ORACLE

Oracle® Fusion Middleware
Developer’s Guide for Oracle SOA Suite
11gRelease 1 (11.1.1.4.0)

E10224-06

January 2011

Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite, 11 Release 1 (11.1.1.4.0)
E10224-06
Copyright © 2005, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Virginia Beecher, Deanna Bradshaw, Tulika Das, Vimmika Dinesh, Anirban Ghosh, Mark
Kennedy, Alex Prazma, Richard Smith, and Deborah Steiner

Contributor: Oracle SOA Suite development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUrOIACE ... e e e ettt aen Iv
AN Lo 1= V< T SURSRRTT Iv
Documentation AcCeSSIDILItYcccciiiiiiiiiiiiiiiiiici e Iv
ReElated DOCUITIEIESeoveieeiieeieeeeeeeeeee ettt ettt ere e et e et e eeteeeaeeeteeesesenseesseeenseessessnseensesenseenseesneeenes Ivi
(@03 4 NT£=3 015 (o) 0 - I RTR USRS Ivi

Part| Introduction to Oracle SOA Suite

1 Introduction to Building Applications with Oracle SOA Suite

1.1 Introduction to Service-Oriented Architecture...........cooviiiiiiiiiiiiiiiiiis 1-1
1.2 INtrodUCHiON t0 SEIVICEScuiuiiiieiiiiriciccieete ettt 1-1
1.3 Introduction to Oracle SOA SUIte........ccoiviiimiiiiiiiiii s 1-2
1.4 Standards Used by Oracle SOA Suite to Enable SOAccoovoiiiii 1-2
1.5 Service Component Architecture within SOA Composite Applications............ccccceuevneee. 1-3
1.5.1 Service COMPONENLS.........ccuiuiiiiiiiiii s 1-4
1.5.2 Binding COMPONENLSooviiiiiiiiiic e 1-5
1.5.3 TWITES .ottt 1-6
1.6 Runtime Behavior of a SOA Composite Applicationcccccoccueucuciciccciccecnieeiceeenns 1-6
1.6.1 Service INfrastruCture...........coociiiiiiiiiii s 1-7
1.6.2 Service ENGINeSccociiiiiiiiiiiicc e 1-8
1.6.3 Deployed Service Archivescoiciiiiirieiiicic s 1-8
1.7 Approaches for Designing SOA Composite Applications............ccoceueiiiiicieiiiiiicicieiicnen 1-8
1.8 Learning Oracle SOA SUIe........ccccciuiiiiiiiiiiiiiiiic e 1-8

2 Developing SOA Composite Applications with Oracle SOA Suite

2.1 Creating a SOA APPLCAtION.......cccciuiiiiiiiiiiic e 2-1
211 How to Create a SOA Application and Project ..., 2-1
21.2 What Happens When You Create a SOA Application and Project.........cccccoueennnnne. 2-3
2.1.3 What You May Need to Know About Opening the composite.xml File Through a
SOA-MDS CONNECLIONovviiiiiciiicieiceec s 2-6
2.2 Adding Service COMPONENLSccouiiiiuiicieiicie e e 2-6
221 How to Add a Service COMPONENLtcccuiuimiuimiiiiiiiiiiiciiiciiecieieee e 2-6
2.2.2 What You May Need to Know About Adding and Deleting a Service Component. 2-8
2.2.3 How to Edit a Service COMPONENLtccuoiiuiieiiiiicieicee e 2-9
2.3 Adding Service Binding COMPONENLSccccvururiiiiiriniiiiiiiiiiiiinrseaes 2-10

3

2.3.1
2.3.2
2.3.3
234
2.3.5
2.4

2.41
242
243
244
2.4.5

2.5
2.5.1
252
2.5.3
2.6
2.7
2.7.1
2.8
2.8.1
2.8.2

How to Add a Service Binding Componentc..cooeeieiiinieiiiiicccccciccee 2-10
How to Add a WSDL for a Web Serviceccccoeuiviimiiiiiiiiiciiiiciceees 2-12
How to VIeW SChemaSooovviiiiiiiiiiiiic s 2-15
How to Edit a Service Binding Component.............ccccouoieieieiinciiiniccecceeee 2-16
What You May Need to Know About Adding and Deleting Services 2-16
Adding Reference Binding COMPONENtS.........c.ccccueuiueueuimiemiiemieieeieieeceeneeneneneeeeeneeeenes 2-16
How to Add a Reference Binding Componentcccooeeieiiinieiniicienciccee 2-16
What You May Need to Know About Adding and Deleting References................. 2-18
What You May Need to Know About WSDL References..........cccccceeueuiuerveninenneenes 2-19
What You May Need to Know About Mixed Message Types in a WSDL File 2-19
What You May Need to Know About Invoking the Default Revision of a
COMPOSILE ... s 2-19
AAAING WITES ...ttt 2-20
How to Wire a Service and a Service Componentcccooerueioiicncnccciceccnne 2-20
How to Wire a Service Component and a Referencecccccccccueucciccinccnnnnne. 2-21
What You May Need to Know About Adding and Deleting Wires 2-23
AdAING SECUTILY ..o s 2-24
Deploying a SOA Composite APPLCAtIONc.cceuiuiuiuimiiiciicicieceeceeeeeeeeeeeenenens 2-25
How to Invoke Deployed COmpPOSItesccccoeveveviiiiiiiieiiiiiiiccis 2-25
Managing and Testing a SOA Composite Application ... 2-25
How to Manage Deployed COMPOSILESccccueueuemimiuimiiiiiiicicieicicceeieeeeeeeeneenenens 2-26
How to Test a Deployed COmpPOSIte.........cccovvviviiiiiiiiiiiiiiiiiiicis 2-29

Introduction to the SOA Sample Application

3.1
3.1.1
3.1.2
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.4
3.5
3.5.1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.6
3.7
3.8

Introduction to the Fusion Order Demo............cccoieiiiiiiiiiiniiiiiiiiceeees 3-1
Store Front Module..........cccoiiiiiiiiiiiiiiii s 3-1
WebLogic Fusion Order Demo Applicationcccccociiiiiiiicnccccceeeeeenenenenes 3-2

Setting Up the Fusion Order Demo Application...........ccceveveiiiiieiiiiiiiiiniciiciececens 3-3
Task 1: Install Oracle JDeveloper Studio........cccoviirueiiiiciiieiicc 3-3
Task 2: Install the Fusion Order Demo Application...........cccccceeecciccccciniccncnnne 3-3
Task 3: Install Oracle SOA SUItecoiiviiiiiiiiiiii e 3-4

Taking a Look at the WebLogic Fusion Order Demo Application..........ccccccoevvvcniiicnnnan 3-6
Project Applications of the WebLogic Fusion Order Demo Application..................... 3-7
The composite. XML Fileccccoiiiiiiiiiiiii e, 3-7

Understanding the OrderBookingComposite FIOW..........c.cccooveiiniiiniiccccce 3-8

Deploying Fusion Order DEmOccccccccuiueuiiiiciiiiieiiicicicieeeeeeeeeeeeeeeeeeee e 3-12
Task 1: Create a Connection to an Oracle WebLogic Servercccccooovrieiiiinnne 3-12
(Optional) Task 2: Create a Connection to the Oracle BAM Serverccccccc.cec.. 3-14
Task 3: Install the Schema for the Fusion Order Demo Application..............c.c........ 3-15
Task 4: Set the Configuration Property for the Store Front Module.......................... 3-16
Task 5: Edit the Database Connectioncccccceeueviiiiiiiniiniiinninne 3-18
Task 6: Deploy the Store Front Module............cccccciiiiiiiiiiiccccceceeene 3-19
Task 7: Deploy the WebLogic Fusion Order Demo Application...........cccceevevevenene. 3-20

Running Fusion Order Demo..........ccccccciiiiiiniiiiiiiiiiiiiiicicccnese s 3-23

Viewing Data Sent to Oracle BAM SEIVeTrccooiiiiiiiiiciccieeeeeeeeenenenenenenens 3-24

Undeploying the Composites for the WebLogic Fusion Order Demo Application 3-24

Partll Using the BPEL Process Service Component

4

Getting Started with Oracle BPEL Process Manager

4.1 Introduction to the BPEL Process Service Componentc.cccovoereieiiicicieiicccieeccne 4-1
411 How to Add a BPEL Process Service COMPONENtcceuvereveverererererererirernereeesereeenn. 4-1
4.2 INtrodUCtion tO ACHVITIES . ..viiieiieieiietieie ettt ettt et e et e e e e teeseesse e s e beesaesaessensesseenns 4-6
4.3 Introduction to Partner LINKS.........ccooieiiiiiiiiicecececeeeeeste et 4-7
4.4 Creating a Partner LINK ... 4-9
4.41 How to Create a Partner LinKc.ccceoieieiiiiieiicieeseceee et 4-9
4.411 Partner Links for an Outbound Adapter ... 4-10
4412 Partner Links for an Inbound Adapter..........cccccccceeciiiniiiiiieccceecceeee 4-11
4413 Partner Links from an Abstract WSDL to Call a Serviceccceeveveecienreevennenne. 4-11
4.414 Partner Links from an Abstract WSDL to Implement a Service......................... 4-11
4415 Partner Links and Human Tasks or Business Rules........c..cccccoceverierierieieenennnnn. 4-12
4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle

IMEAIALOTceeeeieeiietietteteet ettt ettt ettt e b e e ae e beesaesbeestesreessesbeensesseessenseanns 4-12
4.5 Introduction to Technology Adapterscccccveeiiirrrriirrrrccree s 4-13
4.6 Introduction to BPEL Process MONItOIScccuevieieriieieniieieseetese e sieesesieeaesseessesseesnenns 4-14

Introduction to Interaction Patterns in a BPEL Process

5.1 Introduction to One-Way MeSSages...........ccoceueieiiurieieiieiicieeeie s 5-1
5.2 Introduction to Synchronous Interactions.............ccoeeioiiiieiiiiiicicc e 5-2
5.3 Introduction to Asynchronous INteractions............cccococeiiciiiceeieecceeeeeeeeeenenenas 5-3
5.4 Introduction to Asynchronous Interactions with a Timeout...........ccccooeiiiiiicne 5-4
55 Introduction to Asynchronous Interactions with a Notification Timer.............cccccceoce.. 5-5
5.6 Introduction to One Request, Multiple RESPONSESc.cveuimiuimiuimiciiiicciciecieeeceeenenenes 5-6
5.7 Introduction to One Request, One of Two Possible Responses............ccccccovueveiiiiiiieninnnns 5-7
5.8 Introduction to One Request, a Mandatory Response, and an Optional Response.......... 5-8
5.9 Introduction to Partial PrOCESSINGccoeuiiuiuiiiiiiiiciciiceceeccecceeeeeeee e 5-9
5.10 Introduction to Multiple Application Interactionsccccecevvviiniiiniiiniinn, 5-10

Manipulating XML Data in a BPEL Process

6.1 Introduction to Manipulating XML Data in BPEL Processes...........cccceeueirucieiiininieieiine. 6-2
6.1.1 XML Data in BPEL.......cccooiiiiiiiiicicc s 6-2
6.1.2 Data Manipulation and XPath Standardsccccccceevririiennninrncnrreeceene. 6-2
6.2 Delegating XML Data Operations to Data Provider Servicesccccouvvirieiiiiinicininnnen. 6-5
6.2.1 How to Create an Entity Variable ... 6-7
6.2.1.1 Understanding How SDO Works in the Inbound Direction..........cccccccoccucucuenennnn. 6-7
6.2.1.2 Understanding How SDO Works in the Outbound Directionc.cccoeueenaie. 6-8
6.2.1.3 Creating an Entity Variable and Choosing a Partner Link..........cccccccovvvinnnnce. 6-8
6.2.1.4 Creating a Binding Key ... 6-9
6.3 Using Standalone SDO-based Variables.............ccccooiuiiiiiiciiiiiiciic 6-11
6.3.1 How to Declare SDO-based Variables...........ccccooviiiiiiniiiiiiiccecee 6-11
6.3.2 How to Convert from XML to SDOccccccoiiiiiiiiiicceecenes 6-12
6.4 Initializing a Variable with Expression Constants or Literal XML...........ccccccovniniininne. 6-13
6.4.1 How To Assign a Literal XML Elementcccccccovviviviiinininniniiniiiniinennes 6-13

vi

6.5 Copying Between Variables ... 6-14

6.5.1 How to Copy Between Variables..........ccooooiiiiii 6-14
6.5.2 Initializing Variables with an Inline from-spec in BPEL 2.0........cccccceeieinniiinnnne. 6-15
6.6 Accessing Fields in Element and Message Type Variablescccooeiiiiiiiinncnnes 6-15
6.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables 6-15
6.7 Assigning NUMETic ValUues........ccccoiiiiiiiiiiiiicieceeeeeeee e 6-17
6.7.1 How to Assign Numeric Values..........cooeuoviiiiiiiiicicicc 6-17
6.8 Using Mathematical Calculations with XPath Standards..........c.ccccccovviinnnninnnn 6-17
6.8.1 How To Use Mathematical Calculations with XPath Standards.........c.c.ccoocevivnnnnn. 6-17
6.9 Assigning String Literals..........cocooooiiiiiiii 6-18
6.9.1 How to Assign String Literals...........ocooriiiiiiic 6-18
6.10 Concatenating StriNgsccccoviiiiiiiiiiiii s 6-18
6.10.1 How to Concatenate Strings............oovceieiiicieiiiicieec s 6-19
6.11 Assigning Boolean Valuescccooriiiiiiiii s 6-19
6.11.1 How to Assign Boolean Valuesccccccccciiiiiiiiiiiniiiiieecceeeeeeeeeeeeeeeeees 6-19
6.12 Assigning a Date or Timeccccooiioiiiiiiiiiic s 6-20
6.12.1 How to Assign a Date or Time........c.ccooooiiiiiiiiii e 6-20
6.13 Manipulating AttrIDULEScocoiimiiiiiicccc e 6-21
6.13.1 How to Manipulate Attributes ..o 6-21
6.14 Manipulating XML Data with bpelx EXtensions...........ccccoooiiiiiniiiiiinccc 6-22
6.14.1 How to Use bpelX:append........c.ccccceiciiiininiiicirecieiceieeeeeeeeeseeeeees s 6-23
6.14.1.1 bpelx:append in BPEL 1.1......cccocoiiiiiiiiiicccee s 6-23
6.14.1.2 bpelx:append in BPEL 2.0........cccoiiiiic i 6-24
6.14.2 How to Use bpelx:insertBeforeccocvciiiiiiiiiiiiiiccecceecceeeeeeeeenenes 6-24
6.14.2.1 bpelx:insertBefore in BPEL T1.1......cccccccoiviiiiiiiniiiiiiiiin, 6-24
6.14.2.2 bpelx:insertBefore in BPEL 2.0........ccccoooiiiiiiiiiie 6-25
6.14.3 How to Use bpelX:INSErtAfter ... 6-26
6.14.3.1 bpelx:insertAfter in BPEL L.1......cccccoovviiiiiiiiiiiiiccnns 6-26
6.14.3.2 bpelx:insertAfter in BPEL 2.0.........coooiiiiii 6-27
6.14.4 How t0 Use DPELX:TEIMOVEcueuimiiiimiiiiiiiecicicieieeeie e 6-27
6.14.4.1 bpelx:iremove in BPEL 1.1......cccocoiiiiiiiiiiiiiciieicna 6-28
6.14.4.2 bpelx:iremove in BPEL 2.0.......cccccoiiiiiiiiiiiiiicicicceeeeeeees 6-29
6.14.5 How to Use bpelx:rename and XSD Type Casting.........cccccccceueueemeueecccmeuercncrenenne 6-29
6.14.5.1 bpelx:irename in BPEL 1.1......cccooviiiiiiiiiiiiiicii e 6-29
6.14.5.2 bpelx:irename in BPEL 2.0.......cccccoiiiiiiiiiiiiiiicccceee 6-31
6.14.6 How t0 Use bPelx:COPYLISLc.cueuimimiiiiciiicicieiiciccieeeeceieeec s 6-31
6.14.6.1 bpelx:copyList in BPEL 1.1ccccccoviiiiiiiiiiiiiiiiicies 6-32
6.14.6.2 bpelx:copyList in BPEL 2.0.......cccccoviiiiiiiniiiiiniiiniirinnnnnc e 6-33
6.14.7 How to Use Assign Extension Attributes.........ccccccovviiiinniiiiniiiicce, 6-34
6.14.7.1 ignoreMissingFromData Attribute ..o 6-34
6.14.7.2 insertMissingToData Attribute..........cccoooiiiiiiiiiiiiiie 6-34
6.14.7.3 keepSrcElementName Attributecccoccieiiiiiiciiiccicceeceeeeeeeeeeenens 6-35
6.15 Validating XML Datacccccoueiiiiiiiiiicici s 6-35
6.15.1 How to Validate XML Data in BPEL 1.1......cccccccciiiiiiiiiiiiiiicccccees 6-35
6.15.2 How to Validate XML Data in BPEL 2.0........cccoceviiiiiiiiiiiiiiiecccenes 6-35
6.16 Using Element Variables in Message Exchange Activities in BPEL 2.0..........cccccooeuee. 6-36
6.17 Mapping WSDL Message Parts in BPEL 2.0 ... 6-37

6.17.1 How to Map WSDL Message Parts.........c.ccoooeeiiiiiii
6.17.2 What Happens When You Map WSDL Message Parts...........ccoceueiiicieiiiiciciene.
6.18 Importing Process Definitions in BPEL 2.0ccccooiiiiiiiiiiiciiccccccccceceenenes
6.19 Manipulating XML Data Sequences That Resemble Arrayscccocoeeveieiirieiiiniricicinnn,
6.19.1 How to Statically Index into an XML Data Sequence That Uses Arrays..................
6.19.2 How to Use SOAP-Encoded ATITaysccccccueueueuiiiiimiieieieicieieieieieicneeieeeieeeeeeeeeeneeenees
6.19.2.1 SOAP-Encoded Arrays in BPEL 2.0......c.cooiiioiiiiii
6.19.3 How to Determine Sequence Size ...t
6.19.4 How to Dynamically Index by Applying a Trailing XPath to an Expression..........
6.19.4.1 Applying a Trailing XPath to the Result of getVariableDatac.cc.c..c.......
6.19.4.2 Using the bpelx:append Extension to Append New Items to a Sequence........
6.19.4.3 Merging Data SEqUENCESccoeuiuiiiiiiiiiiiiic e
6.19.4.4 Generating Functionality Equivalent to an Array of an Empty Element..........
6.19.5 What You May Need to Know About Using the Array Identifier
6.20 Converting from a String to an XML Element...........cccccoevvininniniininiiciiicccccccenes
6.20.1 How To Convert from a String to an XML Element............ccccooeiiiniiiniine
6.21 Understanding Document-Style and RPC-Style WSDL Differences............ccocovvuiuiunnnnes
6.21.1 How To Use RPC-Style Files........ccccciiuiiiiiiiiiiicccececeeeeeeeeeeeeeeeeeeeeees
6.22 Manipulating SOAP Headers in BPELccccooiiiiiiiiiic
6.22.1 How to Receive SOAP Headers in BPELccccccoviiiniiniiiiiin
6.22.2 How to Send SOAP Headers in BPELcccccooiiiiiiceces
6.23 Declaring Extension Namespaces in BPEL 2.0 ..o
6.23.1 How to Declare Extension Namespaces..........c.ccooceieieiiricieiiccice e
6.23.2 What Happens When You Create an EXteNnsion ...

7 Invoking a Synchronous Web Service from a BPEL Process

71 Introduction to Invoking a Synchronous Web Service..........c.cccccevvriivnnnnnnnnnnnene.
7.2 Invoking a Synchronous Web Service ...
7.21 How to Invoke a Synchronous Web Service..........cccoouoiiiiiiiiieiiccc
7.2.2 What Happens When You Invoke a Synchronous Web Servicecooeeiiinanaes
7.2.2.1 Partner Link in the BPEL Code..........cccccoviiiiiiiiiiiiiiiiiiccccns
7222 Partner Link Type and Port Type in the BPEL Codecccoouvvniiiininnininiinnee.
7223 Invoke Activity for Performing a Requestcccoovvivvninininnnnnrncne,
7224 Synchronous Invocation in BPEL Codeccooiiuiiiiiiiiieiiicicc
7.3 Specifying Timeout ValUes..........ccccccviiiiiiiiiiniiiiiiiiiiiiicceeeea
7.3.1 How To Specify Timeout ValUes...........ccccccuiiiiiiiiiiiiicceececeeieeeeneeeieeneneeennes
7.3.2 What You May Need to Know About SyncMaxWaitTime and Synchronous
Requests Not Timing OUt ..o
7.4 Calling a One-Way Mediator with a Synchronous BPEL Process..........cccccocoveeerrcrirenccnce.

8 Invoking an Asynchronous Web Service from a BPEL Process

8.1 Introduction to Invoking an Asynchronous Web Service...........cccccocciveiiiciciiccnennns
8.2 Invoking an Asynchronous Web Servicecoocooimiioiiiccieiicccccs
8.2.1 How to Invoke an Asynchronous Web Service...........cooouvviiiiieiniiccieinicec,
8.2.1.1 Adding a Partner Link for an Asynchronous Service............cccoceeevuvvveciernnenne
8.2.1.2 Adding an InVoke ACHVItYcooeueiiiiiiiiiic e

6-44

6-47

vii

viii

8.2.1.3 Adding a Receive ACHVILY ...ocoeiiiiiiiiiiicicc e 8-4

8.2.14 Performing Additional Activities........cccooiieiiioiiiiiiiicc 8-5
8.2.2 What Happens When You Invoke an Asynchronous Web Serviceccccccceueunene. 8-6
8.2.2.1 portType Section of the WSDL File........ccccoovviiiiiiiiiiiiiiicceeeees 8-6
8.2.2.2 partnerLinkType Section of the WSDL File.........c.ccoooiiiiiiiiiie 8-6
8.2.2.3 Partner Links Section in the BPEL File........c.cccccooviiiinininiiiccnes 8-7
8.2.2.4 Composite Application File ... 8-7
8.2.2.5 Invoke and Receive AcCtiVities. ... 8-8
8.2.2.6 createlnstance Attribute for Starting a New Instanceccccccoccececccccccennes 8-8
8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes.. 8-9
8.2.2.8 Multiple Runtime Endpoint Locations...........c.coeiieiiiiceiciiciccccece 8-9
8.2.3 What You May Need to Know About Limitations on BPEL 2.0 IMA Support 8-9
8.2.4 What Happens When You Specify a Conversation ID.........cccccooviiiiiiiiiinnnnnn. 8-10
8.2.4.1 bpelx:conversationld in BPEL 1.1........cccooooiiiiiiice i, 8-10
8.2.4.2 bpelx:conversationld in BPEL 2.0........cccccceiiiiiiiiiiiieiicceeceecceeeeeeeeeeneee 8-10
8.3 Using a Dynamic Partner Link at Runtime ... 8-11
8.3.1 How To Add and Use a Dynamic Partner Link at Runtimecccccccocevvinnnnnn 8-11
8.4 Using WS-Addressing in an Asynchronous Service............ccocceccecceuccicceeeceeeenennns 8-12
8.4.1 How to Use WS-Addressing in an Asynchronous Service..........cccococeeiiiiciiiinnnnen 8-13
8.4.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs 8-13
8.5 Using Correlation Sets in an Asynchronous Serviceccociiiiciiccccceccnenen 8-15
8.5.1 How to Use Correlation Sets in an Asynchronous Service...........cccccovvvvviinininininnn 8-15
8.5.1.1 Step 1: Creating a Project........cocoiiriiiiiiiiiiii 8-15
8.5.1.2 Step 2: Configuring Partner Links and File Adapter Servicesccccccceueueeeee. 8-16
8.5.1.3 Step 3: Creating Three Receive Activities ... 8-20
8.5.14 Step 4: Creating Correlation Sets.........cooooeieieiiiiiiie e, 8-21
8.56.15 Step 5: Associating Correlation Sets with Receive Activities.........c.ccccecueueuneene. 8-22
8.5.1.6 Step 6: Creating Property ALases.........ccccvvirieiiiiiiciciiicic e 8-23
8.5.1.7 Step 7: Reviewing WSDL File Contentccoooiiiiiiiiic, 8-25
8.5.2 What You May Need to Know About Setting Correlations for an IMA Using a
fromParts Element With Multiple Parts.........c.ccccccvviiiiiiiiicens 8-26

Using Parallel Flow in a BPEL Process

9.1 Introduction to Parallel Flows in BPEL Processes..........cccccoviiiiininiiiiiniiiiiicccienens 9-1
9.2 Creating a Parallel FIOW ... 9-2
9.2.1 How to Create a Parallel FIOW ... 9-2
9.2.2 What Happens When You Create a Parallel FIOWccccoooviiiiiiiiicns 9-3
9.2.3 Synchronizing the Execution of Activities in a Flow Activityccccooiiiiiiinies 9-5
9.24 How to Create Synchronization Between Activities Within a Flow Activity 9-5
9.2.5 What Happens When You Create Synchronization Between Activities Within a

FIOW ACHVILY ..ot 9-8
9.2.6 What You May Need to Know About Join Conditions in Target Activities............ 9-10
9.3 Customizing the Number of Parallel Branches ..., 9-10
9.3.1 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1 9-10
9.3.1.1 How to Create a fIoWIN ACVItY.....ccccooeeiiiiiniiiicrcccrerece s 9-12
9.3.1.2 What Happens When You Create a FIOWN Activityccoooviiiiiiiiiiiiinan, 9-13
9.3.2 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0......... 9-15

10

11

9.3.2.1 How to Create a forEach Activitycocouoiiiiiiiiiii

9.3.2.2 What Happens When You Create a forEach Activity........cccceviiiiininnnnn
Using Conditional Branching in a BPEL Process
10.1 Introduction to Conditional Branching ...
10.2 Defining Conditional Branching............ccccoeiiiiiiiiiiiiiiiceeceeceeeeeeseeeeeeeees
10.2.1 Defining Conditional Branching with the Switch Activity in BPEL 1.1
10.2.1.1 How to Create a Switch ActiVitycooooiioiiii
10.2.1.2 What Happens When You Create a Switch Activity.......ccoocveeeciciccinnnnn
10.2.2 Defining Conditional Branching with the If Activity in BPEL 2.0...........cccooeueueaee.
10.2.2.1 How to Create an If Activitycooooiiiiii e,
10.2.2.2 What Happens When You Create an If Activity........coociiiiiciiiciiccinene
10.3 Creating a While Activity to Define Conditional Branching.............cccooeeviiiiiinnnan.
10.3.1 How To Create a While ACtiVitycoooiieiiiiii
10.3.2 What Happens When You Create a While ACtVItyccocoeeiiiciiicccccccnne
10.4 Creating a repeatUntil Activity to Define Conditional Branching..........cccccccccoenai.
10.4.1 How to Create a repeatUntil Activitycccooooiiiiiiiii
10.4.2 What Happens When You Create a repeatUntil Activity........cccoeoeiicccccccnnnne.
10.5 Specifying XPath Expressions to Bypass Activity Executioncccoceeieiiiiiiiinninn,
10.5.1 How to Specify XPath Expressions to Bypass Activity Executioncc..........

10.5.2 What Happens When You Specify XPath Expressions to Bypass Activity
EX@CUIONeceiiiict s

Using Fault Handling in a BPEL Process

11,1 Introduction to a Fault Handler ...
11.2 Introduction to BPEL Standard Faults..........ccccccooiiiiiiiicccce,
11.2.1 BPEL 1.1 Standard Faults.........ccccovviiiiiiniicc s
11.2.2 BPEL 2.0 Standard Faults..........ccccccoviiiiiiiiiiiis
11.2.21 Fault Handling Order of Precedence in BPEL 2.0.........ccocoovoiiiiiiinii,
11.3 Introduction to Categories of BPEL Faults.........cccccccociiiiiiiiiinniicrccereeeeenes
11.3.1 Business Faults ...
11.3.2 RUNEME FAULLS ..ot
11.3.2.1 bINAINGFaULt ..o
11.3.2.2 remoteFault.........cccoooiiiiiii
11.3.2.3 replayFault.........ccoooiiiiii s
11.4 Using the Fault Management Frameworkcccoooiiiiiiiiiiccecccceeceneees
11.4.1 How to Design a Fault POLCYc.ccoueiiieiiicc
11.4.1.1 Understanding How Fault Policy Binding Resolution Works...........cccccccueuee.
11.4.1.2 Creating a Fault Policy File for Automated Fault Recoverycccccceueueuenene
11.4.1.3 Associating a Fault Policy with Fault Policy Bindingccccooeviiiiiiinen,
11.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples.......................
11.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers.........ccccccouvueneeee.
11.4.2 How to Execute a Fault POLCYcccveviiieieiiiccic
11.4.3 How to Use a Java Action Fault POLiCYccocueieiiiiiiiicicc
11.4.4 What You May Need to Know About Fault Management Behavior When the

Number of Instance Retries is Exceededoooovviiiiiviiiiiiiiiiieieeeeeeeeeeeee e

10-5

11-4

11.4.5 What You May Need to Know Executing the Retry Action with Multiple Faults in

the Same FIOWcccooviiiiiiii s 11-22
11.4.6 What You May Need to Know About Binding Level Retry Execution Within

Fault Policy Retries ..o 11-22
11.4.7 What You May Need to Know About Defining the ora-java Option 11-23
11.5 Catching BPEL Runtime Faultsccccooiiiiiiiicccccccccccccceenee 11-24
11.5.1 How to Catch BPEL Runtime Faults..........cccccooiiiiiiiiiiii 11-24
11.6 Getting Fault Details with the getFaultAsString XPath Extension Function................. 11-25
11.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function.. 11-25
11.7 Throwing Internal Faultsccoooioiiiiiiiiii e 11-25
11.7.1 How to Create a Throw AcCtiVItY ...cooioiiiiiiiiicc 11-25
11.7.2 What Happens When You Create a Throw Activityccccocoiviiioiiiincccciccenee 11-26
11.8 Rethrowing Faults with the Rethrow Activitycccooooiiiiiiiii 11-26
11.8.1 How to Create a Rethrow Activitycooeuiioiiiiii 11-26
11.8.2 What Happens When You Rethrow Faults.........cccooiiiiiiiiccenee 11-27
11.9 Returning External Faults ... 11-28
11.9.1 How to Return a Fault in a Synchronous Interaction..........c.c.oooeeiiiiiiinne. 11-28
11.9.2 How to Return a Fault in an Asynchronous Interaction..........c.ccccececevvniiinneene. 11-28
11.10 Using a Scope Activity to Manage a Group of Activities..........ccccceevireiiiiiieinnnen, 11-29
11.10.1 How to Create a Scope ACtVItY......ooeuiuiiiiiiiiii 11-29
11.10.2 How to Add Descriptive Notes and Images to a Scope Activity.......c.cccoeurrerecacee 11-30
11.10.3 What Happens After You Create a Scope Activity.......cccovvviiviiviiiiiiininn, 11-31
11.10.4 What You May Need to Know About Scopesccoovirieiiiiiicciiicce 11-33
11.10.5 How to Use a Fault Handler Within a Scope.........ccccccccieniiicnnniinnccncene 11-33
11.10.6 How to Create a Catch Activity in @ Scope.......ccccoviiieiiiiiiiieic 11-34
11.10.7 What Happens When You Create a Catch Activity in a Scope.......cccooeeueiiirnenn. 11-35
11.10.8 How to Create an Empty Activity to Insert No-Op Instructions into a Business

PIOCESS ...ttt s 11-36
11.10.9 What Happens When You Create an Empty Activity.......cccooooiii 11-37
11.11 Re-executing Activities in a Scope Activity with the Replay Activityccccccvvennee 11-37
11.11.1 How to Create a Replay Activity......c.ccoiiieiiiiiiii 11-37
11.11.2 What Happens When You Create a Replay Activitycccccovvvviiiiniiiincnne 11-38
11.12 Using Compensation After Undoing a Series of Operationsc.ccceeeeveevevcccrcucnne 11-39
11.121 Using a Compensate ACtiVity ..o 11-39
11.12.2 How to Create a Compensate ActiVitycccovviiiiiiiiiiiiiiiiicccccce 11-40
11.12.3 What Happens When You Create a compensate Activity.......c.cccoeovviccciiccnenee 11-41
11.124 Using a compensateScope Activity in BPEL 2.0........cccooviiiiiic 11-41
11.12.5 How to Create a compensateScope Activity ..o 11-41
11.12.6 What Happens When You Create a compensateScope Activityccoeeevreunee 11-42
11.13 Stopping a Business Process INStanceccceveveieveieiiiniciiiciciceccceceecceees 11-42
11.131 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1.. 11-43
11.13.1.1 How to Create a Terminate Activity.......cccoovvviiiiiiiiiiiiicns 11-43
11.13.1.2 What Happens When You Create a Terminate Activitycccoovviiiiinnnen. 11-43
11.13.2 Immediately Ending a Business Process Instance with the Exit Activity in

BPEL 2.0..ciiiiiiiiiicnieit s 11-43
11.13.2.1 How to Create an Exit ACVIty.....ooooioiiiiiiiic e, 11-44
11.13.2.2 What Happens When You Create an Exit Activitycccccooviiiiniiiiincnnn 11-44

12

13

14

11.14 Throwing Faults with Assertion Conditionscccccovviiiiiiiiiiiiiicce, 11-45

11.141 bpelx:postAssert and bpelx:preAssert EXtensions............cccococviiiiiiiiiiniiincnnnn. 11-46
11.14.2 Use of faultName and message Atributes ..o 11-47
11.14.3 Multiple ASSEItiONScceeviviiiiiiiiciciiiiiicc 11-47
11.14.4 Use of Built-in and Custom XPath Functions and $variable References 11-48

11.14.5 Assertion Condition Evaluation Logging of Events to the Instance Audit Trail .. 11-49
11.14.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault... 11-49

11.14.7 Assertion Conditions in a Standalone Assert Activity ..o, 11-49
11.14.8 How to Create Assertion Conditions...........ccceeueveeieieiiieiieiieccce 11-49
11.14.9 How to Disable ASSEItions..........ccccvviiiiiiieiiiiiiiiiiics 11-52
11.14.10 What Happens When You Create Assertion Conditions...........ccccoeeveerereiiiriennnee. 11-52
Transaction and Fault Propagation Semantics in BPEL Processes
12.1 Introduction to Transaction SemMantics..........cccocoviiiiiiiiiiiiic e 12-1
12.1.1 Oracle BPEL Process Manager Transaction Semanticsccocoevveverrenncrcncncnccncnes 12-1
12.1.1.1 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to

FEQUITESINEW ..ottt 12-2
12.1.1.2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to

FEQUITEM ...oivviiiiiicci s 12-3
12.2 Introduction to Execution of One-way INvOcations...........ccceueeirieiiioiciceiiccccc, 12-4

Incorporating Java and Java EE Code in a BPEL Process

13.1 Introduction to Java and Java EE Code in BPEL Processesccccecevevuireniereeneeseeenennens 13-1
13.2 Incorporating Java and Java EE Code in BPEL Processes............coueeeueiiiccccnccnennn. 13-1
13.2.1 How to Wrap Java Code as @a SOAP Service.........cccovivieiiiieiiiiiiiiiccneecceees 13-1

13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service.... 13-2
13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag 13-2

13.2.4 How to Embed Java Code Snippets in a BPEL Process in BPEL 2.0cccccuo..... 13-3
13.2.5 How to Use an XML Facade to Simplify DOM Manipulation...........cccccceoerurueinnnnce. 13-4
13.2.6 How to Use bpelx:exec Built-in Methods.........c.cccccoeiiiiiiiiiiiiicirccccne 13-4
13.2.7 How to Use Java Code Wrapped in a Service Interface..........cccooevviiiininnnnnn 13-5
13.3 Adding Custom Classes and JAR Files..........cccocovviiiniininiinniiiiiiicccccccces 13-6
13.3.1 How to Add Custom Classes and JAR Files.......ccccceovvirinenenienieieeeeeeeeee e 13-6
13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloperccccocuviririeinnnnen. 13-7
13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper 13-7
13.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding
ACHVILY ot 13-8
13.5 Embedding Service Data Objects with bpelx:execcccoovuvivriiiiiiiinnccce 13-8
13.6 Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager 13-9
13.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence...... 13-10
Using Events and Timeouts in BPEL Processes
14.1 Introduction to Event and Timeout Conceptscccooviiviiiiiiiiiiciiceee 14-1
14.2 Creating a Pick Activity to Select Between Continuing a Process or Waiting................ 14-2
14.2.1 How To Create a Pick ACHVITY .c.ccoeuiiiiiiiiiiiccecccceceree s 14-3
14.2.2 What Happens When You Create a Pick Activitycccooviiiiiiiiic 14-5

xi

15

16

Xii

14.2.3 What You May Need to Know About Simultaneous onMessage Branches in

BPEL 2.0ttt 14-6
14.3 Setting Timeouts for Request-Response Operations in Receive Activities 14-7
14.3.1 Timeout Settings Relative from When the Activity is Invokedcccccocerienii. 14-7
14.3.2 Timeout Settings as an Absolute Date Time..........cccccoovoioiiiiiiiiiiiicc 14-8
14.3.3 Timeout Settings Computed Dynamically with an XPath Expression..................... 14-9
14.3.4 bpelx:timeout Fault Thrown During an Activity Timeout...........cccoceoviiiinnnnn. 14-9
14.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout....... 14-10
14.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration

ATATIN TADLE) ..ttt sttt ettt 14-10
14.3.7 How to Set Timeouts for Request-Response Operations in Receive Activities..... 14-10
14.3.8 What Happens When You Set Timeouts for Request-Response Operations in

Receive ACHVIIES. ..o 14-11
14.4 Creating a Wait Activity to Set an Expiration Time........c.ccoooeiiiiiiiiiiiic 14-12
14.4.1 How To Specify the Minimum Wait Time.........cccccceeiiinnnincnicnrrcccreeene 14-12
14.4.2 How to Create a Wait ACtiVIty.....coooeioiiiiiiic 14-12
14.4.3 What Happens When You Create a Wait Activityccccocovvvvinnnnniiinn, 14-13
14.5 Specitying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0 14-13
14.5.1 How to Create an onEvent Branch in a Scope Activity.......c.cccooorrieiiiiiiiiinnan, 14-14
14.5.2 What Happens When You Create an OnEvent Branch............cccccoovinnn, 14-15
14.6 Setting Timeouts for Synchronous Processes ... 14-15

Coordinating Master and Detail Processes

15.1 Introduction to Master and Detail Process Coordinationsc..cceceeerverieriereereeceeienennens 15-1
15.1.1 BPEL File Definition for the Master ProCess.........cccceeveeeevieeierieereeneseesieseesiessesveseens 15-3
15.1.1.1 Correlating a Master Process with Multiple Detail Processesc.cccco........ 15-5
15.1.2 BPEL File Definition for Detail PrOCESSESccecveiririrrireriesieiesieieeeeeeesesessessessens 15-6
15.2 Defining Master and Detail Process Coordination in Oracle JDeveloper 15-7
15.2.1 How to Create a Master ProCeSS......cuoviieiiiriieiieerie ettt eteeste et eeeeene e e seaeeae s 15-7
15.2.2 How to Create a Detail PTOCESScccvviriiriirieieieieteteeetee sttt se s aessssassesnens 15-9
15.2.3 How to Create an Invoke ACtiVitycoooeiiiiiiiiii 15-11

Customizing SOA Composite Applications

16.1 Introduction to Customizing SOA Composite Applications..........ccccoovvuiviiieiiiririennnnn 16-1
16.1.1 How To Create the Customizable COmposite...........ccceeiiuiiiiiiiiiiciiiccccceees 16-1
16.1.2 How To Customize the Vertical Applicationcccocoeeuvvvviviirnnnircrcccreeenes 16-3
16.1.3 How to Customize the Customer Versionccccoeeveiiiiiiniiiiii 16-5
16.1.4 How to Create Customization Classesccccceeueiiiiiiiiniiiniiiniiniinnnnseeeeas 16-6
16.1.5 How to Upgrade the COMPOSILEccceuemiuiiriiiiiiiiiririciicercecereer s 16-7
16.1.5.1 Core Application Team.........ccccceeeviiiiiiiiiiiiiiiiic s 16-8
16.1.5.2 The Vertical Application Team.........cccccccceuiuiiiiiiiniiiiiiiciccceees 16-8
16.1.5.3 The CUSTOMETocviiiiiiciecee s 16-8
16.1.6 Searching for Customized Activities in a BPEL Process.........cccccccovvviiiiniininnncnnnns 16-8
16.1.7 What You May Need to Know About Editing Artifacts in a Customized

COMPOSILE ... s 16-9
16.1.8 What You May Need to Know About Resolving Validation Errors in Oracle

JDEVEIOPET ... 16-9

17

18

16.1.9 What You May Need to Know About Resolving a Sequence Conflict................... 16-10
16.1.10 What You May Need to Know About Compiling and Deploying a Customized

APPLCATION ..t 16-11
Using the Notification Service
17.1 Introduction to the Notification Serviceccccoovvivviiiiiiiiiicces 17-1
17.2 Introduction to Notification Channel Setupcccccooviiiiiiiiiiiice 17-3
17.3 Selecting Notification Channels During BPEL Process Design............cccococueveiiiricuninnnnne. 17-3
17.3.1 How To Configure the Email Notification Channel...........ccccccccovvvninnninnnnnes 17-4
17.3.1.1 Setting Email Attachments...........c..cooiiiiiii 17-7
17.3.1.2 Formatting the Body of an Email Message as HTMLcccccccovivnnininnnnnn 17-8
17.3.1.3 Using Dynamic HTML for Message Content Requires a CDATA Function.... 17-9
17.3.2 How to Configure the IM Notification Channel............ccccooooiiiii 17-9
17.3.3 How to Configure the SMS Notification Channel ..., 17-10
17.3.4 How to Configure the Voice Notification Channelccccocoioiiiininiicncnn. 17-12
17.3.5 How to Select Email Addresses and Telephone Numbers Dynamically 17-12
17.3.6 How to Select Notification Recipients by Browsing the User Directory 17-13
17.4 Allowing the End User to Select Notification Channelsc.cooeeeniininiiiniinncnee. 17-14
17.4.1 How to Allow the End User to Select Notification Channelsc.ccccceevvvinnnnn. 17-14
17.41.1 How to Create and Send Headers for Notifications.........c.cccccoovvriiiininnnns 17-15
Using Oracle BPEL Process Manager Sensors

18.1 Introduction t0 SENSOTSccccvviiimiiiiiiiiiiii s 18-1
18.2 Configuring Sensors and Sensor Actions in Oracle JDevelopercccccccevcccucucrcnennne. 18-3
18.2.1 How to Access Sensors and Sensor ACHONSccccveveveviiiniiinnine 18-3
18.2.2 How to Configure SENSOIScceueiiiiieiiicieiec e 18-4
18.2.3 How to Configure Sensor ACONS.......ccceueueucucueieieieieieieiicieeeceeeieeeeeeeee s 18-8
18.2.4 How to Publish to Remote Topics and Queues............cccccovvvvviviiiininnninnnnnn, 18-11
18.2.5 How to Create a Custom Data Publisher ..., 18-12
18.2.6 How to Register the Sensors and Sensor Actions in composite.xml...................... 18-14

18.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion
Middleware Control CONSOLE.........covueuiiririeieiiiieieiiteree ettt eees 18-15

Part lll Using the Oracle Mediator Service Component

19

Getting Started with Oracle Mediator
19.1 Introduction to Oracle Mediator...........ooiiieiiiiiecieeieeieeteeteee et re v re e 19-1
19.2 Introduction to the Mediator Editor ENvironmentc.cccocueeveeereninesenieriesieniereeeeeenenns 19-3
19.3 Creating an Oracle Mediator.........ccccouviiiiiiiiiniiiii s 19-6
19.3.1 How to Create an Oracle Mediatorccoveeiiiiieieiieeiecieeeeeteeeeee et eveens 19-6
19.4 Configuring the Oracle Mediator Interface Definition..........ccccccecueueevriinvvvnicnnenes 19-9
19.4.1 Creating an Oracle Mediator Without an Interface Definitioncccccoevveennnnn 19-9
19.4.11 How to Create an Oracle Mediator Without an Interface Definition 19-10
19.4.1.2 What Happens When You Create an Oracle Mediator Without an Interface
DIEEINIEION 1ottt ettt e e b e ste e st e be e b e s s e essesseesaesseensenneeneas 19-10
19.41.3 How to Define an Interface for an Oracle Mediator..........ccccceeeevieveevieereenennen. 19-11

xiii

20

Xiv

19.4.2 Creating an Oracle Mediator Based on a WSDL File..........ccccccooiiiiiiinnnnnnes 19-13

19.4.2.1 How to Create an Oracle Mediator Based on a WSDL File.........cccccccovvvininnne 19-13
19.4.2.2 What Happens When You Create an Oracle Mediator from a WSDL File..... 19-14
19.4.3 Creating an Oracle Mediator With a One-Way Interface Definition 19-15
19.4.3.1 How to Create an Oracle Mediator with a One-Way Interface Definition 19-15
19.4.3.2 What Happens When You Create an Oracle Mediator with a One-Way

Interface Definition........c.ccooeiiiiiiiiiiiiiiiiiiic 19-16
19.4.4 Creating an Oracle Mediator with a Synchronous Interface Definition................. 19-16
19.4.4.1 How to Create an Oracle Mediator with a Synchronous Interface Definition 19-17
19.4.4.2 What Happens When You Create an Oracle Mediator with a Synchronous

Interface Definition.........cccciiiiiiiiiiiiiiiiii e 19-17
19.4.5 Creating an Oracle Mediator with an Asynchronous Interface Definition............ 19-18
19.4.5.1 How to Create an Oracle Mediator with an Asynchronous Interface

DefINItIONoeeiiiiii e 19-18
19.45.2 What Happens When You Create an Oracle Mediator with an

Asynchronous Interface Definition.............cocoovviiiiiiiiiiiiie 19-19
19.4.6 Creating an Oracle Mediator for an Event Subscription..........ccccooooeiiiiicennc. 19-20
19.4.6.1 How to Create an Oracle Mediator for an Event Subscription...........cc.cc........ 19-20
19.4.6.2 What Happens When You Create an Oracle Mediator for an Event

SUDSCIIPHONcee 19-22
19.4.7 What You May Need to Know About the Mediator Editorcccccccceeeinnnne. 19-23
19.4.71 ReSEqUENCING ...ovviiiiiii s 19-23
19.4.7.2 ROUtING RULES ..ot 19-24
19.5 Generating @ WSDL File........cocooiiiiiiiiiiiiiicccccccceeee s 19-25
19.5.1 How to Generate @ WSDL File..........cccoooiiiiiininiiiiiis 19-25
19.6 Specifying Operation or Event Subscription Propertiesccccccoooiiiiiiiiiiinnnnn, 19-33
19.7 Modifying an Oracle Mediator Service Component............cocoeeeveirereeenccieeniccccncenes 19-33
19.7.1 How To Modify Operations of an Oracle Mediatorccccoovveuriniiininininicinns 19-34
19.7.2 How To Modify Event Subscriptions of an Oracle Mediator.............ccccevnininininne. 19-34

Creating Oracle Mediator Routing Rules

20.1 Introduction to Routing RUIES ... 20-1
20.2 Defining Routing RUIES........ccccciuiiiiiiiiiiiiiiiiiccccccee s 20-1
20.2.1 How To Access the Routing Rules Section ... 20-2
20.2.2 How to Create Static Routing Rules............c.ccccccciiiiiiinicies 20-3
20.2.2.1 How to Specify Oracle Mediator Services or Events...........cccccccceeciccciccnccnenne. 20-4
20.2.2.2 What You May Need to Know About Echoing a Service........ccccoevreieiinnnan. 20-8
20.2.2.3 How to Specify Sequential or Parallel Execution............ccccccevceiiiiiiiicicncncnnen. 20-9
20.2.2.4 How to Configure Response Messages.........cccceueueurururerirunererennenrrseseeereeenes 20-10
20.2.2.5 How to Handle Multiple Callbacks...........ccccoeuiiiiiiiiieiiiiiiiiiiiicccc 20-11
20.2.2.6 How to Handle Faults.......cccccviiiinniiicinccieecceeeeee e 20-12
20.2.2.7 How to Specify an Expression for Filtering Messages.........c.cccccocvvevvvererencncnee 20-14
20.2.2.8 How to Create Transformations............ccccceeveeiiinniniiiiinncce 20-19
20.2.2.9 How t0 AsSIigN ValUescccceuviiiiiiiiiiiiiiiiiiiiniinciicncssss s 20-21
20.2.2.10 What You May Need to Know About the Assign Activitycccccocevueucuenne. 20-25
20.2.2.11 How to Access Headers for Filters and Assignments..........cc.ccccoveiriiiiiinnnnen. 20-28
20.2.2.12 How to Use Semantic Validationcccoeeeevnieiinnniecninncecceeceeeenenes 20-31

21

22

20.2.2.13 How to Use Java Callouts.......ccueieieiririninieienieeeeteeetee e 20-32

20.2.3 How to Create Dynamic Routing Rulescccoooiiiiiiic, 20-41
20.2.4 What You May Need to Know About Using Dynamic Routing Rules................... 20-44
20.2.5 How to Define Default Routing Rules...........ccoocoiiiiiiiii 20-44
20.2.51 Default Rule SCeNArios. ... 20-45
20.25.2 Default Rule Targetc.cccccueevreiiiciriirieercccerreeeeee s 20-46
20.2.5.3 Default Rule: Validation, Transformation, and Assign Functionality............. 20-46
20.2.5.4 Default Rule: Java Calloutsccceceieiririiniiinieeiee et 20-46
20.25.5 Default Rule: Oracle Mediator .mplan File.........cccoooiiiiniiniiiiiccenes 20-47
20.3 Creating an Oracle Mediator for Routing Messages...........cccccevuverueieininuniciniscieiee 20-47
20.3.1 How to Create the CustomerRouter Use Case...........ccccvvvviviininnnnnnninnn, 20-48
20.3.1.1 Task 1: How to Create an Oracle JDeveloper Application and a Project 20-48
20.3.1.2 Task 2: How to Create the CustomerRouter Oracle Mediator Service

COMPONENLooiiiiii bt 20-49
20.3.1.3 Task 3: How to Create a File Adapter Service........cccccceeueueuvervvevrnvnnnnceenes 20-49
20.3.1.4 Task 4: How to Create a File Adapter Referenceccccocevvvvvivinniinnnnnnn 20-51
20.3.1.5 Task 5: How to Specify Routing Rulescccooiriiiiiiiice, 20-53
20.3.1.6 Task 6: How to Create an Application Server Connection..........ccccccceuvurureencee. 20-57
20.3.1.7 Task 7: How to Deploy the CustomerRouterProjectcccccoevvvviviniinnnnnn 20-57
20.3.2 Running and Monitoring the CustomerRouterProject Application........................ 20-58
20.4 Creating an Asynchronous Request and Response Using Oracle Medjiator................. 20-58
20.4.1 How to Create the AsyncMediator Use Caseccoeuevviirieieiiinicicisiccc 20-59
20.4.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project 20-59
20.4.1.2 Task 2: How to Create a Server BPEL Processcccccovviiiiiiiniiniinieninnes 20-59
20.4.1.3 Task 3: How to Create an Oracle Mediator Service Component...................... 20-59
20.41.4 Task 4: How to Create a Client BPEL Process..........ccccccovvvivninnnninnininccnes 20-62
20.41.5 Task 5: How to Create the Invoke, Receive, and Assign Activities.................. 20-63
20.4.1.6 Task 6: How to Configure an Application Server Connectionccccceeuue. 20-67
20.4.1.7 Task 7: How to Deploy the SOA Composite Applicationcccoeueueinnenen. 20-67
Working with Multiple Part Messages in Oracle Mediator
21.1 Introduction to Oracle Mediator Multipart Message SUppOrt.......c.cccocovueveiricrinriicncnnnns 21-1
21.2 Working with Multipart Request MeSSagesccccceueueurururicuiiiinieeniiiccieeeeeeeeeeeeeeeeneens 21-2
21.2.1 How to Work with Multipart Request Messages.............cccocovivvininnininnnninnnnns 21-2
212141 How to Specify Filter EXPressions ... 21-2
21.21.2 How to Add Validationscccceeueiiiiiiiiniiiii e, 21-2
21.21.3 How to Create Transformations. ... 21-3
21.21.4 How t0 AsSign ValUescccccoucuiiiiiiiiiiiiiiiiiiiiiccicee s 21-3
21.2.2 How to Work with Multipart Reply, Fault, and Callback Source Messages 21-3
21.2.3 How to Work with Multipart Target Messagescocoeeueerurieiiiicicisiiccce 21-4
Using Oracle Mediator Error Handling
22.1 Introduction to Oracle Mediator Error Handling ..o 22-1
22.1.1 FaUlt POLICIES ...ttt 22-1
22.1.1.1 CONILIONS .ovveiiiiier s 22-2
22112 ACHONS .ottt 22-4

XV

22.1.2 Fault BINAINGS «..c.cvvieeieiiicici s

22.1.3 Error Groups in Oracle Mediatorooieiiiiiiii
22.2 Using Error Handling with Oracle Mediator..........cccccooueuiiiiiiiniiiinrrnrrceeeeecrccne
22.2.1 How to Use Error Handling for an Oracle Mediator Service Component.............
22.2.2 What Happens at RUNtime. ..o
22.3 Fault Recovery Using Oracle Enterprise Manager Fusion Middleware Control
COMSOLE ..o
22.4 Error Handling XML Schema Definition Filesccccocoiiiiiiiiic
22.41 Schema Definition File for fault-policies.Xmlcccoiiiiiiniiiiiiccceceenes
22.4.2 Schema Definition File for fault-bindings.xmlccoooooiiiii

23 Resequencing in Oracle Mediator

23.1 Introduction to the ReSEqUENCET...........ccccvuimiiiiiiiiiiiiiiicic s
23.1.1 Groups and Sequence IDS ...
23.1.2 Identification of Groups and Sequence IDsccccccoeiiiriiiinnnicceecceeees
23.2 Resequencing Order ...t e
23.2.1 Standard ReSeqUENCET.............ooieuiiiiicict s
23.2.1.1 Overview of the Standard Resequencer............c.ccccccccceeiiccincicccnccceen
23.21.2 Information Required for Standard Resequencing.............c.ccceceuvveviiiiiiiinnencnnen,
23.2.1.3 Example of the Standard Resequencer...........c.cocoeuoiiinieieiiiciccicccce
23.2.2 FIFO RESEQUENCET ..ottt
23.2.21 Overview of the FIFO ReSeqUENCETc.ccovuiiiiiviiiiiiiiiiiieicceees
23.2.2.2 Information Required for FIFO Resequencing...........c.ccccoceueueiiciciniccicienccnen,
23.2.2.3 Example of the FIFO RESEQUENCETcccceueueuimimimiuiicicieieieieieieieieeeeeeneeeeeeeeneeenes
23.2.3 Best Effort ReSEqUENCETccceviviiiiiiiiiiiiiiiciciccccc s
23.2.3.1 Overview of the Best Effort Resequencer..............ccooceiiiiiiiiiicicicce,
23.2.3.2 Information Required for Best Effort Resequencing...........cccccccoecuccccccnccnnne.
23.2.3.3 Example of Best Effort Resequencing Based on Maximum Rows......................
23.2.3.4 Example of Best Effort Resequencing Based on a Time Window
23.3 Configuring the RESEqUENCETccccciuiiiiimiiiiiiiicce e
23.3.1 How to Specify the Resequencing Level ...
23.3.2 How to Configure the Resequencing Strategycccocoeeveieeiiniicceeinccceenen
23.4 Limitations in the RESEQUENCETc.ccceuiiiiiiriiiriiiiicicrccrre s

24 Understanding Message Exchange Patterns of an Oracle Mediator

241 Understanding a One-way Message Exchange Pattern ...
2411 The one.way.returns.fault Property ...
242 Understanding a Request-Reply Message Exchange Pattern...........c.coccoovevviiinninnnnen
24.3 Understanding a Request-Reply-Fault Message Exchange Pattern............c.ccccccceuenneeee
24.4 Understanding a Request-Callback Message Exchange Pattern...........ccccccooooorinnnnii
24.5 Understanding a Request-Reply-Callback Message Exchange Pattern............cccc..........
246 Understanding a Request-Reply-Fault-Callback Message Exchange Pattern

Part IV Using the Business Rules Service Component

XVi

25 Getting Started with Oracle Business Rules

26

25.1

25.1.1
25.2

25.2.1
2522
25.2.3
2524
25.3

25.3.1
25.3.2
25.4

25.4.1
25.4.2
2543
25.4.4

2545
25.5
25.5.1
2552
25.6
25.6.1

25.7

Introduction to the Business Rule Service Component...........ccccooveirieiiiiincieiicicieene,
Integrating BPEL Processes, Business Rules, and Human Tasksc.ccccevueeenene.
Overview of Rules Designer Editor Environmentcc.ccoooiiiniiiii
Application Navigatorcccoiiiieiii s
Rules Designer WINAOWccccouiiiiiiniiniiiiiiecerreeeeeeeeeee s
Structure WINAOWcoviiiiiiiiiiiic s
Business Rule Validation Log Windowccoiiiiiiiiiicccc e
Introduction to Creating and Editing Business Rulesccccccoceeviivniinnnnnnnenes
How to Create Business Rules Components ..o
Introduction to Working with Business Rules in Rules Designerccccc.co.c....
Adding Business Rules to @ BPEL PTOCESSccceuvuviririririiiiriirccicrcceeceeeeeeaes
How to Add Business Rules to a BPEL Processcccoooeeueieiiiieinieineciccieieennen
What Happens When You Add Business Rules to a BPEL Process............c.cc.c.....
What Happens When You Create a Business Rules Dictionaryccccccoeveueeee.
What You May Need to Know About Invoking Business Rules in a BPEL
PIOCESS ..ottt s
What You May Need to Know About Decision Component Stateful Operation .
Adding Business Rules to a SOA Composite Applicationcccocovviviinninnnnnnnne
How to Add Business Rules to a SOA Composite Application...........ccccooeerunneee.
How to Select and Modify a Decision Function in a Business Rule Component..
Running Business Rules in a Composite Applicationcccccovvvviviviiinnnnnnnnnnne,
What You May Need to Know About Testing a Standalone Decision Service
COMPONEN ..ot
Using Business Rules with Oracle ADF Business Components Fact Types..................

