required information.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix:mdhr

B.3.10 getECID
This function returns the ECID. 

Signature:

mdhr:getECID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.11 getParentComponentInstanceID
This function returns the Oracle Mediator instance parent component instance ID. 

Signature:

mdhr:getParentComponentInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.12 setCompositeInstanceTitle
This function sets a title to the composite instance that can later be used as one of the 
criteria in searching the instances. This function returns the same string that is passed 
as the argument. 

Signature:

mdhr:setCompositeInstanceTitle(title)

Arguments: 

■ title - Specifies the composite instance title. This can be specified as an XPath 
expression on the message payload.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr



Oracle Mediator XPath Extension Functions

B-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.3.13 translateFromNativeAttachment
This function translates the input stream to XML. 

Signature:

med:translateFromNativeAttachment('input','nxsdTemplate', 
'href'?,'nxsdRoot'?)

Arguments: 

■ input - The data to convert into an XML file. This can be an attachment or a 
string.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ href - The location of the actual data. This is optional.

■ nxsdRoot - The root element defined in the XSD file. This is optional. If the root is 
not provided, the root element of the template file specified above is considered; 
otherwise, the subelement from the template is retrieved.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: med

Example:

med:translateFromNativeAttachment($in.bin/bin, 'xsd/address_
csv.xsd', 'myhref-id', 'Root-Element') 

B.3.14 translateToNativeAttachment
This function translates XML to the native data. 

Signature:

med:translateToNativeAttachment('input','nxsdTemplate','href'?, 
'nxsdRoot'?)

Arguments: 

■ input - The data to convert into an XML file. The input can be an attachment or a 
string.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ href - The actual location of the data. This is optional.

■ nxsdRoot - The root element defined in the XSD file. This is optional. If the root is 
not provided, the root element of the template file specified above is considered; 
otherwise, the subelement from the template is retrieved.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: med

Example:

med:translateToNativeAttachment($in.bin/bin,'xsd/address_
csv.xsd','myhref-id','Root-Element') 



Advanced Functions

XPath Extension Functions B-49

B.4 Advanced Functions
This section describes the advanced functions.

B.4.1 create-nodeset-from-delimited-string
This function takes a delimited string and returns a nodeSet.

Signature:

oraext:create-nodeset-from-delimited-string(qname, 
delimited-string, delimiter)

Arguments: 

■ qname - The qualified name in which each node in the node set must be created. 
The QName can be represented in two forms:

– task:assignee

– {http://mytask/task}assignee

■ delimited-string - The sting of elements separated by the delimiter.

■ delimiter - The character that separates the items in the input string; for 
example, a comma or a semicolon.

Property IDs:

■ namespace-uri:   
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.4.2 generate-guid
This function generates a unique GUID.

Signature: 

oraext:generate-guid()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.4.3 lookupPopulatedColumns
This function looks up a cross-reference column for a single value or multiple values 
corresponding to a value in a reference column.

Signature: 

xref:lookupPopulatedColumns(tableName,columnName,value,needAnExc
eption)

Arguments: 

■ xrefTableName: The name of the reference table.



Advanced Functions

B-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ xrefColumnName: The name of the reference column.

■ xrefValue: The value corresponding to the reference column name.

■ needAnException: If this value is set to true, then an exception is thrown when 
no value is found in the referenced column. Otherwise, an empty node set is 
returned.

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

B.4.4 lookupValue
This function returns a string by looking up the value for the target column in a 
domain value map, where the source column contains the given source value.

Signature: 

dvm:lookupValue(dvmLocation,sourceColumnName,sourceValue,targetC
olumnName,defaultValue) 

Arguments: 

■ dvmLocation: The domain value map URI.

■ sourceColumnName: The source column name.

■ sourceValue: The source value (an XPath expression bound to the source 
document of the XSLT transformation).

■ targetColumnName: The target column name.

■ defaultValue: If the value is not found, then the default value is returned.

■ QualifierSourceColumn: The name of the qualifier column.

■ QualifierSourceValue: The value of the qualifier. 

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.Looku
pValue

■ namespace-prefix: dvm

For more information, see Section 44.4.1.1, "dvm:lookupValue."

B.4.5 lookupValue1M
This function returns an XML document fragment containing values for multiple 
target columns of a domain value map, where the value for the source column equals 
the source value.

Signature: 

dvm:lookupValue1M(dvmLocation,sourceColumnName,sourceValue,targe
tColumnName1,targetColumnName2...)

Arguments: 

■ dvmMetadataURI - The domain value map URI.



Advanced Functions

XPath Extension Functions B-51

■ SourceColumnName - The source column name.

■ SourceValue - The source value (an XPath expression bound to the source 
document of the XSLT transformation). 

■ TargetColumnName - The name of the target columns. You must specify at least 
one column name. The question mark symbol (?) indicates that you can specify 
multiple target column names.

Property IDs:

■ namespace-uri: 
http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.Looku
pValue

■ namespace-prefix:dvm

For more information, see Section 44.4.1.2, "dvm:lookupValue1M."

B.4.6 lookupXRef
This function looks up a cross-reference column for a value that corresponds to a value 
in a reference column.

Signature: 

xref:lookupXRef(tableName,referenceColumnName,referenceValue,col
umnName,needAnException)

Arguments: 

■ xrefLocation: The cross-reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: When the value is set to true, an exception is thrown if the 
value is not found. Otherwise, an empty value is returned. 

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

For more information, see Section 46.5.1, "About the xref:lookupXRef Function."

B.4.7 lookupXRef1M
This function looks up a cross-reference column for multiple values corresponding to a 
value in a reference column.

Signature: 

xref:lookupXRef1M(tableName,referenceColumnName,referenceValue,c
olumnName,needAnException)

Arguments: 

■ xrefLocation: The cross-reference URI.

■ xrefReferenceColumnName: The name of the reference column.



Advanced Functions

B-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: If this value is set to true, then an exception is thrown when 
the referenced value is not found. Otherwise, an empty node set is returned.

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

For more information, see Section 46.5.2, "About the xref:lookupXRef1M Function."

B.4.8 lookup-xml
This function returns the string value of an element defined by lookupXPath in an 
XML file (docURL) given its parent XPath (parentXPath), the key XPath 
(keyXPath), and the value of the key (key).

Example: 

oraext:lookup-xml('file:/d:/country_data.xml', 
'/Countries/Country', 'Abbreviation', 'FullName', 'UK') returns the 
value of the element FullName child of /Countries/Country, where 
Abbreviation = 'UK' is in the file D:\country_data.xml.

Signature: 

oraext:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath, 
key)

Arguments: 

■ docURL - The XML file.

■ parentXPath - The parent XPath.

■ keyXPath - The key XPath.

■ lookupXPath - The lookup XPath.

■ key - The key value.

Property IDs:

■ namespace-uri:    
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.4.9 markForDelete
This function deletes a value in a cross-reference table. The value in the column is 
marked as deleted. This function returns true if the deletion is successful. Otherwise, 
it returns false.

Signature: 

xref:markForDelete(tableName,columnName,value)

Arguments: 

■ xrefTableName: The cross-reference table name.



Advanced Functions

XPath Extension Functions B-53

■ xrefColumnName: The name of the column from which you want to delete a 
value.

■ xrefValueToDelete: The value to be deleted.

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

For more information, see Section 46.6.1, "How to Delete a Cross Reference Table 
Value."

B.4.10 populateXRefRow
This function populates the column name in the cross-reference table (XREF) in which 
the reference column has the reference value.

Signature: 

xref:populateXRefRow(tableName,referenceColumnName,referenceValu
e,columnName,value,mode)

Arguments: 

■ xrefLocation: The cross-reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ xrefvalue: The value corresponding to the reference column name.

■ xrefmode: The name of the XREF population mode. 

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

For more information, see Section 46.4.1, "About the xref:populateXRefRow Function."

B.4.11 populateXRefRow1M
This function populates the column with multiple values in the cross-reference table 
(XREF) in which the reference column has the reference value.

Signature: 

xref:populateXRefRow1M(tableName,referenceColumnName,referenceVa
lue,columnName,value,mode)

Arguments: 

■ xrefLocation: The cross-reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to the reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.



Workflow Service Functions

B-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ xrefvalue: The value corresponding to the reference column name.

■ xrefmode: The name of the XREF population mode. 

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

For more information, see Section 46.4.2, "About the xref:populateXRefRow1M 
Function."

B.5 Workflow Service Functions
This section describes the workflow service functions.

B.5.1 clearTaskAssignees
This function clears the current task assignees.

Signature:

hwf:clearTaskAssignees(taskID)

Arguments: 

■ task - The task ID of the task. 

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.2 createWordMLDocument
This function creates a Microsoft Word ML document as a base 64-encoded string.

Signature: 

hwf:createWordMLDocument(node, xsltURI)

Arguments: 

■ node - The node is an XML node that is an input to the transformation.

■ xsltURI - The XSLT used to transform the node (the first argument) to Microsoft 
Word ML.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.3 getNotificationProperty
This function retrieves a notification property. This function evaluates to 
corresponding values for each notification. Only use this function in the notification 
content XPath expression. If used elsewhere, it returns null.

Signature: 

hwf:getNotificationProperty(propertyName)



Workflow Service Functions

XPath Extension Functions B-55

Arguments: 

■ propertyName - The name of the notification property. It can be one of the 
following values: 

–  recipient - The recipient of the notification.

–  recipientDisplay - The display name of the recipient.

–  taskAssignees - The task assignees.

–  taskAssigneesDisplay - The display names of the task assignees.

–  locale - The locale of the recipient.

–  taskId - The task ID of the task for which the notification is meant.

–  taskNumber - The task number of the task for which the notification is 
meant.

– appLink - The HTML link to the Oracle BPM Worklist task details page.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.4 getNumberOfTaskApprovals
This function computes the number of times the task was approved.

Signature: 

hwf:getNumberOfTaskApprovals(taskId)

Arguments: 

■ taskId - The ID of the task.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.5 getPreviousTaskApprover
This function retrieves the previous task approver.

Signature: 

hwf:getPreviousTaskApprover(taskId)

Arguments: 

■ taskId - The ID of the task.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.6 getTaskAttachmentByIndex
This function retrieves the task attachment at the specified index.

Signature: 



Workflow Service Functions

B-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

hwf:getTaskAttachmentByIndex(taskId, attachmentIndex)

Arguments: 

■ taskId - The task ID of the task.

■ attachmentIndex - The index of the attachment. The index begins at 1. The 
attachmentIndex argument can be a node whose value evaluates to the index 
number as a string (all node values are strings). If specified statically, it can be 
specified as '1'. 

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.7 getTaskAttachmentByName
This function retrieves the task attachment by the attachment name.

Signature: 

hwf:getTaskAttachmentByName(taskId, attachmentName)

Arguments: 

■ taskId - The task ID of the task.

■ attachmentName - The name of the attachment.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.8 getTaskAttachmentContents
This function retrieves the task attachment contents by the attachment name. 

Signature: 

hwf:getTaskAttachmentContents(taskId, attachmentName)

Arguments: 

■ taskId - The task ID of the task.

■ attachmentName - The name of the attachment.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.9 getTaskAttachmentsCount
This function retrieves the number of task attachments.

Signature: 

hwf:getTaskAttachmentsCount(taskId)

Arguments: 

■ taskId - The task ID of the task.



Workflow Service Functions

XPath Extension Functions B-57

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.10 getTaskResourceBundleString
This function returns the internationalized resource value from the resource bundle 
associated with a task definition.

Signature: 

 hwf:getTaskResourceBundleString(taskId, key, locale?)

Arguments: 

■ taskId - The task ID of the task.

■ key - The key to the resource.

■ locale - (Optional) The locale. This value defaults to system locale. This returns a 
resourceString XML element in the namespace 
http://xmlns.oracle.com/bpel/services/taskService, which contains 
the string from the resource bundle.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.11 wfDynamicGroupAssign
This function gets the name of an identity service group, selected according to the 
specified assignment pattern. The group is selected from either the subordinate groups 
of the specified group (if a single group name is supplied), or from the list of groups (if 
a list of user names is supplied). If the identity service is configured with multiple 
realms, the realm name for the group and groups must also be supplied. Additional 
assignment pattern-specific parameters can be supplied. These additional parameters 
are optional, depending on the details of the specific assignment pattern used.

There are two signatures of this function.

Signature 1: 

hwf:wfDynamicGroupAssign(’patternName’,’groupName’,’realmName’?,
’patternParam1’?,’patternParam2’?,...,’patternParamN’?)

Argument 1: 

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN).

■ groupName - The name of the group from which to select a subordinate group. 

■ realmName - The name of the identity service realm to which the group belongs. 

■ patternParam1...patternParamN - Any additional parameters required by 
the assignment pattern implementation (may be optional, depending on pattern). 

Signature 2:

hwf:wfDynamicGroupAssign(’patternName’,’groupList’,’realmName’?,
’patternParam1’?,’patternParam2’?,...,’patternParamN’?) 



Workflow Service Functions

B-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Argument 2:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN). 

■ groupList - The list of groups from which to select a group. 

■ realmName - The name of the identity service realm to which the groups belong. 

■ patternParam1...patternParamN - Any additional parameters required by 
the assignment pattern implementation (may be optional, depending on the 
pattern). 

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.12 wfDynamicUserAssign
This function returns the name of an identity service user, selected according to the 
specified assignment pattern. The user is selected from either the subordinate users of 
the specified group (if a single group name is supplied), or from the list of users (if a 
list of user names is supplied). If the identity service is configured with multiple 
realms, the realm name for the group and users must also be supplied. Additional 
assignment pattern-specific parameters can be supplied. These additional parameters 
are optional, depending on the details of the specific assignment pattern used.

There are two signatures for this function. 

Signature 1: 

hwf:wfDynamicUserAssign(’patternName’,’groupName’,’realmName’?,’
patternParam1’?,....,’patternParam2’?,...,’patternParamN’?)

Arguments 1:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN).

■ groupName - The name of the group from which to select a subordinate user.

■ realmName - The name of the identity service realm to which the group belongs.

■ patternParam1 ... patternParamN - Any additional parameters required by 
the assignment pattern implementation (may be optional, depending on the 
pattern).

Signature 2: 

hwf:wfDynamicUserAssign(patternName,userList,realmName?,patternP
aram1?,patternParam2?,...,patternParamN?)

Arguments 2:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN). 

■ userList - The list of users from which to select a user.

■ realmName - The name of the identity service realm to which the users belong. 

■ patternParam1...patternParamN - Any additional parameters required by 
the assignment pattern implementation (may be optional, depending on the 
pattern).



Workflow Service Functions

XPath Extension Functions B-59

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.13 Identity Service Functions
This section describes the identity service functions.

B.5.13.1 getDefaultRealmName
This function returns the default realm name.

Signature: 

ids:getDefaultRealmName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: 
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.2 getGroupProperty
This function returns the property value for the given group. If the group or attribute 
does not exist, it returns null.

Signature: 

ids:getGroupProperty(groupName, attributeName, realmName)

Arguments: 

■ groupName - String or element containing the group whose attribute must be 
retrieved.

■ attributeName - String or element containing the name of the group attribute. 
The name is one of the following values:

1. displayName

2. email

If the identity service uses the LDAP providerType or JAZN LDAP-based 
providers, configure the LDAP server to enable searching by those attributes.

■ realmName - The realm name. This is optional. If not specified, the default realm 
is assumed.

Property IDs:

■ namespace-uri: 
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.3 getManager
This function gets the manager of a given user. If the user does not exist or there is no 
manager for this user, it returns null.

Signature:



Workflow Service Functions

B-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

ids:getManager(userName, realmName)

Arguments: 

■ userName - The user name.

■ realmName - The realm name. This is optional. If not specified, the default realm 
is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

B.5.13.4 getReportees
This function gets the reportees of the user. If the user does not exist, it returns null. 
This function returns a list of nodes. Each node in the list is called user.

Signature: 

 ids:getReportees(userName, upToLevel, realmName)

Arguments: 

■ userName - The user name.

■ upToLevel- Defines the levels of indirect reportees to be included in the result. If 
the value is 1, it returns only direct reportees. If the value is -1, it returns all levels 
of reportees. It can be either an element with value xsd:number or a string, for 
example '1'.

■ realmName - The realm name. This is optional and if not specified, the default 
realm is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

B.5.13.5 getSupportedRealmNames
This function returns the supported realm names.

Signature: 

ids:getSupportedRealms()

Property IDs:

■ namespace-uri: 
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.6 getUserProperty
This function returns the property of the user. If the user or attribute does not exist, it 
returns null.

Signature: 

ids:getUserProperty(userName, attributeName, realmName)



Workflow Service Functions

XPath Extension Functions B-61

Arguments: 

■ userName - String or element containing the user whose attribute must be 
retrieved.

■ attributeName - The name of the user attribute. The attribute name is one of 
the following values:

1. givenName

2. middleName

3. sn

4. displayName

5. mail

6. telephoneNumber

7. homephone

8. mobile

9. facsimile

10. pager

11. preferredlanguage

12. title

13. manager

If the identity service uses the LDAP providerType or JAZN LDAP-based 
providers, configure the LDAP server to enable searching by those attributes.

■ realmName - The realm name. This is optional. If not specified, the default realm 
name is assumed.

Property IDs:

■ namespace-uri: 
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.7 getUserRoles
This function gets the user roles. This function returns a list of objects, either 
application roles or groups, depending on the roleType. If the user or role does not 
exist, it returns null.

Signature: 

ids:getUserRoles(userName, roleType, direct)

Arguments: 

■ userName - String or element containing the user whose roles are to be retrieved.

■ roleType - The role type that takes one of three values: ApplicationRole, 
EnterpriseRole, or AnyRole.

■ direct - A string or element indicating if direct or indirect roles must be fetched. 
This is optional. If not specified, only direct roles are fetched. This is either 
xsd:boolean or string true/false.

Property IDs:



Workflow Service Functions

B-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice

■ namespace-prefix: ids

B.5.13.8 getUsersInGroup
This function gets the users in a group. If the group does not exist, it returns null. 
This function returns a list of nodes. Each node in the list is called user.

Signature: 

ids:getUsersInGroup(groupName, direct, realmName)

Arguments: 

■ groupName - The group name.

■ direct - A boolean flag. If true, this function returns direct user grantees; 
otherwise, all user grantees are returned. It can be either an element with value 
xsd:boolean or string 'true'/'false'.

■ realmName - The realm name. This is optional. If not specified, the default realm 
name is assumed.

Property IDs:

■ namespace-uri: 
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.9 isUserInRole
This function verifies if a user has a given role.

Signature: 

ids:isUserInRole(userID, roleName, realmName)

Arguments: 

■ userID - A string or element containing the user whose participation in the role 
must be verified.

■ roleName - The role name.

■ realmName - The realm name. This is optional. If not specified, the default realm 
name is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

B.5.13.10 lookupGroup
This function gets the group. If the group does not exist, it returns null. 

Signature: 

 ids:lookupGroup(groupName, realmName)

Arguments: 

■ groupName - The group name.



Building XPath Expressions in Oracle JDeveloper

XPath Extension Functions B-63

■ realmName - The realm name. This is optional. If not specified, the default realm 
name is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

B.5.13.11 lookupUser
This function gets the user object. If the user does not exist, it returns null. 

Signature: 

 ids:lookupUser(userName, realmName)

Arguments: 

■ userName - The user name.

■ realmName - The realm name. This is optional. If not specified, the default realm 
name is assumed.

Property IDs:

■ namespace-uri: 
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.6 Building XPath Expressions in Oracle JDeveloper
You can use the Expression Builder dialog and the XPath Building Assistant to create 
XPath expressions. You can visually design XPath expressions in a BPEL process or 
Oracle Mediator service component in the Expression Builder dialog.

B.6.1 How to Use the Expression Builder

To use the Expression Builder:
1. In the Functions list, select the function category to use (for example, Identity 

Service Functions).

2. Select the function (for example, getManager).

3. Click Insert Into Expression, as shown in Figure B–1.



Building XPath Expressions in Oracle JDeveloper

B-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure B–1 Expression Builder Dialog

This inserts the function into the Expression field at the top.

4. In the Expression field, place the cursor between the parentheses of the function, 
as shown in Figure B–2.

Figure B–2 Placement of Cursor

5. In the Schema section, expand the schema path to make your selection, as shown 
in Figure B–3.

Figure B–3 Selection of Schema



Building XPath Expressions in Oracle JDeveloper

XPath Extension Functions B-65

6. Click Insert Into Expression.

The expression is inserted into the function, as shown in Figure B–4.

Figure B–4 XPath Expression Creation

B.6.2 Introduction to the XPath Building Assistant
Several dialogs enable you to specify XPath expressions with the XPath Building 
Assistant, including:

■ Expression field of the Expression Builder dialog

■ Expression field of the Initialize tab of the Create Variable dialog in BPEL 2.0

■ Edit XPath Expression and Edit Function dialogs of the XSLT Mapper

Manually specifying long and complex expressions is supported, but can be a 
cumbersome and error-prone process. The XPath Building Assistant provides the 
following set of features that simplify this process:

■ Automatic completion of the following:

– Elements and attributes

– Functions

– BPEL variables and parts

■ Function parameter tool tips

■ Syntactic and semantic validation of XPaths

B.6.3 How to Use the XPath Building Assistant
This section provides an example of using the XPath Building Assistant to build an 
expression in the Expression field of the Expression Builder dialog.

To use the XPath Building Assistant:
1. Click inside the Expression field and press Ctrl and then the space bar. The menu 

of available selections is displayed.

2. Make a selection from the list in either of the following ways: 

■ Scroll down the list and double-click a function.

■ Enter the beginning letter (for example, c) to display only items starting with 
that letter and double-click the appropriate function.

Figure B–5 provides details.

Figure B–5 List of Values for Building an Expression



Building XPath Expressions in Oracle JDeveloper

B-66 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

This value is added to the Expression field. The list automatically displays again 
with different options and prompts you to enter the next portion of the XPath 
expression.

3. Select and double-click the next portion. Figure B–6 provides details.

Figure B–6 Invocation of Next Portion of Function

This value is added to the Expression field. The list automatically displays again 
and prompts you to enter the next portion of the XPath expression.

4. Continue this process to build the remaining parts of the XPath expression. 

5. Manually add text as appropriate. Figure B–7 provides details.

Figure B–7 Manual Addition of Text

B.6.4 Using the XPath Building Assistant in the XSLT Mapper
This section provides an example of using the XPath Building Assistant to build an 
expression in the Edit XPath Expression dialog of the XSLT Mapper.

To use the XPath Building Assistant in the XSLT Mapper:
1. Go to the XSLT Mapper.

2. From the Component Palette list, select Advanced Functions.

3. Scroll down the list to the xpath-expression function.

4. Drag and drop the xpath-expression function into the XSLT Mapper, as shown in 
Figure B–8.

Note: Instead of double-clicking selections in the XPath Building 
Assistant popups, you can also use the Enter key to make the 
selection. If your expression is complete, but you are still being 
prompted to enter information, press Esc. This closes the list.



Building XPath Expressions in Oracle JDeveloper

XPath Extension Functions B-67

Figure B–8 xpath-expression

5. Double-click the function to display the Edit XPath Expression dialog.

6. Click the cursor inside the XPath Expression field.

7. Press Ctrl and then the space bar to display a list of values for building an 
expression, as shown in Figure B–9.

Figure B–9 List of Values for Building an Expression

8.  Make a selection from the list (for this example, concat(String) as String) in either 
of the following ways:

■ Scroll down the list and double-click concat(String) as String.

■ Enter the letter c to display only items starting with that letter, then select and 
double-click concat(String) as String.

Figure B–10 provides details.

Figure B–10 Expression List Selection



Building XPath Expressions in Oracle JDeveloper

B-68 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

This selection is added to the XPath Expression field. The list automatically 
displays again with different options and prompts you to enter the next portion of 
the XPath expression.

9. Continue this process to build the remaining parts of the XPath expression.

10. Click OK to close the Edit XPath Expression dialog when complete.

B.6.5 Function Parameter Tool Tips
Function parameter tool tips display the expected arguments of a chosen XPath 
function. For example, if you manually enter the function concat, and then enter (, 
the parameter tool tip appears and displays the expected arguments of the concat 
function. The current argument name of the function is highlighted in bold. 
Figure B–11 provides details.

Figure B–11 Current Argument Name of the Function

Once you finish specifying one argument, and enter a comma to move to the next 
argument, the tool tip updates itself to highlight the second argument name in bold, 
and so on. While editing existing XPaths that contain functions, you can re-invoke 
parameter tool tips by positioning the cursor within the function and then pressing a 
combination of the Ctrl, Shift, and space bar keys.

B.6.6 Syntactic and Semantic Validation
Within Oracle JDeveloper, an XPath expression is considered syntactically valid if it 
conforms to the XPath 1.0 specification. The XPath Building Assistant warns you about 
syntactically incorrect XPaths (for example, a missing parenthesis or apostrophe) by 
underlining the erroneous area in red. Drag the mouse pointer over this area. The error 
message displays as a tool tip. The red underlining error disappears after you make 
corrections. Figure B–12 provides details.

Figure B–12 Syntactically Incorrect XPaths

Syntactically valid XPaths may be semantically invalid. This can cause unexpected 
errors at runtime. For example, you can misspell the name of an element, variable, 
function, or part. The XPath Building Assistant warns you about semantic errors by 
underlining the erroneous area in blue. Drag the mouse pointer over this area. The 
error message displays as a tool tip. The blue underlining error disappears after you 
make corrections. Figure B–13 provides details.



Building XPath Expressions in Oracle JDeveloper

XPath Extension Functions B-69

Figure B–13 Semantically Incorrect XPaths

B.6.7 Creating Expressions with Free Form Text and XPath Expressions
You can mix free form text with XPath expressions in some dialogs. 

1. Place your cursor over the field to display a popup message that describes this 
functionality. Figure B–14 provides details.

Figure B–14 Functionality Description Menu

2. Enter free form text (in this example, ’Hello, your telephone number’). 
Figure B–15 provides details.

Figure B–15  Free Form Text

3. Enter <% when you are ready to invoke the XPath Building Assistant. Figure B–16 
provides details.

Figure B–16 XPath Building Assistant Invocation Preparation

A red underline appears, which indicates that you are being prompted to add 
information. 

4. Press Ctrl and then the space bar to invoke the XPath Building Assistant. 
Figure B–17 provides details.



Creating User-Defined XPath Extension Functions

B-70 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure B–17 XPath Building Assistant Invocation

5. Scroll down the list and double-click the value you want.

6. Continue this process to build the remaining parts of the expression.

B.7 Creating User-Defined XPath Extension Functions
You can create user-defined (custom) XPath extension functions for use in Oracle SOA 
Suite. These functions can be created for the following components:

■ Oracle BPEL Process Manager

■ Oracle Mediator

■ XSLT Mapper

■ Human workflow

■ Shared by all of these components

XPath extension functions in Oracle SOA Suite adhere to the following standards:

■ A single schema defines the configuration syntax for both system functions and 
user-defined functions.

■ XPath functions are categorized based on usage (Oracle BPEL Process Manager, 
Oracle Mediator, human workflow, XSLT Mapper, and those commonly used by 
all). 

■ System functions are separated from user-defined functions. 

■ A repository hosts both system function configuration files and user-defined 
function configuration files. 

■ A repository hosts user-defined function implementation JAR files and 
automatically makes them available for the Java Virtual Machine (JVM) (class 
loaders). 

As a best practice, follow these conventions for creating functions:

■ If possible, write functions that can be shared across all components. Functions 
shared by all components can be created in a configuration file named 
ext-soa-xpath-functions-config.xml. Note that you must implement 
XSLT Mapper functions differently than Oracle BPEL Process Manager, Oracle 
Mediator, and human workflow functions.

For more information about description of these implementation differences, see 
Section B.7.1, "How to Implement User-Defined XPath Extension Functions."

■ If you create a function for one component that cannot be used by others (for 
example, a function for Oracle BPEL Process Manager that cannot be used by 



Creating User-Defined XPath Extension Functions

XPath Extension Functions B-71

Oracle Mediator or human workflow), then create that function in the 
configuration file specific to that component. For this example, the Oracle BPEL 
Process Manager function must be created in a configuration file named 
ext-bpel-xpath-functions-config.xml.

Example B–11 shows the function schema used by system and user-defined functions.

Example B–11 Function Schema

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/soa/config/xpath" 
 targetNamespace="http://xmlns.oracle.com/soa/config/xpath"
 elementFormDefault="qualified">
      <element name="soa-xpath-functions" type="tns:XpathFunctionsConfig"/>
      <element name="function" type="tns:XpathFunction"/>
      <complexType name="XpathFunctionsConfig">
            <sequence>
               <element ref="tns:function" minOccurs="1" maxOccurs="unbounded"/>
            </sequence>
            <attribute name="resourceBundle" type="string"/>
            <attribute name="version" type="string"/>
      </complexType>

      <complexType name="XpathFunction">
            <sequence>
                 <element name="className" type="string"/>
                 <element name="return">
                         <complexType>
                                 <attribute name="type" type="tns:XpathType"
                                     use="required"/>
                         </complexType>
                 </element>
                 <element name="params" type="tns:Params" minOccurs="0"
                         maxOccurs="1"/>
                 <element name="desc">
                         <complexType>
                                 <simpleContent>
                                         <extension base="string">
                                                 <attribute name="resourceKey"
                                                     type="string"/>
                                         </extension>
                                 </simpleContent>
                         </complexType>
                 </element>
                 <element name="detail" minOccurs="0">
                         <complexType>
                                 <simpleContent>
                                         <extension base="string">
                                                 <attribute name="resourceKey"
                                                      type="string"/>
                                         </extension>
                                 </simpleContent>
                         </complexType>
                 </element>
                 <element name="icon" minOccurs="0">
            <complexType>
                     <simpleContent>
                              <extension base="string">
                                    <attribute name="resourceKey"



Creating User-Defined XPath Extension Functions

B-72 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

                                       type="string"/>
                              </extension>
                     </simpleContent>
             </complexType>
        </element>
                      <element name="helpURL" minOccurs="0">
             <complexType>
                      <simpleContent>
                              <extension base="string">
                                    <attribute name="resourceKey"  
                                       type="string"/>
                              </extension>
                      </simpleContent>
              </complexType>
        </element>
        <element name="group" minOccurs="0">
              <complexType>
                      <simpleContent>
                              <extension base="string">
                                   <attribute name="resourceKey" type="string"/>
                              </extension>
                      </simpleContent>
              </complexType>
        </element>
        <element name="wizardClass" type="string" minOccurs="0"/> 
</sequence>
<attribute name="name" type="string" use="required"/>
               <attribute name="deprecated" type="boolean" use="optional"/>
</complexType>

      <complexType name="Params">
      <sequence>
              <element name="param" minOccurs="1" maxOccurs="unbounded">
                      <complexType>
                           <attribute name="name" type="string" use="required"/>
                           <attribute name="type" type="tns:XpathType"
                                 use="required"/>
                           <attribute name="minOccurs" type="string"
                                 default="1"/>
                           <attribute name="maxOccurs" type="string"
                                 default="1"/>
                           <attribute name="wizardEnabled" type="boolean"
                                 default="false"/>
                      </complexType>
              </element>
       </sequence>
  </complexType>
  <simpleType name="XpathType">
       <restriction base="string">
               <enumeration value="string"/>
               <enumeration value="boolean"/>
               <enumeration value="number"/>
               <enumeration value="node-set"/>
               <enumeration value="tree"/>
       </restriction>
  </simpleType>
</schema>



Creating User-Defined XPath Extension Functions

XPath Extension Functions B-73

B.7.1 How to Implement User-Defined XPath Extension Functions
This section describes how to implement user-defined XPath extension functions for 
Oracle SOA Suite components.

B.7.1.1 How to Implement Functions for the XSLT Mapper
Implementation of user-defined XPath extension functions for the XSLT Mapper is 
different than for other components:

■ Each XSLT Mapper function requires a corresponding public static method from a 
public static class. The function name and method name must match.

■ XSLT Mapper function namespaces must take the form 
http://www.oracle.com/XSL/Transform/java/mypackage.MyFunction
Class, where mypackage.MyFunctionClass is the fully qualified class name 
of the public static class containing the public static methods for the functions.

For additional details about creating a user-defined XPath extension function for the 
XSLT Mapper, see Section 38.3.4.4, "Importing User-Defined Functions."

B.7.1.2 How to Implement Functions for All Other Components
For Oracle BPEL Process Manager, Oracle Mediator, and human workflow functions, 
you must implement either the 
oracle.fabric.common.xml.xpath.IXPathFunction interface (defined in the 
fabric-runtime.jar file) or javax.xml.xpath.XPathFunction.

To implement functions for all other components:
1. Implement the oracle.fabric.common.xml.xpath.IXPathFunction 

interface for your XPath function. The IXPathFunction interface has one 
method named call(context, args). The signature of this method is as 
shown in Example B–12:

Example B–12 Implementation of oracle.fabric.common.xml.xpath.IXPathFunction

 package oracle.fabric.common.xml.xpath;
 public interface IXPathFunction
 {
    /** Call this function.
    *
    *  @param context The context at the point in the
    *         expression when the function is called.
    *  @param args List of arguments provided during
    *         the call of the function.
    */
    public Object call(IXPathContext context, List args) throws
 XPathFunctionException;
 }

where:

■ context - The context at the point in the expression when the function is 
called.

■ args - The list of arguments provided during the call of the function.

For the example shown in Example B–13, a function named 
getNodeValue(arg1) is implemented that gets a value of w3c node:



Creating User-Defined XPath Extension Functions

B-74 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example B–13 Implementation of getNodeValue(arg1) Function

package com.collaxa.cube.xml.xpath.dom.functions;
 import oracle.fabric.common.xml.xpath.IXPathFunction;
 import oracle.fabric.common.xml.xpath.IXPathFunction
 . . .

 public class GetNodeValue implements IXPathFunction {
    Object call(IXPathContext context, List args) throws XPathFunctionException
 {
        org.w3c.dom.Node node = (org.w3c.dom.Node) args.get(0);
        return node.getNodeValue()
    }
 }

B.7.2 How to Configure User-Defined XPath Extension Functions
This section describes how to configure user-defined XPath extension functions.

To configure user-defined XPath extension functions:
1. Create an XPath extension configuration file in which to define the function. 

Example B–14 shows a sample configuration file that follows the function schema 
shown in Example B–11 of Section B.7, "Creating User-Defined XPath Extension 
Functions." In this example, two functions are created: mf:myFunction1 and 
mf:myFunction2.

Example B–14 Sample XML Extension Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions resourceBundle="myPackage.myResourceBundle"
 xmlns="http://xmlns.oracle.com/soa/config/xpath"
 xmlns:mf="http://www.my-functions.com">
  <function name="mf:myFunction1">
    <className>myPackage.myFunctionClass1</className>
    <return type="node-set"/>
    <params>
      <param name="p1" type="node-set" wizardEnabled="true"/>
      <param name="p2" type="string"/>
      <param name="p3" type="number" minOccurs="0"/>
      <param name="p4" type="boolean" minOccurs="0"  maxOccurs="3"/>
    </params>
    <desc resourceKey="func1-desc-key">this is my first function</desc>
    <detail resourceKey="func2-long-desc-key">my first function does ... </detail>
    <icon>myPackage/resource/image/myFunction1.png</icon>
    <group resourceKey="func-group-key">My Function Group</group>
    <wizardClass>myPackage.myWizardClass1</wizardClass>
  </function>
  <function name="mf:myFunction2">
    <className>myPackage.myFunctionClass2</className>
    <return type="string"/>
    <params>
      <param name="p1" type="node-set" wizardEnabled="true"/>
      <param name="p2" type="string"/>
      <param name="p3" type="number" minOccurs="0"/>
      <param name="p4" type="boolean" minOccurs="0"  maxOccurs="unbounded"/>
    </params>
    <desc resourceKey="func2-desc-key">this is my second function</desc>
    <detail resourceKey="func2-long-desc-key">my second function does ...</detail>
    <icon>myPackage/resource/image/myFunction2.png</icon>
    <group resourceKey="func-group-key">My Function Group</group>



Creating User-Defined XPath Extension Functions

XPath Extension Functions B-75

    <wizardClass>myPackage.myWizardClass2</wizardClass>
  </function>
</soa-xpath-functions>

Table B–2 describes the elements of the configuration file. Each function 
configuration file uses soa-xpath-functions as its root element. The root 
element has an optional resourceBundle attribute. The resourceBundle 
value is the fully qualified class name of the resource bundle class providing NLS 
support for all function configurations. 

Table B–2 Function Schema Elements

Element Description

className The fully qualified class name of the function implementation class.

return The return type of the function. This can be one of the following types supported by XPath and 
XSLT: string, number, boolean, node set, and tree.

params The parameters of the function. A function can have no parameters. A parameter has the 
following attributes:

■ name: The name of the parameter. 

■ type: The type of the parameter. This can be one of the following types supported by XPath 
and XSLT: string, number, boolean, node set, and tree.

■ minOccurs: The minimum occurrences of the parameter. If set to 0, the parameter is 
optional. If set to 1, the parameter is required. The current restriction is that this attribute 
must only take a value of either 0 or 1 and that optional parameters must be defined after 
the required parameters. The default value is 1 if this attribute is absent. 

■ maxOccurs: The maximum occurrences of the parameter. If set to unbounded, the 
parameter can repeat anytime. This can support functions such as XPath 1.0 function 
concat(), which can take unlimited parameters. The current restriction is that no 
parameters except the last parameter of the function can have maxOccurs greater than 1 or 
unbounded. The default value is 1 if this attribute is absent. 

■ wizardEnabled: Indicates whether to enable a wizard to enter the parameter value. This 
supports a user interface where the parameter value must be entered. If set to true, a 
wizard launch button is rendered next to the parameter value field. The wizard launch 
button, when pressed, launches a popup wizard to help the user enter the parameter value. 
The wizard class must be specified later. The default value is false if this attribute is 
absent, meaning there is no wizard support for the parameter by default. 

desc An optional description of the function. If the resourceKey is present, the description is 
retrieved from the resource bundle specified earlier on the root element. 

detail An optional longer (detailed) description of the function. If the resourceKey is present, the 
description is retrieved from the resource bundle specified earlier on the root element. 

icon An optional icon URL of the function. If the resourceKey is present, the icon URL is retrieved 
from the resource bundle specified earlier on the root element. This is to support a user interface 
in which the function must be displayed. 



Creating User-Defined XPath Extension Functions

B-76 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Name your user-defined XPath extension configuration file based on the 
component type with which to use the function. Table B–3 describes the naming 
conventions to use for user-defined configuration files.

3. Place the configuration file inside a JAR file along with the compiled classes. 
Within the JAR file, the configuration file must be located in the META-INF 
directory. The JAR file does not need to reside in a specific directory.

4. In Oracle JDeveloper, go to Tools > Preferences > SOA.

5. Click the Add button and select your JAR file. 

6. Restart Oracle JDeveloper for the changes to take effect.

The JAR file is automatically added to the JVM's class path to make it available for 
use. 

B.7.3 How to Deploy User-Defined Functions to Runtime
 You can deploy user-defined functions to the runtime environment.

To deploy user-defined functions to runtime:
1. Copy the user-defined function JAR files to BEA_Home/user_

projects/domains/domain_name/lib or a subdirectory of lib.

helpURL An optional help HTML URL of the function. If the resourceKey is present, the help URL is 
retrieved from the resource bundle specified earlier on the root element. This is to support a user 
interface in which the function help link must be displayed. 

group An optional group name of the function. If the resourceKey is present, the group name is 
retrieved from the resource bundle specified earlier on the root element. This is to support a user 
interface where functions must be grouped. If no group name is specified, the function falls into 
a built-in advanced functions group when being grouped in a user interface. 

wizardClass The fully qualified class name of the wizard class for all parameters that are wizard-enabled. 
This is to support a user interface in which parameter values must be entered. This wizard class 
is invoked by wizard launch buttons to help you enter parameter values. If there is no 
wizard-enabled parameter, this element must be absent. 

Note: This element is not supported for user-defined functions. Only system functions currently 
support this feature.

Table B–3 User-Defined Configuration Files

To Use with This Component... Use This Configuration File Name...

Oracle BPEL Process Manager ext-bpel-xpath-functions-config.xml

Oracle Mediator ext-mediator-xpath-functions-config.xml 

XSLT Mapper ext-mapper-xpath-functions-config.xml

Human workflow ext-wf-xpath-functions-config.xml

All components ext-soa-xpath-functions-config.xml 

Note: The customXpathFunction JAR must be added explicitly as 
it is not part of the SOA composite.

Table B–2 (Cont.) Function Schema Elements

Element Description



Creating User-Defined XPath Extension Functions

XPath Extension Functions B-77

where domain_name is the name of the Oracle WebLogic Server domain (for 
example, soainfra).

2. Restart the Oracle WebLogic Server.

Note: As an alternative, you can add the BEA_Home/user_
projects/domains/domain_name/lib directory into the class 
loader. You must then restart the Oracle WebLogic Server.



Creating User-Defined XPath Extension Functions

B-78 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



C

Deployment Descriptor Properties C-1

CDeployment Descriptor Properties

This appendix describes how to define deployment descriptor properties for BPEL 
process service components.

This appendix includes the following sections:

■ Section C.1, "Introduction to Deployment Descriptor Properties"

■ Section C.2, "Deprecated 10.1.3 Properties"

C.1 Introduction to Deployment Descriptor Properties
Deployment descriptors are BPEL process service component properties used at 
runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both. There are 
two types of properties:

■ Configuration

■ Partner link binding

C.1.1 How to Define Deployment Descriptor Properties
You define configuration properties and values in the BPEL process service component 
section of the composite.xml file. Example C–1 shows how to define the 
inMemoryOptimization configuration property. 

Example C–1 Configuration Property Definition in composite.xml

...
  <component name="myBPELServiceComponent">
 ....
  <property name="bpel.config.inMemoryOptimization">true</property>
</component>

Table C–1 lists the configuration deployment descriptor properties. 

Note: You cannot specify deployment descriptor properties at 
runtime.



Introduction to Deployment Descriptor Properties

C-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table C–1 Properties for the configurations Deployment Descriptors

Property Name Description

completionPersistPolicy This property configures how the instance data is saved. It can only be set at the 
BPEL service component level. The following values are available:

■ on (default): The completed instance is saved normally. 

■ deferred: The completed instance is saved, but with a different thread and 
in another transaction. 

■ faulted: Only the faulted instances are saved. 

■ off: No instances of this process are saved.

disableAsserts This property, when set to true, disables assertions in BPEL 1.1 projects.

globalTxMaxRetry If using outbound adapters in an asynchronous BPEL process, specify the 
maximum number of retries for a remote fault.

globalTxRetryInterval If using outbound adapters in an asynchronous BPEL process, specify the time 
interval in milliseconds between retries for a remote fault.

inMemoryOptimization Default value is false. This property can only be set to true if it does not have 
dehydration points. Activities like wait, receive, onMessage, and onAlarm create 
dehydration points in the process. If this property is set to true, in-memory 
optimization is attempted on the instances of this process on to-spec queries.

keepGlobalVariables Specify whether the server can keep global variable values in the instance store 
when the instance completes: 

■ false (default): Global variable values are deleted when the instance 
completes.

■ true: Global variable values are not deleted.

oneWayDeliveryPolicy This property sets the persistence policy of the process in the delivery layer. The 
possible values are:

■ async.persist: Messages into the system are saved in the delivery store 
before being picked up by the engine.

■ async.cache: Messages into the system are saved in memory before being 
picked up by the engine.

■ sync: The instance-initiating message is not temporarily saved in the 
delivery layer. The engine uses the save thread to initiate the message.

sensorActionLocation The location of the sensor action XML file. The sensor action XML file configures 
the action rule for the events. 

sensorLocation The location of the sensor XML file. The sensor XML file defines the list of 
sensors into which events are logged.

transaction This property configures the transaction behavior of the BPEL instance for 
initiating calls. 

■ requiresNew: A new transaction is created for the execution, and the 
existing transaction (if there is one) is suspended. This behavior is true for 
both request/response (initiating) environments and one-way, initiating 
environments in which bpel.config.oneWayDeliveryPolicy is set to 
sync.

■ required: In request/response (initiating) environments, this setting joins 
a caller's transaction (if there is one) or creates a new transaction (if there is 
no transaction). In one-way, initiating environments in which 
bpel.config.oneWayDeliveryPolicy is set to sync, the invoke 
message is processed using the same thread in the same transaction.

Note: This property does not apply for midprocess receive activities. In those 
cases, another thread in another transaction is used to process the message. This 
is because correlation is needed and it is always done asynchronously.



Deprecated 10.1.3 Properties

Deployment Descriptor Properties C-3

You define partner link binding properties and values in the BPEL process service 
component section of the composite.xml file. Example C–2 shows how to define the 
nonBlockingInvoke partner link binding property. 

Example C–2 Property Definition in composite.xml

...
  <component name="myBPELServiceComponent">
 ....
  <property 
name="bpel.partnerLink.nonBlockingInvoke.property">propogate</property>
</component>

Table C–2 lists the partnerLinkBinding deployment descriptor properties.

C.1.2 How to Get the Value of a Preference within a BPEL Process
The value of a property can be read by a BPEL process using the XPath extension 
function ora:getPreference(myPref). This gets the value of 
bpel.preference.myPref.

This function can be used as part of a simple assign statement, used in condition 
expressions, or used as part of a more complex XPath expression.

C.2 Deprecated 10.1.3 Properties
Table C–3 lists deprecated properties that can no longer be used.

Table C–2 Properties for the partnerLinkBinding Deployment Descriptors

Property Name Description

nonBlockingInvoke Default value is false. When this is set to true, a separate thread is spawned 
to do the invocation so that the invoke activity does not block the instance.

validateXML Enables message boundary validation. When set to true, the XML message is 
validated against the XML schema during a receive activity and an invoke 
activity for this partner link. If the XML message is invalid, then a 
bpelx:invalidVariables runtime fault is thrown. This overrides the 
domain level validateXML property. The following example enables validation 
for only the StarLoanService partner: 

<partnerLinkBinding name="StarLoanService"> 
<property name="wsdlLocation">
http://<hostname>:9700/orabpel/default/StarLoan/Sta
rLoan?wsdl</property> 
<property name="validateXML">true</property> 
</partnerLinkBinding>

Table C–3 Deprecated Properties

Property Deployment Descriptor Type Deprecated for Release...

completionPersistLevel configurations 11g Release 1

defaultInput configurations 11g Release 1

initializeVariables configurations 11g Release 1

loadSchema configurations 11g Release 1

noAlterWSDL configurations 11g Release 1

optimizeVariableCopy configurations 11g Release 1



Deprecated 10.1.3 Properties

C-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

relaxTypeChecking configurations 11g Release 1

relaxXPathQName configurations 11g Release 1

transaction configurations 10.1.3.4

SLACompletionTime configurations 11g Release 1

xpathValidation configurations 11g Release 1

user configurations 11g Release 1

pw configurations 11g Release 1

role configurations 11g Release 1

correlation partnerLinkBinding 11g Release 1

contentType partnerLinkBinding 10.1.3

retryInterval partnerLinkBinding Deprecated by the fault 
policy feature in 10.1.3.3 

retryMaxCount partnerLinkBinding Deprecated by the fault 
policy feature in 10.1.3.3

wsdlLocation partnerLinkBinding 11g Release 1

wsdlRuntimeLocation partnerLinkBinding 11g Release 1

wsseHeaders partnerLinkBinding 11g Release 1

wsseUsername partnerLinkBinding 11g Release 1

wssePassword partnerLinkBinding 11g Release 1

preferredPort partnerLinkBinding 11g Release 1

fullWSAddressing partnerLinkBinding 11g Release 1

Table C–3 (Cont.) Deprecated Properties

Property Deployment Descriptor Type Deprecated for Release...



D

Understanding Sensor Public Views and the Sensor Actions XSD D-1

DUnderstanding Sensor Public Views and the
Sensor Actions XSD

This appendix describes the available sensor public views and the sensor actions XSD 
file that you can import into Oracle BPEL Designer.

This appendix includes the following sections:

■ Section D.1, "Introduction to Sensor Public Views and the Sensor Actions XSD File"

■ Section D.2, "Sensor Public Views"

■ Section D.3, "Sensor Actions XSD File"

For more information, see Chapter 18, "Using Oracle BPEL Process Manager Sensors."

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File
A set of public views is exposed to allow SQL access to sensor values from literally any 
application interested in the data. In addition, a sample sensor action schema is 
provided for importing into Oracle BPEL Designer.

D.2 Sensor Public Views
The sensor framework of Oracle BPEL Process Manager provides the functionality to 
persist sensor values created by processing BPEL instances in a relational schema 
stored in the dehydration store of Oracle BPEL Process Manager. The data is used to 
display the sensor values of a process instance in Oracle Enterprise Manager Fusion 
Middleware Control Console.

D.2.1 BPM Schema
The database publisher persists the sensor data in a predefined relational schema in 
the database. The following public views can be used from a client (Oracle Warehouse, 
portals, and so on) to query the sensor values using SQL.

Note: In Table D–1 through Table D–4, the Indexed or Unique? 
column provides unique index names and the order of the attributes. 
For example, U1,2 means that the attribute is the second one in a 
unique index named U1. PK means primary key.



Sensor Public Views

D-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

D.2.1.1 BPEL_PROCESS_INSTANCES
Table D–1 provides an overview of all the process instances of Oracle BPEL Process 
Manager.

D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES
Table D–2 contains all the activity sensor values of the monitored BPEL processes.

Table D–1 BPEL_PROCESS_INSTANCES View

Attribute Name SQL Type
Attribute 
Size

Indexed or 
Unique? Null? Comment 

INSTANCE_KEY NUMBER -- PK N Unique instance ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_
NAME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_
NAME

VARCHAR2 500 -- N User-defined component name

TITLE NVARCHAR2 200 -- Y User-defined title of the BPEL process

STATE NUMBER -- -- Y State of the BPEL process instance

STATE_TEXT VARCHAR2 21 -- Y Text presentation of the state attribute

PRIORITY NUMBER -- -- Y User-defined priority of the BPEL 
process instance

STATUS NVARCHAR2 200 -- Y User-defined status of the BPEL 
process

STAGE VARCHAR2 100 -- Y User-defined stage property of a BPEL 
process

CONVERSATION_
ID

VARCHAR2 256 -- Y User-defined conversation ID of a 
BPEL process

CREATION_DATE TIMESTAMP 6 -- N Creation time stamp of the process 
instance

MODIFY_DATE TIMESTAMP 6 -- Y Time stamp when the process instance 
was modified

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

EVAL_TIME NUMBER -- -- Y Evaluation time of the process instance 
in milliseconds

Table D–2 BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type
Attribute 
Size

Indexed or 
Unique? Null? Comment 

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 512 -- Y The filter of the action



Sensor Public Views

Understanding Sensor Public Views and the Sensor Actions XSD D-3

D.2.1.3 BPEL_FAULT_SENSOR_VALUES
Table D–3 contains all the fault sensor values.

CREATION_DATE TIMESTAMP 6 -- N The creation date of the activity sensor 
value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL, Y, or N

ACTIVITY_NAME NVARCHAR2 200 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

ACTIVITY_
STATE

VARCHAR2 30 -- Y The state of the BPEL activity

EVAL_POINT VARCHAR2 30 -- N The evaluation point of the activity 
sensor

ERROR_MESSAGE NCLOB -- -- Y An error message

RETRY_COUNT NUMBER -- -- Y The number of retries of the activity

EVAL_TIME NUMBER -- -- Y Evaluation time of the activity in 
milliseconds

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_
NAME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_
NAME

VARCHAR2 500 -- N User-defined component name

Table D–3 BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type
Attribute 
Size

Indexed or 
Unique? Null? Comment 

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_
NAME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

Table D–2 (Cont.) BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type
Attribute 
Size

Indexed or 
Unique? Null? Comment 



Sensor Public Views

D-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES
Table D–4 contains all the variable sensor values.

COMPONENT_
NAME

VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 512 -- Y The filter of the action

CREATION_DATE TIMESTAMP 6 -- N The creation date of the activity sensor 
value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL if no action filter specified; Y if 
action filter is specified and evaluates 
to true; N otherwise

ACTIVITY_NAME NVARCHAR2 200 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

MESSAGE CLOB -- -- Y The fault message

Table D–4 BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type
Attribute 
Size

Indexed or 
Unique? Null? Comment 

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_
NAME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_
NAME

VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N Name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N Target of the sensor

ACTION_NAME NVARCHAR2 200 U1,3 N Name of the action

ACTION_FILTER NVARCHAR2 512 -- Y Filter of the action

ACTIVITY_
SENSOR

NUMBER -- -- Y ID of the corresponding activity sensor 
value

CREATION_DATE TIMESTAMP 6 -- N Creation date

Table D–3 (Cont.) BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type
Attribute 
Size

Indexed or 
Unique? Null? Comment 



Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-5

D.3 Sensor Actions XSD File
Example D–1 provides a sample sensor action schema that you can import into Oracle 
BPEL Designer. This schema is also relevant to custom data publishers.