Using Declarative Components and Task Flows

26.1
26.2
26.2.1
26.2.2

26.2.3
26.2.4

26.2.5

26.3

26.3.1

26.3.2

26.3.3

26.3.4

26.4

Introduction to Declarative Components and Task FIOWS ...,
Using the Oracle Business Rules Editor Declarative Componentccccooovvireiennnes
Introduction to the Oracle Business Rules Editor Component...........ccccccevuvuvurennce.
How to Create and Run a Sample Application by Using the Rules Editor
COMPONENT ..ottt
How to Deploy a Rules Editor Application to a Standalone Weblogic Server......
What You May Need to Know About the Custom Permissions for the Rules
Editor COMPONENt ..o
What You May Need to Know About the Supported Tags of the Rules Editor
COMPONENE ..ottt
Using the Oracle Business Rules Dictionary Editor Declarative Component
Introduction to the Oracle Business Rules Dictionary Component
How to Create and Run a Sample Application by Using the Rules Dictionary
Editor COMPONENtooiiiiiiiiii e
How to Deploy a Rules Dictionary Application to a Standalone Weblogic
SEIVET ..ttt
What You May Need to Know About the Supported Attributes of the Rules
Dictionary Editor Componentccocooeiviviiiiininiiiiiccccnecceennes
Using the Oracle Business Rules Dictionary Task FIOW..........cccccooiiiiiiiiiiiii

xvii

26.4.1 Introduction to the Oracle Business Rules Dictionary Task Flow 26-42
26.4.2 How to Create and Run a Sample Application By Using the Rules Dictionary

Editor Task FIOWccvviiiiiiiiiiicc e 26-42
26.4.3 How to Deploy a Rules Dictionary Editor Task Flow Application to a Standalone

WEDLOZIC SEIVET ...t 26-55
26.5 Localizing the ADF-Based Web Applicationccccccoeueiiiiivniiinnnnnnrreeceeecnes 26-56

PartV Using the Human Workflow Service Component

27

28

xviii

Getting Started with Human Workflow

27.1 Introduction to Human Workflow ..., 27-1
27.2 Introduction to Human Workflow Concepts..........ccoviiiiiiiiiniiiiiiicccccccceeenes 27-3
27.21 Introduction to Design and Runtime Conceptsc.cccooerieiiiiriciiiiicciccce 27-3
272141 Task Assignment and ROULNGccccceuiiiiiiiiiiiiiccccceecceeeceeeeeees 27-3
27.2.1.2 Static, Dynamic, and Rule-Based Task Assignment.............ccccoeueiiiiiriiininnnnnnn, 27-6
27.21.3 Task Stakeholders..........cccceviiiiiiiiiiiiiiiiiiis 27-7
27.21.4 Task Deadlines...........ccccvviiiiiiiiiiiiiii e 27-7
27.21.5 INOHHICAtIONS ... s 27-8
27.21.6 Task FOIMSc.coviiiiiiiiiiiiiiccc s 27-9
27.21.7 AdVanced CONCEPLSc.cueueueuruiiiiiieieieiieieieieeeeee et eeees 27-9
27.21.8 Reports and Audit Trails ..o 27-10
27.2.2 Introduction to the Stages of Human Workflow Designcccoouovoiriiiiiiinennn. 27-10
27.3 Introduction to Human Workflow Features............ccccooovuviiiiiniinniine 27-11
27.3.1 Human Workflow Use Cases...........cccueveiiniiiiiniiiiiiniiinseees 27-11
27.3.1.1 Task Assignment to a User or Role..........ccoooiiiiiiiii, 27-11
27.3.1.2 Use of the Various Participant TYPes ... 27-11
27.3.1.3 Escalation, Expiration, and Delegationcccccooviiiiiiiiiiiiiccnns 27-12
27.31.4 Automatic Assignment and Delegation.............ccooooiiiiiiiiiic, 27-12
27.3.1.5 Dynamic Assignment of Users Based on Task Content............ccccccococucuiicncnnns 27-13
27.3.2 Designing a Human Task from Start to Finish.........ccccocoo 27-13
27.3.2.1 PrerequiSites ... 27-13
27.3.2.2 How to Create the Vacation Request Process.........ccccccoeueuvurervvnrnnnnnncecnnes 27-14
27.3.3 Additional Tutorials ... 27-26
27.4 Introduction to Human Workflow Architecture...........ccoooiiiiiiiiiiiiiiiiiccnes 27-27
27.4.1 Human Workflow Services ..o s 27-27
27.4.2 Use of Human TasK ... 27-30
27.4.3 Service ENEINeSccoiiiiiiiiiic s 27-31

Designing Human Tasks

28.1 Introduction to Human Task Design Concepts...........cccooeueiriiceeiiiceeieiiceeceeecne 28-1
28.2 Introduction to the Modeling Process........c.ccccccuiiuiiiiiiiiiiciiiiiciceieicieicicceeeeeeeeeeeeeeeeeees 28-1
28.2.1 Create a Human Task Definition.........coooiiiiiiiiiiiiiiiccccs 28-2
28.2.2 Associate the Human Task Definition with a BPEL Process..........cccccccevvviviiininenene. 28-2
28.2.3 Generate the Task FOIM.........ccooviiiiiiiiiiiii s 28-3
28.3 Creating the Human Task Definition with the Human Task Editor.............ccccccoeneeine. 28-3
28.3.1 How to Create a Human Task Service Component...........ccccovveceeiniccieinicnnenennne. 28-3

28.3.2 What Happens When You Create a Human Task Service Component 28-5

28.3.3 How to Access the Sections of the Human Task Editor..........cccccoevviinniinnnnn 28-6
28.3.4 How to Specify the Title, Description, Outcome, Priority, Category, Owner, and
ApPPlication CONEXtc.oviviviviiiiiiiiiiiicc s 28-7
28.3.4.1 Specifying a Task Titleccooiiiiiioiiiii 28-8
28.3.4.2 Specifying a Task DeSCIIPHONc.ceueviicuiirieiiiririrriccererceeee s 28-8
28.3.4.3 Specifying a Task Outcome.........c.cc.cviuiiiiiiiiiiic 28-8
28.3.4.4 Specifying a Task Priority ..., 28-10
28.3.4.5 Specifying a Task Categorycccccueuruviriiiriririririirrree s 28-10
28.3.4.6 Specifying a Task OWNeT ..o 28-11
28.3.4.7 Specifying an Application Contextcooovieiiiiiiiic e, 28-17
28.3.5 How to Specify the Task Payload Data Structure...........cccoooeiiciiincccccicncnenes 28-17
28.3.6 How to Assign Task Participants ..o 28-19
28.3.6.1 Configuring the Single Participant Type ..o, 28-22
28.3.6.2 Configuring the Parallel Participant Type........ccoioiiiiiiciiiccccccceenes 28-31
28.3.6.3 Configuring the Serial Participant Typecccocooeeieiiiiiiiiiie, 28-35
28.3.6.4 Configuring the FYI Participant Typecccoooooiiiic, 28-38
28.3.7 How to Select a Routing POLICY......c.ccceueuiiiiiiiiiiiciciicccccccccceeeeeeeeeeaes 28-39
28.3.7.1 Routing Tasks to All Participants in the Specified Order............cccoevvvvvinnnnnn. 28-41
28.3.7.2 Specifying Advanced Task Routing Using Business Rules...........c.ccccccouveenne 28-44
28.3.7.3 Using External ROULINGccooooiiiiiiiiiiiicccecceeeceeeee e 28-49
28.3.7.4 Configuring the Error ASSIgneeooceviieieiiiicieieiccese e 28-51
28.3.8 How to Specify Multilingual Settings and Style Sheets.............ccccooiiiiiiiinnnnns 28-54
28.3.8.1 Specifying WordML and Other Style Sheets for Attachments......................... 28-54
28.3.8.2 Specifying Multilingual Settingsccccoevvieiiieiiicinic e 28-54
28.3.9 How to Escalate, Renew, or End the TasK........ccccooveiiiiviiieiiiiieceeceeeeeeeeeveeeve e 28-55
28.3.9.1 Introduction to Escalation and Expiration POLiCYccooueeeeiiiiicciiccnnns 28-56
28.3.9.2 Specifying a Policy to Never EXPire ..., 28-57
28.3.9.3 Specifying a Policy t0 EXPIrecccoooioiiiiiiiice e, 28-57
28.3.9.4 Extending an Expiration Policy Periodcccoiiiiiiniiiiiiccciccnes 28-58
28.3.9.5 Escalating a Task POLiCYccoouiuiiiiiiiiieicci e 28-58
28.3.9.6 Specifying Escalation Rules............cccccccoiiiiiiiiiiniiiinniiiiinninnees 28-59
28.3.9.7 Specifying a Due Date..........ccoovviiiiiriniiiiiiirrcrre s 28-60
28.3.10 How to Specify Participant Notification Preferences..........cccccoooovvviiiiniiinnnnnns 28-60
28.3.10.1 Notifying Recipients of Changes to Task Status.........c.ccceeoeviiiiiiiiiiinnes 28-62
28.3.10.2 Editing the Notification MeSSageccceueueururureriririrniririrrrrerree s 28-64
28.3.10.3 Setting Up Reminders..........cc.coviiuriiiiiiiic e 28-64
28.3.10.4 Changing the Character Set Encoding.........cccccccevvivivnnnnnnnnnininiccae 28-65
28.3.10.5 Securing Notifications to Exclude Details.............cccoccoiiiiiiiiininicnciicenes 28-65
28.3.10.6 Showing the Oracle BPM Worklist URL in Notifications.........c.cccccoorriiininnne, 28-65
28.3.10.7 Making Email Messages Actionable............ccccccvvvniininnnnnnniiccaes 28-65
28.3.10.8 Sending Task Attachments with Email Notificationsccccccccevvvvnrncnae. 28-66
28.3.10.9 Sending Email Notifications to Groups and Application Roles 28-66
28.3.10.10 Customizing Notification Headerscccooviiiiiiiiiiiiiiiicicccicees 28-66
28.3.11 How to Specify Access Policies and Task Actions on Task Content....................... 28-67
28.3.11.1 Specifying Access Policies on Task Content.........c.c.ccoooirieiiiiniciiiicciccne, 28-67
28.3.12 How to Specify a Workflow Digital Signature Policyccccoeoeeieicniiiiiiciicinen. 28-71

Xix

29

XX

28.3.12.1 Specifying a Certificate AUthOrity.......cccooiiii, 28-72
28.3.13 How to Specify Restrictions on Task Assignmentsccccccevvviinninninnnnn 28-72
28.3.14 How to Specify Java or Business Event Callbacks..........cccccccevurvvnrnnnnnrennccnes 28-73
28.3.14.1 Specifying Callback Classes on Task Statuscccoeueviieiiiiiiniiciie, 28-73
28.3.15 How to Specify Task and Routing Customizations in BPEL Callbacks 28-76
28.3.16 Disabling BPEL Callbackscceiiiiiiiiiiiiiiiecccceieceeicecee e eeenenes 28-77
28.3.17 How to Exit the Human Task Editor and Save Your Changes............cccccceueinneen. 28-77
28.4 Associating the Human Task Service Component with a BPEL Process 28-77
28.4.1 How to Associate a Human Task with a BPEL Process..........ccccocoeevviiiiincncnnicnen. 28-78
28.4.2 What You May Need to Know About Deleting a Wire Between a Human Task

Service Component and a BPEL Process...........cccoocueiiiiicieiiiiciceeccc 28-79
28.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter

Variables........coiiiiiiiiiciiice s 28-79
28.4.3.1 Specifying the Task Title..........ccoiiiiiiiiii e, 28-80
28.4.3.2 Specifying the Task Initiator and Task Priorityc.ccccccoeoiiiiiinciciccenns 28-81
28.4.3.3 Specifying Task Parameters.........c.cccoooeueiiiiiiiciiiiccc e, 28-81
28.4.4 How to Define the Human Task Activity Advanced Features ..o 28-83
28.4.4.1 Specifying a Scope Name and a Global Task Variable Name.............c........... 28-83
28.4.4.2 Specifying a Task OWNeT ..ot 28-84
28.4.4.3 Specifying an Identification Keyccccooiiioiie, 28-84
28.4.4.4 Specifying an Identity CONteXtccoeveuiiiriririniiirrrrerrre e 28-84
28.4.4.5 Specifying an Application Contextcccceeeiiiiiiiiiiiii 28-84
28.4.4.6 Including the Task History of Other Human Tasks.........c.cccocoeeieiiiriiinininnnnn. 28-84
28.45 How to View the Generated Human Task Activityccccccevevvvnnnnnninnene. 28-86
28.4.5.1 Invoking BPEL Callbackscoooiuiieiiiciiiiiici i 28-86
28.4.6 What You May Need to Know About Changing the Generated Human Task

ACHVILY o 28-88
28.4.7 What You May Need to Know About Deleting a Partner Link Generated by a

HUman TasKccceviiiiiiiiii e 28-89
28.4.8 How to Define Outcome-Based Modeling...........ccccceeueurvuvvnrvnnnnnnrnnrneccene 28-89
28.4.8.1 Specifying Payload Updatescccocevviiiiiiiininiiiincn, 28-89
28.4.8.2 Using Case Statements for Other Task Conclusionscoccoeeeirivierereinnnnes 28-89

Designing Task Forms for Human Tasks

29.1 Introduction to the Task FOIMNccoouiiiiiiiiiiiecceeeeceeee et 29-1
29.11 What You May Need to Know About Task Forms: Time Zone Conversion........... 29-2
29.2 Associating the Task Flow with the Task Servicecccccoevviiiiiininiiiii 29-3
29.3 Creating an ADF Task Flow Based on a Human Task..........ccccccccvvvinnninnnnnnncnnnes 29-3
29.3.1 How To Create an ADF Task Flow from the Human Task Editor...........ccccvecveuennen. 29-3
29.3.2 How To Create an ADF Task Flow Based on a Human Taskccccceeevevienvevenn. 29-5
29.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task.... 29-6

29.3.4 What You May Need to Know About Having Multiple ADF Task Flows That

Contain the Same Element with Different Meta-attributes...........cccccocevviiiinnnnn 29-7
29.4 Creating a Task FOIMNccccooiiiiiiiiiiiiiccc s 29-8
29.41 How To Create an Autogenerated Task FOrmcccccoooeeiiiiiiiiiicciccceene 29-8
29.4.2 How to Register the Library JAR File for Custom Page Templates........................ 29-10
20.4.3 How To Create a Task Form Using the Custom Task Form Wizard 29-11

30

29.4.4 How To Create a Task Form Using the Complete Task with Payload Drop

HandIer ... 29-18
29.45 How To Create Task Form Regions Using Individual Drop Handlers.................. 29-26
29.4.6 How To Add the Payload to the Task FOrm........ccccocoooiiiiiiiiiiiice 29-28
20.4.7 What Happens When You Create a Task Formcccccocovnivniiinnninnn 29-30
29.5 Refreshing Data Controls When the Task XSD Changes.........cccccccevuvvvirrnnrrnrencene. 29-30
29.6 Securing the Task FIow Applicationcccccovviviiiiniiiiniiiiicccccccce 29-31
29.7 Creating an Email Notification ... 29-31
29.7.1 How To Create an Email Notificationccooeviiiiiiniiiiiice, 29-31
29.7.1.1 Creating a Task Flow with a Router ..o, 29-32
29.71.2 Creating an Email Notification Page ..., 29-35
29.7.2 What Happens When You Create an Email Notification Page...........ccccccceueuennenne. 29-38
29.7.3 What You May Need to Know About Creating an Email Notification Page......... 29-38
29.8 Deploying a Composite Application with a Task FIOWcccooiviiiiiiiiiiiiins 29-38
29.8.1 Before Deploying the Task Form: Port Changes..........cccccocvvuevvvvvinnnnnrnnenes 29-38
20.8.2 How To Deploy a Composite Application with a Task Flowccccceoviirnnnnes 29-40
290.8.3 How To Redeploy the Task FOrm ..o 29-40
29.8.4 How To Deploy a Task Flow as a Separate Application.........c.ccceevveverceenincrencncnaes 29-40
29.8.5 How To Deploy a Task Form to a non-SOA Oracle WebLogic Server 29-40
29.8.5.1 Deploying oracle.soa.workflow jar to a non-SOA Oracle WebLogic Server.. 29-41
29.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic

SEIVET ..ottt 29-42
29.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic
SEIVET ..ottt s 29-44
29.8.5.4 Including a Grant for bpm-Services.jar. ... 29-46
29.8.5.5 Deploying the Application..........cccocueviiciiiiiiiieee i 29-47
29.8.6 What Happens When You Deploy the Task FOrm ..o 29-47
29.8.7 What You May Need to Know About Undeploying a Task Flow...............c.......... 29-47
29.9 Displaying a Task Form in the Worklist..........cccoooioiiiiiiiie 29-47
29.91 How To Display the Task Form in the Worklistcccccccoeeeiiiniinnnniinnnes 29-48
29.10 Displaying a Task in an Email Notificationccoeeiiiiiiciiiiicee 29-48
29.11 Reusing the Task Flow Application with Multiple Human Tasks.........c.c.ccccooeerrnnnnen. 29-49
29.11.1 How To Reuse the Task Flow Application with Multiple Human Tasks............... 29-50
Using Oracle BPM Worklist

30.1 Introduction to Oracle BPM WOTKIiStccoovviiiiiiiiiiiiiiccs 30-1
30.1.1 What You May Need To Know About Oracle BPM Worklist..........cccccoeviviiiiiinnnnn 30-3
30.2 Logging In to Oracle BPM WOTKIIStccocuviiiiiiiiiiiiiiiiiiiaes 30-3
30.2.1 How To Log In to the WOrKIist........cccoeuviiiviiiiiiricrrrner e 30-3
30.2.11 Enabling the weblogic User for Logging in to the Worklist............cccoceeuennnnnnn 30-4
30.2.2 What Happens When You Log In to the Worklist...........ccccoooeiiiiiiiiiniine 30-4
30.2.3 What Happens When You Change a User’s Privileges While They are Logged in

to Oracle BPM WOTKIIStcoeviiiiiiiiiiiiiiiiccc s 30-8
30.3 Customizing the Task List Page ..o 30-8
30.3.1 How To FIlter Tasksccooviuiiiiiiiiiiiiic s 30-8
30.3.2 How To Create and Customize Worklist Viewscccccovvvviniinnnnnnn 30-15
30.3.3 How To Customize the Task Status Chart...........ccccccovvvviiinnniini 30-19

XXi

XXii

30.3.4 How To Create @ TODO TaSKccuviiieiiieieeeeee ettt e v e s ens 30-20

30.3.5 How To Create a Subtaskcccoevviviiiiiiiiniiiiiiae 30-21
30.4 Acting on Tasks: The Task Details Pagecccccovuvirirnnnininnnnccccccccccccaes 30-22
30.4.1 SYSteM ACHONSooieiiict e 30-25
30.4.2 TaSK HISTOIY ..ot 30-26
30.4.3 How To Act 0N TaSKS ... 30-28
30.4.4 How To Act on Tasks That Require a Digital Signature...........cccoooeviiiiiiiinnnnnn. 30-35
30.5 APPTOVING TaSKS.....oouiiiieiii s 30-38
30.6 Setting a Vacation Period..........cccciiiiiiiiiiiiiiicecccccceee e 30-39
30.7 Setting RUIES ...t e 30-41
30.7.1 How To Create User Rules............ccccocouviiiiiniiiiiiiniiiiis 30-41
30.7.2 How To Create Group RUIES..........coviiiiriiiriiiirr e 30-43
30.7.3 Assignment Rules for Tasks with Multiple Assignees...........ccccooooiiiiiiniicieinne. 30-44
30.8 Using the Worklist Administration FUNCHONScc.c.ooiuiieiiiiiiciiicc 30-45
30.8.1 How To Manage Other Users’ or Groups’ Rules (as an Administrator)................ 30-45
30.8.2 How To Set the Worklist Display (Application Preferences)...........ccccocevuvvivninnnne. 30-46
30.9 Specifying Notification Settings...........ccoeeueiiiiiieiiiiiicicecc e 30-47
30.9.1 Messaging Filter RULESc.ccoccccuiiiiiiiiiiiiiiiiccrcc s 30-47
30.9.1.1 Data TYPeS...ccveveiieiieieiii s 30-48
30.9.1.2 ABTIDULES . 30-48
30.9.2 Rule ACHONS.ooviiiiiiiicic s 30-49
30.9.3 Managing Messaging Channels............cccooiiiiiiiiiiiiii 30-49
30.9.3.1 Viewing Your Messaging Channels..............ccoooooiiiiiiie, 30-49
30.9.3.2 Creating, Editing, and Deleting a Messaging Channel..............ccccceiviiinaes 30-50
30.9.4 Managing Messaging Filtersc.ccccouirioiiiiieiiiic 30-51
30.9.4.1 Viewing Messaging Filters ..o, 30-51
30.9.4.2 Creating Messaging Filters..........ccccovviiiniiiiiiiicccccccceccccceenenenes 30-52
30.9.4.3 Editing a Messaging Filter.........ccoouiiiiiiiiii e, 30-53
30.9.4.4 Deleting a Messaging Filter...........ccoooiiiiiiiiii e 30-53
30.10 Using Mapped Attributes (Flex Fields) ... 30-53
30.10.1 How To Map Attributes..........ccccovviiiiiiiiiiiiiana 30-54
30.10.2 Custom Mapped AtIIDULESccevviiiiiiiii e 30-58
30.11 Creating Worklist REPOILSccceueuiiiiiieiriiiiiirecccerc s 30-58
30.11.1 How To Create REPOItSccccvvviiiiiiiiiiiiiiiciii s 30-59
30.11.2 What Happens When You Create Reportscoovviiviniiiiiiniiiiiiccccicce, 30-60
30.11.2.1 Unattended Tasks REPOTt.........ccoiiiiiiiiiiciecccceccceccccecee e 30-61
30.11.2.2 Tasks Priority RePOTtceuiiiciiici 30-62
30.11.2.3 Tasks Cycle Time RepPOrt.......cccoviiviviiiiiiiiiiiiiiiiiice 30-62
30.11.2.4 Tasks Productivity RepOrt.......ccccceueueiririiiiiiiiiiiiicrcccsreeeeee s 30-63
30.12 Accessing Oracle BPM Worklist in Local Languages and Time Zones 30-64
30.12.1 Strings in Oracle BPM WOTrKList.......cccccociiiiiiiiiiiiiiiiiiccicccnees 30-64
30.12.2 How to Change the Preferred Language if the Identity Store is LDAP-Based...... 30-65
30.12.3 How to Change the Language in Which Tasks Are Displayedcccccceueunee. 30-65
30.12.4 How To Change the Language Preferences from a JAZN XML File 30-66
30.12.5 What You May Need to Know About Runtime Languages Not Displaying in the
WOTKLSE ..ttt 30-67

30.12.6 What You May Need to Know About Inconsistent Display Languages in Worklist

31

32

and Embedded User's Notification Preference Interface............cccccoovvviiiiinnnnins
30.12.7 How To Change the Time Zone Used in the Worklist.............cccooooiii,
30.13 Creating Reusable Worklist REZIONS..........ccccoviiiiiiiiiiiicccccccccccccee e
30.13.1 How to Create an Application With an Embedded Reusable Worklist Region....
30.13.2 How to Set Up the Deployment Profile...........cccccooiiiiiii,
30.13.3 How to Prepare Federated Mode Task Flows For Deployment..........c.ccccceuneuneee.
30.13.4 What You May Need to Know About Task List Task Flowcccccoriiiiirinnnne.
30.13.5 What You May Need to Know About Certificates Task Flowcccccoevvininiinne
30.13.6 What You May Need to Know About the Reports Task Flow..........c.cccccceeueuenanene
30.13.7 What You May Need to Know About Application Preferences Task Flow...........
30.13.8 What You May Need to Know About Mapped Attributes Task Flow
30.13.9 What You May Need to Know About Rules Task FIowccccccceciciiniinnnne.

Building a Custom Worklist Client

31.1 Introduction to Building Clients for Workflow Servicescccccccoeuevvrvrvvnnrnnccnes
31.2 Packages and Classes for Building Clients...........c.cccoooriiiiiiiiiiiiicce
31.3 Workflow Service CHENESccccceviiiiiiiiiiiiiiiic s
31.3.1 The IWorkflowServiceClient Interfacecccovieiiiiiiiiiiiiccccces
31.4 Class Paths for Clients Using SOAP.........c.cccooiiriiiiiiiicieccte s
31.5 Class Paths for Clients Using Remote E]Bs.........cccccoooiiiiiiiii
31.6 Class Paths for Clients Using Local EJBs.......ccccccoeiiiiiiinnrnnrnnncreceeeeeeees
31.7 Enterprise JavaBeans References in Web Applications..........ccccceveviieiiiiiciiiinnennnn,
31.8 Initiating @ TasK ..o s
31.8.1 Creating @ TasK.......ccccciiiiiiieceeeece et
31.8.2 Creating a Payload Element in @ Task........cccoooeviiiiiiiiii
31.8.3 Initiating a Task Programmatically...........ccooeoioiiiiiiiii e
31.9 Changing Workflow Standard View Definitions...........cccccooiiiiiiniciiicccciicenenes
31.10 Writing a Worklist Application Using the HelpDeskUI Sample..........cccooovriiiinnnne.
Introduction to Human Workflow Services
32.1 Introduction to Human Workflow Services.........c.ccocovevviiiiiiiniiniiin
32.1.1 SOAP, Enterprise JavaBeans, and Java Support for the Human Workflow

SEIVICES ..vverttetetee s
32.1.11 Support for Foreign JNDINAMEScccooviiiiiriiiiiiiiiieieeeenes
32.1.2 Security Model fOr SETVICES........ccccouiuiiiiiiiiiiiiiiiiiiiccc s
32.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP

WED SEIVICES.....ocuiviviiiiiiiiiiiict s
32.1.2.2 Creating Human Workflow Context on Behalf of a User...........cccccccoeuvuvurininnne
32.1.2.3 Obtaining the Workflow Context for a User Previously Authenticated by a
JAAS APPLCALION ..ot

32.1.3 TASK SEIVICE ...ttt
32.1.4 Task QUETY SEIVICEceuviiiiiiiiriiiciireec s
32.1.5 Identity SEIVICE.......oioiuiiiiiecieiecct e
32.1.5.1 Identity Service ProvIders.........ccccoccviviviiiiiiiniiiiiiiiiiniiicecsnssas
32.1.6 Task Metadata SeIviceccovviiiiiiiiiiiiii e
32.1.7 User Metadata SEIVICEcociuiiiiiieiiiiiiiiiiccc s

xXiii

XXiv

32.1.8 Task RePOIt SEIVICEcouimimiiiiiiiiiicicic s 32-16

32.1.9 Runtime Config SEIVICEcccoiviiiiiiiiiiiiiiiiiiic s 32-16
32.1.9.1 Internationalization of Attribute Labels...........ccccoooeiiiiiiiniiin, 32-18
32.1.10 Evidence Store Service and Digital Signatures............ccooeueiiiiiiiiiiiicicce 32-19
32.1.10.1 PrereqUISIEEScvcviiiiciiiiiccc e 32-21
32.1.10.2 Interfaces and Methods ... 32-21
32.1.11 Task Instance Attributes ... 32-23
32.2 Notifications from Human WOorkflowcccccooviviiiiiiiiccccnn, 32-27
32.2.1 Contents of NOtfication..........cccoviieiiiiiii e 32-28
32.2.2 Error Message SUPPOTITcccvviiiiiiiiiiiiiiiiii e 32-29
32.2.3 Reliability SUPPOTt.....ccuiiiiiiicc s 32-29
32.2.4 Management of Oracle Human Workflow Notification Servicecccccccevvueuces 32-30
32.2.5 How to Configure the Notification Channel Preferences..........c.cccooooeniiniennnne. 32-30
32.2.6 How to Configure Notification Messages in Different Languages.............cc.......... 32-31
32.2.7 How to Send Actionable MeSSagescccvuvueururirririiiiiinrriereeseeseeeeseeeseeeseseeeas 32-32
32.2.7.1 How to Send Actionable Emails for Human Tasks.........cccccoviiiiniininnns 32-32
32.2.8 How to Send Inbound and Outbound Attachments...........ccccooorieiiiiiiiiiiinenne, 32-34
32.2.9 How to Send Inbound COmmMmEeNts............ccooerereiiiiniiiiiiiecceeens 32-34
32.2.10 How to Send Secure Notifications..........cccovviiuiiiiiiiiiiiins 32-34
32.2.11 How to Set Channels Used for Notifications...........ccccceceeviiiiniinnninnninnn, 32-34
32.2.12 How to Send Reminders............coocvveviiiiniiiiiiieiicics s 32-34
32.2.13 How to Set Automatic Replies to Unprocessed Messagescccocevvvivininiiiniinnns 32-35
32.2.14 How to Create Custom Notification Headersccccccoevvininniiininnnn, 32-36
32.3 Assignment Service CONfiGUIAtIONcccceiuiuiiuiuiiiiiiiiiiicceceeccre e 32-36
32.3.1 Dynamic Assignment and Task Escalation Functionsccccoooiiiinccne 32-37
32.3.1.1 How to Implement a Dynamic Assignment Function ..o, 32-37
32.3.1.2 How to Configure Dynamic Assignment Functions..........c.ccceceveeevvcnncnnccnnee 32-38
32.3.1.3 How to Configure Display Names for Dynamic Assignment Functions........ 32-39
32.3.1.4 How to Implement a Task Escalation Function ..., 32-39
32.3.2 Dynamically Assigning Task Participants with the Assignment Service 32-39
32.3.2.1 How to Implement an Assignment Service...........cocoeeueiirueieiiinicieiicicee, 32-40
32.3.2.2 Example of Assignment Service Implementation............ccccccevviiiinnnnnnnnnne. 32-41
32.3.2.3 How to Deploy a Custom Assignment Service...........cccocevviviviiiiiniiicininnnnes 32-43
32.3.3 Custom Escalation FUNCHOMN..........ccoiiiiiiiiiiiiiiiic 32-43
32.4 Class Loading for Callbacks and Resource Bundles.............cccccceuiiiiiiiiiiiiiinennns 32-44
32.5 Resource Bundles in Workflow SeIvicesccccccoviiurriiniiniiiiiiiiiiicccccnnes 32-44
32.5.1 Task Resource Bundles ... 32-44
32.5.2 Global Resource Bundle — WorkflowLabels.properties.........cccocoovreiiiiiriiennnnen. 32-45
32.5.3 Worklist Client Resource Bundles..........ccooviiiiiiiiiiiiicce, 32-47
3254 Task Detail ADF Task Flow Resource Bundles...........ccccooiiiiiiiiiiniiiinn, 32-47
32.5.5 Specifying Stage and Participant Names in Resource Bundlescc.cccc...... 32-47
32.5.6 Case Sensitivity in Group and Application Role Namesccccccoeevvvrrrencnencnes 32-47
32.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server
SEIVICES .o 32-48
32.6.1 Human Workflow Services CHENts..........c.cooeveviviiiiiiiiiiccccces 32-48
32.6.1.1 Task Query Service Client Code..........cccouiiiriiiiiinieieiccc e, 32-51
32.6.1.2 Configuration OPONcccccucveiiiiiiiiiiiiiicc s 32-53

33

34

32.6.1.3 Client LOGEING.....ccoviriiiiiiiiiiiiiiciccc s 32-56

32.6.1.4 Configuration Migration Utilitycccoooiiiiii, 32-56
32.6.2 Identity Propagation ... 32-56
32.6.2.1 Enterprise JavaBeans Identity Propagation..........ccccooeiieiiiiicciniincee, 32-57
32.6.2.2 SAML Token Identity Propagation for SOAP Client...........cccooooeiiniiiiiiieinnnne, 32-57
32.6.2.3 PUDLiC KEY ALIAS ...t 32-59
32.6.3 Client JAR FILES ...ttt s 32-59
32.7 Task States in a Human Task ... 32-60
32.8 Database Views for Oracle WOrkflow..........cccooviiiiviiiiiiiiiiiiicccecnes 32-60
32.8.1 Unattended Tasks Report VIEWcccccvveiiiiiiiiiiiiiniiiiics 32-60
32.8.2 Task Cycle Time Report VIeW.........ccoiiiiiic 32-61
32.8.3 Task Productivity Report VIEWcccccciiiiiiiiiiirrecr s 32-62
32.8.4 Task Priority Report VIEW ..o 32-63

Integrating Microsoft Excel with a Human Task

33.1 Configuring Your Environment for Invoking a BPEL Process from an Excel

WOTKDOOK ...t 33-1
33.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control 33-1
33.1.2 How to Create a Dummy JSF Pageccccooiiiiiiiiiiiicc e 33-2
33.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project...................... 33-2
33.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project. 33-2
33.1.5 How to Deploy the Web Application You Created in Step 1........ccccoevvivivininnnnnnnns 33-4
33.1.6 How to Install Microsoft EXcel..........cccoiiiiiiiiiiiiiiiices 33-4
33.1.7 How to Install the Oracle ADF-Desktop Integration Plug-inc.ccccccceeuveennnne 33-4
33.1.8 How to Specify the User Interface Controls and Create the Excel Workbook 33-4
33.2 Attaching Excel Workbooks to Human Task Workflow Email Notifications 33-4
33.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email
INOHFICAIONS ..v.vvvvteittcic s 33-4
33.2.2 What Happens During Runtime When You Enable Attachment of Excel
Workbooks to Human Task Workflow Email Notifications...........ccccccevvviiiriiinnnen. 33-5
33.2.3 Example: Attaching an Excel Workbook to Email Notifications...........c.cccceveuunee. 33-5
33.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities. 33-5
33.2.3.2 Task 2: Set up Authentication.........c.ccceveueieieiriiiiiinrcrrreecre e 33-10
33.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel
WOTKDOOK ...ttt 33-13
33.2.3.4 Task 4: Prepare the Excel Workbookcccccoiiiiiiiiinicccceene 33-17
33.2.3.5 Task 5: Deploy the ADF Task FIOWcccoooiiiiiiiiiiic e, 33-23
33.2.3.6 Task 6: Test the Deployed Applicationcccevuvivivininininininiiiiiiiccccccees 33-24
Configuring Task List Portlets
34.1 Introduction to Task List POrtletscccocveeioiiriciiininieciinreccreeceeseeeecee s 34-1
34.2 Deploying the Task List Portlet Producer Application to a Portlet Server 34-2
34.2.1 Deployment Prerequisites ...t 34-2
34.2.2 How to Deploy the Task List Portlet Producer Applicationcccccoeevevriireinnnnen. 34-3
34.2.3 How to Connect the Task List Producer to the Remote SOA Serverccc....... 34-3
34.2.3.1 How to Define the Foreign JNDI on the Oracle WebCenter Oracle WebLogic

XXV

TS 7<) TR 34-3

34.2.3.2 How to Configure EJB Identity Propagation..........c.cccooooeeiiiriiiiiiiicc, 34-5
34.2.3.3 How to Configure the Identity Store............ccccciiciiiiiiiiiccecccceceeeenens 34-5
34.2.4 How to Secure the Task List Portlet Producer Application Using Web Services

SECUTILY vt 34-6
34.25 How to Specify the Inbound Security POLCYccccceeuiueiviviniiiiccncnreccne 34-7
34.3 Creating a Portlet Consumer Application for Embedding the Task List Portlet............ 34-9
34.3.1 How To Create a Portlet Consumer Application for Embedding the Task List

POTEIEL oo 34-9
34.4 Passing Worklist Portlet Parameters..........c.cccoureieiiiiiieiiicicccc e 34-16
34.4.1 Assignment Filter CONStraintscoccouoiieieiiiiciiicccec 34-20
34.42 Example of File Containing All Column CONStantsc.ccceeeveeeeeeiiniccciccnenes 34-21

Part VI Using Binding Components

35

36

XXVi

Getting Started with Binding Components

35.1 Introduction to Binding COmMPONENts..........ccccceuiueuiuiuiuiiiieiiiiieeeeieiecieeeeeeereeeeeeeeeeeeeeeees 35-1
35.1.1 WWED SEIVICES.....ouiniiiiiiiiiitii s 35-2
35.1.1.1 WS-AtomicTransaction SUPPOTtcceiiiiiiiiiiiii e 35-2
35.1.2 HTTP Binding SErVICe.......cccoiuiuiuiimiiiiiiiiiicieiiiecieeieieieeie et nenesenenens 35-5
35.1.2.1 Supported INtEractionsc.coeueiveviieiiiiiiiiii s 35-5
35.1.2.2 How to Configure the HTTP Binding Service........c.cccooeoeuiiiiinciniiiicicicc, 35-6
35.1.2.3 How to Enable Basic Authentication..........cococoviviiiiiininiii, 35-8
35.1.3 JCA AdAPLers......oviiiiiiiic e 35-9
35.1.3.1 AQ AAPLET ...t 35-9
35.1.3.2 Database AdapPterc.cccocciiiiciiiiieiceeceee s 35-9
35.1.3.3 File Ad@pter......cooiiiiiiiiiiiiciici s 35-9
35.1.34 FTP A@PLer ..o 35-10
35.1.3.5 JMS Ad@pPLer ..o 35-10
35.1.3.6 MQ AdAPLET ..o 35-10
35.1.3.7 Oracle Applications Adapter...........ccccccvviviiiiiiininiceae 35-10
35.1.3.8 SOCKEt Ad@PLET ... s 35-10
35.1.3.9 Third Party Adapter........cii e 35-10
35.1.4 Oracle BAM ...ttt 35-11
35.1.5 Oracle B2B......oooiiiiiiii s 35-11
35.1.6 ADF-BC SEIVICES......cuvviviiiiiriiiiiicicicicccee s 35-11
35.1.7 EJB SEIVICES.....cteiuiitieiietieieee ettt ettt ettt ettt et eat et st esbesat e be st enteeae e beeneenes 35-11
35.1.8 Direct BINding SEIVICESc.ccuiuiuiiiiiiiiiiiiciciccccicrree s 35-12

35.2 Introduction to Integrating a Binding Component in a SOA Composite Application 35-12
35.2.1 How to Integrate a Binding Component in a SOA Composite Application.......... 35-12
35.2.2 How to Use ADF Binding to Invoke a Composite Application from a JSP/Java

Integrating Enterprise JavaBeans with SOA Composite Applications

36.1 Introduction to Enterprise JavaBeans Binding Integration with SOA Composite
APPLCATIONS ... 36-1

36.1.1 Integration Through SDO-Based EJBs.........cccoooiiiiiiiiiiic e 36-2

36.1.2 Integration Through Java Interfaces ... 36-2
36.2 Designing an SDO-Based Enterprise JavaBeans Application...........cccccceceeeccvvicncnnnnnes 36-3
36.2.1 How to Create SDO Objects Using the SDO Compiler...........ccccveeriiiieiniinininnennnn 36-3
36.2.2 How to Create a Session Bean and Import the SDO Objects...........cccorueriiiirennnnne. 36-4
36.2.3 How to Create a Profile and an EAR File........c.cccccooviniinnnicce 36-4
36.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean 36-4
36.2.5 How to Use Web Service ANNOtations ... 36-6
36.2.6 How to Deploy the Enterprise JavaBeans EAR File ..o 36-8
36.3 Creating an Enterprise JavaBeans Service in Oracle JDeveloper............cccccoevvinininiinnne 36-8
36.3.1 How to Integrate SDO-based Enterprise JavaBeans with SOA Composite

APPLCALIONS. ...t 36-8
36.3.2 How to Integrate Java Interface-based Enterprise JavaBeans with SOA Composite

APPLCAtIONS. ...t 36-11
36.4 Designing an SDO-Based Enterprise JavaBeans Client to Invoke Oracle SOA Suite.. 36-13
36.5 Specifying Enterprise JavaBeans Roles............ccccooiiiiiiiiiii e 36-13
36.6 Configuring JINDI ACCESS......ccceveirueieiiiieieie ettt 36-14
36.6.1 How to Create a Foreign JNDIL..........cccccoviiiiiiiiiiiiccceces 36-14
36.6.2 How to Create a Custom CSF Map for JNDI LoOKUPcccevvviiiiviiiiiiiiiiiine, 36-14

37 Using the Direct Binding Invocation API

37.1 Introduction to Direct BINAINg........ccccoevoiiiiiiiiiiii 37-1
37.2 Introduction to the Direct Binding Invocation API ..o 37-4
37.2.1 Synchronous Direct Binding INVOCAtionc.ccccccuceiiciiiiiieiccccceereeeeees 37-5
37.2.2 Asynchronous Direct Binding InVocation...........coceiiiiiccccce 37-5
37.2.3 SOA Direct Address SYNtaXccccevvviiiiiiiniiiiniiiiiss s 37-6
37.2.4 SOA Transaction Propagation ... 37-6
37.3 Invoking a SOA Composite Application with the Invocation APIcccccevvivivnnnnn 37-6
37.3.1 How to Create an Inbound Direct Binding Servicecccooooirieiiiiiiiiiiiccce 37-7
37.3.2 How to Create an Outbound Direct Binding Referencec.ccccoceuvvvvvninnncncne. 37-9
37.3.3 How to Set an Identity for J2SE Clients Invoking Direct Binding...............c......... 37-11
37.3.4 What You May Need to Know About Invoking SOA Composites on Hosts with

the Same Server and Domain Namescccceviiiniiiicne 37-12
37.4 Samples Using the Direct Binding Invocation APL............cccoouviiiiiinie 37-12

Part VIl Sharing Functionality Across Service Components

38 Creating Transformations with the XSLT Mapper

38.1 Introduction to the XSLT Mapper ...ttt s 38-1
38.1.1 Overview Of XSLT Creationccccciiiiiiiiiiiiiiiiiiiiccececeeeeeeeeesenenes 38-3
38.1.2 Guidelines for Using the XSLT Mapperc.cccccccucueueueiiieiiimiciceciceieieeeneeeeeenenenenes 38-6
38.2 Creating an XSL Map File ..o 38-7
38.2.1 How to Create an XSL Map File in Oracle BPEL Process Managerc...cccccu..... 38-7
38.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files

in Oracle BPEL Process Managercccoireieiiiicieiniiecice e 38-9
38.2.3 How to Create an XSL Map File in Oracle Mediator..........ccccocoooveiniiciiniiiccnnne, 38-11

XXVii

XXViii

38.2.4 What You May Need to Know About Creating an XSL Map File...........c............... 38-14
38.2.5 What You May Need to Know About Importing a Composite with an XSL File. 38-15
38.2.6 What Happens at Runtime If You Pass a Payload Through Oracle Mediator

Without Creating an XSL Map File........ccoooooiiiiie, 38-15
38.2.7 What Happens If You Receive an Empty Namespace Tag in an Output

IMIESSAEE ...t s 38-15
38.3 Designing Transformation Maps with the XSLT Mapperccccccovrviiiiiniiininnnes 38-16
38.3.1 How to Add Additional SOUTICeS.........cccovuviiiiiiiiiiiiiiiiiiiiis 38-16
38.3.2 How to Perform a Simple Copy by Linking Nodes.........cccccccevuvrvnrnnnnnrncnnes 38-17
38.3.3 How to Set Constant Values............cccovveiiiiiiiiiinicann 38-18
38.3.4 How to Add FUNCHONS........cccouiiiiiiiiiiiiiicccs 38-19
38.3.4.1 Editing Function Parametersccocoovvvrrreneinininnccnceccceeccceeneenenes 38-20
38.3.4.2 Chaining FUNCHONSc.oviiiiiiiiei 38-20
38.3.4.3 Using Named Templates.........ccoocrieiiiriiiiiicccc e 38-21
38.3.4.4 Importing User-Defined FUNCHONS.........cccccceuririiiiiiiniiirrcceecnccne 38-21
38.3.5 How to Edit XPath EXPIressions..........ccccccceeiiiiiniiiiiiniiiiiics 38-24
38.3.6 How to Add XSLT CONStIuCtSc.cevvviiiiiiiiiiiiiiiiciciiiccss 38-25
38.3.6.1 Using Conditional Processing with XsLiif ... 38-26
38.3.6.2 Using Conditional Processing with xsl:choose ..., 38-28
38.3.6.3 Creating Loops with xsl:for-each ..o, 38-28
38.3.6.4 Cloning XSLfOr-€achcceuiiiiiiiiriiiiiicrr e 38-29
38.3.6.5 Applying xsl:sort to xsl:for-each ... 38-30
38.3.6.6 Copying Nodes with XSL:cOPY-Of ..o, 38-30
38.3.6.7 Including External Templates with xsl:includec.ccccccooeeviiiinnnninnne. 38-31
38.3.7 How to Automatically Map NOdes.........cccoimrieiiiiciiiicc 38-32
38.3.7.1 Using Auto Mapping with Confirmation ..., 38-33
38.3.8 What You May Need to Know About Automatic Mappingccccceeeeueueucuencnnne. 38-34
38.3.9 How to View Unmapped Target Nodesc.cccoevviiiiiiiiiiciiiis 38-35
38.3.10 How to Generate Dictionaries..........c.oeevveveieiiniiiiciiicceccc 38-36
38.3.11 What You May Need to Know About Generating Dictionaries in Which Functions

A€ USEd....oviiiiiiici s 38-37
38.3.12 How to Create Map Parameters and Variables.............ccccccoeiivniinnnnnnininnne, 38-37
38.3.12.1 Creating a Map Parameter ..o 38-38
38.3.12.2 Creating a Map Variable...........cccooviiiiiniiiii 38-38
38.3.13 How to Search Source and Target Nodes ..o, 38-39
38.3.14 How to Control the Generation of Unmapped Target Elements.............ccccccc.e.. 38-40
38.3.15 How to Ignore Elements in the XSLT Document............cocooueviiinieiniinciciiiee 38-41
38.3.16 How to Replace a Schema in the XSLT Mapper..........cccocoeevviiinininccniniccneieeenes 38-41
38.3.17 How to Substitute Elements and Types in the Source and Target Trees................ 38-42
38.4 Testing the Map......c.coiiiiii e 38-45
38.4.1 How to Test the Transformation Mapping LOgICcccccoeiiiiiiiiiiiciiiccnes 38-46
38.4.2 How to Generate REPOTLSccouvuiviiiiiiiiiiiiiiciic s 38-48
38.4.2.1 Correcting Memory Errors When Generating Reports...........ccocceviiiiiiinnne, 38-49
38.4.3 How to Customize Sample XML Generationcccceiiiiiiiiiiiiicccicenenns 38-50
38.5 Demonstrating Features of the XSLT Mapper........ccccccecceuiiiinirineinennnrecrereeesseseeeenes 38-50
38.5.1 Opening the Applicationccccueveiiiiiiiiiniiiic 38-51
38.5.2 Creating a New XSLT Map in the BPEL Processcccccevuvivinvinnninnnnnnincnes 38-51

38.5.3 Using Type Substitution to Map the Purchase Order Itemsc.ccccoeveiirnnao.
38.5.4 Referencing Additional Source Elements............cccocoooeiiiiiiiiiiiiicic,
38.5.5 Using Element Substitution to Map the Shipping Addressccccccoeeceicecnnne
38.5.6 Mapping the Remaining Fieldsccoooiii
38.5.7 Testing the Mapccc.oiiii e

39 Using Business Events and the Event Delivery Network

39.1 Introduction to Business EVENtSs ...
39.1.1 Local and Remote Events Boundariesccccccoviiiiiiiiiiniiiccccnes
39.2 Creating Business Events in Oracle JDeveloper ...
39.2.1 How to Create a Business Event............ccccoiiiiccn
39.3 Subscribing to or Publishing a Business Event from an Oracle Medjiator Service
COMPONENL ..ot
39.3.1 How to Subscribe to a Business EVent..........ccccccooviiiiiiiiiiiiic,
39.3.2 What Happens When You Create and Subscribe to a Business Event......................
39.3.3 What You May Need to Know About Subscribing to a Business Event
39.3.4 How to Publish a Business Event.............cccccccoviiiiiiiiiniiic
39.35 How to Configure a Foreign JNDI Provider to Enable Administration Server
Applications to Publish Events to the SOA Server..........ccoovvviinnnnnnnn.
39.3.6 How to Configure JMS-based EDN Implementationsccccceueerireieiiiiicnennne.
39.3.7 What Happens When You Publish a Business Event...........ccoceoiiiiiniiicncnne.
39.4 Subscribing to or Publishing a Business Event from a BPEL Process Service
COMPONENL ...ttt
39.4.1 How to Subscribe to a Business EVent........cccccooviiiiiiiiiicccce,
39.4.2 How to Publish a Business Event...........ccccccovviiiiiiiii
39.4.3 What Happens When You Subscribe to and Publish a Business Event
39.4.4 What You May Need to Know About Subscribing to a Business Event
39.5 How to Integrate Oracle ADF Business Component Business Events with Oracle
MEIALOT ...t

Part VI Completing Your Application

40 Enabling Security with Policies

40.1 Introduction t0 POLICIESccecivirieuiiiiiiccirireeectre et
40.2 Attaching Policies to Binding Components and Service Components..........c.cccccocevueuecee
40.2.1 How to Attach Policies to Binding Components and Service Components............
40.2.2 How to Override Policy Configuration Property Valuesccccccceuvvvvninnnnnne.
40.2.2.1 Overriding Client Configuration Property Values.........cccccccoeeeeicicicccnnnne.
40.2.2.2 Overriding Server Configuration Property Values ..o,

41 Deploying SOA Composite Applications

411 Introduction to Deployment...........cccooouoiiiiiiiiiiiiiic s
41.2 Deployment PrerequiSites ...
41.21 Creating the Oracle SOA Suite Schema..........ccccccccuiiiiiiiiiicccecceee
41.2.2 Creating a SOA DOMAINc.cooiiiiiiiiici e
41.2.3 Configuring a SOA CIUSLETc.ccccoiiiiiiiiiiiiiiiccc s

XXiX

XXX

41.3 Understanding the Packaging Impactc..cooorriiieiiiiiiiic 41-2

41.4 Anatomy of @ COMPOSIeouiviiiiiiiiicc s 41-3
41.5 Preparing the Target ENVIrONmMENtcccccceiiiiiiiiiiicceccecrceeeeeeeeeeeeeee s 41-3
41.51 Creating Data Sources and QUEUES............c.coeurueiiiicicieiiiicie e 41-3
41.5.1.1 Script for Creation of JMS Resource and Redeployment of J]MS Adapter 41-4
415.1.2 Script for Creation of the Database Resource and Redeployment of the
Database Adapter..........cciiiiiiiiiiiii s 41-5
41.5.2 Creating Connection Factories and Connection Pooling.............cccooceeiiiinieieinnnnen. 41-6
4153 ENabling SECUTILYc.couiiiiiiiiiiiiiiccccecc e 41-6
41.54 Deploying Trading Partner Agreements and Task Flows..........ccccoooeiiniiinni. 41-6
41.5.5 Creating an Application Server Connection............c.ccooeeieieiinieieinicceeccee 41-7
41.5.6 Creating a SOA-MDS CONNection..........cccovvuiiiiiiiniiiiiiiiniccns 41-7
41.6 Customizing Your Application for the Target Environment Prior to Deployment....... 41-7
41.6.1 Customizing SOA Composite Applications for the Target Environment................ 41-7
41.6.1.1 Introduction to Configuration Plans..........c.cccccceeeeeininnicnnncerrreereeeenes 41-7
41.6.1.2 Introduction to a Configuration Plan File............ccooooiiiii 41-8
41.6.1.3 Introduction to Use Cases for a Configuration Plan ..o, 41-10
41.6.1.4 How to Create a Configuration Plan in Oracle JDeveloperccccccceuvuence 41-11
41.6.1.5 How to Create a Configuration Plan with the WLST Utilitycccooeeveeniie. 41-14
41.6.1.6 How to Attach a Configuration Plan with ant Scriptscccoooeiiiiinni. 41-14
41.7 Deploying SOA Composite APPLICAtiONSccceueueueuiiririiiiiiiiricrrrree e 41-14
41.7.1 Deploying a Single SOA Composite in Oracle JDeveloper ... 41-14
41.7.1.1 How to Deploy a Single SOA Compositecooimumieieiicicieiccieeccicee 41-14
41.71.2 What You May Need to Know About Deploying Human Task Composites
with Task Flows to Partitions ... 41-26

41.7.2 Deploying Multiple SOA Composite Applications in Oracle JDeveloper............. 41-27
41.7.21 How to Deploy Multiple SOA Composite Applications..........cccccvuveveverererennee 41-27
41.7.3 Deploying and Using Shared Metadata Across SOA Composite Applications in

Oracle JDeVeIOPETcucuiiiieiiicecie s 41-29
41.7.3.1 How to Deploy Shared Metadata...........ccccceuvuvuriiiiireninininennrrrreeeseeeeeeees 41-29
41.7.3.2 How to Use Shared Metadata..........ccccevuviniiiiiiiiiiiiiiiiic 41-35
41.7.4 Deploying an Existing SOA Archive in Oracle JDeveloper..........cccccoevninirinncnnes 41-39
41.7.41 How to Deploy an Existing SOA Archive from Oracle JDeveloper................. 41-39
41.7.5 Managing SOA Composite Applications with Scripts........cccocevvvinnninnnnn 41-40
41.7.51 How to Manage SOA Composite Applications with the WLST Utility 41-41
41.75.2 How to Manage SOA Composite Applications with ant Scripts 41-41
41.7.6 Deploying SOA Composite Applications from Oracle Enterprise Manager

Fusion Middleware Control Console...........ccccovivivivininininininininiiiiiccccccennes 41-60
41.7.7 Deploying SOA Composite Applications to a Cluster...........ccccevuvvvrvnnnrenecnnes 41-61
41.8 Postdeployment Configuration ..ottt 41-61
41.8.1 SECUTILY ..t s 41-61
41.8.2 Updating CONNECIONScoviuieiiiiiiicicccccc e 41-61
41.8.3 Updating Data Sources and QUEUES............coceurieiiiicieiiiicicee e 41-61
41.84 Attaching POLICIESc.ccuiiiiiiiiiiiiiciiic s 41-61
41.9 Testing and TroubleShOOtINGcccccceueiriiiiiiiiiriiiccc s 41-61
41.91 Veritying Deploymentcocouoviiieiiiiicieiinciee s 41-61
41.9.2 Initiating an Instance of a Deployed Composite..........cccccovivirivininininininninnninenicnes 41-61

41.9.3 Automating the Testing of Deployed Compositesccoceviieieiiiiciciiiicine,
4194 Recompiling a Project After Receiving a Deployment Error...........cccooceveiirnnne.
41.9.5 Troubleshooting Common Deployment Errorscccoevvvrvvvnnnnennrnecnes
41.9.51 Common Oracle JDeveloper Deployment ISsuescccooviiiiiiiniuinnnnnes
41.9.5.2 ant Command ISSUES..........ccccovvviiiiiiiiiiiii e
41953 Common Configuration Plan ISSUES...........coeiiiiiiiiiiiiicicccccccccennes
41.9.5.4 Deploying to a Managed Oracle WebLogic Server ...,
41.95.5 Deploying to a Two-Way, SSL-Enabled Oracle WebLogic Server....................
41.95.6 Deploying with an Unreachable Proxy Server..........ccccocevvvvvnnnnnnneeccnes
41.9.5.7 Increasing Memory to Recover from Compilation Errors.........ccceveerueiennnne,

42 Automating Testing of SOA Composite Applications

42.1 Introduction to the Composite Test Frameworkccccooviiiiiiiiiiiiiiiccicen,
42.1.1 Test Cases OVEIVIEW ...
42.1.2 Test Suites OVEIVIEW ...
42.1.3 Emulations OVErVIEW ...
42.1.4 ASSErtioNS OVEIVIEWciiiiiiiiiiiiiiiiii e
42.2 Introduction to the Components of a Test Suite.........cccceeueiiiiiivviiiinniirrecrreene
42.2.1 Process INTtation........ccoiviiiiiiiiiiiiiii
42.2.2 EMUIQtIONS ...t s
42.2.3 ASSETHIONS. ..ot s
42.2.4 MeSSaZE FILESovieieii s
42.3 Creating Test Suites and Test Cases..........ccoeueuoiirieieiiiiiciicc e
42.3.1 How to Create Test Suites and Test Casesccccevuveeueueeriverirerirrnrereeereeseseeeceaes
42.4 Creating the Contents of Test Cases..........cccccoeuevoiirieiiiiiicie
42.4.1 How to Initiate Inbound MeSSagescovrueueiiiiicieieiicciecc e
42.4.2 How to Emulate Outbound MeSsages..........ccccvuvuviviririrrinennirrnrcnreeceeeeeeeees
42.4.3 How to Emulate Callback MeSSages.........c.coouerurieiiimiicieiiiicieieie e
42.4.4 How to Emulate Fault Messagesccoeueuiiriiiiiicicieiiccicc
42.4.5 How to Create ASSErtions..........cccccvviiiiiiiiiiiiiiiiiicc s
42.4.51 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML
DOCUMENE ...
42.4.5.2 Creating Assertions on a Leaf Element ...
42.4.6 What You May Need to Know About Assertions...........c.cccceeueuniiriciiiiicicieiicnen,
42.5 Deploying and Running a Test SUiteccccccvvviiiiiiiiiiiniiiiniinaes

Part IX Advanced Topics

43 Managing Large Documents and Large Numbers of Instances

43.1 Best Practices for Handling Large Documents............cccoovovruiieiniieininincceeceeecnes
43.1.1 Use Cases for Handling Large Documents............cccoccoeeiceicicceceeeeeecnenenenes
43.1.1.1 Passing Binary Objects as Base64-Encoded Text in XML Payloads...................
43.1.1.2 End-to-End Streaming with Attachments..........c.cccocooiviiinnnnnnne,
43.1.1.3 Adding MTOM Attachments to Web Services.........c.cccoeeueueueuevvniinnnvececnenes
43.1.1.4 Processing Large XML with Repeating Constructs...........cccoeoeueieiirieiiieinnnen,

43.1.1.5 Processing Large XML Documents with Complex Structures

XXXi

44

XXXii

43.1.2 Limitations on Concurrent Processing of Large Documentscccccoooirnnnne. 43-12

43.1.2.1 Opaque Schema for Processing Large Payloads.........ccccovoiiiiiiiininnn, 43-12
43.1.3 General Tuning Recommendationscceeeevereririrnirinnnninnnecccccccceeeaenes 43-12
43.1.3.1 General Recommendationsccccoevviiiiniiiniiine 43-12
43.1.3.2 Setting Audit Levels from Oracle Enterprise Manager for Large Payload

PrOCESSINGcviiiiiiiiciicc s 43-13
43.1.3.3 Using the Assign Activity in Oracle BPEL Process Manager/Oracle

MeEdIatOr ..o 43-13
43.1.3.4 Using XSLT Transformations on Large Payloads (For Oracle BPEL Process

MAaANAZET) ...vviiieiiieicciete e 43-14
43.1.3.5 Using XSLT Transformations for Repeating Structuresc.cccccoeueieinnnen. 43-15
43.1.3.6 Processing Large Documents in Oracle B2B.........cccocovvnnnnnnnnnnncees 43-16
43.1.3.7 Using XPath Functions to Write Large XSLT/XQuery Output to a File

SYSLEIM oot 43-18
43.2 Best Practices for Handling Large Metadatacccoeoiiiiiiiiiincciiccccccccenenes 43-18
43.2.1 Boundary on the Processing of Large Numbers of Activities in a BPEL Process. 43-18
43.2.2 Using Large Numbers of Activities in BPEL Processes (Without FlowN)............. 43-19
43.2.3 Using Large Numbers of Activities in BPEL Processes (With FlowN)................... 43-19
43.2.4 Using a Flow With Multiple SeqUeNCescccovvviviiininininiiiine 43-19
43.2.5 Using a Flow with One Sequence..........c.coooreioiiiiiiiicc 43-19
43.2.6 Using a Flow with NO SEQUENCE..........cocooviiiiiiiiiiicccccce e 43-20
43.2.7 Large Numbers of Oracle Mediators in a Composite..........cccoovviiiviniiiiiinnnnnns 43-20
43.2.8 Importing Large Data Sets in Oracle B2B............c.coooiiiii 43-20
43.3 Best Practices for Handling Large Numbers of Instances............c.cccevuenrrnncnnncncncnne. 43-20
43.3.1 Instance and Rejected Message Deletion with the Purge Script.........ccccooeennnai. 43-20
43.3.2 Improving the Loading of Pages in Oracle Enterprise Manager Fusion

Middleware Control CONSOle...........couiiiiiimiiiiiiiii s 43-20

Working with Domain Value Maps

441 Introduction to Domain Value Maps.........ccccviiiiiiiiiiiceeceieeeeeeeeneenenenenenenes 44-1
4411 Domain Value Map Features ... 44-2
44111 Qualifier SUPPOTt.....cccciiiiiiiiiiccc s 44-2
4411.2 Qualifier Order SUPPOTTccciuiiiiiiiiicccceccecee e 44-3
44113 One-to-Many Mapping SUPPOTITccceiiiiiiiiiiiiice s 44-4
44.2 Creating Domain Value Maps.........ccccocciiiiiiiiiiiiiiiiicice s 44-4
44.2.1 How to Create Domain Value Maps........cccccoeiiiniiiininiiiiiinicccccccens 44-4
44.2.2 What Happens When You Create a Domain Value Mapccooovrninniiniiinnnnn, 44-5
44.3 Editing a Domain Value Map........cccccceiiiiiiininiiiiiiiiiiiccseesee s 44-7
44.31 How to Add Columns to a Domain Value Mapccccccoevviiinvvnnnnncnnrecne 44-7
44.3.2 How to Add Rows to a Domain Value Map.......cccccvveiiiininiiiiceeieeeeeeenes 44-7
44.4 Using Domain Value Map FUNcCtions...........cccccccccviiiiiiiiiiiiiiiiiicecccceeces 44-8
44.41 Understanding Domain Value Map Functions...........ccccocoeeeciicciiicccceccenenne 44-8
44411 AVIMIOOKUPVAIUE.......ovviiiiiicc s 44-8
44.41.2 dvm:lookupValuelM ..o 44-9
44.4.2 How to Use Domain Value Map Functions in Transformations............cccccccccueueneeee. 44-9
44.4.3 How to Use Domain Value Map Functions in XPath Expressions..............cccccc..... 44-11
44.4.4 What Happens at RUNEIME ... 44-12

45

46

445 Creating a Domain Value Map Use Case for a Hierarchical Lookupcccccccevvninnine. 44-12

44,51 How to Create the HierarchicalValue Use Casecccccoevivivviinnnnnininninn 44-13
44511 Task 1: How to Create an Oracle JDeveloper Application and a Project 44-13
4451.2 Task 2: How to Create a Domain Value Map........cccccovvviiiiininnininnn 44-13
4451.3 Task 3: How to Create a File Adapter Service..........cccoceuvvivvvnninninnnnncnne 44-15
4451.4 Task 4: How to Create ProcessOrders Oracle Mediator Component.............. 44-16
44515 Task 5: How to Create a File Adapter Referenceccccoevvvvvininninnnnnn 44-17
44.5.1.6 Task 6: How to Specify Routing Rulesccoooiriioiiiiice, 44-18
44517 Task 7: How to Configure an Application Server Connectioncccccecuc.ee. 44-21
4451.8 Task 8: How to Deploy the Composite Application...........cccccevveveviiiiiiininininne. 44-22
4452 How to Run and Monitor the HierarchicalValue Application............cccccouvvrenennn. 44-22
446 Creating a Domain Value Map Use Case For Multiple Values..........ccccoeriiiiccnne. 44-22
44.6.1 How to Create the Multivalue Use Case..........c.cccoceuvvviniiieiiiiiniiiiinns 44-22
44.6.1.1 Task 1: How to Create an Oracle JDeveloper Application and Project 44-23
446.1.2 Task 2: How to Create a Domain Value Map.........ccccocovivvvinnnnnnnnccnes 44-23
44.6.1.3 Task 3: How to Create a File Adapter Service..........cccocevvvvviiiiinnnnnnnnn, 44-24
44.6.1.4 Task 4: How to Create the LookupMultiplevaluesMediator Oracle

MeIAtOT ...t 44-26
44.6.1.5 Task 5: How to Create a File Adapter Referencecccccovvvvvvivinniinnnnnn 44-26
44.6.1.6 Task 6: How to Specify Routing Rulesccoouoiriioiiiiicccee, 44-27
44.6.1.7 Task 7: How to Configure an Application Server Connectioncccecuc..e. 44-30
44.6.1.8 Task 8: How to Deploy the Composite Application...........cccccovvvveviiiininininine. 44-30
44.6.2 How to Run and Monitor the Multivalue Application.........c.cccooeeeiiiiiiiiiincnnne, 44-31

Using Oracle SOA Composer with Domain Value Maps

45.1 Introduction to Oracle SOA COMPOSETceveviururieiiiieieieiice e 45-1
45.1.1 How to Log in to Oracle SOA COmMPOSETcccvviuimiiiiiiiiiiiiiicccces 45-2
45.2 Viewing Domain Value Maps at Runtimec.cccooooiiiiiiiie 45-3
45.2.1 How To View Domain Value Maps at Runtimeccooooeioiiiiiiiiccicce 45-3
45.3 Editing Domain Value Maps at RUNtIMEcccccoeiiiiiiiiiiiiiiicccceeeeeeeeeaes 45-4
45.3.1 How to Edit Domain Value Maps at Runtimeccccoooeviiniiinniiiiiicnn, 45-4
45.3.1.1 AddIng ROWSoiiiiiiiiiiiciiiricic s 45-5
453.1.2 Editing ROWS ...oviiiiiciciccccc s 45-5
45.3.1.3 Deleting ROWScooiueiiiiiciit e 45-5
45.4 Saving Domain Value Maps at Runtimecccccccceiiiiiiiiiicccccce 45-5
45.4.1 How to Save Domain Value Maps at Runtimecccccccocoeieiiiiiiiiccncceene 45-5
45.5 Committing Changes at Runtime.............ccoooouoiiiiiiiii e 45-5
45.5.1 How to Commit Changes at RUNtime ... 45-6
45.6 Detecting CONFLCES.ooiiiiiiiiicicccccce et 45-6
Working with Cross References
46.1 Introduction to Cross References...........ccoovviiiiiiiiiiiiiiiiiicee s 46-1
46.2 Introduction to Cross Reference Tables...........cccooviiiiiiiiiiieiiiiiiiiiiicceceees 46-2
46.3 Creating and Modifying Cross Reference Tables.............cccccoerreiviiniinincneniiccecne 46-4
46.3.1 How to Create Cross Reference Metadataccocoevviiiiiiniiieiniiiccne, 46-4
46.3.2 What Happens When You Create a Cross Reference..........c.ccccoveeniiecininnninnnnn, 46-6

XXXxiii

47

XXXiV

46.3.3 How to Create Custom Database TablesS.........oouvoviviiiiiiiiiiieeeeee e 46-7

46.3.4 How to Add an End System to a Cross Reference Table.............cccccooveiiiiinnnn 46-8
46.4 Populating Cross Reference Tablesccccccciiiiiiiiiiiiiiiceecceeeeeeeeeeeeeeeeeas 46-9
46.4.1 About the xref:populateXRefRow Functioncccooviiiiiiiiiiiiiiiiinns 46-10
46.4.2 About the xref:populateXRefRoOW1M Function...........ccccoeeoeiciniciicicciicccee 46-12
46.4.3 How to Populate a Column of a Cross Reference Table..........ccccccevvrvrnnrenncnne. 46-13
46.5 Looking Up Cross Reference Tablescccooooeiiiiiriiiiiiiiie 46-15
46.5.1 About the xref:lookupXRef FUNCHON.........coooiiiiiiiii 46-15
46.5.2 About the xref:lookupXRef1M FUNCHONcocvoviiiiiiiiiiccccccccccccecennes 46-16
46.5.3 About the xref:lookupPopulatedColumns Function..........ccccoovviiiiiiiiiinnnnn, 46-17
46.5.4 How to Look Up a Cross Reference Table for a Value............cccoooeieiiin, 46-18
46.6 Deleting a Cross Reference Table Value..........ccccccccccuiiriiiiiiiniiiiircccreeeeeeccae 46-19
46.6.1 How to Delete a Cross Reference Table Value...........ccccccovvviiiiiiinnnninnn 46-20
46.7 Creating and Running the Cross Reference Use Case..........cccccevvvvviiinnnininnennnnn, 46-22
46.7.1 How to Create the Use Case........ccccuviiiiiiiiiinciniiicc e 46-22
46.7.1.1 Task 1: How to Configure the Oracle Database and Database Adapter 46-22
46.7.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project........ 46-23
46.7.1.3 Task 3: How to Create a Cross Referencecccoovvvviiiiiiininniiniinieninnns 46-24
46.7.1.4 Task 4: How to Create a Database Adapter Service.........ccccoovvviininninincnnnes 46-25
46.7.1.5 Task 5: How to Create EBS and SBL External Referencescccccoevvininnne 46-27
46.7.1.6 Task 6: How to Create the Logger File Adapter External Reference 46-29
46.7.1.7 Task 7: How to Create an Oracle Mediator Service Component...................... 46-31
46.7.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Service

COMPONENL ...t 46-32
46.7.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Mediator 46-42
46.7.1.10 Task 10: How to Configure an Application Server Connection 46-53
46.7.1.11 Task 11: How to Deploy the Composite Application.........c.ccceceevvrererrerenccanee 46-53
46.7.2 How to Run and Monitor the XrefCustApp Application.........cccccoevviiiiiiinnnnnnnn, 46-53
46.8 Creating and Running Cross Reference for IM Functionsc.cccooceviiiiiiiiinnnes 46-54
46.8.1 How to Create the Use Case........ccovuviiiiiiiiiieiiiiics s 46-54
46.8.1.1 Task 1: How to Configure the Oracle Database and Database Adapter 46-54
46.8.1.2 Task 2: How to Create an Oracle JDeveloper Application and a Project 46-55
46.8.1.3 Task 3: How to Create a Cross Referencecccooovvvviiiiiiininnnnniinicnicinns 46-56
46.8.1.4 Task 4: How to Create a Database Adapter Service..........cccovvvviviniiiininininnnne, 46-57
46.8.1.5 Task 5: How to Create an EBS External Referenceccccccceuvvvinnnnnnnne. 46-59
46.8.1.6 Task 6: How to Create a Logger File Adapter External Reference................... 46-61
46.8.1.7 Task 7: How to Create an Oracle Mediator Service Component...................... 46-62
46.8.1.8 Task 8: How to Specify Routing Rules for an Oracle Mediator Component.. 46-63
46.8.1.9 Task 9: How to Specify Routing Rules for the Common Oracle Medjiator 46-67
46.8.1.10 Task 10: How to Configure an Application Server Connectionc....... 46-72
46.8.1.11 Task 11: How to Deploy the Composite Application...........ccccceevvveiniiiinnnnes 46-72

Defining Composite Sensors

47.1 Introduction to COMPOSite SENSOTS........ccueuiiiiiiriiiiiiiiiiiiiiciirr s 47-1
47.1.1 Restrictions on Use of COMPOSite SENSOLSc.ceueuimiueueueiiiiieiciicicicieieeeeeeeeeeeeeeenenens 47-1
472 Adding Composite SENSOIS........ceviiiririeiiiecieie e 47-2
47.2.1 How to Add Composite SENSOTScccueuiiimimimiiiiiiiiiiiiciiicccceeeeeeeenes 47-2

48

49

47.2.2 HOW 10 Add @ Variableoooveiieeieeeeeeeee et 47-6

47.2.3 How to Add an EXPression ... s 47-6
47.2.4 How t0 Add @ PIOPETTYcovmiiiiiiiiiiiciiiicicicice et 47-7
47.3 Monitoring Composite Sensor Data During Runtime..........c.cccccoooiiiiiiiiiinne 47-8
Using Two-Layer Business Process Management (BPM)

48.1 Introduction to Two-Layer Business Process Managementc.ccccoorueieiiicinininnnnnen 48-1
48.2 Creating a Phase ACtVITY ...c.cocoooiiiiiiii s 48-3
48.2.1 How to Create a Phase ACtiVITYcoociiiiiiiiiicieceeeecceeeeeee s 48-3
48.2.2 What Happens When You Create a Phase Activity........cccoooiiiiiniiinniiiinn, 48-4
48.2.3 What Happens at Runtime When You Create a Phase Activity ... 48-5
48.2.4 What You May Need to Know About Creating a Phase Activitycccccceevueenencne. 48-5
48.3 Creating the Dynamic Routing Decision Table............cccocooiiiiiiiiniiiiiie 48-6
48.3.1 How to Create the Dynamic Routing Decision Tableccccoooeeiniiiiiiniinine. 48-6
48.3.2 What Happens When You Create the Dynamic Routing Decision Table................. 48-7
48.4 Use Case: Two-Layer BPM ..o e 48-7
48.4.1 Designing the SOA CompPOSite.........oovrueiiiiiiiiicic e 48-7
48.4.2 Creating a Phase ACHVILYcccccciiiiiiiiiiicccccccee e 48-10
48.4.3 Creating and Editing the Dynamic Routing Decision Table............cccccccooerrnnnane. 48-10
48.4.4 Adding Assign Activities to the BPEL Process Model ..., 48-12
48.4.5 Deploying and Testing the Sample.........ccccoeeiiiiniiiniiinrrcre e 48-13
Integrating the Spring Framework in SOA Composite Applications

49.1 Introduction to the Spring Service COMPONENt..........ccccccueueueuiicueieueuiieemeeeceeeeeeeeeens 49-1

49.2 Integration of Java and WSDL-Based Components in the Same SOA Composite
Application 49-2

49.21 Java and WSDL-Based Integration Examplec.ccoooiiiiiiniiie, 49-2
49.2.2 Using Callbacks with the Spring Framework...........cccccooiviiiiiiiiiiiccne 49-4
49.3 Creating a Spring Service Component in Oracle JDeveloper.........cccccovviiiiiinninnn 49-5
49.3.1 How to Create a Spring Service Component in Oracle JDeveloper 49-6
49.3.2 What You May Need to Know About Java Class Errors During Java-to-WSDL
CONVEISIONS ...evviviviiiitieiiteietete ettt 49-17
49.4 Defining Custom Spring Beans Through a Global Spring Context...........ccccevrrucnee. 49-17
49.41 How to Define Custom Spring Beans Through a Global Spring Context.............. 49-17
49.5 Using the Predefined Spring Beans..........cccccooiiiiiii 49-17
49.5.1 IHeaderHelperBean.java Interface for headerHelperBean.............ccccooovvvriiennnnen. 49-18
49.5.2 IInstanceHelperBean java Interface for instancerHelperBeanccccocvvveennce. 49-18
49.5.3 ILoggerBean java Interface for loggerBean.............ccooooiii 49-19
49.54 How to Reference Predefined Spring Beans in the Spring Context File................. 49-20
49.6 Spring Service Component Integration in the Fusion Order Demo...........ccccccccuvurunnce. 49-21
49.6.1 How to Use E]Bs with Java Vector Type Parameters..........cccccoooviiiiiiiiinnnnnns 49-26
49.7 JAXB and OXM SUPPOILcoviiiiiiiiiiiiiicccicicsssese s 49-28
49.71 Extended Mapping Filescccccciiiiiniiiiiecccrre s 49-29

Part X Using Oracle Business Activity Monitoring

XXXV

50

51

XXXVi

Integrating Oracle BAM with SOA Composite Applications

50.1 Introduction to Integrating Oracle BAM with SOA Composite Applications................ 50-1
50.2 Configuring Oracle BAM Adapter ... 50-2
50.3 Using Oracle BAM Monitor Express With BPEL Processesccccooevirieiiiirciciennnn. 50-2
50.3.1 How to Access BPEL Designer Monitor VIew ... 50-4
50.3.2 How to Configure Activity MONITOLSccccceuevviririiririiiirrrceecreeeeeeeeeeeeeeeeees 50-5
50.3.3 How To Create BPEL Process Monitoring Objects..........c.cccooviiiiiiiiiiiiiicii 50-6
50.3.4 How to Configure COUNETS.........cceuoiiiieiiiciciecc e 50-7
50.3.5 How to Configure INtervalscccccociiiiiiiiiiiiceeececeeeieee s 50-9
50.3.6 How to Configure Business Indicators..........cccoerueieiiineiiiicicc 50-11
50.3.7 How to Add Existing Monitoring Objects to Activities..........cccocoeeeireieiiiicennne. 50-14
50.3.8 How To Configure BPEL Process Monitors for Deploymentcccccceevrenencncne. 50-15
50.3.9 What You Need to Know About Using the Monitor Express Dashboard 50-18
50.3.10 What You Need To Know About Monitor Express Data Objectscccc........ 50-18
50.3.10.1 Understanding the COMPONENT Data Objectcccccceovieiiiicccciccnenen. 50-19
50.3.10.2 Understanding the COUNTER Data Objectccooooeviiiiiiiiiiiice, 50-20
50.3.10.3 Understanding the INTERVAL Data Objectcocoeueuiiiiiiiiiiiieccie, 50-21
50.3.10.4 Understanding Business Indicator Data Objectscccocoviiiiiocccciccncnnn 50-22
50.3.10.5 TroubleShOOtING.........ocueiiici 50-24
50.4 Creating a Design Time Connection to an Oracle BAM Servercccccoevvviiniinnnnne. 50-25
50.4.1 How to Create a Connection to an Oracle BAM Server..........ccoooeviiniicnnennnnnn. 50-25
50.5 Using Oracle BAM Adapter in a SOA Composite Applicationcccccevvvvviiviiinininnes 50-26
50.5.1 How to Use Oracle BAM Adapter in a SOA Composite Application 50-26
50.6 Using Oracle BAM Adapter in a BPEL Process.........c.cccocoeeeucieicciiceiccceeeeeceeeenne 50-27
50.6.1 How to Use Oracle BAM Adapter in a BPEL Process...........ccocoevvvinnininninincinnnns 50-27
50.7 Integrating BPEL Sensors Using Oracle BAM Sensor Actionccccovvvviiiininennnne. 50-28
50.7.1 HOW t0 Create @ SENSOT.......cocvviieiiieieeeietee s 50-29
50.7.2 How to Create an Oracle BAM Sensor AcCtion ... 50-29
50.8 Integrating SOA Applications and Oracle BAM Using Enterprise Message

RESOULICES......oviiiii e 50-33

Using Oracle BAM Data Control

51.1 Introduction to Oracle BAM Data CONtrol........c.ccocueieirireniiniesieieieeeeeeereee e sseseseeseas 51-1
51.2 Creating Projects That Can Use Oracle BAM Data Controls.........ccccoooireieiiiicieinnnne 51-2
51.3 Creating Oracle BAM Server Connections..........cc.coocoeeeueiineininiicncce s 51-2
51.3.1 How to Modify Oracle BAM Data Control Connections to Oracle BAM Servers.. 51-2
51.3.1.1 How to Associate a BAM Data Control with a New Oracle BAM Connection 51-3
51.4 Exposing Oracle BAM with Oracle ADF Data Controlsccccccceevviviinninnnnnnncncnns 51-4
51.41 How to Create Oracle BAM Data CONtrolS.......cceeevveieriecieiieininesenieseesiesieseeceeesseesens 51-4
51.4.2 What Happens in Your Project When You Create an Oracle BAM Data Control .. 51-4
51.4.21 How an Oracle BAM Data Control Appears in the Data Controls Panel 51-5
51.5 Creating Oracle BAM Data Control QUETIEScccceueueuruririiiirniricrrreereeeeceeeeeas 51-5
51.5.1 How to Choose @ QUeTy TyPe.......ccoceuiiuriiiiiiicic e 51-6
51.5.2 How to Create Parametersccvecvieiiieeieeciieeieeieeciteete et sveestee st eaeeesaeebeessaeeveenes 51-7
51.5.3 How to Pass Values t0 Parameters..........cccveevverieieieieieieeeeeesesesseseesseseeseesseneseesens 51-8
5154 How to Create Calculated Fields........ccceieviiiieniiiieieceeeseeeeeee e 51-9
51.5.41 Creating Groups in Calculated Fieldsc.ccoooiiiiiiiiiniiiiiiccccces 51-10

52

5155 How to Select, Organize, and Sort Fields..........c.cccccoeniiiinini, 51-11

51.5.6 How to Create FIIEErscccooiiiiiiiiiiiiicc s 51-11
51.5.6.1 How to Create Filter Headers...........cccccoooeiviiiiiniiiiiiccceas 51-11
51.5.6.2 How to Create Filter ENtries ... 51-12
51.5.6.3 Entering Comparison Values............cccceoieiiiiioiiicicieicccc e 51-13
51.5.6.4 Using Active NOW ... 51-14
51.5.7 How to Select and Organize GIoupsccoeeeueueiicieieiiiicie e 51-15
51.5.7.1 How to Configure Time Groups and Time Seriescccccovvvvvviiinnninennne 51-15
51.5.8 How to Create Aggregates ...t 51-16
51.5.9 How to Modify the QUery ..o 51-16
51.6 Using Oracle BAM Data Controls in ADF Pages.........cccccococeuiieiiniiiiiicicecceee 51-16
51.6.1 How to Use an Oracle BAM Data Control in a JSEPage ..o 51-17
51.7 Deploying Applications With Oracle BAM Data Controls............ccceevvivnnninnnnnnnne. 51-17
51.7.1 How to Deploy to Oracle WebLogic Server in Development Mode....................... 51-18
51.7.2 How to Deploy to a Production Mode Oracle WebLogic Servercccccceuveneee. 51-18
Defining and Managing Oracle BAM Data Objects
52.1 Introduction to Oracle BAM Data ObJECEScoceviiirininiiiiiicccicccccirececeeenenenes 52-1
52.2 Defining Data ODbjects..........coooiiiiiiiiiiiiic e 52-2
52.2.1 How to Define a Data Objectcooviiiiiiii e 52-2
52.2.2 How to Add Columns to a Data Object..........cccccoeeueiiiiiiiiiciceceeeeeeeeeenes 52-3
52.2.3 How to Add Lookup Columns to a Data Object...........ccccccevvvivvniinnnnn 52-4
52.2.4 How to Add Calculated Columns to a Data Object.........cccoovoeiieiiiiiiiicce 52-5
52.2.5 How to Add Time Stamp Columns to a Data Objectcccccceoeueuiccciccccncccnnes 52-6
52.2.6 What You May Need to Know About System Data Objects...........ccooeueriiririennnne. 52-6
52.2.7 What You May Need to Know About Oracle Data Integrator Data Objects............ 52-6
52.3 Creating Permissions on Data ObjJECtS.........ccccvuviviviririririniriinrrrrrreee s 52-6
52.3.1 How to Create Permissions on a Data Object...........cccoviiiiiiiiiiicniiiicccce 52-6
52.3.2 How to Add a Group of USErS.........c.coiruiiiiiciiicci e 52-7
52.3.3 How to Copy Permissions from Other Data Objects.........cccccceuvurvuvrrrnncnrnccnnes 52-7
52.4 Viewing Existing Data ObjJects..........ccoeueiiiiiiiiiiiicic s 52-8
52.4.1 How to View Data Object General Information............cccoeeeieiriininiicnnincceene 52-8
52.4.2 How to View Data Object Layouts.........ccccccvivieiiiviiiiiiiiiiiicce 52-9
52.4.3 How to View Data Object Contents............cccoccvvviiiiiiriiiiiiniiiiiiicccccces 52-9
52.5 Using Data Object FOIAErs........cccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiccis s 52-10
52.5.1 How to Create FOIAers ..o 52-10
52.5.2 How to Open FOIders ..o 52-11
52.5.3 How to Set Folder Permissions........cccceerrieuiirnieieiinininieecreeecerereee s 52-11
52.5.4 How to Move Folders..........coviiiiiiiiicc s 52-12
52.5.5 How to Rename Folderscccoviiiiiiniiniiiiiiii 52-12
52.5.6 How to Delete FOIAETSc.ccooiiiiiiiiieiiiicctnec e 52-12
52.6 Creating Security FIlters........cccocoviiriiiiircr e 52-13
52.6.1 How to Create a Security Filter...........cocoooiiiiiiiiiii 52-13
52.6.2 How to Copy Security Filters from Other Data Objectscccocoevevviriiiiiirnnnne. 52-15
52.7 Creating DIMEeNSIONScouiviiiiiiiiiiiiiiii e 52-15
52.7.1 How to Create a DImMeNSIONcccvviviieieiiiiiiiiiic s 52-15
52.7.2 How to Create a Time DImensioncccccvieiiiniiiininininiiniiiinieceeeeeceeeseeeeenne 52-16

XXXVii

53

54

XXXViii

52.8 Renaming and Moving Data Objectscccooeriiiiiiiiiiiiiicc e 52-17

52.8.1 How to Rename a Data Objectcc.oooirieiiiiiiiiic 52-17
52.8.2 How to Move a Data Object ... 52-17
52.9 Creating INAeXeSc.oviuiiiiiiii e 52-17
52.9.1 How to Create an INdeX.........cccocvvviviiiiiiiiniiiiic e 52-18
52.10 Clearing Data ODJECS ...t 52-18
52.10.1 How to Clear a Data Object.........cccooeiiiiiiiiiiiiiiiiiiiiicns 52-18
52.11 Deleting Data ODJECtSccccvuiiiuiiiiiiiiiciiiiiciic s 52-18
52.11.1 How to Delete @ Data ODbject........ccccciuiiiuiiiiiiiiiiiiceeeeeereeeseee s 52-18

Creating Oracle BAM Enterprise Message Sources

53.1 Introduction to Enterprise Message SOUICESccoorrreriniririniniiniiieeccieccecceeaenes 53-1
53.2 Creating Enterprise Message SOUICES..........cccueuiiurieiiiiciciecciie et 53-2
53.2.1 How to Create an Enterprise Message SOUIce............ccoeeveveieieieieiniiiiciceec 53-2
53.2.2 How to Configure DateTime Specificationcccccoveeuivvvninnnniirrccceeeene 53-7
53.2.3 How to Use Advanced XML Formattingcccccooeeieiiiinciiiiniccc 53-10
53.3 Using Enterprise Message SOUICES.........ccocoueveiiiiiiiiiiieiiiiiiii s 53-11
53.3.1 How to Edit, Copy, and Delete Enterprise Message Sources...........cccccevuvuvueurerunnes 53-11
53.3.2 How to Start and Stop Enterprise Message SOUICes............cccoovvvveiiiiniiviiinninineninnns 53-11
53.3.3 How to Subscribe and Unsubscribe Enterprise Message Sources............ccccuenee. 53-12
53.3.4 How to Test Enterprise Message SOUICES ..o 53-12
53.3.5 How to Refresh Enterprise Message SOUICesccoceuviirueieiiinicieiniccece 53-12
53.3.6 How to Monitor Enterprise Message Source Metrics........c.ccooeveviviiiieiiiiciiinicinnn, 53-12
53.4 Using Foreign JMS Providers...........ccooiiiiiiiiiiiciececeeeieeeneeneneneeseneaesenenenseenenas 53-13
53.5 Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider....................... 53-14
53.5.1 Creating a JMS Topicin AQ-JMS ... 53-14
53.5.2 Creating a Data Source in Oracle WebLogic Servercccoovvveiiininincccicnccnns 53-15
53.5.3 Creating a Foreign JMS Server ...t 53-16
53.5.4 Defining an EMS in Oracle BAM Architectcoooiiiiii 53-17
53.5.5 Inserting and Updating Records in the SQL Table.........cccccovrrvinrnnnnnrncnnes 53-18

Using Oracle Data Integrator With Oracle BAM

541 Introduction to Using the Oracle Data Integrator With Oracle Business Activity
Monitoring 54-1

542 Installing the Oracle Data Integrator Integration Files...........ccccooooiiiiiiiiiiiin, 54-2
54.2.1 How to Install Integration Files Using the Script..........cccccceviiiiiinviinnnninniinenes 54-2
54.2.2 How to Manually Install Integration Files...........ccccocoeiiiiiiiiiiniiicrcrcreene 54-4
54.2.3 USING the LOZS...cvoviieeiei e 54-7
54.3 Using Oracle BAM Knowledge Modules..........ccccoooiiiiiiiinininiicccecee 54-7
54.4 Creating the Oracle BAM Targetcccocooiiiiniioiiiiiiiiiicccceccceceeeeeeeenenes 54-13
54.4.1 How to Create the Oracle BAM Targetccccoooviiiieiiiinici 54-13
54.5 Reverse Engineering the Oracle BAM Schema..........cccccoeuviviviiiinnnnnnnninnncae 54-14
54.6 Updating the Oracle Data Integrator External Data Source Definition.......................... 54-14
54.6.1 How to Update the Oracle Data Integrator External Data Source Definitions...... 54-15
54.7 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts........................ 54-15
54.8 Running Oracle Data Integrator Agent as a Daemon or a Microsoft Windows Service

With Oracle BAM Embedded ... 54-15

55

56

57

58

Creating External Data Sources

55.1 Introduction to External Data SOUICES.........ccouruiuiiiiiiiiiiiinicccccccccc s 55-1
55.2 Creating External Data SOUICEScccovriririninininiriniiiecc e 55-2
55.2.1 How to Create an External Data SouUrce...........ccoociiiniiiiiinniiiiiicccccccce 55-2
55.2.2 What You May Need to Know About Oracle Data Integrator External Data

SOUTCES ..ottt 55-2
55.2.3 How to Edit an External Data SouUrce ... 55-2
55.2.4 How to Delete an External Data SOUTCE.ccccouiiiiiiiiiiiiiiiniiccccccccces 55-3
55.3 External Data Source EXample.........cccooiiiiiiiiiiiiiiiiiiccceccceeeneee e enennes 55-3

55.4 Use Case: Creating an EDS Against Oracle Business Intelligence Enterprise Edition.. 55-4

Using Oracle BAM Web Services

56.1 Introduction to Oracle BAM Web Services........ccooviiiiiiiiiiiiiiiniiiicieecceeeeeeenes 56-1
56.2 Using the DataObjectOperations Web Services ..., 56-2
56.2.1 How to Use the DataObjectOperations Web Services.........c.cccovvevvevverrnvenecerenennnes 56-2
56.3 Using the DataObjectDefinition Web Service............coooeeuiiiiiiiiiiiiicee 56-3
56.3.1 How to Use the DataObjectDefinition Web Servicecccooooeiieiiiiiiiiciin 56-3
56.4 Using the ManualRuleFire Web Service...........cocoovvinirininiininiiniiiiiiccccccccceeenenes 56-4
56.4.1 How to Use the ManualRuleFire Web Service..........c.cccoeveiiiiiiiniii 56-4
56.5 Using the ICommand Web Service ..o 56-4
56.5.1 How to Use the ICommand Web Service...........ccooovviviiiiiiiniiiiicccens 56-5

Creating Oracle BAM Alerts
57.1 Introduction to Creating ALETtScccocoerviriiiiiririicrrr s 57-1
57.2 Creating Alert RUIESc.cccoooiiiii s 57-2
57.2.1 How to Create an Alert Rule...........ccccooiiiiiiiiiiiiis 57-2
57.2.2 How to Activate ALETtsccoivviiiiiiiiiiiiiicc s 57-3
57.2.3 How to Modify Alert Rules.........cccooiiiioiiiiic e 57-4
57.2.4 How to Delete an AleTt ..o 57-4
57.3 Creating Alert Rules From Templatesc.ccocouvvniininniiiniiiccccccccccccceeennes 57-4
57.3.1 How to Create Alert Rules From Templates.........c.cccccocevviiiininiiiiin, 57-4
57.4 Creating Alert Rules With MeSSagescccccccevuririiiiiiiniiiiiiiiiriininncncnes 57-5
57.4.1 How to Create an Alert Rule With a Message.......cccccceeueuervriennnvnnrencnreecne 57-5
57.5 Creating Complex AleTtsccooiiiiiiiiiiiiic e 57-6
57.5.1 How to Create a Dependent Rule............cccccoiiiiiiiiiiiiiiccceecceeees 57-6
57.6 Using Alert HISTOTY ..ooviiiiiiii e 57-6
57.6.1 How to View Alert HiStOrycooeueiiiiieiiicce e 57-7
57.6.2 How to Clear Alert HiStOryccccccoiiiiiiiiiiiiiccces 57-8
57.7 Launching Alerts by Invoking Web Services.........c.cccoovvvrrrrnnnnnnnnnnreeeceeeeeccaes 57-8
57.8 Calling an External ACHON........cccoouoiiiiiiiiii s 57-8
57.9 Sending Alerts to External E-mail AcCOUNts...........cccccocuiuiiiiiiiiiiiiiiiiiiiicccicccces 57-9
Using ICommand

58.1 Introduction to ICOMMANGccoriiuiiriiiiiiiicccc e 58-1
58.2 Executing ICOMMAN........ocooiiiiiiiiiiiiccc e 58-1

XXXiX

58.3 Specifying the Command and Option SyntaXccceeeiimeininiicieieicneecceee 58-2

58.3.1 How to Specify the Security Credentials...........cccooooeiiiiiiiiiiiiiicc 58-2
58.3.2 How to Specify the Command.........c.cccccueuiiiiiiiiiiceeceeceeeeeeeee s 58-3
58.3.3 How to Specify Object Namescccceeiiiiiiiiieiiiiiiiiiee s 58-3
58.3.4 How to Specify Multiple Parameter Targetsccccooooieiiieiiieiniicciceccce 58-4
58.4 Using Command-line-only Parameters............cccocovvuririreriririnirneninrnrsesreeeeesesesceens 58-5
58.5 Running ICommand Remotelyccccoouiiiiiiiiiiiii 58-6

Part XI Using Oracle User Messaging Service

59

60
API

xl

Oracle User Messaging Service

59.1 Introduction to User Messaging SeIviCe........c.cccoowrueieiirieieiiiiicieisieeiee e 59-1
59.1.1 COMPONENES....ootiiiiiictctc s 59-2
59.1.2 ATCRItECHUT® ... 59-2

Sending and Receiving Messages using the User Messaging Service EJB

60.1 Introduction to the UMS Java APL.......cccoiiiiiiiiineeeeeee ettt 60-1
60.1.1 Creating a Java EE Application Module.........cccooiiiiiiii 60-2
60.2 Creating a UMS Client INStance.........cccovuvurirririririrrrr e 60-2
60.2.1 Creating a MessagingE]BClient Instance Using a Programmatic or Declarative
APPTOACK .. s 60-2

60.2.2 API Reference for Class MessagingClientFactory ... 60-3
60.3 Sending @ MESSAZE.......ccceviurueieiiiicieietecte it 60-3
60.3.1 Creating @ MeSSage.......ccuiururiiiiiiiiciciciici e 60-3
60.3.1.1 Creating a Plaintext MeSSage........cccoceueuiimimiieueiiiieieeeereieieieeeneeeeeereneeeeeeeeeneeeees 60-3
60.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML

PATES) ettt ettt st s 60-3
60.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for

Recipients with Different Delivery Types..........cccoocueiireiniiiciiiccce 60-4
60.3.2 API Reference for Class MessageFactory ... 60-4
60.3.3 API Reference for Interface MeSSAZEcccueueueueuiuimimiieieiiieieieieicieieeeeeeeeeeeeeeeeeeeees 60-5
60.3.4 API Reference for Enum DeliveryType ..o 60-5
60.3.5 Addressing @ MESSAGEcceueueuriiiiiiiiiiiiiiiii s 60-5
60.3.5.1 Types of AdAIESSESc.cueuiiiiiiiiiiicccccc s 60-5
60.3.5.2 Creating Address ODJects...........ccocueuiiiiiriiiiiccc e, 60-5
60.3.5.3 Creating a Recipient with a Failover Address..........cccccocovoiiinirniiniiien, 60-5
60.3.5.4 API Reference for Class AddressFactory ... 60-6
60.3.5.5 API Reference for Interface Addresscccooeviviiviviniiiivininiic, 60-6
60.3.6 Retrieving Message Status...........ccccvviiiiiiininiiiicc s 60-6
60.3.6.1 Synchronous Retrieval of Message Statuscccccccueuerriecinciiiccrccceeee 60-6
60.3.6.2 Asynchronous Notification of Message Statuscccccooeueirinicniicinicncne 60-6
60.4 ReceiviNg @ MESSAZEcceuiiiiiiiiiiiiictcccc s 60-6
60.4.1 Registering an Access POINt ... 60-6
60.4.2 Synchronous ReCEIVING........ccuviurieiiiiiieic e 60-7
60.4.3 Asynchronous ReCeiVINgcccccuiiiiiiiiiiiiiiiicc s 60-7

61
API

60.4.4 Message FIlteringcooviriiiiiiiic e 60-7

60.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application............ 60-8
60.5.1 Overview Of DeveloOPmentcccccuiuiiciiiiiiiiiiececeeceeeeee e 60-9
60.5.2 Configuring the Email DIiver ... 60-9
60.5.3 Using JDeveloper 11g to Build the Applicationccooooioeiiiiiiiicce 60-9
60.5.3.1 Opening the Project ... s 60-9
60.5.4 Deploying the Application..........ccccciiieiiiiiiiiiiiii 60-11
60.5.5 Testing the APPliCation..........cooiiuiieiiiiic e 60-11
60.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application 60-13
60.6.1 Overview of Developmentccccviiiniiiiniiiiiii s 60-14
60.6.2 Configuring the Email DIiver ... 60-14
60.6.3 Using JDeveloper 11g to Build the Applicationcooveeiiiiiiiiicnciicccnenee 60-15
60.6.3.1 Opening the Project ... 60-15
60.6.4 Deploying the Applicationccceuoiiiieiiiiiciec 60-18
60.6.5 Testing the APPLiCation.......c.ccccucuiiiiriiiiiiiiicccc s 60-18
60.7 Creating a New Application Server Connection...........cccocoveviiiiiniiiiinicceeeennes 60-20
Sending and Receiving Messages using the User Messaging Service Java
61.1 Introduction to the UMS Java APL.......cccoiiiiirieeeeeeeeee ettt 61-2
61.2 Creating a UMS Client Instance and Specifying Runtime Parameters............ccccccccee... 61-2
61.2.1 API Reference for Class MessagingClientFactory...........cooceveicieiiiiiciiiicce 61-3
61.3 Sending @ MESSAZE.......cceveurueiiieiicieieicci ettt 61-4
61.3.1 Creating a MeSSae.........covuiuiiiiiiiiiiiinici s 61-4
61.3.1.1 Creating a Plaintext MeSSage........ccccouirueieiicieieiiceie i 61-4
61.3.1.2 Creating a Multipart/ Alternative Message (with Text/Plain and Text/HTML

o) TR TRUPTRR 61-4
61.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for

Recipients with Different Delivery Types........c.coocoeuoviirrieiiiiciiiiiccccc 61-5
61.3.2 API Reference for Class MessagingFactorycccccccecueeeieiiicienicceecceceeeeenes 61-5
61.3.3 API Reference for Interface Messagecooceueviiiiiiiiiiciciiccc e 61-6
61.3.4 API Reference for Enum DeliveryType........ccccoocciiiiiiiiiiiiiiiiiciiicccccccceeees 61-6
61.3.5 Addressing @ MESSAGEc.ccueueuiuiirueiriiiiieieirieeeieieeeeeeeeeee et 61-6
61.3.5.1 Types of AAAIesses ... 61-6
61.3.5.2 Creating Address ODJects..........ccccccuiiiiiiiiiiiniiiiiiies 61-6
61.3.5.3 Creating a Recipient with a Failover Address..........c.cccccoceciiiicciccncccnenes 61-6
61.3.5.4 API Reference for Class MessagingFactoryc.cccoceueunininiciniceiceiccce 61-7
61.3.5.5 API Reference for Interface Addressccccoevuviviviviviviiviinnniininncnnccce 61-7
61.3.6 User Preference Based MeSSagingccccccecuiiicmiiiiimeceicieecieeeieieeeeeeeeeeneeeneens 61-7
61.4 Retrieving Message Status.........coccueioiiiieieiiiiicicc s 61-7
61.4.1 Synchronous Retrieval of Message Status............occcoeeieiiieiniiiceeiccceccee 61-7
61.4.2 Asynchronous Receiving of Message Statusc.cccoecuceeucieiceeccceeeceeeenenes 61-8
61.4.2.1 Creating a Listener Programmatically........c.cccccooiiiiiiiiiiiiic, 61-8
61.4.2.2 Default Status Listener........cccccociiiiiiiiiiiiiiiiiiiiccccccns 61-8
61.4.2.3 Per Message Status Listener ... 61-8
61.5 Receiving a MeSSage........cccouorurieiiiiiieiiicice s 61-9
61.5.1 Registering an Access POINt ... 61-9

xli

61.5.2 Synchronous ReCeiVINg........c.coviiviiiiiiiiiiiiiiic s 61-9

61.5.3 Asynchronous RECEIVINGc.cocuiiiiiiieiice s 61-10
61.5.3.1 Creating a Listener Programmatically..........ccccoocoiiriiiiiiinciiiiicciccceenes 61-10
61.5.3.2 Default Message LiStenercooccueiiiiiiciiiiiiciecc i 61-10
61.5.3.3 Per Access Point Message Listener ... 61-11
61.5.4 Message FIlteringcccvuvvviiiiiiirirr e 61-11
61.6 Configuring for a Cluster Environmentc.ocooiieiiiiiiiiiccce 61-11
61.7 Configuring SECUIILYcovoiuriiiiiicicie et 61-12
61.8 Threading Model.........ccoiiiiiiiiiiiiicc e 61-12
61.8.1 Listener Threadingccocceiiiiiieioiiii e 61-13
61.9 Using the UMS Client API to Build a Client Application..........cccccevviiiiiiiiiininns 61-13
61.9.1 Overview Of DeVelOPIMENtccvovviviriririeiiiiccc e 61-14
61.9.2 Configuring the Email DIiver ... 61-14
61.9.3 Using JDeveloper 11g to Build the Application ..o, 61-14
61.9.3.1 Opening the Project ... 61-14
61.9.4 Deploying the Application..........ccccceiiieieiiiiiiiiniiii 61-16
61.9.5 Testing the APPliCation.........couoiiurieiiiiiec e 61-17
61.10 Using the UMS Client API to Build a Client Echo Applicationcccccccoeeuviccinnnnne 61-19
61.10.1 Overview of Developmentcccvuiiiiiiiniiii s 61-20
61.10.2 Configuring the Email DIiver ... 61-20
61.10.3 Using JDeveloper 11g to Build the Applicationc.cccooveevinnieniiininccccncnee 61-20
61.10.3.1 Opening the Project ... 61-20
61.10.4 Deploying the Applicationcocouiiiiiiiiiicie 61-22
61.10.5 Testing the APPLiCation.......c.ccucucuiiciriiiiiiiicccccrre s 61-23
61.11 Creating a New Application Server Connection...........cccoevviiiviiiniiiiiiiceeeeenes 61-24

62 Sending and Receiving Messages using the User Messaging Service Web

Service API

62.1 Introduction to the UMS Web Service APIccccoviviniinniinniiiccccnns 62-1
62.2 Creating a UMS Client Instance and Specifying Runtime Parameters.............ccccccccuc... 62-2
62.3 Sending @ MESSAZE.......ccceveiurieiiiiicieie ittt et 62-3
62.3.1 Creating @ MeSSage..........coveiiriiiiiiiiiiiiic s 62-4
62.3.1.1 Creating a Plaintext MeSSage........cccceuiuiimimiriuiiiiimeieeeeieieieiereereeeeeeeseeeeaeseneeeees 62-4
62.3.1.2 Creating a Multipart/Mixed Message (with Text and Binary Parts................. 62-4
62.3.1.3 Creating a Multipart/ Alternative Message (with Text/Plain and Text/HTML

D) TS RRPRPRU 62-4
62.3.1.4 Creating Delivery Channel-Specific Payloads in a Single Message for

Recipients with Different Delivery Types........cccccceeuviviriiinininvniniiininenccns 62-5
62.3.2 API Reference for Interface MESSAZEcccueueueueuememeiiieieiiieieeeieeciceeeeeeeeeeeeeeeee s 62-6
62.3.3 API Reference for Enum DeliveryType ..o 62-6
62.3.4 Addressing @ MESSAGEcceueueuririiiiiiiiiiiiiiiiieieie s 62-6
62.3.4.1 Types of AdAIESSESc.oueuiiiiiiiciiccccc s 62-6
62.3.4.2 Creating Address ODJects ..o, 62-6
62.3.4.3 Creating a Recipient with a Failover Address...........cccocoeiiiiiiiiinncinnn, 62-7
62.3.4.4 Recipient TYPeS.....ccocuiiiiiiiiiiiiiici s 62-7
62.3.4.5 API Reference for Class MessagingFactorycccoceueunicinicinicnicccece 62-7
62.3.4.6 API Reference for Interface Addressc.ccccccevviiiiiiiiiiiiiiiiiiiiiccc, 62-7

xlii

63

62.3.5 User Preference Based MeSSagingcoooeeueiiiciciniiiiciecccc e 62-7

62.4 Retrieving Message Status ..ottt 62-8
62.4.1 Synchronous Retrieval of Message Status..........ccccceeueueiciieniciniicicneeeeeeeeeeenes 62-8
62.4.2 Asynchronous Receiving of Message Statuscccocueiicieiiiiciciiiccccce 62-8
62.4.2.1 Creating a Listener Programmatically........ccccocooiiiiiiiiiiic, 62-8
62.4.2.2 Publish the Callback SeIvice ..o, 62-9
62.4.2.3 Stop a Dynamically Published Endpoint............ccoooeiiiiiiiiiiice, 62-9
62.4.2.4 Registration........ccuiiiiiiiiiiiii 62-9
62.5 Receiving a MEeSSAZE......c.ccceiiiiiiiiiiiiiicicci s 62-9
62.5.1 Registering an Access POINtcccoeiieieiiiiiiiiiiiiii s 62-10
62.5.2 Synchronous ReCEIVING........ccuoviiveiiiiiiicie e 62-10
62.5.3 Asynchronous RECEIVINGc.ccvuvirieiiiiiiiiiirrcerr s 62-11
62.5.3.1 Creating a Listener Programmatically.........ccccoooiiiiiiiiiiiiiiiice, 62-11
62.5.3.2 Default Message LiStenercocueuoiiiuiiiiiicieiecc e 62-11
62.5.3.3 Per Access Point Message LiStener ..o 62-12
62.5.4 Message FIlteringcoviiuiiiiiiiic s 62-12
62.6 Configuring for a Cluster Environmentc.cooooeiiiiiiicce 62-12
62.7 ConfiUring SECUTILYcccvvriririiiiieiir et 62-13
62.7.1 Client and Server SECUTItYcoceieiiiiieieiicee e 62-13
62.7.2 Listener/Callback SeCUIItY ..o 62-13
62.8 Threading Model.........ccoiiiiiiiiiiiiiiicccece e 62-14
62.9 Sample Chat Application with Web Services APIs.........c.ccoooriiiiiiiiiiiiciiicnes 62-14
62.9.1 OVEIVIEW ..cviiiiiiii s 62-14
62.9.1.1 Provided Files ... 62-14
62.9.2 Running the Pre-Built Sample ... 62-15
62.9.3 Testing the Sample..........cooiiiiiii s 62-17
62.10 Creating a New Application Server CONNection...........ccccovovveiuiuiiicccecceeeeeenenenns 62-20
Parlay X Web Services Multimedia Messaging API
63.1 Introduction to Parlay X Messaging Operations...........c.cccccevervrvrrernnnnrnncnsreeccnes 63-1
63.2 Send Message INterface............cooeeueiiiiiiiiiiiiiicc s 63-2
63.2.1 sendMessage OPeration..........ccccceuviriiirieiriiiiiiiiiiiiiice s 63-2
63.2.2 getMessageDeliveryStatus Operation ... 63-3
63.3 Receive Message INterfaceccoouoiiiiiiiiiiici 63-4
63.3.1 getReceivedMessages Operation..........cccooueveceieiiicieinieicccece s 63-4
63.3.2 getMessage OPeration..........c.coviiiiiiiii 63-5
63.3.3 getMessageURIs Operation.............crieiiicieiciiieece s 63-5
63.4 Oracle Extension to Parlay X MeSSaging...........cccccouviiiiiiiiiiiiiiiiccciceciecenennas 63-6
63.4.1 ReceiveMessageManager INterfacecccceuvueueiiiiieriieiininrecceeeeeeeeeeceeeeees 63-6
63.4.1.1 startReceiveMessage Operationccccveeieiiicicieiiicicicc e, 63-7
63.4.1.2 stopReceiveMessage Operation............cccceeivviviriiininiiiiiniiiccceeccecees 63-7
63.5 Parlay X Messaging Client API and Client Proxy Packages..........cccccoeueiiiiiniccicncnns 63-8
63.6 Sample Chat Application with Parlay X APISs ... 63-8
63.6.1 OVEIVIEW ..ottt 63-9
63.6.1.1 Provided Files ... 63-9
63.6.2 Running the Pre-Built Samplecccoooiiiii e 63-9
63.6.3 Testing the Sample.........ccccovviiiiiiiiii s 63-12

xliii

64

63.6.4 Creating a New Application Server Connection...........cceeeveeveveneeeeiieieienennens 63-14

User Messaging Preferences

64.1 Introduction to User Messaging Preferences.............ccocoooviuiieiniiiiciiiniciccccccce 64-1
64.1.1 TermMINOLOZY ..ecvcvevieieciei ittt 64-1
64.1.2 Configuration of Notification Delivery Preferences..........ccccoceevvvvirrnvneicrnenenes 64-2
64.1.3 Delivery Preference RUlesccoouiiiiiiiiii 64-2
64.1.3.1 Data TYPES ..o 64-2
64.1.3.2 SYStEM TEIMS ... 64-3
64.1.3.3 BuSiness TermS........o.ovoviiiiicicecc 64-3
64.1.4 Rule ACHONS. ...t 64-4
64.2 How to Manage Messaging Channels ..o 64-5
64.2.1 Creating a Channel ... e 64-5
64.2.2 Editing @ Channel ... s 64-6
64.2.3 Deleting a Chanmnelccccocciiiiiiiceeeeeeeeee e 64-7
64.2.4 Setting a Default Channel............c.oooi e 64-7
64.3 Creating Contact Rules using Filters..........cccooooiiiiiiiiiiiiic 64-7
64.3.1 Creating FIlEeTScccoiiiiiiiccccee e 64-9
64.3.2 Editing @ FAlter ... e 64-10
64.3.3 Deleting @ FAlteTccoiieiiiiicc e 64-10
64.4 Configuring SEtHNGS........ccvvvriririiiiirrerr e 64-10

Part Xl Appendices

A

xliv

BPEL Process Activities and Services

A Introduction to Activities and COMPONENLSc.cccueurururirieiiiririiirerrrer e A-1
A2 Introduction to BPEL 1.1 and 2.0 AcCtiVitiescccceviiiiinniiiiniiiiicccccnes A-2
A2A1 Tabs Common to Many AcCtiVities. ... A-4
A21.1 ANNOtations Tab ... A-4
A21.2 ASSETtioNS Tab ... A-4
A2.1.3 Correlations Tab ...ttt A-5
A21.4 Documentation Tab ..o A-5
A21.5 Headers Tab........cccccoviiiiiiiiiiici s A-5
A2.1.6 Properties Tab ... A-5
A21.7 Skip Condition Tab........ccccciiviiiiiiii A-6
A218 Source and Targets Tabs...........ccoooeioiiiii e, A-6
A21.9 TIMEOUL TAD .ttt A-6
A22 ASSIGN ACHVILY oo A-6
A23 ASSEIt ACHVItY .oovcviiiiciiiciii A-9
A2.4 Bind Entity ACHVIEY ...c.coiiiiiiiiiiiiiiciccc s A-10
A25 Compensate ACVItY ..o A-11
A2.6 CompensateScope ACHVILY ... A-12
A27 Create Entity ACtiVity ... A-13
A28 Dehydrate ACHVILY ...c.c.ceuiiiiiieicicccecceee e A-13
A29 Email ACVIEY ..ovovviieiiei s A-14
A2.10 EMPty ACHVIEY oo A-15

A2.11
A2.12
A2.13
A2.14
A2.15
A2.16
A2.17
A2.18
A2.19
A.2.20
A2.21
A2.22
A.2.23
A2.24
A2.25
A.2.26
A2.27
A.2.28
A.2.29
A.2.30
A.2.31
A.2.32
A.2.33
A.2.34
A.2.35
A.2.36
A.2.37
A.2.38
A.2.39
A.2.40
A.2.41
A3
A.3.1
A3.2
A3.3
A3.4
A3.5
A.3.6
A3.7
A.3.8
A3.9
A.3.10
A.3.11
A3.12
A.3.13
A3.14
A.3.15

EXit ACHVIEY couvviiiiiiiiiicii s A-16
FIOW ACHVILY co.vcviiiiiiiiiiccc s A-16
FIOWIN ACHVIEY ...ttt A-17
forEach ACHVItY ..o A-18
If ACHVILY oo A-19
IM ACHVIEY (ot s A-20
INVOKE ACHVILY covviiieiii e A-20
Java Embedding ACtiVIty.......cooooiiiiiiiriii A-21
Partner LINK ACVITYccociiiiiiiecceee e A-22
Phase ACiVIEYooviiiiiic s A-23
Pick ACHIVIEY wovviviiiiiiiciiccc s A-24
Receive ACHVILY ..ccociuiiiiiiiii s A-26
Receive Signal ACtiVItYoooiuiiiieicie A-28
Remove Entity ACtVItY....coooooiiiiiiiiiii A-28
RepeatUntil ACtiVity ..o A-29
Replay ACVItYoooiiieieiicie e A-30
RePLy ACHVITY ..ourviieiiiieieec e A-30
REthIOW ACHVILYcoiviiiiiiiiiiiiiiiiicccccece s A-31
5COPE ACHVITY coeviiit e A-32
Sequence ACHVILY ..o A-33
SIGNAL ACHVITY ...t A-34
SMS ACHVIEY c.vovviiiiiicii s A-35
SWITCH ACHVIEY ..ot A-35
Terminate ACtiVItY ..o A-36
ThIoW ACHVILY covvieci e A-37
Transform ACHVItYoooi e A-37
User Notification ACHVITY ..o A-38
Validate ACHVItY ...coooiiieei e A-39
VO0ICE ACHVILY ovvieiiieici s A-40
Wit ACHVILY «oooiiiiiiic s A-40
While ACHVILY oo s A-41
Introduction t0 BPEL SEIVICES ...c.cccuririiueuiririiiiiiiiriicciieicette et A-42
ADF-BC SEIVICE.....ocuitiietititeieietetetcte et A-42
AQ AdAPLET ..o A-42
Oracle B2B.....oo ittt A-42
Oracle BAM Adapter.......ccciiiiiiiiceeeeeeeeee e A-42
Database Adapter ... A-43
Direct BINding SEIVICe.......cccoiuimimiiiiiiiiiiiiccecice s A-43
EJB SEIVICE «.c.eeeeieeeeieeeeteeee ettt st sttt e e e e e et e ese e sesneensesnsensesnsensenseans A-43
File AdQpPter......coouiiiiiiiiiiiiiiccc s A-43
FTP AdAPLer ..o s A-43
HTTP BINAING.....cvveuiiiiiieicieiieieieeeeeeeieeeie ettt naes A-43
JMS AdAPLer ...ocviiiiiii s A-44
MOQ AAPLET ..ot s A-44
Oracle APPLICAtIONSc.cucuiuiuiiiiiiciiieicicceieee et eees A-44
Socket AdapLer ... A-44
Third Party Adapter ... A-44

xlv

A.3.16 TWED SEIVICE ..ottt ee e et e et e e s eat e e seaaeesenaeesenteeessaeesenseeseneeeennes A-44

A4 Publishing and Browsing the Oracle Service Registryccoooeviiiiiiiiiiiiiicc A-44
A4 How to Publish a BuSiness SeIvice ... A-45
A4.2 How to Create a Connection to the Registrycccooeveiiiiiiiiinii A-45
A43 How to Configure a SOA Project to Invoke a Service from the Registry A-46
A4.31 Dynamically Resolving the SOAP Endpoint Locationcccccceeuvuevviverinneene. A-47
A4.32 Dynamically Resolving the WSDL Endpoint Location...........cccccceeveviviiiiiiinnnnnn A-48
A.4.3.3 Resolving ENAPOINtSccccovviiiiiiiiiiiiiiicics A-49
A4d4 How To Configure the Inquiry URL, UDDI Service Key, and Endpoint Address

£Or RUNEIME ...t A-51
A4.41 Changing Endpoint Locations in the Registry Control............c.cccccevviniinnnnnnn A-52
A442 Publishing WSDLs from Multiple SOA Partitionscccccccoeveeicvvvnennenene. A-54
A.4.5 How to Publish WSDLs to UDDI for Multiple Partitions...........ccccoeveiiiiiiiiiiiennnnn. A-54
A5 Providing Design-time Governance with the Oracle Enterprise Repository.................. A-55
A6 Validating When Loading a Process Diagram............cccccococeieiiiiiiineccceeceeeeeens A-55

B XPath Extension Functions

xlvi

B.1 SOA XPath EXtension FUNCHONS.c.ccveiririiriiiiieieieteteeeeaeeste st stesae s seeseesaesessessesas B-1
B.1.1 Database FUNCHONS..........cceiieiirieieceeteceee ettt e et seeeste e e saessaessessaesseessassessnesseenes B-1
B.1.1.1 LooKUp-table.........cccoiiiiiiiiiiiiiiii B-1
B.1.1.2 QUETY-Aatabase........c.ceueuiiiiiiiiiiice s B-2
B.1.1.3 SEQUENCE-NEXt-Val ...ovoviiiiiiiiiiiiiiiiiic s B-2
B.1.2 Date FUNCHONS.uvieiiiiieciietece ettt et ettt e e teeseaessbe e sbessbeesbeeesseesseesssaenseenseenn B-3
B.1.2.1 add-dayTimeDuration-to-dateTimeccccoovrniinirnnnirrrccreeeeeeeeeenes B-3
B.1.2.2 CUITENE-AALE ..ottt ettt et et e et et e st e sreess e seesaesaeensesseessasssessansnens B-3
B.1.2.3 CUITENE-AAtETIINE ..ovviiicieieceeteeee ettt e e ste b be b e s beesaesnens B-4
B.1.2.4 CUTTEINEEIIIIC ..ottt ettt ettt et et e te s e e et e st et esseenseeseeseesseensesnsensesseensanseens B-4
B.1.25 day-from-dateTime ... B-4
B.1.2.6 FOrmMat-dateTimmecccveiveeieieceeeeee ettt a e sae b re e beersesaessnens B-5
B.1.2.7 hours-from-dateTime.........ccecieiriririii ettt sesreerenas B-5
B.1.2.8 IMPLCIt-HMEZONE......eviiiiiii s B-5
B.1.2.9 MiNUtes-from-dateTime.c.ooveiiiiiiiicececeeeeeeee et B-6
B.1.2.10 MONTh-frOM-AAtETIIMIE ...c.vevieeieeieieieeee ettt e sse e B-6
B.1.2.11 $ecoNdS-fromM-dateTimecociiieiieiiieieeeteeeeee et B-6
B.1.2.12 subtract-dayTimeDuration-from-dateTime............cccccovuvvvnnnnnnnnnininn. B-6
B.1.2.13 timezone-from-dateTime.cccovevieiiiiiieeeeeceeeee et ee e B-7
B.1.2.14 year-from-dateTimeccooooviiiiiiiiii s B-7
B.1.3 Mathematical FUNCHONS.covioviiiiiiieieeeeteee ettt ettt e sve e ve e ere e B-7
B.1.3.1 ADS ittt ettt ettt ettt et e b e es e b erberbesbesbestest et seseeseeseesensensens B-8
B.14 SING FUNCHONS ...oveeiiet s B-8
B.1.4.1 COMMPATE.....veeiiitercaiiet ettt ettt s s a et s s b b a s s b b eb et s e s a s en s aenenis B-8
B.1.4.2 COMPATE-IZNOTE-CASEcocvvriniiiiiitiiieii e B-9
B.1.4.3 create-delimited-String..........ccoeeeiiiiiiiii B-9
B.1.4.4 ENAS-WILIL ..ot ettt et b et e B-9
B.1.4.5 £OTrMAt-SEIINE ...ttt B-10
B.1.4.6 get-content-as-String ... B-10
B.1.4.7 get-content-from-file-functionccccceeviiiiiiiiii B-10

B.1.4.8 get-localized-Stringcouiueieiiii B-11
B.1.4.9 INAeX-Within-StriNg.........cooeiii B-11
B.1.4.10 last-iNdexX-Within-Stringccccceeeiiiriiiicrrrrrre s B-12
B.1.4.11 LEft-ETIIN oo B-12
B.1.4.12 LOWET-CASE ...t s B-13
B.1.4.13 MALCRES. ... B-13
B.1.4.14 FIGRE-ATIML o B-13
B.1.4.15 UPPOI=CASE....vevrrretetetete ettt ettt ettt bbbt bbb b bbb bbb b bbb bbb B-14
B.2 BPEL XPath Extension FUNCHONScccoviiiiiiiiiiiiiicccc B-14
B.2.1 AAAQUOLES.....veeieieeieteeteee ettt ettt e s e et e s te et et e e b e s seessesse et e sseessesseessesseessasaensanseans B-14
B.2.2 APPENATOLIS ..o s B-14
B.2.3 COPYLIST 1ottt B-15
B.2.4 COUNEINOAES ..ot s B-16
B.2.5 QOC it s B-16
B.2.6 doStreamingTranslatec.cccoccciiiiiiiiccece s B-16
B.2.7 doTranslateFromNative.........cooiiiiiiiiiii s B-17
B.2.8 doTranslateTONQALIVE........ccccccciiiiiiiiiiiiii s B-17
B.2.9 AOXSLTTaNS OIM......cucviviiiiiiicc s B-18
B.2.10 doXSLTransformEOrDOC. ... B-19
B.2.11 fOrmatDAtecouiviiiiiii s B-19
B.2.12 geNeTateGUID ..o B-20
B.2.13 GetAPPlICAtiONNAIEooviiiiiic s B-20
B.2.14 getAttachmentContent ..o B-20
B.2.15 getComponentNAMEccuiiiiii s B-21
B.2.16 getComponentInstancelD...........cooouoviiiiii B-21
B.2.17 getCompositelNAMe.......c.coviiii B-21
B.2.18 getCompositeINstancelD ... B-21
B.2.19 getComPOSItEURLcoiiiii e B-22
B.2.20 getContentASSIIING ...c.cviviiiiiiiii B-22
B.2.21 getConversationldc.ccccciiiiiiiii s B-22
B.2.22 GEECTOALOT ...oeeiee s B-22
B.2.23 getCurrentDate..... ..o B-23
B.2.24 getCurrentDateTime ..o B-23
B.2.25 etCUITeNtTime. ... e B-23
B.2.26 etDOMAINI ... B-23
B.2.27 GEtECID .. s B-24
B.2.28 GetEIOMEeNt ..o s B-24
B.2.29 GEtFAUILASSEIING ..o B-24
B.2.30 GELFAUIENAINE ..o B-24
B.2.31 getGroupldsFromGroupALas ... B-25
B.2.32 getINStANCeldc.cooviiiiiiiic s B-25
B.2.33 GEENOAEVALUE. ... B-25
B.2.34 GEENOAES ... e B-26
B.2.35 getOwnerDocument ..o B-26
B.2.36 getParentComponentInstancelD ... B-26
B.2.37 GEtPIEfOIONCE ... s B-26
B.2.38 GEtPTOCESSIA ... B-27

xlvii

xlviii

B.2.39 getProcessOWNErLd ... B-27
B.2.40 etPTOCESSURL ..ottt B-27
B.2.41 GEtPTOCESSVEISIONoviviiiiiiciicic s B-27
B.2.42 getUsSerAliasld.........coouiviii e B-28
B.2.43 getUserldsFromGroupALas. ..ot B-28
B.2.44 setCompositeInstanceTitlecccocoeiiiiiiiiiiiicrrr s B-28
B.2.45 INStANCEOS ... B-29
B.2.46 IEOZOT .ottt B-29
B.2.47 ParseEscaped XMLccoiiiiiiiiiiecccee s B-29
B.2.48 PATSEXML ... s B-29
B.2.49 PTOCESSXQUETY ..eviiiieitititittttt ittt B-30
B.2.50 PTOCESSXSLT ...t B-30
B.2.51 processXSLTAttachment ... B-34
B.2.52 PTOcesSXSQL. ..ot B-34
B.2.53 readBinaryFromFile..........ccooooiiiiiiiiiicc s B-35
B.2.54 TEAAFLE ...oiiiiii s B-35
B.2.55 WriteBInaryTOFile ..o B-36
B.2.56 BPEL Extension Functions in BPEL 1.1 and BPEL 2.0.........cccccovvniininiiiiecnnen, B-36
B.2.56.1 GEtLANKSTAtUSovieii B-36
B.2.56.2 getVariableData ..o, B-37
B.2.56.3 getVariableProperty (FOr BPEL 1.1).....cccccoiiiiiiiiiiiiccecceeceeeceeieeenenens B-38
B.2.56.4 getVariableProperty (For BPEL 2.0).....cccouiiiiiiiiiie, B-38
B.2.57 Utility FUNCHONS ... e B-38
B.2.57.1 batchProCeSSACHVE......coveiviiiiii s B-38
B.2.57.2 batchProcessCompletedccooovviviiiiiininiiii B-39
B.2.57.3 FOIMAL ... B-39
B.2.57.4 GENEMPLYELEM. ..o B-39
B.2.57.5 getChildElement ..o B-40
B.2.57.6 GEEMESSAZE ..ttt B-40
B.2.57.7 max-value-among-NOAESet..........ccccucuiiiiiiiiiiiiie s B-40
B.2.57.8 min-value-among-Nodeset ..o B-41
B.2.57.9 SQUATE-TOOL . c...cuiiriiiniiitcieict ettt B-41
B.2.57.10 translateFromINativeccccoevviiiiii B-41
B.2.57.11 translateTONAIVEc.ouiviiiiiiii s B-42
B.2.57.12 translateFromNative Attachmentcccccovniiiininiiiinnecceccreeeees B-42
B.2.57.13 translateToNativeAttachmentccooooeiiii, B-42
B.3 Oracle Mediator XPath Extension FUNCHONScccccoeviiiiiiiiiiiiiiii B-43
B.3.1 doStreamingTranslate ... B-43
B.3.2 doTranslateFromINaAtiVe...........ccoceviviiiiiiii s B-43
B.3.3 doTranslateTONGALIVE........c.cccovviiiiiiiiiiic s B-44
B.3.4 getAttachmentContent..........cccoiiiiiiiiiiiii s B-45
B.3.5 getComponentInstancelD............ccccoviviiiiiiiiiiii B-45
B.3.6 getCompPOoNeNntINAMEcoucveiiiei s B-45
B.3.7 getCompositeInstancelD ... B-46
B.3.8 getCompPOSIteINAIME.........coviviiiiiii s B-46
B.3.9 GEtHEAOT ... e B-46
B.3.10 GEEECTD ... B-47

B.3.11 getParentComponentInstancelD ..o B-47
B.3.12 setCompositelnstanceTitle ... B-47
B.3.13 translateFromNative Attachment.........c.cccccccciiiiinnirrceees B-48
B.3.14 translateToNative Attachment ..., B-48
B.4 Advanced FUNCHONS..........c.cuiiiiiiiiiirc e B-49
B.4.1 create-nodeset-from-delimited-String..........cccoceveiirvniniinnrcrecceee B-49
B.4.2 geNerate-gUid.......ccoviiiiiiiiiiiiii s B-49
B.4.3 lookupPopulatedColumNScccocviiiiiiiiiiiiiiiis B-49
B.4.4 LOOKUPVALIUE ...t B-50
B.4.5 1oOKUPVAIUETM......cooiiiiiiiiiiiccic s B-50
B.4.6 LOOKUPXRES ...ttt B-51
B.4.7 LOOKUPXREFIM ...ttt B-51
B.4.8 LOOKUP-XIML...oviiiiiiiiiciciicc s B-52
B.4.9 MATKFOTrDeLete.cuiiiiiiiiic s B-52
B.4.10 POPULAtEXREFROW ... B-53
B.4.11 populateXREfROWIMcoiimiiiiiiiiiiiiii s B-53
B.5 Workflow Service FUNCHONScccccvviiiiiiiiiiiiiciiiiics B-54
B.5.1 ClearTaskASSIZIEES.c.c.cueuiiiiiiciiiciccce et B-54
B.5.2 createWordMLDOCUMENt ... B-54
B.5.3 getNOtificatioNProPertyccccevviiiiiiiiiiiii B-54
B.5.4 getNUMberOfTask APProvalsccccocuciiiiiiiiiiicceecceeeeee s B-55
B.5.5 getPreviousTasSKAPPIOVETccoiiiiiiiiieiiiicce s B-55
B.5.6 getTaskAttachmentByIndeX.........cccccoiiiiiiiiiiii B-55
B.5.7 getTaskAttachmentByNamec.ccccccuiiiiiiiiiiccceece s B-56
B.5.8 getTaskAttachmentContents...........cooiiiiiiiiiiii B-56
B.5.9 getTaskAttachmentsCount............cccociiiiiiiiiii B-56
B.5.10 getTaskResourceBundleString...........ccccocciiiciiiiiiiiicececceeeeeeeeeeeeeeeees B-57
B.5.11 WEDYNamMiCGrOUPASSIZI....cuouimiviuiiiiiiiiitititiicicr s B-57
B.5.12 WEDYNamMICUSEIASSIZIN ..ot B-58
B.5.13 Identity Service FUNCHONSccooiiiiiiiiiiiicii s B-59
B.5.13.1 getDefaultRealmINamecccovviiiiiiiiiiiiic s B-59
B.5.13.2 etGIOUPPIOPEITY ...ovviiiiiic e B-59
B.5.13.3 GEtMANAZET ... B-59
B.5.13.4 GEREPOTTEES ... B-60
B.5.13.5 getSupportedRealmNamMescccccocviiiiininiiiiiis B-60
B.5.13.6 EtUSEIPIOPEItY ...c.oiiiiiiiiiii B-60
B.5.13.7 GEtUSETROIES.......oviiiiiiii s B-61
B.5.13.8 etUSEIrSINGIOUP «..cvvviiiiiiiiciiicc e B-62
B.5.13.9 ISUSEIINROIE ...t B-62
B.5.13.10 LOOKUPGIOUP ..ottt s B-62
B.5.13.11 LOOKUPUSET ...t B-63
B.6 Building XPath Expressions in Oracle JDeveloper ..o B-63
B.6.1 How to Use the Expression Builder ... B-63
B.6.2 Introduction to the XPath Building Assistant............cccccevvvvnninninninniniinne B-65
B.6.3 How to Use the XPath Building Assistantcccccccccceeeiininiiincciecreeeene B-65
B.6.4 Using the XPath Building Assistant in the XSLT Mappercccccovvvvniiinininnnnn. B-66
B.6.5 Function Parameter TOOL Tips........c.cccoiiiiiiiiiiiiiiiciccecicccceeeeees B-68

xlix

B.6.6 Syntactic and Semantic Validation............ccooeueviiiiiiii e
B.6.7 Creating Expressions with Free Form Text and XPath Expressions.............ccccc......
B.7 Creating User-Defined XPath Extension Functions...........ccccccoeeeiciinniicnnnncnenes
B.7.1 How to Implement User-Defined XPath Extension Functions............cccccceuvvevenennn.
B.7.1.1 How to Implement Functions for the XSLT Mapperc.cccooeeueiiiriieinicnnnen.
B.7.1.2 How to Implement Functions for All Other Componentscccccccocueucueueneneene
B.7.2 How to Configure User-Defined XPath Extension Functions...........ccccccuevineinnne.
B.7.3 How to Deploy User-Defined Functions to Runtime............cccoooooii

C Deployment Descriptor Properties

CA1 Introduction to Deployment Descriptor Properties..........cccoouiiieiiiiciiiiiiieecicee,
C.11 How to Define Deployment Descriptor Propertiesc.cccoceeuceeeenccnceeeieeeenes
c.1.2 How to Get the Value of a Preference within a BPEL Process...........cccocoovivininiinnne
C.2 Deprecated 10.1.3 PrOPertiesc.cocoovieiirriiiieiiiieiieeicie e

D Understanding Sensor Public Views and the Sensor Actions XSD

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File..........cccccevveueninn.
D.2 SENSOT PUDIIC VIEWS.....iiiiiiieieieietieitetettet ettt ettt tas e ssessesbesbessessessessessesansessensenses
D.2.1 BPM SCREIMAoitieeieiiceieeieie ettt te ettt te et et e s st e steestesaeesbesseessassaessanseessesseansenseensenses
D.211 BPEL_PROCESS_INSTANCES.......coooiotiiteeeeeeeteeteete ettt vs et eveeaeas
D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUEScocctiteieteieeteeteteteteee e
D.21.3 BPEL_FAULT_SENSOR_VALUES.....cccooteiteteieeeece sttt
D.21.4 BPEL_VARIABLE_SENSOR_VALUES.......ccootiiitietieteteeteeeteeeeeeee e
D.3 SeNSOT ACHONS XSD FAlE.....ciiiiiieiiiiiiieieieetete ettt ettt e bbb ssesaesanas

E Oracle BAM Web Services Operations

E.1 DataObjectOperations10131ccciiiiiiiiiiiiiiiiiii e
E.11 BatCh oo
E.1.1.1 Request MeSSage..........ccoueieieiiiiiiiii
E.1.2 DIELEtE ...t
E.1.21 Request MeSSage.........ccceueieieiiiiiiiiii s
E.1.3 TSEIT .
E.1.3.1 Request MeSSage..........coviviiiiiiiiiiiiiii s
E14 UPAALE .o s
E.1.4.1 Request MeSSage..........covuiiiiiiiiiiiiiiicccc s
E.1.5 UPSETt oo
E.1.5.1 Request MeSSage.........ccoeuiieieiiiiiiiii s
E.2 DataObjectOperationsByName..........cccccccuiiiiiiiiiiiiiiiiiiiiicr s
E.2.1 DIELOtE ...t
E.2.1.1 Request MeSSage.........cccvuiieieiiiiiiiiicii s
E.2.2 G e
E.2.2.1 Request MeSSage..........cociiiiiiiiiiiiiiic s
E.2.3 INS@It et
E.2.3.1 Request MeSSage..........covviiiiiiiiiiiiiiiccc s
E2.4 UPAALE -t
E.2.41 Request MeSSage.........ccovviieiiiiiiiiiiiii s

E.2.5
E.2.5.1
E.3
E.3.1
E.3.1.1
E.3.2
E.3.2.1
E.3.3
E.3.3.1
E.3.4
E.3.4.1
E.3.5
E.3.5.1
E.4
E.4.1
E.4.11
E4.1.2
E4.2
E.4.21
E4.22
E.4.3
E.4.3.1
E.4.32
E4.4
E.4.41
E.4.4.2
E.5
E.5.1
E.5.1.1
E5.1.2

UPSEIT ettt E-5
Request MeSSage.........cccueiieiiiiiiiiici s E-6
DataObjectOperationsByID ... E-6
BatCh oo E-6
Request MeSSage.........ccccueieiiiieiiiii s E-6

DIELOtE ...t s E-7
Request MeSSage.........ccceviiieiiiiiiiiiiiiiii s E-7

INSEIt et E-7
Request MeSSage..........coovviiiiiiiiiiiiiiii s E-7

UPAALE .o s E-8
Request MeSSage.........ccceueieieiiiiiciiiiic s E-8

UPSETt it E-8
Request MeSSage.........ccceuiiieiiiiiiiiicii s E-8
DataObjectDefinition Operations.............coceeieiiiiieiiiiicicece e E-9
CLOALE ...ttt s E-9
Request MeSSage.........cccoviiieiiiiiiiiiciii s E-9
Response MeSSageccueueieiiiiiiiiieicicicicii e E-11

DIELOtE ...t E-11
Request MeSSage.........cccoveieieiiiiiiieiicii s E-11
Response MeSSagecccueueiiiiiiiiieicicccii s E-11

Gt e E-11
Request MeSSage.........ccceveieieiiiiiiiiiiecii s E-11
Response MeSSagecceueueieiiiiieiiiciciecicii e E-11
UPAALE . E-12
Request MeSSAge.........ccceveiieiiiiiiiiieiii s E-12
Response MeSSagecoeueueieiiiiiiiiieiciiicii s E-12
ManualRuleFire Operations..........c.ccoccucceuiieiiiiieeieceeeeieeeeetee e seaenaees E-12
FireRuleByName...........coiiiiiiii e E-13
Request MeSSage.........ccooueieieiiiiiiiiiie E-13
ReSPONSE MESSAZEocviuiiiiiiiiiicici e E-13

F Oracle BAM Alert Rule Options

F.1
F.1.1
F.1.2
F.1.3
F.1.4
F.1.5
F.1.6
F1.7
F.1.8
F.1.9
F.1.10
F.2
F.21
F.2.2
F.2.3

BVENES ..ot s F-1
In a specific amount of tMeccoiiiiiiiiii F-1
At a specific time today........cccceuviriiiiiiiiiiiiiiiii s F-1
On a certain day at a Specific time..........ccccociiiiiiiiiiiicccececce s F-2
Every interval between two times.........c.ccooiiiiiiiiieii F-2
Every date interval starting on certain date at a specific timeccccccccevvinnnn F-2
When a 1epOrt CHANGESccociuimiiiieiicceeeeee e eees F-2
When a data field changes in data objectccoceoiiiiiiiii F-3
When a data field in a report meets specified conditions.........ccccooevveeiniiiieniinnnnen F-3
When a data field in a data object meets specified conditions..........cccccccceuruvuverrunnnne. F-4
When this rule is launched ... F-5
CONAITIONS ..ottt ettt et s e F-5
If it is between tWo tIMEScoiuiiiiiiiiii s F-5
If It is between tWo dayscccvveueiiieiiicicicc s F-5
If it is a particular day of the Week..........cccccciiiiiiiiiiiiiii F-5

F.3

F.3.1
F.3.2
F.3.3

F.3.4
F.3.5
F.3.6
F.3.7
F.3.8
F.3.9
F.3.9.1
F.3.10
F.3.11
F.4

ACHONS .ttt F-5
Send a report via emailcooiiiiii e F-6
Send a message via emailcccccceiiiiiiii s F-6
Send a report via email and escalate to another user after a specific amount of
FITNIE 1ot F-6
Send a parameterized MESSAGE........cceueueurueuiuiiiueieiiieieieeieee s F-6
Send a parameterized message for every matching row in a data object F-10
Launch a rule........cooii s F-11
Launch rule if an action fails........ccccoveiiiiii e F-11
Delete rows from a Data Object..........ccooeiiiiiiiiiiiiiiiiicccccs F-11
Call @ WED SerViCec.cuimiiiiiiiiiiiiciiiicic s F-11

How to Use Call a Web Service: An Example........ccccccceceueuicccciiceeeencnenen F-13

Run an Oracle Data Integrator Scenario............cocoeeueveiinieininiiiciciecceec s F-14
Call an External ACtONccccciuiiiiiiiiiiiiiiiii s F-14
Frequency Constraint ... F-14

Oracle BAM ICommand Operations and File Formats

G.1
G.2
G.2.1
G.22
G.2.3
G.2.4
G.2.5
G.3
G.3.1
G.3.2
G.3.3
G.4
G.5
G.6

Summary of Individual Operationsc.cccoccciiieiiicecieceeeeeeeeeee s G-1
Detailed Operation DesCriptionsccceuiiuiiiiiiiiiiiiiiiiiceee s G-3
CLEAT ..ot s G-3
DIELOte ...t G-3
EXPOIt oot G-5
IIPOT ot G-10
RENAINE ...ttt G-14
Format of Command File..........c.ccoiiiiiiiiiii s G-15
INlNe CONENE.....cviviiiiiiiiiiici s G-15
CommANA IDS ... s G-16
Continue ON EITOTc.ciiiiiiiiiiiiiiicecce s G-17
Format of Log File.......coooiii G-17
Sample EXPOrt FIle......c.coiiiiiiicceccee e G-18
Regular EXPIeSSIONSc.coocuriiiiiicieisicctcie e G-18

H Normalized Message Properties

H.1
H.2
H.3
H.4
H.4.1
H.4.2

Introduction to Normalized MeSSagescceueiirieiniiiiiciciiici e H-1
Oracle BPEL Process Manager Properties...........cccoccceeiiininiiiiiiiiininiiincccnnecceeaes H-2
Oracle Web Services Addressing Properties...........cccccceceucueieecieinieicieineeeieeereeeeeeeeeeenes H-3
Manipulating Normalized Message Properties with bpelx Extensionsccccccceuevue. H-4
BPEL 1.1 bpelx EXtensions SYntax..........cccccccvceeiriiiiieiiiniiiiinicicinceecsseceeeeeeeeeeas H-4
BPEL 2.0 bpelx EXtensions SYNtax.........cccccccccueueueieiiieiieunieieieeeieeeeeeeeieeeneneeeeeeenenenenes H-5

Interfaces Implemented By Rules Dictionary Editor Task Flow

1.1
[.1.1
[.1.2
1.1.3
1.2

The MetadataDetails INTErfaceccevveiriririirieieieereeese sttt ettt sbesse e ssens I-1
The getDocument Methodc.oooiiiii -2
The getRelatedDocument Method ..o -3
The setDocument Methodccooviieieiiieicieere ettt s I-3

The NLSPreferences INEIfacecccovvieieiiecieiieieiieeestectet ettt saeees -4

J Oracle User Messaging Service Applications

J.1
J.1.1
J.1.141
J.1.2
J.1.2.1
J.1.3
J.1.4
J.1.5
J.1.6
J.1.7
J.1.71
J.2
J.2.1
J.2.1.1
J.2.2
J.2.21
J.2.3
J.2.4
J.2.41
J.2.5
J.2.56.1
J.2.6

Send Message to User Specified Channelcc.oooiie,
OVEIVIEW ..ttt
Provided Files ...
Installing and Configuring SOA and User Messaging Service..........ccccccoeviiiinninnnns
Updating Addresses in Your LDAP User Profile ...
Building the Sample ...
Creating a New Application Server Connection............ccceueeeeucveiiiicicieicicieecce,
Deploying the Project ..o
Configuring User Messaging Preferences............oocooieioiiiciciiiicicieccee
Testing the Sample.........ccoouiiiiii e
Verifying the Execution of Sending the Emailccccoccceiiiiiiinniiinne
Send Email with Attachments............cccocooviiiiiiii
OVEIVIBW ...ttt ae e
Provided Files ... s
Installing and Configuring SOA and User Messaging Service.........c..ccccoeuevruniciines
Updating Addresses in Your LDAP User Profile ..o
Running the Pre-Built Sample ...
Testing the Sample.........ccoouiiiii
Verifying the EXeCUtion ..o
Building the Samplecccciiiiiiiiiece e
Sending Text Content with base64 Encoding...........ccccoooereiiiinciiiciiicene
Creating a New Application Server Connection............ccceueieerueieiiicicieiicicieecce,

K Oracle SOA Suite Properties Road Map

K.1
K.2
K.2.1
K.2.2

K.2.3
K.3
K.4
K.5
K.6
K.6.1
K.6.2
K.6.3
K.6.4
K.6.5
K.6.6
K.6.7
K.7
K.7.1
K.7.2
K.7.3

Oracle BPEL Process Manager Deployment Descriptor Properties.............c.cccceueieunnnne.
Normalized Message Header Properties...........c.cococceiiiiiiiiciieieeecceecreeeeeenenens
Oracle JCA Adapter Message Header Properties..........ccccovvvieiiniininnninn
Oracle BPEL Process Manager and Oracle Web Services Addressing Message
Header PrOperties........cccoccuiuiiiiiiiiiiiccicecectee e eeees
Oracle B2B Message Header Properties ...t
SOA Composite Application Properties...........c.cococeeiviiiiniiiccieincccceece e,
Fault Policy and Adapter Rejected Message Properties..........c.cccccceucucecicicincnccnnenes
Oracle B2B System Propertiescooceviirieiiiiiciciieccieci e
Oracle Enterprise Manager Fusion Middleware Control Console Property Pages.........
SOA Infrastructure PrOPertiescccccoccuiciiiiiiciiiiiciiecereeecceeeeeeeeeeeeeeeee s
Oracle BPEL Process Managercocoeueueiiurieieiicinieieiese e
Human Workflow Notification and Task Service..........ccccoevvvvvnnnnnnnnnnnnnene
Oracle Mediatorccoviiiiiiiiiiic s
Cross REfEreNCESvvviiiiiiiiiiiii s
Oracle B2B.....oo ittt
Service and Reference Binding Component Properties...........cccccccoeceeccucncccnnnnne.
System MBean Browser Propertiescococoviieiiiniciiicicecc
SOA Infrastructure PrOperties ...
Oracle BPEL Process Manager Properties..........cccccocceveieieirinnnicenereecerceeeeeeeenes
Oracle Mediator Properties ...