Example D–1 Sample Sensor Action Schema

<?xml version="1.0" encoding="utf-8"?>
<!-- 
  This schema contains the sensor definition. Sensors monitor data
  and execute callbacks appropriately.
-->
<xsd:schema blockDefault="#all" elementFormDefault="qualified"
            targetNamespace="http://xmlns.oracle.com/bpel/sensor"
            xmlns:xsd="http://www.w3.org/2001/XMLSchema"
            xmlns:tns="http://xmlns.oracle.com/bpel/sensor">

  <xsd:simpleType name="tSensorActionPublishType">
    <xsd:annotation>
      <xsd:documentation>
        This enumeration lists the possibe publishing types for probes.

TS_DATE DATE -- -- N Date portion of creation_date

TS_HOUR NUMBER -- -- N Hour portion of creation_date

VARIABLE_NAME NVARCHAR2 512 -- N The name of the BPEL variable

EVAL_POINT VARCHAR2 30 -- Y Evaluation point of the corresponding 
activity sensor

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL, Y, or N

TARGET NVARCHAR2 512 -- -- --

UPDATER_NAME NVARCHAR2 200 -- N The name of the activity or event that 
updated the variable

UPDATER_TYPE NVARCHAR2 200 -- N The type of the BPEL activity or event

SCHEMA_
NAMESPACE

NVARCHAR2 512 -- Y Namespace of variable sensor value

SCHEMA_
DATATYPE

NVARCHAR2 512 -- Y Data type of the variable sensor value

VALUE_TYPE NUMBER -- -- N The value type of the variable 
(corresponds to java.sql.Types 
values)

VARCHAR2_
VALUE

NVARCHAR2 4000 -- Y The value of string-like variables

NUMBER_VALUE NUMBER -- -- Y

DATE_VALUE TIMESTAMP 6 -- Y User-defined date

DATE_VALUE_TZ VARCHAR2 10 -- Y User-defined time zone

BLOB_VALUE BLOB -- -- Y

CLOB_VALUE CLOB -- -- Y

Table D–4 (Cont.) BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type
Attribute 
Size

Indexed or 
Unique? Null? Comment 



Sensor Actions XSD File

D-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

      </xsd:documentation>
    </xsd:annotation>
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="BpelReportsSchema"/>
      <xsd:enumeration value="JMSQueue"/>
      <xsd:enumeration value="JMSTopic"/>
      <xsd:enumeration value="Custom"/>
    </xsd:restriction>
  </xsd:simpleType>
  
  <xsd:complexType name="tSensorActionProperty">
    <xsd:simpleContent>
      <xsd:extension base="xsd:string">
        <xsd:attribute name="name" use="required" type="xsd:string"/>
      </xsd:extension>
    </xsd:simpleContent>
  </xsd:complexType>

  <!-- 
    Attributes of a sensor action
  -->              
  <xsd:attributeGroup name="tSensorActionAttributes">
    <xsd:attribute name="name" type="xsd:string" use="optional"/>
    <xsd:attribute name="enabled" type="xsd:boolean" use="optional"
 default="true"/>
    <xsd:attribute name="filter" type="xsd:string"/>
    <xsd:attribute name="publishName" type="xsd:string" use="required"/>
    <xsd:attribute name="publishType" type="tns:tSensorActionPublishType"
 use="required"/>
    <!-- 
      the name of the JMS Queue/Topic or custom java API, ignored for other 
      publishTypes 
    -->
    <xsd:attribute name="publishTarget" type="xsd:string" use="optional"/>
  </xsd:attributeGroup>
  
  <!-- 
    The sensor action type. A sensor action consists:
    + unique name
    + effective date
    + expiration date - Optional. If not defined, the probe is active 
                        indefinitely.
    + filter (to potentially suppress data publishing even if a sensor marks
             it as interesting). - Optional. If not defined, no filter is 
             used.
    + publishName A name of a publisher
    + publishType What to do with the sensor data?
    + publishTarget Name of a JMS Queue/Topic or custom publisher.
    + potentially many sensors.
  -->
  <xsd:complexType name="tSensorAction">
    <xsd:sequence>
      <xsd:element name="sensorName" type="xsd:string" minOccurs="1"
 maxOccurs="unbounded"/>
      <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tSensorActionProperty"/>
    </xsd:sequence>
    <xsd:attributeGroup ref="tns:tSensorActionAttributes"/>
  </xsd:complexType>
  



Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-7

  <!--
    define a listing of sensor actions in a single document. It might be a good
 idea  to 
    have one sensor action list per business process. 
  -->
  <xsd:complexType name="tSensorActionList">
    <xsd:sequence>
      <xsd:element name="action" type="tns:tSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:simpleType name="tSensorKind">
    <xsd:restriction base="xsd:string">
      <xsd:enumeration value="fault"/>
      <xsd:enumeration value="variable"/>
      <xsd:enumeration value="activity"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:complexType name="tActivityConfig">
    <xsd:annotation>
      <xsd:documentation>
        The configuration part of an activity sensor comprises of a mandatory
 'evalTime' attribute
        and an optional list of variable configurations 
      </xsd:documentation>
    </xsd:annotation>
    <xsd:complexContent>
      <xsd:extension base="tns:tSensorConfig">
        <xsd:sequence>
          <xsd:element name="variable" type="tns:tActivityVariableConfig"
 maxOccurs="unbounded" minOccurs="0"/>
        </xsd:sequence>
        <xsd:attribute name="evalTime" type="xsd:string" use="required"/>
      </xsd:extension>
    </xsd:complexContent>    
  </xsd:complexType>

    <xsd:complexType name="tAdapterConfig">
      <xsd:annotation>
        <xsd:documentation>
          The configuration part of a adapter activity extends the activty
 configuration with additional attributes for adapters
        </xsd:documentation>
      </xsd:annotation>
      <xsd:complexContent>
        <xsd:extension base="tns:tActivityConfig">
          <xsd:attribute name="headerVariable" use="required" type="xsd:string"/>
          <xsd:attribute name="partnerLink" use="required" type="xsd:string"/>
        <xsd:attribute name="portType" use="required" type="xsd:string"/>
        <xsd:attribute name="operation" use="required" type="xsd:string"/>
        </xsd:extension>    
      </xsd:complexContent>
    </xsd:complexType>

  <xsd:complexType name="tVariableConfig">
    <xsd:complexContent>
      <xsd:extension base="tns:tSensorConfig">
        <xsd:attribute name="outputDataType" use="required" type="xsd:string"/>



Sensor Actions XSD File

D-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        <xsd:attribute name="outputNamespace" use="required" type="xsd:string"/>
        <xsd:attribute name="queryName" use="optional" type="xsd:string"/>
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>

  <xsd:complexType name="tActivityVariableConfig">
    <xsd:complexContent>
      <xsd:extension base="tns:tVariableConfig">
        <xsd:attribute name="target" type="xsd:string" use="required"/>
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>

  <xsd:complexType name="tFaultConfig">
    <xsd:complexContent>
      <xsd:extension base="tns:tSensorConfig"/>
    </xsd:complexContent>
  </xsd:complexType>
  
  <xsd:complexType name="tNotificationSvcConfig">
    <xsd:complexContent>
      <xsd:extension base="tns:tActivityConfig">
        <xsd:attribute name="inputVariable" use="required" type="xsd:string"/>
        <xsd:attribute name="outputVariable" use="required" type="xsd:string"/>
        <xsd:attribute name="operation" use="required" type="xsd:string"/>
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>
    
  <xsd:complexType name="tSensorConfig">
    <xsd:sequence>
      <xsd:element name="action" type="tns:tInlineSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:complexType name="tInlineSensorAction">
    <xsd:complexContent>
      <xsd:restriction base="tns:tSensorAction"/>
    </xsd:complexContent>
  </xsd:complexType>

  <xsd:complexType name="tSensor">
    <xsd:sequence>
      <xsd:element name="activityConfig" type="tns:tActivityConfig"
 minOccurs="0"/>
      <xsd:element name="adapterConfig" type="tns:tAdapterConfig" minOccurs="0"/>
      <xsd:element name="faultConfig" type="tns:tFaultConfig" minOccurs="0"/>
      <xsd:element name="notificationConfig" type="tns:tNotificationSvcConfig"
 minOccurs="0"/>
      <xsd:element name="variableConfig" type="tns:tVariableConfig"
 minOccurs="0"/>
    </xsd:sequence>
    <xsd:attribute name="sensorName" use="required" type="xsd:string"/>
    <xsd:attribute name="kind" use="required" type="tns:tSensorKind"/>
    <xsd:attribute name="classname" use="required" type="xsd:string"/>
    <xsd:attribute name="target" use="required" type="xsd:string"/>
  </xsd:complexType>



Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-9

  <xsd:complexType name="tSensorList">
    <xsd:sequence>
      <xsd:element name="sensor" type="tns:tSensor" minOccurs="0"
 maxOccurs="unbounded"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:complexType name="tRouterData">
    <xsd:sequence>
      <xsd:element name="header" type="tns:tHeaderInfo"/>
      <xsd:element name="payload" type="tns:tSensorData"/>
    </xsd:sequence>
  </xsd:complexType>
  
  <xsd:complexType name="tHeaderInfo">
    <xsd:sequence>
      <xsd:element name="processName" type="xsd:string"/>
      <xsd:element name="processRevision" type="xsd:string"/>
      <xsd:element name="domain" type="xsd:string"/>
      <xsd:element name="instanceId" type="xsd:integer"/>
      <xsd:element name="midTierInstance" type="xsd:string"/>
      <xsd:element name="timestamp" type="xsd:dateTime"/>
      <xsd:element name="sensor" type="tns:tSensor"/>
    </xsd:sequence>
  </xsd:complexType>
  
  <xsd:complexType name="tSensorData">
      <xsd:sequence>
        <xsd:element name="activityData" type="tns:tActivityData" minOccurs="0"/>
      <xsd:element name="faultData" type="tns:tFaultData" minOccurs="0"/>
      <xsd:element name="adapterData" minOccurs="0" type="tns:tAdapterData"/>
        <xsd:element name="variableData" type="tns:tVariableData" minOccurs="0"
 maxOccurs="unbounded"/>
        <xsd:element name="notificationData" type="tns:tNotificationData"
 minOccurs="0"/>
      </xsd:sequence>
  </xsd:complexType>
  
  <xsd:complexType name="tFaultData">
    <xsd:sequence>
      <xsd:element name="activityName" type="xsd:string"/>
      <xsd:element name="activityType" type="xsd:string"/>
      <xsd:element name="data" type="xsd:anyType" minOccurs="0"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:complexType name="tActivityData">
    <xsd:sequence>
      <xsd:element name="activityType" type="xsd:string"/>
      <xsd:element name="evalPoint" type="xsd:string"/>
      <xsd:element name="errorMessage" nillable="true" minOccurs="0"
 type="xsd:string"/>
    </xsd:sequence>
  </xsd:complexType>
  
  <!--
   xml type that is provided to sensors for variable Datas. Note the
      any element represents variable data.
   -->
  <xsd:complexType name="tVariableData">



Sensor Actions XSD File

D-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

    <xsd:sequence>
      <xsd:element name="target" type="xsd:string"/>
      <xsd:element name="queryName" type="xsd:string"/>
      <xsd:element name="updaterName" type="xsd:string" minOccurs="1"/>
      <xsd:element name="updaterType" type="xsd:string" minOccurs="1"/>
      <xsd:element name="data" type="xsd:anyType"/>
      <xsd:element name="dataType" type="xsd:integer"/>
    </xsd:sequence>
  </xsd:complexType>

  <xsd:complexType name="tNotificationData">
    <xsd:complexContent>
      <xsd:extension base="tns:tActivityData">
        <xsd:sequence>
          <xsd:element name="messageID" type="xsd:string" minOccurs="0"
 maxOccurs="unbounded"/>
          <xsd:element name="fromAddress" type="xsd:string" minOccurs="0"/>
          <xsd:element name="toAddress" type="xsd:string" minOccurs="0"/>
          <xsd:element name="deliveryChannel" type="xsd:string" minOccurs="0"/>
        </xsd:sequence>      
      </xsd:extension>
    </xsd:complexContent>
    
  </xsd:complexType>
  <xsd:complexType name="tAdapterData">
    <xsd:complexContent>
      <xsd:extension base="tns:tActivityData">
        <xsd:sequence>
          <xsd:element name="endpoint" type="xsd:string"/>
          <xsd:element name="direction" type="xsd:string"/>
          <xsd:element name="adapterType" type="xsd:string"/>
          <xsd:element name="priority" type="xsd:string" minOccurs="0"/>
          <xsd:element name="messageSize" type="xsd:string" minOccurs="0"/>
        </xsd:sequence>
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>
  <!--
    The header of the document contains some metadata.
  -->
  <xsd:complexType name="tSensorActionHeader">
    <xsd:sequence>
      <xsd:element name="processName" type="xsd:string"/>
      <xsd:element name="processVersion" type="xsd:string"/>
      <xsd:element name="processID" type="xsd:long"/>
      <xsd:element name="midTierInstance" type="xsd:string"/>
    </xsd:sequence>
    <xsd:attribute name="actionName" use="required" type="xsd:string"/>
  </xsd:complexType>
              
  <!--
 Sensor Action data is presented in the form of a header and potentially many
 data elements depending on how many sensors associated to the sensor action
 marked the data as interesting.
  -->
  <xsd:complexType name="tSensorActionData">
    <xsd:sequence>
      <xsd:element name="header" type="tns:tHeaderInfo"/>
      <xsd:element name="payload" type="tns:tSensorData" minOccurs="1"
                   maxOccurs="1"/>



Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-11

    </xsd:sequence>
  </xsd:complexType>
<!--
  <xsd:simpleType name="tActivityEvalPoint">
    <xsd:restriction>
      <xsd:enumeration value="start"/>
      <xsd:enumeration value="complete"/>
      <xsd:enumeration value="fault"/>
      <xsd:enumeration value="compensate"/>
      <xsd:enumeration value="retry"/>
    </xsd:restriction>
  </xsd:simpleType>

  <xsd:simpleType name="tNotificationAction">
    <xsd:restriction>
      <xsd:enumeration value="creation"/>
      <xsd:enumeration value="statusUpdate"/>
    </xsd:restriction>
  </xsd:simpleType>
-->
  
  <!--
    The process sensor value header comprises of a timestamp
    where the sensor was triggered and the sensor metadata
  -->
  <xsd:complexType name="tProcessSensorValueHeader">
    <xsd:sequence>
      <xsd:element name="timestamp" type="xsd:dateTime"/>
      <xsd:element ref="tns:sensor"/>
    </xsd:sequence>
  </xsd:complexType>

  <!--
    Extend tActivityData to include more elements
  -->
  <xsd:complexType name="tProcessActivityData">
    <xsd:complexContent>
      <xsd:extension base="tns:tActivityData">
        <xsd:sequence>
          <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
          <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
          <xsd:element name="evalTime" type="xsd:long" minOccurs="0"
 maxOccurs="1"/>
          <xsd:element name="retryCount" type="xsd:int" minOccurs="0"
 maxOccurs="1"/>
        </xsd:sequence>      
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>

  <!--
    Extend tVariableData to include more elements
  -->
  <xsd:complexType name="tProcessVariableData">
    <xsd:complexContent>
      <xsd:extension base="tns:tVariableData">
        <xsd:sequence>
          <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"



Sensor Actions XSD File

D-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 maxOccurs="1"/>
          <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
        </xsd:sequence>      
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>

  <!--
    Extend tFaultData to include more elements
  -->
  <xsd:complexType name="tProcessFaultData">
    <xsd:complexContent>
      <xsd:extension base="tns:tFaultData">
        <xsd:sequence>
          <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
          <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
        </xsd:sequence>      
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>

  <!--
    Extend tAdapterData to include more elements
  -->
  <xsd:complexType name="tProcessAdapterData">
    <xsd:complexContent>
      <xsd:extension base="tns:tAdapterData">
        <xsd:sequence>
          <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
          <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
        </xsd:sequence>      
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>

  <!--
    Extend tNotificationData to include more elements
  -->
  <xsd:complexType name="tProcessNotificationData">
    <xsd:complexContent>
      <xsd:extension base="tns:tNotificationData">
        <xsd:sequence>
          <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
          <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
        </xsd:sequence>      
      </xsd:extension>
    </xsd:complexContent>
  </xsd:complexType>
  <!--
    Copy of tSensorData type with some modified types.
  -->
  <xsd:complexType name="tProcessSensorData">
    <xsd:sequence>



Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-13

      <xsd:element name="activityData" type="tns:tProcessActivityData"
 minOccurs="0"/>
      <xsd:element name="faultData" type="tns:tProcessFaultData" minOccurs="0"/>
      <xsd:element name="adapterData" minOccurs="0"
 type="tns:tProcessAdapterData"/>
      <xsd:element name="variableData" type="tns:tProcessVariableData"
 minOccurs="0" maxOccurs="unbounded"/>
      <xsd:element name="notificationData" type="tns:tProcessNotificationData"
 minOccurs="0"/>
    </xsd:sequence>
  </xsd:complexType>
  <!--
    A single process sensor value comprises of the sensor value metadata
    (sensor and timestamp) and the payload (the value) of the sensor
  -->
  <xsd:complexType name="tProcessSensorValue">
    <xsd:sequence>
      <xsd:element name="header" type="tns:tProcessSensorValueHeader"/>
      <xsd:element name="payload" type="tns:tProcessSensorData"/>
    </xsd:sequence>
  </xsd:complexType>

  <!--
    Process instance header. 
  -->
  <xsd:complexType name="tProcessInstanceInfo">
    <xsd:sequence>
      <xsd:element name="processName" type="xsd:string"/>
      <xsd:element name="processRevision" type="xsd:string"/>
      <xsd:element name="domain" type="xsd:string"/>
      <xsd:element name="instanceId" type="xsd:integer"/>
    </xsd:sequence>
  </xsd:complexType>

  <!--
    The list of sensor values comprises of a process header describing the 
    BPEL process with name, cube instance id etc. and a list of sensor values
    comprising of sensor metadata information and sensor values.
  -->
  <xsd:complexType name="tProcessSensorValueList">
    <xsd:sequence>
      <xsd:element name="process" type="tns:tProcessInstanceInfo" minOccurs="1"
 maxOccurs="1"/>
      <xsd:element name="sensorValue" type="tns:tProcessSensorValue" minOccurs="0"
 maxOccurs="unbounded"/>
    </xsd:sequence>
  </xsd:complexType>
  
  <!-- The sensor list is the root element of the sensor.xml document in the 
       bpel process suitcase and is used to define sensors. -->
  <xsd:element name="sensors" type="tns:tSensorList"/>
  
  <!-- A sensor is used to monitor a particular aspect of a bpel process -->
  <xsd:element name="sensor" type="tns:tSensor"/>
  
  <!-- The actions element is the root element of the sensorAction.xml document
       in the bpel process suitcase and is used to define sensor actions. 
       Sensor actions define how to publish data captured by sensors -->
  <xsd:element name="actions" type="tns:tSensorActionList"/>  
  



Sensor Actions XSD File

D-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  <!-- actionData elements are produced by the sensor framework and sent to the
       appropriate data publishers when sensors 'fire' -->
  <xsd:element name="actionData" type="tns:tSensorActionData"/>  
  
  <!-- This element is used when the client API is used to query sensor values 
       stored in the default reports schema -->
  <xsd:element name="sensorValues" type="tns:tProcessSensorValueList"/>
</xsd:schema>



E

Oracle BAM Web Services Operations E-1

E Oracle BAM Web Services Operations

This appendix is a reference for the operations provided by the Oracle BAM 
DataObjectOperations and DataObjectDefinition web services. More information 
about the Oracle BAM web services is available in Chapter 56, "Using Oracle BAM 
Web Services."

This appendix includes the following sections:

■ Section E.1, "DataObjectOperations10131"

■ Section E.2, "DataObjectOperationsByName"

■ Section E.3, "DataObjectOperationsByID"

■ Section E.4, "DataObjectDefinition Operations"

■ Section E.5, "ManualRuleFire Operations"

E.1 DataObjectOperations10131
The following operations are supported by the DataObjectOperations10131 web 
service:

■ Section E.1.1, "Batch"

■ Section E.1.2, "Delete"

■ Section E.1.3, "Insert"

■ Section E.1.4, "Update"

■ Section E.1.5, "Upsert"

E.1.1 Batch
Batch performs batch operations on a data object.

E.1.1.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees



DataObjectOperations10131

E-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

xmlPayload (xsd:string)
Contains the batch payload for any operations to be performed. For example:

<payload>
<_Employees operation="insert">
<_Salesperson>Tim Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>
<_Employees operation="update" keys="_Sales_Number">
<_Salesperson>Tim Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>
</payload>

E.1.2 Delete
Delete removes a row from the data object. 

E.1.2.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)
Payload for the where clause to delete rows in a data object. For example:

<_Employees>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.1.3 Insert
Insert adds rows to the specified data object.

E.1.3.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

xmlPayload (xsd:string)
The payload is specific to each data object.

<_Employees>
<_Salesperson>Time Bray</_Salesperson>



DataObjectOperations10131

Oracle BAM Web Services Operations E-3

<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.1.4 Update
Update operation updates existing data with new data in a data object.

E.1.4.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)
Payload for the update statement and where clause to update rows in a data object. 
For example:

<_Employees>
<_Sales_Area>Asia Pacific</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.1.5 Upsert
Upsert operation updates existing data with new data in an existing row in a data 
object. If the row does not exist a new row is created.

E.1.5.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)
Payload for the insert or update statement and where clause to upsert rows in a data 
object. For example:

<_Employees>
<_Salesperson>Time Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>



DataObjectOperationsByName

E-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

E.2 DataObjectOperationsByName
The following operations are supported by the DataObjectOperations10131, 
DataObjectOperationsByName, and DataObjectOperationsByID web services.

■ Section E.2.1, "Delete"

■ Section E.2.2, "Get"

■ Section E.2.3, "Insert"

■ Section E.2.4, "Update"

■ Section E.2.5, "Upsert"

E.2.1 Delete
Delete removes a row from the data object. 

E.2.1.1 Request Message
The request message contains the following parameters.

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:string)
Payload for the where clause to delete rows in a data object. For example:

<DataObject Name="Employees" Path="/Samples">
<Contents>
<Row>
<Column Name="Salesperson" Value="Greg Guan" />

</Row>
</Contents>

</DataObject>

E.2.2 Get
Get fetches the details from a data object per the specifications in the XML payload

Get is only available in DataObjectOperationsByName web service.

E.2.2.1 Request Message
The request message contains the following parameters.

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:string)
The payload specifies what to get from the data object.

For the DataObjectOperationsByName web service the data object name is specified in 
the payload, for example:

<DataObject Name="Employees" Path="/Samples">
<Contents>



DataObjectOperationsByName

Oracle BAM Web Services Operations E-5

<Row>
<Column Name="Salesperson" Value="Greg Masters"/>

</Row>
</Contents>

</DataObject>

E.2.3 Insert
Insert adds rows to the specified data object.

E.2.3.1 Request Message
The request message contains the following parameters.

xmlPayload (xsd:string)
The payload is specific to each data object.

<DataObject Name="Employees" Path="/Samples">
<Contents>
<Row>
<Column Name="Salesperson" Value="Greg Guan" />
<Column Name="Sales Area" Value="Northeast" />
<column Name="Sales Number" Value="5671" />

</Row>
</Contents>

</DataObject>

E.2.4 Update
Update operation updates existing data with new data in a data object.

E.2.4.1 Request Message
The request message contains the following parameters.

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:string)
Payload for the update statement and where clause to update rows in a data object. 
For example:

<DataObject Name="Employees" Path="/Samples">
<Contents>
<Row>
<Column Name="Salesperson" Value="Greg Guan" />

</Row>
</Contents>

</DataObject>

E.2.5 Upsert
Upsert operation updates existing data with new data in an existing row in a data 
object. If the row does not exist a new row is created.



DataObjectOperationsByID

E-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

E.2.5.1 Request Message
The request message contains the following parameters.

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:string)
Payload for the insert or update statement and where clause to upsert rows in a data 
object. For example:

<DataObject Name="Employees" Path="/Samples">
<Contents>
<Row>
<Column Name="Salesperson" Value="Greg Guan" />
<Column Name="Sales Area" Value="Northeast" />
<column Name="Sales Number" Value="5671" />

</Row>
</Contents>

</DataObject>

E.3 DataObjectOperationsByID
The following operations are supported by the DataObjectOperations10131, 
DataObjectOperationsByName, and DataObjectOperationsByID web services.

■ Section E.3.1, "Batch"

■ Section E.3.2, "Delete"

■ Section E.3.3, "Insert"

■ Section E.3.4, "Update"

■ Section E.3.5, "Upsert"

E.3.1 Batch
Batch performs batch operations on a data object.

E.3.1.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

xmlPayload (xsd:string)
Contains the batch payload for any operations to be performed. For example:

<payload>
<_Employees operation="insert">
<_Salesperson>Tim Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>
<_Employees operation="update" keys="_Sales_Number">



DataObjectOperationsByID

Oracle BAM Web Services Operations E-7

<_Salesperson>Tim Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>
</payload>

E.3.2 Delete
Delete removes a row from the data object. 

E.3.2.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
This parameter is not required by the DataObjectOperationsByName web service 
because the data object name and path are part of the payload.

Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)
Payload for the where clause to delete rows in a data object. For example:

<_Employees>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.3.3 Insert
Insert adds rows to the specified data object.

E.3.3.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

xmlPayload (xsd:string)
The payload is specific to each data object.

For the DataObjectOperationsByName web service the data object name is specified in 
the payload, for example:

<_Employees>
<_Salesperson>Time Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>



DataObjectOperationsByID

E-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

E.3.4 Update
Update operation updates existing data with new data in a data object.

E.3.4.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)
Payload for the update statement and where clause to update rows in a data object. 
For example:

<_Employees>
<_Sales_Area>Asia Pacific</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.3.5 Upsert
Upsert operation updates existing data with new data in an existing row in a data 
object. If the row does not exist a new row is created.

E.3.5.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:string)
Payload for the insert or update statement and where clause to upsert rows in a data 
object. For example:

<_Employees>
<_Salesperson>Time Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>



DataObjectDefinition Operations

Oracle BAM Web Services Operations E-9

E.4 DataObjectDefinition Operations
The following operations are supported by DataObjectDefinition web service.

■ Section E.4.1, "Create"

■ Section E.4.2, "Delete"

■ Section E.4.3, "Get"

■ Section E.4.4, "Update"

E.4.1 Create
Create creates a new data object. By specifying columnar elements, you can create 
calculated and lookup fields in addition to regular fields ass show in the examples.

E.4.1.1 Request Message
The request message contains the following parameter.

xmlPayload (xsd:string)
Contains the payload to create a data object.

Table E–1 xmlPayload Elements and Descriptions and Valid Values

Element Description and Values

/DataObject/@External 0 (zero) indicates that the data object is not from 
an external data source (default).

1 indicates that the data object is from an external 
data source.

/DataObject/@Name Name of the data object to be created not 
including the directory path.

/DataObject/@Path Directory path in which to create the data object.

/DataObject/@Version Data objects can be versioned 0 (default) through 
14.

/DataObject/@TipText Description of the data object to be created.

/DataObject/Layout/Column/@Name Name of the column (field) in the data object.

/DataObject/Layout/Column/@Type The following values are valid for column type:
auto-incr-integer
boolean
calculated
clob
datetime
decimal
float
iterID
integer
lookup
string
timestamp

/DataObject/Layout/Column/@Nullable 1 (default) indicates that the column supports 
null values.

0 (zero) indicates that the column does not 
support null values.

/DataObject/Layout/Column/@Public 1 (default) indicates that the column is public.

0 (zero) indicates that the column is not public.



DataObjectDefinition Operations

E-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example E–1 xmlPayload to Create Data Object With Regular Columns

<DataObject Version="14" Name="Employees3" ID="_Employees3" Path="/Samples"
 External="0">

<Layout>
<Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="30"

 Nullable="1" Public="1" />
<Column Name="Sales Number" ID="_Sales_Number" Type="decimal" 

Nullable="1" Public="1" />
<Column Name="Timestamp" ID="_Timestamp" Type="timestamp" 

Nullable="0" Public="1" />
<Indexes />

</Layout>
</DataObject>

Example E–2 xmlPayload to Create Data Object With Lookup Field

<DataObject Version="14" Name="LookupDO" ID="_LookupDO" Path="/Samples">
<Layout>
<Description><![CDATA[Lookup]]></Description>
<Column Name="Name" ID="_Name" Type="string" MaxSize="100" 

Nullable="1" Public="1" />
<Column Name="ID" ID="_ID" Type="integer" Nullable="1" Public="1" />
<Column Name="Sales Area" ID="_Sales_Area" Type="lookup">
<Lookup>
<DataObject>
<ID>_Employees</ID>
<Path>/Samples</Path>

</DataObject>
<LookupFieldID>_Sales_Area</LookupFieldID>
<MatchFields>
<KeyPair>
<PrimaryKeyID>_Sales_Number</PrimaryKeyID>
<ForeignKeyID>_ID</ForeignKeyID>

</KeyPair>
</MatchFields>

</Lookup>
</Column>
<Indexes />

</Layout>
</DataObject>

Note that when you construct the XML payload for the Create operation, and the data 
object version is lower than 12, use PrimaryKey instead of PrimaryKeyID, ForeignKey 
instead of ForeignKeyID, LookupField instead of LookupFieldID, and provide name 
values instead of IDs for those fields.

/DataObject/Layout/Column/@MaxSize For string type columns, this attribute specifies 
the maximum permissible string size.

Default value is 30.

/DataObject/Layout/Column/@Precision For decimal type columns, this attribute specifies 
the precision of the decimal value.

/DataObject/Layout/Column/@Scale For decimal type columns, this attribute specifies 
the scale of the decimal value.

/DataObject/Layout/Column/@TipText Column description

Table E–1 (Cont.) xmlPayload Elements and Descriptions and Valid Values

Element Description and Values



DataObjectDefinition Operations

Oracle BAM Web Services Operations E-11

Example E–3 xmlPayload to Create Data Object With Calculated Field

<DataObject Version="14" Name="CalculatedDO" ID="_CalculatedDO" Path="/Samples">
<Layout>
<Description><![CDATA[Calculated Column]]></Description>
<Column Name="Name" ID="_Name" Type="string" MaxSize="100" Nullable="1"

 Public="1" />
<Column Name="Address" ID="_Address" Type="string" MaxSize="100" Nullable="1"

 Public="1" />
<Column Name="Salary" ID="_Salary" Type="decimal" Scale="10" Nullable="1"

 Public="1" />
<Column Name="Income Tax" ID="_Income_Tax" Type="calculated"

CalculatedExpression="&lt;expression type=&quot;MathExpression&quot;
&gt;&lt;operation&gt;&lt;left&gt;&lt;type&gt;FieldID&lt;/type&gt;&lt;ivalue&gt;
_Salary&lt;/ivalue&gt;&lt;/left&gt;&lt;operator&gt;*&lt;/operator&gt;&lt;right&gt;
&lt;type&gt;DECIMAL&lt;/type&gt;&lt;ivalue&gt;0.3&lt;/ivalue&gt;&lt;/right&gt;&lt;
/operation&gt;&lt;/expression&gt;" ExpressionUserText="(Salary * 0.3)" />

<Indexes />
</Layout>

</DataObject>

E.4.1.2 Response Message
void

E.4.2 Delete
Delete removes a data object definition and its contents.

E.4.2.1 Request Message
The request message contains the following parameter.

dataObjectFullName (xsd:string)
Full relative path and name of the data object to be deleted. For example:

/Samples/Employees

E.4.2.2 Response Message
void

E.4.3 Get
Get retrieves an existing data object definition.

E.4.3.1 Request Message
The request message contains the following parameters.

dataObjectFullName (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Sales

E.4.3.2 Response Message
The response message contains the following parameter.



ManualRuleFire Operations

E-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

xmlPayload (xsd:string)
An XML description of the data object is returned. The schema used is the same 
definition as described for the Create and Update operations. You can use this 
operation to find the ID values of the data object and any columns.

Example E–4 xmlPayload for Get Operation

<DataObject Version="14" Name="Employees" Path="/Samples" External="0">
<Layout>
<Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="100"

Nullable="1" Public="1" />
<Column Name="Sales Area" ID="_Sales_Area" Type="string" MaxSize="100" 

Nullable="1" Public="1" />
<Column Name="Sales Number" ID="_Sales_Number" Type="integer" Nullable="1"

Public="1" />
<Column Name="Timestamp" ID="_Timestamp" Type="timestamp" Nullable="0" />

Public="1" />
<Indexes />

</Layout>
</DataObject>

E.4.4 Update
Update updates the definition of an existing data object. If a specified column exists in 
the original definition, the new column definition overwrites the old one. If columns in 
the existing definition are not specified in the new definition, their definitions are 
removed. The data object index definition can be updated as well.

E.4.4.1 Request Message
The request message contains the following parameters.

xmlPayload (xsd:string)
Payload for the Update operation is similar to the Create payload with one additional 
attribute. For example:

<DataObject Version="14" Name="Employees4" ID="_Employees4" Path="/Samples" 
External="0">
<Layout>
<Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="50"

 Nullable="1" Public="1" />
<Column Name="Sales Number" ID="_Sales_Number" Type="integer" 

Nullable="1" Public="1" />
<Column Name="Timestamp" ID="_Timestamp" Type="timestamp" 

Nullable="0" Public="1" />
<Indexes />

</Layout>
</DataObject>

E.4.4.2 Response Message
void

E.5 ManualRuleFire Operations
The following operation is supported by ManualRuleFire web service.

■ Section E.5.1, "FireRuleByName"



ManualRuleFire Operations

Oracle BAM Web Services Operations E-13

E.5.1 FireRuleByName
Use this operation to manually launch a rule. 

This web service takes a string parameter, which should have user name, followed by 
a period (.), followed by the alert name. For example:

user_name.alertname

The period is used as a separator between the user name and the alert name. The web 
service always treats last period in the string as the separator, allowing the user name 
to contain periods. For example

user.nema.alerrtname

It follows then that the alert names cannot contain a period. If you must use the 
ManualRuleFire web service with an alert containing a period in its name, the alert 
must be renamed so that it does not contain any periods.

E.5.1.1 Request Message
The request message contains the following parameter.

xmlPayload (xsd:string)
An example:

<FireRuleByName xmlns="http://xmlns.oracle.com/bam">
<strRuleName>string</strRuleName>

</FireRuleByName>

E.5.1.2 Response Message
Returns (xsd:string)

<FireRuleByNameResponse xmlns="http://xmlns.oracle.com/bam">
<FireRuleByNameResult>string</FireRuleByNameResult>

</FireRuleByNameResponse>



ManualRuleFire Operations

E-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



F

Oracle BAM Alert Rule Options F-1

FOracle BAM Alert Rule Options

This appendix describes the options for creating alert rules.

This appendix includes the following sections:

■ Section F.1, "Events"

■ Section F.2, "Conditions"

■ Section F.3, "Actions"

■ Section F.4, "Frequency Constraint"

F.1 Events
Events launch the rule and trigger the action. Each rule contains only one event. Oracle 
BAM provides the following events:

■ In a specific amount of time

■ At a specific time today

■ On a certain day at a specific time

■ Every interval between two times

■ Every date interval starting on certain date at a specific time

■ When a report changes

■ When a data field changes in data object

■ When a data field in a report meets specified conditions

■ When a data field in a data object meets specified conditions

■ When this rule is launched

F.1.1 In a specific amount of time
When you select the event In a specific amount of time, you must complete the rule 
expression by selecting a time interval in seconds, minutes, or hours.

F.1.2 At a specific time today
When you select the event At a specific time today, you must complete the rule 
expression by selecting the time at which to launch the alert.



Events

F-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

F.1.3 On a certain day at a specific time
When you select the event On a certain day at a specific time, you must complete the 
rule expression by selecting both the date and the time at which to launch the alert.

F.1.4 Every interval between two times
When you select the event Every interval between two times, you must complete the 
rule expression by configuring the following settings.

■ select time interval

Set the number of minutes, hours, or days between each alert launch.

■ select time

Set the times of day between which the rule is valid and the alert is launched.

F.1.5 Every date interval starting on certain date at a specific time
When you select the event Every date interval starting on a certain date at a specific 
time, you must complete the rule expression by configuring the following settings.

■ select date interval

Set the alert to launch every Day, Week, Month, or Year.

■ select date

Set the date on which the rule is valid and the alert is launched.

■ select time

Set the time of day at which the rule is valid and the alert is launched.

F.1.6 When a report changes
When a report changes is launched when runtime changes in a report occur (not 
changes in the report definition), that is every time a change list is delivered to the 
report from the Oracle BAM Server. Report changes can include changes to data in 
data objects and changes due to Active Now settings.

When you select the event When a report changes, you must complete the rule 
expression by configuring the following settings.

■ select report

Select the report to monitor for changes.

■ run as <user_name> (This option appears only if the user creating the alert is a 
member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only 
one run as user. The default run as user is the logged in Oracle BAM user who is 
creating the alert.

Only recipients who have security permissions that are the same or higher than 
the run as user receive the notification for report changes, honoring row level 
security as implemented by the Oracle BAM Architect in the data objects used in 
the report. 

Names that are preceded with a hash (#) are distribution lists.

If there are changes in a report’s data object rows that none of the alert recipients 
have permissions to access, no recipients are notified.



Events

Oracle BAM Alert Rule Options F-3

F.1.7 When a data field changes in data object
When you select the event When a data field changes in a data object, you must 
complete the rule expression by configuring the following settings.

■ select data field

Select the data object field to monitor for changes. In the Field Selection dialog 
box, locate the data object in the top left section of the dialog box, then select the 
field in the top right section of the dialog box. Finally, select one or more fields to 
group by and an aggregate function for the selected field.

■ run as <user_name> (This option appears only if the user creating the alert is a 
member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only 
one run as user. The default run as user is the logged in Oracle BAM user who is 
creating the alert.

Only recipients who have security permissions that are the same or higher than 
the run as user receive the notification for report changes, honoring row level 
security as implemented by the Oracle BAM Architect in the data objects used in 
the report. 

Names that are preceded with a hash (#) are distribution lists.

If there are changes in a report’s data object rows that none of the alert recipients 
have permissions to access, no recipients are notified.

F.1.8 When a data field in a report meets specified conditions
When you select the event When a data field changes in a data object, you must 
complete the rule expression by configuring the following settings.

■ select report

Select the report to monitor for changes.

■ this data field has a condition of x

In the Alert Rule Editor dialog box, select the data object to monitor. Then you can 
set the condition under which the alert should fire.

■ Row Filter - Create a filter on a field in the data object to express a condition 
that, when met, launches the rule. All of the functionality available in report 
filters is provided. See "Filtering Data" in Oracle Fusion Middleware User's Guide 
for Oracle Business Activity Monitoring for more information.

■ Group Filter - The Group Filter is similar to the Row Filter in that it provides 
all of the filtering functionality available in report filters. The special feature 
here is that it allows filters to be created on a field where a summary function 
has been applied. See "Filtering Data" in Oracle Fusion Middleware User's Guide 
for Oracle Business Activity Monitoring for more information about building 
filter expressions.

Note: The event When a data field in a data object meets specified 
conditions responds only to row inserts and row updates, but it does 
not respond to row deletes; however, the event When a data field 
changes in a data object responds to row deletes.



Events

F-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Group - Choose one or more fields on which to create a grouping, adding 
further complexity to any filters created in the Row Filter or Group Filter tabs.

■ run as <user_name> (This option appears only if the user creating the alert is a 
member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only 
one run as user. The default run as user is the logged in Oracle BAM user who is 
creating the alert.

Only recipients who have security permissions that are the same or higher than 
the run as user receive the notification for report changes, honoring row level 
security as implemented by the Oracle BAM Architect in the data objects used in 
the report. 

Names that are preceded with a hash (#) are distribution lists.

If there are changes in a report’s data object rows that none of the alert recipients 
have permissions to access, no recipients are notified.

F.1.9 When a data field in a data object meets specified conditions
When you select the event When a data field in a data object meets specified 
condition, you must complete the rule expression by configuring the following 
settings.

■ this data field has a condition of x

In the Alert Rule Editor dialog box, select the data object to monitor. Then you can 
set the condition under which the alert should fire.

■ Row Filter - Create a filter on a field in the data object to express a condition 
that, when met, launches the rule. All of the functionality available in report 
filters is provided. See "Filtering Data" in Oracle Fusion Middleware User's Guide 
for Oracle Business Activity Monitoring for more information.

■ Group Filter - The Group Filter is similar to the Row Filter in that it provides 
all of the filtering functionality available in report filters. The special feature 
here is that it allows filters to be created on a field where a summary function 
has been applied. See "Filtering Data" in Oracle Fusion Middleware User's Guide 
for Oracle Business Activity Monitoring for more information about building 
filter expressions.

■ Group - Choose one or more fields on which to create a grouping, adding 
further complexity to any filters created in the Row Filter or Group Filter tabs.

■ run as <user_name> (This option appears only if the user creating the alert is a 
member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only 
one run as user. The default run as user is the logged in Oracle BAM user who is 
creating the alert.

Names that are preceded with a hash (#) are distribution lists.

Note: The event When a data field in a data object meets specified 
conditions responds only to row inserts and row updates, but it does 
not respond to row deletes; however, the event When a data field 
changes in a data object responds to row deletes.



Actions

Oracle BAM Alert Rule Options F-5

Only recipients who have security permissions that are the same or higher than 
the run as user receive the notification for report changes, honoring row level 
security as implemented by the Oracle BAM Architect in the data objects used in 
the report. 

If there are changes in a report’s data object rows that none of the alert recipients 
have permissions to access, no recipients are notified.

F.1.10 When this rule is launched
The event When this rule is launched is used to create a rule dependent on another 
rule which uses the Launch a rule action. Several rules can be created using When this 
rule is launched in a hierarchy.

F.2 Conditions
Conditions are optional settings for constraining the time period in which the alert is 
fired. You can select any number and combination of conditions. Oracle BAM provides 
the following conditions:

■ If it is between two times

■ If It is between two days

■ If it is a particular day of the week

F.2.1 If it is between two times
Select two times between which the rule should launch.

F.2.2 If It is between two days
Select two dates between which the rule should launch.

F.2.3 If it is a particular day of the week
Select a day of the week on which the rule should launch.

F.3 Actions
Actions are the results of the conditions and events of the rule expression having been 
met. You can configure any number and combination of actions. Oracle BAM provides 
the following actions:

■ Send a report via email

■ Send a message via email

■ Send a report via email and escalate to another user after a specific amount of time

■ Send a parameterized message

■ Send a parameterized message for every matching row in a data object

■ Launch a rule

■ Launch rule if an action fails

■ Delete rows from a Data Object

■ Call a Web Service



Actions

F-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Run an Oracle Data Integrator Scenario

■ Call an External Action

F.3.1 Send a report via email
Select a report, select to send the report as a report link or as a rendered report, and 
select a recipient.

Recipients can be selected from Oracle BAM users, or, if a property is set in Oracle 
BAM, external e-mail accounts. See Section 57.9, "Sending Alerts to External E-mail 
Accounts" for more information.

F.3.2 Send a message via email
Create an email message to send and select a recipient.

Recipients can be selected from Oracle BAM users, or, if a property is set in Oracle 
BAM, external e-mail accounts. See Section 57.9, "Sending Alerts to External E-mail 
Accounts" for more information.

F.3.3 Send a report via email and escalate to another user after a specific amount of 
time

Select a report to send to the specified user. Select a secondary recipient to receive the 
message if the first recipient does not respond within the specified time period. The 
secondary recipient can be a single user or a distribution list.

When the condition of the alert rule is met, a report link is sent to the recipient. To 
respond to this alert, the recipient must click the report link and view the report. If the 
recipient does not view the report, it is escalated to the secondary user (or distribution 
list). 

Recipients can be selected from Oracle BAM users, or, if a property is set in Oracle 
BAM, external e-mail accounts. See Section 57.9, "Sending Alerts to External E-mail 
Accounts" for more information.

F.3.4 Send a parameterized message
This option enables you to email reports that require parameter inputs to Oracle BAM 
users. This action enables you to create a fully configurable email message and the 
parameter values that are passed to the report.

For information about creating prompts and parameters in Oracle BAM dashboards 
see "Using Prompts and Parameters" in Oracle Fusion Middleware User's Guide for Oracle 
Business Activity Monitoring.

You can use this option to send reports to other users under the conditions specified in 
the alert message. This action is available for the events When a data field changes in 
data object and When a data field in a data object meets specified conditions.

There are two properties that must be configured in this alert action: create message 
and set parameters.



Actions

Oracle BAM Alert Rule Options F-7

To create the message
1. Click create message in the rule expression.

2. Enter a subject and message to send to the recipient. You can also select links to 
reports to send in the message body as shown in Figure F–1.

Figure F–1 Alert Message dialog box

To configure the parameter values that are passed to the report when it is opened 
by the recipient:
1. Click set parameters in the rule expression.

2. In the Alert Action Parameter Creation and Edit dialog box, populate the User, 
Delivery, and Report fields with either predefined values or dynamically from a 
Data Object field. Use the buttons to set the field values. Select Field enables you 
to select a field in a data object as a value.



Actions

F-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure F–2 Alert Action Parameter Creation and Edit dialog box

■ User field

If you populate this field using the Select User button, the recipients are 
selected from Oracle BAM users listed in Oracle BAM Administrator as shown 
in Figure F–3. 

Figure F–3 Select Names dialog box

■ Report field

If you populate this field with the Select Report button, the value that appears 
in this field is the display name of the report. 

If you populate this field from a Data Object, the value must be the report ID 
of that report, and not the display name. To get the report ID, click the report 
and click the Copy Shortcut link. A window opens with a link such as:

http://myServer/oraclebam/ReportServer/default.aspx?Event=ViewReport&
ReportDef=1&Buttons=False

In this link the ReportDef value, 1, is the report ID of the report Emp_Report. 
Every report in Oracle Business Activity Monitoring has a unique report ID.



Actions

Oracle BAM Alert Rule Options F-9

3. Configure the Report Parameter Values.

Enter all of the parameters required by the report.

Click New in the Report Parameter Values list to configure the parameter.

Enter the parameter name in the Name field, and click Select Field to select the 
field on which the parameter acts.

Key in the parameter value, or select the field from the Field Selection dialog box, 
and click OK.

For special values use the underscore (_), for example, _ALL_, _BLANK_, and _
NULL_.



Actions

F-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The selected field ID appears in the Value text box. Click OK to confirm and 
return to the parameters list.

F.3.5 Send a parameterized message for every matching row in a data object
This action can pick up recipients, message content, and the message subject from 
rows of a static data object. You can specify filter conditions in the configuration screen 
to choose data object rows for conditional notification. This action can be configured 
with any event, condition, or action.

When this action is invoked, the rows in the data object that match the filter criteria are 
used to construct an e-mail message (using the data object parameters specified in the 
action) which is sent out to the recipients. Message creation is similar to that in 
Section F.3.4, "Send a parameterized message."

To configure the action:
1. Click the this data field has a condition of X link and select the data object and 

filter condition to select the desired rows.



Actions

Oracle BAM Alert Rule Options F-11

2. Click the create message link, and compose the e-mail message, with data object 
fields if required, similar to Section F.3.4, "Send a parameterized message".

3. Click the set parameters link and select a recipient (in User) and a report 
(optional), similar to Section F.3.4, "Send a parameterized message".

4. Click OK to save the rule.

F.3.6 Launch a rule
Select a dependent rule that includes the when this rule is launched event. For an 
example of constructing a dependent rule see Section 57.5, "Creating Complex Alerts."

F.3.7 Launch rule if an action fails
Select a dependent rule to launch if any of the actions included in the rule fail. For an 
example of constructing a dependent rule see Section 57.5, "Creating Complex Alerts"

F.3.8 Delete rows from a Data Object
Select the data object, and construct a filter entry such that when the filter condition is 
met the row is removed from the data object.

If the data being deleted is more than 10,000 rows, be aware of the following items:

■ If any reports that are dependent upon the data object from which data is being 
deleted are open at the time the Delete rows from a Data Object action executes, 
the active data is stopped on the viewsets and reloaded after deletion is complete. 
Also, if a user attempts to open a report while the delete action for a dependent 
data object is in process, the report gets stuck or the outcome may be undefined. It 
is recommended that users do not open reports dependent on the data object 
while this action is in process. The reports continue to receive active data when the 
action is finished.

■ In addition, during Delete rows from a Data Object execution, any alerts that are 
dependent on that data object are temporarily disabled internally. While this 
action is being run, any new alert created using that data object, or any dependent 
existing alerts that are disabled and reenabled, results in the system getting stuck. 
It is recommended that users do not create, disable, or reenable any alerts 
dependent on the data object while this action is in process. The alerts continue to 
function normally after the action is finished.

F.3.9 Call a Web Service
When this action is selected, do the following steps to configure the web service:

1. Enter the web service or WSIL endpoint URL. The URL must begin with the "http" 
scheme and must end in a valid extension (?WSDL, .WSDL or .WSIL). 

For example:

http://host_name:port_
number/OracleBAMWS/WebServices/DataObjectOperationsByID?WSDL

http://api.google.com/GoogleSearch.wsdl

Note: The data object and filter conditions must be selected first so 
that the data object fields appear.



Actions

F-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

http://host_name:port_number/inspection.wsil

If it is a secure web service select the box and enter the required credentials. 

2. If it is a secure web service check the Secure Web Service checkbox and enter the 
required credentials.

3. Click Display Services to display the available services of the URL entered in the 
field.

4. The Endpoint URL field, which is initially disabled and empty, is populated after 
you enter the WSDL/WSIL and credentials, get the list of operations, and select an 
operation.

It is populated with the endpoint URL defined in the WSDL file of the web service. 
If you find this endpoint URL outdated (for example, the web service 
implementation moved to a different endpoint but you do not have the new 
WSDL, but know the new endpoint URL) or incorrect, or want to override it, you 
can edit this URL. When the web service is invoked by Oracle BAM Event Engine, 
the configured endpoint URL is used to invoke the web service.

5. Click Map Parameters. 

When the event is based on a data object change (for example, When a data field 
changes in data object, When a data field in a report meets specified conditions, 
When a data field in a data object meets specified conditions), a selection list of 
fields to which the parameter can be mapped is displayed. 

To map the parameters choose the Data Object Field option, and select a data 
object field from the list next to each web service parameter listed in the Alert Web 
Service - Parameter Mapping dialog box.

When the event is not based on a data object change, the value is entered in a text 
box.

6. Click OK to close the Alert Web Service - Parameter Mapping dialog box and the 
Alert Web Service Configuration dialog box. 

See Section F.3.9.1, "How to Use Call a Web Service: An Example" for a specific 
example.

Note: Oracle BAM cannot determine if the web service is hosted on a 
server which is behind a secure server. It is your responsibility to 
indicate whether the web service is behind an HTTP basic 
authentication based server, and you must enter valid credentials if 
they are required.

To accomplish one-way SSL, the Alert Web service client must be 
pointed to a trust store in which it can look up, to determine if the 
certificate presented to it exists in it or not. This can be done by setting 
properties in BAMCommonConfig.xml. See "Calling Secure Web 
Services" in Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite for more information.

Note: If the web service does not respond to the call, then there are 
no logs available pertaining to the non-response or failure.



Actions

Oracle BAM Alert Rule Options F-13

F.3.9.1 How to Use Call a Web Service: An Example
The following procedure details the steps to create a alert which invokes a web service, 
using the sample Employees data object to insert a row in a data object.

To use Call a Web Service:
1. Ensure that the /Samples/Employees data object exists in your Oracle BAM 

instance.

2. Log in to Oracle BAM web applications, and open Oracle BAM Active Studio. 

3. Select the Alerts tab, and click Create a New Alert.

4. Click Create a Rule.

5. In the Select an Event list, select the first option: In a specific amount of time.

6. Click select time interval in the Rule Expression panel, and select 1 Second as the 
time. 

7. Click OK and Next.

8. In the Select an Action list, select the action Call a Web Service.

9. Click configure web service in the Rule Expression panel. 

The Alert Web Service Configuration dialog opens.

10. Provide the WSDL of the DataObjectOperationByName web service on your 
instance. The URL looks like:

http://host_name:port_number/OracleBAMWS/WebServices/
DataObjectOperationsByName?WSDL

where host_name and port_number are substituted with your Oracle BAM 
instance's host name and port number.

11. Select the Secure Web Service checkbox, and provide the credentials. 

12. Click Display Operations, and in the operations listed, select the operation Insert. 

This populates the endpoint URL of your web service. If the endpoint your of your 
web service has changed, or you want to override it with some other 
implementation, provide the new endpoint URL, otherwise, leave it as it is.