K.7.4
K.7.5

Index

liv

Human Workflow Notification and Task Service Properties
Oracle Service Registry WSDL URL Caching Configuration

Audience

Preface

This manual describes how to use Oracle SOA Suite.
This preface contains the following topics:

= Audience

= Documentation Accessibility

= Related Documents

s Conventions

This manual is intended for anyone who is interested in developing applications with
Oracle SOA Suite.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

For more information, see the following Oracle resources:

» Oracle Fusion Middleware Administrator’s Guide for Oracle SOA Suite and Oracle BPM
Suite

Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

To download Oracle BPEL Process Manager documentation, technical notes, or other
collateral, visit the Oracle BPEL Process Manager site at Oracle Technology Network
(OTN):

http://www.oracle.com/technology/bpel/

If you have a username and password for OTN, then you can go directly to the
documentation section of the OTN web site at

http://www.oracle.com/technology/documentation/

See the Business Process Execution Language for Web Services Specification, available at the
following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbizspec/html/bpell-1.asp

See the XML Path Language (XPath) Specification, available at the following URL:
http://www.w3.0rg/TR/1999/REC-xpath-19991116

See the Web Services Description Language (WSDL) 1.1 Specification, available at the
following URL:

http://www.w3.org/TR/wsdl

Conventions

Ivi

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Ivii

Iviii

Part |

Introduction to Oracle SOA Suite

This part provides an introduction to Oracle SOA Suite and developing SOA
composite applications.

This part contains the following chapters:

» Chapter 1, "Introduction to Building Applications with Oracle SOA Suite"

= Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite"
» Chapter 3, "Introduction to the SOA Sample Application”

1

Introduction to Building Applications with
Oracle SOA Suite

This chapter describes the architecture and key functionality of Oracle SOA Suite.
This chapter includes the following sections:

s Section 1.1, "Introduction to Service-Oriented Architecture"

s Section 1.2, "Introduction to Services"

m Section 1.3, "Introduction to Oracle SOA Suite"

= Section 1.4, "Standards Used by Oracle SOA Suite to Enable SOA"

= Section 1.5, "Service Component Architecture within SOA Composite
Applications"

= Section 1.6, "Runtime Behavior of a SOA Composite Application"
= Section 1.7, "Approaches for Designing SOA Composite Applications"”
= Section 1.8, "Learning Oracle SOA Suite"

1.1 Introduction to Service-Oriented Architecture

Changing markets, increasing competitive pressures, and evolving customer needs are
placing greater pressure on IT to deliver greater flexibility and speed. Today, every
organization is faced with predicting change in a global business environment, to
rapidly respond to competitors, and to best exploit organizational assets for growth. In
response to these challenges, leading companies are adopting service-oriented
architecture (SOA) to deliver on these requirements by overcoming the complexity of
their application and IT environments.

SOA provides an enterprise architecture that supports building connected enterprise
applications to provide solutions to business problems. SOA facilitates the
development of enterprise applications as modular business web services that can be
easily integrated and reused, creating a truly flexible, adaptable IT infrastructure.

1.2 Introduction to Services

SOA separates business functions into distinct units, or services. A SOA application
reuses services to automate a business process.

A standard interface and message structure define services. The most widely used
mechanism are web services standards. These standards include the Web Service
Description Language (WSDL) file for service interface definition and XML Schema
Documents (XSD) for message structure definition. These XML standards are easily

Introduction to Building Applications with Oracle SOA Suite 1-1

Introduction to Oracle SOA Suite

exchanged using standard protocols. Because standards for web services use a
standard document structure, they enable existing systems to interoperate regardless
of the choice of operating system and computer language used for service
implementation.

When designing a SOA approach, you create a service portfolio plan to identify
common functionality to use as a service within the business process. By creating and
maintaining a plan, you ensure that existing services and applications are reused or
repurposed whenever possible. This plan also reduces the time spent in creating
needed functionality for the application.

1.3 Introduction to Oracle SOA Suite

Oracle SOA Suite provides a complete set of service infrastructure components for
designing, deploying, and managing composite applications. Oracle SOA Suite
enables services to be created, managed, and orchestrated into composite applications
and business processes. Composites enable you to easily assemble multiple technology
components into one SOA composite application. Oracle SOA Suite plugs into
heterogeneous IT infrastructures and enables enterprises to incrementally adopt SOA.

The components of Oracle SOA Suite benefit from common capabilities, including a
single deployment, management, and tooling model, end-to-end security, and unified
metadata management. Oracle SOA Suite is unique in that it provides the following
set of integrated capabilities:

s Messaging

= Service discovery

s Orchestration

= Web services management and security
= Business rules

» Events framework

= Business activity monitoring

1.4 Standards Used by Oracle SOA Suite to Enable SOA

Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among
the standards it leverages are:

= Service Component Architecture (SCA) assembly model

Provides the service details and their interdependencies to form composite
applications. SCA enables you to represent business logic as reusable service
components that can be easily integrated into any SCA-compliant application. The
resulting application is known as a SOA composite application. The specification
for the SCA standard is maintained by the Organization for the Advancement of
Structured Information Standards (OASIS) through the Open Composite Services
Architecture (CSA) Member Section:

http://www.oasis-opencsa.org
= Service Data Objects (SDO)

Specifies a standard data method and can modify business data regardless of how
it is physically accessed. Knowledge is not required about how to access a
particular back-end data source to use SDO in a SOA composite application.

1-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Service Component Architecture within SOA Composite Applications

Consequently, you can use static or dynamic programming styles and obtain
connected and disconnected access.

Business Process Execution Language (BPEL)

Provides enterprises with an industry standard for business-process orchestration
and execution. Using BPEL, you design a business process that integrates a series
of discrete services into an end-to-end process flow. This integration reduces
process cost and complexity. BPEL versions 1.1 and 2.0 are supported.

XSL Transformations (XSLT)

Processes XML documents and transforms document data from one XML schema
to another.

Java Connector Architecture (JCA)

Provides a Java technology solution to the problem of connectivity between the
many application servers in Enterprise Information Systems (EIS).

Java Messaging Service (JMS)

Provides a messaging standard that allows application components based on the
Java 2 Platform, Enterprise Edition (Java EE) to access business logic distributed
among heterogeneous systems.

Web Services Description Language (WSDL) file

Provides the entry points into a SOA composite application. The WSDL file
provides a standard contract language and is central for understanding the
capabilities of a service.

Simple Object Access Protocol (SOAP)

Provides the default network protocol for message delivery.

1.5 Service Component Architecture within SOA Composite Applications

Oracle SOA Suite uses the SCA standard as a way to assemble service components
into a SOA composite application. SCA provides a programming model for the
following:

Creating service components written with a wide range of technologies, including
programming languages such as Java, BPEL, C++, and declarative languages such
as XSLT. The use of specific programming languages and technologies (including
web services) is not required with SCA.

Assembling the service components into a SOA composite application. In the SCA
environment, service components are the building blocks of applications.

SCA provides a model for assembling distributed groups of service components into
an application, enabling you to describe the details of a service and how services and
service components interact. Composites are used to group service components and
wires are used to connect service components. SCA helps to remove middleware
concerns from the programming code by applying infrastructure declaratively to
composites, including security and transactions.

The key benefits of SCA include the following;:

Loose coupling

Service components integrate with other service components without needing to
know how other service components are implemented.

Introduction to Building Applications with Oracle SOA Suite 1-3

Service Component Architecture within SOA Composite Applications

s Flexibility

Service components can easily be replaced by other service components.

m Services invocation

Services can be invoked either synchronously or asynchronously.

= Productivity

Service components are easily integrated to create a SOA composite application.

= Easy Maintenance and Debugging

Service components can be easily maintained and debugged when an issue is

encountered.

A SOA composite is an assembly of services, service components, and references
designed and deployed in a single application. Wiring between the services, service
components, and references enables message communication. The details for a
composite are stored in the composite.xml file.

Figure 1-1 provides an example of a composite that includes an inbound service
binding component, a BPEL process service component (named Account), a business
rules service component (named AccountRule), and two outbound reference binding

components.

Figure 1-1 Simple SOA Composite Architecture

Wire

Service

Composite

Service
Component

Wire

Composite BigBank

WebApp

1.5.1 Service Components

M

LS

binding.ws

Service Component
Account

BPEL

Service Component
AccountRule

Business
Rules

Reference

binding.ws

binding.rmi

Service
Component

Service components are the building blocks that you use to construct a SOA composite

application.

The following service components are available. There is a corresponding service
engine of the same name for each service component. All service engines can interact
in a single composite.

= BPEL processes provide process orchestration and storage of a synchronous or an
asynchronous process. You design a business process that integrates a series of
business activities and services into an end-to-end process flow.

1-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Service Component Architecture within SOA Composite Applications

Business rules enable you to design a business decision based on rules.

Human tasks provide workflow modeling that describes the tasks for users or
groups to perform as part of an end-to-end business process flow.

Mediators route events (messages) between different components

Spring enables you to integrate Java interfaces into SOA composite applications

1.5.2 Binding Components

Binding components establish a connection between a SOA composite and the external
world. There are two types of binding components:

Services provide the outside world with an entry point to the SOA composite
application. The WSDL file of the service advertises its capabilities to external
applications. These capabilities are used for contacting the SOA composite
application components. The binding connectivity of the service describes the
protocols that can communicate with the service, for example, SOAP/HTTP or a
JCA adapter.

References enable messages to be sent from the SOA composite application to
external services in the outside world.

Table 1-1 lists and describes the binding components provided by Oracle SOA Suite.

Table 1-1 Binding Components Provided by Oracle SOA Suite

Binding Components Description

Web service (SOAP over HTTP) Use for connecting to standards-based services using SOAP
over HTTP.

JCA adapters Use for integrating services and references with technologies

(for example, databases, file systems, FTP servers, messaging:
JMS, IBM WebSphere MQ, and so on) and applications (Oracle
E-Business Suite, PeopleSoft, and so on). This includes the AQ
adapter, database adapter, file adapter, FTP adapter, JMS
adapter, MQ adapter, and Socket adapter.

B2B binding component Use for browsing B2B metadata in the MDS repository and
selecting document definitions.

ADE-BC service Use for connecting Oracle Application Development
Framework (ADF) applications using SDO with the SOA
platform.

Oracle Applications Use for integrating the Oracle Applications adapter with

Oracle applications.

BAM adapter Use for integrating Java EE applications with Oracle BAM

Server to send data, and also use as a reference binding
component in a SOA composite application.

EJB service Use for integrating SDO parameters or Java interfaces with

Enterprise JavaBeans.

Direct binding service Use to invoke a SOA composite application and exchange

messages over a remote method invocation (RMI) in the
inbound direction and to invoke an Oracle Service Bus (OSB)
flow or another SOA composite application in the outbound
direction.

HTTP binding Use to integrate SOA composite applications with HTTP

binding.

Introduction to Building Applications with Oracle SOA Suite 1-5

Runtime Behavior of a SOA Composite Application

1.5.3 Wires

Wires enable you to graphically connect the following components in a single SOA
composite application for message communication:

m Services to service components
= Service components to other service components

= Service components to references

1.6 Runtime Behavior of a SOA Composite Application

Figure 1-2 shows the operability of a SOA composite application using SCA
technology. In this example, an external application (a .NET payment calculator)
initiates contact with the SOA composite application.

For more information about descriptions of the tasks that services, references, service
components, and wires perform in an application, see Section 1.5, "Service Component
Architecture within SOA Composite Applications."

Figure 1-2 Runtime Behavior of SOA Composite Application

Service Archive: Composite (deployment unit)

Loan APR Manager EBS
Process Rule Review Customer
Task View
m N
BPEL . . .
Process Business Oracle Human — Service Engines
Manager Rules Mediator Task (Containers that host the
- component business logic)

from binding component
and determines the
intended component
target)

HTTP JCA
ADF BC Binding Components
SOAP Adapters (Connect SOA applications
to the outside world)

W —@—EED:D— — Service Infrastructure
(Picks up SOAP message

NET T Sends a SOAP message
Pa.yment to the SOA application
Calculator

The .NET payment calculator is an external application that sends a SOAP message to
the SOA application to initiate contact. The Service Infrastructure picks up the SOAP
message from the binding component and determines the intended component target.
The BPEL process service engine receives the message from the Service Infrastructure
for processing by the BPEL Loan Process application and posts the message back to the
Service Infrastructure after completing the processing.

Table 1-2 describes the operability of the SOA composite application shown in
Figure 1-1.

1-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Runtime Behavior of a SOA Composite Application

Table 1-2 Introduction to a SOA Composite Application Using SCA Technologies
Part Description Example of Use in Figure 1-1 See Section
Binding Establishes the connectivity =~ The SOAP binding component service: Section 1.5.1,
components between a SOA composite L e "Service
and the external world. There " ﬁlcelvertlses its capabilities in the WSDL Components"
are two types: ’
oL = Receives the SOAP message from the
= Service binding L
. .NET application.
components provide an
entry point to the SOA = Sends the message through the policy
composite application. infrastructure for security checking.
= Reference binding = Translates the message to a normalized
components enable message (an internal representation of the
messages to be sent from service’s WSDL contract in XML format).
the SOA composite = Posts the message to the Service
application to external
. Infrastructure.
services.
An example of a binding component reference
in Figure 1-2 is the Loan Process application.
Service Provides internal message The Service Infrastructure: Section 1.6.1,
Infrastructure — transport = Receives the message from the SOAP IServ1ce "
nfrastructure

binding component service.

= Posts the message for processing to the
BPEL process service engine first and the
human task service engine second.

Service engines Host the business logic or

The BPEL service engine:

Section 1.6.2,

(containers processing rules of the . . "Service Engines"
. . . = Receives the message from the Service
hosting service service components. Each .
. . Infrastructure for processing by the BPEL
components) service component has its s e
. . Loan Process application.
own service engine.
= Posts the message to the Service
Infrastructure after completing the
processing.
UDDI and MDS The MDS (Metadata Service) The SOAP service used in this composite Oracle Fusion
repository stores descriptions application is stored in the MDS repository Middleware
of available services. The and can also be published to UDDL Getting Started
UDDI advertises these with Oracle SOA
services, and enables Suite
discovery and dynamic
binding at runtime.
SOA Archive: The deployment unit that The SOA archive (SAR) of the composite Section 1.6.3,
Composite describes the composite application is deployed to the Service "Deployed
application. Infrastructure. Service
(deployment Archives”
- rchives
unit)

1.6.1 Service Infrastructure

The Service Infrastructure provides the following internal message routing
infrastructure capabilities for connecting components and enabling data flow:

= Receives messages from the service providers or external partners through SOAP

services or adapters

= Sends the message to the appropriate service engine

= Receives the message back from the service engine and sends it to any additional
service engines in the composite or to a reference binding component based on the

wiring

Introduction to Building Applications with Oracle SOA Suite 1-7

Approaches for Designing SOA Composite Applications

1.6.2 Service Engines

Service engines are containers that host the business logic or processing rules of these
service components. Service engines process the message information received from
the Service Infrastructure.

There is a corresponding service engine of the same name for each service component.
All service engines can interact in a single composite.

For more information, see Oracle Fusion Middleware Administrator’s Guide for Oracle
SOA Suite and Oracle BPM Suite.

1.6.3 Deployed Service Archives

The SAR is a SOA archive deployment unit. A SAR file is a special JAR file that
requires a prefix of sca_. (for example, sca_OrderBookingComposite_
revl.0.jar). The SAR file is deployed to the Service Infrastructure. The SAR
packages service components, such as BPEL processes, business rules, human tasks,
and mediator routing services into a single application. The SAR file is analogous to
the BPEL suitcase archive of previous releases, but at the higher composite level and
with any additional service components that your application includes (for example,
human tasks, business rules, and mediator routing services).

For more information, see Chapter 41, "Deploying SOA Composite Applications."

1.7 Approaches for Designing SOA Composite Applications

When creating a SOA composite application, you have a choice of approaches for
building it:

= Top-Down: You analyze your business processes and identify activities in support
of your process. When creating a composite, you define all the SOA components
through the SOA Composite Editor. You create all the services first, and then build
the BPEL process, referencing the created services.

= Bottom-Up: You analyze existing applications and assets to identify those that can
be used as services. As you create a BPEL process, you build the services on an
as-needed basis. This approach works well when IT must react to a change.

1.8 Learning Oracle SOA Suite

In addition to this developer’s guide, Oracle also offers the following resources to help
you learn how you can best use Oracle SOA Suite in your applications:

» Getting Started: Oracle Fusion Middleware Getting Started with Oracle SOA Suite
introduces you to Oracle SOA Suite, its components, and provides you with a
high-level understanding of what you can accomplish with the suite. Also, you
can refer to the Oracle SOA Suite section of the Oracle Fusion Middleware 11g
Release 1 documentation library for additional documentation.

s Cue Cards in Oracle JDeveloper: Oracle JDeveloper cue cards provide step-by-step
support for the application development process using Oracle SOA Suite. They are
designed to be used either with the included examples and a sample schema, or
with your own data. Cue cards also include topics that provide more detailed
background information, and viewlets that demonstrate how to complete the steps
in the card. Cue cards provide a fast, easy way to become familiar with the basic
features of Oracle SOA Suite, and to work through a simple end-to-end task. In
Oracle JDeveloper, click Help > Cue Cards to access the cue cards.

1-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Learning Oracle SOA Suite

» https://soasamples.samplecode.oracle.com: The SOA OTN provides
access to various use case samples for Oracle SOA Suite and its components.

Note: While this guide primarily describes how to use Oracle SOA
Suite with Oracle WebLogic Server, most of the information is also
applicable to using Oracle SOA Suite with other third-party
application servers. However, there may be some differences with
using third-party application servers.

For information about these differences, see Oracle Fusion Middleware
Third-Party Application Server Guide.

Introduction to Building Applications with Oracle SOA Suite 1-9

Learning Oracle SOA Suite

1-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2

Developing SOA Composite Applications

with Oracle SOA Suite

This chapter describes how to use Oracle JDeveloper to create a SOA composite
application. This overview is intended to guide you through the basic steps of
composite creation, along with describing key issues to be aware of when designing a
composite application.

This chapter includes the following sections:

Section 2.1, "Creating a SOA Application"

Section 2.2, "Adding Service Components"

Section 2.3, "Adding Service Binding Components"

Section 2.4, "Adding Reference Binding Components"

Section 2.5, "Adding Wires"

Section 2.6, "Adding Security"

Section 2.7, "Deploying a SOA Composite Application"

Section 2.8, "Managing and Testing a SOA Composite Application”

2.1 Creating a SOA Application

The first steps in building a new application are to assign it a name and to specify the
directory where to save source files. By creating an application using application
templates provided by Oracle JDeveloper, you automatically get the organization of
the workspace into projects, along with many of the configuration files required by the
type of application you are creating.

2.1.1 How to Create a SOA Application and Project

You first create an application for the SOA project.

Note: In order to create and deploy SOA composite applications and
projects, you must install the Oracle SOA Suite extension. For
instructions on installing this extension for Oracle JDeveloper, see the
Oracle Fusion Middleware Installation Guide for Oracle [Developer.

To create an application:

1.

Start Oracle JDeveloper Studio Edition Version 11.1.1.4.0.

Developing SOA Composite Applications with Oracle SOA Suite 2-1

Creating a SOA Application

2. If Oracle JDeveloper is running for the first time, specify the location for the Java
JDK.

3. Create a new SOA composite application, as described in Table 2-1.

Table 2-1 SOA Composite Application Creation

If Oracle JDeveloper... Then...
Has no applications In the Application Navigator in the upper left, click New
Application.

For example, you are
opening Oracle JDeveloper
for the first time.

Has existing applications From the File main menu or the Application menu:
1. Select New > Applications.

The New Gallery opens, where you can select different
application components to create.

2. In the Categories tree, under the General node, select
Applications. In the Items pane, select SOA Application
and click OK.

The Create SOA Application wizard starts.

4. Inthe Name your application page, you can optionally change the name and
location for your web project. If this is your first application, from Application
Template, select SOA Application. Accept the defaults for the package prefix, and
click Next.

Notes:
= Do not create an application name with spaces.

= Do not create applications and projects in directory paths that
have spaces (for example, ¢ : \Program Files).

= Ona UNIX operating system, it is highly recommended to enable
Unicode support by setting the LANG and LC_A11 environment
variables to a locale with the UTE-8 character set. This action
enables the operating system to process any character in Unicode.
SOA technologies are based on Unicode. If the operating system is
configured to use non-UTF-8 encoding, SOA components may
function in an unexpected way. For example, a non-ASCII file
name can make the file inaccessible and cause an error. Oracle
does not support problems caused by operating system
constraints.

In a design-time environment, if you are using Oracle JDeveloper,
select Tools > Preferences > Environment > Encoding > UTF-8 to
enable Unicode support. This setting is also applicable for runtime
environments.

5. In the Name your project page, you can optionally change the name and location
for your SOA project. By default, Oracle JDeveloper adds the SOA project
technology, the composite.xml that generates, and the necessary libraries to your
model project. Click Next.

2-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a SOA Application

Note: Composite and component names cannot exceed 500
characters.

A project deployed to the same infrastructure must have a unique name across
SOA composite applications. The uniqueness of a composite is determined by its
project name. For example, do not perform the actions described in Table 2-2.
During deployment, the second deployed project (composite) overwrites the first
deployed project (composite).

Table 2-2 Restrictions on Naming a SOA Project

Create an Application Named... With a SOA Project Named...
Applicationl Projectl
Application2 Projectl

The Project SOA Settings page of the Create SOA Application wizard appears.
6. In the Configure SOA Settings page, click Empty Composite, and click Finish.

7. From the File main menu, select Save All.

2.1.2 What Happens When You Create a SOA Application and Project

When you create a SOA application, Oracle JDeveloper creates a project that contains
all the source files related to your application. Oracle JDeveloper automatically adds
the following libraries needed for your SOA project:

s SOA Design time

s SOA Runtime

s BPEL Runtime

= Oracle Mediator Runtime
= MDS Runtime

You can then use Oracle JDeveloper to create additional projects needed for your
application.

Figure 2-1 shows the SOA Composite Editor for the OrderBookingComposite project
contained within the WebLogicFusionOrderDemo application of the Fusion Order
Demo.

Developing SOA Composite Applications with Oracle SOA Suite 2-3

Creating a SOA Application

Figure 2—-1 New Workspace for a SOA Composite Application

Application Left Swim Application . Right Swim Component Resource
Navigator Lane View Designer Lane Palette Palette
& npplication Mavigator l [=] (Z)startPage Jrlwebi.oﬁrfuinn&der;emomafw [site.sml 1 = ﬁimm [/} l =
[H weblogicrusonarderd...> | -| |2 F L LA R @ | B O @ S Composite: OrderBookigComposita | || 524 =
* rojects (@] @ V- E- i) ©
= (0] orders c: 5 Expised Sendces Components External Helerences
& ['508 Contert = Service Comoorents -
-] classss & BPEL Process
-] testsuies i Business e
F-L] xsd & Human Task
-0 xel <ff Mediator
w3 wms By Spring Contexst
ol compasite, xrl Service Adanters
[&] ADF-BC Servics
[Apphcation Rescurces Ta begin creating a SO composite application, % A0 dopres
b Data Controls E& ? irad-and-drop a Sendce Cnponent or an Adapler g ox
. BAM Adapts
ba Recently Opened Flles from the Component Palette - :
= . P =
,=:w.m Structure = Proparty Inspactar T Composite - Orde..,]
+E
= ol OrderBookingComposite
-] Tesk Suites

<
Design | Source | History

Validate Schema:

Seurce | Design

(ElBrEL - Log

Vabdalion ch

Messages | EPEL

Log Window

Exfensions

'—-'_E OrderProcesoor. bpel Warnings:

S web Services

Table 2-3 describes the SOA Composite Editor.

Table 2-3 SOA Composite Editor

Element

Description

Application Navigator

Displays the key files for the specific service components included
in the SOA project:

A composite.xml file that is automatically created when you
create a SOA project. This file describes the entire composite
assembly of services, service components, references, and
wires.

The business rules service component file (rules_
name.decs). Additional business rules files display under the
Oracle > rules subfolder (rules_name.rules).

The Oracle Medjiator service component file (mediator._
namemplan).

The BPEL process service component files (process_
name.bpel and process_name.wsdl).

The human task service component file (task_name.task).
The spring service component file (spring.xml).

The componentType file that describes the services and
references for each service component. This file ensures that
the wiring you create between components works.

Additional subfolders for class files, XSDs (schemas), and
XSLs (transformations).

2-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a SOA Application

Table 2-3 (Cont.) SOA Composite Editor

Element Description

Designer You drag service components, services, and references from the
Component Palette into the composite in the designer. When you
drag and drop a service component into the designer window, a
corresponding property editor is invoked for performing
configuration tasks related to that service component. For example,
when you drag and drop the Oracle Mediator service component
into the designer, the Mediator Editor is displayed that enables you
to configure the Oracle Mediator service component.

For all subsequent editing sessions, you double-click these service
components to re-open their editors.

Left Swimlane (Exposed ~ The left swimlane is for services, such as a web services or JCA

Services) adapters, providing an entry point to the SOA composite
application.

Right Swimlane (External The right swimlane is for references that send messages to external

References) services in the outside world, such as web services and JCA
adapters.

Component Palette The component palette provides the various resources that you can

use in a SOA composite. It contains the following service
components and adapters:

= Service components

Displays the BPEL process, business rule, human task, Oracle
Mediator, and spring components that can be dragged and
dropped into the designer.

= Service adapters

Displays the JCA adapter (AQ, file, FTP, database, JMS, MQ,
Oracle Applications, and socket), Oracle BAM binding
component, B2B binding component, EJB binding component,
ADF-BC binding component, direct binding component,
HTTP binding component, and web service binding
component that can be dragged into the left or right
swimlanes.

If the Component Palette does not display, select Component
Palette from the View main menu.

Resource Palette The Resource Palette provides a single dialog from which you can
browse both local and remote resources. For example, you can
access the following resources:

= Shared local application metadata such as schemas, WSDLs,
event definitions, business rules, and so on.

= WSIL browser functionality that uses remote resources that
can be accessed through an HTTP connection, file URL, or
Application Server connection.

= Remote resources that are registered in a Universal
Description, Discover, and Integration (UDDI) registry.

If the Resource Palette does not display, then select Resource
Palette from the View main menu.

You select these resources for the SOA composite application
through the SOA Resource Browser dialog. This dialog is accessible
through a variety of methods. For example, when you select the
WSDL file to use with a service binding component or an Oracle
Mediator service component or select the schema file to use in a
BPEL process, the SOA Resource Browser dialog appears. Click
Resource Palette at the top of this dialog to access available
resources.

Developing SOA Composite Applications with Oracle SOA Suite 2-5

Adding Service Components

Table 2-3 (Cont.) SOA Composite Editor

Element Description

Log Window The Log window displays messages about application compilation,
validation, and deployment.

Property Inspector The Property Inspector displays properties for the selected service
component, service, or reference.

If the Property Inspector does not display, select Property
Inspector from the View main menu.

Application View The Application View shows the artifacts for the SOA composite
application.

The composite.xml file displays as a tab in the designer and as a file in the Application
Navigator. This file is automatically created when you create a new SOA project. This
file describes the entire composite assembly of services, service components, and
references. There is one composite.xml file for each SOA project.

When you work with the composite.xml file, you mostly use the designer, the
Structure window, and the Property Inspector, as shown in Figure 2-1. The designer
enables you to view many of your files in a WYSIWYG environment, or you can view
a file in an overview editor where you can declaratively make changes, or you can
view the source code for the file. The Structure window shows the structure of the
currently selected file. You can select objects in this window, and then edit the
properties for the selection in the Property Inspector.

2.1.3 What You May Need to Know About Opening the composite.xml File Through a
SOA-MDS Connection

If you create a SOA-MDS connection in Oracle JDeveloper, expand the connection, and
attempt to open the composite.xml file of a composite from the Resource Palette, the
file may not load correctly. Only open a composite from the Application Navigator.

For information about the Oracle Metadata Services (MDS) repository, see Oracle
Fusion Middleware Administrator’s Guide.

2.2 Adding Service Components

Once you create your application, often the next step is to add service components that
implement the business logic or processing rules of your application. You can use the
Component Palette from the SOA Composite Editor to drag and drop service
components into the composite.

2.2.1 How to Add a Service Component

To add a service component:
1. From the Component Palette, select SOA.

2. From the Service Components list, drag a component into the designer.

Figure 2-2 shows a BPEL process being added to the designer.

2-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Service Components

Figure 2-2 Adding BPEL Process to Composite

ssert-message.xml | EGassert-output.xml || Applicationd Overview 3 composite. xml (C10] ﬁtnmponent... (]]
F Fi§ XD BHDEFD Composite: OrderBooki ite | [[s0a 3
a8 (3]

— Service Components

Exposed Services Components External References

= BPEL Process
O Business Rule
&2 Human Task
<& Mediator

) Spring Contesxt

]
— Saruira fdankare

A specific dialog for the selected service component is displayed. Table 2—4
describes the available editors.

Table 2-4 Starting Service Component Editors

Dragging This Service
Component... Invokes The...

BPEL Process Create BPEL Process dialog to create a BPEL process that
integrates a series of business activities and services into an
end-to-end process flow.

Business Rule Create Business Rules dialog to create a business decision based
on rules.
Human Task Create Human Task dialog to create a workflow that describes the

tasks for users or groups to perform as part of an end-to-end
business process flow.

Mediator Create Mediator dialog to define services that perform message
and event routing, filtering, and transformations.

Spring Context Create Spring dialog to create a spring context file for integrating
Java interfaces into SOA composite applications.

3. Configure the settings for a service component. For help with a service component
dialog, click Help or press F1. Click Finish.

Figure 2-3 shows the BPEL Process dialog with data entered to create the
OrderProcessor BPEL process for the WebLogicFusionOrderDemo application of
the Fusion Order Demo. The process is selected to be asynchronous. The Expose as
a SOAP Service option directs Oracle JDeveloper to create this service component
automatically connected to an inbound web service.

Developing SOA Composite Applications with Oracle SOA Suite 2-7

Adding Service Components

Figure 2-3 Create BPEL Process Dialog

Create BPEL Process |

£

BPEL Process]

A BPEL pracess is a service orchestration, based on the BPEL specification, used to describe/execute a i\ﬁ
business process {or large grained service), which is implemented as a stateful service,

(3) BPEL 1.1 Specification () BPEL 2.0 Specification

Mame: |OrderPr0cessor |

Mamespace: |http:,l',l'www.globalcompany.example.com,l'ns,l'OrderBookjngService| |

Template: |3’3 Asynchronous BPEL Process '| 1]

Service Mame: |0rderpr0cessor_client |

Expose as a SOAP service

Input: |~{http:,l',l’www.glohalcompany.example.com,l'ns,l’OrderBookjngService}process |Q§

Qukpuk: |-{http:,l',l'www.glohalcompany.example.com,l'ns,l'OrderBookjngService}processResponse | Qﬁ

| Help | | Ok | Cancel

4. Click OK.

The service component displays in the designer. Figure 2—4 shows the
OrderProcessor BPEL process added to the composite.xml file. A SOAP service
binding component called orderprocessor_client_ep in the left swimlane provides
the outside world with an entry point into the SOA composite application. If the
Expose as a SOAP Service option was not selected in the Create BPEL Process
dialog, the orderprocessor_client_ep service would not display. Section 2.3.1,
"How to Add a Service Binding Component," describes how you later add a
service.

Figure 2-4 BPEL Process in Composite

off compositeml X | [=
FPLIEHRED D FD Composite: OrderBookingComposite
Exposed Services Components External References

| orderprocessor_cli...

| | processRe sponse

You can more fully define the content of the service component now or at a later
time. For this top-down example, the content is defined now.

5. From the File main menu, select Save All.

2.2.2 What You May Need to Know About Adding and Deleting a Service Component

Note the following details about adding service components:

2-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Service Components

» Create a service component from either the SOA Composite Editor or the designer
of another component. For example, you can create a human task component from
the SOA Composite Editor or the Oracle BPEL Designer.

= Use the Resource Palette to browse for service components defined in the SOA
Composite Editor, and those deployed.

Note the following details about deleting service components:

= You can delete a service component by right-clicking it and selecting Delete from
the context menu.

= When a service component is deleted, all references pointing to it are invalidated
and all wires are removed. The service component is also removed from the
Application Navigator.

= A service component created from within another service component can be
deleted. For example, a human task created within the BPEL process service
component of Oracle JDeveloper can be deleted from the SOA Composite Editor.
In addition, the partner link to the task can be deleted. Deleting the partner link
removes the reference interface from its . componentType file and removes the
wire to the task.

2.2.3 How to Edit a Service Component

You modify a service component to define specific details about the service
component.

To edit a service component:

1. Double-click the service component in the designer to display the appropriate
editor or designer, as described in Table 2-5.

Table 2-5 Starting SOA Service Component Wizards and Dialogs
Double-Clicking This

Service Component... Displays The...

BPEL Process Oracle BPEL Designer for further designing.
Business Rule Business Rules Designer for further designing.
Human Task Human Task Editor for further designing.
Mediator Oracle Medjiator Editor for further designing.
Spring Context Spring Editor for further designing.

To return to the SOA Composite Editor from within any service component,
double-click composite.xml in the Application Navigator or single-click
composite.xml above the designer.

For help with a service component editor, click Help or press F1.
2. Click Finish.

3. Modify the settings for a service component. For help with a service component
editor or designer, click Help or press F1.

4. Click Finish.

5. In the Application Navigator, double-click composite.xml or single-click
composite.xml above the designer.

This action returns you to the SOA Composite Editor.

Developing SOA Composite Applications with Oracle SOA Suite 2-9

Adding Service Binding Components

6. From the File main menu, select Save All.

2.3 Adding Service Binding Components

You add a service binding component to act as the entry point to the SOA composite
application from the outside world.

2.3.1 How to Add a Service Binding Component

Notes:

» This section describes how to manually create a service binding
component. You can also automatically create a service binding
component by selecting Expose as a SOAP Service when you
create a service component. This selection creates an inbound web
service binding component that is automatically connected to
your BPEL process, human task service, or Oracle Mediator
service component.

= You cannot invoke a representational state transfer (REST) service
from the SOA Composite Editor.

You can use the Component Palette from the SOA Composite Editor to drag and drop
service binding components to the composite.

To add a service binding component:
1. From the Component Palette, select SOA.

2. From the Service Adapters list, drag a service to the left swimlane to define the
service interface.

Figure 2-5 shows a web service being added to the designer.

Figure 2-5 Adding Web Service to Composite

L FPLEHRED | BHDEFD Composite: OrderBooki ite |504

&0

< Business Rule
& Human Task
<& Mediator

\ahJ Spring Conkext

Exposed Services Components External References

— Service Adapters
&, ADF-BC Service

{ﬁﬁ A adapter

dgﬁ ' (8 B2E
@) OrderProcessor 1 BAM Adapter
@ {ﬁg Database Adapter

] 3?‘) Direct Binding

{Q EJE Service

£ File Adapter

5§ FTP Adapter

(i@ HTTP Binding

£, M5 Adapter

fé}, M0 Adapter

{% Oracle Applications
| {@ Socket Adapter
Design | Source | Hiskary k’(‘a Third Party Adapter

[E]BPEL - Log =

2-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Service Binding Components

A specific dialog for the selected service displays. Table 2—6 describes the available
editors.

Table 2-6 Service Editors

Dragging This Service... Invokes The...

Web service Create Web Service dialog to create a web invocation service.

Adapters Adapter Configuration Wizard to guide you through integration of

the service with database tables, database queues, file systems, FTP
servers, Java Message Services (JMS), IBM WebSphere MQ, BAM
servers, sockets, or Oracle E-Business Suite applications.

ADEF-BC Service Create ADF-BC Service dialog to create a service data object (SDO)
invocation service.

B2B B2B Wizard to guide you through selection of a document
definition.

EJB Service Create EJB Service to create an Enterprise JavaBeans service for
using SDO parameters or Java interfaces with Enterprise JavaBeans.

HTTP Binding Create HTTP Binding Wizard to create HTTP binding. This wizard
enables you to invoke SOA composite applications through HTTP
POST and GET operations.

Direct Binding Create Direct Binding Service dialog to invoke a SOA composite

application and exchange messages over a remote method
invocation (RMI) in the inbound direction.

Configure the settings for the service. For help with a service editor, click Help or
press F1.

Click Finish.

Figure 2—-6 shows the Web Service dialog with data entered to create the
orderprocessor_client_ep service for the OrderProcessor BPEL process.

Figure 2-6 Create Web Service Dialog

Web Service

Create a web service for services external to the S04 composite. %

Mane: |0rderpr0-:essor_client_ep |

Type: |Service =

WSDL URL: |OrderBookingPr0cessor.wsdl | ‘E 5]
Park Type: |OrderPr0cessor - |

Callback Part Type: |OrderPr0cessorCaIIback - |

[capey wedl and its dependent artifacts inka the praject,

Mote: Keeping a copy of a WSDL may result in synchronization issues if the remote WSDL is updated. It is
recommended not make local copies - this should be reserved For situations such as offline designing.

Transaction Participation: |NEYER =

Click OK.

The service binding component displays in the left swimlane. Figure 2-7 shows
the orderprocessor_client_ep service binding component added to the
composite.xml file.

Developing SOA Composite Applications with Oracle SOA Suite 2-11

Adding Service Binding Components

Figure 2-7 Web Service in Composite

IFIPHEHREO BEDFO Composite: OrderBookingComposite

Exposed Services Components External References

i orderprocessor_cli...
i | [Operations:

proce ss
processResponse

=

6. Select Save All from the File main menu.

2.3.2 How to Add a WSDL for a Web Service

As described in Section 2.3.1, "How to Add a Service Binding Component,” a web
service is a type of binding component that you can add to a SOA composite
application. You must select the WSDL file for the web service.

To add a WSDL for a web service:
1. In the Component Palette, select SOA.

2. From the Service Adapters list, drag a Web Service to the left swimlane.
This invokes the Create Web Service dialog shown in Figure 2—-6.

3. Enter the details shown in Table 2-7:

Table 2-7 Create Web Service Dialog Fields and Values

Field Value
Name Enter a name for the service.
Type Select the type (message direction) for the web service. Since you

dragged the web service to the left swimlane, the Service type is
the correct selection, and displays by default:

= Service (default)

Creates a web service to provide an entry point to the SOA
composite application

= Reference

Creates a web service to provide access to an external
service in the outside world

Since this example describes how to create an entry point to the
SOA composite application, Service is selected.

4. Select the WSDL file for the service. There are three methods for selection:

a. To the right of the WSDL URL field, click the first icon and select an existing
WSDL file from the local file system (for this example, OrderProcessor.wsdl is
selected). Note that File System in the list at the top of the dialog is
automatically selected. Figure 2-8 provides details.

2-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Service Binding Components

Figure 2-8 WSDL File Selection

(X

& SOA Resource Browser

|2 File System -

Location: |E OrderBookingZomposite '| |@| |ﬁ| |ﬁ>§| |DE D_|

3 .designer
3 classes

3 Sca-INF
(3 testsuites

3 =sd
3 sl

File Name: |OrderPr0cessor. wsdl |

File Twpe: |WSDL Files (* wsdl) '|

b. To the right of the WSDL URL field, click the first icon and select Resource
Palette from the list at the top of the dialog, as shown in Figure 2-9. This
action enables you to use existing WSDL files from other applications.

Figure 2-9 Use of Existing WSDL files from Other Applications

SOA Resource Browser

|u§ Resource Palette

ﬁ IntegratedWeblogicServer
E}ﬁ MyConneckion

=53

95% s0a_serverl
= @ defaulk
== D-":g Pro]ectl [1.0]

bpelprocessZ_client_ep {ws)
DServicel (direct)
FileService {jca)
IMediatorl_ep (ws)
[n{t& Pro]ectl [2.0]
-3 Project1 [Defaulk 2.0]
@] bpelprocessZ_client_ep {ws)
DServicel (direct)
FileService {jca)
|@| Mediatorl_ep (ws)
= [:g SimpleAppraval [1.0]
. client {ws)
- D-":g SimpleApproval [Default 1.0]

------ . client {ws)

c. To the right of the WSDL URL field, click the second icon to automatically
generate a WSDL file from a schema. Figure 2-10 shows the Create WSDL
dialog. Default values for the WSDL file name, directory location, namespace,
port type, operation name, and interface type are displayed. If the specified
directory is not the subdirectory of the current project, a warning message is
displayed. If the specified directory does not exist, it is automatically created.

You can modify the default values.

Developing SOA Composite Applications with Oracle SOA Suite 2-13

Adding Service Binding Components

Figure 2-10 Automatic Generation of WSDL File

Create WSDL

X

File Mame: orderprocessor_client epwsdl |
Directary: |C:'|,1run'l,Fc-d_Dﬁ141U'\CompositeServices\,OrderBooHngComposite | Q
Mamespace: |:om,l'sca,l'soapservice,l'WebLogicFusionOrderDemo,l'OrderBooHngCompositeIorderprocessor_client_ep |
Port Type: |executejtt |
Operation: |execute |
Interface Tvpe: |=b Cne-Way Interface V| 2]
+ 7R

Input: Message Part Mame Element or Tvpe Schema LRL
[] Generate partnerlinkType extension

| Help | | Cancel |

5. Click the Add icon above the Input table to display the Add Message Part dialog
to add a new WSDL message part. If the WSDL file contains multiple messages,
you can add a message part for each one. You can select XML schema simple
types, project schema files, and project WSDL files for a message part.

For more information, click Help.
6. Click OK to return to the Create Web Service dialog.
7. Note the additional details described in Table 2-8:

Table 2-8 Create Web Service Dialog Fields and Values

Field Value
Port Type Displays the port type.
Callback Port Type Disabled, since this WSDL file is for a synchronous service. This

field is enabled for asynchronous services.

8. Click OK.

9. From the File main menu, select Save All.

2-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Service Binding Components

Notes:

= Do not manually update the WSDL location in the WSDL file in
Source View. This action is not supported. Only updates made in
Design View are supported.

= WSDL namespaces must be unique. Do not just copy and rename
a WSDL. Ensure that you also change the namespaces.

2.3.3 How to View Schemas

You can view all schemas used by the interface's WSDL file and, if you want, choose a
new message schema for a selected message part in the Update Interface dialog.

To view schemas:

1. Double-click the small arrow handle that appears on the specific binding
component or service component. Figure 2-11 provides details.

Figure 2-11 Selection of Inbound Interface Handle

[P
4@ IMs Adapter

4G4 M0 Adapte

i L L

UpdateOrderStatus...
Operations:
axecute

Service: UpdateOrderstatus_ep
Interface:
http: | fxmins, oracle. comfweblLogicFusionOrder Demo) OrderBookingCompositeUpdateOrderStatus#wsdl. interfacelexecute_ptt

[N ——— r% weh Service

The Update Interface dialog shown in Figure 2-12 displays all schemas currently
used by the WSDL file.

Figure 2—-12 Update Interface Dialog

= Update Interface .

Service; UpdateCrderstatus_ep
WSDL URL: UpdatedrderStatus.wsdl

Port Type: execube_pkb /
Operatian Type Message Part Type QMarme Schema Location
execute inpuk: requestMessage request element updaterderStatus COrderProcessor.xsd

[] Shaw Details

2. If you want to select a new message schema, click Help or press F1 for
instructions.

Developing SOA Composite Applications with Oracle SOA Suite 2-15

Adding Reference Binding Components

2.3.4 How to Edit a Service Binding Component

After initially creating a service, you can edit its contents at a later time. Double-click
the component icon to display its appropriate editor or wizard. Table 2-9 provides an
overview.

Table 2-9 Starting Service Wizards and Dialogs

Double-Click This Service... To...

Web service Display the Update Service dialog.
Adapters Reenter the Adapter Configuration Wizard.
ADF-BC Service Display the Update Service dialog.

B2B Reenter the B2B wizard.

EJB Service Display the Update Service dialog.

HTTP Binding Reenter the HTTP Binding Wizard.

Direct Binding Reenter the Update Service dialog.

2.3.5 What You May Need to Know About Adding and Deleting Services

Note the following detail about adding services:

s When a new service is added for a service component, the service component is
notified so that it can make appropriate metadata changes. For example, when a
new service is added to a BPEL service component, the BPEL service component is
notified to create a partner link that can be connected to a receive or an
on-message activity.

Note the following detail about deleting services:

= When a service provided by a service component is deleted, all references to that
service component are invalidated and the wires removed.

2.4 Adding Reference Binding Components

You add reference binding components that enable the SOA composite application to
send messages to external services in the outside world.

2.4.1 How to Add a Reference Binding Component

You can use the Component Palette from the SOA Composite Editor to drag and drop
reference binding components to the composite.

To add a reference binding component:
1. From the Component Palette, select SOA.

2. From the Service Adapters list, drag a service to the right swimlane.

Figure 2-13 shows a web service being added to the designer.

Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Reference Binding Components

Figure 2-13 Adding Web Service to Composite

of[f compasite, xml (=] | @ component... =
FPEHDRD | REE#ED Composite: OrderBooking! posit |SO'°‘
Exposed Services Components External References @

Q Business Ruls
ch Humnan Task.
£ Mediator

'8 Spring Context

— Service Adanters
5 ADF-BC Service

= % 3 44 AQ Adapter
- 3 BB
4 BAM Adapter
@%) Database Adapher
f] {g“) Direct Binding
{ﬁ EJE Service
% File Adapter
£ FTP Adapter
[@ HTTP Binding
48 M5 Adapter
{I‘l‘\‘n M3 Adapter
{’% Oracle Applications
{@ Socket Adapker
E Design | Source | Histary Qg Third Party Adapter

I [ElBreL - Log O

rderprocessor_cli... |

rocess Response

A specific dialog or wizard for the selected reference displays. Table 2-10 describes
the available editors.

Table 2-10 Reference Editors

Dragging This Service... Invokes The...
Web Service Create Web Service dialog to create a web invocation service.
Adapters Adapter Configuration Wizard to guide you through integration

of the service with database tables, database queues, file
systems, FTP servers, Java Message Services (JMS), IBM
WebSphere MQ, BAM servers, sockets, or Oracle E-Business
Suite applications.

ADF-BC Service Create ADF-BC Service dialog to create a service data object
(SDO) invocation service.

B2B B2B Wizard to guide you through selection of a document
definition.

EJB Service Create EJB Service dialog to create an Enterprise JavaBeans
service for using SDO parameters with Enterprise JavaBeans.

HTTP Binding Create HTTP Binding Wizard to create HTTP binding. This

wizard enables you to invoke SOA composite applications
through HTTP POST and GET operations, and invoke HTTP
endpoints through HTTP POST and GET operations.

Direct Binding Create Direct Binding Service Dialog to invoke an Oracle Service
Bus (OSB) flow or another SOA composite application.

3. Configure the settings for the reference binding component. For help with a
reference editor, click Help or press F1.

4. Click Finish.

Figure 2-14 shows the Create Web Service dialog with data entered to create a
reference.

Developing SOA Composite Applications with Oracle SOA Suite 2-17

Adding Reference Binding Components

Figure 2-14 Create Web Service Dialog

® Create Web Service E|
Web Service %
Create a web service for services external to the S04 composite,

MNarne: | StoreFrontService |

Type: |Reference v|

WSDL LURL: |StoreFrontServiceReF.wsdl | E

Pork Type: |StoreFrontService - |

[] copy wsdl and its dependent artifacks into the project.,
Moke: Keeping a copy of a W3DL may result in synchronization issues if the remote WSDL is updated. It is
recommended not make local copies - this should be reserved Far situations such as offline designing.

5. Click OK.

The reference binding component displays in the right swimlane. Figure 2-15
shows the StoreFrontService reference added to the SOA composite application.

Figure 2-15 Web Service in Composite

P ; mﬁn % % ® @ | a ng @ Q =] Composite: OrderBookingCom
Exposed Services Components External References

@ % i

StoreFrontService

B ¢ @
orderprocessor_cli... D ﬁgﬁ
OrderProcessor

6. From the File main menu, select Save All.

2.4.2 What You May Need to Know About Adding and Deleting References

Note the following detail about adding references:

= The only way to add a new reference in the SOA Composite Editor is by wiring
the service component to the necessary target service component. When a new
reference is added, the service component is notified so it can make appropriate
changes to its metadata. For example, when a reference is added to a BPEL service
component, the BPEL service component is notified to add a partner link that can
then be used in an invoke activity.

Note the following details about deleting references:

= When a reference for a service component is deleted, the associated wire is also
deleted and the service component is notified so it can update its metadata. For

2-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Reference Binding Components

example, when a reference is deleted from a BPEL service component, the service
component is notified to delete the partner link in its BPEL metadata.

= Deleting a reference connected to a wire clears the reference and the wire.

2.4.3 What You May Need to Know About WSDL References

A WSDL file is added to the SOA composite application whenever you create a new
component that has a WSDL (for example, a service binding component, service
component (for example, Oracle Mediator, BPEL process, and so on), or reference
binding component. When you delete a component, any WSDL imports used by that
component are removed only if not used by another component. The WSDL import is
always removed when the last component that uses it is deleted.

When a service or reference binding component is updated to use a new WSDL, it is
handled as if the interface was deleted and a new one was added. Therefore, the old
WSDL import is only removed if it is not used by another component.

If a service or reference binding component is updated to use the same WSDL
(porttype gname), but from a new location, the WSDL import and any other WSDL
reference (for example, the BPEL process WSDL that imports an external reference
WSDL) are automatically updated to reference the new location.

Simply changing the WSDL location on the source view of the composite.xml file’s
import is not sufficient. Other WSDL references in the metadata are required by the
user interface (see the ui :wsdlLocation attribute on composite and componentType
services and references). There can also be other WSDL references required by runtime
(for example, a WSDL that imports another WSDL, such as the BPEL process WSDL).

Always modify the WSDL location though the dialogs of the SOA Composite Editor in
which a WSDL location is specified (for example, a web service, BPEL partner link,
and so on). Changing the URL’s host address is the exact case in which the SOA
Composite Editor automatically updates all WSDL references.

2.4.4 What You May Need to Know About Mixed Message Types in a WSDL File

If a BPEL process has multiple WSDL messages declared in its WSDL file and one or
more messages have their parts defined to be of some type, whereas other messages
have their parts defined to be of some element, runtime behavior can become
unpredictable. This is because these WSDLs are considered to have mixed type
messages. For example, assume there are multiple copy actions within an assign
activity. These copy actions attempt to populate an output variable that has multiple
parts:

s Part1is declared as an xsd: string type.
s Part2is declared as an xsd: int type.
s Part 3 is declared as an element of a custom-designed complex type.

This behavior is not supported.

2.4.5 What You May Need to Know About Invoking the Default Revision of a Composite

A WSDL URL that does not contain a revision number is processed by the default
composite application. This action enables you to always call the default revision of
the called service without having to make other changes in the calling composite.

Select the default WSDL to use in the Resource Palette in Oracle JDeveloper.

Developing SOA Composite Applications with Oracle SOA Suite 2-19

Adding Wires

In the Create Web Service dialog, click the icon to the right of the WSDL URL field
to invoke the SOA Resource Browser dialog.

Select Resource Palette from the list at the top.

Expand the nodes under the Application Server connection or WSIL connection
to list all deployed composites and revisions. The default revision is identified by
the word Default in the title. For example, OrderBookingComposite [Default].

Select the appropriate default endpoint and click OK.

2.5 Adding Wires

You wire (connect) services, service components, and references. For this example, you
wire the web service and service component. Note the following:

Since a web service is an inbound service, a reference handle displays on the right
side. Web services that are outbound references do not have a reference handle on
the right side.

You can drag a defined interface to an undefined interface in either direction
(reference to service or service to reference). The undefined interface then inherits
the defined interface. There are several exceptions to this rule:

- A component has the right to reject a new interface. For example, an Oracle
Mediator can only have one inbound service. Therefore, it rejects attempts to
create a second service.

- You cannot drag an outbound service (external reference) to a business rule,
because business rules do not support references. When dragging a wire, the
user interface highlights the interfaces that are valid targets.

You cannot wire services and composites that have different interfaces. For
example, you cannot connect a web service configured with a synchronous WSDL
file to an asynchronous BPEL process. Figure 2-16 provides details.

Figure 2-16 Limitations on Wiring Services and Composites with Different Interfaces

Service1

Ditferert interfaces

BPELProces...

O perations:

process s LP)

The service and reference must match, meaning the interface and the callback
must be the same. If you have two services that have different interfaces, you can
place an Oracle Mediator between the two services and perform a transformation
between the interfaces.

2.5.1 How to Wire a Service and a Service Component

You can wire a service binding component to a service component from the SOA
Composite Editor.

To wire a service and a service component:

1.

From a service reference handle, drag a wire to the service component interface, as
shown in Figure 2-17.

2-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Wires

Figure 2-17 Wire Connection

! | orderprocessor_cli...
Operations:

process
process Response

2. If the service component is a BPEL process, double-click the BPEL process and
note that the service displays as a partner link in the left swimlane, as shown in
Figure 2-18.

Figure 2-18 Display of the Service as a Partner Link in the BPEL Process

Partner Links Partner Links

' O

)

receivelnput

@l

callbackClient

O

3. Select Save All from the File main menu.

2.5.2 How to Wire a Service Component and a Reference

You can wire a service component to a reference binding component from the SOA
Composite Editor.

To wire a service component and a reference:

1. In the Application Navigator, double-click composite.xml or single-click
composite.xml above the designer.

2. From the service component, drag a wire to the reference, as shown in Figure 2-19.

Developing SOA Composite Applications with Oracle SOA Suite 2-21

Adding Wires

Figure 2-19 Wiring of a Service Component and Reference

rontService

i
E
S

B +®

orderprocessor_cli...

3. If the service component is a BPEL process, double-click the BPEL process and
note that the reference displays as a partner link in the right swimlane, as shown
in Figure 2-20.

Figure 2-20 Display of the Reference as a Partner Link in the BPEL Process

o[composice. vl | £ DvderPracessor.bpel |
- []-@-5- 00 (@- [gaepel (BB menior [5]

Partner Links Partner Links

.
l &
StoreFrontService

@

receivelnput
i
orderprocessor_cli...

callbackClient

|
®

4. Select Save All from the File main menu.

uew [

5. In the Application Navigator, select the composite.xml file.
6. Click the Source tab to review what you have created.

The orderprocessor_client_ep service binding component shown in
Example 2-1 provides the entry point to the composite.

Example 2-1 Service

<service name="orderprocessor_client_ep"
ui:wsdlLocation="oramds: /apps/FusionOrderDemoShared

/services/orderbooking/OrderBookingProcessor.wsdl">

<interface.wsdl interface= "http://www.globalcompany.example.com/ns
/OrderBookingService#wsdl.interface (OrderProcessor) "

<binding.adf serviceName="OrderProcessorService" registryName=""/>

<callback>

<binding.ws port="http://www.globalcompany.example.com/ns

/OrderBookingService#wsdl.endpoint (orderprocessor_clientep/OrderProcessorCallback_
pt)"/>

</callback>

</service>

2-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Adding Wires

The OrderProcessor BPEL process service component is shown in Example 2-2:

Example 2-2 Service Component

<component name="OrderProcessor">
<implementation.bpel src="OrderProcessor.bpel"/>
</component>

A reference binding component named StoreFrontService is shown in
Example 2-3. The reference provides access to the external service in the outside
world.

Example 2-3 Reference

<reference name="StoreFrontService"
ui:wsdlLocation="oramds:/apps/FusionOrderDemoShared
/services/oracle/fodemo/storefront/store/service/common/serviceinterface/StoreFron
tService.wsdl">
<interface.wsdl
interface="www.globalcompany.example.com#wsdl.interface (StoreFrontService)"/>
<binding.ws
port="www.globalcompany.example.com#wsdl.endpoint (StoreFrontService/StoreFrontServ
iceSoapHttpPort)"

location="oramds:/apps/FusionOrderDemoShared/services/oracle/fodemo/storefront/sto
re/service/common/serviceinterface/StoreFrontService.wsdl" />
</reference>

In Example 2—4, the communication (or wiring) between service components is
described:

» The source orderprocessor_client_ep service binding component is
wired to the target OrderProcessor BPEL process service component.
Wiring enables web service message communication with this specific BPEL
process.

s The source OrderProcessor BPEL process is wired to the target
StoreFrontService reference binding component. This is the reference to
the external service in the outside world.

Example 2-4 Wires
<wire>
<source.uri>orderprocessor_client_ep</source.uri>
<target.uri>OrderProcessor/orderprocessor_client_ep</target.uri>
</wire>

<wire>
<source.uri>OrderProcessor/StoreFrontService</source.uri>
<target.uri>StoreFrontService</target.uri>

</wire>

2.5.3 What You May Need to Know About Adding and Deleting Wires

Note the following details about adding wires:

= A service component can be wired to another service component if its reference
matches the service of the target service component. Note that the match implies
the same interface and callback interface.

Developing SOA Composite Applications with Oracle SOA Suite 2-23

Adding Security

= Adding the following wiring between two Oracle Mediator service components
causes an infinite loop:

— Create a business event.
- Create an Oracle Mediator service component and subscribe to the event.

— Create a second Oracle Mediator service component to publish the same
event.

— Wire the first Oracle Medjiator to the second Oracle Mediator component
service.

If you remove the wire between the two Oracle Mediators, then for every message,
the second Oracle Mediator can publish the event and the first Oracle Mediator
can subscribe to it.

Note the following details about deleting wires:

s When a wire is deleted, the component's outbound reference is automatically
deleted and the component is notified so that it can clean up (delete the partner
link, clear routing rules, and so on). However, the component's interface is never
deleted. All Oracle SOA Suite services are defined by their WSDL interface. When
a component's interface is defined, there is no automatic deletion of the service
interface in the SOA Composite Editor.

If you want to change the service WSDL interface, there are several workarounds:

- In most cases, you just want to change the schema instead of the inbound
service definition. In the SOA Composite Editor, click any interface icon that
uses the WSDL. For example, you can click the web service interface icon or
the Oracle Mediator service icon. This invokes the Update Interface dialog,
which enables you to change the schema for any WSDL message.

- If you are using an Oracle Mediator service component, the Refresh
operations from WSDL icon of the Oracle Mediator Editor enables you to
refresh (after adding new operations) or replace the Oracle Mediator WSDL.
However, you are warned if the current operations are to be deleted. If you
change the WSDL to the new inbound service WSDL using this icon, the wire
typically breaks because the interface has changed. You can then wire Oracle
Mediator to the new service.

- Inmany cases, a new service requires a completely new Oracle Mediator.
Delete the old Oracle Mediator, create a new one, and wire it to the new
service.

- If you are using a BPEL process service component, select a new WSDL
through the Edit Partner Link dialog.

See Section 2.3.3, "How to View Schemas" for details about the Update Interface
dialog.

2.6 Adding Security

As you create your SOA composite application, you can secure web services by
attaching policies to service binding components, service components, and reference
binding components. For more information about implementing policies, see
Chapter 40, "Enabling Security with Policies."

2-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Managing and Testing a SOA Composite Application

2.7 Deploying a SOA Composite Application

Deploying the SOA composite application involves creating a connection to an Oracle
WebLogic Server and deploying an archive of the SOA composite application to an
Oracle WebLogic Server managed server. For more information about deploying SOA
composite applications, see Chapter 41, "Deploying SOA Composite Applications."

2.7.1 How to Invoke Deployed Composites

You can invoke other deployed SOA composite applications from your SOA composite
application. The other applications must be deployed.

To invoke other composites:

1.

Create a web service or partner link through one of the following methods.

a. Inthe SOA Composite Editor, drag a Web Service from the Component
Palette to the External References swimlane.

b. In Oracle BPEL Designer, drag a Partner Link from the Component Palette to
the right swimlane.

Access the SOA Resource Browser dialog based on the type of service you created.
a. For the Create Web Service dialog, click the Find existing WSDLs icon.

b. For the Edit Partner Link dialog, click the SOA Resource Browser icon.

From the list at the top, select Resource Palette.

Expand the tree to display the application server connection to the Oracle
WebLogic Administration Server on which the SOA composite application is
deployed.

Expand the application server connection.

Expand the SOA folder. Figure 2-21 provides details.

Figure 2-21 Browse for a SOA Composite Application

" SOA Resource Browser

7.
8.

|v§ Resource Palette

Eﬂ IntegratedweblogicTerver
E}Eﬂ MyConnection
=7 508
E}%E sna_serverl
E| defaulk
&h-off§ Project1 [1.0]

b pelprocess2_client_ep (ws)

Select the composite service.

Click OK.

2.8 Managing and Testing a SOA Composite Application

As you build and deploy a SOA composite application, you manage and test it using a
combination of Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware
Control.

Developing SOA Composite Applications with Oracle SOA Suite 2-25

Managing and Testing a SOA Composite Application

2.8.1 How to Manage Deployed Composites

You can manage deployed SOA composite applications from the Application Server
Navigator in Oracle JDeveloper. Management tasks consist of undeploying, activating,
retiring, turning on, and turning off SOA composite application revisions.

Note: These instructions assume you have created an application
server connection to an Oracle WebLogic Administration Server on
which the SOA Infrastructure is deployed. Creating a connection to an
Oracle WebLogic Administration Server enables you to browse for
managed Oracle WebLogic Servers or clustered Oracle WebLogic
Servers in the same domain. From the File main menu, select New >
Connections > Application Server Connection to create a connection.

1. From the View main menu, select Application Server Navigator.
2. Expand your connection name (for this example, named MyConnection).

The SOA folder appears, as shown in Figure 2-22. The SOA folder displays all
deployed SOA composite application revisions and services. You can browse all
applications deployed on all Oracle WebLogic Administration Servers, managed
Oracle WebLogic Servers, and clustered Oracle WebLogic Servers in the same
domain. Figure 2-22 provides details.

Figure 2-22 Application Server Navigator

2l spplication Mavigatar ||_-l;|npplication Server Mavigator
QX
Bg:l Application Servers
_-ﬂ IntegratedwsblogicServer {domain unconfigured)
Egﬂ MyConnection
D Clusters
-] Deployments
@[] Servers
&

-] weh Services

3. Expand the SOA folder.
4. Expand the partition in which the composite application is deployed.

Deployed SOA composite applications and services appear, as shown in
Figure 2-23.

2-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Managing and Testing a SOA Composite Application

Figure 2-23 Deployed SOA Composite Applications

__FJF'.pplication Mavigator [ﬂlﬂpplication Server Mavigator

%X

BD] Application Servers
]3] IntegratedweblogicServer (domain unconfigured)
B]ﬁ My Connection
l_:l Clusters
r_‘l Deployments
l_:l Servers
-1 508
B%E soa_serverl
B@ default

-0 Project1 [1.0]

[8 Project1 [2.0]

[Project1 [Default 2.0]
D{E SimpleAppraval [1.0]

D{E SimpleApproval [Default 1.0]

-] Web Services

5. Right-click a deployed SOA composite application.

6. Select an option to perform. The options that display for selection are based upon
the current state of the application. Table 2-11 provides details.

Table 2-11 SOA Composite Application Options
Option Description
Stop Shuts down a running SOA composite application revision. Any request

(initiating or a callback) to the composite is rejected if the composite is shut
down.

Note: The behavior differs based on which binding component is used. For
example, if it is a web service request, it is rejected back to the caller. A JCA
adapter binding component may do something else in this case (for example, put
the request in a rejected table).

This option displays when the composite application has been started.

Start

Restarts a composite application revision that was shut down. This action enables
new requests to be processed (and not be rejected). No recovery of messages
occurs.

This option displays when the composite application has been stopped.

Retire

Retires the selected composite revision. If the process life cycle is retired, you
cannot create a new instance. Existing instances are allowed to complete
normally.

An initiating request to the composite application is rejected back to the client.
The behavior of different binding components during rejection is the same as
with the shut down option.

A callback to an initiated composite application instance is delivered properly.

This option displays when the composite application is active.

Activate

Activates the retired composite application revision. Note the following behavior
with this option:

= All composite applications are automatically active when deployed.

= Other revisions of a newly deployed composite application remain active
(that is, they are not automatically retired). If you want, you must explicitly
retire them.

This option displays when the application is retired.

Developing SOA Composite Applications with Oracle SOA Suite 2-27

Managing and Testing a SOA Composite Application

Table 2-11 (Cont.) SOA Composite Application Options

Option

Description

Undeploy Undeploys the selected composite application revision. The consequences of this

action are as follows:

= You can no longer configure and monitor this revision of the composite
application.

= You can no longer process instances of this revision of the composite
application.

= You cannot view previously completed processes.

= The state of currently running instances is changed to stale and no new
messages sent to this composite are processed.

= If you undeploy the default revision of the composite application (for
example, 2.0), the next available revision of the composite application
becomes the default (for example, 1.0).

Set Default Sets the selected composite application revision to be the default.
Revision

7. If you want to deploy a prebuilt SOA composite application archive that includes a
deployment profile, right-click the SOA folder and select Deploy SOA Archive.
The archive consists of a JAR file of a single application or a SOA bundle ZIP file
containing multiple applications.

You are prompted to select the following:

The target SOA servers to which you want to deploy the SOA composite
application archive.

The archive to deploy.

The configuration plan to attach to the application. As you move projects from
one environment to another (for example, from testing to production), you
typically must modify several environment-specific values, such as JDBC
connection strings, hostnames of various servers, and so on. Configuration
plans enable you to modify these values using a single text (XML) file called a
configuration plan. The configuration plan is created in either Oracle
JDeveloper or from the command line. During process deployment, the
configuration plan is used to search the SOA project for values that must be
replaced to adapt the project to the next target environment. This is an
optional selection.

Whether you want to overwrite an existing composite of the same revision ID.
This action enables you to redeploy an application revision.

Figure 2-24 provides details.

2-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Managing and Testing a SOA Composite Application

Figure 2-24 Deploy SOA Archive Dialog

& Deploy SOA Archive X
Choose the barget SO& server(s) and corresponding partitions to which vou wankt to deploy this
archive,

S04 Server: Partition: Status: Server URL:
%E soa_serverl |deFauIt V|RUNNING http:ffska

Specify 508 archive file name that you want to deploy. Optionally you can also specify 308
configuration plan that vou want ko apply to the composite(s) in the archive. SOA archive can be a
SAR archive {.jar) or SOA Bundle Archive (. zip) file.

SO Archive:

| || Browse. . |

Configuration Plan {Optional):

| || Browse. . |

Mark composite revision as default,

|:| Owerwrite any existing composites with the same revision 10D,

| Help | | Cancel |

For more information, see the following documentation:

s Chapter 41, "Deploying SOA Composite Applications" for details about creating a
deployment profile and a configuration plan and deploying an existing SOA
archive

» Oracle Fusion Middleware Administrator’s Guide for Oracle SOA Suite and Oracle BPM
Suite for details about managing deployed SOA composite applications from
Oracle Enterprise Manager Fusion Middleware Control Console

2.8.2 How to Test a Deployed Composite

After you deploy a SOA composite application, you can initiate a test instance of it
from the Test Web Service page in Oracle Enterprise Manager Fusion Middleware
Control Console to verify the XML payload data. For more information about
initiating a test instance, see the Oracle Fusion Middleware Administrator’s Guide for
Oracle SOA Suite and Oracle BPM Suite.

In addition to creating a test instance, you can also simulate the interaction between a
SOA composite application and its web service partners before deployment in a
production environment. This helps to ensure that a process interacts with web service
partners as expected by the time it is ready for deployment to a production
environment. For more information about creating a unit test, see Chapter 42,
"Automating Testing of SOA Composite Applications."

Developing SOA Composite Applications with Oracle SOA Suite 2-29

Managing and Testing a SOA Composite Application

2-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3

Introduction to the SOA Sample Application

This chapter introduces the SOA sample application that can be used with this guide.
The WebLogic Fusion Order Demo application of the Fusion Order Demo
demonstrates various capabilities of Oracle SOA Suite and is used as an example
throughout this guide.

This chapter includes the following sections:

s Section 3.1, "Introduction to the Fusion Order Demo"

= Section 3.2, "Setting Up the Fusion Order Demo Application"

» Section 3.3, "Taking a Look at the WebLogic Fusion Order Demo Application"
= Section 3.4, "Understanding the OrderBookingComposite Flow"

= Section 3.5, "Deploying Fusion Order Demo"

= Section 3.6, "Running Fusion Order Demo"

= Section 3.7, "Viewing Data Sent to Oracle BAM Server"

= Section 3.8, "Undeploying the Composites for the WebLogic Fusion Order Demo
Application”

3.1 Introduction to the Fusion Order Demo

The WebLogic Fusion Order Demo application is part of a larger sample application
called Fusion Order Demo. In this larger sample application, Global Company sells
electronic devices through many channels, including a web-based client application.
Electronic devices are sold through a storefront-type web application. Customers can
visit the web site, register, and place orders for the products.

There are two parts to the Fusion Order Demo, the Store Front module and the
WebLogic Fusion Order Demo application.

3.1.1 Store Front Module

The Store Front module provides a rich user interface built with Oracle Application
Development Framework to show how to combine an easily built AJAX user interface
with a sophisticated SOA composite application. It is based on Oracle ADF business
components, ADF model data bindings, and ADF faces.

The Store Front module sells electronic devices through a storefront-type web
application.

The Store Front module contains the following projects:

Introduction to the SOA Sample Application 3-1

Introduction to the Fusion Order Demo

= StoreFrontService: This project provides access to the storefront data and provides
transaction support to update data for customers, orders, and products.

s StoreFrontUI: his project provides web pages that the customer uses to browse the
storefront, place orders, register on the site, view order information, and update
the user profile.

Figure 3-1 shows the Home page of the Store Front module user interface. It shows the
featured products that the site wants to promote and provides access to the full catalog
of items. Products are presented as images along with the name of the product. Page
regions divide the product catalog area from other features that the site offers.

Figure 3—-1 StoreFrontUl Home Page

My Orders | Checkout Registration

Featured Hot Items Start Shopping! Search for Deals! Shopping Cart Summary
~| Ipod Nano 1Gb i :
Ipod Video 30Gh Ipod Video 60Gh Ipod Nano 1Gb IpodMNano 2Gb [| Your Cart is Empty
.@- . = = o= H"
Price 249.99 Price 399.99 Price 149.95 Price 199.95
Price 149.95 Audio and Video Audio and Video Audio and Video Audio and Video
Bluetooth L PlayStation 2 Video
Zune 30Gb Plasma HD Television
Adaptor Game
Price 225.99 2 Price 1,999.99 L
5 N Price 19.99 Pl e Price 199.95
Audio and Video Cell Phones Audio and Video o
Treo 650 ¥Box 360 Video Game)
Phone/PDA Tungslhelﬂ EFDA System Nlntendo_DS
i = f Subtotal=
| b ubto
= o o e M
. Price 195.99 2 ' Price 129.99
Price 299.99 5 N Price 299.99
Cell Phones Audio and Video e Games
Bluetooth Phone 7 Megapixel Digital
Headset Ipod Speakers Ipod Shuffle 1Gb 9ap g

Camera
Y @ [F =@

From the home page, you can browse the web site as an anonymous user, then log in
as a registered customer to place an order.

The Fusion Order Demo application ships with predefined customer data. Because the
Fusion Order Demo application implements Oracle ADF security to manage access to
Oracle ADF resources, only the authenticated user can view orders in their cart.

For more information about the Store Front module, see Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

3.1.2 WebLogic Fusion Order Demo Application

The WebLogic Fusion Order Demo application processes orders placed in the Store
Front module. It uses the following Oracle SOA Suite components:

s Oracle Mediator
s Oracle BPEL process

= Human workflow (using a human task)

3-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Setting Up the Fusion Order Demo Application

= Oracle Business Rules

= Spring

s Oracle User Messaging Service

= Oracle Business Activity Monitoring
s Oracle Metadata Repository

Once an order has been placed by using the Store Front module, the WebLogic Fusion
Order Demo application processes the order. When processing an order, it uses various
internal and external applications, including a customer service application, a credit
validation system, and both an internal vendor and external vendor. For example, the
internal vendor (InternalWarehouseService) and external vendor
(ExternalPartnerSupplier), are sent information for every order. As part of the order
process, they each return a price for which they would supply the items in the order. A
condition in the process determines which supplier is assigned the order.

For information about SOA composite applications, see Chapter 1, "Introduction to
Building Applications with Oracle SOA Suite."

3.2 Setting Up the Fusion Order Demo Application

This section describes how to prepare the environment to run the WebLogic Fusion
Order Demo application.

3.2.1 Task 1: Install Oracle JDeveloper Studio

Install Oracle JDeveloper 11¢ Studio Edition to create the WebLogic Fusion Order
Demo application. You can download Oracle JDeveloper from:

http://www.oracle.com/technology/products/jdev/11/index.html
Ensure that you download and install 11g and that it is the Studio Edition, not the Java

Edition. You can verify these details in Oracle JDeveloper from the Help > About
menu option.

In order to create and deploy SOA composite applications and projects, you must
install the Oracle SOA Suite extension. For instructions on installing this extension for
Oracle JDeveloper, see the Oracle Fusion Middleware Installation Guide for Oracle
JDeveloper.

3.2.2 Task 2: Install the Fusion Order Demo Application

Throughout this tutorial, you must view or use content from Fusion Order Demo in
your Oracle JDeveloper environment. The Fusion Order Demo is contained within a
ZIP file.

To access the ZIP file:

1. Download the Fusion Order Demo application ZIP file (FusionOrderDemo_
R1PS3.zip). You can download the ZIP file from:

http://www.oracle.com/technology/products/jdev/samples/fod/index.ht
ml

2. Unzip the file to a temporary directory.

This tutorial refers to this directory as DEMO_DOWNLOAD_HOME.

Introduction to the SOA Sample Application 3-3

http://www.oracle.com/technology/products/jdev/11/index.html

http://www.oracle.com/technology/products/jdev/samples/fod/index.html
http://www.oracle.com/technology/products/jdev/samples/fod/index.html

Setting Up the Fusion Order Demo Application

3.2.3 Task 3: Install Oracle SOA Suite

To successfully deploy and run the Fusion Order Demo applications, you must
complete an installation for Oracle SOA Suite. Specifically, the domain contains an
Administration Server and a Managed Server.

Installing Oracle SOA Suite requires the following
s Creating schemas for Oracle SOA Suite in an Oracle database
= Installing Oracle WebLogic Server

s Configuring a domain in Oracle WebLogic Server to support Oracle SOA Suite,
Oracle Enterprise Manager, and optionally, Oracle BAM. Oracle BAM is not
required for the Fusion Order Demo, but if an Oracle BAM Server is configured,
Oracle BAM adapters send data to the Oracle BAM Server.

After the domain is created, it contains an Administration Server to host Oracle
Enterprise Manager Fusion Middleware Control Console for performing
administrative tasks, a Managed Server to host deployed applications, and, if you
configured Oracle BAM, a second Managed Server for the Oracle BAM Server.

For instructions on installing and configuring Oracle SOA Suite, see the Oracle Fusion
Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process
Management Suite.

After successfully completing the installation process, perform the following
additional configuration steps:

1. Enable the credentials that are included in the StoreFront module by adding a
setting to the configuration file for the domain:

a. Locate the configuration file set for the Oracle SOA Suite domain in the
following directory:

(UNIX) MW _HOME/user_projects/domains/domain name/bin/setDomainEnv.sh
(Windows) MW_HOME\user_projects\domains\domain_name\bin\setDomainEnv.cmd

b. Add the following option to the JAVA_PROPERTIES (UNIX) or the SET
JAVA_PROPERTIES (Windows) line:

-Djps.app.credential.overwrite.allowed=true
For more information about setting this property, see Oracle Fusion Middleware
Fusion Developer’s Guide for Oracle Application Development Framework.

c. If the Oracle WebLogic Server Administration Server is running, stop it:

On UNIX, as the root user, change directories to directory Mw_HOME/user_
projects/domains/domain_name/bin and enter the following command:

. /stopWebLogic.sh
On Windows, from the Windows Start menu, select All Programs > Oracle
WebLogic > User Projects > domain_name > Stop Admin Server.

d. Start the Administration Server:

On UNIX, from directory MW_HOME/user_projects/domains/domain_
name/bin, enter the following command:

. /startWebLogic.sh

On Windows, from the Windows Start menu, select All Programs > Oracle
WebLogic > User Projects > domain_name > Start Admin Server.

3-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Setting Up the Fusion Order Demo Application

When prompted on UNIX, enter your Oracle WebLogic Server user name and
password. The password is not visible as you type.

The Administration Server is started when the command window displays the
following messages:

<Server state changed to RUNNING>
<Server started in RUNNING mode>

Leave the command window open, although you may minimize it. The
Administration Server is now running and ready for use.

e. When the Administration Server is in RUNNING mode, start the Managed
Servers, if they are not running. In a command window, enter the following
command all on one line:

On UNIX, from directory Mw_HOME/user_projects/domains/domain_
name/bin, enter the following command:

. /startManagedwWebLogic.sh managed_server name admin url username password

On Windows, from directory Mw_HOME\user_
projects\domains\domain name\bin, enter the following command:

startManagedWebLogic.cmd managed_server_name admin_url username password
Substitute the following values in Table 3-1.

Table 3—-1 startManagedWebLogic Values

Value Description

managed_server The name of the Managed Server. For example:
soa_serverl

bam_serverl

admin_url The URL of the Managed Server. For example:
http://soahost:8001
http://soahost:9001

The port of the Managed Server for hosting SOA
applications is typically 8001. The port of the Managed
Server for Oracle BAM is typically 9001.

username The Oracle WebLogic Server administrator. For example:
weblogic
password The password of the Oracle WebLogic Server

administrator. For example:

welcomel

2. If you are deploying remotely from one computer that has Oracle JDeveloper to
another computer that has the Oracle SOA Suite installation with Oracle WebLogic
Server, modify the JAVA_HOME and PATH environment variables on the computer
with the Oracle SOA Suite installation.

Oracle JDeveloper requires changes to these variables for running the scripts that
deploy the composite services. You set the JAVA_HOME variable to include the
path to the Oracle WebLogic Server JDK, and set the PATH variable to include the
path to the Oracle WebLogic Server bin directory for ant.

On UNIX, use the export command. For example:

Introduction to the SOA Sample Application 3-5

Taking a Look at the WebLogic Fusion Order Demo Application

export JAVA_HOME=SMW_HOME/jdk160_11
export PATH=$PATH:MW_HOME/modules/org.apache.ant_1.7.0/bin
On Windows, perform the following steps to modify the variables:

a. Open the Control Panel from the Windows Start menu and double-click the
System icon.

b. In the System Properties dialog, select the Advanced tab and click
Environment Variables.

c. In the Environment Variables dialog, locate the JAVA_HOME system variable
and ensure that it is set to the location of the Oracle WebLogic Server JDK.

If there is no JAVA_HOME variable defined, click New and in the New System
Variable dialog, enter a variable name of JAVA_HOME and a variable value
pointing to the Oracle WebLogic Server JDK, such as
C:\weblogic\jdkl160_11. Click OK to set the new system variable.

d. Double-click the Path system variable and ensure that it includes the path to
the Oracle WebLogic Server ant \bin directory. If it does not, add the path to
the end of the variable value. For example:

;C:\weblogic\modules\org.apache.ant_1.7.0\bin

Click OK to set the new system variable.

e. Click OK twice more to dismiss the Environment Variables and the System
Properties dialogs.

3.3 Taking a Look at the WebLogic Fusion Order Demo Application

After you have set up the WebLogic Fusion Order Demo application, spend time
viewing the WebLogic Fusion Order Demo artifacts in Oracle JDeveloper.

To open the WebLogic Fusion Order Demo in Oracle JDeveloper:
1. From the Oracle JDeveloper main menu, choose File > Open.

2. In the Open dialog, browse to DEMO_DOWNLOAD_HOME/CompositeServices
and select WebLogic Fusion Order Demo.jws. Click Open.

3. When prompted to migrate files to the 11.1.1.3.0 format, click Yes. When the
migration is complete, click OK.

Figure 3-2 shows the Application Navigator after you open the file for the
application workspace. It displays the project applications of the WebLogic Fusion
Order Demo.

Figure 3—2 Projects of WebLogic Fusion Order Demo Application

{=lapplication (]
‘WeblLogicFusionOrderDemo - -
Projects @ Gﬂ ?v %

{0 B2Br120rderGatenay

8 bin

CreditCardAuthorization
ExternallegacyPartnersupplisrEjb
rderApprovalHumanT ask,
rdersDOComposite
PartnerSupplier Composite

3-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Taking a Look at the WebLogic Fusion Order Demo Application

3.3.1 Project Applications of the WebLogic Fusion Order Demo Application

Table 3-2 lists and describes the projects in the WebLogicFusionOrderDemo
application workspace.

Table 3-2 Projects in the WebLogic Fusion Order Demo Application

Application Description

B2BX120rderGateway This project contains a composite for Oracle B2B. This
composite is not used in this guide.

bin This project contains a build script for deploying all the
SOA projects. It also contains templates for seeding JMS
connector information, demo topics, and demo users.

CreditCard Authorization This project provides the service needed by
OrderBookingComposite project to verify the credit card
information of a customer.

ExternalLegacyPartnerSupplierEj This project provides an external system to provide price
b quotes.

OrderApprovalHumanTask This project provides a task form for approving orders
from the OrderBookingComposite project.

OrderBookingComposite This project processes an order submitted in the Store
Front module user interface. This project contains the main
process for the WebLogic Fusion Order Demo application.
It also uses the Oracle BAM adapter and Oracle BAM
sensors to send active data into the Oracle BAM
dashboard. This composite is not used in this guide.

OrderSDOComposite This project simulates the StoreFrontService service of the
Store Front module for testing purposes.

PartnerSupplierComposite This project contains a composite containing both a BPEL
process and spring context for obtaining a quote from a
partner warehouse. It is referenced as a service from the
composite for the OrderBookingComposite project. The
quote request is routed to either the BPEL process or the
spring component based on the amount.

3.3.2 The composite.xml File

To understand how a composite is designed, examine the main project,
OrderBookingComposite, in Oracle JDeveloper.

To view the composite.xml file:
1. In Application Navigator, expand OrderBookingComposite > SOA Content.

2. Select composite.xml.

The composite then appears in the SOA Composite Editor in Oracle JDeveloper, as
shown in Figure 3-3.

Introduction to the SOA Sample Application 3-7

Understanding the OrderBookingComposite Flow

Figure 3-3 SOA Composite Editor

3 weblogicFusionOrderDema v ©
Projects Qi F-raE-

& ApprovalHumanTask,tas
BAM_OrderDO_bam.jca
BAM_OrderD0 wsdl
BAM_ProcessTimeDO_bs
5 BAM_ProcessTimeDo_EC
BAM_ProcessTimeDO ws
~-afff composite. xml
CreditCardAuthorization:
EvaluatePreferredSuppli
{é‘n EvaluatePreferredsuppli
E EvaluatePreferredSuppli
FulfillmentBatch_jms. jca
- [@] FulfilmentEatch. wsdl
{Eﬁ Fulfillorder . camponent T,

YFINVEHRREO GRS

Composite: OrderBookingComposite

B
OrderPendin...

G- bin
[testsuires
-7 xsd
@=L =dl "@ | PartnerSupplie...
PR | R I N O PartnerSup... 0 Operations:
[D Business Rules s;gzgRemon
o
{&n ApprovalHumanTask. con = .

sendl N otification
sendFandictifica..

sendMoatification...

sendMatification...

Application Resources
Data Controls e I
Recently Opened Files
: | i | processRespon... ||
= composite sl - Skructure [;] proce ssFault o
s —&e \
| _ |
- - | USPSShipment
-#2 OrderBookingComposite | —_—
| Operations:
(7] BPEL Processes | e
(7] Business Rules 5 \ J
-7 Mediatars E e 7
-7 Human Tasks E
-1 Services | B
=0 References @ FumiGra] Eﬁ @ 2
-0 Test Suites ; FulﬁllmentBatch\
S O perations:
hhhhhhhh Produce_Messa. ..

3.4 Understanding the OrderBookingComposite Flow

OrderBookingComposite is the main project of the WebLogic Fusion Order Demo
application, containing a composite application for processing orders from Global
Company. This composite demonstrates how services, both internal to an enterprise,
and external at other sites, can be integrated using the SOA architecture paradigm to
create one cohesive ordering system.

At the center of OrderBookingComposite composite is the OrderProcessor BPEL
process. It orchestrates all the existing services in the enterprise for order fulfillment
with the right warehouse, based on the business rules in the process.

Figure 3-4 shows an overview of the OrderBookingComposite composite for the
WebLogic Fusion Order Demo application, followed by a step-by-step description of
the composite flow for how the application processes an order.

3-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Understanding the OrderBookingComposite Flow

Figure 3—-4 OrderBookingComposite Flow

./,»': H
Ii:ﬂ - | &
MewOrderSubmitted |-"""'Ef'1-'1$li|
Wik Client Runnin,

Storefront I Portal
OrderProcessor BPEL Process

Drkmpleﬁed L‘:‘_ rmi%put U

OrderPendingEvent
' - Fusion Qrder
[4—& Dema Database
Scope_RetrieveOrdar “m,dcrgwl i j‘
;]
z = -
Scope_RetieveCustomerForOrder StoreFrontSenice
: J_‘
|¢ CraditCardAuthorization
Ecupa_ﬁuﬂwimucmmrd b
e L‘y ¥
E?\" == -
ApprovalHuman OnTaskAssigmed
RequiresfApprovalRule Scope_CheckApprovalLimit Task

e Soope_RetrieveCuotes
E?\-ﬂ— R 4' FartnerSupplier

EvaluatePreferred Mediator

SupplierRule |H t{

ExternalPariner
Supplier

@ Scope_SelectPreferredSupplier OrderApprovelTask
Assignediediator
FulfillmentBatch -
Adapter If’
= InternalfarehouseService

Scope_FulfillOrder

t{_ =

FuIﬁIIDr-I-:Iar Scope_UpdateStatusToComplete

;‘5 Z -
Scope_Molify CustomerOfCompletion MotificationService
UsPEShipment
. [g Oracle BAM Adapter
@ callbackClisnt
Oracle BAM Adapter

Orscle BAM Servar

When a new customer registers in Global Company’s storefront user interface, the web
client sends the customer’s information to the internal customer service application
called StoreFrontService. StoreFrontService then stores the customer information in a
database. The customer can then browse products, add them to their online shopping

cart, and place the order. User ngreenbe is the only user not required to register before
placing an order.

Introduction to the SOA Sample Application 3-9

Understanding the OrderBookingComposite Flow

When a registered customer uses Global Company’s storefront user interface, the user
interface invokes the StoreFrontService and provides authentication. A registered user
fills their shopping cart, and places an order. When the order is submitted, the
following events take place:

After an order is placed, the following sequence occurs to complete the order:

1.

Oracle ADF Business Component writes the order to a database with schema for
Fusion Order Demo, and raises a NewOrderSubmitted event using the Event
Delivery Network (EDN). The data associated with this event is the order ID.

Because the OrderPendingEvent Oracle Mediator subscribes to the
NewOrderSubmitted event, the EDN layer notifies the OrderPendingEvent Oracle
Mediator of the new order.

The OrderPendingEvent Oracle Mediator receives the order and routes the input
order ID to the OrderProcessor BPEL process.

The OrderProcessor BPEL process receives the order ID from the database, using a
bind entity activity to bind to the exposed Oracle ADF Business Component
StoreFrontService service.

Some of the information about the order used later in the process is:
s Customer ID

» Items the customer purchased

» Credit card used

= Shipping address chosen

The BPEL process initiates StoreFrontService, passing it the order ID, to retrieve
information about the customer.

The BPEL process then sends the purchase amount, credit card type, and credit
card number to CreditCardAuthorizationService, which verifies if the customer's
credit card is valid.

If the credit card is not valid, the BPEL process cancels the order.

If the credit card is valid, the BPEL process sends the order to the
RequiresApprovalRule business rule to determine if the order requires approval
by management.

The RequiresApprovalRule business rule evaluates if manual approval is required.
The business rule contains a rule that requires manual approval for orders over
$2,000.

For those orders requiring manual approval, the BPEL process invokes the
ApprovalHumanTask human task, which in turn performs the following:

= Routes a message to an assignee named jstein, who then approves or
disapproves the order.

= Publishes the OnTaskAssigned event. The
OrderApprovalTaskAssignedMediator Oracle Mediator subscribes to this
event, and if an Oracle BAM Server is configured, it uses an Oracle BAM
adapter to send the assignee ID jstein (based on the ECID) of the order to the
Oracle BAM Server.

If the order is approved, the BPEL process sends the order information to the
following suppliers in parallel to obtain a bid:

3-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Understanding the OrderBookingComposite Flow

= Internal supplier by using the InternalWarehouseService BPEL process, also
located in OrderBookingComposite

= External supplier by using the PartnerSupplierMediator Oracle Mediator,
which in turn routes to the ExternalPartnerSupplier BPEL process or
SpringPartnerSupplierMediator spring component, located in another
composite called PartnerSupplierComposite

10. The two suppliers respond with their bids, and the BPEL process send the bids to
the EvaluatePreferredSupplierRule business rule.

11. The EvaluatePreferredSupplierRule business rule chooses the supplier with the
lower of the two bids.

12. The BPEL process invokes the FulfillOrder Oracle Mediator, which performs the
following four operations:

= Stores the order in a temporary queue and uploads it to the fulfillment system
in batch mode overnight

s Routes the order to USPS

= If an Oracle BAM Server is configured, it uses an Oracle BAM adapter to send
data about the order (based on order ID) to the Oracle BAM Server.

= If an Oracle BAM Server is configured, it uses an Oracle BAM adapter to send
data about the time for the order to process (based on the instance ID) to the
Oracle BAM Server.

13. Once the order is fulfilled, the BPEL process sets the order to complete.

14. The BPEL process invokes the NotificationService service, which sends the
customer an email notification with the purchase order information.

15. When the order completes, the OrderPendingEvent Oracle Mediator publishes the
OrderCompleted business for the OrderProcessor process.

While not depicted in Figure 34, the OrderBookingComposite composite provides the
following processing flow for approved orders:

1. The UpdateOrderStatus Oracle Mediator performs the following:

s Publishes business event OrderUpdateEvent and sends the order ID to the
OrderProcessor BPEL process.

= If an Oracle BAM Server is configured, it uses an Oracle BAM adapter to send
data about the order ID and order status to the Oracle BAM Server.

2. The OrderUpdateEventMediator Oracle Mediator subscribes to business event
OrderUpdateEvent, sends the order ID to StoreFrontService, and waits for the
StoreFrontService to respond with updated details about the order.

To aid with the tracking of an order, the OrderBookingComposite composite contains
sensors to provide a method for implementing trackable fields on messages. For
example, the CreditCard Authorization service has a composite sensor that indicates if
the credit card was authorized. In addition, the OrderProcessor BPEL process also uses
sensors for various activities. For example, the Scope_AuthorizeCreditCard scope in
the OrderProcessor BPEL process, which verifies that the customer has acceptable
credit using the CreditCard AuthorizationService service, uses a sensor for tracking.
When you monitor instances of a composite through Oracle Enterprise Manager
Fusion Middleware Control Console, you can monitor the sensors for both the
composite and the BPEL process.

Introduction to the SOA Sample Application 3-11

Deploying Fusion Order Demo

In the remaining sections of this chapter, deploy and run the Fusion Order Demo. As a
part of it running it, use Oracle Enterprise Manager Fusion Middleware Control
Console to monitor orders processed by the OrderBookingComposite composite.
When you monitor an order, you can also view the composite sensors and activity
Sensors.

3.5 Deploying Fusion Order Demo

This section describes how to deploy the Fusion Order Demo applications in the
partition.

3.5.1 Task 1: Create a Connection to an Oracle WebLogic Server

To create a connection to an Oracle WebLogic Server:
1. Start Oracle JDeveloper:

(UNIX) ORACLE_HOME/jdev/bin/jdev
(Windows) JDEV_ORACLE_HOME\jdeveloper\JDev\bin\jdev.exe

2. From the Application Menu, select New, as shown in Figure 3-5.

Figure 3-5 Application Menu

Application Mavigator E] D{m composite. xml #.j MoErrorSan

'[&] WebLogicFusionOrderDema - - f F g HR@D|§
= Projecks Q& V- E Mew Project. ..
Open Projest...

Close Application

x Delete Application
Rename Application. ..
‘Wersion Application. ..

@8 Find Application Files
Show Orwerview
5P Filker Application. ..

|+ Application Resources Secure 4
[+ Data Controls & Deploy »
I» Recently Opened Files =
s [Reformat Cil+AlEL
— Organize Imports Ctrl+alt-0
= WeblogicFusionOrderDema. jws - Structure
Compare With]
Replace With]

Application Properties. ..

3. Inthe New Gallery dialog, in the Categories tree, select General, and then
Connections.

4. Select Application Server Connection and click OK.
The Create Application Server Connection Type page displays.

5. Enter a unique name for the connection in the Connection Name field and select
WebLogic 10.3 from the Connection Type list. Figure 3—6 provides details.

3-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Deploying Fusion Order Demo

Figure 3-6 Create Application Server Connection

& Create Application Server Connection - Step 1 of &

Name and Type

e Name and Type

v Authentication Create connection in: - Resource Palette

Connection Mame:

Specify a unique name and type for the connection, The name must be a valid Java identifier.

|MyApDServerCUnnect\Un

Connection Type:

[webLoagic 10.3 -

[beb |

6. Click Next.

The Authentication page is displayed.

Next = Jl Einish H Cancel

7. Enter weblogic for the User Name and the password for that administrator in

the Password field.

8. In the Configuration page, enter the details shown in Table 3-3.

Table 3-3 Configuration Page Fields and Values

Application Description

Weblogic Hostname Name of the DNS name or IP address of the
(Administration Server) Administration Server of the Oracle WebLogic Server
Port The address of the port on which the Administration

Server is listening for requests (7001 by default)

Weblogic Domain The domain name for Oracle WebLogic Server

9. Click Next.
The Test page displays.
10. Click Test Connection.

The following message should appear:

Testing JSR-88

Testing JSR-88-LOCAL

Testing JNDI

Testing JSR-160 DomainRuntime
Testing JSR-160 Runtime
Testing JSR-160 Edit

Testing HTTP

Testing Server MBeans Model

8 of 8 tests successful.

. success.
. success.
. sSuccess.
. Success.
. sSuccess.
. Success.
. success.
. success.

If the test is unsuccessful, ensure that Oracle WebLogic Server is running, and

retry the test.
11. Click Finish.

Introduction to the SOA Sample Application 3-13

Deploying Fusion Order Demo

12. In the Resource Palette, under IDE Connections, expand Application Server to

see the application server connection that you created. Figure 3-7 provides details.

Figure 3—7 Resource Palette

£ Component Palstte [jResou... =

9 @)

Iy Catalogs
IDE Connections

E}a Application Serwer

a IntegratedWLSConnection

ydppSeryer Connection

3.5.2 (Optional) Task 2: Create a Connection to the Oracle BAM Server

If you configured an Oracle BAM Server during installation, create a connection to it.

To create a connection to an Oracle BAM Server:

1.
2.

N o a &

From the Application Menu, select New.

In the New Gallery dialog, in the Categories tree, select General, and then
Connections.

Select BAM Connection and click OK.

The BAM Connection Wizard displays.
Ensure that Application Resources is selected.
Provide a name for the connection.

Click Next.

Enter weblogic for the User Name and the password for that administrator in
the Password field.

Enter the connection information about the Oracle BAM Server host described in
Table 3-4.

Table 3—-4 Oracle BAM Server Connection Information

Field Description

BAM Web Host Enter the name of the host on which the Oracle BAM Report

Server and web applications are installed. In most cases, the
Oracle BAM web applications host, Oracle BAM Server host,
and the Oracle WebLogic Server are the same.

BAM Server Host Enter the name of the host on which the Oracle BAM Server is
installed.

User Name Enter the Oracle BAM Server user name. For example:
weblogic

Password Enter the password of the user name.

HTTP Port Enter the port number or accept the default value of 9001. This

is the HTTP port for the Oracle BAM web applications host.

JNDI Port Enter the port number or accept the default value of 9001. The

JNDI port is for the Oracle BAM report cache, which is part of
the Oracle BAM Server.

3-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Deploying Fusion Order Demo

Table 3—-4 (Cont.) Oracle BAM Server Connection Information

Field Description
Use HTTPS Select this checkbox to use secure HTTP (HTTPS) to connect to
the Oracle BAM Server during design time. Otherwise, HTTP is
used.
9. Click Next.
The Test page displays.
10. Click Test Connection.
The following message should appear:
Testing HTTP connection ... success.
Testing Data Object browsing ... success.
Testing JNDI connection ... success.
3 of 3 tests successful.
11. Click Finish.

3.5.3 Task 3: Install the Schema for the Fusion Order Demo Application

To install the schema for the sample application:

1.
2.

Start Oracle JDeveloper 11g, and from the main menu choose File > Open.

In the Open dialog, browse to DEMO_DOWNLOAD_HOME/Infrastructure and
select Infrastructure.jws.

Click Open.

When prompted to migrate files to the 11.1.1.4.0 format, click Yes. When the
migration is complete, click OK.

In the Application Navigator, expand MasterBuildScript and then Resources, and
double-click build.properties.

In the editor, modify the following properties shown in Table 3-5 for your
environment.

Table 3-5 Properties Required to Install the Fusion Order Demo Application

Field Description

jdeveloper .home The root directory where you have Oracle JDeveloper 11g

installed. For example:

C:/JDeveloper/11

jdbc.urlBase The base JDBC URL for your database in the format

jdbc:oracle:thin:@<yourhostname>. For example:

jdbc:oracle:thin:@localhost

jdbc.port The port for your database. For example:
1521

jdbc.sid The SID of your database. For example:
ORCL or XE

db.adminUser The administrative user for your database. For example:
system

Introduction to the SOA Sample Application 3-15

Deploying Fusion Order Demo

Table 3-5 (Cont.) Properties Required to Install the Fusion Order Demo Application

Field Description

db.demoUser. tablespace The tablespace name for the Fusion Order Demo users. For
example:
USERS

7. From the JDeveloper main menu, choose File > Save All.

8. Inthe Application Navigator, under the Resources node, right-click build.xml and
choose Run Ant Target > buildAll

9. When prompted, enter the administrative-user password for your database.

The buildAll command then creates the FOD user and populates the tables in the
FOD schema. In the Apache Ant - Log, a series of SQL scripts display, followed by:

buildall:
BUILD SUCCESSFUL
Total time: nn minutes nn seconds

For more information on the demo schema and scripts, see the README . txt file in
the MasterBuildScript project.

3.5.4 Task 4: Set the Configuration Property for the Store Front Module

You can deploy the Store Front module as a simple web application or as part of a SOA
environment. There is a property defined in the service portion of the Store Front
module that is used within one of its pages to determine whether the Submit Order
button fires an event that launches a BPEL process. When using the Store Front
module within a SOA environment, you must change the default value for this
property.

1. Choose File > Open.

2. In the Open dialog, browse to DEMO_DOWNLOAD_HOME/StoreFrontModule and
select StoreFrontModule.jws. Click Open.

3. When prompted to migrate files to the 11.1.1.3.0 format, click Yes. When the
migration is complete, click OK.

Figure 3-8 shows the Application Navigator after you open the file for the
application workspace.

Figure 3-8 Application Navigator with StoreFrontModule

Applicatiun Navigator
StoreFrontModule o M

Projects R ITh
StoreFrontService

StoreFrontLUL
[#-[E] UnitTests

4. Inthe Application Navigator, expand StoreFrontService > Application Sources >
oracle.fodemo.storefront > store > service.
5. Right-click StoreServiceAM and select Configurations.

6. Inthe Manage Configurations dialog, select StoreServicceAMLocalWeb in the
Names list, and then click Edit. Figure 3-9 provides details.

3-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Deploying Fusion Order Demo

Figure 3-9 StoreServiceAMLocalWeb

® Manage Configurations

X

'\Iames: [Froperties:

StoreServiceAMLocal Property

Yalue

AppModule Indillame oracle.fodemo. storefront. stare. servic...
StoreFronkService ApplicationMame aracle Fodema, starefrant, store, servic,.,
DeplovPlatfarm LOCAL
JDBCNanme FoD
fFod. application.issoasnabled false
java.naming.Factory initial aracle.jbo.cammon, JbolnitialConkextF...
ibo.ampool.initpoolsize 1
ibo.Jocking. mode opkirmiskic
b project StoreFrontSetvice
name StoreServiceAMLocalweb
| Mew, .. || Copy || Edit... || Delete || Mew Shared... |

[tep |

| Ok

]

Cancel |

7. In the Edit Business Components Configuration dialog, select the Properties tab
and the fod.application.issoaenabled property. This property specifies whether
the application is being deployed to a SOA environment.

8.

click OK. Figure 3-10 provides details.

Figure 3—10 fod.application.issoenabled

& Edit Business Components Configuration

Change the value of the fod.application.issoaenabled property to true, and then

EBusiness Component Configuration Mame: |StoreServiceAMLOcalWeb

— [

Application Module |/ Paaling and Scalability |/ Propetties |

Property
ActivateSharedlataHandle
Applicationtame

ApplicationPath
AppModuleIndilame
ConnectionMode

ConnectionPork

DeployPlatform
Factory-Substitution-List

fod. application.

HandleMame

HostMarme

IsLazyLoadingTrue
java.naming.factory.initial
java.naming.security. credentials
java.naming.security, principal
jbo. 323, compatible

jbo.903. compatible
jbo.abstract.base.check
jbo.ampoal. connectionstrategyclass

ihn_aronnnl doamnooling

Yalue
falze
oracle.fodema, storefront, store, service, 5. .

oracle.fodermo. storefront. store, service, 5.,

7101
LOCAL

[true

true
oracle. jbo. common. JbolnitialContextFactory

False
false
true
oracle. jbo.common. ampool DefaultCanne. ..

Fris

fod. application. issoasnabled | Add | | Remove |
Press F9 ko sort kable by property name.,
Help | (814 _J | Cancel |

Introduction to the SOA Sample Application 3-17

Deploying Fusion Order Demo

9. Click OK.
10. In the Manage Configurations dialog, click OK.

3.5.5 Task 5: Edit the Database Connection

Edit the database connection details to point to the correct host name and database
SID.

1. Inthe Application Navigator, expand StoreFrontService > Application Sources.
2. Double-click StoreFrontService.jpx.

3. To the right of the Connection field, click the Edit icon, as shown in Figure 3-11.

Figure 3-11 Connection

Application —lApplication Server E] d_sca_composie.xml |J sca-build.aroperties |S%Storel’mm5er\rice.jpx
. SareFromtModule - -
= Prejects Bl V- &

—_— Package: <Mones
[=E StoreFromService

B Anplication Sources

@ aracle fodemostarefront =] Connection
¥ D META -INF Thiz is the database connection used 1o creatz business compone
i 43s StoreFrontService jpx from existing databaze objects.
=-[F] StareFramiil .
- Connection: |FOD -
-] Application Sources - #* 7
-7 Web Cantent User Mame: fod
-0 account)))
&P chackout o Driver: oracle jdbe. Oraclel-iver
[* Apalication Resources Connect String: jdbcoraclethin@scavm.oracle..
|» Dala Controls @Y
[+ Recently Opened Files
Custom Properties =
fEStoreFrontSeNice.jpx - Structure =
)
EIE StoreFis

4. Edit the connect string for the FOD database connection by replacing the values in
the Host Name and SID fields with the correct host and SID. Figure 3-12 provides
details.

Figure 3—-12 Host Name and SID Fields Modifications

= Edit Database Connection Al
Edit the connection details of the existing database connection. a
Connection Exists In: -::}::- Application Resources
Conhection Mame: |
Connection Type: |Orac|e (DBC) '|
Uzername: |f0d | Role: | |V|
Pazzword: |uuu | Save Password
- Oracle {JDEC) Settings
[] Enter Custam |DEC URL
Driver: |thin =
Host Mame: |soa.um.0rac|e.com | JDBEC Port: [1521
(&) s [oRC111U |
() Service Mame:

3-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Deploying Fusion Order Demo

3.5.6 Task 6: Deploy the Store Front Module

To deploy the Store Front module, you first deploy services and then to deploy the
application itself.

During deployment, Oracle JDeveloper creates the . jar and .war files and then
assembles the . ear file, as specified in the deployment profiles. After the file is
assembled, Oracle JDeveloper deploys the . ear file and unpacks it in a directory on
the application server. The directory that is used is dependent on the target
environment.

To deploy the Store Front module:

1. Deploy the services used by the Store Front module to send orders to the
OrderBookingComposite composite.

a. From the Application menu, choose Deploy > StoreFrontModule_
SDOServices. Figure 3-13 provides details.

Figure 3—-13 StoreFrontService_SDOServices

Applicatiun MNavigator

StoreFrantModule - -
Projects E&v-E Mew Project...
-{E] StoreFrontService Dew. . Ctil-N
=3 StareFrontUl Open Project...
UrikTesks Close Application

x Delete Application
Rename Application, ..
Version Application...

@8 Find Application Files
Show Crverview
57 Filker application. ..

Secure]
StoreFrontModule. .
E Reformat — Stotre‘:rtonltService_SDOServices... %
Organize Imporks Ctri+Alt0 MELAcatat..
Application Resources Compare YWith »
Data Contrals @ 5 Replace With »

Recently Opened Files

Application Properties...

b. In the Deployment Action page of the Deploy StoreFrontService_SDOServices
dialog, select Deploy to Application Server, and then click Next.

c. In the Select Server page, select MyAppServerConnection.You created this
connection in Section 3.5.1, "Task 1: Create a Connection to an Oracle
WebLogic Server."

d. Deselect option Deploy to all server instances in the domain, and then click
Next.

e. In the Server Instances page, select the Managed Server for the Oracle
WebLogic Server, such as soa_server, and click OK.

f. Inthe Summary page, click Finish.

g. View the messages that display in the Deployment log window at the bottom
of Oracle JDeveloper to ensure deployment was successful.

2. Deploy the Store Front module. From the Application menu, select Deploy >
StoreFrontModule > to > MyAppServerConnection.

a. From the Application menu, choose Deploy > StoreFrontModule.

Introduction to the SOA Sample Application 3-19

Deploying Fusion Order Demo

In the Deployment Action page of the Deploy StoreFrontModule dialog, select
Deploy to Application Server, and then click Next.

In the Select Server page, select MyAppServerConnection.

Deselect option Deploy to all server instances in the domain, and then click
Next.

In the Server Instances page, select the Managed Server for the Oracle
WebLogic Server, such as soa_server, and click Next.

In the Summary page, click Finish.

View the messages that display in the Deployment log window at the bottom
of Oracle JDeveloper to ensure that deployment was successful.

3.5.7 Task 7: Deploy the WebLogic Fusion Order Demo Application

In this task, you deploy the WebLogic Fusion Order Demo application to an Oracle
SOA Suite installation, containing an Oracle WebLogic Server domain with an
Administration Server and a Managed Server.

To deploy the WebLogic Fusion Order Demo application:

1. In the Application Navigator, select WebLogicFusionOrderDemo.

2. If you configured an Oracle BAM server during installation, perform the following
steps:
a.

From the Application Navigator, expand OrderBookingComposite, then SOA

Content, and then bin. Double-click sca-build.properties. Figure 3-14
provides details.

Figure 3—14 Navigating to sca-build.properties

Application Mavigator
‘WeblLogicFusionOrderDema

Projects

bin

b.

=
~|[E -
Bl&Y-E-

-] B2BR120rderGateway

CreditCardAuthorization
ExternallegacyPartnerSupplierEjb
OrderApprovalHumanT ask
OrderBookingComposite
27 504 Conkent

- bam

ED bin

{27 dataObjects
-] templates

build_sca_composite. xml
orderbooking_deployment_plan,
El sca-build. properties

testsuites

xsd

In the editor, modify the following properties shown in Table 3-6 for the

Oracle BAM environment.

Table 3-6 Properties Required for Oracle BAM
Field Description
enable.bam.sensors true

Set to true to enable sensors for Oracle BAM.

3-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Deploying Fusion Order Demo

Table 3-6 (Cont.) Properties Required for Oracle BAM

Field Description

seed.bam.do true

Set to true to seed data objects, alerts, and reports for Oracle
BAM.

After deployment is done, set this value back to false. If this
parameter is set to true after initial deployment and you
redeploy at a later time, then the data objects, alerts, and
reports reseed. Therefore, after initial deployment, set this
parameter to false.

bam.server.host The DNS name or IP address of the Managed Server for
Oracle BAM. For example:
soahost

bam.server.port The port of the Managed Server for Oracle BAM. For example:
9001

bam.server.username The Oracle WebLogic Server administrator. For example:
weblogic

bam.server.password The password of the Oracle WebLogic Server administrator.

For example:

welcomel

c. From the Oracle JDeveloper main menu, choose File > Save All. Keep the
sca-build.properties tab open, so you can modify the seed.bam.do
parameter to false after deployment.

3. In the editor, perform the following steps for the WebLogicFusionOrderDemo
application:

a. From the Application Navigator, expand bin, and then Resources.
Double-click build.properties. Figure 3-15 provides details.

Figure 3—15 Navigating to build.properties

Application Mavigator - Application Server M., [
. ‘WebLogicFusionOrderDemo -
 Projects Bl & V&

2B 120rderGateway

bin

D Application Sources

BD Resources

-7 master.property. templates
-] templates

-] was_conf

-] bpm-seed
[
2

i soa-seed
i 7] test-events
------ uild. properties
------ build. was properties

----- 5 buid.was.xml

----- [build, xml

----- [common-sca-tools. was, xml
----- [common-sca-tools, xml
J--- CreditCardauthorization
wternallegacyPartnerSupplierEjb
rderApprovalHumanTask
OrderBookingComposite

b. In the editor, modify the following properties shown in Table 3-7 for the
WebLogicFusionOrderDemo application.

Introduction to the SOA Sample Application 3-21

Deploying Fusion Order Demo

Table 3-7 Properties Required for the WebLogic Fusion Order Demo Application

Field Description

oracle.home The root directory in which you have Oracle JDeveloper 11g
installed. For example:

C:\\Oracle\\Middleware\\jdeveloper\\

soa.only.deployment false

You set this property to true if you are using the
OrderSDOComposite composite to place orders. This guide
assumes you are using the Store Front Module to place orders.
Therefore, you must modify this property to false.

admin.server.host The DNS name or IP address of the Administration Server for
Oracle SOA Suite for hosting applications. For example:

soahost

admin.server.port The port of the Administration Server. For example:
8001

managed.server The DNS name or IP address of the Managed Server for
Oracle SOA Suite for hosting applications. For example:

soahost

managed.server.port The port of the Managed Server for Oracle SOA Suite for
hosting applications. For example:

8001

server.user The Oracle WebLogic Server administrator. For example:

weblogic

server.password The password of the Oracle WebLogic Server administrator.
For example:

welcomel

server.targets The name of the Managed Server. For example:

Soa_server

soa.server.oracle.home The location of where to store the deployment plans for the
adapters. For example:

C:\\AS11gR1SOA

foreign.mds. type The location of the Oracle Metadata Repository.

Leave the value to db and supply values for the
mds.db.userid, mds.db.password, and mds.db.url
parameters to specify the location of the MDS Repository.

Set the value to leave the default value to jdev. You do not
have to specify the values for the following parameters:

soa.partition.name The partition in which to deploy the composites. For example:

soaFusionOrderDemo

4. From the JDeveloper main menu, choose File > Save AlL

5. Inthe Application Navigator, under the Resources node, right-click build.xml and
choose Run Ant Target and select the following ant targets in the specified
sequential order shown in Table 3-8.

3-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Running Fusion Order Demo

Table 3-8 ant Targets to Deploy the WebLogic Fusion Order Demo Application

Target Description

1. validateFodConfigSettings This script validates the server settings, checks if the
servers are up, and also validates the MDS settings. If this
script returns without error, proceed with target
server-setup-seed-deploy-test.

2. server-setup-seed-deploy-test This script calls the following targets:

s compile-deploy-all compiles, builds, and deploys
all the SOA composites to the Managed Server.

= seedFodJdmsResources populates the JMS resources
for the Fulfillment mediator.

s seedDemoUsers adds jstein as the user to approve
orders for over $2,000. When you run the demo, you
place an order for $2,000 and log in to Oracle BPM
Worklist as jstein and approve the order.

In the Apache Ant - Log, you should see the following message when the target
successfully completes:

BUILD SUCCESSFUL
Total time: nn minutes nn seconds

If you set up Oracle BAM after you run target
server-setup-seed-deploy-test, you can still configure Oracle BAM for
Fusion Order Demo by running one of these targets:

s Rerun target server-setup-seed-deploy-test.

= From the Application Navigator, right-click build_sca_composite.xml,
(OrderBookingComposite > SOA Content) choose Run Ant Target, and then
select seedBAMServerObjects.

6. Go back to the sca-build.properties tab and modify the seed.bam. do parameter
to false.

7. From the JDeveloper main menu, choose File > Save All.

3.6 Running Fusion Order Demo

You begin the ordering process in the storefront user interface, where you submit an
orders.

When an order is submitted, the Application Development Framework Business
Component writes the order to the database and raises an NewOrderSubmitted
business event using the Events Delivery Network (EDN). The OrderPendingEvent
mediator subscribes this event, and initiates the main BPEL process, OrderProcessor,
to process the order.

After you submit an order, you use Oracle Enterprise Manager Fusion Middleware
Control Console for the Oracle SOA Suite installation to monitor how the
OrderProcessor BPEL process orchestrated the orders. If you submit an order for more
than $2,000, you can monitor how it requires human approval.

The instructions for placing orders and monitoring them in detail with Fusion
Middleware Control are available from Oracle Technology Network:

http://download.oracle.com/otn_hosted_doc/jdeveloper/doc/11l/runningfod_
notes.pdf

Introduction to the SOA Sample Application 3-23

Viewing Data Sent to Oracle BAM Server

3.7 Viewing Data Sent to Oracle BAM Server

If you configured an Oracle BAM server and a Managed Server for it, you can use the
Oracle BAM Architect to view data sent to the server. For more information about
using Oracle BAM applications, including Oracle BAM Architect, see Oracle Fusion
Middleware User’s Guide for Oracle Business Activity Monitoring.

3.8 Undeploying the Composites for the WebLogic Fusion Order Demo
Application
To undeploy the WebLogic Fusion Order Demo composite applications:
1. Access the Undeploy SOA Composite wizard in Fusion Middleware Control
through the options described in Table 3-9.

Table 3-9 Options to Access Undeploy SOA Composite Wizard

From the SOA
From the SOA From the SOA Folder in Infrastructure Home From the SOA Composite
Infrastructure Menu... the Navigator... Page... Menu...
1. Select SOA 1. Right-click soa-infra. 1. Click the Deployed Select SOA Deployment >
lecali:o;irgwnt > 2 Select SOA Composites tab. Undeploy.
ploy: Deployment > 2, Inthe Composite
The Select Undeploy. table, select both
SOH;I; ;)ssne page The Select Composite g:;:l;;]?iookmgCOmp °
2 I:It)he S O A page appears. PartnerSupplierComp
) Composite 3. Inthe SOA osite.
Deployments gomposue . 3. Above the Composite
. eployments section, .
section, select lect table, click Undeploy.
OrderBookingCo s¢ d i
mposite and Qr er]zloo ingCompo
PartnerSupplierCo ;lte an S lierC
moosite to artnerSupplierComp
uereploy them osite to undeploy, and
and click Next. click Next.

The Confirmation page appears.

2. Click Undeploy. Note that you are warned if you are about to undeploy the last
remaining revision of a deployed composite application.

Processing messages display.

3. When undeployment has completed, click Close.

3-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Part li

Using the BPEL Process Service
Component

This part describes the BPEL process service component.

This part contains the following chapters:

Chapter 4, "Getting Started with Oracle BPEL Process Manager"

Chapter 5, "Introduction to Interaction Patterns in a BPEL Process"
Chapter 6, "Manipulating XML Data in a BPEL Process"

Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process"
Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process”
Chapter 9, "Using Parallel Flow in a BPEL Process"

Chapter 10, "Using Conditional Branching in a BPEL Process"

Chapter 11, "Using Fault Handling in a BPEL Process"

Chapter 12, "Transaction and Fault Propagation Semantics in BPEL Processes"
Chapter 13, "Incorporating Java and Java EE Code in a BPEL Process"
Chapter 14, "Using Events and Timeouts in BPEL Processes"

Chapter 15, "Coordinating Master and Detail Processes"

Chapter 16, "Customizing SOA Composite Applications"

Chapter 17, "Using the Notification Service"

Chapter 18, "Using Oracle BPEL Process Manager Sensors"

4

Getting Started with Oracle BPEL Process

Manager

This chapter describes how to get started with Oracle BPEL Process Manager. Key
BPEL design features such as activities, partner links, and adapters are also described.

This chapter includes the following sections:

Section 4.1, "Introduction to the BPEL Process Service Component”
Section 4.2, "Introduction to Activities"

Section 4.3, "Introduction to Partner Links"

Section 4.4, "Creating a Partner Link"

Section 4.5, "Introduction to Technology Adapters"

Section 4.6, "Introduction to BPEL Process Monitors"

4.1 Introduction to the BPEL Process Service Component

This section provides an introduction to the BPEL process service component in the
design environment.

4.1.1 How to Add a BPEL Process Service Component
You add BPEL process service components in the SOA Composite Editor.

To add a BPEL process service component:

1.

Follow the instructions in Table 4-1 to start Oracle JDeveloper.

Table 4-1 Starting Oracle JDeveloper

To Start...

On Windows... On UNIX...

Oracle JDeveloper

Click JDev._Oracle_ SORACLE_HOME/jdev/bin/jdev
Home\ jdeveloper\JdDev\bin\jdev.
exe or create a shortcut

2.

Add a BPEL process service component through one of the following methods:
As a service component in an existing SOA composite application:

a. From the Component Palette, drag a BPEL Process service component into the
SOA Composite Editor.

In a new application:

Getting Started with Oracle BPEL Process Manager 4-1

Introduction to the BPEL Process Service Component

a. From the Application Navigator, select File > New > Applications > SOA
Application.

This starts the Create SOA Application wizard.

b. Inthe Application Name dialog, enter an application name in the Application
Name field.

c. In the Directory field, enter a directory path in which to create the SOA
composite application and project.

d. Click Next.

e. In the Project Name dialog, enter a name in the Project Name field.

f. Click Next.

9. In the Project SOA Settings dialog, select Composite With BPEL Process.
h. Click Finish.

Each method causes the Create BPEL Process dialog shown in Figure 4-1 to
appear.
Provide the required details (including BPEL process name and whether you want

to create a BPEL project that supports the BPEL 1.1 or BPEL 2.0 specification).
Click Help for details about the types of BPEL processes you can create.

Note: You cannot use BPEL 1.1 and BPEL 2.0 syntax in the same
.bpel file. However, you can include BPEL 1.1 and BPEL 2.0 projects
in the same SOA composite application.

Figure 4-1 Create BPEL Process Dialog

Create BPEL Process @

BPEL Process

!
A BPEL pracess is a service orchestration, based on the BPEL specification, used to describe/execute a ﬁva
business process {or large grained service), which is implemented as a skateful service,

() BPEL 1.1 Specification (_) BPEL 2.0 Specification

Iame: |OrderPr0cessor| |

Mamespace: |http:,l',l'xmlns.oracle.com,l'OrderF‘rocessor,l'OrderBookjngService,l'OrderProcessor |

Template: |ﬁ Asynchronous BPEL Process '| 2}

Service Mame: |orderpr0cessor_client |

Expose as a SOAF service

Inpuk: |:http:,l',l'xmlns.oracle.com,l’OrderProcessor,l'OrderBookingService,l'OrderProcessor}process| Q§

Qukput: |Ins.oracle.com,I'OrderProcessor,l'OrderBookingService,l'OrderProcessor}processResponse| Ck

| Help | | [o]'4 | Cancel |

Always use completely unique names when creating BPEL processes. Do not
create:

= A process name that begins with a number (for example, 1SayHello)

= A process name that includes a dash (for example, Say-Hello)

4-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the BPEL Process Service Component

= Two processes with the same name, but with different capitalization (for
example, SayHello and sayhello).

This is particularly important for business intelligence (BI) data object names,
which are generated on the Oracle BAM server in all upper case format. For
example, if you create a BPEL process named BPELProcess1, a Bl name of
BI_DEFAULT_PROJECT1_BPELPROCESSI is generated for the Oracle BAM
BI data object after deployment. If you create two BPEL processes,
BPELProcessl and BPELPRocess1, the same BI data object name is
generated.

= A process name that exceeds 500 characters.

= A non-ASCII process name. The BPEL process name is used in directory and
file names of the SOA project, which can cause problems.

4. Click OK.

Oracle BPEL Designer displays the sections shown in Figure 4-2.

Figure 4-2 Oracle BPEL Designer Sections

Application

Component
Navigator Designer Palette
;‘_n__ pplication Navigator ogicFusionOrderDemo Owerview compoasite. xm rderProcessor.bpel omponen#Palette
@l Application Navigat J. bLagicFusionOrderDema O | el Orderp bpel | M) |EBfc ulpltt G
webLogicFusionOrderDemo - MIE® &= W I Y= 6 w5 ml@[Manitor || | @ |[BPEL 1.1
MaRnoiects VR T Partner Links = Partner Links 2]
E|--- OrderBookingComposite O ~ BPEL Constructs
=-{7} 504 Content ;
-3 dlasses — Web Service
= &P Tnvoke
-] testsuites {“’
-] xed wud Partner Link
- sl '3} Receive
(-7 Business Rules 2 Reply
..... “{E composite, xml receivelnput — Activities
------ ﬁ?a OrderProcessor.bpel @" [} ﬂ«ﬂ Assign
----- {é‘ﬁ OrderProcessor,component Type T b Oracle Extensions
------ OrderProcessor.wsdl I SO Components
[+ BPEL Services
callbackClient
| Application Resources Praperty Inspector EProperty Inspectar
|+ Drata Cortrols @ v Source History Ri:i i g / "'W
| Recently Opened Files Window Window - =
*= OrderProcessor bpe... $ o Thumbniai (=) —
r receivelnput - process/dequence/receive Zoom: IDD|H @L
Design | Source”| Hiskor |
Te®n */ % i
SO - L |
#a OrderProcessor.bpel il a E]
D Partner Links i [scac] Gathered 2 files in 4.2 milliseconds
D Wariables | [scac] Packaged "OrderProcessor" in Z1.7 milliseconds
[Carrelation Sets
EUILI| SUCCESSFUL
D Imporks ot cime: @ a
771 Properties orad Eames = =sconcs
[] Shaw Detailed Made Infdrmation
Source | BPEL 1Cornpogibe, componentType B Delete OrderBookingComposite.wsdl Faon A=
1

Each section of this view enables you to perform specific design and deployment
tasks. Table 4-2 identifies the sections listed in Figure 4-2.

Getting Started with Oracle BPEL Process Manager 4-3

Introduction to the BPEL Process Service Component

Table 4-2 Oracle JDeveloper Sections

Element Description

Application Navigator Displays the process files of a SOA project. Key files include the
following:

= composite.xml

Describes the entire SOA composite application. For more
information about this file, see Section 2.1.2, "What Happens
When You Create a SOA Application and Project."

= .bpel

Depending upon the process type you selected, initially
contains a minimal set of activities (if you selected to create an
asynchronous process, then receive and invoke activities
appear). You add syntax to this file when you drag activities,
create variables, create partner links, and so on.

= .componentType

Describes the services and references for the BPEL process
service component.

[] wsdl

The Web Services Description Language (WSDL) client
interface, which defines the input and output messages for
this BPEL process flow, the supported client interface and
operations, and other features. This functionality enables the
BPEL process flow to be called as a service.

= monitor.config

Defines runtime and deployment properties needed to connect
with Oracle BAM Server to create the Oracle BAM data objects
and dashboards.

Designer Provides a visual view of the BPEL process service component that
you design. This view displays when you perform one of the
following actions:

= Double-click the .bpel file name in the Application Navigator.