13. Click Map Parameters to provide the values that map to the parameters in this 
web service.

The web service operation in this example requires a value for only one parameter, 
an XML payload containing the row to insert in the data object. 

Enter the following text in the xmlpayload value and click.

<DataObject Name="Employees" Path="/Samples"><Contents><Row><Column
 Name="Salesperson" Value="Greg Guan Gan" /><Column Name="Sales Area"
 Value="Northeast" /><Column Name="Sales Number" Value="1234"
 /></Row></Contents></DataObject>

14. Click OK to close the Alert Web Service Configuration dialog, and click OK in the 
Rule Creation and Edit dialog.

15. After one second, open Oracle BAM Architect and check the contents of the 
/Samples/Employees data object to verify that the new row with Salesperson 
name Greg Guan Gan is inserted in the data object.



Frequency Constraint

F-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

F.3.10 Run an Oracle Data Integrator Scenario
Use this action to trigger a scenario in Oracle Data Integrator. This action is only 
available if the integration files for Oracle Data Integrator have been installed. See 
"Installing the Oracle Data Integrator Integration Files" in Oracle Fusion Middleware 
Developer's Guide for Oracle SOA Suite for more information.

Ensure that the Oracle Data Integrator agent is running and that the agent host, port, 
and login credentials are properly configured in Oracle Enterprise Manager Fusion 
Middleware Control. Oracle BAM cannot verify that the Oracle Data Integrator agent 
is running, and if it is not running, the alert fires, but the action is not carried out as 
expected. Also, Oracle BAM alerts that trigger Oracle Data Integrator scenarios do not 
track the success or failure of the Oracle Data Integrator scenario call, and it is not 
logged on the Oracle BAM side. See "Configuring Oracle Data Integrator Properties," 
in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite for more information.

In the alert creation dialog box, select the Oracle Data Integrator scenario to invoke by 
selecting the scenario name and version from the dropdown list.

If the scenario uses variables in it, choose the values (type in a value or choose a field 
value from the data object) to pass to Scenario Variables in the same screen.

F.3.11 Call an External Action
Call an External Action is used to develop a custom action. For users whose 
requirements cannot be fulfilled by the actions provided by Oracle BAM, this feature is 
used to extend the action set.

See Section 57.8, "Calling an External Action" for details on how to configure this 
action.

F.4 Frequency Constraint
The Frequency Constraint feature prevents a user’s email inbox from being flooded 
with alerts by limiting the number of alert messages that can be sent out during a 
given time interval.

Frequency Constraint can be edited only if it is appropriate for the event selected. 
otherwise it is disabled. It can be set to a value of time which could be in seconds, 
minutes, or hours.

This limits the number of times the rule launches in a given time period. With 
real-time data, transactions can occur every millisecond, so alerting frequency must be 
controlled.



G

Oracle BAM ICommand Operations and File Formats G-1

G Oracle BAM ICommand Operations and File
Formats

This appendix provides a detailed reference for each operation and parameter 
available in the ICommand command-line utility and web service. 

This appendix includes the following sections:

■ Section G.1, "Summary of Individual Operations"

■ Section G.2, "Detailed Operation Descriptions"

■ Section G.3, "Format of Command File"

■ Section G.4, "Format of Log File"

■ Section G.5, "Sample Export File"

■ Section G.6, "Regular Expressions"

For more information about ICommand see the following topics:

■ Chapter 58, "Using ICommand"

■ Section 56.5, "Using the ICommand Web Service"

G.1 Summary of Individual Operations
This section summarizes the parameters that can be used with each ICommand 
operation. You can also see a summary of these operations in the command window 
by entering icommand (without any parameters) at the command prompt.

Table G–1 summarizes the commands available in ICommand.

Table G–1 ICommand Command Summary

Command Parameters

clear -name itemname

[-type [dataobject|folder|distributionlist]]

For more information about clear see Section G.2.1, "Clear."



Summary of Individual Operations

G-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

delete [-name itemname]

[-type [dataobject|folder|report|rule|securityfilters|

 distributionlist|ems|eds|all]]

[-match pattern]

[-regex regularexpression]

[-all [0|1]]

[-systemobjects [0|1]]

For more information about delete see Section G.2.2, "Delete."

export -file file_name

[-name itemname]

[-type [dataobject|folder|report|rule|securityfilters|

distributionlist|ems|eds|all]]

[-match pattern]

[-regex regularexpression]

[-all [0|1]]

[-systemobjects [0|1]]

[-dependencies [0|1]]

[-layout [0|1]]

[-contents [0|1]]

[-permissions [0|1]]

[-owner [0|1]]

[-header [0|1]]

[-footer [0|1]]

[-append [0|1]]

[-preview [0|1]]

For more information about export see Section G.2.3, "Export."

import -file file_name

-continueonerror

[-delay milliseconds]

[-updatelayout]

[-mode [preserveid|update|overwrite|append|rename|error]]

[-preserveowner]

[-setcol col_name/[null|now|value:override_value]]

[-preview]

For more information about import see Section G.2.4, "Import."

rename -name itemname

-newname newitemname

[-type [dataobject|folder|report|rule|distributionlist|ems|

 eds]]

For more information about rename see Section G.2.5, "Rename."

Table G–1 (Cont.) ICommand Command Summary

Command Parameters



Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-3

G.2 Detailed Operation Descriptions
This section details each of the ICommand commands, their parameters, and gives 
examples. It includes the following topics:

■ Section G.2.1, "Clear"

■ Section G.2.2, "Delete"

■ Section G.2.3, "Export"

■ Section G.2.4, "Import"

■ Section G.2.5, "Rename"

G.2.1 Clear
Clears the contents of an item in the Active Data Cache.

What it means to be cleared depends upon the item type:

■ For Data Objects, all existing rows within the Data Object are deleted.

■ For Folders, all contents of the Folder are deleted.

■ For Distribution Lists, all members (users and groups) are removed from the 
distribution list.

Example G–1 Clearing a Data Object

icommand -cmd clear -name "/Samples/Call Center" -type dataobject

G.2.2 Delete
Deletes an item from the Active Data Cache.

Table G–2 Clear Command Parameters

Parameter Description

-name itemname The name of the item to be cleared. Required.

-type itemtype The type of the item to be cleared. The following are valid:

■ dataobject (see Example G–1)

■ folder

■ distributionlist

dataobject is assumed if this parameter is omitted.

Table G–3 Delete Command Parameters

Parameter Description

-all [0|1] Controls whether all items of the specified type are deleted (see 
Example G–5).

A nonzero or omitted value means delete all items of the 
specified type, a zero (0) value means only delete the named (or 
matched) items. Zero is assumed if this parameter is omitted.

-match pattern A DOS-style pattern matching string, using the asterisk (*) and 
question mark (?) characters. The items whose names match the 
pattern are deleted.

-name itemname The name of the item to be deleted.



Detailed Operation Descriptions

G-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example G–2 Deleting a Data Object

This command deletes a data object named TestDO. Note that dataobject type is 
assumed if the type parameter is not specified.

icommand -cmd delete -name TestDO 

Example G–3 Deleting an Alert Rule

For any ICommand operation on alerts, the value of the type parameter is rule. This 
command deletes a rule named MyAlert.

icommand -cmd delete -type rule -name "MyAlert"

Example G–4 Deleting security filter defined on a data object

To delete security filters defined on a data object, the name of the data object must be 
specified, instead of name of the security filter. This command deletes all security 
filters defined on the data object MyDataObject.

icommand -cmd delete -type securityfilters -name "MyDataObject"

Example G–5 Deleting All Reports

This command deletes all objects of type report.

icommand -cmd delete -type report -all 1

Example G–6 Deleting All Objects

This command deletes all items except systemobjects (data objects in the System 
folder).

icommand -cmd delete -type all

-regex regularexpr A regular expression pattern matching string. The items whose 
names match the pattern are deleted. See Section G.6, "Regular 
Expressions" for more information.

-systemobjects [0|1] Controls whether data objects in the System folder are 
included when the all, match, or regex parameters are used. 
Zero (0) means these data objects are not included. Zero is 
assumed if this parameter is omitted.

-type itemtype The type of the item to be deleted. The following are valid:

■ dataobject (see Example G–2)

■ folder

■ report (see Example G–5)

■ rule

■ securityfilters (For the specified Data Objects)

■ distributionlist

■ ems (Enterprise Message Source)

■ eds (External Data Source)

■ all (see Example G–6)

dataobject is assumed if this parameter is omitted.

Table G–3 (Cont.) Delete Command Parameters

Parameter Description



Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-5

G.2.3 Export
Exports information about one or more objects in the Active Data Cache to an XML 
file. See Section G.5, "Sample Export File" for an example of an exported data object.

Table G–4 Export Command Parameters

Parameter Description

-all [0|1] Controls whether all items of the specified type are exported.

A nonzero or omitted value means export all items of the 
specified type, a zero value means only export the named (or 
matched) items. Zero (0) is assumed if this parameter is 
omitted.

For Reports, Folders, and Rules, only the items owned by the 
user running ICommand are exported, unless the user running 
ICommand is an administrator. When an administrator runs 
ICommand, any user's items may be exported.

See Example G–14, "Exporting All of the Reports in the 
System"

-append [0|1] Controls whether the exported information is appended to any 
existing file.

A nonzero value means append. Zero (0) means overwrite the 
contents of any existing files. Zero is assumed if this parameter 
is omitted, or if the value is omitted.

The Append parameter must be used with the Header and 
Footer parameters as described in Example G–22, "Using 
Append Parameter in Export".

When the Append parameter is used, the Header and Footer 
parameters must be defined. If they are not, ICommand 
includes XML header information and closing XML 
</OracleBAMExport> tags after each append to the export file. 
The file is unusable for importing into Oracle BAM, because 
the import stops when it finds the first </OracleBAMExport> 
closing tag and ignores the rest of the objects.

-contents [0|1] Applies only to Data Objects. Controls whether content 
information (row, column values) is to be exported.

A nonzero value means export content information. Zero (0) 
means do not export content information. nonzero is assumed 
if this parameter is omitted, or if the value is omitted.

-dependencies [0|1] Applies to only to Data Objects. Controls whether other Data 
Objects that the exported Data Objects depend on in the 
lookup columns are exported.

A nonzero value or the parameter present with no value 
specifies that if the Data Objects being exported contain lookup 
columns, then the Data Objects that are looked up are 
exported. Zero is assumed if this parameter is omitted, or if the 
value is omitted.

-file file_name The name of the file to export to. Required.

If the file does not exist, it is created. If the file does exist, any 
contents are overwritten, unless the append parameter is used. 
Because the file contains XML, it usually has an XML 
extension.



Detailed Operation Descriptions

G-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

-footer [0|1] Controls whether closing XML information is written to the 
end of the export file. This can allow successive executions of 
ICommand to assemble one XML file by repeatedly appending 
to the same file.

A nonzero value means write the closing information. Zero (0) 
means do not write the closing information. nonzero is 
assumed if this parameter is omitted, or if the value is omitted.

When used with the Append parameter, you must set the 
Footer value appropriately, or the file cannot be used with 
ICommand Import. If Footer is not defined, each append 
includes closing </OracleBAMExport> tags and the import 
stops when the first closing tag is read and does not import the 
remaining objects defined in the file.

See Example G–22, "Using Append Parameter in Export" for a 
sample using this parameter.

-header [0|1] Controls whether XML header information is written to the 
front of the export file. This can allow successive executions of 
ICommand to assemble one XML file by repeatedly appending 
to the same file.

A nonzero value means write the header. Zero(0) means do not 
write the header. nonzero is assumed if this parameter is 
omitted, or if the value is omitted.

See Example G–22, "Using Append Parameter in Export" for a 
sample using this parameter.

-layout [0|1] Applies only to Data Objects. Controls whether layout 
information is to be exported.

A nonzero value means export layout information. Zero (0) 
means do not export layout information. nonzero is assumed if 
this parameter is omitted, or if the value is omitted.

-match pattern A DOS-style pattern matching string, using the asterisk (*) and 
question mark (?) characters. The items whose names match 
the pattern are exported (see Example G–21, "Exporting a Data 
Object Using the Match Parameter").

-name itemname The name of the item to be exported. 

-owner [0|1] Applies only to Folders, Reports, and Rules. Controls whether 
the information about the owner of the items being exported is 
included in the export.

A nonzero value means export the owner information. Zero (0) 
means do not export the owner information. nonzero is 
assumed if this parameter is omitted, or if the value is omitted.

-permissions [0|1] Applies only to Data Objects and Folders. Controls whether 
permissions information is to be exported.

A nonzero value means export information about the 
permission settings of the exported Data Objects or Folders. 
Zero (0) means do not export permission information. Zero is 
assumed if this parameter is omitted, or if the value is omitted.

For Data Objects, only the permissions of the Data Object itself 
are exported. Any permissions that might be on the folders or 
subfolders that the Data Objects are contained within are not 
included.

For Folders, the permissions reflect the cumulative permissions 
of all parent Folders of the Folders being exported.

Table G–4 (Cont.) Export Command Parameters

Parameter Description



Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-7

Example G–7 Exporting a Data Object in a Folder

icommand -cmd export -name "/Samples/Call Center" -file "C:\CallCenter.xml"

Note that the type parameter was not included in this example. By default 
dataobject is assigned to type if it is not specified.

Example G–8 Exporting a Data Object at the Root

icommand -cmd export -name TestDataObject -file "C:\TestDataObject.xml"

Note that the data object name was not preceded by the slash (/). When a Data Object 
is in the root Data Objects folder, a slash is not required.

Example G–9 Exporting a Folder from My Reports

In the first case, the private:owner/Report prefix is used in the name parameter 
because the user exporting the folder is not the folder owner.

icommand -cmd export -name "/private:bamadmin/Report/TestMainFolder/TestSubFolder"
 -type folder -file C:\FolderExportTest.xml

-preview [0|1] In preview mode, ICommand goes through the motions of 
exporting all of the specified items, but does not actually 
output any information. This can see what would be exported 
for a given command line, and what errors might occur. In this 
mode, ICommand export continues processing even after some 
errors that would cause non-preview mode to stop the export.

A nonzero value means preview mode. nonzero is assumed if 
the value is omitted. Zero (0) is assumed if the parameter is 
omitted.

-regex regularexpr A regular expression pattern matching string. The items whose 
names match the pattern are exported. See Section G.6, 
"Regular Expressions" for more information.

-systemobjects [0|1] Controls whether Data Objects in the System folder are 
included when the all, match, or regex parameters are used. 
Zero (0) means these data objects are not included. Zero is 
assumed if this parameter is omitted.

-type itemtype The type of the item to be exported. The following are valid:

■ dataobject (see Example G–7 and Example G–8)

■ folder (see Example G–9, Example G–10, and 
Example G–11)

■ report (see Example G–12, Example G–13, and 
Example G–14)

■ rule (see Example G–15)

■ securityfilters (For the specified Data Objects) (see 
Example G–16)

■ distributionlist (see Example G–17)

■ ems (Enterprise Message Source) (see Example G–18)

■ eds (External Data Source) (see Example G–19)

■ all (see Example G–20)

dataobject is assumed if this parameter is omitted.

Table G–4 (Cont.) Export Command Parameters

Parameter Description



Detailed Operation Descriptions

G-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

In the second case, the private:owner/Report prefix was not used in the name 
parameter because the user exporting the folder is the folder owner.

icommand -cmd export -name "/TestMainFolder/TestSubFolder" -type folder -file
 C:\FolderExportTest.xml

Example G–10 Exporting a Folder from Shared Reports

icommand -cmd export -name "/public/Report/MainFolderInShared" -type folder -file
 C:\FolderExportTest2.xml

Note that the public prefix is added to the name parameter.

Example G–11 Exporting a Folder from Data Objects

icommand -cmd export -name "/public/DataObject/Test Sub folder" -type folder -file
 C:\foldertest1.xml

Example G–12 Exporting a Private Report

As in Example G–9, there are two methods of exporting private reports.

icommand -cmd export -name "/private:bamadmin/Report/MyReport" -type report -file 
C:\MyReport.xml

icommand -cmd export -name MyReport -type report -file C:\MyReport.xml

Example G–13 Exporting a Shared Report

icommand -cmd export -name "/public/Report/SharedReport" -type report -file 
C:\SharedReport.xml

Example G–14 Exporting All of the Reports in the System

icommand -cmd export -type report -all -file C:\temp\TestAll.xml

Example G–15 Exporting an Alert Rule

icommand -cmd export -name Alert1 -type rule -file C:\Alert1.xml

Example G–16 Exporting a Security Filter

icommand -cmd export -type securityfilters -name "TestDO" -file 
"C:\TestFilter.xml"

Note that in the name parameter the name of the Data Object is specified rather than 
the name of the security filter.

Example G–17 Exporting a Distribution List

icommand -cmd export -name MyDistList -type distributionlist -file 
C:\MyDistList.xml

Example G–18 Exporting an Enterprise Message Source

icommand -cmd export -type ems -name TestEMS -file C:\TestEMS.xml



Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-9

Example G–19 Exporting an External Data Source

icommand -cmd export -type eds -name TestEDS -file C:\TestEDS.xml

Example G–20 Exporting All Oracle BAM Objects in the System

icommand -cmd export -type all -file C:\temp\TestAll.xml

Example G–21 Exporting a Data Object Using the Match Parameter

icommand -cmd export -match "/M*" -file "c:/exportDOstartingwithM.xml"

Example G–22 Using Append Parameter in Export

In the first case (the incorrect example), Append is used without setting the Header 
and Footer parameters (by default Header and Footer are set to 1).

icommand -cmd export -type dataobject -name "/Samples/Call Center" -file do.xml
icommand -cmd export -type dataobject -name "/Samples/Employees" -file do.xml 
-append
icommand -cmd export -type dataobject -name "/Samples/Film Sales" -file do.xml  
-append

The output from these commands is as follows. Notice that an XML header and 
closing tags are included with each append to the file. If this file is used for importing 
data into Oracle BAM, only the first object is imported. As soon as the first 
</OracleBAMExport> is read at line 4, the import stops. 

<?xml version="1.0"?>
<OracleBAMExport Version="2020">
<exported object/>

</OracleBAMExport>
<?xml version="1.0"?>
<OracleBAMExport Version="2020">
<exported object/>

</OracleBAMExport>
<?xml version="1.0"?>
<OracleBAMExport Version="2020">
<exported object/>

</OracleBAMExport>

In the second case (the correct example), The Header and Footer parameters are 
specified to produce the necessary output. 

icommand -cmd export -type dataobject -name "/Samples/Call Center" -file do2.xml
 -header 1 -footer 0
 //only the footer is supressed in the first command
icommand -cmd export -type dataobject -name "/Samples/Employees" -file do2.xml
 -append 1 -header 0 -footer 0
 //both the header and the footer are suppressed in the intermediate commands
icommand -cmd export -type dataobject -name "/Samples/Film Sales" -file do2.xml
 -append 1 -header 0 -footer 1
 //only the header is suppressed in the last commands

The output file produced by these commands can import the objects into an Oracle 
BAM Server.



Detailed Operation Descriptions

G-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<?xml version="1.0"?>
<OracleBAMExport Version="2020">
<exported object>
<exported object>

</OracleBAMExport>

G.2.4 Import
Imports the information from an XML file to an object in the Active Data Cache. The 
object may be created, replaced, or updated.

If the object does not exist, it is created if possible. For Data Objects, the input file must 
contain layout information to create the Data Object, and if the file contains no content 
information, then an empty Data Object is created.

If the user running ICommand is not an administrator, Reports are always imported to 
the private folders of the user running ICommand. If the path information in the 
import file exactly matches existing private folders of the user running ICommand, the 
imported report is placed in that location. Otherwise, it is placed into the root of that 
user's private folders.

If the user running ICommand is an administrator, then the preserveowner option 
may be used to allow Folders, Reports and Rules to be imported with their original 
ownership and to their original location.

Table G–5 Import Command Parameters

Parameter Description

-continueonerror [0|1] While importing objects from a file, by default, ICommand 
stops whenever an error is encountered. If you are importing 
several objects and do not want to stop when an error is found 
in one, use the continueonerror parameter to continue 
importing the rest of the objects specified in the command. 

Specify a one (1) to ignore errors and continue importing other 
objects (see Example G–23).

-delay millisec Applies only to Data Objects. A value that specifies a delay that 
is to occur between each row insertion or update.

This can simulate active data at a specified rate.

The number is the number of milliseconds to wait between 
each row. It must be greater than zero.

If this parameter is omitted, there is no delay.

See Example G–23, "Importing a Data Object With Delay"

-file file_name The name of the file to import from. Required. This would 
usually be a file that was created through the export command.

-preserveowner Applies only to Folders, Reports, and Rules. Controls whether, 
when the item is imported, the ownership of the item is set as 
specified in the import file.

This setting of ownership can only be done if the ownership 
was included in the file during export, and if the user running 
ICommand is an administrator.

A nonzero value means set the ownership as specified in the 
import file. Zero (0) means the imported items remain owned 
by the user running ICommand. Zero is assumed if this 
parameter is omitted, or if the value is omitted.



Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-11

-preview [0|1] In preview mode, ICommand goes through the motions of 
importing all of the specified items, but does not actually input 
any information. This can see what would be imported for a 
given command line, and what errors might occur. In this 
mode, ICommand import continues processing even after some 
errors that would cause non-preview mode to stop the import.

A nonzero value means preview mode. nonzero is assumed if 
the value is omitted. Zero (0) is assumed if the parameter is 
omitted.

This parameter is supported for the following objects: Rule, 
Distribution list, EDS, EMS, Report, Folder, and Security Filters.

See Example G–24, "Importing a Report in Preview mode"

Table G–5 (Cont.) Import Command Parameters

Parameter Description



Detailed Operation Descriptions

G-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

-mode mode By default, if the mode parameter is not specified, the value 
Error is assumed for objects of type Folder, Report, EDS, EMS, 
and Distribution List.

The following mode values are valid for Folders, Reports, EMS, 
and EDS objects:

■ overwrite

If the item exists, replaces it with the imported item.

■ rename

If the item exists, changes the name of the imported item. 
The new name is computed automatically and reported in 
a message.

■ error

If the item exists, terminates the import with an error.

The following values are valid for Distribution List objects:

■ overwrite

If the item exists, replaces it with the imported item.

■ rename

If the item exists, changes the name of the imported item. 
The new name is computed automatically and reported in 
a message.

■ append

If the item exists, appends the users in the imported list to 
the existing list.

■ error

If the item exists, terminates the import with an error.

The following value is supported for Data Objects or Reports:

■ preserveid

This option is important because some other items, such as 
Reports, point to the Data Objects they use by ID, not by 
name.

Data Object Usage:

If the imported Data Object does not exist and must be 
created, ICommand attempts to assign the Data Object the 
same internal ID that the exported Data Object had. If it 
cannot, the import is terminated with an error.

Report Usage:

If the imported Report does not exist and must be created, 
ICommand attempts to assign the Report the same internal 
ID that the exported Report had. If it cannot, the import is 
terminated with an error.

Table G–5 (Cont.) Import Command Parameters

Parameter Description



Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-13

-mode mode (cont.) Only the following value is valid for Data Objects:

■ update

Typically, when ICommand imports a Data Object, it 
creates a new Data Object or locates the existing Data 
Object and inserts the imported rows into that Data Object.

In update mode, ICommand instead attempts to locate 
existing matching rows by Row ID, and updates those 
existing rows with the values in the import file. 
Unmatched rows are inserted. For matching Row IDs in 
the import file that have no data columns specified, the 
rows are deleted from the existing Data Object.

For Security Filters, the only value supported is overwrite. If 
overwrite is not specified and the Data Object contains at 
least one Security Filter, the import is terminated with an error.

This parameter is not supported for Rules.

-setcol Allows override of column values from the command line 
during import, including setting to current date/time.

-setcol column_name/NULL

-setcol column_name/NOW

-setcol column_name/VALUE:override-value 

column_name is the name of a column in the Data Object 
being imported. This cannot be a column of type lookup or 
calculated. Column names that are not contained in the input 
XML being imported can be specified, if they are columns in 
the Data Object being imported into.

The portion after the slash specifies a value that should be 
substituted for that column on each row that is imported -- any 
value for that column in the import file is ignored (overridden). 
Note that slash is the one character that is not permitted in 
column names, so there is no potential conflict with any 
column names in this syntax.

NULL specifies that the column value should be set to null. The 
column must be defined as "nullable" in the Data Object's 
layout.

NOW specifies that the column value should be set to the current 
date/time when the column value is being set into the row. 
This option can only be used for columns of type datetime, 
timestamp, and string.

VALUE:override-value specifies an arbitrary constant value 
(after the colon) that the column should be set to. The value 
must be a legal value for the type of the column.

To allow multiple columns to be overridden, any number of 
setcol parameters may be present. However, because 
duplicate parameters are not permitted, ICommand recognizes 
any parameter name that starts with setcol as a setcol 
parameter (for example, setcol1, setcol2, and so on).

Sample command line: 

icommand -cmd import -file myfile.xml -setcol1 
Field1/null -setcol2 Field3/now -setcol3 
"Customer Name/value:John Q. Public" 

Table G–5 (Cont.) Import Command Parameters

Parameter Description



Detailed Operation Descriptions

G-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example G–23 Importing a Data Object With Delay

icommand -cmd import -file C:\TestDO.xml -delay 1000 -continueonerror 1

Example G–24 Importing a Report in Preview mode

icommand -cmd import -file C:\TestReport.xml -preview 1

G.2.5 Rename
Renames an item in the Active Data Cache.

Example G–25 Renaming a Data Object in a Folder

icommand -cmd rename -type dataobject -name "/TestDataObjectFolder/TestDataObject"
 -newname NewTestDataObject

Example G–26 Renaming Folders

Renaming a data object folder:

icommand -cmd rename -type folder -name "/public/DataObject/TestFolder"
 -newname "/public/DataObject/NewTestFolder"

-updatelayout Applies only to Data Objects. Controls whether, if the Data 
Object being imported exists, the layout (schema) of the Data 
Object is updated according to the layout information in the 
import file.

True if parameter is present; false if parameter is not present.

Table G–6 Rename Command Parameters

Parameter Description

-name itemname The name of the item to be renamed. Required.

The full folder path must be given when renaming objects of 
type Folder (see Example G–26, "Renaming Folders").

-newname newitemname The new name for the item. Required.

The full folder path must be given when renaming objects of 
type Folder (see Example G–26, "Renaming Folders").

For Data Objects and Reports, only the new base name should 
be given, with no path (for example -newname "MyReport").

-type itemtype The type of object to be renamed. The following are valid:

■ dataobject (see Example G–25)

■ folder (see Example G–26)

■ report (see Example G–27)

■ rule

■ distributionlist (see Example G–28)

■ ems (Enterprise Message Source)

■ eds (External Data Source)

dataobject is assumed if this parameter is omitted. all is 
not supported as an item type in the rename command.

Table G–5 (Cont.) Import Command Parameters

Parameter Description



Format of Command File

Oracle BAM ICommand Operations and File Formats G-15

Renaming a private report folder:

icommand -cmd rename -type folder -name "/private:weblogic/Report/MySubFolder"
 -newname "/private:weblogic/Report/NewMySubFolder"

Renaming a shared report folder

icommand -cmd rename -type folder -name "/public/Report/TestSubFolder" 
-newname "/public/Report/NewTestSubFolder"

Example G–27 Renaming a Report in a Private Folder

icommand -cmd rename -type report -name "/TestReportFolder/TestReport" -newname
 NewTestReport

Example G–28 Renaming a Distribution List

icommand -cmd rename -type distributionlist -name TestList -newname MyDistList

Example G–29 Renaming an Alert Rule

For any ICommand operation on alerts, the value of the type parameter is rule. This 
command renames a rule named MyAlert.

icommand -cmd rename -type rule -name "MyAlert" -newname "MyRenamedAlert"

G.3 Format of Command File
This section contains the following topics:

■ Section G.3.1, "Inline Content"

■ Section G.3.2, "Command IDs"

■ Section G.3.3, "Continue On Error"

The command file contains the root tag OracleBAMCommands.

Within the root tag is a tag for every command to be executed. The tag name is the 
command name, and the parameters for the command are attributes.

Sample command file:

<?xml version="1.0" encoding="utf-8"?>
<OracleBAMCommands continueonerror="1">
<Export name="Samples/Media Sales" file="MediaSales.xml" contents="0" />
<Rename name="Samples/Call Center" newname="Call Centre" />
<Delete type="EMS" name="WebLog" />
<Delete type="EMS" name="WebLog2" />

</OracleBAMCommands>

The output of this sample command file is shown in Section G.4, "Format of Log File."

G.3.1 Inline Content
When using a command file to import, the inline option enables you to include the 
import content inside the command file, rather than in a separate import file. Here is 
an example:

<?xml version="1.0"?>
<OracleBAMCommands>
<Import inline="1">
<OracleBAMExport Version="2013">



Format of Command File

G-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

  <DataObject Version="14" Name="Employees_Inline" ID="_Employees_Inline"
 Path="/Samples" External="0">
    <Layout>
      <Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="100"
 Nullable="1" Public="1"/>
      <Column Name="Sales Area" ID="_Sales_Area" Type="string" MaxSize="100"
 Nullable="1" Public="1"/>
      <Column Name="Sales Number" ID="_Sales_Number" Type="integer"
 Nullable="1" Public="1"/>
      <Column Name="Timestamp" ID="_Timestamp" Type="timestamp" Nullable="0"
 Public="1"/>
      <Indexes/>
    </Layout>
    <Contents>
      <Row ID="1">
        <Column ID="_Salesperson" Value="Greg Masters"/>
        <Column ID="_Sales_Area" Value="Northeast"/>
        <Column ID="_Sales_Number" Value="567"/>
        <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
      </Row>
      <Row ID="2">
        <Column ID="_Salesperson" Value="Lynette Jones"/>
        <Column ID="_Sales_Area" Value="Southwest"/>
        <Column ID="_Sales_Number" Value="228"/>
        <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
      </Row>
      <Row ID="3">
        <Column ID="_Salesperson" Value="Noel Rogers"/>
        <Column ID="_Sales_Area" Value="Northwest"/>
        <Column ID="_Sales_Number" Value="459"/>
        <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
      </Row>
    </Contents>
  </DataObject>
</OracleBAMExport>
</Import>
</OracleBAMCommands>

G.3.2 Command IDs
This feature is only used when output is being sent to a log file. To make the parsing of 
log results easier, each command can be given an ID. This ID is included in the Result 
or Error elements of any output related to that command. 

Sample Input:

<OracleBAMCommands continueonerror="1">
<Delete id="1" type="dataobject" name="Data Object A"/>
<Delete id="2" type="dataobject" name="Data Object B"/>

</OracleBAMCommands>

Sample Output Log File:

<?xml version="1.0"?>
<ICommandLog Login="weblogic">
<Results Command="Delete" ID="1">Data Object &quot;/Data Object A&quot;

 deleted.</Results>
<Error Command="Delete" ID="2">
<![CDATA[BAM-02409: There is no Data Object named "Data Object B".



Format of Log File

Oracle BAM ICommand Operations and File Formats G-17

[ErrorSource="ICommandEngine",ErrorID="ICommandEngine.DOExist"]]]>
</Error>

</ICommandLog>

G.3.3 Continue On Error
Ordinarily, ICommand executes commands in a command file until a failure occurs, or 
until they all complete successfully. In other words, if a command file contains 20 
commands, and the second command fails for any reason, then no further commands 
are executed. This behavior can be changed by using the continueonerror attribute 
at either a global level or for each command.

Example G–30 shows how to use the continueonerror attribute so that all 
commands are executed regardless of if any failures occur

Example G–30 Enabling Global ContinueOnError Mode

<OracleBAMCommands  continueonerror="1">
<Delete id="1" type="dataobject" name="Data Object A"/>
<Delete id="2" type="dataobject" name="Data Object B"/>

</OracleBAMCommands>

In Example G–31, continueonerror only applies to the command that deletes Data 
Object A. If this command fails, then ICommand outputs the error and continues. But 
if any other command fails, ICommand stops immediately.

Example G–31 Enabling Command-Level ContinueOnError Mode

<OracleBAMCommands>
<Delete id="1" type="dataobject" name="Data Object A" continueonerror="1"/>
<Delete id="2" type="dataobject" name="Data Object B"/>
<Delete id="3" type="dataobject" name="Data Object C"/>
<Delete id="4" type="dataobject" name="Data Object D"/>

</OracleBAMCommands>

G.4 Format of Log File
The log file contains the root tag ICommandLog.

Within the root tag is an entry for every error or informational message logged.

Errors are logged with the tag Error.

Informational messages are logged with the tag Results.

Both Results and Error tags optionally contain an attribute of the form 
Command=cmdname, if appropriate, that contains the name of the command that 
generated the error or informational message.

This sample log file is output of command file given in Section G.3, "Format of 
Command File":

<?xml version="1.0" encoding="utf-8"?>
<ICommandLog Login="user_name">
<Results Command="Export">Data Object "/Samples/Media Sales" exported

 successfully (0 rows).</Results>
<Results Command="Export">1 items exported successfully.</Results>
<Results Command="Rename">Data Object "/Samples/Call Center" renamed to

 "/Samples/Call Centre".</Results>
<Results Command="Delete">Enterprise Message Source "WebLog" deleted.</Results>
<Error Command="Delete"><![CDATA[Error while processing command "Delete".



Sample Export File

G-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 [ErrorSource="ICommand", ErrorID="ICommand.Error"] There is no Enterprise Message
 Source named "WebLog2". [ErrorSource="ICommand",
 ErrorID="ICommand.EMSExist"]]]></Error>
</ICommandLog>

G.5 Sample Export File
The following example shows a sample file resulting from exporting a Data Object.

<?xml version="1.0"?>
<OracleBAMExport Version="2018">
<DataObject Version="14" Name="Employees" ID="_Employees" Path="/Samples"

 External="0">
<Layout>
<Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="100"

 Nullable="1" Public="1"/>
<Column Name="Sales Area" ID="_Sales_Area" Type="string" MaxSize="100"

 Nullable="1" Public="1"/>
<Column Name="Sales Number" ID="_Sales_Number" Type="integer" Nullable="1"

 Public="1"/>
<Column Name="Timestamp" ID="_Timestamp" Type="timestamp" Nullable="0"

 Public="1"/>
<Indexes/>

</Layout>
<Contents>
<Row ID="1">
<Column ID="_Salesperson" Value="Greg Masters"/>
<Column ID="_Sales_Area" Value="Northeast"/>
<Column ID="_Sales_Number" Value="567"/>
<Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>

</Row>
<Row ID="2">
<Column ID="_Salesperson" Value="Lynette Jones"/>
<Column ID="_Sales_Area" Value="Southwest"/>
<Column ID="_Sales_Number" Value="228"/>
<Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>

</Row>
<Row ID="3">
<Column ID="_Salesperson" Value="Noel Rogers"/>
<Column ID="_Sales_Area" Value="Northwest"/>
<Column ID="_Sales_Number" Value="459"/>
<Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>

</Row>
</Contents>

</DataObject>
</OracleBAMExport>

G.6 Regular Expressions
The export and delete commands optionally accept a regular expression with the 
regex parameter.

A regular expression is a pattern of text that consists of ordinary characters (for 
example, letters a through z) and special characters, known as metacharacters. The 
pattern describes one or more strings to match when searching for items by name.



Regular Expressions

Oracle BAM ICommand Operations and File Formats G-19

Table G–7 contains the complete list of metacharacters and their behavior in the 
context of regular expressions.

Note: The behavior of ICommand -regex is exactly like the 
java.util.regex package for matching character sequences against 
patterns specified by regular expressions.

Table G–7 Metacharacters for Regular Expressions

Character Description

\ Marks the next character as a special character, a literal, a 
backreference, or an octal escape. For example, 'n' matches the 
character "n". '\n' matches a newline character. The sequence 
'\\' matches "\" and "\(" matches "(".

^ Matches the position at the beginning of the input string. If the 
RegExp object's Multiline property is set, ^ also matches the 
position following '\n' or '\r'.

$ Matches the position at the end of the input string. If the RegExp 
object's Multiline property is set, $ also matches the position 
preceding '\n' or '\r'.

* Matches the preceding character or subexpression zero or more 
times. For example, zo* matches "z" and "zoo". * is equivalent to 
{0,}.

+ Matches the preceding character or subexpression one or more 
times. For example, 'zo+' matches "zo" and "zoo", but not "z". + is 
equivalent to {1,}.

? Matches the preceding character or subexpression zero or one 
time. For example, "do(es)?" matches the "do" in "do" or "does". ? 
is equivalent to {0,1}

{n} n is a nonnegative integer. Matches exactly n times. For example, 
'o{2}' does not match the 'o' in "Bob," but matches the two o's in 
"food".

{n,} n is a nonnegative integer. Matches at least n times. For example, 
'o{2,}' does not match the "o" in "Bob" and matches all the o's in 
"foooood". 'o{1,}' is equivalent to 'o+'. 'o{0,}' is equivalent to 'o*'.

{n,m} M and n are nonnegative integers, where n <= m. Matches at 
least n and at most m times. For example, "o{1,3}" matches the 
first three o's in "fooooood". 'o{0,1}' is equivalent to 'o?'. Note 
that you cannot put a space between the comma and the 
numbers.

? When this character immediately follows any of the other 
quantifiers (*, +, ?, {n}, {n,}, {n,m}), the matching pattern is 
non-greedy. A non-greedy pattern matches as little of the 
searched string as possible, whereas the default greedy pattern 
matches as much of the searched string as possible. For example, 
in the string "oooo", 'o+?' matches a single "o", while 'o+' 
matches all 'o's.

. Matches any single character except "\n". To match any 
character including the '\n', use a pattern such as '[\s\S]'.

(pattern) A subexpression that matches pattern and captures the match. 
The captured match can be retrieved from the resulting Matches 
collection using the $0...$9 properties. To match parentheses 
characters ( ), use '\(' or '\)'.



Regular Expressions

G-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

(?:pattern) A subexpression that matches pattern but does not capture the 
match, that is, it is a non-capturing match that is not stored for 
possible later use. This is useful for combining parts of a pattern 
with the "or" character (|). For example, 'industr(?:y|ies) is a 
more economical expression than 'industry|industries'.

(?=pattern) A subexpression that performs a positive lookahead search, 
which matches the string at any point where a string matching 
pattern begins. This is a non-capturing match, that is, the match 
is not captured for possible later use. For example 'Windows 
(?=95|98|NT|2000)' matches "Windows" in "Windows 2000" but 
not "Windows" in "Windows 3.1". Lookaheads do not consume 
characters, that is, after a match occurs, the search for the next 
match begins immediately following the last match, not after the 
characters that comprised the lookahead.

(?!pattern) A subexpression that performs a negative lookahead search, 
which matches the search string at any point where a string not 
matching pattern begins. This is a non-capturing match, that is, 
the match is not captured for possible later use. For example 
'Windows (?!95|98|NT|2000)' matches "Windows" in "Windows 
3.1" but does not match "Windows" in "Windows 2000". 
Lookaheads do not consume characters, that is, after a match 
occurs, the search for the next match begins immediately 
following the last match, not after the characters that comprised 
the lookahead.

x|y Matches either x or y. For example, 'z|food' matches "z" or 
"food". '(z|f)ood' matches "zood" or "food". 

[xyz] A character set. Matches any of the enclosed characters. For 
example, '[abc]' matches the 'a' in "plain". 

[^xyz] A negative character set. Matches any character not enclosed. 
For example, '[^abc]' matches the 'p' in "plain". 

[a-z] A range of characters. Matches any character in the specified 
range. For example, '[a-z]' matches any lowercase alphabetic 
character in the range 'a' through 'z'. 

[^a-z] A negative range characters. Matches any character not in the 
specified range. For example, '[^a-z]' matches any character not 
in the range 'a' through 'z'. 

\b Matches a word boundary, that is, the position between a word 
and a space. For example, 'er\b' matches the 'er' in "never" but 
not the 'er' in "verb". 

\B Matches a nonword boundary. 'er\B' matches the 'er' in "verb" 
but not the 'er' in "never". 

\cx Matches the control character indicated by x. For example, \cM 
matches a Control-M or carriage return character. The value of x 
must be in the range of A-Z or a-z. If not, c is assumed to be a 
literal 'c' character. 

\d Matches a digit character. Equivalent to [0-9]. 

\D Matches a nondigit character. Equivalent to [^0-9]. 

\f Matches a form-feed character. Equivalent to \x0c and \cL.

\n Matches a newline character. Equivalent to \x0a and \cJ.

\r Matches a carriage return character. Equivalent to \x0d and 
\cM.

Table G–7 (Cont.) Metacharacters for Regular Expressions

Character Description



Regular Expressions

Oracle BAM ICommand Operations and File Formats G-21

\s Matches any white space character including space, tab, 
form-feed, and so on. Equivalent to [ \f\n\r\t\v].

\S Matches any non-white space character. Equivalent to [^ 
\f\n\r\t\v]. 

\t Matches a tab character. Equivalent to \x09 and \cI.

\v Matches a vertical tab character. Equivalent to \x0b and \cK.

\w Matches any word character including underscore. Equivalent to 
'[A-Za-z0-9_]'. 

\W Matches any nonword character. Equivalent to '[^A-Za-z0-9_]'. 

\xn Matches n, where n is a hexadecimal escape value. Hexadecimal 
escape values must be exactly two digits long. For example, 
'\x41' matches "A". '\x041' is equivalent to '\x04' & "1". Allows 
ASCII codes to be used in regular expressions.

\num Matches num, where num is a positive integer. A reference back 
to captured matches. For example, '(.)\1' matches two 
consecutive identical characters. 

\n Identifies either an octal escape value or a backreference. If \n is 
preceded by at least n captured subexpressions, n is a 
backreference. Otherwise, n is an octal escape value if n is an 
octal digit (0-7).

\nm Identifies either an octal escape value or a backreference. If \nm 
is preceded by at least nm captured subexpressions, nm is a 
backreference. If \nm is preceded by at least n captures, n is a 
backreference followed by literal m. If neither of the preceding 
conditions exists, \nm matches octal escape value nm when n 
and m are octal digits (0-7).

\nml Matches octal escape value nml when n is an octal digit (0-3) and 
m and l are octal digits (0-7).

\un Matches n, where n is a Unicode character expressed as four 
hexadecimal digits. For example, \u00A9 matches the copyright 
symbol (©).

Table G–7 (Cont.) Metacharacters for Regular Expressions

Character Description



Regular Expressions

G-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



H

Normalized Message Properties H-1

HNormalized Message Properties

This appendix describes normalized message properties.

This appendix includes the following sections:

■ Section H.1, "Introduction to Normalized Messages"

■ Section H.2, "Oracle BPEL Process Manager Properties"

■ Section H.3, "Oracle Web Services Addressing Properties"

■ Section H.4, "Manipulating Normalized Message Properties with bpelx 
Extensions"

H.1 Introduction to Normalized Messages
Header manipulation and propagation is a key business integration messaging 
requirement. Oracle BPEL Process Manager, Oracle Mediator, Oracle JCA adapters, 
and Oracle B2B rely extensively on header support to solve customers’ integration 
needs. For example, you can preserve a file name from the source directory to the 
target directory by propagating it through message headers. In Oracle BPEL Process 
Manager and Oracle Mediator, you can access, manipulate, and set headers with 
varying degrees of user interface support. 

Figure H–1 provides details.

Figure H–1 Properties Tab for Normalized Messages Header Properties

A normalized message is simplified to have only two parts, properties and payload.



Oracle BPEL Process Manager Properties

H-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Typically, properties are name-value pairs of scalar types. To fit the existing complex 
headers into properties, properties are flattened into scalar types.

The user experience is simplified while manipulating headers in design time, because 
the complex properties are predetermined. In the Mediator Editor or Oracle BPEL 
Designer, you can manipulate the headers with some reserved key words.

However, this method does not address the properties that are dynamically generated 
based on your input. Based on your choice, the header definitions are defined. These 
definitions are not predetermined and therefore cannot be accounted for in the list of 
predetermined property definitions. You cannot design header manipulation of the 
dynamic properties before they are defined. To address this limitation, you must 
generate all the necessary services (composite entry points) and references. This 
restriction applies to services that are expected to generate dynamic properties. Once 
dynamic properties are generated, they must be stored for each composite. Only then 
can you manipulate the dynamic properties in the Mediator Editor or Oracle BPEL 
Designer.

For more information on normalized message properties, see Oracle Fusion Middleware 
User's Guide for Technology Adapters and Oracle Fusion Middleware User's Guide for Oracle 
B2B.

H.2 Oracle BPEL Process Manager Properties
Table H–1 lists all the predetermined properties of a normalized message for Oracle 
BPEL Process Manager.

Table H–1 Properties for Oracle BPEL Process Manager

Property Name
Propagatable 
(Yes/No)

Direction 
(Inbound 
/Outbound)

Data 
Type

Range of 
Valid Values Description

bpel.metadata Yes Both String Any string, 
size limit: 
1000

This contains extra 
information with 
which you want to 
associate the BPEL 
instance. Whatever 
was passed in is stored 
in the metadata 
column of the cube_
instance table.

bpel.priority Yes Inbound String 
that can 
be read 
into an 
integer

(1-10). 1 
being the 
highest 
priority

Goes into the cube_
instance priority 
column. Used by the 
system to prioritize.

bpel.title No Inbound String Any string, 
size limit: 
100

Goes into the title 
column of cube_
instance table.



Oracle Web Services Addressing Properties

Normalized Message Properties H-3

H.3 Oracle Web Services Addressing Properties
Table H–2 lists all the predetermined properties of a normalized message for Web 
Services Addressing (WS-Addressing).

bpel.instanceIndex1 No Inbound String Any string, 
size limit: 
100

This goes into the ci_
indexes table (extra 
index for the cube_
instance).

bpel.instanceIndex2 No Inbound String Any string, 
size limit: 
100

This goes into the ci_
indexes table (extra 
index for cube_
instance).

bpel.instanceIndex3 No Inbound String Any string, 
size limit: 
100

This goes into the ci_
indexes table (extra 
index for the cube_
instance).

Table H–2 Properties for Oracle Web Services Addressing

Property Name
Propagatable 
(Yes/No)

Direction 
(Inbound 
/Outbound) 

Data 
Type

Range of 
Valid Values Description

wsa.messageId No Both String URI format This property specifies 
the identifier for the 
message and the 
endpoint to which 
replies to this message 
should be sent as an 
endpoint reference.

wsa.relatesTo No Both String URI format This optional 
(repeating) element 
information item 
contributes one 
abstract relationship 
property value, in the 
form of an (IRI, 
IRI) pair. The content 
of this element (of type 
xs:anyURI) conveys 
the message ID of the 
related message.

wsa.replyToAddress No Both String URI format Is a contract between 
two components 
communicating 
asynchronously. 

Table H–1 (Cont.) Properties for Oracle BPEL Process Manager

Property Name
Propagatable 
(Yes/No)

Direction 
(Inbound 
/Outbound)

Data 
Type

Range of 
Valid Values Description



Manipulating Normalized Message Properties with bpelx Extensions

H-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

H.4 Manipulating Normalized Message Properties with bpelx Extensions
Oracle BPEL Process Manager uses bpelx extensions to manipulate normalized 
message properties in message exchange operations. The syntax is different based on 
whether your BPEL project supports BPEL version 1.1 or 2.0.

H.4.1 BPEL 1.1 bpelx Extensions Syntax
Example H–1 shows bpelx extensions syntax in BPEL 1.1.

Example H–1 bpelx Extensions Syntax in Normalized Message Headers in BPEL 1.1

<invoke ...>
  <bpelx:inputProperty name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
  <bpelx:outputProperty name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*

wsa.replyToPortType No Both QName Any QName This value is passed to 
the web service to 
configure the 
portType on the 
service's callback. It is 
translated to the 
WS-Addressing 
callback endpoint 
reference's PortType 
element.

wsa.replyToService No Both QName Any QName This value is passed to 
the web service to 
configure service on 
the service's callback. It 
is translated to the 
WS-Addressing 
callback endpoint 
reference's 
ServiceName 
element.

wsa.action No Both String URI format This required element 
(whose content is of 
type xs:anyURI) 
conveys the value of 
the action property.

wsa.to No Both String URI format This optional element 
(whose content is of 
type xs:anyURI) 
provides the value for 
the destination 
property. If this 
element is not present, 
then the value of the 
(destination) property 
is 
http://www.w3.org
/2005/08/addressi
ng/anonymous.

Table H–2 (Cont.) Properties for Oracle Web Services Addressing

Property Name
Propagatable 
(Yes/No)

Direction 
(Inbound 
/Outbound) 

Data 
Type

Range of 
Valid Values Description



Manipulating Normalized Message Properties with bpelx Extensions

Normalized Message Properties H-5

</invoke>

<receive ...>
  <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</receive>

<onMessage...>
  <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</onMessage>

<reply ...>
  <bpelx:property name="NCName" expression="string" variable="NCName"
 part="NCName" query="string"/>*
</reply>  

H.4.2 BPEL 2.0 bpelx Extensions Syntax
Example H–2 shows bpelx extensions syntax in BPEL 2.0.

Example H–2 bpelx Extensions Syntax in Normalized Message Headers in BPEL 2.0

<invoke ...>
  <bpelx:fromProperties>?
    <bpelx:fromProperty name="NCName" .../>+
  </bpelx:fromProperties>
  <bpelx:toProperties>?
    <bpelx:toProperty name="NCName" .../>+
  </bpelx:toProperties>
</invoke>

<receive ...>
  <bpelx:fromProperties>?
    <bpelx:fromProperty name="NCName" .../>+
  </bpelx:toProperties>
</receive>

<onEvent ...>
  <bpelx:fromProperties>?
    <bpelx:fromProperty name="NCName" .../>+
  </bpelx:fromProperties>
</onEvent>

<reply...>
  <bpelx:toProperties>?
    <bpelx:toProperty name="NCName" .../>+
  </bpelx:toProperties>
</reply>

<reply ...>
  <bpelx:toProperties>
    <bpelx:toProperty name="NCName" .../>
  </bpelx:toProperties>
</reply>

Note the following details:

■ The toProperty is a from-spec. This copies a value from the from-spec to the 
property of the given name.



Manipulating Normalized Message Properties with bpelx Extensions

H-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The fromProperty is a to-spec. This copies a value from the property to the 
to-spec.



I

Interfaces Implemented By Rules Dictionary Editor Task Flow I-1

IInterfaces Implemented By Rules Dictionary
Editor Task Flow

Oracle Business Rules Dictionary Editor Task Flow implements two interfaces when 
creating an ADF-based Web application. The interfaces are defined in the 
soaComposerTemplates.jar file.

This appendix includes the following sections:

■ Section I.1, "The MetadataDetails Interface"

■ Section I.2, "The NLSPreferences Interface"

I.1 The MetadataDetails Interface
The MetadataDetails interface is a part of the 
oracle.integration.console.metadata.model.share package and is 
defined in the soaComposerTemplates.jar file.

The MetadataDetails interface defines three methods, as shown in Example I–1:

Example I–1 MetadataDetails Interface

public interface MetadataDetails {
    /**
     * Retrieve the details of the metadata document
     * @return document in string format.
     */
    String getDocument();

    /**
     * Get related document.
     */
    String getRelatedDocument(final RelatedMetadataPath relatedPath);

    /**
     * Update the metadata document.
     * @param doc represents the updated document.
     */
    void setDocument(String doc) throws Exception;
}



The MetadataDetails Interface

I-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

I.1.1 The getDocument Method 
This method is used to retrieve the rules file in a string format. For doing this action, 
you must connect to the Oracle Metadata Repository (MDS) or a file system, and 
return the rules file in a string format. 