= Click the Design tab at the bottom of the window with the
.bpel file selected.

= Double-click the BPEL process component in the SOA
Composite Editor.

As you design the BPEL process service component by dragging
activities, creating partner links, and so on, the Design window
changes.

Component Palette Displays the available activities to add to the BPEL process service
component. Activities are the building blocks. The BPEL
Constructs and Oracle Extensions selections of the Component
Palette display a set of activities that you drag into the designer of
the BPEL process service component. The Component Palette
displays only those pages relevant to the state of the designer.
BPEL Constructs or Oracle Extensions are nearly always visible.
However, if you are designing a transformation in a transform
activity, the Component Palette only displays selections relevant to
that activity, such as String Functions, Mathematical Functions,
and Node-set Functions.

4-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to the BPEL Process Service Component

Table 4-2 (Cont.) Oracle JDeveloper Sections

Element

Description

Structure window

Provides a structural view of the data in the BPEL process service
component currently selected in the designer. You can perform a
variety of tasks from this section, including;:

= Importing schemas
= Defining message types

= Managing (creating, editing, and deleting) elements such as
variables, aliases, correlation sets, and partner links.

» Editing activities in the BPEL process flow sequence that
displays in the designer

Log window

Displays messages about the status of validation and compilation.
To ensure that a BPEL process service component validates
correctly, you must ensure that the following information is correct:

» The BPEL process service component must have an input
variable.

= A partner link must be selected.
m A partner role must be selected.
= The operation must not be empty.

= The input variable type must match the partner link operation
type.

If deployment is unsuccessful, messages appear that describe the

type and location of the error.

Source window

View the syntax inside the BPEL process service component files.
As you drag activities and partner links, and perform other tasks,
the syntax in these source files is immediately updated to reflect
these changes.

History window

Displays the revision history of a file and read-only and editable
versions of a file side-by-side.

Property Inspector

Displays details about an activity. Single-click an activity in the
Design window to display details.

Note: To learn more about these sections, you can also place the
cursor in the appropriate section and press F1 to display online Help.

5. Click the icon above the Oracle BPEL Designer to view the BPEL project version
(either 1.1 or 2.0). Figure 4-3 provides details.

Figure 4-3 BPEL Project Version

Partner Links
=

% Information

@ 3 w@ﬁ@%@%- we S (@

BPEL ‘Yersion:

Customizable: |n0

Getting Started with Oracle BPEL Process Manager 4-5

Introduction to Activities

4.2 Introduction to Activities

Activities are the building blocks of a BPEL process service component. Oracle BPEL
Designer includes a set of activities that you drag into a BPEL process service
component. You then double-click an activity to define its attributes (property values).
Activities enable you to perform specific tasks within a BPEL process service
component. For example, here are several key activities:

= An assign activity enables you to manipulate data, such as copying the contents of
one variable to another. Figure 44 shows an assign activity.

Figure 4-4 Assign Activity
(5]
= Aninvoke activity enables you to invoke a service (identified by its partner link)

and specify an operation for this service to perform. Figure 4-5 shows an invoke
activity.

Figure 4-5 Invoke Activity

= A receive activity waits for an asynchronous callback response message from a
service. Figure 4-6 shows a receive activity. A receive activity is also used when a
process is started asynchronously through a partner link.

Figure 4-6 Receive Activity

®

Figure 4-7 shows an example of a property window (for this example, an invoke
activity). In this example, you invoke a partner link named StoreFrontService and
define its attributes.

4-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Partner Links

Figure 4-7 Invoke Activity Example

Invoke &

| Skip Condition rTimeout rTargets rSources rHeaders |
r General r Correlations r Properties r Annotations r Assertions |

Marne: |Inv0keFindCust0mer |

Conyversation I0: | | Ef';_r

[Invoke as Detail
Interaction Type: |~,,5_1 Partrer Link ™

Partner Role Web Service Interface

Partnier Link: [StoreFronkServics | &
Operation: | i !
Warisbles
Input: IFindCustomerInfo_InputYarisbls | e Q,
4 %
[(oo] [k [coree]

The invoke activity enables you to specify an operation you want to invoke for the
service (identified by its partner link). The operation can be one-way or
request-response on a port provided by the service. You can also automatically create
variables in an invoke activity. An invoke activity invokes a synchronous service or
initiates an asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and the receive functions.

For more information about activities, see Appendix A, "BPEL Process Activities and
Services."

4.3 Introduction to Partner Links

A partner link enables you to define the external services with which the BPEL process
service component is to interact. You can define partner links as services or references
(for example, through a JCA adapter) in the SOA Composite Editor or within a BPEL
process service component in Oracle BPEL Designer. Figure 4-8 shows the partner link
icon (in this example, named CreditCard AuthorizationService).

Figure 4-8 PartnerLink Icon

[

CreditCardfuthari,

A partner link type characterizes the conversational relationship between two services
by defining the roles played by each service in the conversation and specifying the
port type provided by each service to receive messages within the conversation.

Figure 4-9 shows an example of the attributes of a partner link for a service.

Getting Started with Oracle BPEL Process Manager 4-7

Introduction to Partner Links

Figure 4-9 Partner Link Dialog

= Edit Partne Nk
r General |/ Image |/ Property
Mame: |CreditCardnuthorizationService |
Process: |OrderPr0cessor |
WSDL Settings
QAR D W
WSDL LURL: | CreditCardauthorizationService, wsd| |
Partrer Link Type: |$“ CreditCardauthorizationService - |
Partrer Rols: |8, CreditauthatizationPart -|
by Role: |8, - Mt Specified -~ |
Table 4-3 describes the fields of this dialog.
Table 4-3 Create Partner Link Dialog Fields
Field Description
Name A unique and recognizable name you provide for the partner link.
Process Displays the BPEL process service component name.
WSDL URL The name and location of the WSDL file or Java interface that you

select for the partner link. Click the SOA Service Explorer icon
(second icon from the left above the WSDL URL field) to access a
window for selecting the WSDL file or Java interface to use.

Java interfaces display for selection under the References folder with a
name of javaEJB. If the component with which you are wiring this
partner link uses WSDL files and you select a Java interface and click
OK, a message displays indicating that this component requires a
WSDL interface. If you click Yes, a compatible WSDL file is created
based on the Java interface.

For more information about integrating components that use Java
interfaces into SOA composite applications, see Chapter 49,
"Integrating the Spring Framework in SOA Composite Applications."

Partner Link Type The partner link defined in the WSDL file.

Partner Role The role performed by the partner link.

My Role The role performed by the BPEL process service component. In this
case, the BPEL process service component does not have a role because
it is a synchronous process.

Note: The Partner Link Type, Partner Role, and My Role fields in
the Create Partner Link dialog are defined and required by the BPEL
standard.

4-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Partner Link

Best Practice: As a best practice, always create and wire Oracle
Mediator and BPEL process service components in the SOA
Composite Editor, instead of in Oracle BPEL Designer.

If you add an Oracle Mediator or BPEL process partner link to your
BPEL process in Oracle BPEL Designer and connect either partner link
to your BPEL process through an invoke activity, the wiring is not
automatically reflected above in the SOA Composite Editor. You must
explicitly wire the Oracle Mediator or BPEL process service
component to your BPEL process again in the SOA Composite Editor.

Note that this is not an issue with human task or business rule partner
links in Oracle BPEL Designer; both are also automatically wired in
the SOA Composite Editor.

4.4 Creating a Partner Link

The method by which you create partner links within the BPEL process in Oracle BPEL
Designer impacts how the partner link displays above in the SOA Composite Editor.
This section describes this impact. The WSDL file can be on the local operating system
or hosted remotely (in which case you need a URL for the WSDL).

Likewise, creating and wiring a service or reference binding component to a BPEL
process service component in the SOA Composite Editor causes a partner link to
display in Oracle BPEL Designer.

4.4.1 How to Create a Partner Link

To create a partner link:

1.

In the SOA Composite Editor, double-click the BPEL process service component.
Oracle BPEL Designer is displayed.
In the Component Palette, expand BPEL Constructs.

Drag a Partner Link into the appropriate Partner Links swimlane, as shown in
Figure 4-10.

Getting Started with Oracle BPEL Process Manager 4-9

Creating a Partner Link

Figure 4-10 Partner Link Creation in Oracle BPEL Designer

cess1.bpel | | Application3 Overview |.»-||:]:cempo.s'ite. xrnl ﬁ?‘a BPELFrocess] bpel 5 (A=) ﬁtomponent Palette | Lﬁ [:
AW @ B-%F- 5 (M Ewew)(50 @ [P 3
Partner Links = Partner Links 2] la
O = BPEL Constructs
— Web Service
|__:_| c+3 {? Invoke
£ v #& Partner Link
k “&} Receive
o D Reply
——m - receivelnput = Rl
] Assign
4 Compensate
{‘:‘:’ [] Empty
Partner Link. Terminate
;ﬂ Throw
®) Wwait
— Structured Activities
@ Flow
O Y Fick
Scope
§ Sequence
@ Switch

| &7 whis

The Create Partner Link dialog appears.
4. Complete the fields for this dialog, as described in Table 4-3.

The following sections describe the impact of partner link creation on the SOA
Composite Editor.

4.4.1.1 Partner Links for an Outbound Adapter
Table 4—4 describes the impact on the SOA Composite Editor.

Table 4-4 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link for an outbound adapter = Areference handle for the BPEL service component

= A reference representing the outbound adapter in the
composite

= A wire connecting the BPEL service component to the
adapter reference

Figure 4-11 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-11 SOA Composite Editor Impact

OF) v

CreditCardAuthoriza...

4-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Partner Link

4.4.1.2 Partner Links for an Inbound Adapter
Table 4-5 describes the impact on the SOA Composite Editor.

Table 4-5 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link for an inbound adapter = A service for the BPEL service component

= A service representing the inbound adapter in the
composite

= A wire connecting the inbound adapter service to the
BPEL service component

Figure 4-12 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-12 SOA Composite Editor Impact

— o
) ‘P ® 2) OrderProcessor
orderprocessor_cli...

4.4.1.3 Partner Links from an Abstract WSDL to Call a Service
Table 4-6 describes the impact on the SOA Composite Editor.

Table 4-6 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in

Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...
A partner link from an abstract WSDL to call a A reference handle with an interface and callback interface
service defined for the BPEL service component

4.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
Table 4-7 describes the impact on the SOA Composite Editor.

Table 4-7 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link is created from an abstract WSDL to A service with an interface and callback interface for the
implement a service BPEL service component is created.

Note: If an external Simple Object Access Protocol (SOAP)
reference with the specified interface and callback interface
exists in the SOA Composite Editor, you can either create a
new external SOAP reference and wire to it or wire to the
existing external SOAP reference.

Figure 4-13 shows how this method of creation appears in the SOA Composite Editor.

Getting Started with Oracle BPEL Process Manager 4-11

Creating a Partner Link

Figure 4-13 SOA Composite Editor Impact

CS’ ﬁlfﬁmmh\'nm |

4

\._.........._-P

4.4.1.5 Partner Links and Human Tasks or Business Rules
Table 4-8 describes the impact on the SOA Composite Editor.

Table 4-8 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A human task or business rule is created = A human task or business rule in the composite
= A reference for the BPEL service component

= A wire connecting the BPEL service component to the
new human task or business rule

Figure 4-14 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-14 SOA Composite Editor Impact

P &
) ®Raq uiresApprova...

4.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle
Mediator
Table 4-9 describes the impact on the SOA Composite Editor.

Table 4-9 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link by dragging an existing human task, = A reference for the BPEL service component
business rule, or mediator service component into

the BPEL process A wire connecting the BPEL service component to the

existing human task, business rule, or mediator

Figure 4-15 shows how this method of creation appears in the SOA Composite Editor.

Figure 4-15 SOA Composite Editor Impact

) Apprmra IHumanT...

Published:
OnTaskAssigned

4-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Technology Adapters

4.5 Introduction to Technology Adapters

The Partner Link dialog shown in Figure 4-9 also enables you to take advantage of
another key feature that Oracle BPEL Process Manager and Oracle JDeveloper provide.
Click the Service Wizard icon shown in Figure 4-16 to access the Adapter
Configuration wizard.

Figure 4-16 Defining an Adapter

WaDL Settings

Q@R @ |

WSDL LRL: | [Service Wwizard

— T——

Adapters enable you to integrate the BPEL process service component (and, therefore,
the SOA composite application as a whole) with access to file systems, FIP servers,
database tables, database queues, sockets, Java Message Services (JMS), MQ, and
Oracle E-Business Suite. You can also integrate with services such as HTTP binding,
direct binding, EJB, and others. This wizard enables you to configure the types of
services and adapters shown in Figure 4-17 for use with the BPEL process service
component:

Figure 4-17 Service and Adapter Types

X]

=3 Configure Service or Adapter

&) ADF-BC Service
fé‘n &0 Adapter

B B2B

<) BAM Adapter

4 Database Adapter
% Direct Binding

'{% EJB Service

& FTP Adapter

{ﬁ File Aidapter
[HTTP Findina

| Help | | [a]'4 || Cancel |

For information about the service and adapter types, see Chapter 35, "Getting Started
with Binding Components."

When you select an adapter type, the Service Name window shown in Figure 4-18
prompts you to enter a name. For this example, File Adapter was selected in

Figure 4-17. When the wizard completes, a WSDL file by this service name appears in
the Application Navigator for the BPEL process service component (for this example,
named USPSShipment.wsdl). The service name must be unique within the project.
This file includes the adapter configuration settings you specify with this wizard.
Other configuration files (such as header files and files specific to the adapter) are also
created and display in the Application Navigator.

Getting Started with Oracle BPEL Process Manager 4-13

Introduction to BPEL Process Monitors

Figure 4-18 Adapter Service Name

 FILE Adapter Configuration Wizard - Step 2 of 7

Service Name

The Service Mame cannat be maodified,

Setvice Type: File Adapter

Service Mame: | JSPSShipment

Help | < Back. Cancel

The Adapter Configuration wizard windows that appear after the Service Name
window are based on the adapter type you selected.

You can also add adapters to your SOA composite application as services or references
in the SOA Composite Editor.

For more information about technology adapters, see Oracle Fusion Middleware User’s
Guide for Technology Adapters.

4.6 Introduction to BPEL Process Monitors

You can configure BPEL process monitors in Oracle BPEL Designer by selecting
Monitor at the top of Oracle BPEL Designer. Figure 4-19 provides details. BPEL

process monitors can send data to Oracle BAM for analysis and graphical display
through the Oracle BAM adapter.

Figure 4-19 BPEL Process Monitors

‘ ﬁE,DrderProcessor.bpel | & dpplicationz Creerview |iﬂcomposite.xml [E][

Yawd=3e @ v EED@-)(5
"

‘ Partner Links

= Change to Monitor wview

For more information, see Section 50.3, "Using Oracle BAM Monitor Express With
BPEL Processes."

4-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

O

Introduction to Interaction Patterns in a
BPEL Process

This chapter describes common interaction patterns between a BPEL process service
component and an external service, and shows the best use practices for each.

This chapter includes the following sections:

m Section 5.1, "Introduction to One-Way Messages"

m Section 5.2, "Introduction to Synchronous Interactions"

= Section 5.3, "Introduction to Asynchronous Interactions"

= Section 5.4, "Introduction to Asynchronous Interactions with a Timeout"

= Section 5.5, "Introduction to Asynchronous Interactions with a Notification Timer"
= Section 5.6, "Introduction to One Request, Multiple Responses"

= Section 5.7, "Introduction to One Request, One of Two Possible Responses”

= Section 5.8, "Introduction to One Request, a Mandatory Response, and an Optional
Response"

= Section 5.9, "Introduction to Partial Processing"

= Section 5.10, "Introduction to Multiple Application Interactions"

5.1 Introduction to One-Way Messages

In a one-way message, or fire and forget, the client sends a message to the service (d1
in Figure 5-1), and the service is not required to reply. The client sending the message
does not wait for a response, but continues executing immediately. Example 5-1 shows
the portType and operation part of the BPEL process WSDL file for this
environment.

Example 5-1 One-Way WSDL File

<wsdl :portType name="BPELProcessl">
<wsdl:operation name="process">
<wsdl:input message="client:BPELProcesslRequestMessage" />
</wsdl:operation>
</wsdl:portType>

Figure 5-1 provides an overview.

Introduction to Interaction Patterns in a BPEL Process 5-1

Introduction to Synchronous Interactions

Figure 5-1 One-Way Message

Client BPEL Process Service BPEL Process
WSDL

PartnerLink
<invoke> — <receive>

BPEL Process Service Component as the Client

As the client, the BPEL process service component needs a valid partner link and an
invoke activity with the target service and the message. As with all partner activities,
the Web Services Description Language (WSDL) file defines the interaction.

BPEL Process Service Component as the Service

To accept a message from the client, the BPEL process service component needs a
receive activity.

5.2 Introduction to Synchronous Interactions

In a synchronous interaction, a client sends a request to a service (d1 in Figure 5-2),
and receives an immediate reply (d2 in Figure 5-2). A BPEL process service
component can be at either end of this interaction, and must be coded based on its role
as either the client or the service. For example, a user requests a subscription to an
online newspaper and immediately receives email confirmation that their request has
been accepted. Example 5-2 shows the portType and operation part of the BPEL
process WSDL file for this environment.

Example 5-2 Synchronous WSDL File

<wsdl:portType name="BPELProcessl">
<wsdl:operation name="process">
<wsdl:input message="client:BPELProcesslRequestMessage" />
<wsdl:output message="client:BPELProcesslResponseMessage"/>
</wsdl:operation>
</wsdl:portType>

Figure 5-2 provides an overview.

5-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Asynchronous Interactions

Figure 5-2 Synchronous Interaction

BPEL Process BPEL Process
WSDL
Client
Call PartnerLink .
service —l <receive>
<invoke>
OR
< -II f1 -II ! <reply>

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of a synchronous
transaction, it needs an invoke activity. The port on the client side both sends the
request and receives the reply. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service

When the BPEL process service component is on the service side of a synchronous
transaction, it needs a receive activity to accept the incoming request, and a reply
activity to return either the requested information or an error message (a fault; f1 in
Figure 5-2) defined in the WSDL.

For more information about synchronous interactions, see Chapter 7, "Invoking a
Synchronous Web Service from a BPEL Process."

5.3 Introduction to Asynchronous Interactions

In an asynchronous interaction, a client sends a request to a service and waits until the
service replies. Example 5-3 shows the portType and operation part of the BPEL
process WSDL file for this environment.

Example 5-3 Asynchronous WSDL File

<wsdl:portType name="BPELProcessl">
<wsdl:operation name="process">
<wsdl:input message="client:BPELProcesslRequestMessage"/>
</wsdl:operation>
</wsdl:portType>

<wsdl:portType name="BPELProcesslCallback">
<wsdl:operation name="processResponse">
<wsdl:input message="client:BPELProcesslResponseMessage" />
</wsdl:operation>
</wsdl:portType>

Introduction to Interaction Patterns in a BPEL Process 5-3

Introduction to Asynchronous Interactions with a Timeout

Figure 5-3 provides an overview.

Figure 5-3 Asynchronous Interaction

Client BPEL Process Service BPEL Process
WSDL
PartnerLink
Call .
service —l <receive>
<invoke>
Get .
response o — <invoke>
<receive>

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of an asynchronous
transaction, it needs an invoke activity to send the request and a receive activity to
receive the reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

As with a synchronous transaction, when the BPEL process service component is on
the service side of an asynchronous transaction, it needs a receive activity to accept the
incoming request and an invoke activity to return either the requested information or a
fault. Note the difference between this and responding from a synchronous BPEL
process: a synchronous BPEL process uses a reply activity to respond to the client and
an asynchronous service uses an invoke activity.

For more information about asynchronous interactions, see Chapter 8, "Invoking an
Asynchronous Web Service from a BPEL Process."

5.4 Introduction to Asynchronous Interactions with a Timeout

In an asynchronous interaction with a timeout (which you perform in BPEL with a
pick activity), a client sends a request to a service and waits until it receives a reply, or
until a certain time limit is reached, whichever comes first. For example, a client
requests a loan offer. If the client does not receive a loan offer reply within a specified
amount of time, the request is canceled. Figure 54 provides an overview.

5-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Asynchronous Interactions with a Notification Timer

Figure 5-4 Asynchronous Interaction with Timeout

Client BPEL Process Service BPEL Process
l WSDL
PartnerLink
Call
service — <receive>
<invoke>

'

<pick>
| | <4+ <invoke>
Wait for Time out
callback in 1M
<onMessage> <onAlarm>
-L-_'--| FTo T T
| ogic | Logic
| Post : | Post i
| Callback_l | Timeout_l

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of an asynchronous
transaction with a timeout, it needs an invoke activity to send the request and a pick
activity with two branches: an onMessage branch and an onAlarm branch. If the reply
comes after the time limit has expired, the message goes to the dead letter queue. As
with all partner activities, the WSDL file defines the interaction.

For more information about asynchronous interactions with a timeout, see
Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or
Waiting."

BPEL Process Service Component as the Service

The behavior of the BPEL process service component as a service matches the behavior
with the asynchronous interaction with the BPEL process service component as the
service.

5.5 Introduction to Asynchronous Interactions with a Notification Timer

In an asynchronous interaction with a notification time, a client sends a request to a
service and waits for a reply, although a notification is sent after a timer expires. The
client continues to wait for the reply from the service even after the timer has expired.
Figure 5-5 provides an overview.

Introduction to Interaction Patterns in a BPEL Process 5-5

Introduction to One Request, Multiple Responses

Figure 5-5 Asynchronous Interaction with a Notification Time

BPEL Process

Service BPEL Process

<scope>

WSDL
PartnerLink

Call — <receive>

service
<invoke>

Wait for .
Caellllback <+ <invoke>

<receive>

<onAlarm>

Notify
Someone

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing an invoke activity to send the request, and a receive
activity to accept the reply. The onAlarm handler of the scope activity has a time limit
and instructions on what to do when the timer expires. For example, wait 30 minutes,
then send a warning indicating that the process is taking longer than expected. As
with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service

The behavior for the BPEL process service component as the service matches the
behavior with the asynchronous interaction with the BPEL process service component
as the service.

5.6 Introduction to One Request, Multiple Responses

In this interaction type, the client sends a single request to a service and receives
multiple responses in return. For example, the request can be to order a product
online, and the first response can be the estimated delivery time, the second response a
payment confirmation, and the third response a notification that the product has
shipped. In this example, the number and types of responses are expected. Figure 5-6
provides an overview.

5-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to One Request, One of Two Possible Responses

Figure 5-6 One Request, Multiple Responses

Client BPEL Process vglse[r)llt- Service BPEL Process
i
Call PartnerLink _
service — <receive>
<invoke>
<sequence> <sequence>
<receive> <4 <invoke>
<receive> <4 <invoke>
<receive> <4 <invoke>
</sequence> </sequence>

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it
needs an invoke activity to send the request, and a sequence activity with three receive
activities, one for each reply. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service

The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

5.7 Introduction to One Request, One of Two Possible Responses

In an interaction using one request and one of two possible responses, the client sends
a single request to a service and receives one of two possible responses. For example,
the request can be to order a product online, and the first response can be either an
in-stock message or an out-of-stock message. Figure 5-7 provides an overview.

Introduction to Interaction Patterns in a BPEL Process 5-7

Introduction to One Request, a Mandatory Response, and an Optional Response

Figure 5-7 One Request, One of Two Possible Responses

Client BPEL Process

|

Service BPEL Process

!

WSDL
PartnerLink
Call
service —p <receive>
<invoke>
<pick> l <switch> l
| | I |
<onMessage A> <onMessage B> Item in stock? <otherwise>
.'"{"- .'"{"- g A .'"{"- .'"{"-
. . sg invok invok
| | <invoke> | <invoke> |
: Logic A l : Logic B l Mor 5 — : MsgA | | MsgB |
_____ 4 L ___14 s9 L ___4 L ___1
v v

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it
needs the following:

= Aninvoke activity to send the request

= A pick activity with two branches: one onMessage for the in-stock response and
instructions on what to do if an in-stock message is received

= A second onMessage for the out-of-stock response and instructions on what to do
if an out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

For more information about interactions using one request and one of two possible
responses, see Section 14.2, "Creating a Pick Activity to Select Between Continuing a
Process or Waiting."

BPEL Process Service Component as the Service

The BPEL service needs a receive activity to accept the message from the client, and a
switch activity with two branches, one with an invoke activity sending the in-stock
message if the item is available, and a second branch with an invoke activity sending
the out-of-stock message if the item is not available.

5.8 Introduction to One Request, a Mandatory Response, and an Optional

Response

In this type of interaction, the client sends a single request to a service and receives one
or two responses. Here, the request is to order a product online. If the product is
delayed, the service sends a message letting the customer know. In any case, the
service always sends a notification when the item ships. Figure 5-8 provides an
overview.

5-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Partial Processing

Figure 5-8 One Request, a Mandatory Response, and an Optional Response

Client BPEL Process Service BPEL Process

<scope>

WSDL l
PartnerLink

Call —p <receive>

service

<invoke>
Walt for <switch> l
I
Callback (m:‘?b':) < l |
<receive Msg B>
Delay? <otherwise>
<onMessage A> * *
Notify U VT ! F !
otify User 1 _s |
of Delay | <Il\rlll‘s’glf> : | :
L4 L4
I When
| product |
| ships...

BPEL Process Service Component as the Client

When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing the invoke activity to send the request, and a receive
activity to accept the mandatory reply. The onMessage handler of the scope activity is
set to accept the optional message and instructions on what to do if the optional
message is received (for example, notify you that the product has been delayed). The
client BPEL process service component waits to receive the mandatory reply. If the
mandatory reply is received first, the BPEL process service component continues
without waiting for the optional reply. As with all partner activities, the WSDL file
defines the interaction.

BPEL Process Service Component as the Service

The BPEL service needs a scope activity containing the receive activity and an invoke
activity to send the mandatory shipping message, and the scope’s onAlarm handler to
send the optional delayed message if a timer expires (for example, send the delayed
message if the item is not shipped in 24 hours).

5.9 Introduction to Partial Processing

In partial processing, the client sends a request to a service and receives an immediate
response, but processing continues on the service side. For example, the client sends a
request to purchase a vacation package, and the service sends an immediate reply

confirming the purchase, then continues on to book the hotel, the flight, the rental car,

Introduction to Interaction Patterns in a BPEL Process 5-9

Introduction to Multiple Application Interactions

and so on. This pattern can also include multiple shot callbacks, followed by
longer-term processing. Figure 5-9 provides an overview.

Figure 5-9 Partial Processing

Client BPEL Process Service BPEL Process
WSDL
PartnerLink
Call

service — <receive>

<invoke>
<receive> — <receive>
<invoke> = —r <invoke>
<receive> — <receive>

<receive> g
BPEL Process Service Component as the Client

In this case, the BPEL client is simple; it needs an invoke activity for each request and a
receive activity for each reply for asynchronous transactions, or just an invoke activity
for each synchronous transaction. Once those transactions are complete, the remaining
work is handled by the service. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service

The BPEL service needs a receive activity for each request from the client, and an
invoke activity for each response. Once the responses are finished, the BPEL process
service component as the service can continue with its processing, using the
information gathered in the interaction to perform the necessary tasks without any
further input from the client.

5.10 Introduction to Multiple Application Interactions

In some cases, there are more than two applications involved in a transaction, for
example, a buyer, seller, and shipper. In this case, the buyer sends a request to the
seller, the seller sends a request to the shipper, and the shipper sends a notification to
the buyer. This A-to-B-to-C-to-A transaction pattern can handle many transactions at
the same time. Therefore, a mechanism is required for keeping track of which message
goes where. Figure 5-10 provides an overview.

As with all partner activities, the WSDL file defines the interaction.

5-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Multiple Application Interactions

Figure 5-10 Multiple Party Interactions

BPEL Process A BPEL Process B
Buyer WSDL Seller
PartnerLink
<invoke> <receive>
5 — A
<receive> <invoke>
c <+ c

WSDL WSDL
PartnerLink PartnerLink

BPEL Process C
Shipper

<receive>

v <«

<invoke>
A

This kind of coordination can be managed using WS-Addressing or correlation sets.
For more information about both, see Chapter 8, "Invoking an Asynchronous Web
Service from a BPEL Process."

Introduction to Interaction Patterns in a BPEL Process 5-11

Introduction to Multiple Application Interactions

5-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6

Manipulating XML Data in a BPEL Process

This chapter describes how to manipulate XML data in a BPEL process service
component. This chapter provides a variety of examples. Topics include how to work
with variables, sequences, and arrays; use XPath expressions; and perform tasks such
as mathematical calculations. Supported specifications are also referenced.

This chapter includes the following sections:

Section 6.1, "Introduction to Manipulating XML Data in BPEL Processes"
Section 6.2, "Delegating XML Data Operations to Data Provider Services"
Section 6.3, "Using Standalone SDO-based Variables"

Section 6.4, "Initializing a Variable with Expression Constants or Literal XML"
Section 6.5, "Copying Between Variables"

Section 6.6, "Accessing Fields in Element and Message Type Variables"
Section 6.7, "Assigning Numeric Values"

Section 6.8, "Using Mathematical Calculations with XPath Standards"
Section 6.9, "Assigning String Literals"

Section 6.10, "Concatenating Strings"

Section 6.11, "Assigning Boolean Values"

Section 6.12, "Assigning a Date or Time"

Section 6.13, "Manipulating Attributes"

Section 6.14, "Manipulating XML Data with bpelx Extensions"

Section 6.15, "Validating XML Data"

Section 6.16, "Using Element Variables in Message Exchange Activities in BPEL
2.0"

Section 6.17, "Mapping WSDL Message Parts in BPEL 2.0"

Section 6.18, "Importing Process Definitions in BPEL 2.0"

Section 6.19, "Manipulating XML Data Sequences That Resemble Arrays"
Section 6.20, "Converting from a String to an XML Element"

Section 6.21, "Understanding Document-Style and RPC-Style WSDL Differences”
Section 6.22, "Manipulating SOAP Headers in BPEL"

Section 6.23, "Declaring Extension Namespaces in BPEL 2.0"

Manipulating XML Data in a BPEL Process 6-1

Introduction to Manipulating XML Data in BPEL Processes

Note: Most of the examples in this chapter assume that the WSDL
file defining the associated message types is document-literal style
rather than the RPC style. There is a difference in how XPath query
strings are formed for RPC-style WSDL definitions. If you are working
with a type defined in an RPC WSDL file, see Section 6.21,
"Understanding Document-Style and RPC-Style WSDL Differences."

For Oracle BPEL Process Manager samples, visit the following URL:

https://socasamples.samplecode.oracle.com

6.1 Introduction to Manipulating XML Data in BPEL Processes

This section provides an introduction to using XML data in BPEL processes.

6.1.1 XML Data in BPEL

In a BPEL process service component, most pieces of data are in XML format. This
includes the messages passed to and from the BPEL process service component, the
messages exchanged with external services, and the local variables used by the
process. You define the types for these messages and variables with the XML schema,
usually in one of the following;:

» Web Services Description Language (WSDL) file for the flow
= WSDL files for the services it invokes
= XSD file referenced by those WSDL files

Therefore, most variables in BPEL are XML data, and any BPEL process service
component uses much of its code to manipulate these XML variables. This typically
includes performing data transformation between representations required for
different services, and local manipulation of data (for example, to combine the results
from several service invocations).

BPEL also supports service data object (SDO) variables, which are not in an XML
format, but rather in a memory structure format.

6.1.2 Data Manipulation and XPath Standards

The starting point for data manipulation in BPEL is the assign activity, which builds on
the XPath standard. XPath queries, expressions, and functions play a large part in this
type of manipulation.

In addition, more advanced methods are available that involve using XQuery, XSLT, or
Java, usually to do more complex data transformation or manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It
summarizes the key building blocks used in various combinations and provides
examples. The remaining sections in this chapter discuss and illustrate how to apply
these building blocks to perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to
calculate the value of an expression and store it in a variable. A copy element within
the activity specifies the source and target of the assignment (what to copy from and
to), which must be of compatible types.

6-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Manipulating XML Data in BPEL Processes

Example 6-1 shows the formal syntax for BPEL version 1.1, as described in the
Business Process Execution Language for Web Services Specification Version 1.1:

Example 6-1 Assign Activity for BPEL 1.1

<assign standard-attributes>
standard-elements
<copy>
from-spec
to-spec
</copy>
</assign>

Example 6-2 shows the formal syntax for BPEL version 2.0, as described in the Web
Services Business Process Execution Language Specification Version 2.0. The
keepSrcElementName attribute specifies whether the element name of the
destination (as selected by the to-spec) is replaced by the element name of the source
(as selected by the from-spec) during the copy operation. When
keepSrcElementName is set to no (the default value), the name (that is, the
namespace name and local name properties) of the original destination element is
used as the name of the resulting element. When keepSrcElementName is set to yes,
the source element name is used as the name of the resulting destination element.

Example 6-2 Assign Activity for BPEL 2.0

<assign validate="yes|no"? standard-attributes>
standard-elements
(
<copy keepSrcElementName:“yes\no“? ignoreMissingFromData:"yes|no"?>
from-spec
to-spec
</copy>

</assign>

This syntax is described in detail in both specifications. The from-spec and to-spec
typically specify a variable or variable part, as shown in Example 6-3:

Example 6-3 from-spec and to-spec Attributes
<assign>
<copy>
<from variable="cl" part="address"/>
<to variable="c3"/>
</copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy Rules
dialog that includes a From section and a To section. This reflects the preceding BPEL
source code syntax.

XPath standards play a key role in the assign activity. Brief examples are shown here
as an introduction; examples with more context and explanation are provided in the
sections that follow.

= XPath queries

Manipulating XML Data in a BPEL Process 6-3

Introduction to Manipulating XML Data in BPEL Processes

An XPath query selects a field within a source or target variable part. The from or
to clause can include a query attribute whose value is an XPath query string.
Example 64 provides an example:

Example 6-4 query Attribute

<from variable="input" part="payload"
query="/p:CreditFlowRequest/p:ssn"/>

The value of the query attribute must be a location path that selects exactly one
node. You can find further details about the query attribute and XPath standards
syntax in the Business Process Execution Language for Web Services Specification
Version 1.1 (section 14.3) or Web Services Business Process Execution Language
Specification Version 2.0 (section 8.4), and the XML Path Language (XPath)
Specification, respectively.

= XPath expressions

You use an XPath expression (specified in an expression attribute in the £rom
clause) to indicate a value to be stored in a variable. For example:

<from expression="100"/>

The expression can be any general expression (that is, an XPath expression that
evaluates to any XPath value type). Similarly, the value of an expression attribute
must return exactly one node or one object only when it is used in the £rom clause

within a copy operation. For more information about XPath expressions, see
section 9.1.4 of the XML Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:
n Core XPath functions

XPath supports a large number of built-in functions, including functions for string
manipulation (such as concat), numeric functions (like sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the
XML Path Language (XPath) Specification.

s BPEL XPath extension functions

BPEL adds several extension functions to the core XPath core functions, enabling
XPath expressions to access information from a process.

— For BPEL 1.1, the extensions are defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/
and indicated by the prefix bpws:

<from expression= "bpws:getVariableData('input', 'payload',6 '/p:value') +

1"/>

For more information, see sections 9.1 and 14.1 of the Business Process Execution
Language for Web Services Specification Version 1.1. For more information about
getVariableData, see Section B.2.56.2, "getVariableData."

— For BPEL 2.0, the extensions are also defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/.
However, the prefix is bpel:

<from>bpel :getVariableProperty ('input', 'propertyName')</from>

6-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Delegating XML Data Operations to Data Provider Services

For more information, see section 8.3 of the Web Services Business Process
Execution Language Specification Version 2.0. For more information about
getVariableProperty, see Section B.2.56.4, "getVariableProperty (For
BPEL 2.0)."

s Oracle BPEL XPath extension functions

Oracle provides some additional XPath functions that use the capabilities built
into BPEL and XPath standards for adding new functions.

These functions are defined in the namespace
http://schemas.oracle.com/xpath/extension and indicated by the
prefix ora:.

s Custom functions

Oracle BPEL Process Manager functions are defined in the
bpel-xpath-functions-config.xml and placed inside the orabpel. jar
file. For more information, see Section B.7, "Creating User-Defined XPath
Extension Functions" and Oracle Fusion Middleware Administrator’s Guide for Oracle
SOA Suite and Oracle BPM Suite.

Sophisticated data manipulation can be difficult to perform with the BPEL assign
activity and the core XPath functions. However, you can perform complex data
manipulation and transformation by using XSLT, Java, or a bpelx operation under an
assign activity (See Section 6.14, "Manipulating XML Data with bpelx Extensions") or
as a web service. For XSLT, Oracle BPEL Process Manager includes XPath functions
that execute these transformations.

For more information about XPath and XQuery transformation code examples, see
Chapter 38, "Creating Transformations with the XSLT Mapper."

Note: Passing large schemas through an assign activity can cause
Oracle JDeveloper to freeze up and run low on memory if you
right-click the target or source payload node in the Edit Assign dialog
and select Expand All Child Nodes. As a workaround, manually
expand the payload elements.

6.2 Delegating XML Data Operations to Data Provider Services

You can specify BPEL data operations to be performed by an underlying data provider
service through use of the entity variable. The data provider service performs the data
operations in a data store behind the scenes and without use of other data store-related
features provided by Oracle SOA Suite (for example, the database adapter). This action
enhances Oracle SOA Suite runtime performance and incorporates native features of
the underlying data provider service during compilation and runtime.

Note: This feature is only supported in BPEL 1.1 projects.

The entity variable can be used with an Oracle Application Development Framework
(ADF) Business Component data provider service using SDO-based data.

In releases before 11g, variables and messages exchanged within a BPEL business
process were a disconnected payload (a snapshot of data returned by a web service)
placed into an XML structure. In some cases, the user required this type of fit. In other
cases, this fit presented challenges.

Manipulating XML Data in a BPEL Process 6-5

Delegating XML Data Operations to Data Provider Services

The entity variable addresses the following challenges of previous releases:
= Extensive data conversion

If the underlying data was not in XML form, data conversion (for example,
translating delimited text to XML) was required. If the underlying size of the data
was large, the processing potentially impacted performance.

= Stale snapshot data

Variables (including WSDL messages) in BPEL processes were disconnected
payload. In some cases, this was required. In other cases, you wanted a variable to
represent the most recent data being modified by other applications outside Oracle
BPEL Process Manager. This meant the disconnected data model provided a stale
data set that did not fit all needs. The snapshot also duplicated data, which
impacted performance when the data size was large.

s Loss of native data behavior

Some data conversion implementation required data structure enforcement or
business data logic beyond the XML schema. For example, the start date needed to
be smaller than the end date. When the variable was a disconnected payload,
validation occurred only during related web service invocation. Optionally
performing the extra business data logic after certain operations, but before web
service invocation, was sometimes preferred.

To address these challenges with Release 11g, you create an entity variable during
variable declaration. An entity variable acts as a data handle to access and plug in
different data provider service technologies behind the scenes. During compilation
and runtime, Oracle BPEL Process Manager delegates data operations to the
underlying data provider service.

Table 6-1 provides an example of how data conversion was performed in previous
releases (using the database adapter as an example) and in release 11g with the entity
variable.

Table 6—1 Data Manipulation Capabilities in Previous and Current Releases

10.1.x Releases 11g Release When Using the Entity Variable

Data operations such as explicitly loading and Data operations such as loading and saving
saving data were performed by the database = data are performed automatically by the data
adapter in Oracle BPEL Process Manager. All provider service (the Oracle ADF Business
data (for example, of a purchase order) was Component application), without asking you
saved in the database dehydration store. to code any service invocation.

Oracle BPEL Process Manager stores a key (for
example, purchase order ID (POID)) that
points to this data. Oracle BPEL Process
Manager fetches the key when access to data
is requested (the bind entity activity does this).
You must explicitly request the data to be
bound using the key. Any data changes are
persisted by the data provider service in a
database that can be different from the
dehydration store database. This prevents data

duplication.
Data in variables was in document object Data in variables is in SDO form, which
model (DOM) form provides for a simpler conversion process than

DOM, especially when the data provider
service understands SDO forms.

6-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Delegating XML Data Operations to Data Provider Services

Note: Only BPEL process service components currently allow the
use of SDO-formed variables. If your composite application has an
Oracle Mediator service component wired with an SDO-based Java
binding component reference, the data form of the variable defaults to
DOM. In addition, the features described for 10.1.x releases in

Table 6-1 are still supported in release 11g.

The WebLogic Fusion Order Demo application describes use of the entity variable.

6.2.1 How to Create an Entity Variable

This section describes how to create an entity variable and a binding key in Oracle
JDeveloper.

In 10.1.x releases of Oracle BPEL Process Manager, all variable data was in DOM form.
With release 11g, variable data in SDO form is also supported. DOM and SDO
variables in BPEL process service components are implicitly converted to the required
forms. For example, an Oracle BPEL process service component using DOM-based
variables can automatically convert these variables as required to SDO-based variables
in an assign activity, and vice versa. Both form types are defined in the XSD schema
file. No user intervention is required.

Entity variables also support SDO-formed data. However, unlike the DOM and SDO
variables, the entity variable with SDO-based data enables you to bind a unique key
value to data (for example, a purchase order). Only the key is stored in the
dehydration store; the data requiring conversion is stored with the service of the
Oracle ADF Business Component application. The key points to the data stored in the
service. When the data is required, it is fetched from the data provider service and
placed into memory. The process occurs in two places: the bind entity activity and the
dehydration store. For example, when Oracle BPEL Process Manager rehydrates, it
stores only the key for the entity variable; when it wakes up, it does an implicit bind to
get the current data.

6.2.1.1 Understanding How SDO Works in the Inbound Direction

The SDO binding component service provides the outside world with an entry point
to the composite application, as shown in Figure 6-1.

Figure 6—1 Inbound Direction

SOA Composite Application

BPEL
Process Service
Component

ADF BC Application SDO
Using N Binding
SDO-Formed Component
Data Service

You use the SOA Composite Editor and Oracle BPEL Designer to perform the
following tasks:

Manipulating XML Data in a BPEL Process 6-7

Delegating XML Data Operations to Data Provider Services

s Define an SDO binding component service and a BPEL process service component
in the composite application.

s Connect (wire) the SDO service and BPEL process service component.
= Define the details of the BPEL process service component.

For more information about using the SOA Composite Editor, see Chapter 2,
"Developing SOA Composite Applications with Oracle SOA Suite."

6.2.1.2 Understanding How SDO Works in the Outbound Direction

The SDO binding component reference enables messages to be sent from the
composite application to Oracle ADF Business Component application external
partners in the outside world, as shown in Figure 6-2.

Figure 62 Outbound Direction

SOA Composite Application

BPEL
Process Service
Component
(using entity
variable)

[SDO Binding j=»| ADF BC Application
B ._ﬂ.- Component Using
= i -e Reference SDO-Formed
i Data
Pass key to
fetch data

v

When the Oracle ADF Business Component application is the external partner link to
the outside world, there is no SDO binding component reference in the SOA
Composite Editor that you drag into the composite application to create outbound
communication. Instead, communication between the composite application and the
Oracle ADF Business Component application occurs as follows:

s The Oracle ADF Business Component application is deployed and automatically
registered as an SDO service in the Service Infrastructure

s Oracle JDeveloper is used to browse for and discover this application as an
ADE-BC service and create a partner link connection.

s The composite.xml file is automatically updated with reference details (the
binding.adf property) when the Oracle ADF Business Component application
service is discovered.

6.2.1.3 Creating an Entity Variable and Choosing a Partner Link

You now create an entity variable and select a partner link for the Oracle ADF Business
Component application. The following example describes how the OrderProcessor
BPEL process service component receives an ID for an order by using a bind entity
activity to point to order data in an Oracle ADF Business Component data provider
service in the WebLogic Fusion Order Demo application.

To create an entity variable and choose a partner link:

1. Go to the Structure window of the BPEL process service component in Oracle
JDeveloper.

6-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Delegating XML Data Operations to Data Provider Services

2. Right-click the Variables folder and select Expand All Child Nodes.

3. Inthe second Variables folder, right-click and select Create Variable.
The Create Variable dialog appears.

4. In the Name field, enter a name.

5. Click the Entity Variable checkbox and select the Search icon to the right of the
Partner Link field.

The Partner Link Chooser dialog appears with a list of available services,
including the SDO service called ADF-BC Service.

6. Browse for and select the service for the Oracle ADF Business Component
application.

7. Click OK to close the Partner Link Chooser and Create Variable dialogs.

The dialog looks as shown in Figure 6-3.

Figure 6-3 Create Variable Dialog

vl

& Edit Variable - g0rderinfoVariable

General |

Tame: |gOrderInf0\n'ariable |

Type

) Type

(") Message Type
(%) Element |{,|'0rac|e,l'Fodemo,l'storeFront,l'store,l'queries,l'com| %
Entity Yariable
|St0reFr0ntService | ‘\%

6.2.1.4 Creating a Binding Key

You now create a key to point to the order data in the Oracle ADF Business
Component data provider service.

To create a binding key:
1. In the Component Palette for a BPEL 1.1 project, expand Oracle Extensions.

2. Drag a Bind Entity activity into your BPEL process service component.
The Bind Entity dialog appears.

3. In the Name field, enter a name.

4. To the right of the Entity Variable field, click the Search icon.
The Variable Chooser dialog appears.

5. Select the entity variable created in Section 6.2.1.3, "Creating an Entity Variable
and Choosing a Partner Link" and click OK.

6. Inthe Unique Keys section, click the Add icon.

The Specify Key dialog appears. You use this dialog to create a key for retrieving
the order ID from the Oracle ADF Business Component data provider service.

7. Enter the details described in Table 6-2 to define the binding key:

Manipulating XML Data in a BPEL Process 6-9

Delegating XML Data Operations to Data Provider Services

Table 6—2 Specify Key Dialog Fields and Values

Field Value

Key Local Part Enter the local part of the key.

Key Namespace URI Enter the namespace URI for the key.

Key Value Enter the key value expression. This expression must match the
type of a key. The following examples show expression value
keys for a POID key:

. SinputMsg.payload/tns:poid

n bpws :getVariableData (' inputmsg’, ‘payload’, 'tns:
poid’)

The POID key for an entity variable typically comes from

another message. If the type of POID key is an integer and the

expression result is a string of ABC, the string-to-integer fails and

the bind entity activity also fails at runtime.

Figure 6-4 shows the Specify Key dialog after completion.

Figure 6—4 Specify Key Dialog

& Specify Key &|

Key QName
Key Local Part: |OrderId | (x)

Key Mamespace URI: |,l’oracle,l'F0demo,l'storefront,l’store,l’queries,l’common,l' |

Key Yalue: |bpws:getVariabIeData('input\-'ariable','payload',',l'client:process,l'client:orderld') |

| Help | | Ok || Cancel |

8. Click OK to close the Specify Key dialog.

A name-pair value appears in the Unique Keys table, as shown in Figure 6-5.
Design is now complete.

Figure 6-5 Bind Entity Dialog

.BlndEnﬂty R® '

| General rSkip Condition |

Mame: |find0rderById |
Entity Yariable: |g0rderInf0\n'ariable | Q
Unique Keys: * / x

Key QMName Walue Expression

{loracleffodemoystor... bpws:getYariableDatalinputtariable’,'pavioad', ..

Help Apply || oK J| Cancel

6-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Standalone SDO-based Variables

9. Click OK to close the Bind Entity dialog.

After the Bind Entity activity is executed at runtime, the entity variable is ready to
be used.

For more information about using SDOs, see Oracle Fusion Middleware Fusion
Developer’s Guide for Oracle Application Development Framework. This guide describes
how to expose application modules as web services and publish rows of view data
objects as SDOs. The application module is the ADF framework component that
encapsulates business logic as a set of related business functions.

6.3 Using Standalone SDO-based Variables

Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based
variables. The major difference is that the underlying data form is SDO-based, instead
of DOM-based. Therefore, SDO-based variables can use some SDO features such as
Java API access, an easier-to-use update API, and the change summary. However, SDO
usage is also subject to some restrictions that do not exist with XML-DOM-based
variables. The most noticeable restriction is that SDO only supports a small subset of
XPath expressions.

6.3.1 How to Declare SDO-based Variables

The syntax for declaring an SDO-based variable is similar to that for declaring BPEL
variables. Example 6-5 provides details.

Example 6-5 SDO-based Variable Declaration

<variable name="deptVar_s" element="hrtypes:dept" />
<variable name="deptVar_v" element="hrtypes:dept" bpelx:sdoCapable="false" />

If you want to override the automatic detection, use the
bpelx:sdoCapable="true|false" switch. For example, variable deptvar_v
described in Example 6-5 is a regular DOM-based variable. Example 66 provides an
example of the schema.

Example 6-6 XSD Sample

<xsd:element name="dept" type="Dept"/>
<xsd:complexType name="Dept"
sdoJava:instanceClass="sdo.sample.service. types.Dept">
<xsd:annotation>
<xsd:appinfo source="Key"
xmlns="http://xmlns.oracle.com/bcd]j/service/metadata/">
<key>
<attribute>Deptno</attribute>
</key>
<fetchMode>minimal</fetchMode>
</xsd:appinfo>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="Deptno" type="xsd:integer" minOccurs="0"/>
<xsd:element name="Dname" type="xsd:string" minOccurs="0"
nillable="true"/>
<xsd:element name="Loc" type="xsd:string" minOccurs="0" nillable="true"/>
<xsd:element name="Emp" type="Emp" minOccurs="0" maxOccurs="unbounded"
nillable="true"/>
</xsd:sequence>
</xsd:complexType>

Manipulating XML Data in a BPEL Process 6-11

Using Standalone SDO-based Variables

6.3.2 How to Convert from XML to SDO

Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can
interchange the usage of DOM-based and SDO-based variables within the same
business process, even within the same expression. The Oracle BPEL Process Manager
data framework automatically converts back and forth between DOM and SDO forms.

By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager
enables some XPath features (for example, variable reference and function calls) that
the basic SDO specification does not support. However, there are other limitations on
the XPath used with SDO-based variables (for example, there is no support for and,
or, and not).

Example 6-7 provides a simple example of converting from XML to SDO.

Example 6-7 XML-to-SDO Conversion

<assign>
<copy>
<from>
<ns0:dept xmlns:nsO0="http://sdo.sample.service/types/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<ns0:Deptno>10</ns0:Deptno>
<ns0:Dname>ACCOUNTING</ns0 : Dname>
<ns0:Loc>NEW YORK</ns0:Loc>
<ns0: Emp>
<ns0:Empno>7782</ns0: Empno>
<ns0:Ename>CLARK</ns0: Ename>
<ns0:Job>MANAGER</ns0: Job>
<ns0:Mgr>7839</ns0:Mgr>
<ns0:Hiredate>1981-06-09</ns0:Hiredate>
<ns0:5al1>2450</ns0:Sal>
<ns0:Deptno>10</ns0:Deptno>
</ns0:Emp>
<ns0:Emp>
<ns0:Empno>7839</ns0 : Empno>
<ns0:Ename>KING</ns0: Ename>
<ns0:Job>PRESIDENT</ns0:Job>
<ns0:Hiredate>1981-11-17</ns0:Hiredate>
<ns0:5al1>5000</ns0:Sal>
<ns0:Deptno>10</ns0:Deptno>
</ns0:Emp>
<ns0: Emp>
<ns0:Empno>7934</ns0: Empno>
<ns0:Ename>MILLER</ns0: Ename>
<ns0:Job>CLERK</ns0:Job>
<ns0:Mgr>7782</ns0:Mgr>
<ns0:Hiredate>1982-01-23</ns0:Hiredate>
<ns0:5a1>1300</ns0:Sal>
<ns0:Deptno>10</ns0:Deptno>
</ns0:Emp>
</ns0:dept>
</from>
<to variable="deptVar_s" />
</copy>
</assign>

Example 6-8 provides an example of copying from an XPath expression of an SDO
variable to a DOM variable.

6-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Initializing a Variable with Expression Constants or Literal XML

Example 6-8 Copy from an XPath Expression of an SDO Variable to a DOM Variable

<assign>
<!-- copy from an XPath expression of an SDO variable to DOM variable -->
<copy>
<from expression="S$deptVar_s/hrtypes:Emp[2]" />
<to variable="empVar_v" />
</copy>
<!-- copy from an XPath expression of an DOM variable to SDO variable -->
<copy>
<from expression="S$deptVar_v/hrtypes:Emp[2]" />
<to variable="empVar_s" />
</copy>
<!-- insert a DOM based data into an SDO variable -->

<bpelx:insertAfter>
<bpelx:from variable="empVar_v" />
<bpelx:to variable="deptVar_s" query="hrtypes:Emp" />
</bpelx:insertAfter>
<!-- insert a SDO based data into an SDO variable at particular location,
no XML conversion is needed -->
<bpelx:insertBefore>
<bpelx:from expression="$deptVar_s/hrtypes:Emp[hrtypes:Sal = 1300]" />
<bpelx:to variable="deptVar_s" query="hrtypes:Emp[6]" />
</bpelx:insertBefore>
</assign>

Example 6-9 provides an example of removing a portion of SDO data.

Example 6-9 SDO Data Removal

<assign>
<bpelx:remove>
<bpelx:target variable="deptVar_s" query="hrtypes:Emp[2]" />
</bpelx:remove>
</assign>

Note: The bpelx:append operation is not supported for
SDO-based variables for the following reasons:

s The <copy> operation on an SDO-based variable has smart
update capabilities (for example, you do not have to perform a
<bpelx:append> before the <copy> operation).

s The SDO data object is metadata driven and does not generally
support adding a new property arbitrarily.

6.4 Initializing a Variable with Expression Constants or Literal XML

It is often useful to assign literal XML to a variable in BPEL, for example, to initialize a
variable before copying dynamic data into a specific field within the XML data content
for the variable. This is also useful for testing purposes when you want to hard code
XML data values into the process.

6.4.1 How To Assign a Literal XML Element

Example 6-10 assigns a literal result element to the payload part of the output
variable:

Manipulating XML Data in a BPEL Process 6-13

Copying Between Variables

Example 6-10 Literal Element Assignment

<assign>
<!-- copy from literal xml to the variable -->
<copy>
<from>
<result xmlns="http://samples.otn.com">
<name/>
<symbol/>
<price>12.3</price>
<quantity>0</quantity>
<approved/>
<message/>
</result>
</from>
<to variable="output" part="payload"/>
</copy>
</assign>

6.5 Copying Between Variables

When you copy between variables, you copy directly from one variable (or part) to
another variable of a compatible type, without needing to specify a particular field
within either variable. In other words, you do not need to specify an XPath query.

6.5.1 How to Copy Between Variables

Example 6-11 shows two assignments being performed, first copying between two
variables of the same type and then copying a variable part to another variable with
the same type as that part.

Example 6-11 Copying Between Variables

<assign>
<copy>
<from variable="cl"/>
<to variable="c2"/>
</copy>
<copy>
<from variable="cl" part = "address"/>
<to variable="c3"/>
</copy>
</assign>

The BPEL file defines the variables shown in Example 6-12:

Example 6—12 Variable Definition

<variable name="cl" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="y:address"/>

The WSDL file defines the person message type shown in Example 6-13:

Example 6—-13 Message Type Definition

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
<part name="full-name" type="xsd:string"/>
<part name="address" element="x:address"/>

</message>

6-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Accessing Fields in Element and Message Type Variables

For more information about this code example, see Section 9.3.2 of the Business Process
Execution Language for Web Services Specification Version 1.1. For BPEL 2.0, see Section
8.4.4 of Web Services Business Process Execution Language Specification Version 2.0 for a
similar example.

For more information, see Section A.2.2, "Assign Activity."

6.5.2 Initializing Variables with an Inline from-spec in BPEL 2.0

A variable can optionally be initialized by using an inline £rom-spec. Click the
Initialize tab in the Create Variable dialog in a BPEL 2.0 project to create this type of
variable.

Inline variable initializations are conceptually designed as a virtual sequence activity
that includes a series of virtual assign activities, one for each variable being initialized,
in the order in which they appear in the variable declarations. Each virtual assign
activity contains a single virtual copy operation whose £rom-spec is as given in the
variable initialization. The to-spec points to the variable being created.

Example 6-14 provides details.

Example 6—14 Variable Initialization with an Inline from-spec

<variables>
<variable name="tmp" element="tns:output">
<from>
<literal>
<output xmlns="http://samples.otn.com/bpel2.0/ch8.1">
<value>1000</value>
</output>
</literal>
</from>
</variable>
</variables>

For more information, see section 8.1 of Web Services Business Process Execution
Language Specification Version 2.0.

6.6 Accessing Fields in Element and Message Type Variables

Given the types of definitions present in most WSDL and XSD files, you must go down
to the level of copying from or to a field within part of a variable based on the element
and message type. This in turn uses XML schema complex types. To perform this
action, you specify an XPath query in the £rom or to clause of the assign activity.

6.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables

In Example 6-15, the ssn field is copied from the CreditFlow process’s input
message into the ssn field of the credit rating service’s input message.

Example 6-15 Field Copying Levels

<assign>
<copy>
<from variable="input" part="payload"
query="/tns:CreditFlowRequest/tns:ssn"/>
<to variable="crInput" part="payload" query="/tns:ssn"/>
</copy>

Manipulating XML Data in a BPEL Process 6-15

Accessing Fields in Element and Message Type Variables

</assign>

Example 6-16 shows how the BPEL file defines message type-based variables involved
in this assignment:

Example 6-16 BPEL File Definition - Message Type-Based Variables in BPEL 1.1

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>
<variable name="crInput"
messageType="services:CreditRatingServiceRequestMessage" />

The crInput variable is used as an input message to a credit rating service. Its
message type, CreditFlowRequestMessage, is defined in the
CreditFlowService.wsdl file, as shown in Example 6-17:

Example 6-17 CreditFlowRequestMessage Definition

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in the
CreditRatingService.wsdl file, as shown in Example 6-18:

Example 6—18 CreditRatingServiceRequestMessage Definition

<message name="CreditRatingServiceRequestMessage">
<part name="payload" element="tns:ssn"/>
</message>

Example 6-19 shows the BPEL 2.0 syntax for how the BPEL file defines message
type-based variables involved in the assignment in Example 6-15. Note that
/tns:CreditFlowRequest is not required.

Example 6-19 BPEL File Definition - Message Type-Based Variables in BPEL 2.0

<copy>
<from>$input.payload/tns:ssn</from>
<to>$crInput.payload</to>

</copy>

A BPEL process can also use element-based variables. Example 6-20 shows how to use
element-based variables in BPEL 1.1. The autoloan field is copied from the loan
application process’s input message into the customer field of a web service’s input
message.

Example 6-20 Field Copying Levels in BPEL 1.1

<assign>
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:
application/autoloan:customer"/>
<to variable="customer"/>
</copy>
</assign>

Example 6-21 shows how to use element-based variables in BPEL 2.0.

6-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Mathematical Calculations with XPath Standards

Example 6-21 Field Copying Levels in BPEL 2.0

<assign>
<copy>
<from>$input.payload/autoloan:application/autoloan:customer</from>
<to>$customer</to>
</copy>
</assign>

Example 6-22 shows how the BPEL file defines element-based variables involved in an
assignment:

Example 6-22 BPEL File Definition - Element-Based Variables

<variable name="customer" element="tns:customerProfile"/>

6.7 Assigning Numeric Values

You can assign numeric values in XPath expressions.

6.7.1 How to Assign Numeric Values

Example 6-23 shows how to assign an XPath expression with the integer value of 100.

Example 6-23 XPath Expression Assignment

<assign>
<!-- copy from integer expression to the variable -->
<copy>
<from expression="100"/>
<to variable="output" part="payload" query="/p:result/p:quantity"/>
</copy>
</assign>

6.8 Using Mathematical Calculations with XPath Standards

You can use simple mathematical expressions like the one in Section 6.8.1, "How To
Use Mathematical Calculations with XPath Standards," which increment a numeric
value.

6.8.1 How To Use Mathematical Calculations with XPath Standards

In Example 6-24, the BPEL XPath function getVariableData retrieves the value
being incremented. The arguments to getVariableData are equivalent to the
variable, part, and query attributes of the from clause (including the last two
arguments, which are optional).

Example 6-24 XPath Function getVariableData Retrieval of a Value

<assign>
<copy>
<from expression="bpws:getVariableData('input', 'payload',
'/p:value') + 1"/>
<to variable="output" part="payload" query="/p:result"/>
</copy>
</assign>

You can also use $variable syntax in BPEL 1.1, as shown in Example 6-25:

Manipulating XML Data in a BPEL Process 6-17

Assigning String Literals

Example 6-25 $variable Syntax Use in BPEL 1.1

<assign>
<copy>
<from expression="S$input.payload + 1"/>
<to variable="output" part="payload" query="/p:result"/>
</copy>
</assign>

Example 6-26 shows how to use $variable syntax in BPEL 2.0.

Example 6-26 $variable Syntax Use in BPEL 2.0

<assign>
<copy>
<from>$input.payload + 1</from>
<to>$output.payload</to>
</copy>
</assign>

6.9 Assigning String Literals

You can assign string literals to a variable in BPEL.

6.9.1 How to Assign String Literals

The code in Example 6-27 copies a BPEL 1.1 expression evaluating from the string
literal 'GE"' to the symbol field within the indicated variable part. (Note the use of the
double and single quotes.)

Example 6-27 Expression Copy in BPEL 1.1

<assign>
<!-- copy from string expression to the variable -->
<copy>
<from expression="'GE'"/>
<to variable="output" part="payload" query="/p:result/p:symbol"/>
</copy>
</assign>

Example 6-28 shows how to perform this expression in BPEL 2.0.

Example 6-28 Expression Copy in BPEL 2.0
<assign>
<copy>
<from>'GE'</from>
<to>$output.payload/p:symbol</from>
</copy>
</assign>

6.10 Concatenating Strings

Rather than copying the value of one string variable (or variable part or field) to
another, you can first perform string manipulation, such as concatenating several
strings.

6-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Assigning Boolean Values

6.10.1 How to Concatenate Strings

The concatenation is accomplished with the core XPath function named concat;in
addition, the variable value involved in the concatenation is retrieved with the BPEL
XPath function getvariableData. In Example 6-29, getVariableData fetches the
value of the name field from the input variable’s payload part. The string literal
'Hello ' is then concatenated to the beginning of this value.

Example 6-29 XPath Function getVariableData Fetch of Data

<assign>
<!-- copy from XPath expression to the variable -->
<copy>
<from expression="concat('Hello ',
bpws:getVariableData('input', 'payload', '/p:name'))"/>
<to variable="output" part="payload" query="/p:result/p:message"/>
</copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the
XML Path Language (XPath) Specification.

6.11 Assigning Boolean Values

You can assign boolean values with the XPath boolean function.

6.11.1 How to Assign Boolean Values

Example 6-30 provides an example of assigning boolean values in BPEL 1.1. The
XPath expression in the from clause is a call to XPath’s boolean function true, and
the specified approved field is set to true. The function false is also available.

Example 6-30 Boolean Value Assignment in BPEL 1.1

<assign>
<!-- copy from boolean expression function to the variable -->
<copy>
<from expression="true()"/>
<to variable="output" part="payload" query="/result/approved"/>
</copy>
</assign>

Example 6-31 provides an example of assigning boolean values in BPEL 2.0.

Example 6-31 Boolean Value Assignment in BPEL 2.0
<assign>
<copy>
<from>true()</from>
<to>$output.payload/approved</to>
</copy>
</assign>

The XPath specification recommends that you use the "true () " and "false() "
functions as a method for returning boolean constant values.

If you instead use "boolean (true) " or "boolean(false) ", the true or false
inside the boolean function is interpreted as a relative element step, and not as any
true or false constant. It attempts to select a child node named true under the

Manipulating XML Data in a BPEL Process 6-19

Assigning a Date or Time

current XPath context node. In most cases, the true node does not exist. Therefore, an
empty result node set is returned and the boolean () function in XPath 1.0 converts
an empty node set into a false result. This result can be potentially confusing.

6.12 Assigning a Date or Time

You can assign the current value of a date or time field by using the Oracle BPEL
XPath function getCurrentDate, getCurrentTime, or getCurrentDateTime,
respectively. In addition, if you have a date-time value in the standard XSD format,
you can convert it to characters more suitable for output by calling the Oracle BPEL
XPath function formatDate.

For related information, see section 9.1.2 of the Business Process Execution Language for
Web Services Specification Version 1.1 and section 8.3.2 of the Web Services Business
Process Execution Language Specification Version 2.0.

6.12.1 How to Assign a Date or Time

Example 6-32 shows an example that uses the function getCurrentDate in BPEL
1.1.

Example 6-32 Date or Time Assignment in BPEL 1.1

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
<copy>

<from expression="xpath20:getCurrentDate()"/>
<to variable="output" part="payload"
query="/invoice/invoiceDate" />
</copy>
</assign>

Example 6-33 shows an example that uses the function getCurrentDate in BPEL
2.0.

Example 6-33 Date or Time Assignment in BPEL 2.0

<assign>
<copy>
<from>xpath20:getCurrentDate ()</from>
<to>$output.payload/invoiceDate</to>
</copy>
</assign>

In Example 6-34, the formatDate function converts the date-time value provided in
XSD format to the string 'Jun 10, 2005' (and assigns it to the string field
formattedDate).

Example 6-34 formatDate Function in BPEL 1.1

<!-- execute the XPath extension function formatDate() -->
<assign>
<copy>

<from expression="ora:formatDate('2005-06-10T15:56:00",
‘MMM dd, yyyy')"/>
<to variable="output" part="payload"
query="/invoice/formattedDate" />
</copy>
</assign>

6-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating Attributes

Example 6-35 shows how the formatDate function works in BPEL 2.0.

Example 6-35 formatDate Function in BPEL 2.0

<assign>
<copy>
<from>ora:formatDate('2005-06-10T15:56:00", 'MMM dd, yyyy')</from>
<to>$output.payload/formattedDate</to>
</copy>
</assign>

6.13 Manipulating Attributes

You can copy to or from something defined as an XML attribute. An at sign (@) in
XPath query syntax refers to an attribute instead of a child element.

6.13.1 How to Manipulate Attributes

The code in Example 6-36 fetches and copies the custId attribute from this XML
data:

Example 6-36 custld Attribute Fetch and Copy Operations

<invalidLoanApplication xmlns="http://samples.otn.com">
<application xmlns = "http://samples.otn.com/XPath/autoloan">
<customer custId = "111" >
<name>
Mike Olive
</name>

</customer>

</application>
</invalidLoanApplication>

The BPEL 1.1 code in Example 6-37 selects the custId attribute of the customer field
and assigns it to the variable custId:

Example 6-37 custld Attribute Select and Assign Operations in BPEL 1.1

<assign>
<!-- get the custId attribute and assign to variable custId -->
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:application
/autoloan:customer/@custId"/>
<to variable="custId"/>
</copy>
</assign>

Example 6-38 shows the equivalent syntax in BPEL 2.0 for selecting the custId
attribute of the customer field and assigning it to the variable custId:

Example 6-38 custld Attribute Select and Assign Operations in BPEL 2.0

<assign>
<copy>
<from>$input.payload/autoloan:application/autoloan:customer/@custId</from>

Manipulating XML Data in a BPEL Process 6-21

Manipulating XML Data with bpelx Extensions

<to>$custId</to>

</copy>

</assign>

The namespace prefixes in this example are not integral to the example.

The WSDL file defines a customer to have a type in which custIdis defined as an
attribute, as shown in Example 6-39:

Example 6-39 custld Attribute Definition

<complexType name="CustomerProfileType">
<sequence>
<element name="name" type="string"/>

</sequence>
<attribute name="custId" type="string"/>
</complexType>

6.14 Manipulating XML Data with bpelx Extensions

You can perform various operations on XML data in assign activities. The bpelx
extension types described in this section provide this functionality. In Oracle BPEL
Designer, you can add bpelx extension types at the bottom of the Copy Rules tab of
an Assign dialog. After creating a copy rule, you select it and then choose a bpelx
extension type from the dropdown list in BPEL 1.1 or the context menu in BPEL 2.0.
This changes the copy rule to the selected extension type.

In BPEL 1.1, you select an extension type from the dropdown list, as shown in
Figure 6-6.

Figure 6-6 Copy Rule Converted to bpelx Extension in BPEL 1.1

& Edit Assign

r General r Copy Rules r Annotations r Skip Condition r Targets r Sources |

|Insert Mew Rule After v| = E:? @ i o
&% OrderProcessor.bpel Process a‘aE
Variables £33

D Partner Links
-5 variables
Elﬁga Process
2[5 variables
! F- (%) inputVariable
- () outputiariable
(x) fpprovalHumanTask_1_globalvarisble
(x) gOrderInfovariabl
(x) aCustomerInfoyariable
(x) gwarehouseQuotes
- () gPreferredSupplisr
[-{%) aOrderProcessarFaultVariable

inputvariable (x)}-&
outputYariable (x)-=
ApprovalHumanTask_1_globalvariable (J()--
gOrderInfovariable ()&
gCustomerInfovariable (J(}--
gWarshouseGuotes ()&
gPreferredsupplisr (x}--
gOrderProcessorFaultyariable (J(}--
Scope - Scope_RetrieveOrder ---E]
variables [(3-=
ITmpOrderInfovariable (x)-&

¥ 1. From xPath: |,|’ns4:0rderInF0\n'OSDO

Change tvpe of selected rule

ariable{ns4 or derInf

1 InsertBefare

In BPEL 2.0, you select an extension type by right-clicking the copy rule, selecting
Change rule type, and then selecting the extension type, as shown in Figure 6-7.

6-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data with bpelx Extensions

Figure 6-7 Copy Rule Converted to bpelx Extension in BPEL 2.0

Edit Assign

r General |/ Copy Rules |/ Annotations |/ Docurnentation |/ Targets r Sources |
[Insert Mew Rule Before '| M o D =
~ & BPELProcessz.bpel bpelprocess2_client a4 L
1[5 Partner Links variables [£3-21
E}ﬁga Process Process ﬁEaB
2[5 Partner Links variables [£3-2
LG bpelprocess2_client B inputvariable ()&
1-[E3 variables payload EE! |
= g Process ;‘ client:process : <anonymous> @@=
223 wariables client:input : skring €8 |
(%) inputiariable B B outputyariable ()=
E}E payload payload EE!
H =h-@% client:process : <anonymouss client:processResponse @ <anonymouss €=
Le@P dlientinput ¢ skring clienk:result ¢ skring €&
Z RS T N e
From
[E $outputyariable. payloadfclient:result
Edit 'From' expression ﬁ'r £ (=
Edit 'To' expression
ignoreMissingFrombata
insertMissingToData
| keepsrcElernentiame Apply | [oK | [Cancel
| Changeretye 0 | S——
Delete rule [+ 504 Components
x *E InsertAfter D
I = [+ BPEL Services
Messaoes BPEL o InsertBefore Extensions Business Rule Yalidation i~

For more information, see the online Help for this dialog and Section A.2.2, "Assign
Activity."

6.14.1 How to Use bpelx:append

The bpelx:append extension in an assign activity enables a BPEL process service
component to append the contents of one variable, expression, or XML fragment to
another variable’s contents. To use this extension, you select a copy rule at the bottom
of the Copy Rules tab, then select Append from the dropdown list, as shown in
Figure 6-6.

Note: The bpelx:append extension is not supported with SDO
variables and causes an error.

6.14.1.1 bpelx:append in BPEL 1.1

Example 640 provides an example of bpelx:append in a BPEL project that supports
BPEL version 1.1.

Example 6-40 bpelx:append Extension in BPEL 1.1

<bpel:assign>
<bpelx:append>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node
list is appended as child nodes to the target node specified by the to-spec query.

Manipulating XML Data in a BPEL Process 6-23

Manipulating XML Data with bpelx Extensions

The to-spec query must yield one single L-Value element node. Otherwise, a
bpel:selectionFailure faultis generated. The to-spec query cannot refer to a
partner link.

Example 641 consolidates multiple bills of material into one single bill of material
(BOM) by appending multiple b: parts for one BOM to b:parts of the consolidated
BOM.

Example 6-41 Consolidation of Multiple Bills of Material

<bpel:assign>
<bpelx:append>
<bpelx:from variable="billOfMaterialVar"
query="/b:bom/b:parts/b:part" />
<bpelx:to variable="consolidatedBillOfMaterialVar"
query="/b:bom/b:parts" />
</bpelx:append>
</bpel:assign>

6.14.1.2 bpelx:append in BPEL 2.0

Example 642 provides an example of bpelx:append syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
Section 6.14.1.1, "bpelx:append in BPEL 1.1," but the syntax is slightly different.

Example 6—42 bpelx:append Extension in BPEL 2.0

<bpel:assign>
<bpelx:append>
<bpelx: from>$billOfMaterialVar/b:parts/b:part</bpelx:from>
<bpelx:to>$SconsolidatedBillOfMaterialVar/b:parts</bpelx: from>
</bpelx:append>
</bpel:assign>

6.14.2 How to Use bpelx:insertBefore

Note: The bpelx:insertBefore extension works with SDO
variables, but the target must be the variable attribute into which the
copied data must go.

The bpelx:insertBefore extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
before another variable’s contents. To use this extension, you select a copy rule at the
bottom of the Copy Rules tab, then select InsertBefore from the dropdown list, as
shown in Figure 6-6.

6.14.2.1 bpelx:insertBefore in BPEL 1.1

Example 643 provides an example of bpelx:insertBefore in a BPEL project that
supports BPEL version 1.1.

Example 6-43 bpelx:insertBefore Extension in BPEL 1.1

<bpel:assign>
<bpelx:insertBefore>
<bpelx:from ... />
<bpelx:to ... />

6-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data with bpelx Extensions

</bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx:insertBefore yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

The to-spec query of the insertBefore operation points to one or more single
L-Value nodes. If multiple nodes are returned, the first node is used as the reference
node. The reference node must be an element node. The parent of the reference node
must also be an element node. Otherwise, a bpel : selectionFailure faultis
generated. The node list generated by the from-spec query selection is inserted
before the reference node. The to-spec query cannot refer to a partner link.

Example 644 shows the syntax before the execution of <insertBefore>. The value
of addrVar is:

Example 6-44 Presyntax Execution

<a:usAddress>
<a:state>CA</a:state>
<a:zipcode>94065</a: zipcode>
</a:usAddress>

Example 6-45 shows the syntax after the execution:

Example 6-45 Postsyntax Execution
<bpel:assign>
<bpelx:insertBefore>
<bpelx:from>
<a:city>Redwood Shore></a:city>
</bpelx: from>
<bpelx:to "addrVar" query="/a:usAddress/a:state" />
</bpelx:insertBefore>
</bpel:assign>

Example 6-46 shows the value of addrVvar:

Example 6-46 addrVar Value

<a:usAddress>
<a:city>Redwood Shore</a:city>
<a:state>CA</a:state>
<a:zipcode>94065</a: zipcode>
</a:usAddress>

6.14.2.2 bpelx:insertBefore in BPEL 2.0

Example 647 provides an example of bpelx: insertBefore syntax in a BPEL
project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as
described in Section 6.14.2.1, "bpelx:insertBefore in BPEL 1.1," but the syntax is slightly
different. An extensionAssignOperation element wraps the
bpelx:insertBefore extension.

Example 6-47 bpelx:insertBefore Extension in BPEL 2.0

<assign>
<extensionAssignOperation>
<bpelx:insertBefore>

Manipulating XML Data in a BPEL Process 6-25

Manipulating XML Data with bpelx Extensions

<bpelx:from>
<bpelx:literal>
<a:city>Redwood Shore></a:city>
</bpelx:literal>
</bpelx:from>
<bpelx:to>$addrVar/a:state</bpelx:to>
</bpelx:insertBefore>
</extensionAssignOperation>
</assign>

6.14.3 How to Use bpelx:insertAfter

Note: The bpelx:insertAfter extension works with SDO
variables, but the target must be the variable attribute into which the
copied data must go.

The bpelx:insertAfter extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
after another variable’s contents. To use this extension, you select a copy rule at the
bottom of the Copy Rules tab, then select InsertAfter from the dropdown list, as
shown in Figure 6-6.

6.14.3.1 bpelx:insertAfter in BPEL 1.1

Example 648 provides an example of bpelx:insertAfter in a BPEL project that
supports BPEL version 1.1.

Example 6—48 bpelx:insertAfter Extension in BPEL 1.1
<bpel:assign>
<bpelx:insertAfter>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for Section 6.14.2, "How to Use
bpelx:insertBefore," except for the following:

» If multiple L-Value nodes are returned by the to-spec query, the last node is
used as the reference node.

= Instead of inserting nodes before the reference node, the source nodes are inserted
after the reference node.

This operation can also be considered a macro of conditional-switch + (append
or insertBefore).

Example 6-49 shows the syntax before the execution of <insertAfter>. The value of
addrvar is:

Example 6-49 Presyntax Execution

<a:usAddress>
<a:addressLine>500 Oracle Parkway</a:addressLine>
<a:state>CA</a:state>
<a:zipcode>94065</a: zipcode>

</a:usAddress>

6-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data with bpelx Extensions

Example 6-50 shows the syntax after the execution:

Example 6-50 Postsyntax Execution

<bpel:assign>
<bpelx:insertAfter>
<bpelx:from>
<a:addressLine>Mailstop lopb6</a:addressLine>
</bpelx: from>
<bpelx:to "addrVar" query="/a:usAddress/a:addressLine[l]" />
</bpelx:insertAfter>
</bpel:assign>

Example 6-51 shows the value of addrVvar:

Example 6-51 addrVar Value

<a:usAddress>
<a:addressLine>500 Oracle Parkway</a:addressLine>
<a:addressLine>Mailstop lop6</a:addressLine>
<a:state>CA</a:state>
<a:zipcode>94065</a:zipcode>

</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec

query.

6.14.3.2 bpelx:insertAfter in BPEL 2.0

Example 6-52 provides an example of bpelx: insertAfter syntax in a BPEL project
that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described
in Section 6.14.3.1, "bpelx:insertAfter in BPEL 1.1," but the syntax is slightly different.
An extensionAssignOperation element wraps the bpelx:insertAfter
extension.

Example 6-52 bpelx:insertAfter Extension in BPEL 2.0

<assign>
<extensionAssignOperation>
<bpelx:insertAfter>
<bpelx: from>
<bpelx:literal>
<a:addressLine>Mailstop lopé6</a:addressLine>
</bpelx:literal>
</bpelx:from>
<bpelx:to>$addrVar/a:addressLine[1l]</bpelx:to>
</bpelx:insertAfter>
</extensionAssignOperation>
</assign>

6.14.4 How to Use bpelx:remove

The bpelx: remove extension in an assign activity enables a BPEL process service
component to remove a variable. In Oracle BPEL Designer, you add the
bpelx:remove extension by dragging the remove icon in the upper right corner of
the Copy Rules tab to the target variable you want to remove, and releasing the cursor.
Figure 6-8 provides details.

Manipulating XML Data in a BPEL Process 6-27

Manipulating XML Data with bpelx Extensions

Figure 6-8 Remove Icon in Copy Rules Tab of an Assign Activity

NSCRJCCS

wice

, & @ = |
Process§ Remave (Drag to target node)

Wariables EB =
inputvariable ()&
outputYariable (o)}-#

After releasing the cursor, the bpelx:remove extension is applied to the target
variable. Figure 6-9 provides details.

Figure 6-9 bpelx:remove Extension Applied to a Target Variable

Bk Q@ &=
Wariables (321
Frocess ga-El
Wariables E)B
inputYariable (x}-- !

ol [| outputyariable (x)-&
% Remoye
Ff Remiove

6.14.4.1 bpelx:remove in BPEL 1.1

Example 6-53 provides an example of bpelx: remove in a BPEL project that supports
BPEL version 1.1.

Example 6-53 bpelx:remove Extension in BPEL 1.1
<bpel:assign>
<bpelx:remove>
<bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
</bpelx:remove>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the
XPath expression can be multiple, but must be L-Values. Nodes being removed from
this parent can be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns
zero nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx: target is similar to and a subset of to-spec for the copy
operation.

Example 6-54 shows addrVar with the following value:

Example 6-54 addrVar

<a:usAddress>
<a:addressLine>500 Oracle Parkway</a:addressLine>
<a:addressLine>Mailstop lopé6</a:addressLine>
<a:state>CA</a:state>
<a:zipcode>94065</a: zipcode>

</a:usAddress>

After executing the syntax shown in Example 6-55 in the BPEL process service
component file, the second address line of Mailstop is removed:

6-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data with bpelx Extensions

Example 6-55 Removal of Second Address Line
<bpel:assign>
<bpelx:remove>
<target variable="addrVar"
query="/a:usAddress/a:addressLine[2]" />
</bpelx:remove>
</bpel:assign>

After executing the syntax shown in Example 6-56 in the BPEL process service
component file, both address lines are removed:

Example 6-56 Removal of Both Address Lines
<bpel:assign>
<bpelx:remove>
<target variable="addrVar"
query="/a:usAddress/a:addressLine" />
</bpelx:remove>
</bpel:assign>

6.14.4.2 bpelx:remove in BPEL 2.0

Example 6-57 provides an example of bpelx: remove syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
Section 6.14.4.1, "bpelx:remove in BPEL 1.1," but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:remove.

Example 6-57 bpelx:remove Extension in BPEL 2.0

<assign>
<extensionAssignOperation>
<bpelx:remove>
<bpelx:target>$ncname.ncname/xpath_str</bpelx:target>
</bpelx:remove>
</extensionAssignOperation>
</assign>

6.14.5 How to Use bpelx:rename and XSD Type Casting

The bpelx: rename extension in an assign activity enables a BPEL process service
component to rename an element through use of XSD type casting. In Oracle BPEL
Designer, you add the bpelx: rename extension by dragging the rename icon in the
upper right corner of the Copy Rules tab to the target variable you want to remove,
and releasing the cursor. The rename icon displays to the right of the remove icon
shown in Figure 6-8. After releasing the cursor, the Rename dialog is displayed for
renaming the target variable.

6.14.5.1 bpelx:rename in BPEL 1.1

Example 6-58 provides an example of bpelx: rename in a BPEL project that supports
BPEL version 1.1.

Example 6-58 bpelx:rename Extension in BPEL 1.1

<bpel:assign>
<bpelx:rename elementTo="QNamel"? typeCastTo="QName2"?>
<bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
</bpelx:rename>
</bpel:assign>

Manipulating XML Data in a BPEL Process 6-29

Manipulating XML Data with bpelx Extensions

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation. The target must return a list of one more element nodes. Otherwise, a
bpel:selectionFailure faultis generated. The element nodes specified in the
from-spec are renamed to the QName specified by the elementTo attribute. The
xsi: type attribute is added to those element nodes to cast those elements to the
OName type specified by the typeCastTo attribute.

Assume you have the employee list shown in Example 6-59:

Example 6-59 xsi:type Attribute

<e:empList>
<e:emp>
<e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
<e:emp>
<e:emp xXsi:type="e:ManagerType">
<e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
<e:approvallLimit>3000</e:approvallimit>
<e:managing />
<e:emp>
<e:emp>
<e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
<e:emp>
<e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
</e:empList>

Promotion changes are now applied to Peter Smith in the employee list in
Example 6-60:

Example 6-60 Application of Promotion Changes

<bpel:assign>
<bpelx:rename typeCastTo="e:ManagerType">
<bpelx:target variable="empListVar"
query="/e:emplList/e:emp[./e:firstName="'Peter' and
./e:lastName='Smith'" />
</bpelx:rename>
</bpel:assign>

After executing the above casting (renaming), the data looks as shown in
Example 6-61 with xsi: type info added to Peter Smith:

Example 6-61 Data Output

<e:empList>

<e:emp>
<e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>

<e:emp>

<e:emp xXsi:type="e:ManagerType">
<e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
<e:approvallLimit>3000</e:approvallimit>
<e:managing />

<e:emp>

<e:emp xsi:type="e:ManagerType">
<e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>

<e:emp>

<e:emp>

6-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data with bpelx Extensions

<e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
<e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvalLimit> and
<managing> are missing. Therefore, <append> is used to add that information.
Example 6-62 provides an example.

Example 6—62 Use of append Extension to Add Information

<bpel:assign>
<bpelx:rename typeCastTo="e:ManagerType">
<bpelx:target variable="empListVar"
query="/e:emplList/e:emp[./e:firstName="'Peter' and
./e:lastName='Smith'" />
</bpelx:rename>
<bpelx:append>
<bpelx:from>
<e:approvalLimit>2500</e:approvallimit>
<e:managing />
</bpelx: from>
<bpelx:to variable="empListVar"
query="/e:empList/e:emp[./e:firstName="'Peter' and
./e:lastName="'Smith'" />
</bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as
shown in Example 6-63:

Example 6—63 rename and append Execution

<e:emp xsi:type="e:ManagerType">
<e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
<e:approvalLimit>2500</e:approvalLimit>
<e:managing />

<e:emp>

6.14.5.2 bpelx:rename in BPEL 2.0

Example 6-64 provides an example of bpelx: rename syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
Section 6.14.5.1, "bpelx:rename in BPEL 1.1," but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:rename.

Example 6-64 bpelx:rename Extension in BPEL 2.0

<bpel:assign>
<extensionAssignOperation>
<bpelx:rename elementTo="QNamel"? typeCastTo="QName2"?>
<bpelx:target>Sncname[.ncname] [/xpath_str]</bpelx:target>
</bpelx:rename>
</extensionAssignOperation>
</bpel:assign>

6.14.6 How to Use bpelx:copyList

The bpelx:copyList extension in an assign activity enables a BPEL process service
component to perform a copyList operation of the contents of one variable,
expression, or XML fragment to another variable.

Manipulating XML Data in a BPEL Process 6-31

Manipulating XML Data with bpelx Extensions

To use this extension in BPEL 1.1, you select a copy rule at the bottom of the Copy
Rules tab, then select copyList from the dropdown list, as shown in Figure 6-6. To use
this extension in BPEL 2.0, you right-click a copy rule, select Change rule type, and
select CopyList, as shown in Figure 6-7.

6.14.6.1 bpelx:copyList in BPEL 1.1

Example 6-65 provides an example of bpelx:copyList in a BPEL project that
supports BPEL version 1.1.

Example 6-65 bpelx:copyList Extension in BPEL 1.1
<bpel:assign>
<bpelx:copyList>
<bpelx:from ... />
<bpelx:to ... />
</bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes.
The to-spec query can yield a list of L-value nodes: either all attribute nodes or all
element nodes.

All the element nodes returned by the to-spec query must have the same parent
element. If the to-spec query returns a list of element nodes, all element nodes must
be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return
attribute nodes. Likewise, if the from-spec query returns element nodes, then the
to-spec query must return element nodes. Otherwise, a

bpws :mismatchedAssignmentFailure faultis thrown.

The from-spec query can return zero nodes, while the to-spec query must return
at least one node. If the from-spec query returns zero nodes, the effect of the
copyList operation is similar to the remove operation.

The copylist operation provides the following features:
= Removes all the nodes pointed to by the to-spec query.

= If the to-spec query returns a list of element nodes and there are leftover child
nodes after removal of those nodes, the nodes returned by the from-spec query
are inserted before the next sibling of the last element specified by the to-spec
query. If there are no leftover child nodes, an append operation is performed.

» If the to-spec query returns a list of attribute nodes, those attributes are removed
from the parent element. The attributes returned by the from-spec query are
then appended to the parent element.

For example, assume a schema is defined as shown in Example 6-66.

Example 6-66 Schema

<schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://xmlns.oracle.com/Event_jws/Event/EventTest"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="process">
<complexType>
<sequence>
<element name="payload" type="string"
maxOccurs="unbounded" />

6-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data with bpelx Extensions

</sequence>
</complexType>
</element>
<element name="processResponse">
<complexType>
<sequence>
<element name="payload" type="string"
maxOccurs="unbounded" />
</sequence>
</complexType>
</element>
</schema>

The from variable contains the content shown in Example 6-67.

Example 6—67 Variable Content

<nsl:process xmlns:nsl="http://xmlns.oracle.com/Event_jws/Event/EventTest">
<nsl: payload >»a</nsl: payload >
<nsl: payload >b</nsl: payload >

</nsl:process>

The to variable contains the content shown in Example 6-68.

Example 6-68 Variable Content

<nsl:processResponse xmlns:nsl="http://xmlns.oracle.com/Event_
jws/Event/EventTest">
<nsl: payload >c</nsl: payload >
</nsl:process>

The bpelx: copyList operation looks as shown in Example 6-69.

Example 6—69 bpelx:copyList

<assign>
<bpelx:copyList>
<bpelx:from variable="inputVariable" part="payload"
query="/client:process/client:payload"/>
<bpelx:to variable="outputVariable" part="payload"
query="/client:processResponse/client:payload" />
</bpelx:copyList>
</assign>

This makes the to variable as shown in Example 6-70.

Example 6-70 Variable Content

<nsl:processResponse xmlns:nsl="http://xmlns.oracle.com/Event_
jws/Event/EventTest">
<nsl: payload >a</nsl: payload >
<nsl: payload >b</nsl: payload >
</nsl:process>

6.14.6.2 bpelx:copyList in BPEL 2.0

Example 6-71 provides an example of bpelx:copyList syntax in a BPEL project that
supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in
Section 6.14.6.1, "bpelx:copyList in BPEL 1.1," but the syntax is slightly different. An
extensionAssignOperation element wraps the bpelx:copyList extension.

Manipulating XML Data in a BPEL Process 6-33

Manipulating XML Data with bpelx Extensions

Example 6-71 bpelx:copyList Extension in BPEL 2.0

<assign>
<extensionAssignOperation>
<bpelx:copyList>
<bpelx:from>$inputVariable.payload/client:payload</bpelx:from>
<bpelx:to>SoutputVariable.payload/client:payload</bpelx:to>
</bpelx:copyList>
</extensionAssignOperation>
</assign>

6.14.7 How to Use Assign Extension Attributes

You can assign the following attributes to copy rules in an assign activity.
s ignoreMissingFromData

= insertMissingToData

m keepSrcElementName

At the bottom of the Copy Rules tab of an assign activity, you right-click a selected
copy rule to display a menu for choosing the appropriate attribute. Figure 6-10
provides details.

Figure 6-10 Assign Extension Attributes

Fram Ta
B, $inputvariable.payloadiclient:input gmaiey | 030 Client :result
Edit 'To' expression
ignareMissingFrombata
insertMissingToData
Help keeparcElementMame | Apply | | [a]4 J | Cancel
hange rule bype]

x Deletz rule —

6.14.7.1 ignoreMissingFromData Attribute

The ignoreMissingFromData attribute suppresses any bpel : selectionFailure
standard faults. Table 6-3 describes the syntax differences between BPEL versions 1.1
and 2.0.

Table 6-3 ignoreMissingFromData Attribute Syntax

BPEL 1.1 BPEL 2.0

<copy <copy ignoreMissingFromData:"yes|no"/>
bpelx:ignoreMissingFromData:"yes\no"/>

6.14.7.2 insertMissingToData Attribute

The insertMissingToData attribute instructs runtime to complete the (XPath)
L-value specified by the to-spec, if no items were selected. Table 6—4 describes the
syntax differences between BPEL versions 1.1 and 2.0.

Table 6-4 insertMissingToData Attribute Syntax
BPEL 1.1 BPEL 2.0

<copy <copy bpelx:insertMissingToData="yes|no"/>
bpelx:insertMissingToData:"yes|no"/>

6-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Validating XML Data

6.14.7.3 keepSrcElementName Attribute

The keepSrcElementName attribute enables you to replace the element name of the
destination (as selected by the to-spec) with the element name of the source. This
attribute was not implemented in BPEL 1.1. Table 6-5 describes the syntax supported
in BPEL version 2.0.

Table 6-5 keepSrcElementName Attribute Syntax

BPEL 1.1 BPEL 2.0

Not implemented <copy keepSrcElementName="yes|no"/>

6.15 Validating XML Data

You can verify code and identify invalid XML data in a BPEL project.

6.15.1 How to Validate XML Data in BPEL 1.1

= Inan assign activity in Oracle BPEL Designer:

1.

From the BPEL Constructs section of the Component Palette, drag an Assign
activity into the designer.

Double-click the Assign activity.

In the General tab, enter a name for the activity and select the Validate
checkbox.

Click Apply, then OK.
Click the Source tab to view the syntax.

<assign name=Assignl" bpelx:validate="yes"

</assign>

» Inastandalone, extended validate activity in Oracle BPEL Designer that can be
used without an assign activity:

1.

N o g 0 Dbd

From the Oracle Extensions section of the Component Palette, drag a Validate
activity into the designer.

Double-click the Validate icon.

Enter a name for the activity.

Click the Add icon to select the variable to validate.
Select the variable, then click OK.

Click Apply, then OK.

Click the Source tab to view the syntax.

<bpelx:validate name=Validatel" variables="inputVariable"/>

6.15.2 How to Validate XML Data in BPEL 2.0

= Inan assign activity in Oracle BPEL Designer:

1.

2.

From the BPEL Constructs section of the Component Palette, drag an Assign
activity into the designer.

Double-click the Assign activity.

Manipulating XML Data in a BPEL Process 6-35

Using Element Variables in Message Exchange Activities in BPEL 2.0

In the General tab, enter a name for the activity and select the Validate
checkbox.

Click Apply, then OK.

Click the Source tab to view the syntax. Note that the syntax for validating
XML data with the assign activity is slightly different between BPEL versions
1.1 and 2.0.

<assign name="Assignl" validate="yes">

</assign>

In a standalone, extended validate activity in Oracle BPEL Designer that can be
used without an assign activity:

1.

N o g & 0 Db

From the BPEL Constructs section of the Component Palette, drag a Validate
activity into the designer.

Double-click the Validate icon.

Enter a name for the activity.

Click the Add icon to select the variable to validate.
Select the variable, then click OK.

Click Apply, then OK.

Click the Source tab to view the syntax. Note that the syntax for validating
XML data with the validate activity is slightly different between BPEL
versions 1.1 and 2.0.

<validate name="Validatel" variables="inputVariable"/>

6.16 Using Element Variables in Message Exchange Activities in BPEL

2.0

You can specify variables in the following message exchange activities:

The Input field (for an inputVariable attribute) and Output field (for an
outputVariable attribute) of an invoke dialog

The Input field (for a variable attribute) of a receive activity

The Output field (for a variable attribute) of a reply activity

The variables referenced by these fields typically must be message type variables in
which the QName matches the QName of the input and output message types used in
the operation, respectively.

The one exception is if the WSDL operation in the activity uses a message containing
exactly one part that is defined using an element. In this case, a variable of the same
element type used to define the part can be referenced by the inputvariable and
outputVariable attributes, respectively, in the invoke activity or the variable
attribute of the receive or reply activity.

Using a variable in this situation must be the same as declaring an anonymous,
temporary WSDL message variable based on the associated WSDL message type.

Copying element data between the anonymous, temporary WSDL message variable
and the element variable acts as a single virtual assign with one copy operation whose
keepSrcElementName attribute is set to yes. The virtual assign must follow the
same rules and use the same faults as a real assign activity. Table 6—6 provides details.

6-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Mapping WSDL Message Parts in BPEL 2.0

Table 66 Mapping WSDL Message Parts
For The... The...

inputVariable attribute ~ Value of the variable referenced by the attribute sets the value of
the part in the anonymous temporary WSDL message variable.

outputVariable attribute Value of the received part in the temporary WSDL message
variable sets the value of the variable referenced by the attribute.

Receive activity Incoming part’s value sets the value of the variable referenced
by the variable attribute.

Reply activity Value of the variable referenced by the variable attribute sets the
value of the part in the anonymous, temporary WSDL message
variable that is sent out. For a reply activity sending a fault, the
same scenario applies.

For more information about the keepSrcElementName attribute, see Section 6.14.7.3,
"keepSrcElementName Attribute."

6.17 Mapping WSDL Message Parts in BPEL 2.0

The toParts element in invoke and reply activities provides an alternative to
explicitly creating multipart WSDL messages from the contents of BPEL variables.

When you use the toParts element, as shown in Example 6-72, an anonymous,
temporary WSDL variable is defined based on the type specified by the input message
of the appropriate WSDL operation.

Example 6-72 toParts Element

<toParts>
<toPart part="payload" fromVariable="request"/>
</toParts>

The toParts element acts as a single, virtual assign activity. Each toPart acts as a
copy operation. One toPart at most exists for each part in the WSDL message
definition. Each copy operation copies data from the variable specified in the
fromVariable attribute into the part of the anonymous, temporary WSDL variable
referenced in the part attribute of the toParts element.

The fromParts element in receive activities and the onMessage branch of pick
activities is similar to the toParts element. The fromParts element, as shown in
Example 6-73, retrieves data from an incoming multipart WSDL message and places
the data into individual variables.

Example 6-73 fromParts Element
<fromParts>

<fromPart part="payload" toVariable="request"/>
</fromParts>

When a WSDL message is received on an invoke activity that uses fromParts
elements, the message is placed in an anonymous, temporary WSDL variable of the
type specified by the output message of the appropriate WSDL operation.

As with the toParts element, the fromParts element acts as a single virtual assign
activity. Each fromPart acts as a copy operation. Each copy operation copies the data
at the part of the anonymous, temporary WSDL variable referenced in the part
attribute of the fromPart into the variable indicated in the tovariable attribute.

Manipulating XML Data in a BPEL Process 6-37

Mapping WSDL Message Parts in BPEL 2.0

For both the toParts and fromParts elements, the virtual assign activity must
follow the same semantics and generate the same faults as a real assign activity.

The presence of a fromParts element in an invoke activity does not require it to have
a fromPart for every part in the WSDL message definition. Parts not explicitly
represented by fromParts elements are not copied from the anonymous WSDL
variable to the variable.

For more information about mapping WSDL message parts with the toParts and
fromParts elements, see the Web Services Business Process Execution Language Version
2.0 Specification located at the following URL:

http://www.ocasis-open.org

6.17.1 How to Map WSDL Message Parts

This section provides an overview of a simple BPEL process in which a reply activity
uses the toParts elements to copy variable contents. The WSDL and BPEL files used
in this example are shown later in Example 6-74 and Example 6-75 of Section 6.17.2,
"What Happens When You Map WSDL Message Parts."

How to map WSDL message parts in BPEL 2.0

1. Note the receive activity in Figure 6-11 includes a standard inputVariable variable
from the client.

Figure 6-11 Receive Activity

Receive b4

| Annatations rDocumentation rTargets rSources rHeaders |

P General It Carrelations [Properties |
Mame: [receivelnput |
Conversation ID: | | B

Create Instance
Inkeraction Type: m

Partrer Link: |test_client | &
Port Type: |5 ” Test A
Operation: | Gy process -

(%) Variable () Fraom Parts

Variable: inputvariable | e Q

[oeb | (aely] [oc_J [cores]

2. Note the assign activity in Figure 6-12 copies the test-type-variable contents to
Varl.

6-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Mapping WSDL Message Parts in BPEL 2.0

Figure 6—12 Assign Activity

& Test.bpel Test.bpel 2
I}JD Partner Links Partner Links D@
=22 Variables Yariables [55-2
B Process] Process gs =
553 Variables ke Variables [53-=

inpubvariable ()&
outputWariable (0}
varl (x)-®

() inputvarizble
’—f—*"'(l) outputiariable
- () varl

AT

& Y&, "test-type-variable”

3. Note that the To Parts button at the bottom of the reply activity is enabled in
Figure 6-13, instead of the Variable button. You create information for this section
by clicking the Add icon. The copy operation copies data from the variable
indicated in the From Variable attribute, Varl, into the part of the anonymous,
temporary WSDL variable referenced in the Part attribute.

Figure 6-13 To Parts Section Defined at Bottom of Reply Activity

() Mariable (3) Ta Parts
To Parts: EF x

From Wariable Part
= Yarl payload

Fault QMarne

Mamespace URIL: |

Local Part: | |

| Help | | Apply || Ok _“ Cancel |

6.17.2 What Happens When You Map WSDL Message Parts

Example 6-74 shows a .bpel file for a synchronous request with toPart elements
defined in a reply activity. This maps to the operation defined in the WSDL file shown
in Example 6-75. The copy operation copies data from the variable indicated in the
fromVariable attribute into the part of the anonymous, temporary WSDL variable,
Varl.

Example 6-74 BPEL File with ToParts Elements
<sequence name="main">
<!-- Receive input from requestor. This maps to operation defined in WSDL -->
<receive name="receiveInput" partnerLink="test_client"
portType="client:Test" operation="process" variable="inputVariable"
createInstance="yes"/>
<!-- Generate reply to synchronous request -->

Manipulating XML Data in a BPEL Process 6-39

Mapping WSDL Message Parts in BPEL 2.0

<assign name="Assign_1">
<copy>
<from>"test-type-variable"</from>
<to>$Varl</to>
</copy>
</assign>
<reply name="replyOutput" partnerLink="test_client" portType="client:Test"
operation="process">
<toParts>
<toPart part="payload" fromVariable="Varl"/>
</toParts>
</reply>
</sequence>

Example 6-75 WSDL File that Defines the Operation

<wsdl:types>
<schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://xmlns.oracle.com/RT Validate_P_02_jws/chl0_
3toParts_1/Test"
xmlns="http://www.w3.0org/2001/XMLSchema">
<element name="process">
<complexType>
<sequence>
<element name="input" type="string"/>
</sequence>
</complexType>
</element>
<element name="processResponse">
<complexType>
<sequence>
<element name="result" type="string"/>
</sequence>
</complexType>
</element>
</schema>
</wsdl:types>

MESSAGE TYPE DEFINITION - Definition of the message types used as
part of the port type defintions

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ >
<wsdl:message name="TestRequestMessage">

<wsdl:part name="payload" element="client:process"/>

</wsdl:message>

<wsdl :message name="TestResponseMessage">

<wsdl:part name="payload" type="xsd:string"/>

</wsdl:message>

L o e 0
PORT TYPE DEFINITION - A port type groups a set of operations into
a logical service unit.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ N

<!-- portType implemented by the Test BPEL process -->
<wsdl:portType name="Test">
<wsdl:operation name="process">
<wsdl:input message="client:TestRequestMessage"/>
<wsdl:output message="client:TestResponseMessage"/>
</wsdl:operation>
</wsdl:portType>

PARTNER LINK TYPE DEFINITION

6-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Mapping WSDL Message Parts in BPEL 2.0

<plnk:partnerLinkType name="Test">
<plnk:role name="TestProvider">
<plnk:portType name="client:Test"/>
</plnk:role>
</plnk:partnerLinkType>
</wsdl:definitions>

Example 6-76 shows a .bpel file with toPart elements defined in invoke and reply

activities. This maps to the operation defined in the WSDL file shown in

Example 6-77. The copy operation in the invoke activity copies data from the variable
indicated in the fromvVariable attribute into the part of the anonymous, temporary
WSDL variable, request. The copy operation in the reply activity copies data from
the variable indicated in the fromVariable attribute into the part of the anonymous,

temporary WSDL variable, output.

Example 6-76 BPEL File with ToParts Elements

<sequence>
<!-- receive input from requestor -->
<receive name="receivelInput" partnerLink="client" portType="tns:Test"
operation="process" variable="input" createlnstance="vyes"/>
<assign>
<copy>
<from>$input.payload</from>
<to>$request</to>
</copy>
</assign>
<invoke name="invokeDummyService" partnerLink="DummyService"
portType="tns:DummyPortType"
operation="process" outputVariable="response">
<toParts>
<toPart part="payload" fromVariable="request"/>
</toParts>
</invoke>
<assign>
<copy>
<from>$response</from>
<to>$output</to>
</copy>
</assign>
<!-- respond output to requestor -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process">
<toParts>
<toPart part="payload" fromVariable="output"/>
</toParts>
</reply>
</sequence>

Example 6-77 WSDL File that Defines the Operation

<?xml version="1.0"?>

<definitions name="chl0.3toParts"
targetNamespace="http://samples.otn.com/bpel2.0/chl0.3"
xmlns:tns="http://samples.otn.com/bpel2.0/chl0.3"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns="http://schemas.xmlsoap.org/wsdl/"
>

Manipulating XML Data in a BPEL Process 6-41

Mapping WSDL Message Parts in BPEL 2.0

<types>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://samples.otn.com/bpel2.0/chl0.3"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="input" type="string"/>
<element name="output" type="string"/>
</schema>
</types>

<message name="TestRequestMessage">
<part name="payload" element="tns:input"/>
</message>
<message name="TestResultMessage">
<part name="payload" element="tns:output"/>
</message>
<portType name="Test">
<operation name="process">
<input message="tns:TestRequestMessage"/>
<output message="tns:TestResultMessage"/>
</operation>
</portType>

<plnk:partnerLinkType name="Test">
<plnk:role name="TestProvider" portType="tns:Test"/>
</plnk:partnerLinkType>

</definitions>

Example 6-78 shows a .bpel file with fromParts elements defined in pick and
invoke activities. This maps to the operation defined in the WSDL file shown in
Example 6-79. The copy operation in the pick activity retrieves data from the variable
indicated in the tovariable attribute into the part of the anonymous, temporary
WSDL variable, request. The copy operation in the invoke activities retrieves data
from the variable indicated in the tovariable attribute into the part of the
anonymous, temporary WSDL variable, response.

Example 6-78 BPEL File with FromParts Elements

<sequence>
<!-- receive input from requestor -->
<pick createlInstance="yes">
<onMessage partnerLink="client" portType="tns:Test"
operation="process">
<fromParts>
<fromPart part="payload" toVariable="request"/>
</fromParts>
<empty/>
</onMessage>
</pick>
<invoke name="invokeDummyService" partnerLink="DummyService"
portType="tns:DummyPortType"
operation="process" inputVariable="request">
<fromParts>
<fromPart part="payload" toVariable="response"/>
</fromParts>
</invoke>
<assign>
<copy>
<from>concat ($response, " ", $response)</from>
<to>S$Srequest</to>

6-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Mapping WSDL Message Parts in BPEL 2.0

</copy>
</assign>
<invoke name="invokeDummyService" partnerLink="DummyService"
portType="tns:DummyPortType"
operation="process2" inputVariable="request">
<fromParts>
<fromPart part="payload" toVariable="response"/>
</fromParts>
</invoke>
<assign>
<copy>
<from>$response</from>
<to>S$Soutput.payload</to>
</copy>
</assign>
<!-- respond output to requestor -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
</sequence>

Example 6-79 WSDL File that Defines the Operation

<?xml version="1.0"?>

<definitions name="BPEL20TestCh10.4"
targetNamespace="http://samples.otn.com/bpel2.0/chl0.4"
xmlns:tns="http://samples.otn.com/bpel2.0/chl0.4"
xmlns:plnk="http://docs.oasis-open.org/wsbpel/2.0/plnktype"
xmlns="http://schemas.xmlsoap.org/wsdl/"
>

<types>
<schema attributeFormDefault="qualified" elementFormDefault="qualified"
targetNamespace="http://samples.otn.com/bpel2.0/chl0.4"
xmlns="http://www.w3.0rg/2001/XMLSchema">
<element name="input" type="string"/>
<element name="output" type="string"/>
</schema>
</types>

<message name="TestRequestMessage">
<part name="payload" element="tns:input"/>
</message>
<message name="TestResultMessage">
<part name="payload" element="tns:output"/>
</message>
<portType name="Test">
<operation name="process">
<input message="tns:TestRequestMessage"/>
<output message="tns:TestResultMessage"/>
</operation>
</portType>

<plnk:partnerLinkType name="Test">
<plnk:role name="TestProvider" portType="tns:Test"/>

</plnk:partnerLinkType>

</definitions>

Manipulating XML Data in a BPEL Process 6-43

Importing Process Definitions in BPEL 2.0

6.18 Importing Process Definitions in BPEL 2.0

You can use the import element to specify the definitions on which your BPEL
process is dependent. When you create a version 2.0 BPEL process, an import
element is added to the . bpel file, as shown in Example 6-80.

Example 6-80 Import Element

<process name="Loan Flow"

<import namespace="http://xmlns.oracle.com/SOAApplication/SOAProject/LoanFlow"
location="LoanFlow.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"/>

You can also use the import element to import a schema without a namespace, as
shown in Example 6-81.

Example 6-81 Schema Import Without Namespace

<process name="Loan Flow"

<import location="xsd/NoNamespaceSchema.xsd"
importType="http://www.w3.0org/2001/XMLSchema" />

You can also use the import element to import a schema with a namespace, as shown
in Example 6-82.

Example 6—82 Schema Import With Namespace

<process name="Loan Flow"

<import namespace="http://www.example.org" location="xsd/TestSchema.xsd"
importType="http://www.w3.0rg/2001/XMLSchema" />

The import element is provided to declare a dependency on external XML schema or
WSDL definitions. Any number of import elements can appear as children of the
process element. Each import element can contain the following attributes.

= namespace: Identifies an absolute URI that specifies the imported definitions.
This is an optional attribute. If a namespace is specified, then the imported
definitions must be in that namespace. If a namespace is not specified, this
indicates that external definitions are in use that are not namespace-qualified. The
imported definitions must not contain a targetNamespace specification.

= location:Identifies a URI that specifies the location of a document containing
important definitions. This is an optional attribute. This can be a relative URI. If no
location attribute is specified, the process uses external definitions. However,
there is no statement provided indicating where to locate these definitions.

» importType: Identifies the document type to import. This must be an absolute
URI that specifies the encoding language used in the document. This is a required
attribute.

- If importing XML schema 1.0 documents, this attribute’s value must be set to
"http://www.w3.0rg/2001/XMLSchema".

- If importing WSDL 1.1 documents, the value must be set to
"http://schemas.xmlsoap.org/wsdl/". You can also specify other
values for this attribute.

6-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data Sequences That Resemble Arrays

For more information, see section 5.4 of the Web Services Business Process Execution
Language Specification Version 2.0.

6.19 Manipulating XML Data Sequences That Resemble Arrays

Data sequences are one of the most basic data models used in XML. However,
manipulating them can be nontrivial. One of the most common data sequence patterns
used in BPEL process service components are arrays. Based on the XML schema, the
way you can identify a data sequence definition is by its attribute maxOccurs being
set to a value greater than one or marked as unbounded. See the XML Schema
Specification at http: / /www.w3 . org/TR for more information.

The examples in this section illustrate several basic ways of manipulating data
sequences in BPEL. However, there are other associated requirements, such as
performing looping or dynamic referencing of endpoints. The following sections
describe a particular requirement for data sequence manipulation.

6.19.1 How to Statically Index into an XML Data Sequence That Uses Arrays

The following two examples illustrate how to use XPath functionality to select a data
sequence element when the index of the element you want is known at design time. In
these cases, it is the first element.

In Example 6-83, addresses[1] selects the first element of the addresses data
sequence:

Example 6-83 Data Sequence Element Selection

<assign>
<!-- get the first address and assign to variable address -->
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:application
/autoloan:customer/autoloan:addresses[1]"/>
<to variable="address"/>
</copy>
</assign>

In this query, addresses[1] is equivalent to addresses [position()=1], where
position is one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path
Language (XPath) Specification). The query in Example 6-84 calls the position
function explicitly to select the first element of the addresses data sequence. It then
selects that address’s street element (which the activity assigns to the variable
streetl).

Example 6-84 position Function Use

<assign>
<!-- get the first address's street and assign to streetl -->
<copy>
<from variable="input" part="payload"
query="/tns:invalidLoanApplication/autoloan:application
/autoloan:customer/autoloan:addresses[position()=1]
/autoloan:street"/>
<to variable="streetl"/>
</copy>
</assign>

Manipulating XML Data in a BPEL Process 6-45

Manipulating XML Data Sequences That Resemble Arrays

If you review the definition of the input variable and its payload part in the WSDL file,
you go several levels down before coming to the definition of the addresses field.
There you see the maxOccurs="unbounded" attribute. The two XPath indexing
methods are functionally identical; you can use whichever method you prefer.

6.19.2 How to Use SOAP-Encoded Arrays

Oracle SOA Suite provides support for SOAP RPC-encoded arrays. This support
enables Oracle BPEL Process Manager to operate as a client calling a SOAP web
service (RPC-encoded) that uses a SOAP 1.1 array.

Example 6-85 provides an example of a SOAP array payload named
myFavoriteNumbers.

Example 6-85 SOAP Array Payload

<myFavoriteNumbers SOAP-ENC:arrayType="xsd:int2">
<number>3</number>

<number>4</number>

</myFavoriteNumbers>

In addition, ensure that the schema element attributes at tributeFormDefault and
elementFormDefault are set to "unqualified" in your schema. Example 6-86
provides details:

Example 6-86 Schema Element Attributes

attributeFormDefault="unqualified" elementFormDefault="unqualified"
targetNamespace="java:services" xmlns:s0="http://schemas.xmlsoap.org/wsdl/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

The following features are not supported:

= A service published by BPEL that uses a SOAP array
» Partially-transmitted arrays

m Sparse arrays

= Multidimensional arrays

To use a SOAP-encoded array:

Example 6-87 shows how to prepare SOAP arrays with the bpelx:append tagin a
BPEL project.

1. Create a BPEL process in Oracle JDeveloper.

2. Prepare the payload for the invocation. Note that bpelx:append in Example 6-87
is used to add items into the SOAP array.

Example 6-87 SOAP Array

<bpws:assign>
<bpws : copy>
<bpws:from variable="input" part="payload" query="/tns:value"/>
<bpws:to variable="request" part="strArray"
query="/strArray/Javalangstring"/>
</bpws : copy>
</bpws:assign>
<bpws:assign>
<bpelx:append>

6-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data Sequences That Resemble Arrays

<bpelx:from variable="request" part="strArray"
query="/strArray/Javalangstringl"/>
<bpelx:to variable="request" part="strArray" query="/strArray"/>
</bpelx:append>

</bpws:assign>

3. Import the following namespace in your WSDL file. Oracle JDeveloper does not
understand the SOAP-ENC tag if the import statement is missing in the WSDL
schema element.

<xs:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />

6.19.2.1 SOAP-Encoded Arrays in BPEL 2.0

SOAP-encoded arrays are supported in BPEL projects that use version 2.0 of the BPEL
specification. Example 6-88 shows a sample assign activity with a SOAP-encoded
array in a BPEL 2.0 project.

Example 6-88 SOAP-Encoded Array in an Assign Activity in BPEL 2.0

<assign name="Assign_1">
<copy>
<from>$inputVariable.payload</from>
<to>$Invoke_1_echoArray_InputVariable.strArray/JavaLangstring[l]</to>
</copy>
<extensionAssignOperation>
<bpelx:append>
<bpelx:from variable="Invoke_1_echoArray InputVariable"
part="strArray">
<bpelx:query>
JavaLangstring[1]
</bpelx:query>
</bpelx: from>
<bpelx:to variable="Invoke_1_echoArray InputVariable"
part="strArray">
</bpelx:to>
</bpelx:append>
</extensionAssignOperation>
</assign>

Example 6-89 shows a sample invoke activity with a SOAP-encoded array in a BPEL
2.0 project.

Example 6-89 SOAP-Encoded Array in an Invoke Activity in BPEL 2.0

<invoke name="Invokel" partnerLink="FileOut"
portType="ns3:Write_ptt" operation="Write"
bpelx:invokeAsDetail="no">
<toParts>
<toPart part="body" fromVariable="ArrayVariable"/>
</toParts>
</invoke>

6.19.3 How to Determine Sequence Size

If you must know the runtime size of a data sequence (that is, the number of nodes or
data items in the sequence), you can get it by using the combination of the XPath
built-in count () function and the BPEL built-in getVariableData () function.

Manipulating XML Data in a BPEL Process 6-47

Manipulating XML Data Sequences That Resemble Arrays

The code in Example 6-90 calculates the number of elements in the item sequence and
assigns it to the integer variable 1ineItemSize.

Example 6-90 Sequence Size Determination
<assign>
<copy>
<from expression="count (bpws:getVariableData(’outpoint’, ’‘payload’,
'/p:invoice/p:lineltems/p:item')"/>
<to variable="lineItemSize"/>
</copy>
</assign>

6.19.4 How to Dynamically Index by Applying a Trailing XPath to an Expression

Often a dynamic value is needed to index into a data sequence; that is, you must get
the nth node out of a sequence, where the value of n is defined at runtime. This
section covers the methods for dynamically indexing by applying a trailing XPath into
expressions.

6.19.4.1 Applying a Trailing XPath to the Result of getVariableData

The dynamic indexing method shown in Example 6-91 applies a trailing XPath to the
result of bwps : getVariableData (), instead of using an XPath as the last argument
of bpws : getVariableData (). The trailing XPath references to an integer-based
index variable within the position predicate (thatis, [...]).

Example 6-91 Dynamic Indexing

<variable name="idx" type="xsd:integer"/>

<assign>
<copy>
<from expression="bpws:getVariableData ('input', 'payload’
) /p:line-item[bpws:getVariableData('idx')]/p:line-total" />
<to variable="lineTotalVar" />
</copy>
</assign>

Assume at runtime that the 1dx integer variable holds 2 as its value. The preceding
expression within the from is equivalent to that shown in Example 6-92.

Example 6-92 Equivalent Format
<from expression="bpws:getVariableData ('input', 'payload’

)/p:line-item[2]/p:1line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind
the bwps :getVariableData () function is compared with the one used inside the
function.

Using the same example (where payload is the message part of element
"p:invoice"), if the XPath is used within the getvVariableData () function, the
root element name (" /p:invoice") must be specified at the beginning of the XPath.

Example 6-93 provides details.

Example 6-93 Root Element Name Specification
bpws:getVariableData('input', 'payload',

6-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating XML Data Sequences That Resemble Arrays

'/p:invoice/p:line-item[2] /p:line-total")

If the XPath is used trailing behind the bwps : getVariableData () function, the root
element name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getvariableData () function is the root
element. Specifying the root element name again in the XPath is redundant and is
incorrect according to standard XPath semantics.

6.19.4.2 Using the bpelx:append Extension to Append New Items to a Sequence

The bpelx:append extension in an assign activity enables BPEL process service
components to append new elements to an existing parent element. Example 6-94
provides an example.

Example 6-94 bpelx:append Extension
<assign name="assign-3">

<copy>
<from expression="bpws:getVariableData('idx')+1" />
<to variable="idx"/>

</copy>

<bpelx:append>
<bpelx:from variable="partInfoResultVar" part="payload" />
<bpelx:to variable="output" part="payload" />

</bpelx:append>

</assign>

The bpelx:append logic in this example appends the payload element of the
partInfoResultVar variable as a child to the payload element of the output
variable. In other words, the payload element of the output variable is used as the
parent element.

6.19.4.3 Merging Data Sequences

You can merge two sequences into a single data sequence. This pattern is common
when the data sequences are in an array (that is, the sequence of data items of
compatible types).

The two append operations shown in Example 6-95 under assign demonstrate how
to merge data sequences:

Example 6-95 Data Sequences Merges with append Operations

<assign>
<!-- initialize "mergedLineltems" variable
to an empty element -->
<copy>

<from> <p:lineltems /> </from>
<to variable="mergedLinelItems" />
</copy>
<bpelx:append>
<bpelx:from variable="input" part="payload"
query="/p:invoice/p:lineltems/p:lineitem" />
<bpelx:to variable="mergedLineIltems" />
</bpelx:append>

Manipulating XML Data in a BPEL Process 6-49

Manipulating XML Data Sequences That Resemble Arrays

<bpelx:append>
<bpelx:from variable="literalLineItems"
query="/p:lineltems/p:lineitem" />
<bpelx:to variable="mergedLineItems" />
</bpelx:append>
</assign>

6.19.4.4 Generating Functionality Equivalent to an Array of an Empty Element

The genEmptyElem function generates functionality equivalent to an array of an
empty element to an XML structure. This function takes the following arguments:

genEmptyElem('ElemQName',int?, 'TypeQName'?, boolean?)

Note the following issues:
» The first argument specifies the QName of the empty elements.

s The optional second integer argument specifies the number of empty elements. If
missing, the default size is 1.

» The third optional argument specifies the OName, which is the xsi: type of the
generated empty name. This xsi: type pattern matches the SOAPENC : Array. If
it is missing or is an empty string, the xs1i : type attribute is not generated.

s The fourth optional boolean argument specifies whether the generated empty
elements are XSI - nil, provided the element is XSD-nillable. The default value
is false. If missing or false, xsi:nil is not generated.

Example 6-96 shows an append statement initializing a purchase order (PO)
document with 10 empty <lineItem> elements under po:

Example 6-96 append Statement
<bpelx:assign>
<bpelx:append>
<bpelx:from expression="ora:genEmptyElem('p:lineltem',10)" />
<bpelx:to variable="poVar" query="/p:po" />
</bpelx:append>
</bpelx:assign>

The genEmptyElem function in Example 6-96 can be replaced with an embedded
XQuery expression, as shown in Example 6-97.

Example 6-97 Embedded XQuery Expression

ora:genEmptyElem('p:lineltem',10)
== for $i1 in (1 to 10) return <p:lineltem />

The empty elements generated by this function are typically invalid XML data. You
perform further data initialization after the empty elements are created. Using the
same example above, you can perform the following:

= Add attribute and child elements to those empty 1ineItem elements.

» Perform copy operations to replace the empty elements. For example, copy from a
web service result to an individual entry in this equivalent array under a flowN
activity.

6-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Converting from a String to an XML Element

6.19.5 What You May Need to Know About Using the Array Identifier

For processing in Native Format Builder array identifier environments, information is
required about the parent node of a node. Because the reportSAXEvents APl is
used, this information is typically not available for outbound message scenarios.
Setting nxsd:useArrayIdentifiers to true in the native schema enables
DOM-parsing to be used for outbound message scenarios. Use this setting cautiously,
as it can lead to slower performance for very large payloads. Example 6-98 provides
details.

Example 6-98 Array Identifier

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:nxsd="http://xmlns.oracle.com/pcbpel /nxsd"
targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
elementFormDefault="qualified"
attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD" nxsd:useArrayIdentifiers="true">
<xsd:element name="Root-Element">

</xsd:element>
</xsd:schema>

6.20 Converting from a String to an XML Element

Sometimes a service is defined to return a string, but the content of the string is
actually XML data. The problem is that, although BPEL provides support for
manipulating XML data (using XPath queries, expressions, and so on), this
functionality is not available if the variable or field is a string type. With Java, you use
DOM functions to convert the string to a structured XML object type. You can use the
BPEL XPath function parseEscapedXML to do the same thing.

For information about parseEscapedXML, see Section B.2.47, "parseEscapedXML."

6.20.1 How To Convert from a String to an XML Element

The parseEscapedXML function takes XML data, parses it through DOM, and
returns structured XML data that can be assigned to a typed BPEL variable.
Example 6-99 provides an example:

Example 6-99 String to XML Element Conversion

<!-- execute the XPath extension function
parseEscapedXML ('&1lt;item> ') and assign to a variable
-—>
<assign>

<copy>

<from expression="oratext:parseEscapedXML (
'&1lt;item xmlns="http://samples.otn.com"
sku=" 006" > ;
&1t;description>sun ultra sparc VI server
&1t; /description>
&1t ;price>1000
< /price>
<quantityé>2
< /quantity>

Manipulating XML Data in a BPEL Process 6-51

Understanding Document-Style and RPC-Style WSDL Differences

&1lt;lineTotal>2000
&1lt;/lineTotal>
</item> ') "/>
<to variable="escapedLineItem"/>
</copy>
</assign>

6.21 Understanding Document-Style and RPC-Style WSDL Differences

The examples shown up to this point have been for document-style WSDL files in
which a message is defined with an XML schema element, as shown in
Example 6-100:

Example 6-100 XML Schema element Definition

<message name="LoanFlowRequestMessage">
<part name="payload" element="sl:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an
XML schema type, as shown in Example 6-101:

Example 6-101 RPC-Style type Definition

<message name="LoanFlowRequestMessage">
<part name="payload" type="sl:LoanApplicationType"/>
</message>

6.21.1 How To Use RPC-Style Files

This impacts the material in this chapter because there is a difference in how XPath
queries are constructed for the two WSDL message styles. For an RPC-style message,
the top-level element (and therefore the first node in an XPath query string) is the part
name (payload in Example 6-101). In document-style, the top-level node is the
element name (for example, loanApplication).

Example 6-102 and Example 6-103 show what an XPath query string looks like if an
application named LoanServices were in RPC style.

Example 6-102 RPC-Style WSDL File

<message name="LoanServiceResultMessage">
<part name="payload" type="sl:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
<sequence>
<element name="providerName" type="string"/>
<element name="selected" type="boolean"/>
<element name="approved" type="boolean"/>
<element name="APR" type="double"/>
</sequence>
</complexType>

Example 6-103 RPC-Style BPEL File

<variable name="output"
messageType="tns:LoanServiceResultMessage" />

6-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Manipulating SOAP Headers in BPEL

<assign>
<copy>
<from expression="9.9"/>
<to variable="output" part="payload" query="/payload/APR"/>
</copy>
</assign>

6.22 Manipulating SOAP Headers in BPEL

BPEL's communication activities (invoke, receive, reply, and onMessage) receive and
send messages through specified message variables. These default activities permit
one variable to operate in each direction. For example, the invoke activity has
inputVariable and outputVariable attributes. You can specify one variable for
each of the two attributes. This is enough if the particular operation involved uses only
one payload message in each direction.

However, WSDL supports multiple messages in an operation. In the case of SOAP,
multiple messages can be sent along the main payload message as SOAP headers.
However, BPEL's default communication activities cannot accommodate the
additional header messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL
communication activities with the bpelx:headerVariable extension. The extension
syntax is as shown in Example 6-104:

Example 6-104 bpelx:headerVariable Extension

<invoke bpelx:inputHeaderVariable="inHeaderl inHeader2 ..."
bpelx:outputHeaderVariable="outHeaderl outHeader2 ..."
oL />

<receive bpelx:headerVariable="inHeaderl inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeaderl inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeaderl inHeader2 ..." .../>

6.22.1 How to Receive SOAP Headers in BPEL

This section provides an example of how to create BPEL and WSDL files to receive
SOAP headers.

To receive SOAP headers in BPEL:

1. Create a WSDL file that declares header messages and the SOAP binding that
binds them to the SOAP request. Example 6-105 provides an example.

Example 6-105 WSDL File Contents

<!-- custom header -->
<message name="CustomHeaderMessage">
<part name="headerl" element="tns:headerl"/>
<part name="header2" element="tns:header2"/>
</message>

<binding name="HeaderServiceBinding" type="tns:HeaderService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<operation name="initiate">
<soap:operation style="document" soapAction="initiate"/>
<input>
<soap:header message="tns:CustomHeaderMessage"

Manipulating XML Data in a BPEL Process 6-53

Manipulating SOAP Headers in BPEL

part="headerl" use="literal"/>
<soap:header message="tns:CustomHeaderMessage"
part="header2" use="literal"/>
<soap:body use="literal"/>
</input>
</operation>
</binding>

2. Create a BPEL source file that declares the header message variables and uses
bpelx:headerVariable to receive the headers, as shown in Example 6-106.

Example 6-106 bpelx:headerVariable Use

<variables> <variable name="input"
messageType="tns:HeaderServiceRequestMessage" />
<variable name="event"
messageType="tns:HeaderServiceEventMessage" />
<variable name="output"
messageType="tns:HeaderServiceResul tMessage" />
<variable name="customHeader"
messageType="tns:CustomHeaderMessage"/>
</variables>

<sequence>
<!-- receive input from requester -->
<receive name="receivelInput" partnerLink="client"
portType="tns:HeaderService" operation="initiate"
variable="input"
bpelx:headerVariable="customHeader"
createlnstance="yes"/>

6.22.2 How to Send SOAP Headers in BPEL

This section provides an example of how to send SOAP headers.

To send SOAP headers in BPEL:

1. Define an SCA reference in the composite.xml to refer to the HeaderService.

2. Define the custom header variable, manipulate it, and send it using
bpelx:inputHeaderVariable, as shown in Example 6-107.

Example 6-107 bpelx:inputHeaderVariable Use

<variables>
<variable name="input" messageType="tns:HeaderTestRequestMessage"/>
<variable name="output" messageType="tns:HeaderTestResultMessage"/>
<variable name="request" messageType="services:HeaderServiceRequestMessage"/>
<variable name="response" messageType="services:HeaderServiceResultMessage"/>
<variable name="customHeader"messageType="services:CustomHeaderMessage"/>
</variables>

<!-- initiate the remote process -->
<invoke name="invokeAsyncService"
partnerLink="HeaderService"
portType="services:HeaderService"
bpelx:inputHeaderVariable="customHeader"
operation="initiate"
inputVariable="request"/>

6-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Declaring Extension Namespaces in BPEL 2.0

6.23 Declaring Extension Namespaces in BPEL 2.0

You can extend a version 2.0 BPEL process to add custom extension namespace
declarations. With the mustUnderstand attribute, you can indicate whether the
custom namespaces carry semantics that must be understood by the BPEL process.

If a BPEL process does not support one or more of the extensions with
mustUnderstand set to yes, the process definition is rejected.

Extensions are defined in the extensions element. Example 6-108 provides details.

Example 6—-108 Extension Namespace Declaration Syntax

<process ...>

<extensions>?
<extension namespace="myURI" mustUnderstand:“yes\no“ />+
</extensions>

</process>
The contents of an extension element must be a single element qualified with a
namespace different from the standard BPEL namespace.

For more information about extension declarations, see the Web Services Business
Process Execution Language Version 2.0 Specification located at the following URL:

http://www.oasis-open.org

6.23.1 How to Declare Extension Namespaces

To declare extension nhamespaces:
1. InaBPEL 2.0 process, click the Extensions icon above Oracle BPEL Designer.

The Extensions dialog is displayed.
2. Select the Extensions folder, then click the Add icon.
The Extension dialog is displayed.

3. In the Namespace field, enter the extension namespace to declare. This namespace
must be different from the standard BPEL namespace.

4. If you want the extensions to be recognized by the BPEL process, select the Must
Understand checkbox.

5. Click OK.
6. Click Close.

6.23.2 What Happens When You Create an Extension

After you complete your design, the . bpel process looks as shown in Example 6-109.

Example 6-109 Extension with Custom Namespace

<extensions>
<extension namespace="http://xmlns.mycompany.com/myNamespace"
mustUnderstand="yes"/>

</extensions>

Manipulating XML Data in a BPEL Process 6-55

Declaring Extension Namespaces in BPEL 2.0

6-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7

Invoking a Synchronous Web Service from a
BPEL Process

This chapter describes how to invoke a synchronous web service from a BPEL process.
This chapter demonstrates how to set up the components necessary to perform a
synchronous invocation. This chapter also examines how these components are coded.