Example I–2 shows how to get the file from a local file system:

Example I–2 getDocument Method

private static final String RULES_FILE1 =
"file:///C:/scratch/<username>/system/mywork/linkedD/AutoAppProj/oracle/rules/cred
it/CreditRatingRules.rules";

   public String getDocument() {
        URL url = null;
        try {
            url = new URL(RULES_FILE1);
            return readFile(url);
        } catch (IOException e) {
            System.err.println(e);
        }
        return "";
    }

    private String readFile(URL dictURL) {
        InputStream is;
        try {
            is = dictURL.openStream();
        } catch (IOException e) {
            System.err.println(e);
            return "";
        }
        BufferedReader reader;
        try {
            reader = new BufferedReader(new InputStreamReader(is, "UTF-8"));
        } catch (UnsupportedEncodingException e) {
            System.err.println(e);
            return "";
        }
        String line = null;
        StringBuilder stringBuilder = new StringBuilder();
        String ls = System.getProperty("line.separator");
        try {
            while ((line = reader.readLine()) != null) {
                stringBuilder.append(line);
                stringBuilder.append(ls);
            }
        } catch (IOException e) {
            System.err.println(e);
            return "";
        } finally {
            try {
                reader.close();
            } catch (IOException e) {
                System.err.println(e);
            }
        }
        return stringBuilder.toString();
    }



The MetadataDetails Interface

Interfaces Implemented By Rules Dictionary Editor Task Flow I-3

I.1.2 The getRelatedDocument Method
This method is required when you work with linked dictionaries. You must connect to 
MDS, find the related dictionary file, and then return it in a string format. Example I–3 
shows how to find the path of the linked dictionaries that are stored within the 
../oracle/rules directory in a local file system:

Example I–3 getRelatedDocument Method

public String getRelatedDocument(RelatedMetadataPath relatedMetadataPath) {
        String currPath = RULES_FILE1.substring(0, RULES_
FILE1.indexOf("oracle/rules"));
        String relatedDoc = currPath + "oracle/rules/" + 
relatedMetadataPath.getValue();
       
        URL url = null;
        try {
            url = new URL(relatedDoc);
            return readFile(url);
        } catch (IOException e) {
            System.err.println(e);
        }
        return "";
    }

I.1.3 The setDocument Method
This method is used to store the rules file. It returns a String doc value, which is the 
name of the updated dictionary based on user edits performed by using Rules 
Dictionary Editor Task Flow. You must store the rules file in MDS or a file system. 
Example I–4 shows how to save the document in the local file system:

Example I–4 setDocument Method

public void setDocument(String string) {
        URL url = null;

        try {
            url = new URL(RULES_FILE1);
        } catch (MalformedURLException e) {
            System.err.println(e);
            return;
        }
        Writer writer = null;
        try {
            //os = new FileWriter(url.getPath());
            writer =
                    new OutputStreamWriter(new FileOutputStream(url.getPath()),
                    "UTF-8");
        } catch (FileNotFoundException e) {
            System.err.println(e);
            return;
        } catch (IOException e) {
            System.err.println(e);
            return;
        }
        try {
            writer.write(string);
        } catch (IOException e) {
            System.err.println(e);



The NLSPreferences Interface

I-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

        } finally {
            if (writer != null) {
                try {
                    writer.close();
                } catch (IOException ioe) {
                    System.err.println(ioe);
                }
            }
        }
    }

I.2 The NLSPreferences Interface
The NLSPrefrences interface defines four methods as shown in Example I–5:

Example I–5 NLSPreferences Interface

public interface NLSPreferences
{
   /**
    * Returns the locale to be used.
    **/
    Locale getLocale();

    /**
     * Return the timezone to be used.
     **/
    TimeZone getTimeZone();

    /**
     * Return the dateformat to be used.
     */
    String getDateFormat();

    /**
     * Return the time format to be used.
     */
    String getTimeFormat();
}

Example I–6 is a sample implementation of the NLSPreferences interface:

Example I–6 Sample Implementation of the NLSPreferences Interface

public class MyNLSPreferences implements NLSPreferences {
        private static final String DATE_STYLE = "yyyy-MM-dd";
        private static final String TIME_STYLE = "HH-mm-ss";

        public Locale getLocale() {
            return Locale.FRENCH;
        }

        public TimeZone getTimeZone() {
            return TimeZone.getTimeZone("America/Los_Angeles");
        }

        public String getDateFormat() {
            return DATE_STYLE;
        }



The NLSPreferences Interface

Interfaces Implemented By Rules Dictionary Editor Task Flow I-5

        public String getTimeFormat() {
            return TIME_STYLE;
        }
    }



The NLSPreferences Interface

I-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



J

Oracle User Messaging Service Applications J-1

JOracle User Messaging Service Applications

This appendix describes how to create your own Oracle User Messaging Service 
applications using the procedures and code provided.

This appendix includes the following sections:

■ Section J.1, "Send Message to User Specified Channel"

■ Section J.2, "Send Email with Attachments"

J.1  Send Message to User Specified Channel 
This chapter describes how to build and run the Send Message to User Specified 
Channel application provided with Oracle User Messaging Service. 

This section contains the following subsections:

■ Section J.1.1, "Overview"

■ Section J.1.2, "Installing and Configuring SOA and User Messaging Service"

■ Section J.1.3, "Building the Sample"

■ Section J.1.4, "Creating a New Application Server Connection"

■ Section J.1.5, "Deploying the Project"

■ Section J.1.6, "Configuring User Messaging Preferences"

■ Section J.1.7, "Testing the Sample"

Note: To learn more about the code samples for Oracle User 
Messaging Service, or to run the samples yourself, refer to the Oracle 
Technology Network code sample page at the following URL: 
https://soasamples.samplecode.oracle.com/

Once you have navigated to this page, you can find code samples for 
Oracle User Messaging Service by entering the search term "UMS" and 
clicking Search.

Note: To learn about the architecture and components of Oracle User 
Messaging Service, see Oracle Fusion Middleware Getting Started with 
Oracle SOA Suite.



Send Message to User Specified Channel

J-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

J.1.1 Overview
The "Send Message to User Specified Channel" application demonstrates a BPEL 
process that allows a message to be sent to a user through a messaging channel 
specified in User Messaging Preferences. After you have configured a device and 
messaging channel addresses for each supported channel and the default device, 
Oracle User Messaging Service routes the message to the user based on the preferred 
channel setting that you configured.

J.1.1.1 Provided Files
The following files are included in the application:

■ SendMessage.pdf – this document.

■ Project – the directory containing Oracle JDeveloper project files.

■ Readme.txt.

■ Release notes

J.1.2 Installing and Configuring SOA and User Messaging Service
The installation of SOA and User Messaging Service has already been performed on 
your hosted instance, and the sample users have already been seeded. Perform the 
following steps to enable notifications in soa-infra, if not already done:

1. Using Enterprise Manager, go to the SOA Infrastructure menu, and select SOA 
Administration > Workflow Notification Properties, and set Notification Mode 
to ALL.

2. Configure the User Messaging drivers if required as described in "Configuring 
Drivers" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite 
and Oracle BPM Suite.

3. Set the email address for user weblogic by using the JXplorer LDAP browser. 
Refer to "Updating Addresses in Your LDAP User Profile".

4. Restart the server.

J.1.2.1 Updating Addresses in Your LDAP User Profile
Perform the following steps to set the email address for user weblogic by using the 
JXplorer LDAP browser:

J.1.2.1.1 Installing  Download and install JXplorer from 
http://www.jxplorer.org.

J.1.2.1.2 Connecting  1.Set the embedded LDAP server admin password as follows:

■ Login to the Oracle WebLogic Server Administration Console.

■ Click the domain name link > Security > Embedded LDAP. 

■ Enter a new Credential and Confirm Credential (for example, weblogic).

■ Click Save. 

2. Connect from JXplorer by specifying the fields in Table J–1:



Send Message to User Specified Channel

Oracle User Messaging Service Applications J-3

J.1.2.1.3 Setting User Messaging Device Addresses in LDAP  The following example uses 
the user weblogic. You may create and use additional users.

1. Expand the LDAP tree as follows: domain > myrealm > people > weblogic. 

2. Click the user entry.

3. Select the HTML view tab on the right. 

4. Enter the necessary Email Address and Mobile Phone Number.

5. Click Submit.

J.1.3 Building the Sample
Performing the following procedure of building the sample from scratch enables you 
to learn how to add messaging to your SOA Composite Applications, and use User 
Messaging Preferences.

1. Open Oracle JDeveloper 11g.

2. Create a new application by selecting File, New, General, Applications, and SOA 
Application. Click OK.

3. Enter the Application Name and click Next (Figure J–1).

Figure J–1 Creating a New Application and Project (1 of 3)

4. Enter the name for the project and click Next (Figure J–2).

Table J–1 JXplorer Connection Fields

Field Value

Host Oracle WebLogic Administration 
Server hostname

Port Oracle WebLogic Administration 
Server port

Protocol LDAP v3

Security Level User + Password

User DN cn=Admin

Password password



Send Message to User Specified Channel

J-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure J–2 Creating a New Application and Project (2 of 3)

5. Select the Composite With BPEL composite template (Figure J–3). Click Finish.

Figure J–3 Creating a New Application and Project (3 of 3)

6. In the Create BPEL Process dialog, enter the BPEL process name as SendMessage 
(Figure J–4). Click OK.

Figure J–4 Creating the BPEL Process

7. Verify that Expose as a SOAP service is checked. Click OK.

8. You have now created an empty and default BPEL application (Figure J–5).



Send Message to User Specified Channel

Oracle User Messaging Service Applications J-5

In the Oracle JDeveloper main window you can view the following components of 
the application under the Composite.xml tab.

■ The left box is the definition of a web service client that is used to initiate an 
application. 

■ The middle box is a BPEL process that creates and formats the message and 
calls the messaging service. 

Figure J–5 Empty and Default BPEL Application

9. Expand the xsd folder in the Application Navigator and open SendMessage.xsd 
by double-clicking it.

10. Click the Source tab (Figure J–6).

11. Perform the following modifications to the inputs of this BPEL application:

Note: You later create the messaging service resource that is used to 
send the message when you create the User Notification BPEL process 
(steps 13 - 19).



Send Message to User Specified Channel

J-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

In the generated file, SendMessage.xsd, in the xsd folder in the Application 
Navigator under projects, the following element definition is created by default: 

<element name="input" type="string"/>

This XSD element defines the input for the BPEL process.

Select the Source tab (Figure J–6), and replace the line above with the following 
three lines:

<element name="to" type="string"/>
<element name="subject" type="string"/>
<element name="body" type="string"/>

Figure J–6 Modifying the Inputs in the SendMessage.xsd File

12. From the File menu, select Save All.

13. View the expanded process element (Figure J–7).

Figure J–7 Viewing the Expanded Process Element



Send Message to User Specified Channel

Oracle User Messaging Service Applications J-7

14. To enable messaging in this process, drag and drop User Notification from Oracle 
Extensions located in the Component Palette between the receiveInput and 
callbackClient activities (Figure J–8).

Figure J–8 Dragging and Dropping User Notification Icon from the Component Palette

The User Notification activity appears (Figure J–9).

Figure J–9 User Notification Activity Before Configuring the Inputs

15. Click the XPath Expression Builder icon to the right of the To: input box.

16. Modify the expression for the To recipient, as follows:

■ In the BPEL Variables pane, select Variables, inputVariable, Payload, 
clientprocess, and client:to (Figure J–10).

■ Click Insert Into Expression.

■ Click OK.



Send Message to User Specified Channel

J-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure J–10 Defining the Recipient ("to") Expression

17. Click the XPath Expression Builder icon to the right of the subject: input box.

18. Modify the expression for the subject as follows:

■ In the BPEL Variables pane, select Variables, InputVariable, Payload, 
clientprocess, and client:subject (Figure J–11).

■ Click Insert Into Expression.

■ Click OK.

Figure J–11 Defining the Subject Expression

19. Click the XPath Expression Builder icon to the right of the Notification Message: 
input box.

20. Modify the expression for the notification message as follows:



Send Message to User Specified Channel

Oracle User Messaging Service Applications J-9

■ In the BPEL Variables pane, select Variables, InputVariable, Payload, 
clientprocess, and client:body (Figure J–12).

■ Click Insert Into Expression.

Figure J–12 Defining the Body Expression

■ Click OK.

■ Click Apply and then OK to apply the changes (Figure J–13).

Figure J–13 Confirming the Changes to the Inputs



Send Message to User Specified Channel

J-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The changes to the inputs are saved and the configuration of the User 
Notification Activity is complete. You can now see the User Notification 
activity in the BPEL application (Figure J–14). The SOA Composite is 
complete.

Figure J–14 User Notification Activity After Configuration of Inputs

J.1.4 Creating a New Application Server Connection
Perform the following steps to create an Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and 
selecting New, Connections, and Application Server Connection (Figure J–15).

Figure J–15 New Application Server Connection

2. Name the connection SOA_server and click Next (Figure J–16).

3. Select WebLogic 10.3 as the Connection Type.



Send Message to User Specified Channel

Oracle User Messaging Service Applications J-11

Figure J–16 New Application Server Connection

4. Enter the authentication information. The typical value for username is 
weblogic.

5. In the Connection dialog, enter the hostname, port and SSL port for the SOA 
admin server, and enter the name of the domain for the Oracle WebLogic Server 
Domain. 

6. Click Next.

7. In the Test dialog, click Test Connection. 

8. Verify that the message Success! appears.

The application server connection has been created.

J.1.5 Deploying the Project
Perform the following steps to deploy the project:

1. In the Application Navigator, right-click the SOA project.

2. Select Deploy > project_name.

The value for project_name is the SOA project name.

The Deployment Action page of the Deploy Project_Name wizard appears.

3. Select Deploy to Application Server.

4. Click Next.

5. Select an existing connection to an application server from the list.

6. Click Finish.

7. Verify that the message Build Successful appears in the log.

8. Enter the default revision and click OK.

9. Verify that the message Deployment Finished appears in the deployment log 
(Figure J–17).



Send Message to User Specified Channel

J-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure J–17 Verifying that the Deployment is Successful

You have successfully deployed the application. 

Before you can run the sample you must configure any additional drivers in 
Oracle User Messaging Service and configure a default device for the user 
receiving the message in User Messaging Preferences, as described in the 
following sections.

J.1.6 Configuring User Messaging Preferences
For users to receive the notifications, they must register the devices that they use to 
access messages through User Messaging Preferences. Perform the following steps:

1. Log in to the User Messaging Preferences application at one of the following 
URLs: 

■ Directly at http://server:port/sdpmessaging/userprefs-ui

■ Through the Worklist application’s Preferences > Notification tab at: 
http://server:port/integration/worklistapp

The User Messaging Preferences application appears.

2. Click the Messaging Channels tab (Figure J–18).

Note: Refer to Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite for more information. 



Send Message to User Specified Channel

Oracle User Messaging Service Applications J-13

Figure J–18 Messaging Channels Tab

You are prompted for login credentials.

3. In the Messaging Channels tab, select a channel.

4. Set a channel as the default by expanding the device folder, and then clicking Set 
as Default adjacent to the selected channel. 

A check mark appears next to the selected channel, designating it as the default 
means of receiving notifications. All messages sent to that user are sent to that 
channel.

J.1.7 Testing the Sample
The following steps describe how to perform a test message transmission through 
Enterprise Manager.

Perform the following steps to run and test the sample:

1. Open a web browser window and login to Enterprise Manager for the SOA 
domain. For example, http://host:port/em.

2. In Oracle Enterprise Manager, expand the SOA folder in the navigation tree, and 
click the deployed SendMessageProj composite application. Click the Test button 
to launch the test client page.

3. In the Input Arguments section provide the input values for invoking 
SendMessageProj. 

Enter the following values:

■ to: weblogic (the user)

■ subject: notification test (the subject)

■ body: the message content

4. Click Test Web Service.

J.1.7.1 Verifying the Execution of Sending the Email
Log in to the Human Workflow Engine. Verify the outgoing notifications and their 
statuses from the Notification Manager tab. (Figure J–19).



Send Email with Attachments

J-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure J–19 Viewing Outgoing Notifications

J.2  Send Email with Attachments
This section describes how to build and run the Send Email with Attachments 
application provided with Oracle User Messaging Service. 

This section contains the following subsections:

■ Section J.2.1, "Overview"

■ Section J.2.2, "Installing and Configuring SOA and User Messaging Service"

■ Section J.2.3, "Running the Pre-Built Sample"

■ Section J.2.4, "Testing the Sample"

■ Section J.2.5, "Building the Sample"

■ Section J.2.6, "Creating a New Application Server Connection"

J.2.1 Overview
The "Send Email With Attachment" application demonstrates a BPEL process that 
sends an email with an attached file. 

A BPEL process looks up a user’s email address from the identity store, reads a file 
from the file system, creates email content and then sends an email to the 
user.Section J.2.5, "Building the Sample" shows you how to add an email with 
attachments to your SOA composite application, allowing your applications to be 
enabled with messaging.If you want to model the application from scratch, go to the 
section titled Building the Sample. Or, you can directly use the pre-built project 
provided with this tutorial.

Note: To learn about the architecture and components of Oracle User 
Messaging Service, see Oracle Fusion Middleware Getting Started with 
Oracle SOA Suite.



Send Email with Attachments

Oracle User Messaging Service Applications J-15

Before you run the pre-built sample or build the application from scratch, you must 
install and configure the server as described in Section J.2.2, "Installing and 
Configuring SOA and User Messaging Service". By default, soa-infra does not send out 
notifications. The following steps describe installing and configuring the email drivers 
needed to communicate with the email server. 

J.2.1.1 Provided Files
The following files are included in the sample application:

■ ns_sendemail.pdf – this document.

■ Project – the directory containing Oracle JDeveloper project files.

■ Readme.txt. 

■ Release notes

J.2.2 Installing and Configuring SOA and User Messaging Service
The installation of SOA and User Messaging Service has already been performed on 
your hosted instance, and the sample user, weblogic, has already been created. 
Perform the following steps to enable notifications in soa-infra, if not already done:

1. Using Enterprise Manager, go to the SOA Infrastructure menu, and select SOA 
Administration > Workflow Notification Properties, and set Notification Mode 
to ALL.

2. Configure the User Messaging drivers if required as described in "Configuring 
Drivers" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite 
and Oracle BPM Suite.

3. Set the email address for user weblogic by using the JXplorer LDAP browser. 
Refer to "Updating Addresses in Your LDAP User Profile".

4. Restart the server.

J.2.2.1 Updating Addresses in Your LDAP User Profile
Perform the following steps to set the email address for user weblogic by using the 
JXplorer LDAP browser:

J.2.2.1.1 Installing  Download and install JXplorer from http://www.jxplorer.org.

J.2.2.1.2 Connecting  1.Set the embedded LDAP server admin password as follows:

■ Login to the Oracle WebLogic Server Administration Console.

■ Click the domain name link > Security > Embedded LDAP. 

■ Enter a new Credential and Confirm Credential (for example, weblogic).

■ Click Save. 

2. Connect from JXplorer by specifying the fields in Table J–2:

Table J–2 JXplorer Connection Fields

Field Value

Host Oracle WebLogic Administration 
Server hostname

Port Oracle WebLogic Administration 
Server port



Send Email with Attachments

J-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

J.2.2.1.3 Setting User Messaging Device Addresses in LDAP  The following example uses 
the user weblogic. You may create and use additional users.

1. Expand the LDAP tree as follows: domain > myrealm > people > weblogic. 

2. Click the user entry.

3. Select the HTML view tab on the right. 

4. Enter the necessary Email Address and Mobile Phone Number.

5. Click Submit.

J.2.3 Running the Pre-Built Sample
Perform the following steps to run and deploy the prebuilt sample application:

1. Open SendEmailWithAttachmentsApp.jws (contained in the .zip file) in Oracle 
JDeveloper.

In the Oracle JDeveloper main window you can view the following components of 
the sample application under the Composite.xml tab.

Figure J–20 Oracle JDeveloper Main Window

■ The left box is the definition of a web service client that is used to initiate an 
application. 

■ The middle box is a BPEL process that creates and formats the message and 
calls the messaging service. 

■ The right box is the messaging service resource that is used to send the 
message. 

Protocol LDAP v3

Security Level User + Password

User DN cn=Admin

Password password

Table J–2 (Cont.) JXplorer Connection Fields

Field Value



Send Email with Attachments

Oracle User Messaging Service Applications J-17

2. Create an Application Server Connection by right-clicking the project in the 
navigation pane and selecting New. Follow the instructions in Section J.2.6, 
"Creating a New Application Server Connection."

3. Deploy the project as follows:

1. In the Application Navigator, right-click the SOA project.

2. Select Deploy > project_name.

The value for project_name is the SOA project name.

The Deployment Action page of the Deploy Project_Name wizard appears.

3. Select Deploy to Application Server.

4. Click Next.

5. Select an existing connection to an application server from the list.

6. Click Finish.

4. Verify that the message Build Successful appears in the log.

5. Enter the default revision and click OK.

6. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application. 

Before you can run the sample you must configure any additional drivers in 
Oracle User Messaging Service and configure a default device for the user 
receiving the message in User Messaging Preferences, as described in the 
following sections.

J.2.4 Testing the Sample
The following steps describe how to perform a test message transmission through 
Enterprise Manager.

Perform the following steps to run and test the sample:

1. Open a web browser window and login to Enterprise Manager for the SOA 
domain. For example, http://host:port/em.

2. In Enterprise Manager, expand the SOA folder in the navigation tree, and click the 
deployed SendEmailWithAttachmentsProj composite application. Click the Test 
button to launch the test client page.

3. In the Input Arguments section provide the input values for invoking 
SendEmailWithAttachmentsProj. 

Enter the following values:

■ to: weblogic (the user)

■ subject: notification test (the subject)

■ body: the message content

■ attachmentName: the name of the file being attached, including extension.

■ attachmentMimeType: for example, image/gif. 

Note: Refer to Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite for more information. 



Send Email with Attachments

J-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To send binary files such as PDF, DOC, GIF, or JPEG files, the following values 
can be used for the attachmentMimeType entry: 

– file-name.doc – attachmentMimeType: application/msword

– file-name.pdf – attachmentMimeType: application/pdf

– file-name.jpg – attachmentMimeType: image/jpeg

– file-name.gif – attachmentMimeType: image/gif

To send text files such as HTML, XML, or plain text files, the following values 
can be used for the attachmentMimeType entry: 

– file-name.txt – attachmentMimeType: text/plain

– file-name.html – attachmentMimeType: text/html

■ attachmentURI: the URI for the attachment

4. Click Test Web Service.

J.2.4.1 Verifying the Execution
Check the weblogic email account. It should have received an email with attachment.

J.2.5 Building the Sample
Performing the following procedure of building the sample from scratch enables you 
to learn how to add messaging to your SOA Composite Applications, and use User 
Messaging Preferences.

1. Open Oracle JDeveloper 11g.

2. Create a new application by selecting File, New, Applications, and SOA 
Application. Click OK.

3. Enter the Application Name and click Next (Figure J–21).

Figure J–21 Creating a New Application and Project (1 of 3)

4. Enter the name for the project and click Next (Figure J–22).

Note: For text files that contain non-ASCII characters that are 
encoded in UTF-8, the attachmentMimeType must specify the charset 
attribute, for example, "text/plain;charset=UTF-8". Also, the content 
itself must be sent using base64 encoding; this procedure is described 
in "Sending Text Content with base64 Encoding".



Send Email with Attachments

Oracle User Messaging Service Applications J-19

Figure J–22 Creating a New Application and Project (2 of 3)

5. Select the Composite With BPEL Process composite template (Figure J–23). Click 
Finish.

Figure J–23 Creating a New Application and Project (3 of 3)

6. In the Create BPEL Process dialog, enter the BPEL process name as 
SendEmailWithAttachments (Figure J–24). Click OK.

Figure J–24 Creating the BPEL Process

7. Verify that Expose as a SOAP service is checked. Click OK.

8. You have now created an empty and default BPEL application.

In the Oracle JDeveloper main window you can view the following components of 
the sample application under the Composite.xml tab.



Send Email with Attachments

J-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The left box is the definition of a web service client that is used to initiate an 
application. 

■ The middle box is a BPEL process that creates and formats the message and 
calls the messaging service. 

9. Expand the xsd folder in the Application Navigator and open 
SendEmailWithAttachments.xsd by double-clicking it (Figure J–25).

Figure J–25 Accessing the SendEmailWithAttachments.xsd File

10. Click the Source tab (Figure J–25).

11. Perform the following modifications to the inputs of this BPEL application:

In the generated file, SendEmailWithAttachments.xsd, in the xsd folder in the 
Application Navigator under projects, the following element definition is created 
by default: 

<element name="process">
  <complexType>
    <sequence>
      <element name="input" type="string"/>
    </sequence>
  </complexType>
</element>

Select the Source tab, and replace the lines above with the following:

<element name="process">
<complexType>
     <sequence>
       <element name="to" type="string"/>
       <element name="subject" type="string"/>
       <element name="body" type="string"/>
       <element name="attachmentName" type="string"/>
       <element name="attachmentMimeType" type="string"/>
       <element name="attachmentURI" type="string"/>
     </sequence>
   </complexType>

Note: You later create the messaging service resource that is used to 
send the message when you create the User Notification BPEL process 
(steps 13-19).



Send Email with Attachments

Oracle User Messaging Service Applications J-21

 </element>

This xsd element defines the input for the BPEL process.

Figure J–26 Editing Email

12. Save the project.

13. Select the SendEmailWithAttachments.bpel editor screen.

14. Drag and drop an Email activity from Oracle Extensions located in the 
Component Palette between the receiveInput and callbackClient activities 
(Figure J–26).

15. In the Edit Email window, leave the From account as Default.



Send Email with Attachments

J-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure J–27 Edit Email Window

16. To create the expression for To, select the Expression Builder (the second icon, 
Figure J–28) and perform the following steps: 

■ Select Identity Service Functions from the functions dropdown list.

■ Select the getUserProperty() function and select Insert into Expression. 

■ Under BPEL variables select Variables > Process > Variables >inputVariable
 > payload > client:process > client:to. 

■ Click Insert into Expression.

■ Type the string mail manually. 

■ Correct the parenthesis so they are matched.

■ Click OK.

This expression (Figure J–28) takes the data from the web service and maps it to 
the business email of the local SOA user.



Send Email with Attachments

Oracle User Messaging Service Applications J-23

Figure J–28 Expression Builder for the To Path

The expression should appear as follows:

ids:getUserProperty(  bpws:getVariableData('inputVariable','payload', 
'/client:process/client:to'),'mail')

17. For Subject, select the Expression builder. Select getVariableData from BPEL 
Extension Functions and click Insert Into Expression. 

18. Under BPEL variables select Variables > Process > Variables >inputVariable
 > payload > client:process > client:subject. 

The expression should appear as follows:

bpws:getVariableData( 'inputVariable', 'payload','/client:process/ 
client:subject')

19. For Body, select the Expression Builder. Select getVariableData from BPEL 
Extension Functions and click Insert Into Expression. 

20. Under BPEL variables select Variables > Process > Variables >inputVariable
 > payload > client:process > client:body. 

The expression should appear as follows:

bpws:getVariableData('inputVariable','payload','/client:process/client:body')

21. In the Edit Email dialog (Figure J–29), select the Attachments tab and use the add 
icon to add a specified number of attachments. 

When an email has multiple parts, the attachment count includes the body that is 
set with the Wizard above. The body specified by the Wizard above is set as the 
first body part. 

For example, to represent a multipart mail with one (1) attached file, specify two 
body parts. When there is one attachment, specify one body part.



Send Email with Attachments

J-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure J–29 Edit Email Window

22. In the Attachments tab, set the attachments:

Each attachment has three elements: name, MIME type, and value. All three 
elements must be set for each attachment. 

1. Click the Attachments tab.

2. Click the Add icon to add as many attachments as you require. (Note that the 
number of attachments does not need to include the body part.)

3. In the Name field, change the name or accept the default value of 
Attachmentnumber.

4. In the Mime Type field, click the Browse icon to invoke the Expression 
Builder dialog for adding MIME type contents.

5. When complete, click OK to return to the Attachments tab.

6. In the Value field, click the Browse icon to invoke the Expression Builder 
dialog for adding the contents of the attachment.

7. When complete, click OK to return to the Attachments tab.

The BPEL fragment with an assign activity with multiple copy rules is 
generated. One of the copy rules copies the attachment.

8. Click OK.

To view the default copy rules that were generated, and create new copy rules to 
transform the data: 

1. Expand the Email node by selecting the plus sign icon (Figure J–30).



Send Email with Attachments

Oracle User Messaging Service Applications J-25

Figure J–30 Expanding the Email Node

2. Double-click the EmailParamsAssign node (Figure J–31).



Send Email with Attachments

J-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure J–31 EmailParamsAssign Node

3. Insert a copy rule after the second attachment’s attachmentMimeType. Under 
Variables select Process > Variables >inputVariable > payload > 
client:process > client:attachmentMimeType. 

Ensure that you select Insert New Rule After, and enter the To XPath: as 
shown below:

From: /client:process/client:attachmentMimeType 

To: /EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/
ns1:BodyPart[2]/ns1:MimeType
  

4. Click Apply.

5. Insert a copy rule after the second attachment’s attachmentName. Under 
Variables select Process > Variables >inputVariable > payload > 
client:process > client:attachmentName. 

6. Enter the To XPath: as shown below:

From: /client:process/client:attachmentName 

To: /EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart
/ns1:BodyPart[2]/ns1:BodyPartName 

7. Click Apply.

8. Insert a copy rule after the second attachment’s body. Under Variables select 
Process > Variables >inputVariable > payload > client:process > client:body. 

9. Edit the To XPath: as shown below:

From: ora:readFile(bpws:getVariableData('inputVariable','payload','/client:
process/client:attachmentURI')) 



Send Email with Attachments

Oracle User Messaging Service Applications J-27

To:
/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/
ns1:BodyPart[2]/ns1:ContentBody

10. Click Apply.

11. Click OK in the Edit Assign dialog.

12. Save the project.

The Process Modeling procedure is complete. You can use the information in this 
procedure to add notifications with binary attachments to your SOA composite 
application. 

J.2.5.1 Sending Text Content with base64 Encoding
To send text file attachments with non-ASCII characters (such as UTF-8 encoded), you 
must send the text content with base64 encoding. Perform the following additional 
steps:

1. Click the BPEL source editor and add the following to the appropriate Body Part 
in the multipart content (look for correct <BodyPart> tag within the 
<MultiPart>): 

<ContentEncoding 
     xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>

Example J–1 Adding the ContentEncoding tag to MultiPart

<copy xml:id="id33">
   <from xml:id="id31">
      <Content xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
         <MimeType xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"> 
            multipart/mixed</MimeType>
         <ContentBody xmlns="http://xmlns.oracle.com/ias/pcbpel/ 
            NotificationService">
            <MultiPart xmlns="http://xmlns.oracle.com/ias/pcbpel/
            NotificationService">
             <BodyPart xmlns="http://xmlns.oracle.com/ias/pcbpel/
               NotificationService">
                <MimeType xmlns="http://xmlns.oracle.com/ias/pcbpel/ 
                  NotificationService"/>
                <ContentBody xmlns="http://xmlns.oracle.com/ias/pcbpel/
                  NotificationService"/>
                <BodyPartName xmlns="http://xmlns.oracle.com/ias/pcbpel/
                  NotificationService"/>
             </BodyPart>
             <BodyPart xmlns="http://xmlns.oracle.com/ias/pcbpel/
                 NotificationService">
                <MimeType xmlns="http://xmlns.oracle.com/ias/pcbpel/
                   NotificationService"/>
                <ContentBody xmlns="http://xmlns.oracle.com/ias/pcbpel/
                   NotificationService"/>
             <BodyPartName xmlns="http://xmlns.oracle.com/ias/pcbpel/
                   NotificationService"/>
             <ContentEncoding xmlns="http://xmlns.oracle.com/ias/pcbpel/
                   NotificationService"/>  
             </BodyPart>
          </MultiPart>
       </ContentBody>
    </Content



Send Email with Attachments

J-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. In the BPEL design editor expand the Email activity node and double-click the 
"EmailParamsAssign" node.

3. Select the "+" icon to create a copy rule which copies the "base64" string to our 
attachment part.

4. Edit the XPath as shown below:

From:
Type-Expresion: string('base64')
 
To:
Type-Variable:
/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/ns1:Con
tentEncoding

Figure J–32 Editing Copy Rules (2)

5. Click OK. 

6. In the Assign window click Apply > OK.

7. Save the project.

You can now deploy and run the application as described in Section J.2.3, "Running the 
Pre-Built Sample."

J.2.6 Creating a New Application Server Connection
Perform the following steps to create an Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and 
selecting New, Connections, and Application Server Connection (Figure J–33).



Send Email with Attachments

Oracle User Messaging Service Applications J-29

Figure J–33 New Application Server Connection

2. Name the connection SOA_server and click Next (Figure J–34).

3. Select WebLogic 10.3 as the Connection Type.

Figure J–34 New Application Server Connection

4. Enter the authentication information. The typical value for username is 
weblogic.

5. On the Connection dialog, enter the hostname, port and SSL port for the SOA 
admin server, and enter the name of the domain for the Oracle WebLogic Server 
Domain. 

6. Click Next.

7. In the Test dialog, click Test Connection. 

8. Verify that the message Success! appears.

The application server connection has been created.



Send Email with Attachments

J-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



K

Oracle SOA Suite Properties Road Map K-1

KOracle SOA Suite Properties Road Map

This appendix provides an overview of Oracle SOA Suite design time and runtime 
configuration properties and provides references to documentation that describes how 
to configure these properties.

This appendix includes the following sections:

■ Section K.1, "Oracle BPEL Process Manager Deployment Descriptor Properties"

■ Section K.2, "Normalized Message Header Properties"

■ Section K.3, "SOA Composite Application Properties"

■ Section K.4, "Fault Policy and Adapter Rejected Message Properties"

■ Section K.5, "Oracle B2B System Properties"

■ Section K.6, "Oracle Enterprise Manager Fusion Middleware Control Console 
Property Pages"

■ Section K.7, "System MBean Browser Properties"

K.1 Oracle BPEL Process Manager Deployment Descriptor Properties
Deployment descriptors are BPEL process service component properties used at 
runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both. You set these 
properties during design time in the composite.xml file of the SOA composite 
application. The types of properties shown in Table K–1 can be set:

Table K–1 Properties for the configurations Deployment Descriptors

Property Name Description

completionPersistPolicy How to save instance data

disableAsserts Whether to disable assertions in BPEL 1.1 projects

globalTxMaxRetry The maximum number of retries for a remote fault

globalTxRetryInterval The time interval in milliseconds between retries for a remote fault

inMemoryOptimization In-memory optimization on the instances of a process

keepGlobalVariables Whether the server can keep global variable values in the instance store when 
the instance completes

oneWayDeliveryPolicy The persistence policy of the process in the delivery layer

sensorActionLocation The location of the sensor action XML file

sensorLocation The location of the sensor XML file



Normalized Message Header Properties

K-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information about available deployment descriptor properties, see 
Section C.1.1, "How to Define Deployment Descriptor Properties" and Chapter 12, 
"Transaction and Fault Propagation Semantics in BPEL Processes."

K.2 Normalized Message Header Properties
Header manipulation and propagation are key business integration messaging 
requirements. You can set normalized message header properties during design time 
in the Properties tab of receive activities, invoke activities, OnMessage branches of 
pick and (for BPEL 1.1) scope activities, and reply activities. You can set properties for 
the following components:

■ Oracle JCA adapters

■ Oracle BPEL Process Manager

■ Oracle Web Services Addressing

■ Oracle B2B

For more information, see Appendix H, "Normalized Message Properties."

K.2.1 Oracle JCA Adapter Message Header Properties
Oracle JCA adapters expose the underlying back-end operation-specific properties as 
header elements and allow for manipulation of these elements within a business 
process.

For more information about available Oracle JCA adapter message header properties, 
see the following guides:

■ Appendix A, "Oracle JCA Adapter Properties" of Oracle Fusion Middleware User's 
Guide for Technology Adapters for file, FTP, AQ, JMS, socket, database, and MQ 
Series properties

■ Oracle Fusion Middleware Adapter for Oracle Applications User's Guide for Oracle 
Applications adapter properties

K.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing Message 
Header Properties

Oracle BPEL Process Manager and Oracle Web Services Addressing rely extensively on 
header support to solve customers’ integration needs.

For more information about available Oracle BPEL Process Manager and Oracle Web 
Services Addressing message header properties, see Appendix H, "Normalized 
Message Properties."

transaction The transaction behavior of the BPEL instance for initiating calls

nonBlockingInvoke Whether to spawn a separate thread to do invocations so that the invoke activity 
does not block the instance

validateXML The enabling of message boundary validation

Table K–1 (Cont.) Properties for the configurations Deployment Descriptors

Property Name Description



SOA Composite Application Properties

Oracle SOA Suite Properties Road Map K-3

K.2.3 Oracle B2B Message Header Properties
In B2B, you can manipulate headers with reserved key words. 

For more information about available Oracle B2B message header properties, see 
Appendix C, “Back-End Applications Interface" of Oracle Fusion Middleware User's 
Guide for Oracle B2B.

K.3 SOA Composite Application Properties
While most updates you make to the composite.xml file are performed from within 
the dialogs of the SOA Composite Editor during design time, other properties must be 
added manually to this file from within Source view. Table K–2 lists these properties 
and provides references to documentation that describes how to configure these 
properties.

Table K–2 Oracle SOA Suite Properties

Property Description See...

endpointURI Specifies multiple partner link 
endpoint locations. This capability 
is useful for failover purposes if the 
first endpoint is down.

Section 8.2.2.8, "Multiple 
Runtime Endpoint Locations"

oracle.composite.f
aultPolicyFile

Specifies the location of the fault 
policy file if it is different from the 
default location. This option is 
useful if a fault policy must be used 
by multiple SOA composite 
applications. 

Section 11.4, "Using the Fault 
Management Framework"

oracle.composite.f
aultBindingFile

Specifies the location of the fault 
binding file if it is different from the 
default location. This option is 
useful if a fault policy must be used 
by multiple SOA composite 
applications. 

Section 11.4, "Using the Fault 
Management Framework"

passThroughHeader By default, SOAP headers are not 
passed through by Oracle Mediator. 
To pass SOAP headers, add this 
property to the corresponding 
Oracle Mediator routing service.

Section 20.2.2.9, "How to 
Assign Values"

Section 20.2.2.11, "How to 
Access Headers for Filters and 
Assignments"

rolesAllowed Specifies role names required to 
invoke SOA composite applications 
from any Java EE application.

Section 36.5, "Specifying 
Enterprise JavaBeans Roles"

streamIncomingAtta
chments

and

streamOutgoingAtta
chments

Specify these properties to stream 
attachments with SOAP.

Section 43.1.1.2.1, "SOAP with 
Attachments"

oracle.webservices
.local.optimizatio
n

Specifies to override a local 
optimization setting for a policy.

Section 43.1.1.2.1, "SOAP with 
Attachments"

and

Oracle Fusion Middleware 
Administrator's Guide for 
Oracle SOA Suite and Oracle 
BPM Suite



Fault Policy and Adapter Rejected Message Properties

K-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

K.4 Fault Policy and Adapter Rejected Message Properties
A fault policy file defines fault conditions and their corresponding fault recovery 
actions. Each fault condition specifies a particular fault or group of faults, which it 
attempts to handle, and the corresponding action for it. 

You can also enter additional properties in a fault policy framework file. Table K–3 lists 
these properties and provides references to documentation that describes how to 
configure these properties.

You can also enter adapter rejected message properties in the fault policy framework 
file during design time. 

For more information, see Section "Error Handling" of Oracle Fusion Middleware User's 
Guide for Technology Adapters.

K.5 Oracle B2B System Properties
You can set most B2B properties on the Configuration tab of the Oracle B2B interface. 
These settings override property settings performed at Oracle Enterprise Manager 
Fusion Middleware Control Console.

For more information about available Oracle B2B properties, see Chapter 15, 
"Configuring B2B System Parameters" of Oracle Fusion Middleware User's Guide for 
Oracle B2B.

K.6 Oracle Enterprise Manager Fusion Middleware Control Console 
Property Pages

You can configure properties for the following components during runtime in the 
property pages of Oracle Enterprise Manager Fusion Middleware Control Console:

■ SOA Infrastructure

one.way.returns.fa
ult

Controls how faults and one-way 
messages are handled for one-way 
interface SOAP calls.

Section 24.1, "Understanding 
a One-way Message Exchange 
Pattern"

mtomThreshold Specifies the attachment size in 
bytes.

Section 43.1.1.3, "Adding 
MTOM Attachments to Web 
Services"

Table K–3 Oracle SOA Suite Fault Policy Properties

Property Description See...

retryInterval Provides a delay between 
retries of an activity (in 
seconds).

Section 11.4.1.2, "Creating a Fault 
Policy File for Automated Fault 
Recovery"

retryCount Retries an activity a 
specified number of times.

Section 11.4.1.2, "Creating a Fault 
Policy File for Automated Fault 
Recovery"

org.quartz.scheduler.
idleWaitTime

Specifies a time in seconds 
for the scheduler to wait 
before retrying.

Section 22.1.1.2, "Actions"

Table K–2 (Cont.) Oracle SOA Suite Properties

Property Description See...



Oracle Enterprise Manager Fusion Middleware Control Console Property Pages

Oracle SOA Suite Properties Road Map K-5

■ Oracle BPEL Process Manager

■ Human workflow notification and task service

■ Oracle Mediator

■ Cross references

■ Oracle B2B

■ Service and reference binding components (JCA adapters, web services, and 
Oracle Service Registry)

K.6.1 SOA Infrastructure Properties
You can configure properties for the SOA Infrastructure. These property settings can 
apply to all SOA composite applications running in the SOA Infrastructure. The 
following types of properties can be set:

■ Audit level

■ Composite instance state to capture

■ Payload validation

■ Universal Description, Discovery, and Integration (UDDI) registry

■ Callback server and server URLs

■ Instance and fault count metrics retrieval

■ Java Naming and Directory Interface (JNDI) data source

■ Web service binding properties

For more information about available SOA Infrastructure properties, see Chapter 3, 
"Configuring the SOA Infrastructure" of Oracle Fusion Middleware Administrator's Guide 
for Oracle SOA Suite and Oracle BPM Suite.

K.6.2 Oracle BPEL Process Manager
You can configure BPEL process service engine properties. These properties are used 
by the BPEL process service engine during processing of BPEL service components. 
The following types of properties can be set:

■ Audit trail level 

■ Audit trail and large document thresholds

■ Dispatcher threads

■ Payload schema validation

■ BPEL monitor and sensor enabling

For more information about available Oracle BPEL Process Manager properties, see 
Chapter 9, "Configuring BPEL Process Service Components and Engines" of Oracle 
Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.6.3 Human Workflow Notification and Task Service
You can configure human workflow notification and task service properties. These 
properties are used by the human workflow service engine during processing of 
human workflow service components. The following types of properties can be set:

■ The notification mode for messages



Oracle Enterprise Manager Fusion Middleware Control Console Property Pages

K-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The actionable addresses

■ The actionable e-mail account name

■ The workflow session time out and custom class path URL values 

■ The dynamic assignment and task escalation functions of the assignment service

For more information about available human workflow notification and task service 
properties, see Chapter 18, "Configuring Human Workflow Service Components and 
Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and 
Oracle BPM Suite.

K.6.4 Oracle Mediator
You can configure Oracle Mediator properties. These properties are used by the Oracle 
Mediator service engine during processing of Oracle Mediator service components. 
The following types of properties can be set:

■ Audit level and metrics level

■ Parallel worker threads

■ Parallel maximum rows retrieved

■ Parallel locker thread sleep and error locker thread sleep

■ Custom configuration parameters

■ Container ID refresh time and container ID lease timeout

■ Resequencer locker thread sleep, maximum groups locked, and worker threads

For more information about available Oracle Mediator properties, see Chapter 12, 
"Configuring Oracle Mediator Service Components and Engines" of Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.6.5 Cross References
You can configure cross references to dynamically map values for equivalent entities 
created in different applications. 

For more information about available cross reference properties, see Chapter 15, 
"Managing Cross-References" of Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite.

K.6.6 Oracle B2B
You can enable Oracle B2B Dynamic Monitoring Service (DMS) metrics.

For more information about available Oracle B2B properties, see Chapter 30, 
"Configuring Oracle B2B" of Oracle Fusion Middleware Administrator's Guide for Oracle 
SOA Suite and Oracle BPM Suite.

K.6.7 Service and Reference Binding Component Properties
You can configure the following service and reference binding component properties:

■ Activation specification (for services), interaction specification (for references), and 
endpoint properties (such as time outs, thresholds, maximum intervals, and 
others) for the file, FTP, AQ, JMS, socket, database, and MQ Series adapters

■ Web services properties such as enabling REST; enabling the WSDL, metadata 
exchange, and endpoint of the web service; and others



System MBean Browser Properties

Oracle SOA Suite Properties Road Map K-7

■ Endpoint reference and service key properties for Oracle Service Registry 
integration

For more information about available service and reference binding component 
properties, see Chapter 33, "Configuring Service and Reference Binding Components" 
of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM 
Suite.

K.7 System MBean Browser Properties
The System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control 
Console enables you to modify advanced properties that do not display in the 
property pages described in Section K.6, "Oracle Enterprise Manager Fusion 
Middleware Control Console Property Pages." These advanced properties display 
beneath a link at the bottom of properties pages for the following components:

■ SOA Infrastructure

■ Oracle BPEL Process Manager

■ Oracle Mediator

■ Human workflow notification and task service

■ Oracle Service Registry

K.7.1 SOA Infrastructure Properties
Click the More SOA Infra Advanced Configuration Properties link at the bottom of 
the SOA Infrastructure Common Properties page to immediately display System 
MBean Browser properties for the SOA Infrastructure. Properties that display for 
modifying include the following:

■ The maximum number of times an invocation exception can be retried

■ The number of seconds between retries for an invocation exception

■ The HTTP proxy authentication realm

■ The HTTP proxy authentication type

■ The HTTP proxy host

■ The password for HTTP proxies that require authentication

■ The HTTP proxy port number

■ The user name for HTTP proxies that require authentication

■ The HTTP protocol URL published as part of the SOAP address of a process in the 
WSDL file

■ The HTTPS protocol URL published as part of the SOAP address of a process in 
the WSDL file

■ The path to the Oracle SOA Suite keystore

Note: In addition to advanced properties, the same properties that 
display for modifying in the property pages described in Section K.6, 
"Oracle Enterprise Manager Fusion Middleware Control Console 
Property Pages" also display for modifying in the System MBean 
Browser.



System MBean Browser Properties

K-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The UDDI endpoint cache life span

For more information about available SOA Infrastructure System MBean Browser 
properties, see Chapter 3, "Configuring the SOA Infrastructure" of Oracle Fusion 
Middleware Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.

K.7.2 Oracle BPEL Process Manager Properties
Click the More BPEL Configuration Properties link at the bottom of the BPEL Service 
Engine Properties page to display System MBean Browser properties for the BPEL 
process. Properties that display for modifying include the following:

■ The extra BPEL class path to include when compiling BPEL-generated Java 
sources

■ The maximum number of times a failed expiration call (wait/onAlarm) is retried 
before failing

■ The delay between expiration retries

■ The size of the block of instance IDs to allocate from the dehydration store during 
each fetch

■ The number of invoke messages stored in in-memory cache

■ Whether one-way invocation messages are delivered

■ The size of the most recently processed request list

■ The maximum time a request and response operation takes before timing out

For more information about available Oracle BPEL Process Manager System MBean 
Browser properties, see Chapter 9, "Configuring BPEL Process Service Components 
and Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and 
Oracle BPM Suite.

K.7.3 Oracle Mediator Properties
Click the More Mediator Configuration Properties link at the bottom of the Mediator 
Service Engine Properties page to display System MBean Browser properties for 
Oracle Mediator. Most of the System MBean Browser properties that display for Oracle 
Mediator can also be modified on the Mediator Service Engine Properties page. 

For more information about available Oracle Mediator System MBean Browser 
properties, see Chapter 12, "Configuring Oracle Mediator Service Components and 
Engines" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and 
Oracle BPM Suite.

K.7.4 Human Workflow Notification and Task Service Properties
Click the More Workflow Notification Configuration Properties link at the bottom of 
the Workflow Notification Properties page or click the More Workflow Taskservice 
Configuration Properties link at the bottom of the Workflow Task Service Properties 
page to display System MBean Browser properties for human workflow. Properties 
that display for modifying include the following:

■ The address at which to receive incoming instant messages (IMs)

■ Whether to return custom notification service property names

■ The return number of configured fax cover pages



System MBean Browser Properties

Oracle SOA Suite Properties Road Map K-9

For more information about available human workflow notification and task service 
System MBean Browser properties, see Chapter 18, "Configuring Human Workflow 
Service Components and Engines" of Oracle Fusion Middleware Administrator's Guide for 
Oracle SOA Suite and Oracle BPM Suite.

K.7.5 Oracle Service Registry WSDL URL Caching Configuration
You can increase the amount of time that the endpoint WSDL URL is available in cache 
for inquiry by the service key with the UddiCacheLifetime property.

For more information about the UddiCacheLifetime property, see Chapter 33, 
"Configuring Service and Reference Binding Components" of Oracle Fusion Middleware 
Administrator's Guide for Oracle SOA Suite and Oracle BPM Suite.



System MBean Browser Properties

K-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite



Index-1

Index

A
abs function

description, B-8
access points, 60-6, 61-9, 62-10
access policies

on task content, 28-67
action types, 28-46
actionable emails, 32-32

not sent during runtime when digital signatures 
are enabled, 32-32

activities
Annotations tab, A-4
assert, A-9
Assertions tab, 11-49, A-5
assign, A-6
bind entity, A-10
bypassing execution of, 10-12
compensate, A-11
compensateScope, A-12
Correlations tab, A-5
create entity, A-13
definition, 4-6
dehydrate, A-13
Documentation tab, A-5
email, A-14
empty, A-15
exit, A-16
flow, A-16
flowN, A-17
forEach, A-18
Headers tab, A-5
if, A-19
IM, A-20
invoke, A-20
Java embedding, A-21
overview, 4-6, A-2
partner link, A-22
phase, A-23
pick, A-24
Properties tab, A-5
receive, A-26
receive signal, A-28
remove entity, A-28
repeatUntil, A-29
replay, A-30

reply, A-30
rethrow, A-31
scope, A-32
sequence, A-33
signal, A-34
Skip Condition tab, 10-13, A-6
SMS, A-35
Sources tab, A-6
switch, A-35
synchronizing the execution of activities, 9-5
Targets tab, A-6
tasks common to many activities, A-4
terminate, A-36
throw, A-37
Timeout tab, 14-7, A-6
transform, A-37
user notification, A-38
validate, A-39
voice, A-40
wait, A-40
while, A-41

activity sensors
definition, 18-2

Adapter Configuration wizard
starting, 4-13

adapters
binding component, 2-11, 2-17
configuring, 4-13
definition, 1-5, 4-13, 35-9, A-42
in Oracle JDeveloper, 4-13
Oracle BAM, 50-1
overview, 1-5, 35-9, A-42
service names, 4-13
supported, 1-5, 35-9, A-42

add-dayTimeDuration-to-dateTime function
description, B-3

adding a cross reference table column, 46-8
adding columns to domain value maps, 44-7
adding rows to domain value maps, 44-7
addQuotes function

description, B-14
ADF bindings

files for, 51-5
using to invoke a composite from a JSP/Java 

class, 35-13
ADF bindings filter, 33-2



Index-2

ADF Model layer, introduced, 51-1
ADF task flow for human tasks, 29-3
ADF, using Oracle BAM, 51-4
ADF-BC services

binding component, 2-11, 2-17
capabilities, A-42
definition, 35-11

adfBindings bindings filter, 33-2
adf-desktop-integration.jar, 33-2
adfdiExcelDownload download filter, 33-3
adfdiRemote servlet, 33-3
ADFLibraryFilter filter, 33-3
admin.server.host parameter, 3-22
admin.server.port parameter, 3-22
advanced formatting, message sources, 53-10
aggregate functions in calculations, 52-5
alerts

history, 57-6
Oracle BAM

about, 57-1
actions, F-5
activating, 57-3
activity, 57-6
conditions, F-5
creating, 57-2
dependencies, 57-6
events, F-1
frequency constraint, F-14
history, 57-6
messages, 57-5
parameterized, F-7
templates, 57-4
web services, 57-8

alidateFodConfigSettings ant script, 3-23
Annotations tab

in activities, A-4
ant scripts

activating all composites in a partition, 41-58
activating an application, 41-53
assigning the default version to a SOA composite 

application, 41-54
compile-deploy-all, 3-23
compiling a SOA composite application, 41-43
creating a partition in the SOA 

Infrastructure, 41-56
deleting a partition, 41-57
deploying a SOA composite application, 41-45
executing a test case, 41-42
exporting a SOA composite application into a SAR 

file, 41-47
exporting postdeployment changes of a composite 

into a JAR file, 41-48
exporting shared data of a given pattern into a JAR 

file, 41-50
importing postdeployment changes of a 

composite, 41-49
listing all available partitions in the SOA 

Infrastructure, 41-55
listing all composites in a partition, 41-55
listing the deployed SOA composite 

applications, 41-54
managing composites, 41-41
packaging a SOA composite application into a 

composite SAR file, 41-44
removing a top-level shared data folder, 41-51
retiring all composites in a partition, 41-59
retiring an application, 41-53
seedBAMServerObjects, 3-23
seedDemoUsers, 3-23
seedFodJmsResources, 3-23
server-setup-seed-deploy-test, 3-23
starting all composites in a partition, 41-57
starting an application, 41-51, 41-52, 41-53, 41-54
stopping all composites in a partition, 41-58
stopping an application, 41-52
undeploying a SOA composite application, 41-46
validateFodConfigSettings, 3-23

appendToList function
description, B-14

Application Navigator
location of in Oracle JDeveloper, 4-4

application roles
definition, 27-5

application template, 33-2
AQ adapter

capabilities, A-42
definition, 35-9

arrays
in transformations, 38-28
manipulating, 6-45
maxOccurs attribute, 6-45
SOAP-encoded arrays, 6-46
statically indexing into, 6-45

assert activity
capabilities, A-9
only supported in BPEL 1.1 projects, A-9

assertion conditions
creating, 11-49
disabling, 11-52
expressions not evaluating to an XML schema 

boolean type throw a fault, 11-49
log events in the instance audit trail, 11-49
multiple, 11-47
throwing faults, 11-45
use of built-in and custom XPath functions and 

$variable references, 11-48
assertion tests

overview, 42-2
assertions

creating value asserts, 42-18
in composite test suites, 42-4

Assertions tab
creating assertion conditions, 11-49
in activities, A-5
only available in BPEL 1.1 projects, A-5

assign activity
adding to an asynchronous service, 8-5
assigning a literal or XML fragment to a target 

node, A-7
bpelx extensions in BPEL 1.1, 6-22



Index-3

bpelx extensions in BPEL 2.0, 6-23
capabilities, A-6
changing copy rules to bpelx extension 

types, A-7
copying data, 6-14, A-6
creating a bpelx:rename extension rule on a target 

node, A-7
creating an XPath expression on a target 

node, A-7
description, 6-3
for data manipulation, 6-2, A-6
formatting the email message body as 

HTML, 17-8
in asynchronous services, 8-5
recasting a target node, A-7
renaming a target node, A-7
selecting an extension type in BPEL 1.1, A-8
selecting an extension type in BPEL 2.0, A-8
selecting the ignoreMissingFromData 

attribute, A-9
selecting the insertMissingToData attribute, A-9
selecting the keepSrcElementName attribute, A-9
using multiple bpelx:append settings, A-9
using the Copy Rules tab, 6-22, A-6

assign extension attributes
ignoreMissingFromData, 6-34
insertMissingToData, 6-34
keepSrcElementName, 6-34
using, 6-34

assignment service
configuration, 32-36
deploying a custom assignment service, 32-43
dynamic assignment functions, 32-37, 32-38, 

32-39
dynamically assigning task participants, 32-39
example of implementation, 32-41
implementing, 32-40

asynchronous interaction with a notification timer
BPEL process as the client, 5-6
BPEL process as the service, 5-6
definition, 5-5

asynchronous interaction with a timeout
BPEL process as the client, 5-5
BPEL process as the service, 5-5
definition, 5-4

asynchronous interactions
BPEL process as the client, 5-4
BPEL process as the service, 5-4
definition, 5-3
returning faults, 11-28

asynchronous processes
dehydration store, 8-9

asynchronous services
assign activities, 8-5
calling, 8-2
correlation IDs, 8-8
invoke activities, 8-3, 8-8
parallel flows, 9-1
partner links, 8-2, 8-6, 8-7
receive activities, 8-4, 8-8

WS-Addressing, 8-8
attachments

adding MTOM attachments to web services, 43-9
attaching a URL file, 30-35
in end-to-end streaming, 43-2
in SOAP, 43-3
MIME, 43-4
optimization enabled, 43-6
options for file and FTP adapters, 43-8
Oracle B2B, 43-9
performance overhead and pass through 

attachments, 43-6
properties for streaming attachments, 43-6
reading and encoding SOAP attachment 

content, 43-7
sending streaming attachments, 43-7
sending with the notification wizard, 17-7
sharing attachments using synchronous 

flows, 43-7
streaming, 43-3
task attachments with email notifications, 32-34
transforming attachments with the 

ora:doStreamingTranslate XPath 
function, 43-8

using WordML style sheets, 28-54
writing attachments using an outbound file 

adapter, 43-8
attribute labels

internationalization, 32-18
attributes

manipulating, 6-21
audit level

setting, 43-12
auto mapping

in transformations, 38-32
with confirmation in transformations, 38-33

automated testing
of SOA composite applications, 2-29, 42-1

B
B2BSee Oracle B2B
B2BX12OrderGateway project, 3-7
bam.server.host parameter, 3-21
bam.server.password parameter, 3-21
bam.server.port parameter, 3-21
bam.username parameter, 3-21
batching

message batching limitations with Oracle Business 
Activity Monitoring, 50-32

batchProcessActive function
description, B-38

batchProcessCompleted function
description, B-39

best practices
creating and wiring BPEL and mediator service 

components in the SOA Composite 
Editor, 4-9

for handling large documents, 43-1
for handling large metadata, 43-18



Index-4

for handling large numbers of instances, 43-20
tuning recommendations, 43-12

bin project, 3-7
bind activity

only supported in BPEL 1.1 projects, A-10
bind entity activity

capabilities, A-10
binding components

adapters, 2-11, 2-17
adding references, 2-16
adding services, 2-10
ADF-BC services, 2-11, 2-17, 35-11
definition, 1-5, 1-7
deleting references, 2-18
deleting services, 2-16
direct binding services, 2-11, 2-17, 35-12
editing, 2-16
EJB services, 2-11, 2-17, 35-11
HTTP binding, 2-11, 2-17, 35-5
integrating into a SOA composite 

application, 35-12
introduction, 35-1
JCA adapters, 35-9
Oracle B2B, 2-11, 2-17, 35-11
Oracle BAM, 35-11
supported, 1-5, 2-11
web services, 2-11, 2-17, 35-2
WS-Atomic transactions, 35-2

bindingFault
definition, 11-6

boolean values
assigning, 6-19

bottom-up design approach, 1-8
bpel

BPEL 2.0 namespace prefix, 6-4, B-36
BPEL 1.1

activities overview, A-2
BPEL 2.0

$variable syntax, 6-18
activities overview, A-2
assign activity, 6-3
assigning a date or time, 6-20
assigning boolean values, 6-19
bpelx:append extension, 6-24
bpelx:copyList extension, 6-33
bpelx:insertAfter extension, 6-27
bpelx:insertBefore extension, 6-25
bpelx:remove extension, 6-29
bpelx:rename extension, 6-31
cannot create a single BPEL project that supports 

versions 1.1 and 2.0, 4-2
compensateScope activity, 11-41, A-12
conditional branching, 10-5
creating a BPEL project, 4-2
custid attribute, 6-21
declaring extension namespaces, 6-55
determining the BPEL project version 

number, 4-5
element-based variables, 6-17
exit activity, 11-43, A-16

expression copy, 6-18
forEach activity, 9-15, A-18
fromParts element, 6-37
if activity, 10-5, A-19
importing process definitions, 6-44
initializing variables inline, 6-15, 8-5
limitations

on inbound message activity support, 8-9
mapping WSDL message parts, 6-37
message type-based variable definition, 6-16
namespace prefix, 6-4
order of precedence for fault handling, 11-4
repeatUntil activity, 10-10, A-29
rethrow activity, 11-26, A-31
setting correlations for an IMA using a fromParts 

element with multiple parts, 8-26
simultaneous onMessage branches, 14-6
SOAP-encoded arrays, 6-47
standard faults, 11-3
supported activities, A-2
toParts element, 6-37
using element variables in message exchange 

activities, 6-36
waiting for message arrival with an onEvent 

branch, 14-13
BPEL design environment

overview, 4-1
BPEL extension functions

in BPEL 1.1, B-36
in BPEL 2.0, B-36

BPEL monitors
definition, 4-14

BPEL processes
common interaction patterns, 5-1, 24-1
creating, 3-13, 3-14, 4-1
definition, 1-3
naming conventions, 4-2
service component, 2-7
supported versions, 1-3
transaction semantics, 12-1

BPEL projects
determining the BPEL project version 

number, 4-5
naming conventions, 4-2

BPEL sensor
Oracle BAM, 50-28

BPEL XPath extension functions, 6-5, B-14
examples, 6-4

bpelx extensions
bpel:rename, A-7
bpelx:append, 6-23, 6-24, 6-46, 6-49, 17-9, A-7
bpelx:append extension, 6-23
bpelx:conversationId, 8-10
bpelx:copyList, 6-32, 6-33, A-7
bpelx:dehydrate name, A-13
bpelx:detailLabel, 15-5
bpelx:exec, 13-2, 13-8
bpelx:flowN, 9-14
bpelx:for, 14-7
bpelx:fromProperties, H-5



Index-5

bpelx:headerVariable, 6-53
bpelx:ignoreMissingFromData, 6-34
bpelx:inputProperty, H-4
bpelx:insertAfter, 6-26, 6-27, A-7
bpelx:insertBefore, 6-24, 6-25, A-7
bpelx:insertMissingToData, 6-34
bpelx:invokeAsDetail, 15-4
bpelx:outputProperty, H-4
bpelx:postAssert, 11-45
bpelx:preAssert, 11-45
bpelx:receiveSignal, 15-5
bpelx:remove, 6-13, 6-28, 6-29, A-7
bpelx:rename, 6-29, 6-31, A-7
bpelx:rollback, 12-3
bpelx:sdoCapable, 6-11
bpelx:signal, 15-4
bpelx:skipCondition, 10-12
bpelx:target, 6-13, 6-30
bpelx:timeout, 14-9
bpelx:until, 14-8
bpelx:validate, 6-35
in assign activities, A-9
in assign activities in BPEL 1.1, 6-22
in assign activities in BPEL 2.0, 6-23
XML data manipulation, 6-22

bpelx:append extension
appending data to a node list, B-14
appending new items in a sequence, 6-49
changing a copy rule to, A-7
description, 6-23
email activity message content, 17-9
in SOAP-encoded arrays, 6-46
not supported for SDO-based variables, 6-13
using, 6-23, 6-24

bpelx:assert extension
expressions not evaluating to an XML schema 

boolean type throw a fault, 11-49
multiple assertions, 11-47
throwing faults based on a condition, 11-45
use of built-in and custom XPath functions and 

$variable references, 11-48
use of faultName and message attributes, 11-47

bpelx:conversationId extension, 8-10
bpelx:copyList extension

changing a copy rule to, A-7
copying a node list or a node, B-15
description, 6-31
using, 6-32, 6-33

bpelx:dehydrate name extension
description, A-13

bpelx:detailLabel extension, 15-5
bpelx:exec extension, 13-2, 13-8

built-in methods, 13-4
embedding SDOs, 13-8

bpelx:flowN extension, 9-14
bpelx:for extension, 14-7
bpelx:fromProperties extension, H-5
bpelx:gnoreMissingFromData extension

using, 6-34
bpelx:headerVariable extension, 6-53

description, 6-53
bpelx:inputProperty extension, H-4
bpelx:insertAfter extension

changing a copy rule to, A-7
description, 6-26
using, 6-26, 6-27

bpelx:insertBefore extension
changing a copy rule to, A-7
description, 6-24
using, 6-24, 6-25

bpelx:insertMissingToData extension
using, 6-34

bpelx:invokeAsDetail extension, 15-4
bpelx:outputProperty extension, H-4
bpelx:postAssert extension, 11-45
bpelx:preAssert extension, 11-45
bpelx:receiveSignal extension, 15-5
bpelx:remove extension

creating, A-7
description, 6-27
using, 6-28, 6-29

bpelx:rename extension
adding, A-7
description, 6-29
using, 6-29, 6-31

bpelx:rollback extension, 12-3
bpelx:sdoCapable extension

declaring SDO-based variables, 6-11
bpelx:signal extension, 15-4
bpelx:skipCondition extension

bypassing activity execution, 10-12
not supported in BPEL 2.0, 10-12
specifying to bypass activities, 10-12

bpelx:target extension, 6-13, 6-30
bpelx:timeout extension, 14-9

fault thrown during an activity timeout, 14-9
bpelx:until extension, 14-8
bpelx:validate extension

description, 6-35
using in BPEL 1.1, 6-35

bpws
BPEL 1.1 namespace prefix, 6-4, B-36

building expression with domain value map 
functions, 44-11

build.properties file
WebLogic Fusion Order Demo

build.properties file, 3-21
business events

creating, 39-3
creating an Oracle Mediator for an event 

subscription, 19-20
definition, 39-1
differences with direct service invocations, 39-2
Event Delivery Network, 39-3
local and remote boundaries, 39-3
publishing, 39-9
specifying callback classes, 28-74
subscribing to, 39-6, 39-13

business faults
definition, 11-5



Index-6

business process instance
stopping, 11-42

business rules
action types, 28-46
declarative components and task flows, 26-1
design environment overview, 25-5
fact types, 28-45
linked dictionary support, 28-48
OrderBookingComposite, used in, 3-10
routing policies, 28-41
service component, 2-7, 25-13
specifying advanced routing rules, 28-44
use case for data validation and constraint 

checks, 25-2
use case for dynamic processing, 25-2
use case for externalizing decision points in the 

process, 25-2
use case for human workflow, 25-2
use cases, 25-2
using the business rules dictionary editor 

declarative component, 26-24
using the declarative component, 26-2

Business Rules Designer
introduction, 25-2
layout, 25-2

C
calculated fields, 52-5
calculations

aggregate functions, 52-5
datetime functions, 52-5
expressions, 52-5
string functions, 52-5

callback classes
specifying business events, 28-74
specifying on task status, 28-73

callbacks
class loading, 32-44
task routing and customization in BPEL 

callbacks, 28-76
using with spring, 49-4
viewing, 28-86

case sensitivity
human workflow, 32-47
in group names, 28-11

catch branch
creating, 11-34, A-33
definition, 11-33
fault handling, 11-29

catchAll branch
definition, 11-33

channels
email, 17-4
IM, 17-9
SMS, 17-10
voice mail, 17-12

character set encoding
changing, 28-65

chunking

with the file and FTP adapters, 43-11
class paths

for clients using local Enterprise JavaBeans, 31-7
for clients using remote Enterprise 

JavaBeans, 31-6
for clients using SOAP, 31-6

clearing data objects, 52-18
clearTaskAssignees function

description, B-54
compare function

description, B-8
compare-ignore-case function

description, B-9
compensate activity

capabilities, A-11
definition, 11-39
fault handling, 11-39

compensateScope activity
capabilities, A-12
only supported in BPEL 2.0 projects, A-12
using, 11-41

compilation
increasing memory to recover from errors, 41-66

compile-deploy-all ant script, 3-23
completionPersistPolicy property

description, C-2
complex structures

processing large XML documents, 43-11
complex type

variables, 6-15
Component Palette

introduction, 2-5
location of in Oracle JDeveloper, 4-4

componentType file
definition, 2-4

composite sensors
adding, 47-2
adding a property, 47-7
adding a variable, 47-6
adding an expression, 47-6
definition, 47-1
monitoring during runtime, 47-8
restrictions on use, 47-1

composite test
assertions overview, 42-2
creating test suites, 42-5
creating value asserts, 42-18
definition, 42-1
deploying test suites, 42-23
emulating inbound messages, 42-9
emulations overview, 42-2
naming limitations on test suites and test 

cases, 42-5
test case overview, 42-1
test suite assertions, 42-4
test suite components, 42-3
test suite emulations, 42-3
test suites overview, 42-1
test suites process initiation, 42-3
XML assert, 42-2



Index-7

composite.xml file
definition, 2-4, 2-6
deployment descriptors, C-1, C-3
opening through a SOA-MDS connection, 2-6
registering sensors and sensor actions, 18-14
syntax, 2-22

concat function
description, 6-18

conditional branching logic
definition, 10-1
use of XPath expressions, 10-1
using switch activities, 10-2
using while activities, 10-8

conditional processing
with xsl choose, 38-28
with xsl if, 38-26

configuration plans
creating, 41-11
creating with the WLST utility, 41-14
definition, 41-7
use cases, 41-10

configuration properties
deployment descriptors, C-1

connections
creating a SOA-MDS connection, 41-35
creating an application server connection, 41-15
opening the composite.xml through a SOA-MDS 

connection, 2-6
Oracle BAM Server, 50-25, 51-2

constant values
in transformations, 38-18

conversation ID
adding, 8-10

Copy Rules tab
using in an assign activity, A-6

copying security filters, 52-15
copyList function

description, B-15
core XPath functions

examples, 6-4
correlation ID

WS-Addressing, 8-8
correlation sets

associating with receive activities, 8-22
creating, 8-21
creating property aliases, 8-23

correlations
adding on an OnMessage branch of a pick 

activity, A-26
setting for an IMA using a fromParts element with 

multiple parts, 8-26
using in an asynchronous service, 8-15

Correlations tab
in activities, A-5
using, 8-22, 8-23

countNodes function
description, B-16

create domain value maps, 44-4
create entity activity

capabilities, A-13

only supported in BPEL 1.1 projects, A-13
create instance

definition, 8-8
in receive activities, 8-8

create-delimited-string function
description, B-9

createInstance attribute, 8-8
create-nodeset-from-delimited-string function

description, B-49
createWordMLDocument function

description, B-54
creating cross reference tables, 46-4
creating folders for data objects, 52-10
creating mediator component

mediator files, 19-4
CreditCardAuthorization project, 3-7
cross reference table look up, 46-15

xref
lookupXRef function, 46-15

cross reference tables, 46-1
adding a column, 46-8
creating, 46-4
deleting values, 46-19
looking up, 46-15
modifying, 46-4
populating columns, 46-9
xref

lookupXRef function, 46-15
markForDelete function, 46-19
populateXRefRow1M function, 46-12

cross references
creating, 46-4
introduction, 46-1
modifying, 46-4
overview, 46-1

current-date function
description, B-3

current-dateTime function
description, B-4

current-time function
description, B-4

custom classes
adding to a SOA composite application, 13-6

custom escalation function
using, 32-43

custom sensors
publish type, 18-2

Custom Task Form Wizard
creating a task display form, 29-11

customization
compiling and deploying a customized 

application, 16-11
creating a customized SOA composite 

application, 16-1
editing artifacts in a customized composite, 16-9
linked business rule dictionary support, 28-48
of SOA composite applications, 16-1
resolving a sequence conflict, 16-10
resolving validation errors in Oracle 

JDeveloper, 16-9



Index-8

searching for customized activities, 16-8
the customer SOA composite application, 16-5
the vertical SOA composite application, 16-3
upgrading the SOA composite application, 16-7

D
data control, Oracle BAM

about, 51-1
aggregates, 51-16
calculated fields, 51-9
creating, 51-4
field selection, sorting, 51-11
filters, 51-11
flat query, 51-6
group query, 51-6
groups, 51-15
parameters, 51-7
query type, 51-5
time groups, 51-15

data controls
creating, 51-4
displayed on the Data Controls panel, 51-5

Data Controls panel
icons defined, 51-5
using to create a user interface, 51-5

data manipulation
accessing fields with complex type variables, 6-15
assigning boolean values, 6-19
assigning date or time, 6-20
assigning literal strings, 6-18
assigning numeric values, 6-17
concatenating strings, 6-18
converting from a string to a structured XML 

object type, 6-51
copying data between variables, 6-14
dynamically indexing into a data sequence, 6-48
generating array-equivalent functionality with the 

genEmptyElem function, 6-50
initializing variables, 6-13
manipulating arrays, 6-45
manipulating attributes, 6-21
mathematical calculations with XPath 

functions, 6-17
statically indexing into a data sequence, 6-45
with assign activities, 6-2, 6-14
with XQuery and XSLT, 6-5

data objects
about, 52-1
adding dimensions, 52-15
calculated column, 52-5
clearing contents, 52-18
contents, 52-9
creating folders, 52-10
datetime column, 52-6
defining, 52-2
deleting, 52-18
dimensions, 52-15
general information, 52-8
indexes, 52-17

layout, 52-9
lookup column, 52-4
moving, 52-17
Oracle Data Integrator, 52-6
organizing, 52-10
permissions, 52-6

folders, 52-11
renaming, 52-17
security filters, 52-13
system, 52-6
viewing, 52-8

data sequences
determining the size, 6-47
dynamically indexing into, 6-48

database
sensor publish type, 18-2

database adapter
capabilities, A-43
definition, 35-9

database views
human workflow, 32-60

DataObjectDefinition web service, 56-3
DataObjectOperations web service, 56-2
date time stamp field, 52-6
dates

assigning, 6-20
datetime functions in calculations, 52-5
day-from-dateTime function

description, B-4
db.adminUser parameter, 3-15
db.demoUser.tablespace parameter, 3-16
debatching

debatching with the file and FTP adapters, 43-10
declarative components

definition, 26-1
using, 26-2
using the business rules dictionary editor 

declarative component, 26-24
defining a fault handler, 11-24
dehydrate activity

capabilities, A-13
dehydration store, 8-9

definition, 8-9
deleting cross reference table value, 46-19

xref
markForDelete function, 46-19

deleting data objects, 52-18
deleting folders, 52-12
deployment

anatomy of a composite, 41-3
common configuration plan issues to 

check, 41-65
common deployment issues to check, 41-62
creating an application server connection, 41-15
customizing your application for the target 

environment, 41-7
in a partition, 41-24
invoking other deployed composites, 2-25
managing deployed composites, 2-26
of a single composite, 41-14



Index-9

of a task flow, 41-21
of an existing archive, 41-39
of multiple composites, 41-27
of shared metadata across composites, 41-29
of SOA composite applications, 2-25, 2-28
packaging of artifact files, 41-2
postdeployment configuration, 41-61
preparing the target environment, 41-3
prerequisites, 41-2
to a cluster, 41-61
to a managed Oracle WebLogic Server, 41-65
to a SAR, 41-18
to a two-way, SSL-enabled Oracle WebLogic 

Server is not supported, 41-65
to an application server, 41-18
troubleshooting, 41-62
with an unreachable proxy server, 41-66
with the ant scripts, 41-41
with the WLST utility, 41-41

deployment descriptor file
See web.xml file

deployment descriptors
composite.xml file, C-1, C-3
configuration properties, C-1
defining a configuration property, C-1
deprecated, C-3
overview of properties, K-1

Designer window
location of in Oracle JDeveloper, 4-4

dictionaries
in transformations, 38-36
limitation on generating dictionaries that use 

functions, 38-37
linked dictionary support, 28-48

digital signatures, 32-19
acting on tasks that require a signature, 30-35
actionable emails not sent during runtime, 32-32
specifying, 28-71

dimensions
adding to data objects, 52-15
data object, 52-15
time, 52-16

direct binding invocation API, 37-4
direct binding service

asynchronous direct binding invocation, 37-5
binding component, 2-11, 2-17
capabilities, A-43
definition, 1-5, 35-12
direct binding invocation API, 37-4
invoking Oracle Service Bus (OSB), 35-12, 37-7, 

A-43
not recommended for processing large 

documents, 43-3
overview, 37-4
samples using the invocation API, 37-12
SOA direct address syntax, 37-6
SOA transaction propagation, 37-6
synchronous direct binding invocation, 37-5

disableAsserts property
description, C-2, K-1

doc function
description, B-16

Documentation tab
in activities, A-5
only available in BPEL 2.0 projects, A-5

domain value maps
add columns, 44-7
add rows, 44-7
committing changes at runtime with the SOA 

Composer, 45-5
creation, 44-4
dvm

lookupValue function, 44-8
lookupValue1M function, 44-9

editing, 44-7
editing at runtime with the SOA Composer, 45-1, 

45-4
features, 44-2

one-to-many mapping, 44-4
qualifier order, 44-3
qualifiers, 44-2

one-to-many mapping, 44-4
qualifier order, 44-3
qualifiers, 44-2
saving at runtime with the SOA Composer, 45-5
using, 44-8
using in a transformation, 44-9
using lookupValue functions, 44-11
viewing at runtime with the SOA Composer, 45-3

domain value maps functions
dvm

lookupValue, 44-8
lookupValue1M, 44-9

domain value maps qualifiers, 44-2
download filter, 33-3
dvm

lookupValue function, 44-8
lookupValue1M function, 44-9

dynamic assignment functions
configuring, 32-38
configuring display names, 32-39
definition, 32-37
implementing, 32-37

dynamic partner links
using, 8-11

dynamic routing decision table
using with two-layer business process 

management, 48-6

E
EclipseLink O/X Mapper (OXM)

See OXM
edit domain value maps

add columns, 44-7
add rows, 44-7

EDN
See Event Delivery Network

EJB services
binding component, 2-11, 2-17



Index-10

elements
ignoring in XSLT documents, 38-41

email
dynamically setting addresses, 17-12
making emails actionable, 32-32
notifications support, 17-2, 17-4

email activity
capabilities, A-14
notification support, 17-5

email attachments
notifications support, 17-7

email messages
HTML content for message body, 17-8
using dynamic HTML for message content 

requires a CDATA function, 17-9
empty activity

capabilities, A-15
definition, 11-36
fault handling, 11-36

emulation tests
overview, 42-2

emulations
emulating inbound messages, 42-9
in BPEL test suites, 42-3

enable.bam.sensors parameter, 3-20
ending

tasks, 28-55
endpoint locations

multiple, 8-9
endpointURI

property, K-3
ends-with function

description, B-9
Enterprise JavaBeans

capabilities in SOA composite applications, A-43
creating an Enterprise JavaBeans service, 1-5, 

36-8, A-43
integrating Java interfaces with SOA composite 

applications, 36-2
interacting with SOA composite 

applications, 36-1
support in workflow services, 32-2
supported versions, 36-1

Enterprise JavaBeans (EJB) service
creating an Enterprise JavaBeans service, 35-11

enterprise message sources
about, 53-1
creating, 53-2
datetime specification, 53-7
defining, 53-2, 55-2
XML formatting, 53-10

entity variable
binding key, 6-9
creating, 6-7
definition, 6-6
supported in BPEL 1.1 projects only, 6-5
using, 6-5

error assignee
configuring, 28-51
definition, 27-7

errors
invalid settings, A-55

escalating
tasks, 28-55

escalation policy
escalate after, 28-58
overview, 28-56
specifying, 28-59

evaluation time
definition, 18-5

Event Delivery Network
business events published in, 39-3
EDN-DB, 39-3
EDN-JMS, 39-3
implementations, 39-3

evidence store service, 32-19
definition, 32-19
Enterprise JavaBeans, SOAP, and Java 

support, 32-2
WSDL file location, 32-3

Excel workbook
MIME mapping, 33-3

exceptions, 11-5
exit activity

capabilities, A-16
immediately ending a business process 

instance, 11-43
replaces the terminate activity in BPEL 2.0, A-2

EXM
support in SOA composite applications, 49-29

expiration policy
expire after, 28-57
never expire, 28-57
overview, 28-56
renew after, 28-58

export file sample
ICommand, G-18

expression builder dialog
using domain value map functions, 44-11

expression constants
variable initialization, 6-13

expressions in calculations, 52-5
extended mapping (EXM)

See EXM
extension namespaces

declaring in BPEL 2.0, 6-55
external data source

about, 55-1
creating, 55-2
Oracle Data Integrator, 55-2

external routing
routing policy, 28-49

ExternalLegacyPartnerSupplier project, 3-7

F
facets

in the task display form, 29-12
fact types, 28-45
fault bindings, 22-8



Index-11

fault handling, 11-24
creating, 11-1, 11-24
definition, 11-1
fault policy, 11-6
importing RuntimeFault.wsdl, 11-24
modifying the WSDL files, 11-24
order of precedence in BPEL 2.0, 11-4
returning external faults, 11-28
specifying an assertion condition, 11-45
throwing internal faults, 11-25
using catch branches, 11-29
using compensate activities, 11-39
using empty activities, 11-36
using scope activities, 11-29
using terminate activities, 11-43
using the getFaultAsString function, 11-25
using throw activities, 11-25

fault management framework
associating a fault policy with a fault policy 

binding, 11-12
definition, 11-6
designing, 11-7
executing a fault policy, 11-17
using a Java action fault policy, 11-17

fault policy, 22-1
actions, 22-4
associating with a fault policy binding, 11-12
component level, 22-8
composite level, 22-8
conditions, 22-2
definition, 11-6
designing, 11-7
executing, 11-17
sample file, 11-11
using a Java action fault policy, 11-17

fault policy bindings
sample file, 11-16

fault sensors
definition, 18-2

fault-bindings.xml, 22-15
fault policy bindings file, 11-7

fault-policies.xml, 22-11
fault policy file, 11-7

faults
categories of faults in BPEL, 11-5
Qname fault name, 11-5
returning external faults, 11-28
standard faults, 11-3
throwing internal faults, 11-25
throwing with assertion conditions, 11-45

fields
calculated, 52-5
lookup, 52-4
timestamp, 52-6

file adapter
capabilities, A-43
chunking, 43-11
debatching, 43-10
definition, 35-9
streaming, 43-11

filters
adfBindings, 33-2
adfdiExcelDownload, 33-3
ADFLibraryFilter, 33-3
bindings filter, 33-2
copying, 52-15
Oracle BAM security, 52-13

fire and forget
one-way message, 5-1

flex fields
See mapped attributes

flow activity
capabilities, A-16
creating a parallel flow, 9-2
synchronizing the execution of activities, 9-5

flowN activity
capabilities, A-17
customizing the number of flow activities, 9-10
definition, 9-10
replaced by the forEach activity in BPEL 2.0, A-3

fod.application.issoaenabled property, 3-17
folder permissions, 52-11
folders

deleting, 52-12
renaming, 52-12

forEach activity
capabilities, A-18
processing multiple sets of activities, 9-15
replaces the flowN activity in BPEL 2.0, A-3
successfulBranchesOnly attribute is not 

supported, 9-17
foreign.mds.type parameter, 3-22
format function

description, B-39
formatDate function

description, B-19
format-dateTime function

description, B-5
format-string function

description, B-10
FTP adapter

capabilities, A-43
chunking, 43-11
debatching, 43-10
definition, 35-10
streaming, 43-11

functions
abs, B-8
add-dayTimeDuration-to-dateTime, B-3
addQuotes, B-14
advanced, B-49
appendToList, B-14
batchProcessActive, B-38
batchProcessCompleted, B-39
BPEL XPath extension, B-14
chaining in transformations, 38-20
clearTaskAssignees, B-54
compare, B-8
compare-ignore-case, B-9
concat, 6-18



Index-12

copyList, B-15
countNodes, B-16
create-delimited-string, B-9
create-nodeset-from-delimited-string, B-49
createWordMLDocument, B-54
creating user-defined XPath extension 

functions, B-70
current-date, B-3
current-dateTime, B-4
current-time, B-4
day-from-dateTime, B-4
descriptions, 38-19
doc, B-16
dynamically setting email addresses and telephone 

numbers, 17-12
editing in transformations, 38-20
editing XPath expressions in 

transformations, 38-24
ends-with, B-9
examples, 6-4
format, B-39
formatDate, B-19
format-dateTime, B-5
format-string, B-10
functions prefixed with xp20 or orcl, 38-19
genEmptyElem, 6-50, B-39
generateGUID, B-20
generate-guid, B-49
getChildElement, B-40
getContentAsString, B-22
get-content-as-string, B-10
getConversationId, B-22
getCreator, B-22
getCurrentDate, 6-20, B-23
getCurrentDateTime, 6-20, B-23
getCurrentTime, 6-20, B-23
getDefaultRealmName, B-59
getDomainId, B-23
getElement, B-24
getFaultAsString, 11-25
getGroupIdsFromGroupAlias, B-25
getGroupProperty, B-59
getInstanceId, B-25
getLinkStatus, B-36
get-localized-string, B-11
getManager, B-59
getMessage, B-40
getNodes, B-26
getNodeValue, B-25
getNotificationProperty, B-54
getNumberOfTaskApprovals, B-55
getPreference, B-26
getPreviousTaskApprover, B-55
getProcessId, B-27
getProcessOwnerId, B-27
getProcessURL, B-27
getProcessVersion, B-27
getReportees, B-60
getTaskAttachmentByIndex, B-55
getTaskAttachmentByName, B-56

getTaskAttachmentContents, B-56
getTaskAttachmentsCount, B-56
getTaskResourceBindingString, B-57
getUserAliasId, B-28
getUserProperty, 17-13, B-60
getUserRoles, B-61
getUsersInGroup, B-62
getVariableData, 17-13, B-37
getVariableProperty, B-38
hours-from-dateTime, B-5
implicit-timezone, B-5
in transformations, 38-19
index-within-string, B-11
integer, B-29
isUserInRole, B-62
last-index-within-string, B-12
left-trim, B-12
location of function descriptions, 6-5
lookupGroup, B-62
lookup-table, B-1
lookupUser, B-63
lookup-xml, B-52
lower-case, B-13
matches, B-13
max-value-among-nodeset, B-40
mediator XPath extension, B-43
minutes-from-dateTime, B-6
min-value-among-nodeset, B-41
month-from-dateTime, B-6
parseEscapedXML, 6-51, B-29
position, 6-45
prefixed with xp20 or orcl, 38-19
processXQuery, B-30
processXSLT, 17-8, B-30
processXSQL, B-34
query-database, B-2
readBinaryFromFile, B-35
readFile, B-35
right-trim, B-13
seconds-from-dateTime, B-6
selecting an data sequence element, 6-45
sequence-next-val, B-2
SOA XPath extension, B-1
square-root, B-41
subtract-dayTimeDuration-from-dateTime, B-6
timezone-from-dateTime, B-7
translateFromNative, B-41
translateToNative, B-42
upper-case, B-14
wfDynamicGroupAssign, B-57
wfDynamicUserAssign, B-58
workflow service, B-54
writeBinaryToFile, B-36
year-from-dateTime, B-7

Fusion Order Demo
deploying, 3-12
deploying in a partition, 3-22
installing schema, 3-15
integration with spring, 49-21
introduction, 3-1



Index-13

running, 3-23
setting up, 3-3
Store Front module, 3-1
WebLogic Fusion Order Demo, 3-2

introduction, 3-2
Fusion Web Application (ADF) application 

template, 33-2
FusionOrderDemo_R1PS3.zip, 3-3
FYI assignee

configuring, 28-38
definition, 27-5, 28-38
must first claim an FYI task before dismissing 

it, 29-21
tasks are not actionable, 28-65
workflow participant type, 27-5, 28-38

G
genEmptyElem function

description, 6-50, B-39
generateGUID function

description, B-20
generate-guid function

description, B-49
getChildElement function

description, B-40
getContentAsString function

description, B-22
get-content-as-string function

description, B-10
getConversationId function

description, B-22
getCreator function

description, B-22
getCurrentDate function

description, 6-20, B-23
getCurrentDateTime function

description, 6-20, B-23
getCurrentTime function

description, 6-20, B-23
getDefaultRealmName function

description, B-59
getDomainId function

description, B-23
getElement function

description, B-24
getFaultAsString function

description, 11-25
getGroupIdsFromGroupAlias function

description, B-25
getGroupProperty function

description, B-59
getInstanceId function

description, B-25
getLinkStatus function

description, B-36
get-localized-string function

description, B-11
getManager function

description, B-59

getMessage function
description, B-40

getNodes function
description, B-26

getNodeValue function
description, B-25

getNotificationProperty function
description, B-54

getNumberOfTaskApprovals function
description, B-55

getPreference function
description, B-26

getPreviousTaskApprover function
description, B-55

getProcessId function
description, B-27

getProcessOwnerId function
description, B-27

getProcessURL function
description, B-27

getProcessVersion function
description, B-27

getReportees function
description, B-60

getTaskAttachmentByIndex function
description, B-55

getTaskAttachmentByName function
description, B-56

getTaskAttachmentContents function
description, B-56

getTaskAttachmentsCount function
description, B-56

getTaskResourceBindingString function
description, B-57

getUserAliasId function
description, B-28

getUserProperty function
description, B-60
example, 17-13

getUserRoles function
description, B-61

getUsersInGroup function
description, B-62

getVariableData function
description, 6-18, B-37
example, 17-13
throws selectionFailure if result node set size is 

greater than one, B-37
using in mathematical calculations, 6-17

getVariableProperty function
description, B-38

global task variable name
specifying in human task activities, 28-83

globalTxMaxRetry property
description, C-2

globalTxRetryInterval property
description, C-2

governance
Oracle Enterprise Repository, A-55

group names



Index-14

case sensitive by default, 28-11
group vote

configuring, 28-31
consensus percentage, 28-33
immediately triggering a voted outcome when a 

minimum percentage is met, 28-34
specifying group voting details, 28-33
waiting until all votes are in before triggering an 

outcome, 28-34

H
headers

normalized message header properties, H-1
SOAP headers, 6-53

Headers tab
in activities, A-5

heap size
increasing, 38-49, 43-12

History window
location of in Oracle JDeveloper, 4-5

hours-from-dateTime function
description, B-5

HTTP binding
binding component, 2-11, 2-17
capabilities, A-43
configuring with the HTTP Binding Wizard, 35-7
creating your own schema, 35-8
enabling basic authentication, 35-8
in SOA composite applications, 35-5
limitations in SOA composite applications, 35-5
support for HTTPS in inbound and outbound 

directions, 35-7
supported inbound and outbound 

interactions, 35-5
supported operation types, 35-7
supported XSD types, 35-6
unsupported HTTP headers, 35-6

HTTP headers
unsupported, 35-6

human task
service component, 2-7

human task activity
associating with a BPEL process, 28-78
identification key, 28-84
including the task history of other tasks, 28-84
scope name and global task variable name, 28-83
specifying a task initiator and task priority, 28-81
specifying a task title, 28-80
specifying task parameters, 28-81
task owner, 28-84
viewing BPEL callbacks, 28-86

human task definition
associating with a BPEL process, 28-2

Human Task Editor
abruptly completing a condition, 28-42
accessing the sections of, 28-6
actionable emails, 32-32
allowing all participants to invite other 

participants, 28-42

assigning task participants by name or 
expression, 28-26, 28-53

bypassing task participants, 28-31, 28-35, 28-38
changing character set encoding, 28-65
configuring the error assignee, 28-51
creating a human task, 28-3
customizing notification headers, 28-66
editing notification messages, 28-64
escalate after policy, 28-58
escalating, renewing, or ending a task, 28-55
escalation and expiration policy overview, 28-56
escalation rules, 28-59
expire after policy, 28-57
FYI assignee task participant, 28-38
group voting details, 28-33
inviting additional task participants, 28-31, 28-35, 

28-37
making email messages actionable, 28-65
multilingual settings, 28-54, 32-31
never expire policy, 28-57
notification preferences, 28-60
notifying recipients of changes to task 

status, 28-62
parallel task participant, 28-31
renew after policy, 28-58
securing notifications, 28-65, 32-34
sending email notifications to groups and 

application roles, 28-66
sending task attachments with email 

notifications, 28-66
serial task participant, 28-35
setting up reminders, 28-64
sharing attachments and comments with task 

participants, 28-34
showing the Oracle BPM Worklist URL in 

notifications, 28-65
single approver task participant, 28-22
specifying access policies, 28-67
specifying business event callbacks, 28-74
specifying callback classes, 28-73
specifying digital signatures, 28-71
task attachments with email notifications, 32-34
task category, 28-10
task outcome, 28-8
task owner specification through the user 

directory, 28-11
task owner specification through XPath 

expressions, 28-15
task participants, 28-19
task payload data structure, 28-17
task priority, 28-10
task routing and customization in BPEL 

callbacks, 28-76
task title, 28-8
time limits for acting on tasks, 28-30, 28-35, 28-37
WordML style sheets in attachments, 28-54

human tasks
creating, 28-3
designing a human task, 27-13

human workflow



Index-15

access rules, 27-9
application roles, 27-5
case sensitivity, 32-47
concepts, 27-3
database views, 32-60
definition, 27-1
groups, 27-5
integration with Oracle WebLogic Server, 32-48
participant assignments, 27-5
participant types, 27-4
participants, 27-4
routing policies, 28-39
System MBean Browser properties, K-8
task assignments, 27-6
task deadlines, 27-7
task stakeholders, 27-7
use cases, 27-11
users, 27-5

I
ICommand

clear, G-3
command line, 58-5
delete, G-3
detailed command descriptions, G-3
export, G-5

sample, G-18
general command and option syntax, 58-2
import, G-10
log, G-17
operations, G-1
regular expressions, G-18
remote execution, 58-6
rename, G-14
running, 58-1
sample export file, G-18
summary of commands, G-1
syntax, 58-2
syntax, object names, 58-3
XML file, G-15

ICommand utility, 58-1
ICommand web service, 56-4
identification key

specifying in human task activities, 28-84
identity service

definition, 27-28, 32-11
determining a user’s local language and time 

zone, 30-64
Enterprise JavaBeans, SOAP, and Java 

support, 32-2
functions

getDefaultRealmName, B-59
getGroupProperty, B-59
getManager, B-59
getReportees, B-60
getUserProperty, B-60
getUserRoles, B-61
getUsersInGroup, B-62
isUserInRole, B-62

lookupGroup, B-62
lookupUser, B-63

providers, 32-12, 32-13
support for in workflows, 32-11
supported task operations, 32-11
use with JAZN, 32-11, 32-12
use with LDAP, 32-11, 32-12
WSDL file location, 32-3

if activity
capabilities, A-19
defining conditional branching, 10-5
replaces the switch activity in BPEL 2.0, A-3

ignoreMissingFromData attribute
selecting in an assign activity, A-9
using, 6-34

IM activity
capabilities, A-20
notifications support, 17-9

implicit-timezone function
description, B-5

import
source and target schemas into a 

transformation, 38-9
indexes

in data objects, 52-17
indexing methods

using XPath, 6-46
index-within-string function

description, B-11
inline variables initialization

in BPEL 2.0, 8-5
inMemoryOptimization property

description, C-2
insertMissingToData attribute

selecting in an assign activity, A-9
using, 6-34

instances
starting new, 8-8

integer function
description, B-29

integration
of Java and WSDL-based components in the same 

composite, 36-1, 49-2, 49-14
interaction patterns

asynchronous interaction with a notification 
timer, 5-5

asynchronous interaction with a timeout, 5-4
asynchronous interactions, 5-3
common patterns between a BPEL process and 

another application, 5-1, 24-1
multiple interactions, 5-10
of interaction between a BPEL process and another 

application, 5-1, 24-1
one request, a mandatory response, and an 

optional response, 5-8
one request, multiple responses, 5-6
one request, one of two possible responses, 5-7
one-way message, 5-1
partial processing, 5-9
synchronous interactions, 5-2



Index-16

Invalid Settings error message, A-55
invoke activity

adding a conversation ID, 8-10
adding to an asynchronous service, 8-3
capabilities, A-20
definition, 4-7, 7-1
in asynchronous services, 8-3, 8-8
in synchronous services, 7-1, 7-5
throwing faults with assertion conditions, 11-45

isUserInRole function
description, B-62

J
JAR

See .JAR Files
.JAR files

adding custom classes and JAR files, 13-6
adf-desktop-integration.jar, 33-2
creating a JAR file for deployment, 41-18
resourcebundle.jar file, 33-2
wsclient.jar, 33-2

Java
support in workflow services, 32-2

Java applications
wrapped as SOAP services, 13-1

Java Connector Architecture (JCA)
definition, 1-3

Java embedding
bpelx:exec extension, 13-4
example, 13-7
in a BPEL process, 13-1
using thread.sleep(), 13-8

Java embedding activity
capabilities, A-21
using Java embedding in a BPEL process, 13-7

Java interfaces
creating Java interface integration with SOA 

composite applications, 36-11
integrating Enterprise JavaBeans and SOA 

composite applications, 36-1, 36-2
integration of Java and WSDL-based components 

in the same SOA composite application, 49-2
selecting when creating a partner link, 4-8
using with spring service components, 49-2

JAXB
configuring the workflow client, 32-53
support in SOA composite applications, 49-28

JAZN
storing a user’s local language and time 

zone, 30-64
use with identity service, 32-11, 32-12

jdbc.port parameter, 3-15
jdbc.sid parameter, 3-15
jdbc.urlBase parameter, 3-15
jdeveloper.home parameter, 3-15
JMS

definition, 1-3
JMS adapter

capabilities, A-44

definition, 35-10
sensor publish type, 18-2

JMS queue
sensor publish type, 18-2

JMS topic
sensor publish type, 18-2

join conditions
using in target activities, 9-10

K
keepGlobalVariables property

description, C-2
keepSrcElementName attribute

selecting in an assign activity, A-9
using, 6-35

knowledge module
Oracle BAM, 54-2

L
languages

changing
from jazn xml file, 30-66

preferences, 30-64
setting in JAZN, 30-64
setting in LDAP, 30-64

large documents
best practices for handling, 43-1
importing large data sets in Oracle B2B, 43-20
large numbers of mediators in composites, 43-20
limitations on concurrent processing, 43-12
opaque schema for processing large 

payloads, 43-12
processing in Oracle B2B, 43-16
setting a default JTA timeout for large 

documents, 43-12
setting audit levels, 43-13
use cases for handling, 43-1
using a flow with multiple sequences, 43-19
using a flow with no sequence, 43-20
using a flow with one sequence, 43-19
using assign activities in BPEL and 

mediator, 43-13
using large numbers of activities in BPEL processes 

(with FlowN), 43-19
using large numbers of activities in BPEL processes 

(without FlowN), 43-19
using XSLT transformations for repeating 

structures, 43-15
using XSLT transformations on large payloads (for 

BPEL and mediator), 43-14
large XML documents

processing with complex structures, 43-11
processing with repeating constructs, 43-10

last-index-within-string function
description, B-12

layouts, data object, 52-9
LDAP

storing a user’s local language and time 



Index-17

zone, 30-64
used with identity service, 32-11, 32-12

left-trim function
description, B-12

literal strings
assigning, 6-18

literal XML
variable initialization, 6-13

localization, worklist, 30-64
Log window

location of in Oracle JDeveloper, 4-5
looking up cross reference tables, 46-15

xref
lookupXRef function, 46-15

lookup fields, 52-4
lookupGroup function

description, B-62
lookup-table function

description, B-1
lookupUser function

description, B-63
lookupValue functions

dvm
lookupValue function, 44-8
lookupValue1M function, 44-9

lookup-xml function
description, B-52

lower-case function
description, B-13

M
managed.server parameter, 3-22
managed.server.port parameter, 3-22
management chains

definition, 28-24
participant lists, 28-26
rule-based, 28-24

ManualRuleFire web service, 56-4
map parameters

creating in transformations, 38-37
map variables

creating in transformations, 38-37
mapped attributes, 30-53, 30-54

using, 30-53
values, 32-17

master and detail processes
creating, 15-7
definition, 15-1
receive signal activity, A-28
signal activity, A-34

matches function
description, B-13

maxOccurs attribute, 6-45, 6-46
setting for transformations, 38-50

max-value-among-nodeset function
description, B-40

mediator
mediator files, 19-4
service component, 2-7

mediator creation
specifying operation or event subscription 

properties, 19-33
mediator files

.componentType, 19-4
composite.xml, 19-4
.mplan, 19-4
.wsdl, 19-4

mediator XPath extension functions, B-43
message filtering, 60-7, 61-11, 62-12
message schemas

updating, 2-15
viewing, 2-15

message source advanced formatting, 53-10
message sources, 53-1
message types

support for simple types in a message part, 2-14
MessageFilter, 60-7, 61-11, 62-12
MessageFilterFactory, 60-7, 61-11, 62-12
messages

receiving, 60-6, 61-9, 62-9
rejecting, 60-7, 61-11, 62-12

MessagingClientFactory, 60-3
MessagingClient.receive, 60-7, 61-9, 62-10
MessagingClient.registerAccessPoint, 60-6, 61-9, 

62-10
MessagingClient.registerMessageFilter, 60-7, 61-11, 

62-12
metadata

service components, 25-13
Metadata Service (MDS)

creating a SOA-MDS connections, 41-35
definition, 1-7

MIME
creating composites that use MIME 

attachments, 43-4
MIME mapping

Excel workbook, 33-3
MinBPELWait property, 14-12
minimum wait time

MinBPELWait property, 14-12
minOccurs attribute

setting for transformations, 38-50
minutes-from-dateTime function

description, B-6
min-value-among-nodeset function

description, B-41
modes

xref
populateXRefRow function, 46-11
populateXRefRow1M function, 46-13

modifying a mediator, 19-33
modifying event subscriptions, 19-34
modifying operations, 19-34

modifying cross reference tables
adding a column, 46-8

modifying mediator event subscriptions, 19-34
modifying mediator operations, 19-34
month-from-dateTime function

description, B-6



Index-18

MQ adapter
capabilities, A-44
definition, 35-10

MTOM
adding MTOM attachments to web services, 43-9
using SOAP, 43-2

multilingual settings
specifying in tasks, 28-54, 32-31

multipart WSDLs
adding to a composite, 2-14

myRole attribute
definition, 8-7

N
named templates

creating, 38-21
in functions, 38-21

names and expressions
definition, 28-24
participant list, 28-25
rule-based, 28-24

namespace prefix, B-36
namespaces

BPEL 1.1 prefix, 6-4, B-36
BPEL 2.0 prefix, 6-4, B-36
declaring extension namespaces in BPEL 2.0, 6-55
ensuring the uniqueness of WSDL 

namespaces, 2-15
naming conventions

for BPEL projects, 4-2
nonBlockingInvoke property

description, C-3
normalized message header properties

Oracle BPEL Process Manager, H-2
Oracle Web Services Addressing, H-3

NOT operator, 52-5
notification messages

editing, 28-64
notification services

actionable emails, 32-32
configuring the notification channel, 32-30
custom notification headers, 32-36
definition, 27-28
error message support, 32-29
multilingual settings, 32-31
notification contents, 32-28
reliability support, 32-29
sending inbound and outbound 

attachments, 32-34
sending inbound comments, 32-34
sending reminders, 32-34
sending secure notifications, 32-34
setting automatic replies to unprocessed 

messages, 32-35
specifying participant notification 

preferences, 28-60
notifications

allowing the end user to select the notification 
channels, 17-14

configuring in Oracle JDeveloper, 17-3
customizing notification headers, 28-66
definition, 27-8
dynamically setting email addresses and telephone 

numbers, 17-12
email attachment support, 17-7
email support, 17-2, 17-4
formatting the email message body as 

HTML, 17-8
IM support, 17-9
making email messages actionable, 28-65
securing to exclude details, 28-65
selecting recipients by browsing the user 

directory, 17-13
sending email notifications to groups and 

application roles, 28-66
sending task attachments with email 

notifications, 28-66
setting up, 17-3
showing the Oracle BPM Worklist URL, 28-65
SMS support, 17-10
voice mail support, 17-12

notifications and reminders
in tasks, 32-27

numeric values
assigning, 6-17

O
onAlarm branch

of pick activities, 14-2, A-25
of scope activities, 14-3, A-26

one-to-many mapping, 44-4
onEvent branch

creating in a scope activity, 14-15
specifying events to wait for message 

arrival, 14-13
one-way invocations

introduction, 12-4
oneWayDeliveryPolicy property

description, C-2
setting, 12-4

one.way.returns.fault
property, K-4

onMessage branch
of pick activities, 14-2, A-25
of scope activities, 14-3, A-26
simultaneous onMessage branches in BPEL 

2.0, 14-6
operators

AND operator, 52-5
optimization

streaming attachments, 43-6
OR operator, 52-5
Oracle Application Development Framework (ADF)

binding component, 1-5
Oracle Applications adapter

capabilities, A-44
definition, 35-10

Oracle B2B



Index-19

attachments, 43-9
binding component, 2-11, 2-17
capabilities, A-42
definition, 1-5, 35-11
properties, K-4
streaming, 43-12

Oracle BAM, 50-28
definition, 1-5, 35-11
See Oracle Business Activity Monitoring
Server connection, 51-2

Oracle BAM Adapter, 50-1
Oracle BAM knowledge modules, 54-2
Oracle BAM Server

creating a BPEL sensor, 50-29
creating a BPEL sensor action, 50-29
creating a connection to, 50-25

Oracle BAM Server connection, 50-25
Oracle BPEL Designer

layout, 4-3
Oracle BPEL Process Manager

System MBean Browser properties, K-8
Oracle BPM Worklist

See worklist
Oracle Business Activity Monitoring

capabilities, A-42
creating a BPEL sensor action for Oracle BAM 

Server, 50-29
creating a BPEL sensor for Oracle BAM 

Server, 50-29
creating a connection to Oracle BAM 

Server, 50-25
definition
integration with Oracle BPEL Process Manager 

sensors, 50-28
message batching limitations, 50-32
overview, 50-28

Oracle Enterprise Manager Fusion Middleware 
Control Console

improving the loading of pages, 43-20
properties, K-4

Oracle Enterprise Repository
design-time governance, A-55

Oracle Internet Directory
storing a user’s local language and time 

zone, 30-64
Oracle JDeveloper

adapters, 4-13
configuring notifications, 17-3
creating sensors, 18-3
installing the Oracle SOA Suite extension, 2-1
location of Application Navigator, 4-4
location of Component Palette, 4-4
location of Designer window, 4-4
location of History window, 4-5
location of Log window, 4-5
location of Property Inspector, 4-5
location of Source window, 4-5
location of Structure window, 4-5
overview of rules designer environment, 25-5
transformations, 38-7

Oracle JDeveloper project
desktop integration, adding, 33-2

Oracle Mediator
define routing rules, 20-1
definition, 19-1
routing rules, 20-1
System MBean Browser properties, K-8

Oracle Mediator component creation
mediator files, 19-4

Oracle Mediator Editor, 19-4
environment

Application Navigator, 19-4
History Window, 19-5
Log Window, 19-5
Oracle Mediator Editor, 19-4
Property Inspector, 19-5
Source View, 19-5
Structure Window, 19-5

layout, 19-4
Oracle Mediator error handling

actions, 22-4
conditions, 22-2
fault bindings, 22-8
fault policy, 22-1
introduction, 22-1
using, 22-10
XML schema files, 22-11

Oracle Service Bus (OSB)
invocation by the direct binding service, 35-12, 

37-7, A-43
Oracle Service Registry

changing endpoint locations in the registry 
control, A-52

configuring a SOA project to invoke a service from 
the registry, A-46

configuring the inquiry URL, UDDI service key, 
and endpoint address for runtime, A-51

creating a connection to, A-45
dynamically resolving the SOAP endpoint 

location, A-47
dynamically resolving the WSDL endpoint 

location, A-48
publishing a business service, A-45
publishing and browsing, A-44
publishing WSDLs from multiple SOA 

partitions, A-54
publishing WSDLs to UDDI for multiple 

partitions, A-54
System MBean Browser properties, K-9

Oracle SOA Suite
definition, 1-2

Oracle User Messaging Service (UMS)
configuring, 59-1
definition, 17-2

oracle.composite.faultBindingFile
property, 11-7, K-3

oracle.composite.faultPolicyFile
property, 11-7, K-3

oracle.home parameter, 3-22
oracle.webservices.local.optimization



Index-20

property, K-3
streaming attachments, 43-6

OrderAppovalHumanTask project, 3-7
OrderBookingComposite composite

business rules, used in, 3-10
OrderBookingComposite project, 3-7

flow described, 3-8
OrderProcessor BPEL process, 3-8
OrderSDOComposite project, 3-7
organizing data objects, 52-10
org.quartz.scheduler.idleWaitTime

properties, K-4
overview, 18-2
OXM

support in SOA composite applications, 49-28

P
packaging

of artifact files for deployment, 41-2
pages

improving the loading of pages in Oracle 
Enterprise Manager Fusion Middleware 
Control Console, 43-20

parallel
definition, 28-31
workflow participant type, 28-31

parallel blocks
definition, 28-20

parallel branches
customizing the number, 9-10

parallel flows
definition, 9-1

parallel participant types
specifying where to store the subtask 

payload, 28-53
parseEscapedXML function

description, 6-51, B-29
partial processing

BPEL process as the client, 5-10
BPEL process as the service, 5-10
definition, 5-9

participant assignments
definition, 27-5

participant lists
rulesets, 28-27
value-based management chains, 28-26
value-based names and expressions, 28-25

participant types
FYI assignee, 27-4, 27-5, 28-38
parallel, 27-4, 28-31
serial, 27-4, 28-35
single approver, 27-4, 28-22

partitions
ant scripts, 41-55
creating, 41-24
default partition, 41-24
deployment in, 41-24
in the Fusion Order Demo, 3-22
issues with deploying the same composite with a 

human workflow into multiple 
partitions, 41-24, 41-46

selecting a partition during deployment, 41-24
partner link activity

capabilities, A-22
partner links

adding to an asynchronous service, 8-2
creating, 4-9
definition, 4-7
for an inbound adapter, 4-11
for an outbound adapter, 4-10
from an abstract WSDL to call a service, 4-11
from an abstract WSDL to implement a 

service, 4-11
from an existing human task, business rule, or 

Oracle Mediator, 4-12
in asynchronous services, 8-2, 8-6, 8-7
in synchronous services, 7-1
Oracle BAM, 50-27
overview, 4-7
specifying a WSDL file, 4-8
using a dynamic partner link at runtime, 8-11
with human tasks or business rules, 4-12

partnerLinkType
definition, 8-6

partnerRole attribute
definition, 8-7

PartnerSupplierComposite project, 3-7
passThroughHeader

property, K-3
permissions

copying, 52-7
data objects, 52-6
setting on folders, 52-11

phase activity
BPEL scope creation, 48-4
business rule service component creation, 48-5
capabilities, A-23
mediator service component creation, 48-4
using with two-layer business process 

management, 48-3
pick activity

adding correlations on an OnMessage 
branch, A-26

capabilities, A-24
code example, 14-5
condition branches, 14-2
creating, 14-3
differences with a receive activity, 14-3
for timeouts, 14-1
onAlarm branch, 14-2, A-26
onMessage branch, 14-2, A-25
simultaneous onMessage branches in BPEL 

2.0, 14-6
throwing faults with assertion conditions, 11-45

policies
adding security policies, 2-24
attaching, 40-2
definition, 40-1
overriding client property values, 40-6



Index-21

overriding policy configuration property 
values, 40-6

overriding server property values, 40-8
supported categories, 40-1

populating cross reference tables, 46-9
xref

populateXRefRow1M function, 46-12
portlets

See task list portlets
ports

in synchronous services, 7-1
portType

definition, 8-6
position function

description, 6-45
process definitions

importing in BPEL 2.0, 6-44
process initiation

in BPEL test suites, 42-3
processes

naming conventions, 4-2
processXQuery function

description, B-30
processXSLT function

description, B-30
example, 17-8

processXSQL function
description, B-34

projects
naming conventions, 4-2
ViewController, 33-2

properties
adapter rejected messages, K-4
completionPersistPolicy, C-2, K-1
composite.xml file properties, K-3
cross references, K-6
deployment descriptors overview, K-1
disableAsserts, C-2, K-1
endpointURI, K-3
fault policy, K-4
globalTxMaxRetry, C-2, K-1
globalTxRetryInterval, C-2, K-1
human workflow notifications, K-5
human workflow System MBean Browser, K-8
human workflow task service, K-5
inMemoryOptimization, C-2, K-1
JCA adapter normalized message header 

properties overview, K-2
keepGlobalVariables, C-2, K-1
nonBlockingInvoke, C-3, K-2
normalized message header properties 

overview, K-2
normalized message properties, H-1
oneWayDeliveryPolicy, 12-4, C-2, K-1
one.way.returns.fault, K-4
Oracle B2B, K-4, K-6
Oracle B2B normalized message header properties 

overview, K-3
Oracle BPEL Process Manager, K-5
Oracle BPEL Process Manager normalized message 

header properties overview, K-2
Oracle BPEL Process Manager System MBean 

Browser, K-8
Oracle Enterprise Manager Fusion Middleware 

Control Console, K-4
Oracle Mediator, K-6
Oracle Mediator System MBean Browser, K-8
Oracle Service Registry, K-9
Oracle Web Services Addressing normalized 

message header properties overview, K-2
oracle.composite.faultBindingFile, 11-7, K-3
oracle.composite.faultPolicyFile, 11-7, K-3
oracle.webservices, K-3
org.quartz.scheduler.idleWaitTime, K-4
passThroughHeader, K-3
retryCount, K-4
retryInterval, K-4
rolesAllowed, K-3
sensorActionLocation, C-2, K-1
sensorLocation, C-2, K-1
service and reference binding components, K-6
SOA Infrastructure, K-5
SOA Infrastructure System MBean Browser, K-7
streamIncomingAttachments, K-3
streamOutgoingAttachments, K-3
System MBean Browser, K-7
transaction, 12-1, 12-2, 12-3, C-2, K-2
uddiCacheLifetime, K-9
validateXML, C-3, K-2

Properties tab
in activities, A-5

property aliases
creating for correlation sets, 8-23

Property Inspector
location of in Oracle JDeveloper, 4-5

public views
sensors, D-1

publish types
creating a custom publisher, 18-12
custom, 18-2
database, 18-2
definition, 18-2
JMS Adapter, 18-2
JMS queue, 18-2
JMS topic, 18-2

purge script
deleting instances and rejected messages, 43-20

Q
Qname

fault name, 11-5
qualifier, 44-2

qualifier order, 44-3
qualifier order, 44-3
query-database function

description, B-2



Index-22

R
readBinaryFromFile function

description, B-35
readFile function

description, B-35
limitation on web server file access requiring 

authorization, B-36
reading files from absolute directory paths, B-35

receive activity
adding to an asynchronous service, 8-4
associating with correlation sets, 8-22
capabilities, A-26
create instance, 8-8
creating new instances, 8-8
differences with a pick activity, 14-3
in asynchronous services, 8-4, 8-8
setting timeouts for request-response 

operations, 14-7
throwing faults with assertion conditions, 11-45

receive signal activity
capabilities, A-28
in master and detail processes, 15-8

receiving a message, 60-6, 61-9, 62-9
references

adding, 2-16, 2-18
definition, 1-5, 1-7, 2-12
deleting, 2-18
wiring, 2-21

regular expressions
ICommand, G-18

rejecting messages, 60-7, 61-11, 62-12
reminders

for task notifications, 32-34
remoteFault

definition, 11-6
remove entity activity

capabilities, A-28
renaming data objects, 52-17
renaming folders, 52-12
renewing

tasks, 28-55
repeating constructs

processing large XML, 43-10
repeating elements

in transformations, 38-28
repeatUntil activity

capabilities, A-29
defining conditional branching, 10-10

replay activity
capabilities, A-30
creating, 11-37
re-executing activities in a scope activity, 11-37

replayFault
definition, 11-6

reply activity
capabilities, A-30

reporting schema
for database publish type of sensors, D-1

reports
correcting memory errors when generating for 

transformations, 38-49
customizing sample XML generation for 

transformations, 38-50
generating for transformations, 38-48
worklist, 30-59

resequencing
BestEffort resequencer, 23-5
configuring, 23-8
configuring the strategy, 23-9
definition, 23-1
determining the level, 23-8
FIFO resequencer, 23-4
groups and sequence IDs, 23-1
identification of groups and sequence IDs, 23-2
limitations, 23-12
order types, 23-2
standard resequencer, 23-3

resource bundles, 32-44
class loading, 32-44
for displaying tasks in different languages, 28-54, 

32-31
specifying stage and participant names, 32-47

Resource Palette
introduction, 2-5
using, 2-13

resourcebundle.jar file, 33-2
rethrow activity

capabilities, A-31
rethrowing faults, 11-26
supported in BPEL 2.0 projects, A-31

retryCount
properties, K-4

retryInterval
properties, K-4

revisions
activating, 2-27
invoking the default revision, 2-19
retiring, 2-27
setting the default revision, 2-28
turning off, 2-27
turning on, 2-27
undeploying, 2-28

right-trim function
description, B-13

roles
for partner links in asynchronous services, 8-6

rolesAllowed
property, K-3

routing policies
available types, 28-40
business rules, 28-41
completing parent subtasks of early completing 

subtasks, 28-44
enabling early completion in parallel 

subtasks, 28-43
external routing, 28-41, 28-49
routing a task to all participants in the order 

specified, 28-40
selecting, 28-39

routing rules, 20-1



Index-23

define, 20-1
defining, 20-1
filter expression, 20-14
introduction, 20-1

routing slip
definition, 28-30

RPC styles
differences with document-literal styles in WSDL 

files, 6-1, 6-52
rulesets

management chains, 28-24
names and expressions, 28-24
participant lists, 28-27

runtime config service
definition, 27-28
Enterprise JavaBeans, SOAP, and Java 

support, 32-2
supported task operations, 32-16
WSDL file location, 32-3

runtime exceptions, 11-5
runtime faults

definition, 11-5
example, 11-24

RuntimeFault.wsdl file
importing into a process, 11-24

S
samples

business events, 39-1
business rules, 25-23
cross references, 46-22
domain value maps, 44-22
dynamic assignment functions, 32-39
email notifications, 29-32
Hello World, 7-1
human workflow, 27-26, 28-48, 28-76
internationalization of attribute labels, 32-19
iterative design, 28-48
mediator, 44-13
mediator asynchronous response, 20-58
mediator routing messages, 20-47
notifications, 17-8
Oracle BPEL Process Manager, 6-2
Oracle SOA Suite, 1-9
transformations, 38-22
two-layer business process management, 48-7
workflow event callbacks, 28-76

SAR file
definition, 1-8, 41-3
deploying, 41-16

SCA See  Service Component Architecture
sca-build.properties file, 3-20
schema files

creating a transformation map file from imported 
schemas, 38-9

replacing in the XSLT Mapper, 38-41
schemas

updating message schemas, 2-15
viewing message schemas, 2-15

scope activity
adding descriptive notes and images, 11-30
capabilities, A-32
creating, 11-31
creating an onEvent branch, 14-14
fault handling, 11-29
re-executing with a replay activity, 11-37
using a fault handler in a scope activity, 11-33

scope name
specifying in human task activities, 28-83

SDO
See Service Data Objects (SDO)

seconds-from-dateTime function
description, B-6

security filters
copying, 52-15
on data objects, 52-13

security model
for workflow services, 32-4
in SOAP web services, 32-5
workflow context on behalf of a user, 32-5

security policies
See policies

seed.bam.do parameter, 3-21
seedBAMServerObjects ant script, 3-23
seedDemoUsers ant script, 3-23
seedFodJmsResources ant script, 3-23
sensor actions

configuring, 18-8
creating a BPEL sensor action for Oracle BAM 

Server monitoring, 50-29
viewing metadata, 18-15
XSD schema file, D-5

sensor data
persisting in a reporting schema, D-1

sensorActionLocation property
description, C-2

sensorLocation property
description, C-2

sensors, 18-2, 50-28
activity sensors, 18-2
BPEL reporting schema, D-1
configuring, 18-4
creating a BPEL sensor for Oracle BAM Server to 

monitor, 50-29
creating a connection to Oracle BAM 

Server, 50-25
creating a custom publish type, 18-12
creating in Oracle JDeveloper, 18-3
definition, 18-2
evaluation time, 18-5
fault sensors, 18-2
integration with Oracle Business Activity 

Monitoring, 50-28
public views, D-1
publish types, 18-2
sensor actions XSD schema file, D-5
variable sensors, 18-2
viewing metadata, 18-15

sequence activity



Index-24

capabilities, A-33
sequence-next-val function

description, B-2
sequential blocks

definition, 28-20
sequential list of approvers

configuring, 28-35
serial

definition, 28-35
workflow participant type, 28-35

server connection, Oracle BAM, 51-2
server.password parameter, 3-22
server-setup-seed-deploy-test ant script, 3-23
server.targets parameter, 3-22
server.user parameter, 3-22
Service Component Architecture

definition, 1-2
described, 1-3

service components
adding, 2-6, 2-8
available types, 1-4
BPEL process, 1-4, 2-7, 4-1
business rules, 1-4, 2-7, 25-13
definition, 1-4
deleting, 2-8
editing, 2-9
human task, 1-4, 2-7, 28-1
introduction, 2-7, 2-11, 2-17
mediator, 1-4, 2-7, 19-1
metadata, 25-13
spring, 1-4, 2-7
types, 2-7
web service, 25-13
wiring, 2-20, 2-21

Service Data Objects (SDO), 6-7
creating Enterprise JavaBeans integration with 

SOA composite applications, 36-8
definition, 1-2

converting from XML to SDO, 6-12
declaring SDO-based variables, 6-11

embedding with bpelx:exec, 13-8
entity variable support, 6-7
passing parameters between Enterprise JavaBeans 

and SOA composite applications, 36-1, 36-2
using in Enterprise JavaBeans Java interfaces

using in an Enterprise JavaBeans 
application, 36-3

using standalone SDO-based variables, 6-11
service engines

definition, 1-7
described, 1-8
human workflow, 27-31

Service Infrastructure
definition, 1-7

service names
in adapters, 4-13

Service-Oriented Architecture (SOA)
definition, 1-1

services
adding, 2-10, 2-16

ADF-BC, 1-5, 35-11, A-42
AQ adapter, A-42
automatically exposing as a SOAP service, 2-10
database adapter, A-43
definition, 1-1, 1-5, 1-7, 2-12
deleting, 2-16
direct binding service, 35-12, 37-1, A-43
editing, 2-16
Enterprise JavaBeans (EJB) service, 35-11, A-43
file adapter, A-43
FTP adapter, A-43
HTTP binding, 35-5, A-43
JMS adapter, A-44
MQ adapter, A-44
Oracle Applications adapter, A-44
Oracle B2B, A-42
Oracle Business Activity Monitoring, A-42
overview, A-42
selecting a WSDL, 2-12
socket adapter, A-44
third party adapter, A-44
web service, A-44
wiring, 2-20

servlet
adfdiRemote, 33-3

setDomainEnv.cmd file, 3-4
setDomainEnv.sh file, 3-4
setting folder permissions, 52-11
setting up, 32-32
signal activity

capabilities, A-34
in master and detail processes, 15-7

simple types
supported as message parts, 2-14

single approver
configuring, 28-22
definition, 28-22
workflow participant type, 28-22

Skip Condition tab
bypassing execution of activities, 10-13
in activities, A-6
only available in BPEL 1.1 projects, A-6

SMS activity
capabilities, A-35
notifications support, 17-10

SOA Composer
accessing, 45-2
committing changes at runtime, 45-5
definition, 45-1
detecting conflicts among concurrent users, 45-6
editing domain value maps at runtime, 45-4
saving domain value maps at runtime, 45-5
SOADesigner role required to access 

metadata, 45-3
viewing domain value maps at runtime, 45-3

SOA composite applications
activating, 2-27
creating, 2-1
customizing, 16-1
deploying a single composite, 41-14



Index-25

deploying an existing archive, 41-39
deploying multiple composites, 41-27
deploying shared metadata across 

composites, 41-29
deployment, 2-28
interacting with Enterprise JavaBeans, 36-1
invoking other composites, 2-25
invoking the default revision, 2-19
restrictions on application names, 2-2
retiring, 2-27
setting as the default revision, 2-28
shutting down, 2-27
starting up, 2-27
testing, 2-25
undeploying, 2-28

SOA Composite Editor
layout, 2-4

SOA Governance
Oracle Enterprise Repository, A-55

SOA Infrastructure
properties, K-5
System MBean Browser properties, K-7

SOA XPath extension functions, B-1
SOA-MDS connections

opening the composite.xml file, 2-6
soa.only.deployment parameter, 3-22
SOAP

definition, 1-3
reading and encoding SOAP attachment 

content, 43-7
security in SOAP web services, 32-5
support in workflow services, 32-2
with attachments, 43-3

SOAP headers, 6-53
receiving in BPEL, 6-53
sending in BPEL, 6-54

SOAP services
performance issues, 13-1
using Java code, 13-1

SOAP-encoded arrays, 6-46
in BPEL 2.0, 6-47

soa.server.oracle.home parameter, 3-22
socket adapter

capabilities, A-44
definition, 35-10

Source window
location of in Oracle JDeveloper, 4-5

sources
message, 53-1

Sources tab
in activities, A-6

specifying operation or event subscription 
properties, 19-33

spring
contents of componentType file, 49-13
contents of spring context file, 49-7
creating a spring service component in Oracle 

JDeveloper, 49-5
EXM files, 49-29
in Fusion Order Demo, 3-7, 49-21

integration
of Java and WSDL-based components in the 

same composite, 49-2
introduction, 49-1
JAXB and OXM support, 49-28
service component, 2-7
using callbacks, 49-4

square-root function
description, B-41

SSL
configuring when creating an application server 

connection, 41-15
stages

definition, 28-20
standard faults

BPEL 1.1, 11-3
BPEL 2.0, 11-3
definition, 11-3

Store Front module
deploying, 3-19
fod.application.issoaenabled property, 3-17
placing orders, 3-23
StoreFrontService project, 3-2

StoreFrontService project, 3-2
StoreFrontUI project, 3-2
streamIncomingAttachments

property, K-3
streamIncomingAttachments property, 43-6
streaming

attachments, 43-3
Oracle B2B, 43-12
properties for streaming attachments, 43-6
sending attachment streams, 43-7
with the file and FTP adapters, 43-11

streamOutgoingAttachments
property, K-3

streamOutgoingAttachments property, 43-6
string functions in calculations, 52-5
strings

concatenating, 6-18
converting to an XML element, 6-51

Structure window
location of in Oracle JDeveloper, 4-5

subtract-dayTimeDuration-from-dateTime function
description, B-6

switch activity
capabilities, A-35
in conditional branching logic, 10-2
replaced by the if activity in BPEL 2.0, 7-3, A-4

synchronization
of activity execution, 9-5

synchronous callbacks, 7-1
operational concepts, 7-2
SyncMaxWaitTime property, 7-6

synchronous interactions
BPEL process as the client, 5-3
BPEL process as the service, 5-3
definition, 5-2
returning faults, 11-28

synchronous processes



Index-26

calling a one-way mediator, 7-7
setting timeouts, 14-15

synchronous receiving, 60-7, 61-9, 62-10
synchronous requests

not timing out, 7-6
synchronous services

callbacks with the partner link and invoke 
activity, 7-1

calling, 7-2
invoke activities, 7-5
ports, 7-1

SyncMaxWaitTime property
in synchronous callbacks, 7-6
synchronous requests not timing out, 7-6

System MBean Browser
properties, K-7

T
Targets tab

in activities, A-6
task action time limits

specifying, 28-30, 28-35, 28-37
task admin

definition, 27-7
task assignments

dynamic, 27-6
restricting, 28-72
rule-based, 27-6
static, 27-6

task category
specifying, 28-10

task conditions
abruptly completing a condition, 28-42

task deadlines
definition, 27-7

task display form
autogenerated, 29-8
creating, 29-8, 29-26, 29-28
creating a task form with the Custom Task Form 

Wizard, 29-11
definition, 28-3, 29-1
deploying, 29-38, 29-40
displaying, 29-47
generating content for facets, 29-12
registering the library JAR file for custom page 

templates, 29-10
.task file

associating with a BPEL process, 28-2, 28-78
definition, 28-2, 28-5

task flow
ADF

task display form for human tasks, 29-3
deploying, 41-21

task history
specifying in human task activities, 28-84

task initiator
definition, 27-7
specifying, 28-81

task instance attributes, 32-23

task list portlets
assignment filter constraints, 34-20
configuring EJB identity propagation, 34-5
configuring the identity store, 34-5
connecting the task list producer to the remote 

SOA server, 34-3
creating a portlet consumer application for 

embedding the task list portlet, 34-9
defining the foreign JNDI provider, 34-3
deploying the task list producer application on a 

portlet server, 34-2
deployment prerequisites, 34-2
example of file containing all column 

constraints, 34-21
introduction, 34-1
passing worklist portlet parameters, 34-16
securing the task list portlet producer 

application, 34-6
specifying the inbound security policy, 34-7

task metadata service
definition, 27-28
Enterprise JavaBeans, SOAP, and Java 

support, 32-2
supported task operations, 32-13
WSDL file location, 32-3

task notification
editing notification messages, 28-64
making email actionable, 32-32
notifying recipients of changes to task 

status, 28-62
overview, 28-60
reminders, 32-34
securing notifications, 32-34
setting up reminders, 28-64
task attachments with email notifications, 32-34

task outcome
specifying, 28-8

task outcomes
restrictions on specifying custom names, 28-10

task owner
definition, 27-7
specifying by browsing the user directory, 28-11
specifying in human task activities, 28-84
specifying through XPath expressions, 28-15

task parameters
specifying, 28-81

task participants
allowing all participants to invite other 

participants, 28-42
assigning task participants by name or 

expression, 28-26, 28-53
bypassing, 28-31, 28-35, 28-38
dynamically assigning with the assignment 

service, 32-39
inviting additional task participants, 28-31, 28-35, 

28-37
sharing attachments and comments, 28-34
specifying, 28-19

task payload data structure
specifying, 28-17



Index-27

task priority
specifying, 28-10, 28-81

task query service
definition, 27-28
Enterprise JavaBeans, SOAP, and Java 

support, 32-2
supported task operations, 32-9
WSDL file location, 32-2

task reminders
setting up, 28-64

task report service
Enterprise JavaBeans, SOAP, and Java 

support, 32-2
supported task operations, 32-16
WSDL file location, 32-3

task reviewer
definition, 27-7

task routing service
definition, 27-27

task service
definition, 27-27
Enterprise JavaBeans, SOAP, and Java 

support, 32-2
supported task operations, 32-6
WSDL file location, 32-2

task stages
definition, 27-9

task title
specifying, 28-80

tasks
escalating, renewing, or ending a task, 28-55
notifications and reminders, 32-27

TCP tunneling
setting up a TCP listener for asynchronous 

services, 8-14
setting up a TCP listener for synchronous 

services, 8-13
terminate activity

capabilities, A-36
definition, 11-43
fault handling, 11-43
replaced by the exit activity in BPEL 2.0, A-4

test suites
components, 42-3
creating, 42-5
definition, 42-1
limitations on multibyte character names, 42-5

third party adapter
capabilities, A-44
definition, 35-10

thread.sleep()
using in a Java embedding activity, 13-8

throw activity
capabilities, A-37
throwing internal faults, 11-25

time
assigning with a function, 6-20

time dimensions, 52-16
time duration format, 14-2
time stamp field, 52-6

time zones, changing, 30-67
Timeout tab

in activities, 14-7, A-6
only available in BPEL 1.1 projects, A-6
setting for request-response operations in receive 

activities, 14-7
timeout values

specifying, 7-6
timeouts

event added to the audit trail during a 
timeout, 14-10

increasing the JTA transaction timeout 
value, 43-12

of BPEL processes, 14-1
recoverable timeout activities during a server 

restart, 14-10
setting for request-response operations in receive 

activities, 14-7, 14-10
setting relative from when the activity is 

invoked, 14-7
settings as an absolute date time, 14-8
settings computed dynamically with an XPath 

expression, 14-9
SyncMaxWaitTime property, 7-6
using pick activities, 14-1
using the wait activity, 14-12

timezone-from-dateTime function
description, B-7

title
specifying in a human task, 28-8

top-down design approach, 1-8
trackable fields

composite sensors, 47-1
transaction property

description, C-2
setting, 12-1, 12-2, 12-3

transaction semantics
in BPEL processes, 12-1

transaction timeouts
increasing the JTA transaction timeout 

value, 43-12
transform activity

capabilities, A-37
creating, 38-7

transformations
adding XSLT constructs, 38-25
auto mapping, 38-32
auto mapping with confirmation, 38-33
chaining functions, 38-20
correcting memory errors, 38-49
creating, 38-7
creating a map file from imported schemas, 38-9
creating a new map file, 38-7
creating an XSL map from an XSL style 

sheet, 38-7
customizing sample XML generation, 38-50
dictionaries, 38-36
editing functions, 38-20
editing XPath expressions, 38-24
error when mapping duplicate elements, 38-7



Index-28

functions, 38-19
functions prefixed with xp20 or orcl, 38-19
generating optional elements, 38-50
generating reports, 38-48
ignoring elements, 38-41
linking source target nodes, 38-17
map parameter and variable creation, 38-37
named templates in functions, 38-21
repeating elements, 38-28
replacing schemas, 38-41
rules, 38-6
searching source and target nodes, 38-39
setting constant values, 38-18
setting the maximum depth, 38-50
setting the number of repeating elements, 38-50
testing the map file, 38-45
using arrays, 38-28
using the XSLT Mapper, 38-16
using XQuery and XSLT, 6-5
viewing unmapped target nodes, 38-35
xsl choose conditional processing, 38-28
xsl if conditional processing, 38-26

translateFromNative function
description, B-41

translateToNative function
description, B-42

troubleshooting
deployment, 41-62

tuning
general recommendations, 43-12

two-layer business process management
definition, 48-1
dynamic routing decision table, 48-6
phase activity, 48-3
use case, 48-7

U
UDDI See  Oracle Service Registry
uddiCacheLifetime

property, K-9
undeployment

SOA composite applications, 2-28
Unicode support, 2-2
upper-case function

description, B-14
user directory

selecting notification recipients by browsing the 
directory, 17-13

user metadata service
definition, 27-28
Enterprise JavaBeans, SOAP, and Java 

support, 32-2
supported task operations, 32-14
WSDL file location, 32-3

user notification activity
allowing the end user to select the notification 

channels, 17-14
capabilities, A-38

user notifications

definition, 17-14
using domain value maps, 44-8
using domain value maps a transformation, 44-9
using error handling, 22-10
using lookupValue functions, 44-11
using Oracle Mediator error handling, 22-10

V
validate activity

capabilities, A-39
validate syntax (XSD) property

specifying operation or event subscription 
properties, 19-33

validateXML property
description, C-3

validation
of XML data with bpelx:validate, 6-35
when loading a process diagram, A-55

variable sensors
definition, 18-2

variables
complex type, 6-15
copying data between, 6-14
element variables in message exchange activities in 

BPEL 2.0, 6-36
initializing variables inline in BPEL 2.0, 8-5
initializing with an inline from-spec in BPEL 2.0 

projects, 6-15
initializing with expression constants, 6-13
initializing with literal XML, 6-13

ViewController project, 33-2
voice activity

capabilities, A-40
notifications support, 17-12

voice mail
dynamically setting telephone numbers, 17-12
notifications support, 17-12

W
wait activity

capabilities, A-40
creating, 14-12
definition, 14-12
setting an expiration time, 14-12

web services
adding a WSDL file, 2-12
binding component, 2-11, 2-17
capabilities, A-44
connecting with SOAP over HTTP, 1-5
DataObjectDefinition, 56-3
DataObjectOperations, 56-2
definition, 35-2
ICommand, 56-4
ManualRuleFire, 56-4
service component, 25-13
WS-Atomic transactions support, 35-2
WSDL files, 25-13

WebLogic Fusion Order Demo application



Index-29

B2BX12OrderGateway project, 3-7
bin project, 3-7
composite.xml file, 3-7
CreditCardAuthorization project, 3-7
deploying, 3-20
ExternalLegacyPartnerSupplier project, 3-7
OrderAppovalHumanTask project, 3-7
OrderBookingComposite project, 3-7
OrderSDOComposite project, 3-7
overview, 3-6
PartnerSupplierComposite project, 3-7
processing described, 3-8
projects in, 3-7
setting up, 3-3
viewing in Oracle JDeveloper, 3-6

web.xml file, 33-3
wfDynamicGroupAssign function

description, B-57
wfDynamicUserAssign function

description, B-58
while activity

capabilities, A-41
in conditional branching logic, 10-8

wires
adding, 2-20, 2-23
definition, 1-6
deleting, 2-23
using, 2-20
wiring a service component and reference, 2-21

WLST utility
creating a configuration plan, 41-14
deployment with, 41-41

WordML style sheets
using for attachments, 28-54

workflow context
creating on behalf of a user, 32-5

workflow functions
overview, 32-1

workflow service clients, 31-3
interface, 31-5

workflow services
abruptly completing a condition, 28-42
actionable emails, 32-32
allowing all participants to invite other 

participants, 28-42
assigning task participants by name or 

expression, 28-26, 28-53
assignment service configuration, 32-36
associating the human task activity with a BPEL 

process, 28-78
associating the human task definition with a BPEL 

process, 28-2
bypassing task participants, 28-31, 28-35, 28-38
changing character set encoding, 28-65
customizing notification headers, 28-66
editing notification messages, 28-64
Enterprise JavaBeans references, 31-7
Enterprise JavaBeans support, 32-2
escalate after policy, 28-58
escalating, renewing, or ending a task, 28-55

escalation and expiration policy overview, 28-56
escalation rules, 28-59
expire after policy, 28-57
functions, B-54

clearTaskAssignees, B-54
createWordMLDocument, B-54
getNotificationProperty, B-54
getNumberOfTaskApprovals, B-55
getPreviousTaskApprover, B-55
getTaskAttachmentByIndex, B-55
getTaskAttachmentByName, B-56
getTaskAttachmentContents, B-56
getTaskAttachmentsCount, B-56
getTaskResourceBindingString, B-57
wfDynamicGroupAssign, B-57
wfDynamicUserAssign, B-58

FYI assignee task participant, 28-38
group voting details, 28-33
identification key, 28-84
identity service, 27-28
including the task history of other tasks, 28-84
inviting additional task participants, 28-31, 28-35, 

28-37
Java support, 32-2
making email messages actionable, 28-65
multilingual settings, 28-54, 32-31
never expire policy, 28-57
notification contents, 32-28
notification preferences, 28-60
notification service, 27-28, 32-30
notifications, 32-27
notifying recipients of changes to task 

status, 28-62
overview, 32-1
parallel task participant, 28-31
renew after policy, 28-58
routing slip

definition, 28-30
runtime config service, 27-28
scope name and global task variable name, 28-83
securing notifications, 28-65, 32-34
security model, 32-4, 32-5
sending email notifications to groups and 

application roles, 28-66
sending task attachments with email 

notifications, 28-66
serial task participant, 28-35
setting up reminders, 28-64
sharing attachments and comments with task 

participants, 28-34
showing the Oracle BPM Worklist URL in 

notifications, 28-65
single approver task participant, 28-22
SOAP support, 32-2
specifying a task initiator and task priority, 28-81
specifying a task title, 28-80
specifying callback classes, 28-73
specifying task parameters, 28-81
support for identity service, 32-11
task attachments with email notifications, 32-34



Index-30

task category, 28-10
task display form, 28-3, 29-1
.task file

definition, 28-2, 28-5
task metadata service, 27-28
task notifications, 32-27
task outcomes, 28-8
task owner, 28-84
task owner specification through the user 

directory, 28-11
task owner specification through XPath 

expressions, 28-15
task participants, 28-19
task payload data structure, 28-17
task priority, 28-10
task query service, 27-28
task routing and customization in BPEL 

callbacks, 28-76
task routing service, 27-27
task service, 27-27
task title, 28-8
time limits for acting on tasks, 28-30, 28-35, 28-37
user metadata service, 27-28
viewing BPEL callbacks, 28-86
WordML style sheets in attachments, 28-54

worklist
acting on tasks, 30-28
acting on tasks that require a digital 

signature, 30-35
administration functions, 30-45
approving tasks, 30-38
assignment rules for tasks with multiple 

assignees, 30-44
changing the display, 30-46
creating a subtask, 30-21
creating a ToDo list, 30-20
creating and customizing worklist views, 30-15
creating group rules, 30-43
creating user rules, 30-41
customizing the task status chart, 30-19
definition, 30-1
filtering tasks, 30-8
logging in, 30-3
managing messaging channels, 30-49
managing messaging filters, 30-51
managing rules, 30-45
mapping mapped attributes, 30-54
messaging filter rules, 30-47
reports, 30-58, 30-59
rule actions, 30-49
setting a vacation period, 30-39
setting rules, 30-41
specifying notification settings, 30-47
system actions, 30-25
Task Details page, acting on tasks, 30-22
task history, 30-26
Task Listing page contents, 30-6
Task Listing page, customizing, 30-8
using mapped attributes, 30-53

worklist clients

building for workflow services, 31-1
class paths for clients using local Enterprise 

JavaBeans, 31-7
class paths for clients using remote Enterprise 

JavaBeans, 31-6
class paths for clients using SOAP, 31-6
customizing, 31-1
packages and classes for, 31-2

writeBinaryToFile function
description, B-36

WS-Addressing
sending correlation IDs, 8-8
using in an asynchronous service, 8-12

WS-Atomic transactions
composite.xml file syntax, 35-4
enabling participation of BPEL processes, 35-4
not supported when optimization is 

enabled, 35-4
support in SOA composite applications, 35-2

wsclient.jar file, 33-2
WSDL files

adding for a web service, 2-12
definition, 1-3
differences between document-literal styles and 

RPC styles, 6-1, 6-52
editing in Source View is not supported, 2-15
integration of Java and WSDL-based components 

in the same SOA composite application, 49-2
invoking the default revision, 2-19
limitation on mixed message types in a WSDL 

file, 2-19
location for evidence store service, 32-3
location for identity service, 32-3
location for runtime config service, 32-3
location for task metadata service, 32-3
location for task query service, 32-2
location for task report service, 32-3
location for task service, 32-2
location for user metadata service, 32-3
modifying to generate a fault, 11-24
references, 2-19
selecting, 2-12
service component metadata, 25-13
specifying when creating a partner link, 4-8
updating message schemas, 2-15
using an existing WSDL file, 2-13
viewing message schemas, 2-15
with multiple parts, 2-14
WSDL namespaces must be unique, 2-15

X
XML assert

overview, 42-2
XML data in BPEL, 6-2
XML data manipulation

bpelx:append extension, 6-23
bpelx:copyList extension, 6-31
bpelx:insertAfter extension, 6-26
bpelx:insertBefore extension, 6-24



Index-31

bpelx:remove extension, 6-27
bpelx:rename extension, 6-29
bpelx:validate extension, 6-35

XML documents
manipulating, 6-2, 6-5
overview, 6-2, 6-5

XML facades
definition, 13-4
Java embedding, 13-4

XML schema files
error handling, 22-11
fault-bindings.xml, 22-15
fault-policies.xml, 22-11

XML schemas
message types and variable types, 6-1

XPath Building Assistant
using, B-63
using in the XSLT Mapper, 38-24, B-66

XPath expressions
assigning numeric values, 6-17
boolean expressions in switch activities, 10-4
dynamically creating another XPath 

expression, 6-48
dynamically setting email addresses and telephone 

numbers, 17-13
editing in transformations, 38-24
examples, 6-4
fetching a data sequence element, 6-48
in conditional branching logic, 10-1
specifying a task owner, 28-15

XPath extension functions
creating user-defined functions, B-70
dvm

lookupValue function, 44-8
lookupValue1M function, 44-9

XPath functions
in transformations, 38-19
indexing methods, 6-46
mathematical calculations, 6-17

XPath queries
copying data, 6-15
examples, 6-4

XQuery, 6-2, 6-5
xref

lookupXRef function, 46-15
exception reasons, 46-16
parameters, 46-15

lookupXRef1M function
exception reasons, 46-17, 46-18
parameters, 46-16, 46-17

markForDelete function, 46-19
exception reasons, 46-20
parameters, 46-20

populateXRefRow function
modes, 46-11
parameters, 46-11

populateXRefRow1M function, 46-12
modes, 46-13
parameters, 46-12

xsl choose

conditional processing, 38-28
xsl if

conditional processing, 38-26
XSL map

creating from an XSL style sheet, 38-7
XSL style sheet

creating an XSL map, 38-7
XSL transformations

definition, 1-3
XSLT, 6-2, 6-5
XSLT constructs

adding in transformations, 38-25
XSLT Mapper

adding XSLT constructs, 38-25
auto mapping, 38-32
auto mapping with confirmation, 38-33
chaining functions, 38-20
correcting memory errors when generating 

reports, 38-49
creating a map file, 38-1
creating a map file from imported schemas, 38-9
creating a new map file, 38-7
creating a transform activity, 38-7
creating an XSL map from an XSL style 

sheet, 38-7
customizing sample XML generation for 

transformations, 38-50
dictionaries, 38-36
editing functions, 38-20
editing XPath expressions, 38-24
error when mapping duplicate elements, 38-7
functions, 38-19
functions prefixed with xp20 or orcl, 38-19
generating optional elements, 38-50
generating reports, 38-48
ignoring elements, 38-41
layout in Oracle JDeveloper, 38-1
linking source and target nodes, 38-17
map parameter and variable creation, 38-37
named templates in functions, 38-21
repeating elements, 38-28
replacing schemas, 38-41
rules, 38-6
searching source and target nodes, 38-39
setting constant values, 38-18
setting the maximum depth, 38-50
setting the number of repeating elements, 38-50
testing the map file, 38-45
using, 20-56, 38-16
using arrays, 38-28
viewing unmapped target nodes, 38-35
xsl choose conditional processing, 38-28
xsl if conditional processing, 38-26

Y
year-from-dateTime function

description, B-7



Index-32


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Introduction to Oracle SOA Suite
	1 Introduction to Building Applications with Oracle SOA Suite
	1.1 Introduction to Service-Oriented Architecture
	1.2 Introduction to Services
	1.3 Introduction to Oracle SOA Suite
	1.4 Standards Used by Oracle SOA Suite to Enable SOA
	1.5 Service Component Architecture within SOA Composite Applications
	1.5.1 Service Components
	1.5.2 Binding Components
	1.5.3 Wires

	1.6 Runtime Behavior of a SOA Composite Application
	1.6.1 Service Infrastructure
	1.6.2 Service Engines
	1.6.3 Deployed Service Archives

	1.7 Approaches for Designing SOA Composite Applications
	1.8 Learning Oracle SOA Suite

	2 Developing SOA Composite Applications with Oracle SOA Suite
	2.1 Creating a SOA Application
	2.1.1 How to Create a SOA Application and Project
	2.1.2 What Happens When You Create a SOA Application and Project
	2.1.3 What You May Need to Know About Opening the composite.xml File Through a SOA-MDS Connection

	2.2 Adding Service Components
	2.2.1 How to Add a Service Component
	2.2.2 What You May Need to Know About Adding and Deleting a Service Component
	2.2.3 How to Edit a Service Component

	2.3 Adding Service Binding Components
	2.3.1 How to Add a Service Binding Component
	2.3.2 How to Add a WSDL for a Web Service
	2.3.3 How to View Schemas
	2.3.4 How to Edit a Service Binding Component
	2.3.5 What You May Need to Know About Adding and Deleting Services

	2.4 Adding Reference Binding Components
	2.4.1 How to Add a Reference Binding Component
	2.4.2 What You May Need to Know About Adding and Deleting References
	2.4.3 What You May Need to Know About WSDL References
	2.4.4 What You May Need to Know About Mixed Message Types in a WSDL File
	2.4.5 What You May Need to Know About Invoking the Default Revision of a Composite

	2.5 Adding Wires
	2.5.1 How to Wire a Service and a Service Component
	2.5.2 How to Wire a Service Component and a Reference
	2.5.3 What You May Need to Know About Adding and Deleting Wires

	2.6 Adding Security
	2.7 Deploying a SOA Composite Application
	2.7.1 How to Invoke Deployed Composites

	2.8 Managing and Testing a SOA Composite Application
	2.8.1 How to Manage Deployed Composites
	2.8.2 How to Test a Deployed Composite


	3 Introduction to the SOA Sample Application
	3.1 Introduction to the Fusion Order Demo
	3.1.1 Store Front Module
	3.1.2 WebLogic Fusion Order Demo Application

	3.2 Setting Up the Fusion Order Demo Application
	3.2.1 Task 1: Install Oracle JDeveloper Studio
	3.2.2 Task 2: Install the Fusion Order Demo Application
	3.2.3 Task 3: Install Oracle SOA Suite

	3.3 Taking a Look at the WebLogic Fusion Order Demo Application
	3.3.1 Project Applications of the WebLogic Fusion Order Demo Application
	3.3.2 The composite.xml File

	3.4 Understanding the OrderBookingComposite Flow
	3.5 Deploying Fusion Order Demo
	3.5.1 Task 1: Create a Connection to an Oracle WebLogic Server
	3.5.2 (Optional) Task 2: Create a Connection to the Oracle BAM Server
	3.5.3 Task 3: Install the Schema for the Fusion Order Demo Application
	3.5.4 Task 4: Set the Configuration Property for the Store Front Module
	3.5.5 Task 5: Edit the Database Connection
	3.5.6 Task 6: Deploy the Store Front Module
	3.5.7 Task 7: Deploy the WebLogic Fusion Order Demo Application

	3.6 Running Fusion Order Demo
	3.7 Viewing Data Sent to Oracle BAM Server
	3.8 Undeploying the Composites for the WebLogic Fusion Order Demo Application


	Part II Using the BPEL Process Service Component
	4 Getting Started with Oracle BPEL Process Manager
	4.1 Introduction to the BPEL Process Service Component
	4.1.1 How to Add a BPEL Process Service Component

	4.2 Introduction to Activities
	4.3 Introduction to Partner Links
	4.4 Creating a Partner Link
	4.4.1 How to Create a Partner Link
	4.4.1.1 Partner Links for an Outbound Adapter
	4.4.1.2 Partner Links for an Inbound Adapter
	4.4.1.3 Partner Links from an Abstract WSDL to Call a Service
	4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
	4.4.1.5 Partner Links and Human Tasks or Business Rules
	4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator


	4.5 Introduction to Technology Adapters
	4.6 Introduction to BPEL Process Monitors

	5 Introduction to Interaction Patterns in a BPEL Process
	5.1 Introduction to One-Way Messages
	5.2 Introduction to Synchronous Interactions
	5.3 Introduction to Asynchronous Interactions
	5.4 Introduction to Asynchronous Interactions with a Timeout
	5.5 Introduction to Asynchronous Interactions with a Notification Timer
	5.6 Introduction to One Request, Multiple Responses
	5.7 Introduction to One Request, One of Two Possible Responses
	5.8 Introduction to One Request, a Mandatory Response, and an Optional Response
	5.9 Introduction to Partial Processing
	5.10 Introduction to Multiple Application Interactions

	6 Manipulating XML Data in a BPEL Process
	6.1 Introduction to Manipulating XML Data in BPEL Processes
	6.1.1 XML Data in BPEL
	6.1.2 Data Manipulation and XPath Standards

	6.2 Delegating XML Data Operations to Data Provider Services
	6.2.1 How to Create an Entity Variable
	6.2.1.1 Understanding How SDO Works in the Inbound Direction
	6.2.1.2 Understanding How SDO Works in the Outbound Direction
	6.2.1.3 Creating an Entity Variable and Choosing a Partner Link
	6.2.1.4 Creating a Binding Key


	6.3 Using Standalone SDO-based Variables
	6.3.1 How to Declare SDO-based Variables
	6.3.2 How to Convert from XML to SDO

	6.4 Initializing a Variable with Expression Constants or Literal XML
	6.4.1 How To Assign a Literal XML Element

	6.5 Copying Between Variables
	6.5.1 How to Copy Between Variables
	6.5.2 Initializing Variables with an Inline from-spec in BPEL 2.0

	6.6 Accessing Fields in Element and Message Type Variables
	6.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables

	6.7 Assigning Numeric Values
	6.7.1 How to Assign Numeric Values

	6.8 Using Mathematical Calculations with XPath Standards
	6.8.1 How To Use Mathematical Calculations with XPath Standards

	6.9 Assigning String Literals
	6.9.1 How to Assign String Literals

	6.10 Concatenating Strings
	6.10.1 How to Concatenate Strings

	6.11 Assigning Boolean Values
	6.11.1 How to Assign Boolean Values

	6.12 Assigning a Date or Time
	6.12.1 How to Assign a Date or Time

	6.13 Manipulating Attributes
	6.13.1 How to Manipulate Attributes

	6.14 Manipulating XML Data with bpelx Extensions
	6.14.1 How to Use bpelx:append
	6.14.1.1 bpelx:append in BPEL 1.1
	6.14.1.2 bpelx:append in BPEL 2.0

	6.14.2 How to Use bpelx:insertBefore
	6.14.2.1 bpelx:insertBefore in BPEL 1.1
	6.14.2.2 bpelx:insertBefore in BPEL 2.0

	6.14.3 How to Use bpelx:insertAfter
	6.14.3.1 bpelx:insertAfter in BPEL 1.1
	6.14.3.2 bpelx:insertAfter in BPEL 2.0

	6.14.4 How to Use bpelx:remove
	6.14.4.1 bpelx:remove in BPEL 1.1
	6.14.4.2 bpelx:remove in BPEL 2.0

	6.14.5 How to Use bpelx:rename and XSD Type Casting
	6.14.5.1 bpelx:rename in BPEL 1.1
	6.14.5.2 bpelx:rename in BPEL 2.0

	6.14.6 How to Use bpelx:copyList
	6.14.6.1 bpelx:copyList in BPEL 1.1
	6.14.6.2 bpelx:copyList in BPEL 2.0

	6.14.7 How to Use Assign Extension Attributes
	6.14.7.1 ignoreMissingFromData Attribute
	6.14.7.2 insertMissingToData Attribute
	6.14.7.3 keepSrcElementName Attribute


	6.15 Validating XML Data
	6.15.1 How to Validate XML Data in BPEL 1.1
	6.15.2 How to Validate XML Data in BPEL 2.0

	6.16 Using Element Variables in Message Exchange Activities in BPEL 2.0
	6.17 Mapping WSDL Message Parts in BPEL 2.0
	6.17.1 How to Map WSDL Message Parts
	6.17.2 What Happens When You Map WSDL Message Parts

	6.18 Importing Process Definitions in BPEL 2.0
	6.19 Manipulating XML Data Sequences That Resemble Arrays
	6.19.1 How to Statically Index into an XML Data Sequence That Uses Arrays
	6.19.2 How to Use SOAP-Encoded Arrays
	6.19.2.1 SOAP-Encoded Arrays in BPEL 2.0

	6.19.3 How to Determine Sequence Size
	6.19.4 How to Dynamically Index by Applying a Trailing XPath to an Expression
	6.19.4.1 Applying a Trailing XPath to the Result of getVariableData
	6.19.4.2 Using the bpelx:append Extension to Append New Items to a Sequence
	6.19.4.3 Merging Data Sequences
	6.19.4.4 Generating Functionality Equivalent to an Array of an Empty Element

	6.19.5 What You May Need to Know About Using the Array Identifier

	6.20 Converting from a String to an XML Element
	6.20.1 How To Convert from a String to an XML Element

	6.21 Understanding Document-Style and RPC-Style WSDL Differences
	6.21.1 How To Use RPC-Style Files

	6.22 Manipulating SOAP Headers in BPEL
	6.22.1 How to Receive SOAP Headers in BPEL
	6.22.2 How to Send SOAP Headers in BPEL

	6.23 Declaring Extension Namespaces in BPEL 2.0
	6.23.1 How to Declare Extension Namespaces
	6.23.2 What Happens When You Create an Extension


	7 Invoking a Synchronous Web Service from a BPEL Process
	7.1 Introduction to Invoking a Synchronous Web Service
	7.2 Invoking a Synchronous Web Service
	7.2.1 How to Invoke a Synchronous Web Service
	7.2.2 What Happens When You Invoke a Synchronous Web Service
	7.2.2.1 Partner Link in the BPEL Code
	7.2.2.2 Partner Link Type and Port Type in the BPEL Code
	7.2.2.3 Invoke Activity for Performing a Request
	7.2.2.4 Synchronous Invocation in BPEL Code


	7.3 Specifying Timeout Values
	7.3.1 How To Specify Timeout Values
	7.3.2 What You May Need to Know About SyncMaxWaitTime and Synchronous Requests Not Timing Out

	7.4 Calling a One-Way Mediator with a Synchronous BPEL Process

	8 Invoking an Asynchronous Web Service from a BPEL Process
	8.1 Introduction to Invoking an Asynchronous Web Service
	8.2 Invoking an Asynchronous Web Service
	8.2.1 How to Invoke an Asynchronous Web Service
	8.2.1.1 Adding a Partner Link for an Asynchronous Service
	8.2.1.2 Adding an Invoke Activity
	8.2.1.3 Adding a Receive Activity
	8.2.1.4 Performing Additional Activities

	8.2.2 What Happens When You Invoke an Asynchronous Web Service
	8.2.2.1 portType Section of the WSDL File
	8.2.2.2 partnerLinkType Section of the WSDL File
	8.2.2.3 Partner Links Section in the BPEL File
	8.2.2.4 Composite Application File
	8.2.2.5 Invoke and Receive Activities
	8.2.2.6 createInstance Attribute for Starting a New Instance
	8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes
	8.2.2.8 Multiple Runtime Endpoint Locations

	8.2.3 What You May Need to Know About Limitations on BPEL 2.0 IMA Support
	8.2.4 What Happens When You Specify a Conversation ID
	8.2.4.1 bpelx:conversationId in BPEL 1.1
	8.2.4.2 bpelx:conversationId in BPEL 2.0


	8.3 Using a Dynamic Partner Link at Runtime
	8.3.1 How To Add and Use a Dynamic Partner Link at Runtime

	8.4 Using WS-Addressing in an Asynchronous Service
	8.4.1 How to Use WS-Addressing in an Asynchronous Service
	8.4.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs
	8.4.1.1.1 Setting Up a TCP Listener for Synchronous Services
	8.4.1.1.2 Setting Up a TCP Listener for Asynchronous Services



	8.5 Using Correlation Sets in an Asynchronous Service
	8.5.1 How to Use Correlation Sets in an Asynchronous Service
	8.5.1.1 Step 1: Creating a Project
	8.5.1.2 Step 2: Configuring Partner Links and File Adapter Services
	8.5.1.2.1 Creating an Initial Partner Link and File Adapter Service
	8.5.1.2.2 Creating a Second Partner Link and File Adapter Service
	8.5.1.2.3 Creating a Third Partner Link and File Adapter Service

	8.5.1.3 Step 3: Creating Three Receive Activities
	8.5.1.3.1 Creating an Initial Receive Activity
	8.5.1.3.2 Creating a Second Receive Activity
	8.5.1.3.3 Creating a Third Receive Activity

	8.5.1.4 Step 4: Creating Correlation Sets
	8.5.1.4.1 Creating an Initial Correlation Set
	8.5.1.4.2 Creating a Second Correlation Set

	8.5.1.5 Step 5: Associating Correlation Sets with Receive Activities
	8.5.1.5.1 Associating the First Correlation Set with a Receive Activity
	8.5.1.5.2 Associating the Second Correlation Set with a Receive Activity
	8.5.1.5.3 Associating the Third Correlation Set with a Receive Activity

	8.5.1.6 Step 6: Creating Property Aliases
	8.5.1.6.1 Creating Property Aliases for NameCorr
	8.5.1.6.2 Creating Property Aliases for IDCorr

	8.5.1.7 Step 7: Reviewing WSDL File Content

	8.5.2 What You May Need to Know About Setting Correlations for an IMA Using a fromParts Element With Multiple Parts


	9 Using Parallel Flow in a BPEL Process
	9.1 Introduction to Parallel Flows in BPEL Processes
	9.2 Creating a Parallel Flow
	9.2.1 How to Create a Parallel Flow
	9.2.2 What Happens When You Create a Parallel Flow
	9.2.3 Synchronizing the Execution of Activities in a Flow Activity
	9.2.4 How to Create Synchronization Between Activities Within a Flow Activity
	9.2.5 What Happens When You Create Synchronization Between Activities Within a Flow Activity
	9.2.6 What You May Need to Know About Join Conditions in Target Activities

	9.3 Customizing the Number of Parallel Branches
	9.3.1 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1
	9.3.1.1 How to Create a flowN Activity
	9.3.1.2 What Happens When You Create a FlowN Activity

	9.3.2 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0
	9.3.2.1 How to Create a forEach Activity
	9.3.2.2 What Happens When You Create a forEach Activity



	10 Using Conditional Branching in a BPEL Process
	10.1 Introduction to Conditional Branching
	10.2 Defining Conditional Branching
	10.2.1 Defining Conditional Branching with the Switch Activity in BPEL 1.1
	10.2.1.1 How to Create a Switch Activity
	10.2.1.2 What Happens When You Create a Switch Activity

	10.2.2 Defining Conditional Branching with the If Activity in BPEL 2.0
	10.2.2.1 How to Create an If Activity
	10.2.2.2 What Happens When You Create an If Activity


	10.3 Creating a While Activity to Define Conditional Branching
	10.3.1 How To Create a While Activity
	10.3.2 What Happens When You Create a While Activity

	10.4 Creating a repeatUntil Activity to Define Conditional Branching
	10.4.1 How to Create a repeatUntil Activity
	10.4.2 What Happens When You Create a repeatUntil Activity

	10.5 Specifying XPath Expressions to Bypass Activity Execution
	10.5.1 How to Specify XPath Expressions to Bypass Activity Execution
	10.5.2 What Happens When You Specify XPath Expressions to Bypass Activity Execution


	11 Using Fault Handling in a BPEL Process
	11.1 Introduction to a Fault Handler
	11.2 Introduction to BPEL Standard Faults
	11.2.1 BPEL 1.1 Standard Faults
	11.2.2 BPEL 2.0 Standard Faults
	11.2.2.1 Fault Handling Order of Precedence in BPEL 2.0


	11.3 Introduction to Categories of BPEL Faults
	11.3.1 Business Faults
	11.3.2 Runtime Faults
	11.3.2.1 bindingFault
	11.3.2.2 remoteFault
	11.3.2.3 replayFault


	11.4 Using the Fault Management Framework
	11.4.1 How to Design a Fault Policy
	11.4.1.1 Understanding How Fault Policy Binding Resolution Works
	11.4.1.2 Creating a Fault Policy File for Automated Fault Recovery
	11.4.1.3 Associating a Fault Policy with Fault Policy Binding
	11.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples
	11.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers

	11.4.2 How to Execute a Fault Policy
	11.4.3 How to Use a Java Action Fault Policy
	11.4.4 What You May Need to Know About Fault Management Behavior When the Number of Instance Retries is Exceeded
	11.4.5 What You May Need to Know Executing the Retry Action with Multiple Faults in the Same Flow
	11.4.6 What You May Need to Know About Binding Level Retry Execution Within Fault Policy Retries
	11.4.7 What You May Need to Know About Defining the ora-java Option

	11.5 Catching BPEL Runtime Faults
	11.5.1 How to Catch BPEL Runtime Faults

	11.6 Getting Fault Details with the getFaultAsString XPath Extension Function
	11.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function

	11.7 Throwing Internal Faults
	11.7.1 How to Create a Throw Activity
	11.7.2 What Happens When You Create a Throw Activity

	11.8 Rethrowing Faults with the Rethrow Activity
	11.8.1 How to Create a Rethrow Activity
	11.8.2 What Happens When You Rethrow Faults

	11.9 Returning External Faults
	11.9.1 How to Return a Fault in a Synchronous Interaction
	11.9.2 How to Return a Fault in an Asynchronous Interaction

	11.10 Using a Scope Activity to Manage a Group of Activities
	11.10.1 How to Create a Scope Activity
	11.10.2 How to Add Descriptive Notes and Images to a Scope Activity
	11.10.3 What Happens After You Create a Scope Activity
	11.10.4 What You May Need to Know About Scopes
	11.10.5 How to Use a Fault Handler Within a Scope
	11.10.6 How to Create a Catch Activity in a Scope
	11.10.7 What Happens When You Create a Catch Activity in a Scope
	11.10.8 How to Create an Empty Activity to Insert No-Op Instructions into a Business Process
	11.10.9 What Happens When You Create an Empty Activity

	11.11 Re-executing Activities in a Scope Activity with the Replay Activity
	11.11.1 How to Create a Replay Activity
	11.11.2 What Happens When You Create a Replay Activity

	11.12 Using Compensation After Undoing a Series of Operations
	11.12.1 Using a Compensate Activity
	11.12.2 How to Create a Compensate Activity
	11.12.3 What Happens When You Create a compensate Activity
	11.12.4 Using a compensateScope Activity in BPEL 2.0
	11.12.5 How to Create a compensateScope Activity
	11.12.6 What Happens When You Create a compensateScope Activity

	11.13 Stopping a Business Process Instance
	11.13.1 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1
	11.13.1.1 How to Create a Terminate Activity
	11.13.1.2 What Happens When You Create a Terminate Activity

	11.13.2 Immediately Ending a Business Process Instance with the Exit Activity in BPEL 2.0
	11.13.2.1 How to Create an Exit Activity
	11.13.2.2 What Happens When You Create an Exit Activity


	11.14 Throwing Faults with Assertion Conditions
	11.14.1 bpelx:postAssert and bpelx:preAssert Extensions
	11.14.2 Use of faultName and message Attributes
	11.14.3 Multiple Assertions
	11.14.4 Use of Built-in and Custom XPath Functions and $variable References
	11.14.5 Assertion Condition Evaluation Logging of Events to the Instance Audit Trail
	11.14.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault
	11.14.7 Assertion Conditions in a Standalone Assert Activity
	11.14.8 How to Create Assertion Conditions
	11.14.9 How to Disable Assertions
	11.14.10 What Happens When You Create Assertion Conditions


	12 Transaction and Fault Propagation Semantics in BPEL Processes
	12.1 Introduction to Transaction Semantics
	12.1.1 Oracle BPEL Process Manager Transaction Semantics
	12.1.1.1 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew
	12.1.1.2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required


	12.2 Introduction to Execution of One-way Invocations

	13 Incorporating Java and Java EE Code in a BPEL Process
	13.1 Introduction to Java and Java EE Code in BPEL Processes
	13.2 Incorporating Java and Java EE Code in BPEL Processes
	13.2.1 How to Wrap Java Code as a SOAP Service
	13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service
	13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
	13.2.4 How to Embed Java Code Snippets in a BPEL Process in BPEL 2.0
	13.2.5 How to Use an XML Facade to Simplify DOM Manipulation
	13.2.6 How to Use bpelx:exec Built-in Methods
	13.2.7 How to Use Java Code Wrapped in a Service Interface

	13.3 Adding Custom Classes and JAR Files
	13.3.1 How to Add Custom Classes and JAR Files

	13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper
	13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper
	13.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding Activity

	13.5 Embedding Service Data Objects with bpelx:exec
	13.6 Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager
	13.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence


	14 Using Events and Timeouts in BPEL Processes
	14.1 Introduction to Event and Timeout Concepts
	14.2 Creating a Pick Activity to Select Between Continuing a Process or Waiting
	14.2.1 How To Create a Pick Activity
	14.2.2 What Happens When You Create a Pick Activity
	14.2.3 What You May Need to Know About Simultaneous onMessage Branches in BPEL 2.0

	14.3 Setting Timeouts for Request-Response Operations in Receive Activities
	14.3.1 Timeout Settings Relative from When the Activity is Invoked
	14.3.2 Timeout Settings as an Absolute Date Time
	14.3.3 Timeout Settings Computed Dynamically with an XPath Expression
	14.3.4 bpelx:timeout Fault Thrown During an Activity Timeout
	14.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout
	14.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration Alarm Table)
	14.3.7 How to Set Timeouts for Request-Response Operations in Receive Activities
	14.3.8 What Happens When You Set Timeouts for Request-Response Operations in Receive Activities

	14.4 Creating a Wait Activity to Set an Expiration Time
	14.4.1 How To Specify the Minimum Wait Time
	14.4.2 How to Create a Wait Activity
	14.4.3 What Happens When You Create a Wait Activity

	14.5 Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0
	14.5.1 How to Create an onEvent Branch in a Scope Activity
	14.5.2 What Happens When You Create an OnEvent Branch

	14.6 Setting Timeouts for Synchronous Processes

	15 Coordinating Master and Detail Processes
	15.1 Introduction to Master and Detail Process Coordinations
	15.1.1 BPEL File Definition for the Master Process
	15.1.1.1 Correlating a Master Process with Multiple Detail Processes

	15.1.2 BPEL File Definition for Detail Processes

	15.2 Defining Master and Detail Process Coordination in Oracle JDeveloper
	15.2.1 How to Create a Master Process
	15.2.2 How to Create a Detail Process
	15.2.3 How to Create an Invoke Activity


	16 Customizing SOA Composite Applications
	16.1 Introduction to Customizing SOA Composite Applications
	16.1.1 How To Create the Customizable Composite
	16.1.2 How To Customize the Vertical Application
	16.1.3 How to Customize the Customer Version
	16.1.4 How to Create Customization Classes
	16.1.5 How to Upgrade the Composite
	16.1.5.1 Core Application Team
	16.1.5.2 The Vertical Application Team
	16.1.5.3 The Customer

	16.1.6 Searching for Customized Activities in a BPEL Process
	16.1.7 What You May Need to Know About Editing Artifacts in a Customized Composite
	16.1.8 What You May Need to Know About Resolving Validation Errors in Oracle JDeveloper
	16.1.9 What You May Need to Know About Resolving a Sequence Conflict
	16.1.10 What You May Need to Know About Compiling and Deploying a Customized Application


	17 Using the Notification Service
	17.1 Introduction to the Notification Service
	17.2 Introduction to Notification Channel Setup
	17.3 Selecting Notification Channels During BPEL Process Design
	17.3.1 How To Configure the Email Notification Channel
	17.3.1.1 Setting Email Attachments
	17.3.1.2 Formatting the Body of an Email Message as HTML
	17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function

	17.3.2 How to Configure the IM Notification Channel
	17.3.3 How to Configure the SMS Notification Channel
	17.3.4 How to Configure the Voice Notification Channel
	17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically
	17.3.6 How to Select Notification Recipients by Browsing the User Directory

	17.4 Allowing the End User to Select Notification Channels
	17.4.1 How to Allow the End User to Select Notification Channels
	17.4.1.1 How to Create and Send Headers for Notifications



	18 Using Oracle BPEL Process Manager Sensors
	18.1 Introduction to Sensors
	18.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper
	18.2.1 How to Access Sensors and Sensor Actions
	18.2.2 How to Configure Sensors
	18.2.3 How to Configure Sensor Actions
	18.2.4 How to Publish to Remote Topics and Queues
	18.2.5 How to Create a Custom Data Publisher
	18.2.6 How to Register the Sensors and Sensor Actions in composite.xml

	18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control Console


	Part III Using the Oracle Mediator Service Component
	19 Getting Started with Oracle Mediator
	19.1 Introduction to Oracle Mediator
	19.2 Introduction to the Mediator Editor Environment
	19.3 Creating an Oracle Mediator
	19.3.1 How to Create an Oracle Mediator

	19.4 Configuring the Oracle Mediator Interface Definition
	19.4.1 Creating an Oracle Mediator Without an Interface Definition
	19.4.1.1 How to Create an Oracle Mediator Without an Interface Definition
	19.4.1.2 What Happens When You Create an Oracle Mediator Without an Interface Definition
	19.4.1.3 How to Define an Interface for an Oracle Mediator

	19.4.2 Creating an Oracle Mediator Based on a WSDL File
	19.4.2.1 How to Create an Oracle Mediator Based on a WSDL File
	19.4.2.2 What Happens When You Create an Oracle Mediator from a WSDL File

	19.4.3 Creating an Oracle Mediator With a One-Way Interface Definition
	19.4.3.1 How to Create an Oracle Mediator with a One-Way Interface Definition
	19.4.3.2 What Happens When You Create an Oracle Mediator with a One-Way Interface Definition

	19.4.4 Creating an Oracle Mediator with a Synchronous Interface Definition
	19.4.4.1 How to Create an Oracle Mediator with a Synchronous Interface Definition
	19.4.4.2 What Happens When You Create an Oracle Mediator with a Synchronous Interface Definition

	19.4.5 Creating an Oracle Mediator with an Asynchronous Interface Definition
	19.4.5.1 How to Create an Oracle Mediator with an Asynchronous Interface Definition
	19.4.5.2 What Happens When You Create an Oracle Mediator with an Asynchronous Interface Definition

	19.4.6 Creating an Oracle Mediator for an Event Subscription
	19.4.6.1 How to Create an Oracle Mediator for an Event Subscription
	19.4.6.2 What Happens When You Create an Oracle Mediator for an Event Subscription

	19.4.7 What You May Need to Know About the Mediator Editor
	19.4.7.1 Resequencing
	19.4.7.2 Routing Rules


	19.5 Generating a WSDL File
	19.5.1 How to Generate a WSDL File

	19.6 Specifying Operation or Event Subscription Properties
	19.7 Modifying an Oracle Mediator Service Component
	19.7.1 How To Modify Operations of an Oracle Mediator
	19.7.2 How To Modify Event Subscriptions of an Oracle Mediator


	20 Creating Oracle Mediator Routing Rules
	20.1 Introduction to Routing Rules
	20.2 Defining Routing Rules
	20.2.1 How To Access the Routing Rules Section
	20.2.2 How to Create Static Routing Rules
	20.2.2.1 How to Specify Oracle Mediator Services or Events
	20.2.2.2 What You May Need to Know About Echoing a Service
	20.2.2.3 How to Specify Sequential or Parallel Execution
	20.2.2.4 How to Configure Response Messages
	20.2.2.5 How to Handle Multiple Callbacks
	20.2.2.6 How to Handle Faults
	20.2.2.7 How to Specify an Expression for Filtering Messages
	20.2.2.8 How to Create Transformations
	20.2.2.9 How to Assign Values
	20.2.2.10 What You May Need to Know About the Assign Activity
	20.2.2.11 How to Access Headers for Filters and Assignments
	20.2.2.11.1 Manual Expression Building for Accessing Headers for Filters and Assignments
	20.2.2.11.2 Manual Expression Building for Accessing Properties for Filters and Assignments

	20.2.2.12 How to Use Semantic Validation
	20.2.2.13 How to Use Java Callouts

	20.2.3 How to Create Dynamic Routing Rules
	20.2.4 What You May Need to Know About Using Dynamic Routing Rules
	20.2.5 How to Define Default Routing Rules
	20.2.5.1 Default Rule Scenarios
	20.2.5.2 Default Rule Target
	20.2.5.3 Default Rule: Validation, Transformation, and Assign Functionality
	20.2.5.4 Default Rule: Java Callouts
	20.2.5.5 Default Rule: Oracle Mediator .mplan File


	20.3 Creating an Oracle Mediator for Routing Messages
	20.3.1 How to Create the CustomerRouter Use Case
	20.3.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project
	20.3.1.2 Task 2: How to Create the CustomerRouter Oracle Mediator Service Component
	20.3.1.3 Task 3: How to Create a File Adapter Service
	20.3.1.4 Task 4: How to Create a File Adapter Reference
	20.3.1.5 Task 5: How to Specify Routing Rules
	20.3.1.6 Task 6: How to Create an Application Server Connection
	20.3.1.7 Task 7: How to Deploy the CustomerRouterProject

	20.3.2 Running and Monitoring the CustomerRouterProject Application

	20.4 Creating an Asynchronous Request and Response Using Oracle Mediator
	20.4.1 How to Create the AsyncMediator Use Case
	20.4.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project
	20.4.1.2 Task 2: How to Create a Server BPEL Process
	20.4.1.3 Task 3: How to Create an Oracle Mediator Service Component
	20.4.1.4 Task 4: How to Create a Client BPEL Process
	20.4.1.5 Task 5: How to Create the Invoke, Receive, and Assign Activities
	20.4.1.6 Task 6: How to Configure an Application Server Connection
	20.4.1.7 Task 7: How to Deploy the SOA Composite Application



	21 Working with Multiple Part Messages in Oracle Mediator
	21.1 Introduction to Oracle Mediator Multipart Message Support
	21.2 Working with Multipart Request Messages
	21.2.1 How to Work with Multipart Request Messages
	21.2.1.1 How to Specify Filter Expressions
	21.2.1.2 How to Add Validations
	21.2.1.3 How to Create Transformations
	21.2.1.4 How to Assign Values

	21.2.2 How to Work with Multipart Reply, Fault, and Callback Source Messages
	21.2.3 How to Work with Multipart Target Messages


	22 Using Oracle Mediator Error Handling
	22.1 Introduction to Oracle Mediator Error Handling
	22.1.1 Fault Policies
	22.1.1.1 Conditions
	22.1.1.2 Actions

	22.1.2 Fault Bindings
	22.1.3 Error Groups in Oracle Mediator

	22.2 Using Error Handling with Oracle Mediator
	22.2.1 How to Use Error Handling for an Oracle Mediator Service Component
	22.2.2 What Happens at Runtime

	22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control Console
	22.4 Error Handling XML Schema Definition Files
	22.4.1 Schema Definition File for fault-policies.xml
	22.4.2 Schema Definition File for fault-bindings.xml


	23 Resequencing in Oracle Mediator
	23.1 Introduction to the Resequencer
	23.1.1 Groups and Sequence IDs
	23.1.2 Identification of Groups and Sequence IDs

	23.2 Resequencing Order
	23.2.1 Standard Resequencer
	23.2.1.1 Overview of the Standard Resequencer
	23.2.1.2 Information Required for Standard Resequencing
	23.2.1.3 Example of the Standard Resequencer

	23.2.2 FIFO Resequencer
	23.2.2.1 Overview of the FIFO Resequencer
	23.2.2.2 Information Required for FIFO Resequencing
	23.2.2.3 Example of the FIFO Resequencer

	23.2.3 Best Effort Resequencer
	23.2.3.1 Overview of the Best Effort Resequencer
	23.2.3.1.1 Best Effort Resequencer Message Selection Strategies
	23.2.3.1.2 Best Effort Resequencer Message Delivery

	23.2.3.2 Information Required for Best Effort Resequencing
	23.2.3.3 Example of Best Effort Resequencing Based on Maximum Rows
	23.2.3.4 Example of Best Effort Resequencing Based on a Time Window


	23.3 Configuring the Resequencer
	23.3.1 How to Specify the Resequencing Level
	23.3.2 How to Configure the Resequencing Strategy

	23.4 Limitations in the Resequencer

	24 Understanding Message Exchange Patterns of an Oracle Mediator
	24.1 Understanding a One-way Message Exchange Pattern
	24.1.1 The one.way.returns.fault Property

	24.2 Understanding a Request-Reply Message Exchange Pattern
	24.3 Understanding a Request-Reply-Fault Message Exchange Pattern
	24.4 Understanding a Request-Callback Message Exchange Pattern
	24.5 Understanding a Request-Reply-Callback Message Exchange Pattern
	24.6 Understanding a Request-Reply-Fault-Callback Message Exchange Pattern


	Part IV Using the Business Rules Service Component
	25 Getting Started with Oracle Business Rules
	25.1 Introduction to the Business Rule Service Component
	25.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks

	25.2 Overview of Rules Designer Editor Environment
	25.2.1 Application Navigator
	25.2.2 Rules Designer Window
	25.2.3 Structure Window
	25.2.4 Business Rule Validation Log Window

	25.3 Introduction to Creating and Editing Business Rules
	25.3.1 How to Create Business Rules Components
	25.3.2 Introduction to Working with Business Rules in Rules Designer

	25.4 Adding Business Rules to a BPEL Process
	25.4.1 How to Add Business Rules to a BPEL Process
	25.4.2 What Happens When You Add Business Rules to a BPEL Process
	25.4.3 What Happens When You Create a Business Rules Dictionary
	25.4.4 What You May Need to Know About Invoking Business Rules in a BPEL Process
	25.4.5 What You May Need to Know About Decision Component Stateful Operation

	25.5 Adding Business Rules to a SOA Composite Application
	25.5.1 How to Add Business Rules to a SOA Composite Application
	25.5.2 How to Select and Modify a Decision Function in a Business Rule Component

	25.6 Running Business Rules in a Composite Application
	25.6.1 What You May Need to Know About Testing a Standalone Decision Service Component

	25.7 Using Business Rules with Oracle ADF Business Components Fact Types

	26 Using Declarative Components and Task Flows
	26.1 Introduction to Declarative Components and Task Flows
	26.2 Using the Oracle Business Rules Editor Declarative Component
	26.2.1 Introduction to the Oracle Business Rules Editor Component
	26.2.2 How to Create and Run a Sample Application by Using the Rules Editor Component
	26.2.3 How to Deploy a Rules Editor Application to a Standalone Weblogic Server
	26.2.4 What You May Need to Know About the Custom Permissions for the Rules Editor Component
	26.2.5 What You May Need to Know About the Supported Tags of the Rules Editor Component

	26.3 Using the Oracle Business Rules Dictionary Editor Declarative Component
	26.3.1 Introduction to the Oracle Business Rules Dictionary Component
	26.3.2 How to Create and Run a Sample Application by Using the Rules Dictionary Editor Component
	26.3.3 How to Deploy a Rules Dictionary Application to a Standalone Weblogic Server
	26.3.4 What You May Need to Know About the Supported Attributes of the Rules Dictionary Editor Component

	26.4 Using the Oracle Business Rules Dictionary Task Flow
	26.4.1 Introduction to the Oracle Business Rules Dictionary Task Flow
	26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary Editor Task Flow
	26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone Weblogic Server

	26.5 Localizing the ADF-Based Web Application


	Part V Using the Human Workflow Service Component
	27 Getting Started with Human Workflow
	27.1 Introduction to Human Workflow
	27.2 Introduction to Human Workflow Concepts
	27.2.1 Introduction to Design and Runtime Concepts
	27.2.1.1 Task Assignment and Routing
	27.2.1.1.1 Participant
	27.2.1.1.2 Participant Type
	27.2.1.1.3 Participant Assignment
	27.2.1.1.4 Ad Hoc Routing
	27.2.1.1.5 Outcome-based Completion of Routing Flow

	27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
	27.2.1.3 Task Stakeholders
	27.2.1.4 Task Deadlines
	27.2.1.5 Notifications
	27.2.1.6 Task Forms
	27.2.1.7 Advanced Concepts
	27.2.1.7.1 Rule-based Routing
	27.2.1.7.2 Rule-based Participant Assignment
	27.2.1.7.3 Stages
	27.2.1.7.4 Access Rules
	27.2.1.7.5 Callbacks

	27.2.1.8 Reports and Audit Trails

	27.2.2 Introduction to the Stages of Human Workflow Design

	27.3 Introduction to Human Workflow Features
	27.3.1 Human Workflow Use Cases
	27.3.1.1 Task Assignment to a User or Role
	27.3.1.2 Use of the Various Participant Types
	27.3.1.3 Escalation, Expiration, and Delegation
	27.3.1.4 Automatic Assignment and Delegation
	27.3.1.5 Dynamic Assignment of Users Based on Task Content

	27.3.2 Designing a Human Task from Start to Finish
	27.3.2.1 Prerequisites
	27.3.2.2 How to Create the Vacation Request Process
	27.3.2.2.1 Creating an Application and a Project with a BPEL Process
	27.3.2.2.2 Create the Human Task Service Component
	27.3.2.2.3 Designing the Human Task
	27.3.2.2.4 Associating the Human Task and BPEL Process Service Components
	27.3.2.2.5 Creating an Application Server Connection
	27.3.2.2.6 Deploying the SOA Composite Application
	27.3.2.2.7 Initiating the Process Instance
	27.3.2.2.8 Creating a Task Form Project
	27.3.2.2.9 Acting on the Task in Oracle BPM Worklist
	27.3.2.2.10 Deploying the Task Form


	27.3.3 Additional Tutorials

	27.4 Introduction to Human Workflow Architecture
	27.4.1 Human Workflow Services
	27.4.2 Use of Human Task
	27.4.3 Service Engines


	28 Designing Human Tasks
	28.1 Introduction to Human Task Design Concepts
	28.2 Introduction to the Modeling Process
	28.2.1 Create a Human Task Definition
	28.2.2 Associate the Human Task Definition with a BPEL Process
	28.2.3 Generate the Task Form

	28.3 Creating the Human Task Definition with the Human Task Editor
	28.3.1 How to Create a Human Task Service Component
	28.3.2 What Happens When You Create a Human Task Service Component
	28.3.3 How to Access the Sections of the Human Task Editor
	28.3.4 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and Application Context
	28.3.4.1 Specifying a Task Title
	28.3.4.2 Specifying a Task Description
	28.3.4.3 Specifying a Task Outcome
	28.3.4.4 Specifying a Task Priority
	28.3.4.5 Specifying a Task Category
	28.3.4.6 Specifying a Task Owner
	28.3.4.6.1 Specifying a Task Owner Statically Through the User Directory or a List of Application Roles
	28.3.4.6.2 Specifying a Task Owner Dynamically Through an XPath Expression

	28.3.4.7 Specifying an Application Context

	28.3.5 How to Specify the Task Payload Data Structure
	28.3.6 How to Assign Task Participants
	28.3.6.1 Configuring the Single Participant Type
	28.3.6.1.1 Creating a Single Task Participant List
	28.3.6.1.2 Specifying a Time Limit for Acting on a Task
	28.3.6.1.3 Inviting Additional Participants to a Task
	28.3.6.1.4 Bypassing a Task Participant

	28.3.6.2 Configuring the Parallel Participant Type
	28.3.6.2.1 Specifying the Voting Outcome
	28.3.6.2.2 Creating a Parallel Task Participant List
	28.3.6.2.3 Specifying a Time Limit for Acting on a Task
	28.3.6.2.4 Inviting Additional Participants to a Task
	28.3.6.2.5 Bypassing a Task Participant

	28.3.6.3 Configuring the Serial Participant Type
	28.3.6.3.1 Creating a Serial Task Participant List
	28.3.6.3.2 Specifying a Time Limit for Acting on a Task
	28.3.6.3.3 Inviting Additional Participants to a Task
	28.3.6.3.4 Bypassing a Task Participant

	28.3.6.4 Configuring the FYI Participant Type
	28.3.6.4.1 Creating an FYI Task Participant List


	28.3.7 How to Select a Routing Policy
	28.3.7.1 Routing Tasks to All Participants in the Specified Order
	28.3.7.1.1 Allowing All Participants to Invite Other Participants
	28.3.7.1.2 Stopping Routing of a Task to Further Participants
	28.3.7.1.3 Enabling Early Completion in Parallel Subtasks
	28.3.7.1.4 Completing Parent Subtasks of Early Completing Subtasks

	28.3.7.2 Specifying Advanced Task Routing Using Business Rules
	28.3.7.2.1 Introduction to Advanced Task Routing Using Business Rules
	28.3.7.2.2 Facts
	28.3.7.2.3 Action Types
	28.3.7.2.4 Sample Ruleset
	28.3.7.2.5 Linked Dictionary Support
	28.3.7.2.6 Creating Advanced Routing Rules

	28.3.7.3 Using External Routing
	28.3.7.4 Configuring the Error Assignee

	28.3.8 How to Specify Multilingual Settings and Style Sheets
	28.3.8.1 Specifying WordML and Other Style Sheets for Attachments
	28.3.8.2 Specifying Multilingual Settings

	28.3.9 How to Escalate, Renew, or End the Task
	28.3.9.1 Introduction to Escalation and Expiration Policy
	28.3.9.2 Specifying a Policy to Never Expire
	28.3.9.3 Specifying a Policy to Expire
	28.3.9.4 Extending an Expiration Policy Period
	28.3.9.5 Escalating a Task Policy
	28.3.9.6 Specifying Escalation Rules
	28.3.9.7 Specifying a Due Date

	28.3.10 How to Specify Participant Notification Preferences
	28.3.10.1 Notifying Recipients of Changes to Task Status
	28.3.10.2 Editing the Notification Message
	28.3.10.3 Setting Up Reminders
	28.3.10.4 Changing the Character Set Encoding
	28.3.10.5 Securing Notifications to Exclude Details
	28.3.10.6 Showing the Oracle BPM Worklist URL in Notifications
	28.3.10.7 Making Email Messages Actionable
	28.3.10.8 Sending Task Attachments with Email Notifications
	28.3.10.9 Sending Email Notifications to Groups and Application Roles
	28.3.10.10 Customizing Notification Headers

	28.3.11 How to Specify Access Policies and Task Actions on Task Content
	28.3.11.1 Specifying Access Policies on Task Content
	28.3.11.1.1 Introduction to Access Rules
	28.3.11.1.2 Specifying User Privileges for Acting on Task Content
	28.3.11.1.3 Specifying Actions for Acting Upon Tasks


	28.3.12 How to Specify a Workflow Digital Signature Policy
	28.3.12.1 Specifying a Certificate Authority

	28.3.13 How to Specify Restrictions on Task Assignments
	28.3.14 How to Specify Java or Business Event Callbacks
	28.3.14.1 Specifying Callback Classes on Task Status
	28.3.14.1.1 Specifying Java Callbacks
	28.3.14.1.2 Specifying Business Event Callbacks


	28.3.15 How to Specify Task and Routing Customizations in BPEL Callbacks
	28.3.16 Disabling BPEL Callbacks
	28.3.17 How to Exit the Human Task Editor and Save Your Changes

	28.4 Associating the Human Task Service Component with a BPEL Process
	28.4.1 How to Associate a Human Task with a BPEL Process
	28.4.2 What You May Need to Know About Deleting a Wire Between a Human Task Service Component and a BPEL Process
	28.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables
	28.4.3.1 Specifying the Task Title
	28.4.3.2 Specifying the Task Initiator and Task Priority
	28.4.3.3 Specifying Task Parameters

	28.4.4 How to Define the Human Task Activity Advanced Features
	28.4.4.1 Specifying a Scope Name and a Global Task Variable Name
	28.4.4.2 Specifying a Task Owner
	28.4.4.3 Specifying an Identification Key
	28.4.4.4 Specifying an Identity Context
	28.4.4.5 Specifying an Application Context
	28.4.4.6 Including the Task History of Other Human Tasks

	28.4.5 How to View the Generated Human Task Activity
	28.4.5.1 Invoking BPEL Callbacks

	28.4.6 What You May Need to Know About Changing the Generated Human Task Activity
	28.4.7 What You May Need to Know About Deleting a Partner Link Generated by a Human Task
	28.4.8 How to Define Outcome-Based Modeling
	28.4.8.1 Specifying Payload Updates
	28.4.8.2 Using Case Statements for Other Task Conclusions



	29 Designing Task Forms for Human Tasks
	29.1 Introduction to the Task Form
	29.1.1 What You May Need to Know About Task Forms: Time Zone Conversion

	29.2 Associating the Task Flow with the Task Service
	29.3 Creating an ADF Task Flow Based on a Human Task
	29.3.1 How To Create an ADF Task Flow from the Human Task Editor
	29.3.2 How To Create an ADF Task Flow Based on a Human Task
	29.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task
	29.3.4 What You May Need to Know About Having Multiple ADF Task Flows That Contain the Same Element with Different Meta-attributes

	29.4 Creating a Task Form
	29.4.1 How To Create an Autogenerated Task Form
	29.4.2 How to Register the Library JAR File for Custom Page Templates
	29.4.3 How To Create a Task Form Using the Custom Task Form Wizard
	29.4.4 How To Create a Task Form Using the Complete Task with Payload Drop Handler
	29.4.5 How To Create Task Form Regions Using Individual Drop Handlers
	29.4.6 How To Add the Payload to the Task Form
	29.4.7 What Happens When You Create a Task Form

	29.5 Refreshing Data Controls When the Task XSD Changes
	29.6 Securing the Task Flow Application
	29.7 Creating an Email Notification
	29.7.1 How To Create an Email Notification
	29.7.1.1 Creating a Task Flow with a Router
	29.7.1.2 Creating an Email Notification Page

	29.7.2 What Happens When You Create an Email Notification Page
	29.7.3 What You May Need to Know About Creating an Email Notification Page

	29.8 Deploying a Composite Application with a Task Flow
	29.8.1 Before Deploying the Task Form: Port Changes
	29.8.2 How To Deploy a Composite Application with a Task Flow
	29.8.3 How To Redeploy the Task Form
	29.8.4 How To Deploy a Task Flow as a Separate Application
	29.8.5 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server
	29.8.5.1 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
	29.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
	29.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server
	29.8.5.4 Including a Grant for bpm-services.jar
	29.8.5.5 Deploying the Application

	29.8.6 What Happens When You Deploy the Task Form
	29.8.7 What You May Need to Know About Undeploying a Task Flow

	29.9 Displaying a Task Form in the Worklist
	29.9.1 How To Display the Task Form in the Worklist

	29.10 Displaying a Task in an Email Notification
	29.11 Reusing the Task Flow Application with Multiple Human Tasks
	29.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks


	30 Using Oracle BPM Worklist
	30.1 Introduction to Oracle BPM Worklist
	30.1.1 What You May Need To Know About Oracle BPM Worklist

	30.2 Logging In to Oracle BPM Worklist
	30.2.1 How To Log In to the Worklist
	30.2.1.1 Enabling the weblogic User for Logging in to the Worklist

	30.2.2 What Happens When You Log In to the Worklist
	30.2.3 What Happens When You Change a User’s Privileges While They are Logged in to Oracle BPM Worklist

	30.3 Customizing the Task List Page
	30.3.1 How To Filter Tasks
	30.3.2 How To Create and Customize Worklist Views
	30.3.3 How To Customize the Task Status Chart
	30.3.4 How To Create a ToDo Task
	30.3.5 How To Create a Subtask

	30.4 Acting on Tasks: The Task Details Page
	30.4.1 System Actions
	30.4.2 Task History
	30.4.3 How To Act on Tasks
	30.4.4 How To Act on Tasks That Require a Digital Signature

	30.5 Approving Tasks
	30.6 Setting a Vacation Period
	30.7 Setting Rules
	30.7.1 How To Create User Rules
	30.7.2 How To Create Group Rules
	30.7.3 Assignment Rules for Tasks with Multiple Assignees

	30.8 Using the Worklist Administration Functions
	30.8.1 How To Manage Other Users’ or Groups’ Rules (as an Administrator)
	30.8.2 How To Set the Worklist Display (Application Preferences)

	30.9 Specifying Notification Settings
	30.9.1 Messaging Filter Rules
	30.9.1.1 Data Types
	30.9.1.2 Attributes

	30.9.2 Rule Actions
	30.9.3 Managing Messaging Channels
	30.9.3.1 Viewing Your Messaging Channels
	30.9.3.2 Creating, Editing, and Deleting a Messaging Channel

	30.9.4 Managing Messaging Filters
	30.9.4.1 Viewing Messaging Filters
	30.9.4.2 Creating Messaging Filters
	30.9.4.3 Editing a Messaging Filter
	30.9.4.4 Deleting a Messaging Filter


	30.10 Using Mapped Attributes (Flex Fields)
	30.10.1 How To Map Attributes
	30.10.2 Custom Mapped Attributes

	30.11 Creating Worklist Reports
	30.11.1 How To Create Reports
	30.11.2 What Happens When You Create Reports
	30.11.2.1 Unattended Tasks Report
	30.11.2.2 Tasks Priority Report
	30.11.2.3 Tasks Cycle Time Report
	30.11.2.4 Tasks Productivity Report


	30.12 Accessing Oracle BPM Worklist in Local Languages and Time Zones
	30.12.1 Strings in Oracle BPM Worklist
	30.12.2 How to Change the Preferred Language if the Identity Store is LDAP-Based
	30.12.3 How to Change the Language in Which Tasks Are Displayed
	30.12.4 How To Change the Language Preferences from a JAZN XML File
	30.12.5 What You May Need to Know About Runtime Languages Not Displaying in the Worklist
	30.12.6 What You May Need to Know About Inconsistent Display Languages in Worklist and Embedded User's Notification Preference Interface
	30.12.7 How To Change the Time Zone Used in the Worklist

	30.13 Creating Reusable Worklist Regions
	30.13.1 How to Create an Application With an Embedded Reusable Worklist Region
	30.13.2 How to Set Up the Deployment Profile
	30.13.3 How to Prepare Federated Mode Task Flows For Deployment
	30.13.4 What You May Need to Know About Task List Task Flow
	30.13.5 What You May Need to Know About Certificates Task Flow
	30.13.6 What You May Need to Know About the Reports Task Flow
	30.13.7 What You May Need to Know About Application Preferences Task Flow
	30.13.8 What You May Need to Know About Mapped Attributes Task Flow
	30.13.9 What You May Need to Know About Rules Task Flow


	31 Building a Custom Worklist Client
	31.1 Introduction to Building Clients for Workflow Services
	31.2 Packages and Classes for Building Clients
	31.3 Workflow Service Clients
	31.3.1 The IWorkflowServiceClient Interface

	31.4 Class Paths for Clients Using SOAP
	31.5 Class Paths for Clients Using Remote EJBs
	31.6 Class Paths for Clients Using Local EJBs
	31.7 Enterprise JavaBeans References in Web Applications
	31.8 Initiating a Task
	31.8.1 Creating a Task
	31.8.2 Creating a Payload Element in a Task
	31.8.3 Initiating a Task Programmatically

	31.9 Changing Workflow Standard View Definitions
	31.10 Writing a Worklist Application Using the HelpDeskUI Sample

	32 Introduction to Human Workflow Services
	32.1 Introduction to Human Workflow Services
	32.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow Services
	32.1.1.1 Support for Foreign JNDI Names

	32.1.2 Security Model for Services
	32.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP Web Services
	32.1.2.2 Creating Human Workflow Context on Behalf of a User
	32.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a JAAS Application

	32.1.3 Task Service
	32.1.4 Task Query Service
	32.1.5 Identity Service
	32.1.5.1 Identity Service Providers
	32.1.5.1.1 Custom User Repository Plug-ins


	32.1.6 Task Metadata Service
	32.1.7 User Metadata Service
	32.1.8 Task Report Service
	32.1.9 Runtime Config Service
	32.1.9.1 Internationalization of Attribute Labels

	32.1.10 Evidence Store Service and Digital Signatures
	32.1.10.1 Prerequisites
	32.1.10.2 Interfaces and Methods

	32.1.11 Task Instance Attributes

	32.2 Notifications from Human Workflow
	32.2.1 Contents of Notification
	32.2.2 Error Message Support
	32.2.3 Reliability Support
	32.2.4 Management of Oracle Human Workflow Notification Service
	32.2.5 How to Configure the Notification Channel Preferences
	32.2.6 How to Configure Notification Messages in Different Languages
	32.2.7 How to Send Actionable Messages
	32.2.7.1 How to Send Actionable Emails for Human Tasks

	32.2.8 How to Send Inbound and Outbound Attachments
	32.2.9 How to Send Inbound Comments
	32.2.10 How to Send Secure Notifications
	32.2.11 How to Set Channels Used for Notifications
	32.2.12 How to Send Reminders
	32.2.13 How to Set Automatic Replies to Unprocessed Messages
	32.2.14 How to Create Custom Notification Headers

	32.3 Assignment Service Configuration
	32.3.1 Dynamic Assignment and Task Escalation Functions
	32.3.1.1 How to Implement a Dynamic Assignment Function
	32.3.1.2 How to Configure Dynamic Assignment Functions
	32.3.1.3 How to Configure Display Names for Dynamic Assignment Functions
	32.3.1.4 How to Implement a Task Escalation Function

	32.3.2 Dynamically Assigning Task Participants with the Assignment Service
	32.3.2.1 How to Implement an Assignment Service
	32.3.2.2 Example of Assignment Service Implementation
	32.3.2.3 How to Deploy a Custom Assignment Service

	32.3.3 Custom Escalation Function

	32.4 Class Loading for Callbacks and Resource Bundles
	32.5 Resource Bundles in Workflow Services
	32.5.1 Task Resource Bundles
	32.5.2 Global Resource Bundle - WorkflowLabels.properties
	32.5.3 Worklist Client Resource Bundles
	32.5.4 Task Detail ADF Task Flow Resource Bundles
	32.5.5 Specifying Stage and Participant Names in Resource Bundles
	32.5.6 Case Sensitivity in Group and Application Role Names

	32.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services
	32.6.1 Human Workflow Services Clients
	32.6.1.1 Task Query Service Client Code
	32.6.1.2 Configuration Option
	32.6.1.2.1 JAXB Object
	32.6.1.2.2 Workflow Client Configuration File - wf_client_config.xml
	32.6.1.2.3 Workflow Client Configuration in the Property Map

	32.6.1.3 Client Logging
	32.6.1.4 Configuration Migration Utility

	32.6.2 Identity Propagation
	32.6.2.1 Enterprise JavaBeans Identity Propagation
	32.6.2.1.1 Client Configuration
	32.6.2.1.2 Requirements for Client Applications For Identity Propagation

	32.6.2.2 SAML Token Identity Propagation for SOAP Client
	32.6.2.2.1 Client configuration
	32.6.2.2.2 Identity Propagation Mode Setting Through Properties
	32.6.2.2.3 Identity Propagation Mode Setting in Configuration File
	32.6.2.2.4 Identity Propagation Mode Setting Through the JAXB Object

	32.6.2.3 Public Key Alias

	32.6.3 Client JAR Files

	32.7 Task States in a Human Task
	32.8 Database Views for Oracle Workflow
	32.8.1 Unattended Tasks Report View
	32.8.2 Task Cycle Time Report View
	32.8.3 Task Productivity Report View
	32.8.4 Task Priority Report View


	33 Integrating Microsoft Excel with a Human Task
	33.1 Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook
	33.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control
	33.1.2 How to Create a Dummy JSF Page
	33.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project
	33.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project
	33.1.5 How to Deploy the Web Application You Created in Step 1
	33.1.6 How to Install Microsoft Excel
	33.1.7 How to Install the Oracle ADF-Desktop Integration Plug-in
	33.1.8 How to Specify the User Interface Controls and Create the Excel Workbook

	33.2 Attaching Excel Workbooks to Human Task Workflow Email Notifications
	33.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email Notifications
	33.2.2 What Happens During Runtime When You Enable Attachment of Excel Workbooks to Human Task Workflow Email Notifications
	33.2.3 Example: Attaching an Excel Workbook to Email Notifications
	33.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities
	33.2.3.2 Task 2: Set up Authentication
	33.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel Workbook
	33.2.3.4 Task 4: Prepare the Excel Workbook
	33.2.3.5 Task 5: Deploy the ADF Task Flow
	33.2.3.6 Task 6: Test the Deployed Application



	34 Configuring Task List Portlets
	34.1 Introduction to Task List Portlets
	34.2 Deploying the Task List Portlet Producer Application to a Portlet Server
	34.2.1 Deployment Prerequisites
	34.2.2 How to Deploy the Task List Portlet Producer Application
	34.2.3 How to Connect the Task List Producer to the Remote SOA Server
	34.2.3.1 How to Define the Foreign JNDI on the Oracle WebCenter Oracle WebLogic Server
	34.2.3.2 How to Configure EJB Identity Propagation
	34.2.3.3 How to Configure the Identity Store

	34.2.4 How to Secure the Task List Portlet Producer Application Using Web Services Security
	34.2.5 How to Specify the Inbound Security Policy

	34.3 Creating a Portlet Consumer Application for Embedding the Task List Portlet
	34.3.1 How To Create a Portlet Consumer Application for Embedding the Task List Portlet

	34.4 Passing Worklist Portlet Parameters
	34.4.1 Assignment Filter Constraints
	34.4.2 Example of File Containing All Column Constants



	Part VI Using Binding Components
	35 Getting Started with Binding Components
	35.1 Introduction to Binding Components
	35.1.1 Web Services
	35.1.1.1 WS-AtomicTransaction Support
	35.1.1.1.1 Ensuring Participation of BPEL Processes in WS-AT
	35.1.1.1.2 WS-AT Transactions are Not Supported When Optimization is Enabled


	35.1.2 HTTP Binding Service
	35.1.2.1 Supported Interactions
	35.1.2.2 How to Configure the HTTP Binding Service
	35.1.2.3 How to Enable Basic Authentication

	35.1.3 JCA Adapters
	35.1.3.1 AQ Adapter
	35.1.3.2 Database Adapter
	35.1.3.3 File Adapter
	35.1.3.4 FTP Adapter
	35.1.3.5 JMS Adapter
	35.1.3.6 MQ Adapter
	35.1.3.7 Oracle Applications Adapter
	35.1.3.8 Socket Adapter
	35.1.3.9 Third Party Adapter

	35.1.4 Oracle BAM
	35.1.5 Oracle B2B
	35.1.6 ADF-BC Services
	35.1.7 EJB Services
	35.1.8 Direct Binding Services

	35.2 Introduction to Integrating a Binding Component in a SOA Composite Application
	35.2.1 How to Integrate a Binding Component in a SOA Composite Application
	35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java Class


	36 Integrating Enterprise JavaBeans with SOA Composite Applications
	36.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite Applications
	36.1.1 Integration Through SDO-Based EJBs
	36.1.2 Integration Through Java Interfaces

	36.2 Designing an SDO-Based Enterprise JavaBeans Application
	36.2.1 How to Create SDO Objects Using the SDO Compiler
	36.2.2 How to Create a Session Bean and Import the SDO Objects
	36.2.3 How to Create a Profile and an EAR File
	36.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean
	36.2.5 How to Use Web Service Annotations
	36.2.6 How to Deploy the Enterprise JavaBeans EAR File

	36.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper
	36.3.1 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite Applications
	36.3.2 How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite Applications

	36.4 Designing an SDO-Based Enterprise JavaBeans Client to Invoke Oracle SOA Suite
	36.5 Specifying Enterprise JavaBeans Roles
	36.6 Configuring JNDI Access
	36.6.1 How to Create a Foreign JNDI
	36.6.2 How to Create a Custom CSF Map for JNDI Lookup


	37 Using the Direct Binding Invocation API
	37.1 Introduction to Direct Binding
	37.2 Introduction to the Direct Binding Invocation API
	37.2.1 Synchronous Direct Binding Invocation
	37.2.2 Asynchronous Direct Binding Invocation
	37.2.3 SOA Direct Address Syntax
	37.2.4 SOA Transaction Propagation

	37.3 Invoking a SOA Composite Application with the Invocation API
	37.3.1 How to Create an Inbound Direct Binding Service
	37.3.2 How to Create an Outbound Direct Binding Reference
	37.3.3 How to Set an Identity for J2SE Clients Invoking Direct Binding
	37.3.4 What You May Need to Know About Invoking SOA Composites on Hosts with the Same Server and Domain Names

	37.4 Samples Using the Direct Binding Invocation API


	Part VII Sharing Functionality Across Service Components
	38 Creating Transformations with the XSLT Mapper
	38.1 Introduction to the XSLT Mapper
	38.1.1 Overview of XSLT Creation
	38.1.2 Guidelines for Using the XSLT Mapper

	38.2 Creating an XSL Map File
	38.2.1 How to Create an XSL Map File in Oracle BPEL Process Manager
	38.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files in Oracle BPEL Process Manager
	38.2.3 How to Create an XSL Map File in Oracle Mediator
	38.2.4 What You May Need to Know About Creating an XSL Map File
	38.2.5 What You May Need to Know About Importing a Composite with an XSL File
	38.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without Creating an XSL Map File
	38.2.7 What Happens If You Receive an Empty Namespace Tag in an Output Message

	38.3 Designing Transformation Maps with the XSLT Mapper
	38.3.1 How to Add Additional Sources
	38.3.2 How to Perform a Simple Copy by Linking Nodes
	38.3.3 How to Set Constant Values
	38.3.4 How to Add Functions
	38.3.4.1 Editing Function Parameters
	38.3.4.2 Chaining Functions
	38.3.4.3 Using Named Templates
	38.3.4.4 Importing User-Defined Functions

	38.3.5 How to Edit XPath Expressions
	38.3.6 How to Add XSLT Constructs
	38.3.6.1 Using Conditional Processing with xsl:if
	38.3.6.2 Using Conditional Processing with xsl:choose
	38.3.6.3 Creating Loops with xsl:for-each
	38.3.6.4 Cloning xsl:for-each
	38.3.6.5 Applying xsl:sort to xsl:for-each
	38.3.6.6 Copying Nodes with xsl:copy-of
	38.3.6.7 Including External Templates with xsl:include

	38.3.7 How to Automatically Map Nodes
	38.3.7.1 Using Auto Mapping with Confirmation

	38.3.8 What You May Need to Know About Automatic Mapping
	38.3.9 How to View Unmapped Target Nodes
	38.3.10 How to Generate Dictionaries
	38.3.11 What You May Need to Know About Generating Dictionaries in Which Functions are Used
	38.3.12 How to Create Map Parameters and Variables
	38.3.12.1 Creating a Map Parameter
	38.3.12.2 Creating a Map Variable

	38.3.13 How to Search Source and Target Nodes
	38.3.14 How to Control the Generation of Unmapped Target Elements
	38.3.15 How to Ignore Elements in the XSLT Document
	38.3.16 How to Replace a Schema in the XSLT Mapper
	38.3.17 How to Substitute Elements and Types in the Source and Target Trees

	38.4 Testing the Map
	38.4.1 How to Test the Transformation Mapping Logic
	38.4.2 How to Generate Reports
	38.4.2.1 Correcting Memory Errors When Generating Reports

	38.4.3 How to Customize Sample XML Generation

	38.5 Demonstrating Features of the XSLT Mapper
	38.5.1 Opening the Application
	38.5.2 Creating a New XSLT Map in the BPEL Process
	38.5.3 Using Type Substitution to Map the Purchase Order Items
	38.5.4 Referencing Additional Source Elements
	38.5.5 Using Element Substitution to Map the Shipping Address
	38.5.6 Mapping the Remaining Fields
	38.5.7 Testing the Map


	39 Using Business Events and the Event Delivery Network
	39.1 Introduction to Business Events
	39.1.1 Local and Remote Events Boundaries

	39.2 Creating Business Events in Oracle JDeveloper
	39.2.1 How to Create a Business Event

	39.3 Subscribing to or Publishing a Business Event from an Oracle Mediator Service Component
	39.3.1 How to Subscribe to a Business Event
	39.3.2 What Happens When You Create and Subscribe to a Business Event
	39.3.3 What You May Need to Know About Subscribing to a Business Event
	39.3.4 How to Publish a Business Event
	39.3.5 How to Configure a Foreign JNDI Provider to Enable Administration Server Applications to Publish Events to the SOA Server
	39.3.6 How to Configure JMS-based EDN Implementations
	39.3.7 What Happens When You Publish a Business Event

	39.4 Subscribing to or Publishing a Business Event from a BPEL Process Service Component
	39.4.1 How to Subscribe to a Business Event
	39.4.2 How to Publish a Business Event
	39.4.3 What Happens When You Subscribe to and Publish a Business Event
	39.4.4 What You May Need to Know About Subscribing to a Business Event

	39.5 How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator


	Part VIII Completing Your Application
	40 Enabling Security with Policies
	40.1 Introduction to Policies
	40.2 Attaching Policies to Binding Components and Service Components
	40.2.1 How to Attach Policies to Binding Components and Service Components
	40.2.2 How to Override Policy Configuration Property Values
	40.2.2.1 Overriding Client Configuration Property Values
	40.2.2.2 Overriding Server Configuration Property Values



	41 Deploying SOA Composite Applications
	41.1 Introduction to Deployment
	41.2 Deployment Prerequisites
	41.2.1 Creating the Oracle SOA Suite Schema
	41.2.2 Creating a SOA Domain
	41.2.3 Configuring a SOA Cluster

	41.3 Understanding the Packaging Impact
	41.4 Anatomy of a Composite
	41.5 Preparing the Target Environment
	41.5.1 Creating Data Sources and Queues
	41.5.1.1 Script for Creation of JMS Resource and Redeployment of JMS Adapter
	41.5.1.2 Script for Creation of the Database Resource and Redeployment of the Database Adapter

	41.5.2 Creating Connection Factories and Connection Pooling
	41.5.3 Enabling Security
	41.5.4 Deploying Trading Partner Agreements and Task Flows
	41.5.5 Creating an Application Server Connection
	41.5.6 Creating a SOA-MDS Connection

	41.6 Customizing Your Application for the Target Environment Prior to Deployment
	41.6.1 Customizing SOA Composite Applications for the Target Environment
	41.6.1.1 Introduction to Configuration Plans
	41.6.1.2 Introduction to a Configuration Plan File
	41.6.1.3 Introduction to Use Cases for a Configuration Plan
	41.6.1.4 How to Create a Configuration Plan in Oracle JDeveloper
	41.6.1.5 How to Create a Configuration Plan with the WLST Utility
	41.6.1.6 How to Attach a Configuration Plan with ant Scripts


	41.7 Deploying SOA Composite Applications
	41.7.1 Deploying a Single SOA Composite in Oracle JDeveloper
	41.7.1.1 How to Deploy a Single SOA Composite
	41.7.1.1.1 Creating an Application Server Connection
	41.7.1.1.2 Optionally Creating a Project Deployment Profile
	41.7.1.1.3 Deploying the Profile

	41.7.1.2 What You May Need to Know About Deploying Human Task Composites with Task Flows to Partitions

	41.7.2 Deploying Multiple SOA Composite Applications in Oracle JDeveloper
	41.7.2.1 How to Deploy Multiple SOA Composite Applications

	41.7.3 Deploying and Using Shared Metadata Across SOA Composite Applications in Oracle JDeveloper
	41.7.3.1 How to Deploy Shared Metadata
	41.7.3.1.1 Create a JAR Profile and Include the Artifacts to Share
	41.7.3.1.2 Create a SOA Bundle that Includes the JAR Profile
	41.7.3.1.3 Deploy the SOA Bundle

	41.7.3.2 How to Use Shared Metadata
	41.7.3.2.1 Creating a SOA-MDS Connection
	41.7.3.2.2 Creating a BPEL Process


	41.7.4 Deploying an Existing SOA Archive in Oracle JDeveloper
	41.7.4.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper

	41.7.5 Managing SOA Composite Applications with Scripts
	41.7.5.1 How to Manage SOA Composite Applications with the WLST Utility
	41.7.5.2 How to Manage SOA Composite Applications with ant Scripts
	41.7.5.2.1 Testing a SOA Composite Application
	41.7.5.2.2 Compiling a SOA Composite Application
	41.7.5.2.3 Packaging a SOA Composite Application into a Composite SAR File
	41.7.5.2.4 Deploying a SOA Composite Application
	41.7.5.2.5 Undeploying a SOA Composite Application
	41.7.5.2.6 Exporting a Composite into a SAR File
	41.7.5.2.7 Exporting Postdeployment Changes of a Composite into a JAR File
	41.7.5.2.8 Importing Postdeployment Changes of a Composite
	41.7.5.2.9 Exporting Shared Data of a Given Pattern into a JAR File
	41.7.5.2.10 Removing a Top-level Shared Data Folder
	41.7.5.2.11 Starting a SOA Composite Application
	41.7.5.2.12 Stopping a SOA Composite Application
	41.7.5.2.13 Activating a SOA Composite Application
	41.7.5.2.14 Retiring a SOA Composite Application
	41.7.5.2.15 Assigning the Default Version to a SOA Composite Application
	41.7.5.2.16 Listing the Deployed SOA Composite Applications
	41.7.5.2.17 Listing All Available Partitions in the SOA Infrastructure
	41.7.5.2.18 Listing All Composites in a Partition
	41.7.5.2.19 Creating a Partition in the SOA Infrastructure
	41.7.5.2.20 Deleting a Partition in the SOA Infrastructure
	41.7.5.2.21 Starting All Composites in the Partition
	41.7.5.2.22 Stopping All Composites in the Partition
	41.7.5.2.23 Activating All Composites in the Partition
	41.7.5.2.24 Retiring All Composites in the Partition
	41.7.5.2.25 Upgrading a SOA Composite Application
	41.7.5.2.26 How to Manage SOA Composite Applications with ant Scripts


	41.7.6 Deploying SOA Composite Applications from Oracle Enterprise Manager Fusion Middleware Control Console
	41.7.7 Deploying SOA Composite Applications to a Cluster

	41.8 Postdeployment Configuration
	41.8.1 Security
	41.8.2 Updating Connections
	41.8.3 Updating Data Sources and Queues
	41.8.4 Attaching Policies

	41.9 Testing and Troubleshooting
	41.9.1 Verifying Deployment
	41.9.2 Initiating an Instance of a Deployed Composite
	41.9.3 Automating the Testing of Deployed Composites
	41.9.4 Recompiling a Project After Receiving a Deployment Error
	41.9.5 Troubleshooting Common Deployment Errors
	41.9.5.1 Common Oracle JDeveloper Deployment Issues
	41.9.5.2 ant Command Issues
	41.9.5.3 Common Configuration Plan Issues
	41.9.5.4 Deploying to a Managed Oracle WebLogic Server
	41.9.5.5 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server
	41.9.5.6 Deploying with an Unreachable Proxy Server
	41.9.5.7 Increasing Memory to Recover from Compilation Errors



	42 Automating Testing of SOA Composite Applications
	42.1 Introduction to the Composite Test Framework
	42.1.1 Test Cases Overview
	42.1.2 Test Suites Overview
	42.1.3 Emulations Overview
	42.1.4 Assertions Overview

	42.2 Introduction to the Components of a Test Suite
	42.2.1 Process Initiation
	42.2.2 Emulations
	42.2.3 Assertions
	42.2.4 Message Files

	42.3 Creating Test Suites and Test Cases
	42.3.1 How to Create Test Suites and Test Cases

	42.4 Creating the Contents of Test Cases
	42.4.1 How to Initiate Inbound Messages
	42.4.2 How to Emulate Outbound Messages
	42.4.3 How to Emulate Callback Messages
	42.4.4 How to Emulate Fault Messages
	42.4.5 How to Create Assertions
	42.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document
	42.4.5.2 Creating Assertions on a Leaf Element

	42.4.6 What You May Need to Know About Assertions

	42.5 Deploying and Running a Test Suite


	Part IX Advanced Topics
	43 Managing Large Documents and Large Numbers of Instances
	43.1 Best Practices for Handling Large Documents
	43.1.1 Use Cases for Handling Large Documents
	43.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads
	43.1.1.1.1 SOAP Inline
	43.1.1.1.2 SOAP MTOM
	43.1.1.1.3 Opaque Passed by File/FTP Adapters
	43.1.1.1.4 Opaque Passed by Oracle B2B

	43.1.1.2 End-to-End Streaming with Attachments
	43.1.1.2.1 SOAP with Attachments
	43.1.1.2.2 Attachment Options of File/FTP Adapters
	43.1.1.2.3 Oracle B2B Attachment

	43.1.1.3 Adding MTOM Attachments to Web Services
	43.1.1.3.1 Outbound Composite SOAP Messages Are Not Optimized If Only a WS-MTOM Policy is Used

	43.1.1.4 Processing Large XML with Repeating Constructs
	43.1.1.4.1 Debatching with the File/FTP Adapter
	43.1.1.4.2 Chunking with the File/FTP Adapters

	43.1.1.5 Processing Large XML Documents with Complex Structures
	43.1.1.5.1 Streaming with the File/FTP Adapters
	43.1.1.5.2 Oracle B2B Streaming


	43.1.2 Limitations on Concurrent Processing of Large Documents
	43.1.2.1 Opaque Schema for Processing Large Payloads

	43.1.3 General Tuning Recommendations
	43.1.3.1 General Recommendations
	43.1.3.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing
	43.1.3.3 Using the Assign Activity in Oracle BPEL Process Manager/Oracle Mediator
	43.1.3.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager)
	43.1.3.5 Using XSLT Transformations for Repeating Structures
	43.1.3.6 Processing Large Documents in Oracle B2B
	43.1.3.6.1 MDSInstance Cache Size
	43.1.3.6.2 Protocol Message Size
	43.1.3.6.3 Number of Threads
	43.1.3.6.4 Stuck Thread Max Time
	43.1.3.6.5 Tablespace

	43.1.3.7 Using XPath Functions to Write Large XSLT/XQuery Output to a File System


	43.2 Best Practices for Handling Large Metadata
	43.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process
	43.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)
	43.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)
	43.2.4 Using a Flow With Multiple Sequences
	43.2.5 Using a Flow with One Sequence
	43.2.6 Using a Flow with No Sequence
	43.2.7 Large Numbers of Oracle Mediators in a Composite
	43.2.8 Importing Large Data Sets in Oracle B2B

	43.3 Best Practices for Handling Large Numbers of Instances
	43.3.1 Instance and Rejected Message Deletion with the Purge Script
	43.3.2 Improving the Loading of Pages in Oracle Enterprise Manager Fusion Middleware Control Console


	44 Working with Domain Value Maps
	44.1 Introduction to Domain Value Maps
	44.1.1 Domain Value Map Features
	44.1.1.1 Qualifier Support
	44.1.1.2 Qualifier Order Support
	44.1.1.3 One-to-Many Mapping Support


	44.2 Creating Domain Value Maps
	44.2.1 How to Create Domain Value Maps
	44.2.2 What Happens When You Create a Domain Value Map

	44.3 Editing a Domain Value Map
	44.3.1 How to Add Columns to a Domain Value Map
	44.3.2 How to Add Rows to a Domain Value Map

	44.4 Using Domain Value Map Functions
	44.4.1 Understanding Domain Value Map Functions
	44.4.1.1 dvm:lookupValue
	44.4.1.2 dvm:lookupValue1M

	44.4.2 How to Use Domain Value Map Functions in Transformations
	44.4.3 How to Use Domain Value Map Functions in XPath Expressions
	44.4.4 What Happens at Runtime

	44.5 Creating a Domain Value Map Use Case for a Hierarchical Lookup
	44.5.1 How to Create the HierarchicalValue Use Case
	44.5.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project
	44.5.1.2 Task 2: How to Create a Domain Value Map
	44.5.1.3 Task 3: How to Create a File Adapter Service
	44.5.1.4 Task 4: How to Create ProcessOrders Oracle Mediator Component
	44.5.1.5 Task 5: How to Create a File Adapter Reference
	44.5.1.6 Task 6: How to Specify Routing Rules
	44.5.1.7 Task 7: How to Configure an Application Server Connection
	44.5.1.8 Task 8: How to Deploy the Composite Application

	44.5.2 How to Run and Monitor the HierarchicalValue Application

	44.6 Creating a Domain Value Map Use Case For Multiple Values
	44.6.1 How to Create the Multivalue Use Case
	44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project
	44.6.1.2 Task 2: How to Create a Domain Value Map
	44.6.1.3 Task 3: How to Create a File Adapter Service
	44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Oracle Mediator
	44.6.1.5 Task 5: How to Create a File Adapter Reference
	44.6.1.6 Task 6: How to Specify Routing Rules
	44.6.1.7 Task 7: How to Configure an Application Server Connection
	44.6.1.8 Task 8: How to Deploy the Composite Application

	44.6.2 How to Run and Monitor the Multivalue Application


	45 Using Oracle SOA Composer with Domain Value Maps
	45.1 Introduction to Oracle SOA Composer
	45.1.1 How to Log in to Oracle SOA Composer

	45.2 Viewing Domain Value Maps at Runtime
	45.2.1 How To View Domain Value Maps at Runtime

	45.3 Editing Domain Value Maps at Runtime
	45.3.1 How to Edit Domain Value Maps at Runtime
	45.3.1.1 Adding Rows
	45.3.1.2 Editing Rows
	45.3.1.3 Deleting Rows


	45.4 Saving Domain Value Maps at Runtime
	45.4.1 How to Save Domain Value Maps at Runtime

	45.5 Committing Changes at Runtime
	45.5.1 How to Commit Changes at Runtime

	45.6 Detecting Conflicts

	46 Working with Cross References
	46.1 Introduction to Cross References
	46.2 Introduction to Cross Reference Tables
	46.3 Creating and Modifying Cross Reference Tables
	46.3.1 How to Create Cross Reference Metadata
	46.3.2 What Happens When You Create a Cross Reference
	46.3.3 How to Create Custom Database Tables
	46.3.4 How to Add an End System to a Cross Reference Table

	46.4 Populating Cross Reference Tables
	46.4.1 About the xref:populateXRefRow Function
	46.4.2 About the xref:populateXRefRow1M Function
	46.4.3 How to Populate a Column of a Cross Reference Table

	46.5 Looking Up Cross Reference Tables
	46.5.1 About the xref:lookupXRef Function
	46.5.2 About the xref:lookupXRef1M Function
	46.5.3 About the xref:lookupPopulatedColumns Function
	46.5.4 How to Look Up a Cross Reference Table for a Value

	46.6 Deleting a Cross Reference Table Value
	46.6.1 How to Delete a Cross Reference Table Value

	46.7 Creating and Running the Cross Reference Use Case
	46.7.1 How to Create the Use Case
	46.7.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	46.7.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	46.7.1.3 Task 3: How to Create a Cross Reference
	46.7.1.4 Task 4: How to Create a Database Adapter Service
	46.7.1.5 Task 5: How to Create EBS and SBL External References
	46.7.1.6 Task 6: How to Create the Logger File Adapter External Reference
	46.7.1.7 Task 7: How to Create an Oracle Mediator Service Component
	46.7.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service Component
	46.7.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	46.7.1.10 Task 10: How to Configure an Application Server Connection
	46.7.1.11 Task 11: How to Deploy the Composite Application

	46.7.2 How to Run and Monitor the XrefCustApp Application

	46.8 Creating and Running Cross Reference for 1M Functions
	46.8.1 How to Create the Use Case
	46.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter
	46.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project
	46.8.1.3 Task 3: How to Create a Cross Reference
	46.8.1.4 Task 4: How to Create a Database Adapter Service
	46.8.1.5 Task 5: How to Create an EBS External Reference
	46.8.1.6 Task 6: How to Create a Logger File Adapter External Reference
	46.8.1.7 Task 7: How to Create an Oracle Mediator Service Component
	46.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component
	46.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator
	46.8.1.10 Task 10: How to Configure an Application Server Connection
	46.8.1.11 Task 11: How to Deploy the Composite Application



	47 Defining Composite Sensors
	47.1 Introduction to Composite Sensors
	47.1.1 Restrictions on Use of Composite Sensors

	47.2 Adding Composite Sensors
	47.2.1 How to Add Composite Sensors
	47.2.2 How to Add a Variable
	47.2.3 How to Add an Expression
	47.2.4 How to Add a Property

	47.3 Monitoring Composite Sensor Data During Runtime

	48 Using Two-Layer Business Process Management (BPM)
	48.1 Introduction to Two-Layer Business Process Management
	48.2 Creating a Phase Activity
	48.2.1 How to Create a Phase Activity
	48.2.2 What Happens When You Create a Phase Activity
	48.2.3 What Happens at Runtime When You Create a Phase Activity
	48.2.4 What You May Need to Know About Creating a Phase Activity

	48.3 Creating the Dynamic Routing Decision Table
	48.3.1 How to Create the Dynamic Routing Decision Table
	48.3.2 What Happens When You Create the Dynamic Routing Decision Table

	48.4 Use Case: Two-Layer BPM
	48.4.1 Designing the SOA Composite
	48.4.2 Creating a Phase Activity
	48.4.3 Creating and Editing the Dynamic Routing Decision Table
	48.4.4 Adding Assign Activities to the BPEL Process Model
	48.4.5 Deploying and Testing the Sample


	49 Integrating the Spring Framework in SOA Composite Applications
	49.1 Introduction to the Spring Service Component
	49.2 Integration of Java and WSDL-Based Components in the Same SOA Composite Application
	49.2.1 Java and WSDL-Based Integration Example
	49.2.2 Using Callbacks with the Spring Framework

	49.3 Creating a Spring Service Component in Oracle JDeveloper
	49.3.1 How to Create a Spring Service Component in Oracle JDeveloper
	49.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL Conversions

	49.4 Defining Custom Spring Beans Through a Global Spring Context
	49.4.1 How to Define Custom Spring Beans Through a Global Spring Context

	49.5 Using the Predefined Spring Beans
	49.5.1 IHeaderHelperBean.java Interface for headerHelperBean
	49.5.2 IInstanceHelperBean.java Interface for instancerHelperBean
	49.5.3 ILoggerBean.java Interface for loggerBean
	49.5.4 How to Reference Predefined Spring Beans in the Spring Context File

	49.6 Spring Service Component Integration in the Fusion Order Demo
	49.6.1 How to Use EJBs with Java Vector Type Parameters

	49.7 JAXB and OXM Support
	49.7.1 Extended Mapping Files



	Part X Using Oracle Business Activity Monitoring
	50 Integrating Oracle BAM with SOA Composite Applications
	50.1 Introduction to Integrating Oracle BAM with SOA Composite Applications
	50.2 Configuring Oracle BAM Adapter
	50.3 Using Oracle BAM Monitor Express With BPEL Processes
	50.3.1 How to Access BPEL Designer Monitor View
	50.3.2 How to Configure Activity Monitors
	50.3.3 How To Create BPEL Process Monitoring Objects
	50.3.4 How to Configure Counters
	50.3.5 How to Configure Intervals
	50.3.6 How to Configure Business Indicators
	50.3.7 How to Add Existing Monitoring Objects to Activities
	50.3.8 How To Configure BPEL Process Monitors for Deployment
	50.3.9 What You Need to Know About Using the Monitor Express Dashboard
	50.3.10 What You Need To Know About Monitor Express Data Objects
	50.3.10.1 Understanding the COMPONENT Data Object
	50.3.10.2 Understanding the COUNTER Data Object
	50.3.10.3 Understanding the INTERVAL Data Object
	50.3.10.4 Understanding Business Indicator Data Objects
	50.3.10.5 Troubleshooting
	50.3.10.5.1 Controlling Oracle BAM Data Object Size
	50.3.10.5.2 Using the Logs



	50.4 Creating a Design Time Connection to an Oracle BAM Server
	50.4.1 How to Create a Connection to an Oracle BAM Server

	50.5 Using Oracle BAM Adapter in a SOA Composite Application
	50.5.1 How to Use Oracle BAM Adapter in a SOA Composite Application

	50.6 Using Oracle BAM Adapter in a BPEL Process
	50.6.1 How to Use Oracle BAM Adapter in a BPEL Process

	50.7 Integrating BPEL Sensors Using Oracle BAM Sensor Action
	50.7.1 How to Create a Sensor
	50.7.2 How to Create an Oracle BAM Sensor Action

	50.8 Integrating SOA Applications and Oracle BAM Using Enterprise Message Resources

	51 Using Oracle BAM Data Control
	51.1 Introduction to Oracle BAM Data Control
	51.2 Creating Projects That Can Use Oracle BAM Data Controls
	51.3 Creating Oracle BAM Server Connections
	51.3.1 How to Modify Oracle BAM Data Control Connections to Oracle BAM Servers
	51.3.1.1 How to Associate a BAM Data Control with a New Oracle BAM Connection


	51.4 Exposing Oracle BAM with Oracle ADF Data Controls
	51.4.1 How to Create Oracle BAM Data Controls
	51.4.2 What Happens in Your Project When You Create an Oracle BAM Data Control
	51.4.2.1 How an Oracle BAM Data Control Appears in the Data Controls Panel


	51.5 Creating Oracle BAM Data Control Queries
	51.5.1 How to Choose a Query Type
	51.5.2 How to Create Parameters
	51.5.3 How to Pass Values to Parameters
	51.5.4 How to Create Calculated Fields
	51.5.4.1 Creating Groups in Calculated Fields

	51.5.5 How to Select, Organize, and Sort Fields
	51.5.6 How to Create Filters
	51.5.6.1 How to Create Filter Headers
	51.5.6.2 How to Create Filter Entries
	51.5.6.3 Entering Comparison Values
	51.5.6.3.1 Comparison With a Value
	51.5.6.3.2 Comparison With a Calculation
	51.5.6.3.3 Comparison With a Field
	51.5.6.3.4 Comparison with a Parameter

	51.5.6.4 Using Active Now

	51.5.7 How to Select and Organize Groups
	51.5.7.1 How to Configure Time Groups and Time Series

	51.5.8 How to Create Aggregates
	51.5.9 How to Modify the Query

	51.6 Using Oracle BAM Data Controls in ADF Pages
	51.6.1 How to Use an Oracle BAM Data Control in a JSF Page

	51.7 Deploying Applications With Oracle BAM Data Controls
	51.7.1 How to Deploy to Oracle WebLogic Server in Development Mode
	51.7.2 How to Deploy to a Production Mode Oracle WebLogic Server


	52 Defining and Managing Oracle BAM Data Objects
	52.1 Introduction to Oracle BAM Data Objects
	52.2 Defining Data Objects
	52.2.1 How to Define a Data Object
	52.2.2 How to Add Columns to a Data Object
	52.2.3 How to Add Lookup Columns to a Data Object
	52.2.4 How to Add Calculated Columns to a Data Object
	52.2.5 How to Add Time Stamp Columns to a Data Object
	52.2.6 What You May Need to Know About System Data Objects
	52.2.7 What You May Need to Know About Oracle Data Integrator Data Objects

	52.3 Creating Permissions on Data Objects
	52.3.1 How to Create Permissions on a Data Object
	52.3.2 How to Add a Group of Users
	52.3.3 How to Copy Permissions from Other Data Objects

	52.4 Viewing Existing Data Objects
	52.4.1 How to View Data Object General Information
	52.4.2 How to View Data Object Layouts
	52.4.3 How to View Data Object Contents

	52.5 Using Data Object Folders
	52.5.1 How to Create Folders
	52.5.2 How to Open Folders
	52.5.3 How to Set Folder Permissions
	52.5.4 How to Move Folders
	52.5.5 How to Rename Folders
	52.5.6 How to Delete Folders

	52.6 Creating Security Filters
	52.6.1 How to Create a Security Filter
	52.6.2 How to Copy Security Filters from Other Data Objects

	52.7 Creating Dimensions
	52.7.1 How to Create a Dimension
	52.7.2 How to Create a Time Dimension

	52.8 Renaming and Moving Data Objects
	52.8.1 How to Rename a Data Object
	52.8.2 How to Move a Data Object

	52.9 Creating Indexes
	52.9.1 How to Create an Index

	52.10 Clearing Data Objects
	52.10.1 How to Clear a Data Object

	52.11 Deleting Data Objects
	52.11.1 How to Delete a Data Object


	53 Creating Oracle BAM Enterprise Message Sources
	53.1 Introduction to Enterprise Message Sources
	53.2 Creating Enterprise Message Sources
	53.2.1 How to Create an Enterprise Message Source
	53.2.2 How to Configure DateTime Specification
	53.2.3 How to Use Advanced XML Formatting

	53.3 Using Enterprise Message Sources
	53.3.1 How to Edit, Copy, and Delete Enterprise Message Sources
	53.3.2 How to Start and Stop Enterprise Message Sources
	53.3.3 How to Subscribe and Unsubscribe Enterprise Message Sources
	53.3.4 How to Test Enterprise Message Sources
	53.3.5 How to Refresh Enterprise Message Sources
	53.3.6 How to Monitor Enterprise Message Source Metrics

	53.4 Using Foreign JMS Providers
	53.5 Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider
	53.5.1 Creating a JMS Topic in AQ-JMS
	53.5.2 Creating a Data Source in Oracle WebLogic Server
	53.5.3 Creating a Foreign JMS Server
	53.5.4 Defining an EMS in Oracle BAM Architect
	53.5.5 Inserting and Updating Records in the SQL Table


	54 Using Oracle Data Integrator With Oracle BAM
	54.1 Introduction to Using the Oracle Data Integrator With Oracle Business Activity Monitoring
	54.2 Installing the Oracle Data Integrator Integration Files
	54.2.1 How to Install Integration Files Using the Script
	54.2.2 How to Manually Install Integration Files
	54.2.3 Using the Logs

	54.3 Using Oracle BAM Knowledge Modules
	54.4 Creating the Oracle BAM Target
	54.4.1 How to Create the Oracle BAM Target

	54.5 Reverse Engineering the Oracle BAM Schema
	54.6 Updating the Oracle Data Integrator External Data Source Definition
	54.6.1 How to Update the Oracle Data Integrator External Data Source Definitions

	54.7 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts
	54.8 Running Oracle Data Integrator Agent as a Daemon or a Microsoft Windows Service With Oracle BAM Embedded

	55 Creating External Data Sources
	55.1 Introduction to External Data Sources
	55.2 Creating External Data Sources
	55.2.1 How to Create an External Data Source
	55.2.2 What You May Need to Know About Oracle Data Integrator External Data Sources
	55.2.3 How to Edit an External Data Source
	55.2.4 How to Delete an External Data Source

	55.3 External Data Source Example
	55.4 Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition

	56 Using Oracle BAM Web Services
	56.1 Introduction to Oracle BAM Web Services
	56.2 Using the DataObjectOperations Web Services
	56.2.1 How to Use the DataObjectOperations Web Services

	56.3 Using the DataObjectDefinition Web Service
	56.3.1 How to Use the DataObjectDefinition Web Service

	56.4 Using the ManualRuleFire Web Service
	56.4.1 How to Use the ManualRuleFire Web Service

	56.5 Using the ICommand Web Service
	56.5.1 How to Use the ICommand Web Service


	57 Creating Oracle BAM Alerts
	57.1 Introduction to Creating Alerts
	57.2 Creating Alert Rules
	57.2.1 How to Create an Alert Rule
	57.2.2 How to Activate Alerts
	57.2.3 How to Modify Alert Rules
	57.2.4 How to Delete an Alert

	57.3 Creating Alert Rules From Templates
	57.3.1 How to Create Alert Rules From Templates

	57.4 Creating Alert Rules With Messages
	57.4.1 How to Create an Alert Rule With a Message

	57.5 Creating Complex Alerts
	57.5.1 How to Create a Dependent Rule

	57.6 Using Alert History
	57.6.1 How to View Alert History
	57.6.2 How to Clear Alert History

	57.7 Launching Alerts by Invoking Web Services
	57.8 Calling an External Action
	57.9 Sending Alerts to External E-mail Accounts

	58 Using ICommand
	58.1 Introduction to ICommand
	58.2 Executing ICommand
	58.3 Specifying the Command and Option Syntax
	58.3.1 How to Specify the Security Credentials
	58.3.2 How to Specify the Command
	58.3.3 How to Specify Object Names
	58.3.4 How to Specify Multiple Parameter Targets

	58.4 Using Command-line-only Parameters
	58.5 Running ICommand Remotely


	Part XI Using Oracle User Messaging Service
	59 Oracle User Messaging Service
	59.1 Introduction to User Messaging Service
	59.1.1 Components
	59.1.2 Architecture


	60 Sending and Receiving Messages using the User Messaging Service EJB API
	60.1 Introduction to the UMS Java API
	60.1.1 Creating a Java EE Application Module

	60.2 Creating a UMS Client Instance
	60.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative Approach
	60.2.2 API Reference for Class MessagingClientFactory

	60.3 Sending a Message
	60.3.1 Creating a Message
	60.3.1.1 Creating a Plaintext Message
	60.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	60.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	60.3.2 API Reference for Class MessageFactory
	60.3.3 API Reference for Interface Message
	60.3.4 API Reference for Enum DeliveryType
	60.3.5 Addressing a Message
	60.3.5.1 Types of Addresses
	60.3.5.2 Creating Address Objects
	60.3.5.2.1 Creating a Single Address Object
	60.3.5.2.2 Creating Multiple Address Objects in a Batch
	60.3.5.2.3 Adding Sender or Recipient Addresses to a Message

	60.3.5.3 Creating a Recipient with a Failover Address
	60.3.5.4 API Reference for Class AddressFactory
	60.3.5.5 API Reference for Interface Address

	60.3.6 Retrieving Message Status
	60.3.6.1 Synchronous Retrieval of Message Status
	60.3.6.2 Asynchronous Notification of Message Status


	60.4 Receiving a Message
	60.4.1 Registering an Access Point
	60.4.2 Synchronous Receiving
	60.4.3 Asynchronous Receiving
	60.4.4 Message Filtering

	60.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application
	60.5.1 Overview of Development
	60.5.2 Configuring the Email Driver
	60.5.3 Using JDeveloper 11g to Build the Application
	60.5.3.1 Opening the Project

	60.5.4 Deploying the Application
	60.5.5 Testing the Application

	60.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application
	60.6.1 Overview of Development
	60.6.2 Configuring the Email Driver
	60.6.3 Using JDeveloper 11g to Build the Application
	60.6.3.1 Opening the Project

	60.6.4 Deploying the Application
	60.6.5 Testing the Application

	60.7 Creating a New Application Server Connection

	61 Sending and Receiving Messages using the User Messaging Service Java API
	61.1 Introduction to the UMS Java API
	61.2 Creating a UMS Client Instance and Specifying Runtime Parameters
	61.2.1 API Reference for Class MessagingClientFactory

	61.3 Sending a Message
	61.3.1 Creating a Message
	61.3.1.1 Creating a Plaintext Message
	61.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	61.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	61.3.2 API Reference for Class MessagingFactory
	61.3.3 API Reference for Interface Message
	61.3.4 API Reference for Enum DeliveryType
	61.3.5 Addressing a Message
	61.3.5.1 Types of Addresses
	61.3.5.2 Creating Address Objects
	61.3.5.2.1 Creating a Single Address Object
	61.3.5.2.2 Creating Multiple Address Objects in a Batch
	61.3.5.2.3 Adding Sender or Recipient Addresses to a Message

	61.3.5.3 Creating a Recipient with a Failover Address
	61.3.5.4 API Reference for Class MessagingFactory
	61.3.5.5 API Reference for Interface Address

	61.3.6 User Preference Based Messaging

	61.4 Retrieving Message Status
	61.4.1 Synchronous Retrieval of Message Status
	61.4.2 Asynchronous Receiving of Message Status
	61.4.2.1 Creating a Listener Programmatically
	61.4.2.2 Default Status Listener
	61.4.2.3 Per Message Status Listener


	61.5 Receiving a Message
	61.5.1 Registering an Access Point
	61.5.2 Synchronous Receiving
	61.5.3 Asynchronous Receiving
	61.5.3.1 Creating a Listener Programmatically
	61.5.3.2 Default Message Listener
	61.5.3.3 Per Access Point Message Listener

	61.5.4 Message Filtering

	61.6 Configuring for a Cluster Environment
	61.7 Configuring Security
	61.8 Threading Model
	61.8.1 Listener Threading

	61.9 Using the UMS Client API to Build a Client Application
	61.9.1 Overview of Development
	61.9.2 Configuring the Email Driver
	61.9.3 Using JDeveloper 11g to Build the Application
	61.9.3.1 Opening the Project

	61.9.4 Deploying the Application
	61.9.5 Testing the Application

	61.10 Using the UMS Client API to Build a Client Echo Application
	61.10.1 Overview of Development
	61.10.2 Configuring the Email Driver
	61.10.3 Using JDeveloper 11g to Build the Application
	61.10.3.1 Opening the Project

	61.10.4 Deploying the Application
	61.10.5 Testing the Application

	61.11 Creating a New Application Server Connection

	62 Sending and Receiving Messages using the User Messaging Service Web Service API
	62.1 Introduction to the UMS Web Service API
	62.2 Creating a UMS Client Instance and Specifying Runtime Parameters
	62.3 Sending a Message
	62.3.1 Creating a Message
	62.3.1.1 Creating a Plaintext Message
	62.3.1.2 Creating a Multipart/Mixed Message (with Text and Binary Parts)
	62.3.1.3 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	62.3.1.4 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	62.3.2 API Reference for Interface Message
	62.3.3 API Reference for Enum DeliveryType
	62.3.4 Addressing a Message
	62.3.4.1 Types of Addresses
	62.3.4.2 Creating Address Objects
	62.3.4.2.1 Creating a Single Address Object
	62.3.4.2.2 Creating Multiple Address Objects in a Batch
	62.3.4.2.3 Adding Sender or Recipient Addresses to a Message

	62.3.4.3 Creating a Recipient with a Failover Address
	62.3.4.4 Recipient Types
	62.3.4.5 API Reference for Class MessagingFactory
	62.3.4.6 API Reference for Interface Address

	62.3.5 User Preference Based Messaging

	62.4 Retrieving Message Status
	62.4.1 Synchronous Retrieval of Message Status
	62.4.2 Asynchronous Receiving of Message Status
	62.4.2.1 Creating a Listener Programmatically
	62.4.2.2 Publish the Callback Service
	62.4.2.3 Stop a Dynamically Published Endpoint
	62.4.2.4 Registration


	62.5 Receiving a Message
	62.5.1 Registering an Access Point
	62.5.2 Synchronous Receiving
	62.5.3 Asynchronous Receiving
	62.5.3.1 Creating a Listener Programmatically
	62.5.3.2 Default Message Listener
	62.5.3.3 Per Access Point Message Listener

	62.5.4 Message Filtering

	62.6 Configuring for a Cluster Environment
	62.7 Configuring Security
	62.7.1 Client and Server Security
	62.7.2 Listener/Callback Security

	62.8 Threading Model
	62.9 Sample Chat Application with Web Services APIs
	62.9.1 Overview
	62.9.1.1 Provided Files

	62.9.2 Running the Pre-Built Sample
	62.9.3 Testing the Sample

	62.10 Creating a New Application Server Connection

	63 Parlay X Web Services Multimedia Messaging API
	63.1 Introduction to Parlay X Messaging Operations
	63.2 Send Message Interface
	63.2.1 sendMessage Operation
	63.2.2 getMessageDeliveryStatus Operation

	63.3 Receive Message Interface
	63.3.1 getReceivedMessages Operation
	63.3.2 getMessage Operation
	63.3.3 getMessageURIs Operation

	63.4 Oracle Extension to Parlay X Messaging
	63.4.1 ReceiveMessageManager Interface
	63.4.1.1 startReceiveMessage Operation
	63.4.1.2 stopReceiveMessage Operation


	63.5 Parlay X Messaging Client API and Client Proxy Packages
	63.6 Sample Chat Application with Parlay X APIs
	63.6.1 Overview
	63.6.1.1 Provided Files

	63.6.2 Running the Pre-Built Sample
	63.6.3 Testing the Sample
	63.6.4 Creating a New Application Server Connection


	64 User Messaging Preferences
	64.1 Introduction to User Messaging Preferences
	64.1.1 Terminology
	64.1.2 Configuration of Notification Delivery Preferences
	64.1.3 Delivery Preference Rules
	64.1.3.1 Data Types
	64.1.3.2 System Terms
	64.1.3.3 Business Terms

	64.1.4 Rule Actions

	64.2 How to Manage Messaging Channels
	64.2.1 Creating a Channel
	64.2.2 Editing a Channel
	64.2.3 Deleting a Channel
	64.2.4 Setting a Default Channel

	64.3 Creating Contact Rules using Filters
	64.3.1 Creating Filters
	64.3.2 Editing a Filter
	64.3.3 Deleting a Filter

	64.4 Configuring Settings


	Part XII Appendices
	A BPEL Process Activities and Services
	A.1 Introduction to Activities and Components
	A.2 Introduction to BPEL 1.1 and 2.0 Activities
	A.2.1 Tabs Common to Many Activities
	A.2.1.1 Annotations Tab
	A.2.1.2 Assertions Tab
	A.2.1.3 Correlations Tab
	A.2.1.4 Documentation Tab
	A.2.1.5 Headers Tab
	A.2.1.6 Properties Tab
	A.2.1.7 Skip Condition Tab
	A.2.1.8 Source and Targets Tabs
	A.2.1.9 Timeout Tab

	A.2.2 Assign Activity
	A.2.3 Assert Activity
	A.2.4 Bind Entity Activity
	A.2.5 Compensate Activity
	A.2.6 CompensateScope Activity
	A.2.7 Create Entity Activity
	A.2.8 Dehydrate Activity
	A.2.9 Email Activity
	A.2.10 Empty Activity
	A.2.11 Exit Activity
	A.2.12 Flow Activity
	A.2.13 FlowN Activity
	A.2.14 forEach Activity
	A.2.15 If Activity
	A.2.16 IM Activity
	A.2.17 Invoke Activity
	A.2.18 Java Embedding Activity
	A.2.19 Partner Link Activity
	A.2.20 Phase Activity
	A.2.21 Pick Activity
	A.2.22 Receive Activity
	A.2.23 Receive Signal Activity
	A.2.24 Remove Entity Activity
	A.2.25 RepeatUntil Activity
	A.2.26 Replay Activity
	A.2.27 Reply Activity
	A.2.28 Rethrow Activity
	A.2.29 Scope Activity
	A.2.30 Sequence Activity
	A.2.31 Signal Activity
	A.2.32 SMS Activity
	A.2.33 Switch Activity
	A.2.34 Terminate Activity
	A.2.35 Throw Activity
	A.2.36 Transform Activity
	A.2.37 User Notification Activity
	A.2.38 Validate Activity
	A.2.39 Voice Activity
	A.2.40 Wait Activity
	A.2.41 While Activity

	A.3 Introduction to BPEL Services
	A.3.1 ADF-BC Service
	A.3.2 AQ Adapter
	A.3.3 Oracle B2B
	A.3.4 Oracle BAM Adapter
	A.3.5 Database Adapter
	A.3.6 Direct Binding Service
	A.3.7 EJB Service
	A.3.8 File Adapter
	A.3.9 FTP Adapter
	A.3.10 HTTP Binding
	A.3.11 JMS Adapter
	A.3.12 MQ Adapter
	A.3.13 Oracle Applications
	A.3.14 Socket Adapter
	A.3.15 Third Party Adapter
	A.3.16 Web Service

	A.4 Publishing and Browsing the Oracle Service Registry
	A.4.1 How to Publish a Business Service
	A.4.2 How to Create a Connection to the Registry
	A.4.3 How to Configure a SOA Project to Invoke a Service from the Registry
	A.4.3.1 Dynamically Resolving the SOAP Endpoint Location
	A.4.3.2 Dynamically Resolving the WSDL Endpoint Location
	A.4.3.3 Resolving Endpoints

	A.4.4 How To Configure the Inquiry URL, UDDI Service Key, and Endpoint Address for Runtime
	A.4.4.1 Changing Endpoint Locations in the Registry Control
	A.4.4.2 Publishing WSDLs from Multiple SOA Partitions

	A.4.5 How to Publish WSDLs to UDDI for Multiple Partitions

	A.5 Providing Design-time Governance with the Oracle Enterprise Repository
	A.6 Validating When Loading a Process Diagram

	B XPath Extension Functions
	B.1 SOA XPath Extension Functions
	B.1.1 Database Functions
	B.1.1.1 lookup-table
	B.1.1.2 query-database
	B.1.1.3 sequence-next-val

	B.1.2 Date Functions
	B.1.2.1 add-dayTimeDuration-to-dateTime
	B.1.2.2 current-date
	B.1.2.3 current-dateTime
	B.1.2.4 current-time
	B.1.2.5 day-from-dateTime
	B.1.2.6 format-dateTime
	B.1.2.7 hours-from-dateTime
	B.1.2.8 implicit-timezone
	B.1.2.9 minutes-from-dateTime
	B.1.2.10 month-from-dateTime
	B.1.2.11 seconds-from-dateTime
	B.1.2.12 subtract-dayTimeDuration-from-dateTime
	B.1.2.13 timezone-from-dateTime
	B.1.2.14 year-from-dateTime

	B.1.3 Mathematical Functions
	B.1.3.1 abs

	B.1.4 String Functions
	B.1.4.1 compare
	B.1.4.2 compare-ignore-case
	B.1.4.3 create-delimited-string
	B.1.4.4 ends-with
	B.1.4.5 format-string
	B.1.4.6 get-content-as-string
	B.1.4.7 get-content-from-file-function
	B.1.4.8 get-localized-string
	B.1.4.9 index-within-string
	B.1.4.10 last-index-within-string
	B.1.4.11 left-trim
	B.1.4.12 lower-case
	B.1.4.13 matches
	B.1.4.14 right-trim
	B.1.4.15 upper-case


	B.2 BPEL XPath Extension Functions
	B.2.1 addQuotes
	B.2.2 appendToList
	B.2.3 copyList
	B.2.4 countNodes
	B.2.5 doc
	B.2.6 doStreamingTranslate
	B.2.7 doTranslateFromNative
	B.2.8 doTranslateToNative
	B.2.9 doXSLTransform
	B.2.10 doXSLTransformForDoc
	B.2.11 formatDate
	B.2.12 generateGUID
	B.2.13 getApplicationName
	B.2.14 getAttachmentContent
	B.2.15 getComponentName
	B.2.16 getComponentInstanceID
	B.2.17 getCompositeName
	B.2.18 getCompositeInstanceID
	B.2.19 getCompositeURL
	B.2.20 getContentAsString
	B.2.21 getConversationId
	B.2.22 getCreator
	B.2.23 getCurrentDate
	B.2.24 getCurrentDateTime
	B.2.25 getCurrentTime
	B.2.26 getDomainId
	B.2.27 getECID
	B.2.28 getElement
	B.2.29 getFaultAsString
	B.2.30 getFaultName
	B.2.31 getGroupIdsFromGroupAlias
	B.2.32 getInstanceId
	B.2.33 getNodeValue
	B.2.34 getNodes
	B.2.35 getOwnerDocument
	B.2.36 getParentComponentInstanceID
	B.2.37 getPreference
	B.2.38 getProcessId
	B.2.39 getProcessOwnerId
	B.2.40 getProcessURL
	B.2.41 getProcessVersion
	B.2.42 getUserAliasId
	B.2.43 getUserIdsFromGroupAlias
	B.2.44 setCompositeInstanceTitle
	B.2.45 instanceOf
	B.2.46 integer
	B.2.47 parseEscapedXML
	B.2.48 parseXML
	B.2.49 processXQuery
	B.2.50 processXSLT
	B.2.51 processXSLTAttachment
	B.2.52 processXSQL
	B.2.53 readBinaryFromFile
	B.2.54 readFile
	B.2.55 writeBinaryToFile
	B.2.56 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0
	B.2.56.1 getLinkStatus
	B.2.56.2 getVariableData
	B.2.56.2.1 selectionFailure Fault is Thrown if the Result Node Set is a Size Other Than One During Execution

	B.2.56.3 getVariableProperty (For BPEL 1.1)
	B.2.56.4 getVariableProperty (For BPEL 2.0)

	B.2.57 Utility Functions
	B.2.57.1 batchProcessActive
	B.2.57.2 batchProcessCompleted
	B.2.57.3 format
	B.2.57.4 genEmptyElem
	B.2.57.5 getChildElement
	B.2.57.6 getMessage
	B.2.57.7 max-value-among-nodeset
	B.2.57.8 min-value-among-nodeset
	B.2.57.9 square-root
	B.2.57.10 translateFromNative
	B.2.57.11 translateToNative
	B.2.57.12 translateFromNativeAttachment
	B.2.57.13 translateToNativeAttachment


	B.3 Oracle Mediator XPath Extension Functions
	B.3.1 doStreamingTranslate
	B.3.2 doTranslateFromNative
	B.3.3 doTranslateToNative
	B.3.4 getAttachmentContent
	B.3.5 getComponentInstanceID
	B.3.6 getComponentName
	B.3.7 getCompositeInstanceID
	B.3.8 getCompositeName
	B.3.9 getHeader
	B.3.10 getECID
	B.3.11 getParentComponentInstanceID
	B.3.12 setCompositeInstanceTitle
	B.3.13 translateFromNativeAttachment
	B.3.14 translateToNativeAttachment

	B.4 Advanced Functions
	B.4.1 create-nodeset-from-delimited-string
	B.4.2 generate-guid
	B.4.3 lookupPopulatedColumns
	B.4.4 lookupValue
	B.4.5 lookupValue1M
	B.4.6 lookupXRef
	B.4.7 lookupXRef1M
	B.4.8 lookup-xml
	B.4.9 markForDelete
	B.4.10 populateXRefRow
	B.4.11 populateXRefRow1M

	B.5 Workflow Service Functions
	B.5.1 clearTaskAssignees
	B.5.2 createWordMLDocument
	B.5.3 getNotificationProperty
	B.5.4 getNumberOfTaskApprovals
	B.5.5 getPreviousTaskApprover
	B.5.6 getTaskAttachmentByIndex
	B.5.7 getTaskAttachmentByName
	B.5.8 getTaskAttachmentContents
	B.5.9 getTaskAttachmentsCount
	B.5.10 getTaskResourceBundleString
	B.5.11 wfDynamicGroupAssign
	B.5.12 wfDynamicUserAssign
	B.5.13 Identity Service Functions
	B.5.13.1 getDefaultRealmName
	B.5.13.2 getGroupProperty
	B.5.13.3 getManager
	B.5.13.4 getReportees
	B.5.13.5 getSupportedRealmNames
	B.5.13.6 getUserProperty
	B.5.13.7 getUserRoles
	B.5.13.8 getUsersInGroup
	B.5.13.9 isUserInRole
	B.5.13.10 lookupGroup
	B.5.13.11 lookupUser


	B.6 Building XPath Expressions in Oracle JDeveloper
	B.6.1 How to Use the Expression Builder
	B.6.2 Introduction to the XPath Building Assistant
	B.6.3 How to Use the XPath Building Assistant
	B.6.4 Using the XPath Building Assistant in the XSLT Mapper
	B.6.5 Function Parameter Tool Tips
	B.6.6 Syntactic and Semantic Validation
	B.6.7 Creating Expressions with Free Form Text and XPath Expressions

	B.7 Creating User-Defined XPath Extension Functions
	B.7.1 How to Implement User-Defined XPath Extension Functions
	B.7.1.1 How to Implement Functions for the XSLT Mapper
	B.7.1.2 How to Implement Functions for All Other Components

	B.7.2 How to Configure User-Defined XPath Extension Functions
	B.7.3 How to Deploy User-Defined Functions to Runtime


	C Deployment Descriptor Properties
	C.1 Introduction to Deployment Descriptor Properties
	C.1.1 How to Define Deployment Descriptor Properties
	C.1.2 How to Get the Value of a Preference within a BPEL Process

	C.2 Deprecated 10.1.3 Properties

	D Understanding Sensor Public Views and the Sensor Actions XSD
	D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File
	D.2 Sensor Public Views
	D.2.1 BPM Schema
	D.2.1.1 BPEL_PROCESS_INSTANCES
	D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES
	D.2.1.3 BPEL_FAULT_SENSOR_VALUES
	D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES


	D.3 Sensor Actions XSD File

	E Oracle BAM Web Services Operations
	E.1 DataObjectOperations10131
	E.1.1 Batch
	E.1.1.1 Request Message

	E.1.2 Delete
	E.1.2.1 Request Message

	E.1.3 Insert
	E.1.3.1 Request Message

	E.1.4 Update
	E.1.4.1 Request Message

	E.1.5 Upsert
	E.1.5.1 Request Message


	E.2 DataObjectOperationsByName
	E.2.1 Delete
	E.2.1.1 Request Message

	E.2.2 Get
	E.2.2.1 Request Message

	E.2.3 Insert
	E.2.3.1 Request Message

	E.2.4 Update
	E.2.4.1 Request Message

	E.2.5 Upsert
	E.2.5.1 Request Message


	E.3 DataObjectOperationsByID
	E.3.1 Batch
	E.3.1.1 Request Message

	E.3.2 Delete
	E.3.2.1 Request Message

	E.3.3 Insert
	E.3.3.1 Request Message

	E.3.4 Update
	E.3.4.1 Request Message

	E.3.5 Upsert
	E.3.5.1 Request Message


	E.4 DataObjectDefinition Operations
	E.4.1 Create
	E.4.1.1 Request Message
	E.4.1.2 Response Message

	E.4.2 Delete
	E.4.2.1 Request Message
	E.4.2.2 Response Message

	E.4.3 Get
	E.4.3.1 Request Message
	E.4.3.2 Response Message

	E.4.4 Update
	E.4.4.1 Request Message
	E.4.4.2 Response Message


	E.5 ManualRuleFire Operations
	E.5.1 FireRuleByName
	E.5.1.1 Request Message
	E.5.1.2 Response Message



	F Oracle BAM Alert Rule Options
	F.1 Events
	F.1.1 In a specific amount of time
	F.1.2 At a specific time today
	F.1.3 On a certain day at a specific time
	F.1.4 Every interval between two times
	F.1.5 Every date interval starting on certain date at a specific time
	F.1.6 When a report changes
	F.1.7 When a data field changes in data object
	F.1.8 When a data field in a report meets specified conditions
	F.1.9 When a data field in a data object meets specified conditions
	F.1.10 When this rule is launched

	F.2 Conditions
	F.2.1 If it is between two times
	F.2.2 If It is between two days
	F.2.3 If it is a particular day of the week

	F.3 Actions
	F.3.1 Send a report via email
	F.3.2 Send a message via email
	F.3.3 Send a report via email and escalate to another user after a specific amount of time
	F.3.4 Send a parameterized message
	F.3.5 Send a parameterized message for every matching row in a data object
	F.3.6 Launch a rule
	F.3.7 Launch rule if an action fails
	F.3.8 Delete rows from a Data Object
	F.3.9 Call a Web Service
	F.3.9.1 How to Use Call a Web Service: An Example

	F.3.10 Run an Oracle Data Integrator Scenario
	F.3.11 Call an External Action

	F.4 Frequency Constraint

	G Oracle BAM ICommand Operations and File Formats
	G.1 Summary of Individual Operations
	G.2 Detailed Operation Descriptions
	G.2.1 Clear
	G.2.2 Delete
	G.2.3 Export
	G.2.4 Import
	G.2.5 Rename

	G.3 Format of Command File
	G.3.1 Inline Content
	G.3.2 Command IDs
	G.3.3 Continue On Error

	G.4 Format of Log File
	G.5 Sample Export File
	G.6 Regular Expressions

	H Normalized Message Properties
	H.1 Introduction to Normalized Messages
	H.2 Oracle BPEL Process Manager Properties
	H.3 Oracle Web Services Addressing Properties
	H.4 Manipulating Normalized Message Properties with bpelx Extensions
	H.4.1 BPEL 1.1 bpelx Extensions Syntax
	H.4.2 BPEL 2.0 bpelx Extensions Syntax


	I Interfaces Implemented By Rules Dictionary Editor Task Flow
	I.1 The MetadataDetails Interface
	I.1.1 The getDocument Method
	I.1.2 The getRelatedDocument Method
	I.1.3 The setDocument Method

	I.2 The NLSPreferences Interface

	J Oracle User Messaging Service Applications
	J.1 Send Message to User Specified Channel
	J.1.1 Overview
	J.1.1.1 Provided Files

	J.1.2 Installing and Configuring SOA and User Messaging Service
	J.1.2.1 Updating Addresses in Your LDAP User Profile
	J.1.2.1.1 Installing
	J.1.2.1.2 Connecting
	J.1.2.1.3 Setting User Messaging Device Addresses in LDAP


	J.1.3 Building the Sample
	J.1.4 Creating a New Application Server Connection
	J.1.5 Deploying the Project
	J.1.6 Configuring User Messaging Preferences
	J.1.7 Testing the Sample
	J.1.7.1 Verifying the Execution of Sending the Email


	J.2 Send Email with Attachments
	J.2.1 Overview
	J.2.1.1 Provided Files

	J.2.2 Installing and Configuring SOA and User Messaging Service
	J.2.2.1 Updating Addresses in Your LDAP User Profile
	J.2.2.1.1 Installing
	J.2.2.1.2 Connecting
	J.2.2.1.3 Setting User Messaging Device Addresses in LDAP


	J.2.3 Running the Pre-Built Sample
	J.2.4 Testing the Sample
	J.2.4.1 Verifying the Execution

	J.2.5 Building the Sample
	J.2.5.1 Sending Text Content with base64 Encoding

	J.2.6 Creating a New Application Server Connection


	K Oracle SOA Suite Properties Road Map
	K.1 Oracle BPEL Process Manager Deployment Descriptor Properties
	K.2 Normalized Message Header Properties
	K.2.1 Oracle JCA Adapter Message Header Properties
	K.2.2 Oracle BPEL Process Manager and Oracle Web Services Addressing Message Header Properties
	K.2.3 Oracle B2B Message Header Properties

	K.3 SOA Composite Application Properties
	K.4 Fault Policy and Adapter Rejected Message Properties
	K.5 Oracle B2B System Properties
	K.6 Oracle Enterprise Manager Fusion Middleware Control Console Property Pages
	K.6.1 SOA Infrastructure Properties
	K.6.2 Oracle BPEL Process Manager
	K.6.3 Human Workflow Notification and Task Service
	K.6.4 Oracle Mediator
	K.6.5 Cross References
	K.6.6 Oracle B2B
	K.6.7 Service and Reference Binding Component Properties

	K.7 System MBean Browser Properties
	K.7.1 SOA Infrastructure Properties
	K.7.2 Oracle BPEL Process Manager Properties
	K.7.3 Oracle Mediator Properties
	K.7.4 Human Workflow Notification and Task Service Properties
	K.7.5 Oracle Service Registry WSDL URL Caching Configuration



	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