This chapter includes the following sections:

= Section 7.1, "Introduction to Invoking a Synchronous Web Service"

= Section 7.2, "Invoking a Synchronous Web Service"

= Section 7.3, "Specifying Timeout Values"

= Section 7.4, "Calling a One-Way Mediator with a Synchronous BPEL Process"

For a simple Hello World sample (bpel-101-HelloWor1d) that takes an input
string, adds a prefix of "Hello " to the string, and returns it, visit the following URL:

https://socasamples.samplecode.oracle.com/

7.1 Introduction to Invoking a Synchronous Web Service

Synchronous web services provide an immediate response to an invocation. BPEL can
connect to synchronous web services through a partner link, send data, and then
receive the reply in the same synchronous invocation.

A synchronous invocation requires the following components:
» Partner link

Defines the location and the role of the web services with which the BPEL process
service component connects to perform tasks, and the variables used to carry
information between the web service and the BPEL process service component. A
partner link is required for each web service that the BPEL process service
component calls. You can create partner links in several ways, including the
following:

- In the SOA Composite Editor, when you drag a Web Service from the Service
Adapters section of the Component Palette into the Exposed Services or
External References swimlane. For more information, see Section 2.3, "Adding
Service Binding Components" or Section 2.4, "Adding Reference Binding
Components."

— In the Oracle BPEL Designer, when you drag a Partner Link from the BPEL
Constructs section of the Component Palette into the Partner Links swimlane.
This method is described in this chapter.

Invoking a Synchronous Web Service from a BPEL Process 7-1

Invoking a Synchronous Web Service

= Invoke activity

Opens a port in the BPEL process service component to send and receive data. For
example, this port is used to retrieve information verifying that a customer has
acceptable credit using a credit card authorization service. For synchronous
callbacks, only one port is needed for both the send and receive functions.

7.2 Invoking a Synchronous Web Service

This section examines a synchronous invocation operation using the
OrderProcessor .bpel file in the WebLogic Fusion Order Demo application as an
example.

7.2.1 How to Invoke a Synchronous Web Service

To invoke a synchronous web service:
1. In the Component Palette in Oracle BPEL Designer, expand BPEL Constructs.

2. Drag the necessary partner link, invoke activity, scope activity, and assign activity
into the designer.

3. Edit their dialogs.

Figure 7-1 shows the diagram for the Scope_AuthorizeCreditCard scope activity
of the OrderProcessor.bpel file in the Fusion Order Demo, which defines a simple
set of actions.

Figure 7-1 Diagram of OrderProcessor.bpel

»

Assign_CreditCheckInput

InvakeCheckCreditCard

50O

Checkif CC card was validated and amount approved

The following actions take place:

1. The Assign_CreditCheckInput assign activity packages the data from the client.
The assign activity provides a method for copying the contents of one variable to
another. In this case, it takes the credit card type, credit card number, and purchase
amount and assigns them to the input variable for the
CreditAuthorizationService service.

2. The InvokeCheckCreditCard activity calls the CreditCard Authorization service.
Figure 7-2 shows the CreditCard AuthorizationService web service, which is
defined as a partner link.

7-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking a Synchronous Web Service

Figure 7-2 CreditCardAuthorizationService Partner Link

® Edit Partner Link

rGeneraI |/Image rPropertv

Mame: |CreditCardAuthorizationService

Process: |OrderPr0cessor

WSDL Settings

Qan

WSDL URL: | CreditCardAutharizationService, wsdl

Partrer Link Type: |$' CreditCardautharizationService

Partrer Rale: k'a CreditAutharizationPark

Iy Role:

| Help | | Apply ||

QK _” Cancel |

Figure 7-3 shows the InvokeCheckCreditCard invoke activity.

Figure 7-3 InvokeCheckCreditCard Invoke Activity

P

Invoke

Interaction Type: |-{,5§§ Partret Link >

Pattner Role Web Service Interface

&
| Skip Candition rTimeout rTargets rSources rHeaders |
r General r Correlations r Froperties r Annatations r Assertions |
Mame: |Inv0keCheckCreditCard |
Conversation ID: | | Ef'!.
[] Invoke as Detail

Partrer Link: [CreditCardauthorizationService | &
Operation: | Gy -
Wariables
Input: [icreditCardinput | Q@
%
(e oo) [0 [conee |

e

A

The Switch_EvaluateCCResult switch activity in Figure 7-1 checks the results of
the credit card validation. For information about switch activities, see
Section 10.2.1, "Defining Conditional Branching with the Switch Activity in BPEL

1.1."

Note:

The switch activity is replaced by the if activity in BPEL 2.0.

Invoking a Synchronous Web Service from a BPEL Process 7-3

Invoking a Synchronous Web Service

7.2.2 What Happens When You Invoke a Synchronous Web Service

When you create a partner link and invoke activity, the necessary BPEL code for
invoking a synchronous web service is added to the appropriate BPEL and Web
Services Description Language (WSDL) files.

7.2.2.1 Partner Link in the BPEL Code

In the OrderProcessor.bpel code, the partner link defines the link name and type,
and the role of the BPEL process service component in interacting with the partner
service.

From the BPEL source code, the CreditCardAuthorizationService partner link
definition is shown in Example 7-1:

Example 7-1 Partner Link Definition
<partnerLink name="CreditCardAuthorizationService"

partnerRole="CreditAuthorizationPort"
partnerLinkType="ns2:CreditCardAuthorizationService"/>

Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard
scope are shown in Example 7-2. The types for these variables are defined in the
WSDL for the process itself.

Example 7-2 Variable Definition

<variable name="1CreditCardInput"
messageType="ns2:CreditAuthorizationRequestMessage" />

<variable name="1CreditCardOutput"
messageType="ns2:CreditAuthorizationResponseMessage" />

The WSDL file defines the interface to your BPEL process service component: the
messages that it accepts and returns, the operations that are supported, and other
parameters.

7.2.2.2 Partner Link Type and Port Type in the BPEL Code

The web service’s CreditCardAuthorizationService.wsdl file contains two
sections that enable the web service to work with BPEL process service components:

s partnerLinkType:

Defines the following characteristics of the conversion between a BPEL process
service component and the credit card authorization web service:

— The role (operation) played by each

— The portType provided by each for receiving messages within the
conversation

m portType:

A collection of related operations implemented by a participant in a conversation.
A port type defines which information is passed back and forth, the form of that
information, and so on. A synchronous invocation requires only one port type that
both initiates the synchronous process and calls back the client with the response.
An asynchronous callback (one in which the reply is not immediate) requires two
port types, one to send the request, and another to receive the reply when it
arrives.

7-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking a Synchronous Web Service

In this example, the portType CreditAuthorizationPort receives the credit
card type, credit card number, and purchase amount, and returns the status
results.

Example 7-3 provides an example of partnerLinkType and portType.

Example 7-3 partnerLinkType and portType Definitions

<plnk:partnerLinkType name="CreditCardAuthorizationService">
<plnk:role name="CreditAuthorizationPort">
<plnk:portType name="tns:CreditAuthorizationPort"/>
</plnk:role>
</plnk:partnerLinkType>

7.2.2.3 Invoke Activity for Performing a Request

The invoke activity includes the 1CreditCardInput local input variable. The credit
card authorization web service uses the 1CreditCardInput input variable. This
variable contains the customer’s credit card type, credit card number, and purchase
amount. The 1CreditCardOutput variable returns status results from the
CreditAuthorizationService service. Example 7—4 provides an example.

Example 7-4 Invoke Activity

<invoke name="InvokeCheckCreditCard"
inputVariable="1CreditCardInput"
outputVariable="1CreditCardOutput"
partnerLink="CreditCardAuthorizationService"
portType="ns2:CreditAuthorizationPort"
operation="AuthorizeCredit"/>

7.2.2.4 Synchronous Invocation in BPEL Code

The BPEL code shown in Example 7-5 performs the synchronous invocation:

Example 7-5 Synchronous Invocation

<assign name="Assign_CreditCheckInput">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:0rderInfov0SDO/ns4:0rderTotal" />
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:PurchaseAmount" />
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovV0SDO/ns4:CardTypeCode" />
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCType" />
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:o0rderInfovOSDO/ns4 : AccountNumber" />
<to variable="1CreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCNumber" />
</copy>
</assign>
<invoke name="InvokeCheckCreditCard"
inputVariable="1CreditCardInput"
outputVariable="1CreditCardOutput"
partnerLink="CreditCardAuthorizationService"

Invoking a Synchronous Web Service from a BPEL Process 7-5

Specifying Timeout Values

portType="ns2:CreditAuthorizationPort"
operation="AuthorizeCredit"/>

7.3 Specifying Timeout Values

You can specify timeout values with the property SyncMaxWaitTime in the System
MBean Browser of Oracle Enterprise Manager Fusion Middleware Control Console.
This property defines the maximum time a request and response operation takes
before timing out. If the BPEL process service component does not receive a reply
within the specified time, then the activity fails.

7.3.1 How To Specify Timeout Values

To specify timeout values:
1. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

2. From the SOA Infrastructure menu, select SOA Administration > BPEL
Properties.

3. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

4. Click SyncMaxWaitTime.

5. In the Value field, specify a value in seconds.
6. Click Apply.

7. Click Return.

7.3.2 What You May Need to Know About SyncMaxWaitTime and Synchronous
Requests Not Timing Out

The SyncMaxWaitTime property applies to durable processes that are called in an
asynchronous manner.

Assume you have a BPEL process with the definition shown in Example 7-6. The
process is not durable because there are no breakpoint activities.

Example 7-6 Process with No Breakpoint Activities

<receive name="receivelInput" partnerLink="client" variable="input"
createInstance="yes" />
<assign>

</assign>

<reply name="replyOutput" partnerLink="client" variable="output" />

If a Java client or another BPEL process calls this process, the assign activity is
performed and the reply activity sets the output message into a HashMap for the client
(actually the delivery service) to retrieve. Since the reply is the last activity, the thread

returns to the client side and tries to pick up the reply message. Since the reply
message was previously inserted, the client does not wait and returns with the reply.

Assume you have a BPEL process with a breakpoint activity, as shown in Example 7-7.

Example 7-7 Process with Breakpoint Activities

<receive name="receivelnput" partnerLink="client" variable="input"

7-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Calling a One-Way Mediator with a Synchronous BPEL Process

createInstance="yes" />
<assign>

</assign>
<wait for="'PT10S'" />
<reply name="replyOutput" partnerLink="client" variable="output" />

While it is not recommended to have asynchronous activities inside a synchronous
process, BPEL does not prevent this type of design.

When the client (or another BPEL process) calls the process, the wait (breakpoint)
activity is executed. However, since the wait is processed after some time by an
asynchronous thread in the background, the executing thread returns to the client side.
The client (actually the delivery service) tries to pick up the reply message, but it is not
there since the reply activity in the process has not yet executed. Therefore, the client
thread waits for the SyncMaxWaitTime seconds value. If this time is exceeded, then
the client thread returns to the caller with a timeout exception.

If the wait is less than the SyncMaxWaitTime value, the asynchronous background
thread then resumes at the wait and executes the reply. The reply is placed in the
HashMap and the waiter (the client thread) is notified. The client thread picks up the
reply message and returns.

Therefore, SyncMaxWaitTime only applies to synchronous process invocations when
the process has a breakpoint in the middle. If there is no breakpoint, the entire process
is executed by the client thread and returns the reply message.

7.4 Calling a One-Way Mediator with a Synchronous BPEL Process

You can expose a synchronous interface in the front end while using an asynchronous
callback in the back end to simulate a synchronous reply. This is the default behavior

in BPEL processes with the automatic setting of the configuration. transaction
property to requiresNew in the composite.xml file. Example 7-8 provides details.

Example 7-8 configuration.transaction Property

<component name="BPELProcessl">

@ <implementation.bpel src="BPELProcessl.bpel"/>

@ <property name="configuration.transaction" type="xs:string"
@ many="false">requiresNew</property>

@ </component>

RequiresNew is the recommended value. If you want to participate in the client's
transaction, you must set the configuration. transaction property to
Required.

Invoking a Synchronous Web Service from a BPEL Process 7-7

Calling a One-Way Mediator with a Synchronous BPEL Process

7-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8

Invoking an Asynchronous Web Service from
a BPEL Process

This chapter describes how to call an asynchronous web service. Asynchronous
messaging styles are useful for environments in which a service, such as a loan
processor, can take a long time to process a client request. Asynchronous services also
provide a more reliable fault-tolerant and scalable architecture than synchronous
services.

This chapter includes the following sections:

= Section 8.1, "Introduction to Invoking an Asynchronous Web Service"
= Section 8.2, "Invoking an Asynchronous Web Service"

= Section 8.3, "Using a Dynamic Partner Link at Runtime"

= Section 8.4, "Using WS-Addressing in an Asynchronous Service"

= Section 8.5, "Using Correlation Sets in an Asynchronous Service"

8.1 Introduction to Invoking an Asynchronous Web Service

This section introduces asynchronous web service invocation with a company called
United Loan. United Loan publishes an asynchronous web service that processes a
client’s loan application request and then returns a loan offer. This use case discusses
how to integrate a BPEL process service component with this asynchronous loan
application approver web service.

This use case illustrates the key design concepts for requesting information from an
asynchronous service, and then receiving the response. The asynchronous United Loan
service in this example is another BPEL process service component. However, the
same BPEL call can interact with any properly designed web service. The target web
service WSDL file contains the information necessary to request and receive the
necessary information.

For the asynchronous web service, the following actions take place (in order of
priority):
1. An assign activity prepares the loan application.

2. Aninvoke activity initiates the loan request. The contents of this request are put
into a request variable. This request variable is sent to the asynchronous loan
processor web service.

When the loan request is initiated, a correlation ID unique to the client and partner
link initiating the request is also sent to the loan processor web service. The

Invoking an Asynchronous Web Service from a BPEL Process 8-1

Invoking an Asynchronous Web Service

4.

correlation ID ensures that the correct loan offer response is returned to the
corresponding loan application requester.

The loan processor web service then sends the correct response to the receive
activity, which has been tracked by the correlation ID.

An assign activity reads the loan application offer.

The remaining sections in this chapter provide specific details about the asynchronous
functionality.

8.2 Invoking an Asynchronous Web Service

This section provides an overview of the tasks for adding asynchronous functionality
to a BPEL process service component.

8.2.1 How to Invoke an Asynchronous Web Service

You perform the following steps to asynchronously invoke a web service:

Add a partner link
Add an invoke activity
Add a receive activity

Create assign activities

8.2.1.1 Adding a Partner Link for an Asynchronous Service

These instructions describe how to create a partner link in a BPEL process (for this
example, named LoanService) for the loan application approver web service.

To add a partner link for an asynchronous service:

1.

In the SOA Composite Editor, drag a BPEL process from the Service Components
section of the Component Palette into the designer.

The Create BPEL Process dialog appears.
Follow the instructions in the dialog to create a BPEL process service component.
Click OK when complete.

In the SOA composite application in the SOA Composite Editor, double-click the
BPEL process service component (for this example, the component is named
LoanBroker).

The Oracle BPEL Designer appears.

In the Component Palette, expand BPEL Constructs.

Drag a Partner Link icon into the right Partner Links swimlane.
The Create Partner Link dialog appears.

Enter the following details to create a partner link and select the loan application
approver web service:

= Name
Enter a name for the partner link (for this example, LoanService is entered).

s Process

8-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking an Asynchronous Web Service

Displays the BPEL process service component name (for this example,
LoanBroker appears).

= WSDL URL

Enter the name of the Web Services Description Language (WSDL) file to use.
Click the SOA Resource Lookup icon above this field to locate the correct
WSDL.

s Partner Link Type

Refers to the external service with which the BPEL process service component
is to interface. Select from the list (for this example, LoanService is selected).

s Partner Role

Refers to the role of the external source, for example, provider. Select from the
list (for this example, LoanServiceProvider is selected).

= My Role

Refers to the role of the BPEL process service component in this interaction.
Select from the list (for this example, LoanServiceRequester is selected).

8. Click OK.

A new partner link for the loan application approver web service (United Loan)
appears in the swimlane of the designer.

8.2.1.2 Adding an Invoke Activity

Follow these instructions to create an invoke activity and a global input variable
named request. This activity initiates the asynchronous BPEL process service
component activity with the loan application approver web service (United Loan). The
loan application approver web service uses the request input variable to receive the
loan request from the client.

To add an invoke activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag an Invoke activity to beneath the Receive activity.

3. Go to the Structure window. Note that while this example describes variable
creation from the Structure window, you can also create variables by clicking the
Add icons to the right of the Input and Output fields of the Invoke dialog.

4. Right-click Variables and select Expand All Child Nodes.

5. In the second Variables folder in the tree, right-click and select Create Variable.
The Create Variable dialog appears.

6. Enter the variable name and select Message Type from the options provided:

s Type

This option lets you select an XML schema simple type (for example, string,
boolean, and so on).

m Message Type

This option enables you to select a WSDL message file definition of a partner
link or of the project WSDL file of the current BPEL process service component
(for example, a response message or a request message). You can specify

Invoking an Asynchronous Web Service from a BPEL Process 8-3

Invoking an Asynchronous Web Service

variables associated with message types as input or output variables for
invoke, receive, or reply activities.

To display the message type, select the Message Type option, and then select
its Browse icon to display the Type Chooser dialog. From here, expand the
Message Types tree to make your selection. For this example, Message Types
> Partner Links > Loan Service > LoanService.wsdl > Message Types >
LoanServiceRequestMessage is selected.

s Element

This option lets you select an XML schema element of the project schema file
or project WSDL file of the current BPEL process service component, or of a
partner link.

Figure 8-1 shows the Create Variable dialog.

Figure 8-1 Create Variable Dialog

© Create Varjable :

Mame: |request |

Type

(O Type

() Message Type |:t1,I'LoanService}-LoanServiceRequestMessage| \%

() Element

[] Entity variable

7. Click OK.
8. Double-click the invoke activity to display the Invoke dialog.

9. In the Invoke dialog, select the partner link from the Partner Link list (for this
example, LoanService is selected) and initiate from the Operation list.

10. To the right of the Input field, click the second icon and select the input variable
you created in Step 6.

The Variable Chooser dialog appears, where you can select the variable.

There is no output variable specified because the output variable is returned in the
receive operation. The invoke activity is created.

For more information about the invoke activity, see Section 8.2.2.5, "Invoke and
Receive Activities."

11. Click OK.

8.2.1.3 Adding a Receive Activity

Follow these steps to create a receive activity and a global output variable named
response. This activity waits for the loan application approver web service’s callback
operation. The loan application approver web service uses this output variable to send
the loan offer result to the client.

8-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking an Asynchronous Web Service

To add a receive activity:

1.

From the Component Palette, drag a Receive activity to the location right after the
Invoke activity you created in Section 8.2.1.2, "Adding an Invoke Activity."

Create a variable to hold the receive information by invoking the Create Variable
dialog, as you did in Step 3 through Step 7 of Section 8.2.1.2, "Adding an Invoke
Activity."

Figure 8-2 shows the Create Variable dialog in BPEL 1.1.

Figure 8-2 Create Variable Dialog

Edit Variable - response ;

General

Marne: |response |

Tvpe

() Type

() Message Type |{http:,l',l'xmlns.c-racle.-:om,l'LoanService,l'Project:| Q;,

() Element

[] Entity variable

Not: In BPEL projects that support version 2.0 of the BPEL
specification, the Create Variable dialog includes an Initialize tab that
enables you to initialize the variable type inline (for example, as a
variable, expression, literal, partner link, or property). For more
information, see Section 6.5.2, "Initializing Variables with an Inline
from-spec in BPEL 2.0."

Double-click the receive activity and change its name to receive_invoke.

From the Partner Link list, select the partner link (for this example, LoanService is
selected).

From the Operation list, select onResult. Do not select the Create Instance
checkbox.

Select the variable you created in Step 3 through Step 7 of Section 8.2.1.2, "Adding
an Invoke Activity."

Click OK.

The receive activity and the output variable are created. Because the initial receive
activity in the BPEL file (for this example, LoanBroker.bpel) created the initial
BPEL process service component instance, a second instance does not need to be
created.

8.2.1.4 Performing Additional Activities

In addition to the asynchronous-specific tasks, you must perform the following tasks.

Create an initial assign activity for data manipulation in front of the invoke
activity that copies the client’s input variable loan application request document

Invoking an Asynchronous Web Service from a BPEL Process 8-5

Invoking an Asynchronous Web Service

payload into the loan application approver web service’s request variable
payload.

s Create a second assign activity for data manipulation after the receive activity that
copies the loan application approver web service’s response variable loan
application results payload into the output variable for the client to receive.

8.2.2 What Happens When You Invoke an Asynchronous Web Service

This section describes what happens when you invoke an asynchronous web service.

8.2.2.1 portType Section of the WSDL File

The portType section of the WSDL file (in this example, for LoanService) defines
the ports to be used for the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way
operation. In this example, one port type responds to the asynchronous process and
the other calls back the client with the asynchronous response. In the example shown
in Example 8-1, the portType LoanServiceCallback receives the client’s loan
application request and the portType LoanService asynchronously calls back the
client with the loan offer response.

Example 8—1 portType Definition

<!-- portType implemented by the LoanService BPEL process -->
<portType name="LoanService">
<operation name="initiate">
<input message="tns:LoanServiceRequestMessage" />
</operation>
</portType>
<!-- portType implemented by the requester of LoanService BPEL process
for asynchronous callback purposes
-—>
<portType name="LoanServiceCallback">
<operation name="onResult">
<input message="tns:LoanServiceResultMessage"/>
</operation>
</portType>

8.2.2.2 partnerLinkType Section of the WSDL File

The partnerLinkType section of the WSDL file (in this example, for LoanService)
defines the following characteristics of the BPEL process service component:

s The role (operation) played
s The portType provided for receiving messages within the conversation

Partner link types in asynchronous services have two roles: one for the web service
provider and one for the client requester.

In the conversation shown in Example 8-2, the LoanServiceProvider role and
LoanService portType are used for client request messages and the
LoanServiceRequester role and LoanServiceCallback portType are used for
asynchronously returning (calling back) response messages to the client.

Example 8-2 partnerLinkType Definition

<plnk:partnerLinkType name="LoanService">
<plnk:role name="LoanServiceProvider">

8-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking an Asynchronous Web Service

<plnk:portType name="client:LoanService"/>
</plnk:role>
<plnk:role name="LoanServiceRequester">
<plnk:portType name="client:LoanServiceCallback"/>
</plnk:role>
</plnk:partnerLinkType>

Two port types are combined into this single asynchronous BPEL process service
component: portType="services:LoanService" of the invoke activity and
portType="services:LoanServiceCallback" of the receive activity. Port
types are essentially a collection of operations to be performed. For this BPEL process
service component, there are two operations to perform: initiate in the invoke
activity and onResult in the receive activity.

8.2.2.3 Partner Links Section in the BPEL File

To call the service from BPEL, you use the BPEL file to define how the process
interfaces with the web service. View the partnerLinks section. The services with
which a process interacts are designed as partner links. Each partner link is
characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that
partner link. This is critical in correlating responses to different partner links for
simultaneous requests of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this
example, the second partner link, LoanService, is used by the loan application
approver web service. Example 8-3 provides an example.

Example 8-3 partnerLink Definition

<!-- This process invokes the asynchronous LoanService. -->

<partnerLink name="LoanService"
partnerLinkType="services:LoanService"
myRole="LoanServiceRequester"
partnerRole="LoanServiceProvider"/>
</partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role
indicates the role of the partner in this conversation. Each partnerLinkType has a
myRole and partnerRole attribute in asynchronous processes.

8.2.2.4 Composite Application File

In the composite.xml file, the loan application approver web service appears, as
shown in Example 8—4.

Example 8—4 Loan Application Approver Web Service

<component name="LoanBroker">
<implementation.bpel process="LoanBroker.bpel"/>
</component>

For more information, see Section 8.2.1.1, "Adding a Partner Link for an Asynchronous
Service" for instructions on creating a partner link.

Invoking an Asynchronous Web Service from a BPEL Process 8-7

Invoking an Asynchronous Web Service

8.2.2.5 Invoke and Receive Activities

View the variables and sequence sections. Two areas of particular interest concern
the invoke and receive activities:

= An invoke activity invokes a synchronous web service (as discussed in Chapter 7,
"Invoking a Synchronous Web Service from a BPEL Process") or initiates an
asynchronous service.

The invoke activity includes the request global input variable defined in the
variables section. The request global input variable is used by the loan
application approver web service. This variable contains the contents of the initial
loan application request document.

= A receive activity that waits for the asynchronous callback from the loan
application approver web service. The receive activity includes the response
global output variable defined in the variables section. This variable contains
the loan offer response. The receive activity asynchronously waits for a callback
message from a service. While the BPEL process service component is waiting, it is
dehydrated, or compressed and stored, until the callback message arrives.

Example 8-5 provides an example.

Example 8-5 Invoke and Receive Activities

<variables>

<variable name="request"
messageType="services:LoanServiceRequestMessage" />

<variable name="response"
messageType="services:LoanServiceResultMessage" />

</variables>
<sequence>
<!-- initialize the input of LoanService -->
<assign>
<!-- initiate the remote process -->

<invoke name="invoke" partnerLink="LoanService"
portType="services:LoanService"
operation="initiate" inputVariable="request"/>

<!-- receive the result of the remote process -->

<receive name="receive_invoke" partnerLink="LoanService"
portType="services:LoanServiceCallback"
operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID
unique to the client request is also sent, using Web Services Addressing
(WS-Addressing) (described in Section 8.4, "Using WS-Addressing in an
Asynchronous Service"). Because multiple processes may be waiting for service
callbacks, the server must know which BPEL process service component instance is
waiting for a callback message from the loan application approver web service. The
correlation ID enables the server to correlate the response with the appropriate
requesting instance.

8.2.2.6 createlnstance Attribute for Starting a New Instance

You may notice a createInstance attribute in the initial receive activity. In this
initial receive activity, the createInstance element is set to yes. This starts a new

8-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Invoking an Asynchronous Web Service

instance of the BPEL process service component. At least one instance startup is
required for a conversation. For this reason, you set the createInstance variable to
no in the second receive activity.

Example 8-6 shows the source code for the createInstance attribute:

Example 8—6 createlnstance Attribute
<!-- receive input from requester -->
<receive name="receiveInput" partnerLink="client"
portType="tns:LoanBroker"
operation="initiate" variable="input"
createlnstance="yes"/>

8.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous
Processes

To automatically maintain long-running asynchronous processes and their current
state information in a database while they wait for asynchronous callbacks, you use a
database as a dehydration store. Storing the process in a database preserves the
process and prevents any loss of state or reliability if a system shuts down or a
network problem occurs. This feature increases both BPEL process service component
reliability and scalability. You can also use it to support clustering and failover.

You insert this point between the invoke activity and receive activity. You can also
explicitly specify a dehydration point with a dehydrate activity. For more information,
see Section A.2.8, "Dehydrate Activity."

8.2.2.8 Multiple Runtime Endpoint Locations

Oracle SOA Suite provides support for specifying multiple partner link endpoint
locations. This capability is useful for failover purposes if the first endpoint is down.
To provide an alternate partner link endpoint location, add the 1ocation attribute to
the composite.xml file. Example 8-7 provides an example.

Example 8-7 Alternate Runtime Endpoint Location

<reference name="HeaderService ...>
<binding.ws port="http://services.otn.com/HelloWorldApp#wsdl.endpoint (client/
HelloWorldService_pt)"

location="http://server:port/soa-infra/services/default/
HelloWorldService!l.0/client?WSDL">

<property name="endpointURI">http://jsmith.us.oracle.com:80/a.jsp
@http://myhost.us.oracle.com:8888/soa-infra/services/HelloWorldApp/HelloWorld!
1.0*%2007-10-22_14-33-04_195/client

</property>

</binding.ws>

</reference>

8.2.3 What You May Need to Know About Limitations on BPEL 2.0 IMA Support

Receive activities are a type of inbound message activity (IMA). Other examples of
IMAs are as follows:

= onMessage branches of a scope activity (in BPEL 1.1) or a pick activity
= onEvent branches of a scope activity in BPEL 2.0

The BPEL 2.0 specification allows multiple IMAs to work with each other or with other
IMAs derived from extension activities. To provide for consistent runtime behavior,

Invoking an Asynchronous Web Service from a BPEL Process 8-9

Invoking an Asynchronous Web Service

the BPEL 2.0 specification allows for correlation sets with the initiate attribute set
to join.

However, Oracle BPEL Process Manager’s implementation of the BPEL 2.0
specification does not support this behavior. The only way to support multiple IMAs is
by coding them as onMessage branches for a pick activity (that is, setting
createInstance to yes).

Oracle BPEL Process Manager also does not support other forms of multiple IMAs,
such as a flow activity with two branches, each with a receive activity and with
createInstance set to yes and correlation sets with initiate setto join.

As a workaround, you must design two different BPEL processes with the two receive
activities in alternating order, as follows:

= Processl with receivel followed by receive2, and only receivel having
createInstance set to yes

» Process2 with receive2 followed by receivel, and only receive2 having
createInstance set to yes.

The same also applies for any other combination of IMAs, such as a receive activity
and pick activity, or two pick activities.

8.2.4 What Happens When You Specify a Conversation ID

You can also enter an optional conversation ID value in the Conversation ID field of
an invoke activity (and other activities such as a receive activity and the onMessage
branch of a pick or scope activity).

The conversation ID identifies a process instance during an asynchronous
conversation. By default, the BPEL process service engine generates a unique ID for
each conversation (which can span multiple invoke and receive activities), as specified
by WSA addressing. If you want, you can specify your own value for the service
engine to use. Conversation IDs are implemented with the bpelx:conversationId
extension.

8.2.4.1 bpelx:conversationid in BPEL 1.1

Example 8-8 provides an example of the bpelx:conversationId extensionina
BPEL project that supports BPEL version 1.1. The bpelx:conversationId
extension takes an XPath expression.

Example 8-8 bpelx:conversationld Conversation ID in BPEL 1.1

<invoke ... bpelx:conversationId="$convId2">
</invoke>

<receive ... bpelx:conversationId="$convId2">
</receive>

<onMessage. .. bpelx:conversationId="$convId2">
</onMessage>

8.2.4.2 bpelx:conversationld in BPEL 2.0

Example 8-9 provides an example of the bpelx:conversationId extensionina
BPEL project that supports BPEL version 2.0. The bpelx:conversationId
extension takes a BPEL 2.0 XPath expression.

8-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using a Dynamic Partner Link at Runtime

Example 8-9 bpelx:conversationld Conversation ID in BPEL 2.0

<invoke ...>
<bpelx:conversationId>$convIdl</bpelx:conversationId>
</invoke>

<receive ...>
<bpelx:conversationId>$convIdl</bpelx:conversationId>
</receive>

<onMessage ...>
<bpelx:conversationId>$convId2</bpelx:conversationId>
</onMessage>

8.3 Using a Dynamic Partner Link at Runtime

You can dynamically configure a partner link at runtime in BPEL. This is useful for
scenarios in which the target service that BPEL wants to invoke is not known until
runtime.

Note: Dynamic partner links are only supported in BPEL 1.1
projects.

8.3.1 How To Add and Use a Dynamic Partner Link at Runtime

1. Create a WSDL file that contains multiple services that use the same portType.

2. Create a reference binding component entry in the composite.xml file that uses
the WSDL:

<reference name="loanService">

<interface.wsdl
interface="http://services.otn.com#wsdl.interface (LoanService)"
callbackInterface="http://services.otn.com#wsdl.interface (LoanServiceCallback)"
/>

<binding.ws port=
"http://services.otn.com#wsdl .endpoint (AmericanLoan/LoanService_pt) "/>
</reference>

Notes:

= Adding the binding.ws port setting is optional. This is
because the port is overridden at runtime by properties passed
from BPEL.

» If there is no port setting, and there is no composite import of the
concrete WSDL associated with this reference, you must specify
the location of the concrete WSDL with a 1ocation attribute.

3. Inthe BPEL file, programmatically assign the partner link. For this example,
UnitedLoan is one of the services defined in the WSDL.

<copy>
<from>
<EndpointReference
xmlns="http://schemas.xmlsoap.org/ws/2003/03/addressing">
<Address>http://myhost.us.oracle.com:9700/orabpel /default/UnitedLoan</Address>
</EndpointReference>

Invoking an Asynchronous Web Service from a BPEL Process 8-11

Using WS-Addressing in an Asynchronous Service

</from>
<to partnerLink="LoanService"/>
</copy>

8.4 Using WS-Addressing in an Asynchronous Service

Because there can be many active instances at any time, the server must be able to
direct web service responses to the correct BPEL process service component instance.
You can use WS-Addressing to identify asynchronous messages to ensure that
asynchronous callbacks locate the appropriate client.

Figure 8-3 provides an overview of WS-Addressing. WS-Addressing uses Simple
Object Access Protocol (SOAP) headers for asynchronous message correlation.
Messages are independent of the transport or application used.

Figure 8-3 Callback with WS-Addressing Headers

WS-Addressing Header:

BPEL Process - callback location
HelloWorld.bpel - correlation id (relatesTo)
WSDL .
LoanService [2.05] receive
loanApp PartnerLink [2.06] process
<variable> [2.22] callback
Initlate h | Initiate Port |
service —) T
<invoke> m
Async
loanOffer Loan
<variable> Prsoce_ssor
||:|| ervice
Wait for
callback ¢ Callback Port
<receive>
l WS-Addressing Header:

- correlation id (relatesTo)

Note 1: the correlation id allows
the BPEL server to know which
instance of the process is
waiting for this callback
messages.

Note 2: The alternative
approach is to use
content-based correlation
using <correlationSet>

Figure 8-3 shows how messages are passed along with WS headers so that the
response can be sent to the correct destination.

The example in this chapter uses WS-Addressing for correlation. To view the
messages, you can use TCP tunneling, which is described in Section 8.4.1.1, "Using
TCP Tunneling to See Messages Exchanged Between Programs."

WS-Addressing defines the following information typically provided by transport
protocols and messaging systems. This information is processed independently of the
transport or application:

» Endpoint location (reply-to address)

The reply-to address specifies the location at which a BPEL client is listening for a
callback message.

s Conversation ID

8-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using WS-Addressing in an Asynchronous Service

Use TCP tunneling to view SOAP messages exchanged between the BPEL process
service component flow and the web service (including those containing the
correlation ID). You can see the exact SOAP messages that are sent to, or received
from, services with which a BPEL process service component flow communicates.

You insert a software listener between your BPEL process service component flow
and the web service. Your BPEL process service component flow communicates
with the listener (called a TCP tunnel). The listener forwards your messages to the
web service, and also displays them. Responses from the web service are returned
to the tunnel, which displays and forwards them back to the BPEL process service
component.

8.4.1 How to Use WS-Addressing in an Asynchronous Service

WS-Addressing is a public specification and is the default correlation method
supported by Oracle BPEL Process Manager. You do not need to edit the . bpel and
.wsdl files to use WS-Addressing.

8.4.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs

The messages that are exchanged between programs and services can be seen through
TCP tunneling. This is particularly useful when you want to see the exact SOAP
messages exchanged between the BPEL process service component flow and web
services.

To monitor the SOAP messages, insert a software listener between your flow and the
service. Your flow communicates with the listener (called a TCP tunnel) and the
listener forwards your messages to the service, and displays them. Likewise, responses
from the service are returned to the tunnel, which displays them and then forwards
them back to the flow.

To see all the messages exchanged between the server and a web service, you need
only a single TCP tunnel for synchronous services because all the pertinent messages
are communicated in a single request and reply interaction with the service. For
asynchronous services, you must set up two tunnels, one for the invocation of the
service and another for the callback port of the flow.

8.4.1.1.1 Setting Up a TCP Listener for Synchronous Services Follow these steps to set up a
TCP listener for synchronous services initiated by an Oracle BPEL Process Manager
process:

1. Visit the following URL for instructions on how to download and install Axis TCP
Monitor (tcpmon)

http://ws.apache.org/commons/tcpmon/

2. Visit the following URL for instructions on how to use tcpmon:

http://ws.apache.org/axis/java/user-guide.html

3. Place axis. jar in your class path.
4. Start tcpmon:

C:\...\> java org.apache.axis.utils.tcpmon localport remoteHost
port_on_which _remote server_1is_running

5. Inthe composite.xml file, add the endpointURI property under binding.ws
for your flow to override the endpoint of the service.

Invoking an Asynchronous Web Service from a BPEL Process 8-13

Using WS-Addressing in an Asynchronous Service

6. From the operating system command prompt, compile and deploy the process
with ant.

Note that the same technique can see the SOAP messages passed to invoke a BPEL
process service component as a web service from another tool kit such as Axis or
NET.

8.41.1.2 Setting Up a TCP Listener for Asynchronous Services Follow these steps to set up
a TCP listener to display the SOAP messages for callbacks from asynchronous services:

1. Start a TCP listener to listen on a port and to send the Oracle BPEL Process
Manager port.

a. Open Oracle Enterprise Manager Fusion Middleware Control Console.

b. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

c. Specify the value for Callback Server URL. This URL is sent by the server as
part of the asynchronous callback address to the invoker.

2. From the SOA Infrastructure menu, select Administration > System MBean
Browser.

3. Expand Application Defined MBeans > oracle.soa.config > Server : soa_server >
SCAComposite.

where soa_server is the specific server instance name (for example, AdminServer).
All the SOA composite applications deployed on the server appear.

4. Follow these steps to set this property on a composite application. This action
enables it to apply to all bindings in the composite application.

a. Click your composite.
b. Ensure the Attributes tab is selected.
c. Inthe Name column, click Properties.

Click the Add icon.

e

e. Expand the newly added Element_number (appears at the end of the list).

where number is the next sequential number beyond the last property. For
example, if the property list contains twelve elements, adding a new property
causes Element_13 to be displayed.

f. In the name field, enter oracle.webservices.local.optimization.
g. Inthe value field, enter false.
h. Inthe many field, enter false.

Click Apply, and then click Return.
j. Inthe Name column on the Operations tab, click save.
k. Click Invoke to execute the operation.

I. Click Return or click a node in the System MBean Browser pane.

Note: After adding, deleting, or updating a property, you can click
the Refresh cached tree data icon in the upper right corner of the
System MBean Browser page to see the new data.

8-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

5. Follow these steps to set this property on a specific binding.

a. Expand your composite application. and drill down to the specific
SCAComposite.SCAReference.SCABinding folder.

b. Click WSBinding.
c. Perform steps 4b through 41.

6. Initiate any flow that invokes asynchronous web services. You can combine this
with the synchronous TCP tunneling configuration to send a service initiation
request through your first TCP tunnel.

The callbacks from the asynchronous services are shown in the TCP listener.

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to
see SOAP messages for both synchronous and asynchronous services.

8.5 Using Correlation Sets in an Asynchronous Service

Correlation sets provide another method for directing web service responses to the
correct BPEL process service component instance. You can use correlation sets to
identify asynchronous messages to ensure that asynchronous callbacks locate the
appropriate client.

Correlation sets are a BPEL mechanism that provides for the correlation of
asynchronous messages based on message body contents. To use this method, define
the correlation sets in your .bpel file. This method is designed for services that do not
support WS-Addressing or for certain sophisticated conversation patterns, for
example, when the conversation is in the form A > B > ¢ > Ainsteadofa > B >
A.

This section describes how to use correlation sets in an asynchronous service with
Oracle JDeveloper. Correlation sets enable you to correlate asynchronous messages
based on message body contents. You define correlation sets when interactions are not
simple invoke-receive activities. This example illustrates how to use correlation sets
for a process having three receive activities with no associated invoke activities.

8.5.1 How to Use Correlation Sets in an Asynchronous Service

This section describes the steps to perform to use correlation sets in an asynchronous
service.

8.5.1.1 Step 1: Creating a Project

To create a project:
1. Start Oracle JDeveloper.

2. From the File main menu, select New > Applications.

3. Select SOA Application, and click OK.

The Create SOA Application Wizard appears.

In the Application Name field, enter MyCorrelationSetApp.
Accept the default values for all remaining settings, and click Next.

In the Project Name field, enter MyCorrelationSetComposite.

N o a &

Accept the default values for all remaining settings, and click Next.

Invoking an Asynchronous Web Service from a BPEL Process 8-15

Using Correlation Sets in an Asynchronous Service

8. In the Composite Template section, select Composite With BPEL Process, and
click Finish.

The Create BPEL Process dialog appears.

9. Enter the values shown in Table 8-1.

Table 8-1 Create BPEL Process Dialog Fields and Values

Field Value
Name Enter MyCorrelationSet.
Template Select Asynchronous BPEL Process.

Expose as a SOAP Service Select the checkbox. After process creation, note the SOAP
service that appears in the Exposed Services swimlane. This
service provides the entry point to the composite application
from the outside world.

10. Accept the default values for all remaining settings, and click OK.

8.5.1.2 Step 2: Configuring Partner Links and File Adapter Services

You now create three partner links that use the SOAP service.
This section contains these topics:

= You create an initial partner link with an adapter service for reading a loan
application.

= You create a second partner link with an adapter service for reading an application
response.

= You create a third partner link with an adapter service for reading a customer

response.

8.5.1.2.1 Creating an Initial Partner Link and File Adapter Service

To create an initial partner link and file adapter service:
1. Double-click the MyCorrelationSet BPEL process.

2. In the Component Palette, expand BPEL Constructs.
3. Drag an initial Partner Link activity into the right swimlane of the designer.

4. Click the third icon at the top (the Service Wizard icon). This starts the Adapter
Configuration Wizard, as shown in Figure 8—4.

Figure 8—4 Adapter Configuration Wizard Startup

WSDL Settings

QAQF @

' 4 1
WSDL URL: | [Service Wizard
Partner Link Type: |B° ~ 1

5. In the Configure Service or Adapter dialog, select File Adapter and click OK.
6. In the Welcome dialog, click Next.

7. In the Service Name field of the Service Name dialog, enter FirstReceive and
click Next.

8. In the Adapter Interface dialog, accept the default settings and click Next.

8-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

10.
11.

12.
13.
14.
15.
16.
17.
18.

19.

20.

21.
22,

In the Operation dialog, select Read File as the Operation Type and click Next.
The Operation Name field is automatically filled in with Read.

Above the Directory for Incoming Files (physical path) field, click Browse.

Select a directory from which to read files (for this example,
C:\files\receiveprocess\FirstInputDir is selected).

Click Select.

Click Next.

In the File Filtering dialog, enter appropriate file filtering parameters.
Click Next.

In the File Polling dialog, enter appropriate file polling parameters.
Click Next.

In the Messages dialog, click Browse next to the URL field to display the Type
Chooser dialog.

Select an appropriate XSD schema file. For this example, Book1_4.xsd is the
schema and LoanAppl is the schema element selected.

Click OK.

The URL field (Book1_4.xsd for this example) and the Schema Element field
(LoanAppl for this example) are filled in.

Click Next.
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 8-2:

Table 8-2 Partner Link Dialog Fields and Values

Field Value

Name FirstReceive

WSDL URL directory_path/FirstReceive.wsdl
Partner Link Type Read_plt

Partner Role Leave unspecified.

My Role Read_role

23. Click OK.

8.5.1.2.2 Creating a Second Partner Link and File Adapter Service

To create a second partner link and file adapter service:

1.

2
3
4.
5

Drag a second PartnerLink activity beneath the FirstReceive partner link activity.
At the top, click the third icon (the Service Wizard icon).

In the Configure Service or Adapter dialog, select File Adapter and click OK.

In the Welcome dialog, click Next.

In the Adapter Type dialog, select File Adapter and click Next.

Invoking an Asynchronous Web Service from a BPEL Process 8-17

Using Correlation Sets in an Asynchronous Service

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.

21.

22,

23.
24.

In the Service Name field of the Service Name dialog, enter SecondFileRead
and click Next. This name must be unique from the one you entered in Step 7 of
Section 8.5.1.2.1, "Creating an Initial Partner Link and File Adapter Service."

In the Adapter Interface dialog, accept the default settings and click Next.
In the Operation dialog, select Read File as the Operation Type.

In the Operation Name field, change the name to Readl.

Click Next.

Select Directory Names are Specified as Physical Path.

Above the Directory for Incoming Files (physical path) field, click Browse.

Select a directory from which to read files (for this example,
C:\files\receiveprocess\SecondInputDir is entered).

Click Select.

Click Next.

Enter appropriate file filtering parameters in the File Filtering dialog.
Click Next.

Enter appropriate file polling parameters in the File Polling dialog.
Click Next.

Next to the URL field in the Messages dialog, click Browse to display the Type
Chooser dialog.

Select an appropriate XSD schema file. For this example, Book1_5.xsd is the
schema and LoanAppResponse is the schema element selected.

Click OK.

The URL field (Book1_5.xsd for this example) and the Schema Element field
(LoanAppResponse for this example) are filled in.

Click Next.
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 8-3:

Table 8-3 Partner Link Dialog Fields and Values

Field Value

Name SecondReceive

WSDL URL directory_path/SecondFileRead.wsdl
Partner Link Type Read1_plt

Partner Role Leave unspecified.

My Role Read1_role

25. Click OK.

8.5.1.2.3 Creating a Third Partner Link and File Adapter Service

8-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

To create a third partner link and file adapter service:

1.

o a & 0 N

10.
11.
12.
13.

14.
15.
16.
17.
18.
19.
20.

21.

22.

23.
24,

Drag a third PartnerLink activity beneath the SecondReceive partner link
activity.

At the top, click the third icon (the Service Wizard icon).

In the Configure Service or Adapter dialog, select File Adapter and click OK.
In the Welcome dialog, click Next.

In the Adapter Type dialog, select File Adapter and click Next.

In the Service Name field of the Service Name dialog, enter ThirdFileRead and
click Next. This name must be unique from the one you entered in Step 7 on

page 8-16 and Step 6 of Section 8.5.1.2.2, "Creating a Second Partner Link and File
Adapter Service."

In the Adapter Interface dialog, accept the default settings and click Next.
In the Operation dialog, select Read File as the Operation Type.

In the Operation Name field, change the name to Read2. This name must be
unique.

Click Next.
Select Directory Names are Specified as Physical Path.
Above the Directory for Incoming Files (physical path) field, click Browse.

Select a directory from which to read files (for this example,
C:\files\receiveprocess\ThirdInputDir is entered).

Click Select.

Click Next.

Enter appropriate file filtering parameters in the File Filtering dialog.
Click Next.

Enter appropriate file polling parameters in the File Polling dialog.
Click Next.

Next to the URL field in the Messages dialog, click Browse to display the Type
Chooser dialog.

Select an appropriate XSD schema file. For this example, Book1_6.xsd is the
schema and CustResponse is the schema element selected.

Click OK.

The URL field (Book1_6.xsd for this example) and the Schema Element field
(CustResponse for this example) are filled in.

Click Next.
Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 8-4:

Table 8—4 Partner Link Dialog Fields and Values

Field Value

Name ThirdReceive

Invoking an Asynchronous Web Service from a BPEL Process 8-19

Using Correlation Sets in an Asynchronous Service

Table 8-4 (Cont.) Partner Link Dialog Fields and Values

Field Value

WSDL URL directory_path/ThirdFileRead.wsdl
Partner Link Type Read2_plt

Partner Role Leave unspecified.

My Role Read2_role

25. Click OK.

8.5.1.3 Step 3: Creating Three Receive Activities

You now create three receive activities; one for each partner link. The receive activities
specify the partner link from which to receive information.

8.5.1.3.1 Creating an Initial Receive Activity

To create an initial receive activity:
1. Expand BPEL Constructs in the Component Palette.

2. Drag a Receive activity beneath the receivelnput receive activity in the designer.
3. Double-click the receive icon to display the Receive dialog.
4. Enter the details described in Table 8-5 to associate the first partner link

(FirstReceive) with the first receive activity:

Table 8-5 Receive Dialog Fields and Values

Field Value

Name receiveFirst
Partner Link FirstReceive

Create Instance Select this checkbox.

The Operation (Read) field is automatically filled in.

5. To the right of the Variable field, click the first icon. This is the automatic variable
creation icon.

6. In the Create Variable dialog, click OK.

A variable named receiveFirst_Read_InputVariable is automatically created in
the Variable field.

7. Ensure that you selected the Create Instance checkbox, as mentioned in Step 4.

8. C(lick OK.

8.5.1.3.2 Creating a Second Receive Activity

To create a second receive activity:

1. From the Component Palette, drag a second Receive activity beneath the
receiveFirst receive activity.

2. Double-click the receive icon to display the Receive dialog.

8-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

3. Enter the details described in Table 8-6 to associate the second partner link
(SecondReceive) with the second receive activity:

Table 8-6 Receive Dialog Fields and Values

Field Value

Name receiveSecond

Partner Link SecondFileRead

Create Instance Do not select this checkbox.

The Operation (Read1) field is automatically filled in.
4. To the right of the Variable field, click the first icon.
5. In the Create Variable dialog, click OK.

A variable named receiveSecond_Read1_InputVariable is automatically created
in the Variable field.

6. Click OK.

8.5.1.3.3 Creating a Third Receive Activity

To create a third receive activity:

1. From the Component Palette, drag a third Receive activity beneath the
receiveSecond receive activity.

2. Double-click the receive icon to display the Receive dialog.
3. Enter the details described in Table 8-7 to associate the third partner link
(ThirdReceive) with the third receive activity:

Table 8-7 Receive Dialog Fields and Values

Field Value

Name receiveThird

Partner Link ThirdFileRead

Create Instance Do not select this checkbox.

The Operation (Read2) field is automatically filled in.
4. To the right of the Variable field, click the first icon.
5. In the Create Variable dialog, click OK.

A variable named receiveThird_Read2_InputVariable is automatically created in
the Variable field.

6. Click OK.

Each receive activity is now associated with a specific partner link.

8.5.1.4 Step 4: Creating Correlation Sets

You now create correlation sets. A set of correlation tokens is a set of properties shared
by all messages in the correlated group.

8.5.1.4.1 Creating an Initial Correlation Set

Invoking an Asynchronous Web Service from a BPEL Process 8-21

Using Correlation Sets in an Asynchronous Service

To create an initial correlation set:

1. In the Structure window of Oracle JDeveloper, right-click Correlation Sets and
select Expand All Child Nodes.

2. In the second Correlation Sets folder, right-click and select Create Correlation Set.
3. In the Name field of the Create Correlation Set dialog, enter CorrelationSetl.

4. In the Properties section, click the Add icon to display the Property Chooser
dialog.

5. Select Properties, then click the Add icon (first icon at the top) to display the
Create Property dialog.

In the Name field, enter NameCorr.
To the right of the Type field, click the Browse icon.
In the Type Chooser dialog, select string and click OK.

© ®» N o

Click OK to close the Create Property dialog, the Property Chooser dialog, and the
Create Correlation Set dialog.

8.5.1.4.2 Creating a Second Correlation Set

To create a second correlation set:

1. Return to the Correlation Sets section in the Structure window of Oracle
JDeveloper.

2. Right-click the Correlation Sets folder and select Create Correlation Set.

3. Inthe Name field of the Create Correlation Set dialog, enter CorrelationSet2.

E

In the Properties section, click the Add icon to display the Property Chooser
dialog.

Select Properties, then click the Add icon to display the Create Property dialog.
In the Name field, enter IDCorr.

To the right of the Type field, click the Browse icon.

In the Type Chooser dialog, select double and click OK.

© ® N o o

Click OK to close the Create Property dialog, the Property Chooser dialog, and the
Create Correlation Set dialog.

8.5.1.5 Step 5: Associating Correlation Sets with Receive Activities

You now associate the correlation sets with the receive activities. You perform the
following correlation set tasks:

» For the first correlated group, the first and second receive activities are correlated
with the CorrelationSetl correlation set.

= For the second correlated group, the second and third receive activities are
correlated with the CorrelationSet2 correlation set.

8.5.1.5.1 Associating the First Correlation Set with a Receive Activity

To associate the first correlation set with a receive activity:
1. Double-click the receiveFirst receive activity to display the Receive dialog.

2. C(lick the Correlations tab.

8-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

3. (Click the Add icon to display the correlation set dropdown list.
4. Select CorrelationSet1.

5. Click the Initiate column to display a dropdown list, and select yes. When set to
yes, the set is initiated with the values of the properties occurring in the message
being exchanged.

6. Click OK.

8.5.1.5.2 Associating the Second Correlation Set with a Receive Activity

To associate the second correlation set with a receive activity:
1. Double-click the receiveSecond receive activity to display the Receive dialog.

Click the Correlations tab.

Click the Add icon to display the correlation set dropdown list.
Select CorrelationSet2, then click OK.

Click the Initiate column to display a dropdown list, and select yes.
Click Add again and select CorrelationSet1.

Click OK.

® N o g & 0 b

Click the Initiate column to display a dropdown list, and select no for
CorrelationSet1.

9. Click OK.

This groups the first and second receive activities into a correlated group.

8.5.1.5.3 Associating the Third Correlation Set with a Receive Activity

To associate the third correlation set with a receive activity:
1. Double-click the receiveThird receive activity to display the Receive dialog.

2. C(Click the Correlations tab.

3. Click the Add icon.

4. Select CorrelationSet2.

5. Set the Initiate column to no for CorrelationSet2.
6. Click OK.

This groups the second and third receive activities into a second correlated group.

8.5.1.6 Step 6: Creating Property Aliases

Property aliases enable you to map a global property to a field in a specific message
part. This action enables the property name to become an alias for the message part
and location. The alias can be used in XPath expressions.

8.5.1.6.1 Creating Property Aliases for NameCorr You create the following two property
aliases for the NameCorr correlation set:

= Map NameCorr to the LoanAppl message type part of the receiveFirst receive
activity. This receive activity is associated with the FirstReceive partner link
(defined by the FirstReceive.wsdl file).

Invoking an Asynchronous Web Service from a BPEL Process 8-23

Using Correlation Sets in an Asynchronous Service

Map NameCorr to the incoming LoanAppResponse message type part of the
receiveSecond receive activity. This receive activity is associated with the
SecondReceive partner link (defined by the SecondFileRead.wsdl file).

To create property aliases for NameCorr:

1.

In the Structure window of Oracle JDeveloper, right-click Property Aliases.

2. Select Create Property Alias.

3. From the Property list, select NameCorr.

4. Expand and select Message Types > Partner Link > FirstReceive >
FirstReceive.wsdl > Message Types > LoanAppl_msg > Part - LoanAppl.

5. In the Query field, press Ctrl+Space to define the following XPath expression:
/ns2:LoanAppl /ns2:Name

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

8. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:
/ns4 :LoanAppResponse/nsé : APR

10. Click OK.

8.5.1.6.2 Creating Property Aliases for IDCorr

You create the following two property aliases for the IDCorr correlation set:

Map IDCorr to the LoanAppResponse message type part of the receiveSecond
receive activity. This receive activity is associated with the SecondReceive partner
link (defined by the SecondFileRead.wsdl file).

Map IDCorr to the CustResponse message type part of the receiveThird receive
activity. This receive activity is associated with the ThirdReceive partner link
(defined by the ThirdFileRead.wsdl file).

To create property aliases for IDCorr:

1.
2
3.

In the Structure window, right-click Property Aliases.
Select Create Property Alias.
In the Property list, select IDCorr.

Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

In the Query field, press Ctrl+Space to define the following XPath expression:

/nsd :LoanAppResponse/ns4 : APR

Click OK.
Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl >
Message Types > CustResponse_msg > Part - CustResponse.

In the Query field, press Ctrl+Space to define the following XPath expression:

8-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Correlation Sets in an Asynchronous Service

/ns6:CustResponse/ns6: APR

Design is now complete.

10. Click OK.
8.5.1.7 Step 7: Reviewing WSDL File Content

To review WSDL file content:
1. Refresh the Application Navigator.

The NameCorr and IDCorr correlation set properties are defined in the
MyCorrelationSet_Properties.wsdl file in the Application Navigator.
Example 8-10 provides an example.

Example 8-10 Correlation Set Properties

<definitions
name="properties"
targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/correlationset"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<bpws :property name="NameCorr" type="xsd:string"/>
<bpws : property name="IDCorr" type="xsd:double"/>

</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file, as shown
in Example 8-11:

Example 8-11 Property Aliases

<bpws :propertyAlias propertyName="nsl:NameCorr"
messageType="ns3:LoanAppl_msg"
part="LoanAppl" query="/ns2:LoanAppl/ns2:Name" />

<bpws:propertyAlias propertyName="nsl:NameCorr"
messageType="ns5 : LoanAppResponse_msg"
part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR" />

<bpws :propertyAlias propertyName="nsl:IDCorr"
messageType="ns5:LoanAppResponse_msg"
part="LoanAppResponse" query="/nsd:LoanAppResponse/nsd:APR"/>

<bpws :propertyAlias propertyName="nsl:IDCorr"
messageType="ns7:CustResponse_msg"
part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process service component is not created as a web services
provider in this example, the MyCorrelationSet.wsdl file is not referenced in
the BPEL process service component. Therefore, you must import the
MyCorrelationSet.wsdl file inside the FirstReceive.wsdl file to reference
the correlation sets defined in the former WSDL. Example 8-12 provides an
example.

Example 8-12 WSDL File Import

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"

Invoking an Asynchronous Web Service from a BPEL Process 8-25

Using Correlation Sets in an Asynchronous Service

location="MyCorrelationSet.wsdl"/>

8.5.2 What You May Need to Know About Setting Correlations for an IMA Using a
fromParts Element With Multiple Parts

Assume you have the following scenario:

s A BPEL 2.0 process with a WSDL message type that has multiple parts that are
identical in type.

= A property alias has been defined based on the element type of the above part.

For a process that has an inbound message activity (IMA) (for example, a receive
activity, onMessage branch of a scope or pick activity, or onEvent branch of a scope
activity in BPEL 2.0) that uses the fromParts element with fromPart defined for
each part, correlations cannot be defined because the runtime environment cannot
determine the part to which to apply the property alias.

For more information about mapping WSDL message parts with the toParts and
fromParts elements, see Section 6.17, "Mapping WSDL Message Parts in BPEL 2.0."

8-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9

Using Parallel Flow in a BPEL Process

This chapter describes how to use parallel flow in a BPEL process service component.
Parallel flows enable a BPEL process service component to perform multiple tasks at
the same time. Parallel flow is especially useful when you must perform several
time-consuming and independent tasks.

This chapter includes the following sections:

s Section 9.1, "Introduction to Parallel Flows in BPEL Processes"
» Section 9.2, "Creating a Parallel Flow"

= Section 9.3, "Customizing the Number of Parallel Branches"

For additional information on creating parallel flows in a SOA composite application,
see the Fusion Order Demo application, which is described in Chapter 3, "Introduction
to the SOA Sample Application.”

9.1 Introduction to Parallel Flows in BPEL Processes

A BPEL process service component must sometimes gather information from multiple
asynchronous sources. Because each callback can take an undefined amount of time
(hours or days), it may take too long to call each service one at a time. By breaking the
calls into a parallel flow, a BPEL process service component can invoke multiple web
services at the same time, and receive the responses as they come in. This method is
much more time efficient.

Figure 9-1 shows the Retrieve_QuotesFromSuppliers flow activity of the Fusion Order
Demo application. The Retrieve_QuotesFromSuppliers flow activity sends order
information to two suppliers in parallel: an internal warehouse
(InternalWarehouseService) and an external partner warehouse
(PartnerSupplierMediator). The two warehouses return their bids for the order to the
flow activity. Here, two asynchronous callbacks execute in parallel. One callback does
not have to wait for the other to complete first. Each response is stored in a different
global variable.

Using Parallel Flow in a BPEL Process 9-1

Creating a Parallel Flow

Figure 9—1 Parallel Flow Invocation

BPEL
Process

<flow>

WSDL

<sequence>

WSDL

<sequence>

Initiate

<invoke>

service

<invoke> | . >

1
Initiate :
1

1
1
1
| service
1
1
1
1

PartnerSupplierMediator

InternalWarehouseService

=—P-r| Wait for
1| callback
1| <receive>

1
1
Wait for | *
callback :
1

<receive>

9.2 Creating a Parallel Flow

You can create a parallel flow in a BPEL process service component with the flow
activity. The flow activity enables you to specify one or more activities to be performed
concurrently. The flow activity also provides synchronization. The flow activity
completes when all activities in the flow have finished processing. Completion of this
activity includes the possibility that it can be skipped if its enabling condition is false.

9.2.1 How to Create a Parallel Flow

To create a parallel flow:

1. In the Component Palette, expand BPEL Constructs.

2. Drag a Flow activity into the designer.

3. (Click the + sign to expand the flow activity, as shown in Figure 9-2.

Figure 9-2 Flow Activity

+\

The flow activity initially includes two branches, each with a box for functional
elements. Populate these boxes as you do a scope activity, either by building a
function or dragging activities into the boxes. You can add additional branches by
highlighting the flow activity and clicking the Add Sequence icon.

4. Drag and define additional activities onto each side of the flow to invoke multiple
services at the same time. Figure 9-3 provides details.

9-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Parallel Flow

Figure 9-3 Expanded Flow Activity

When complete, flow activity design can look as shown in Figure 9-4. This
example shows the Retrieve_QuotesFromSuppliers flow activity of the Fusion
Order Demo application. Two branches are defined for receiving bids: one for
InternalWarehouseService and the other for PartnerSupplierMediator.

Figure 9-4 Flow Activity After Design Completion

D

Assign_InternalWarehouseRequest Assign_PartnerRequest

=

Invoke_Internalwarehouse Invoke_PartnerSupplier

&)- 2.

Receive_Internalwarshouse Receive_PartrerResponse

Assign_InkerWHResponse Assign_PartnerWHResponse

9.2.2 What Happens When You Create a Parallel Flow

A flow activity typically contains many sequence activities. Each sequence is
performed in parallel. Example 9-1 shows the syntax for two sequences of the
Retrieve_QuotesFromSuppliers flow activity in the OrderProcessor.bpel
file after design completion. However, a flow activity can have many sequences. A
flow activity can also contain other activities. In Example 9-1, each sequence in the
flow contains assign, invoke, and receive activities.

Example 9—1 Flow Activity

<flow name="Retrieve_QuotesFromSuppliers">
<sequence name="Sequence_4">
<assign name="Assign InternalWarehouseRequest">
<copy>
<from variable="gOrderInfoVariable"

Using Parallel Flow in a BPEL Process 9-3

Creating a Parallel Flow

query="/ns4:orderInfov0OSDO/ns4:0rderId" />
<to variable="lInternalWarehouseInputVariable"
part="payload"
query="/nsl:WarehouseRequest/nsl:orderIid" />
</copy>
</assign>
<invoke name="Invoke InternalWarehouse"
inputVariable="1lInternalWarehouseInputVariable"
partnerLink="InternalWarehouseService"
portType="nsl:InternalWarehouseService"
operation="process"/>
<receive name="Receive_InternalWarehouse"
createInstance="no"
variable="1InternalWarehouseResponseVariable"
partnerLink="InternalWarehouseService"
portType="nsl:InternalWarehouseServiceCallback"
operation="processResponse"/>
<assign name="Assign_InterWHResponse">
<bpelx:append>
<bpelx:from variable="lInternalWarehouseResponseVariable"
part="payload"
query="/nsl:WarehouseResponse" />
<bpelx:to variable="gWarehouseQuotes"
query="/nsl:WarehouseList"/>
</bpelx:append>
</assign>
</sequence>
<sequence name="Sequence_4">
<assign name="Assign_PartnerRequest">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovosSDO" />
<to variable="lPartnerSupplierInputVariable"
part="request" query="/ns4:orderInfoVOSDO"/>
</copy>
</assign>
<invoke name="Invoke_ PartnerSupplier"
partnerLink="PartnerSupplierMediator"
portType="nsl5:execute_ptt" operation="execute"
inputVariable="1PartnerSupplierInputVariable"/>
<receive name="Receive_PartnerResponse"
createlnstance="no"
variable="1PartnerResponseVariable"
partnerLink="PartnerSupplierMediator"
portType="nsl5:callback_ptt" operation="callback"/>
<assign name="Assign_PartnerWHResponse">
<bpelx:append>
<bpelx:from variable="1PartnerResponseVariable"
part="callback"
query="/nsl:WarehouseResponse" />
<bpelx:to variable="gWarehouseQuotes"
query="/nsl:WarehouseList"/>
</bpelx:append>
</assign>
</sequence>
</flow>

9-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Parallel Flow

9.2.3 Synchronizing the Execution of Activities in a Flow Activity

You can synchronize the execution of activities within a flow activity to ensure that
certain activities only execute after other activities have completed. For example,
assume you have an invoke activity, verifyF1light, that is executed in parallel with
other invoke activities (verifyHotel, verifyCarRental, and scheduleFlight)
when the flow activity begins. However, scheduling a flight is necessary only after
verifying that a flight is available. Therefore, you can add a link between the
verifyFlight and scheduleFlight invoke activities. Links provide a level of
dependency indicating that the activity that is the target of the link
(scheduleFlight) is only executed if the activity that is the source of the link
(verifyFlight) has completed.

Example 9-2 provides details. The link name verifyFlight-To-scheduleFlight
is assigned to the source verifyFlight and target scheduleFlight invoke
activities. If the source verifyFlight completes execution, the target
scheduleFlight is then executed.

Example 9-2 Link Between Source and Target Activities

<flow ...>
<links>
<link name="verifyFlight-To-scheduleFlight" />
</links>
<documentation>
Verify the availability of a flight, hotel, and rental car in parallel
</documentation>
<invoke name="verifyFlight" ...>
<sources>
<source linkName="verifyFlight-To-scheduleFlight" />
</sources>
</invoke>
<invoke name="verifyHotel" ... />
<invoke name="verifyCarRental" ... />
<invoke name="scheduleFlight" ...>
<targets>
<target linkName="verifyFlight-To-scheduleFlight" />
</targets>
</invoke>
</flow>

9.2.4 How to Create Synchronization Between Activities Within a Flow Activity

To create synchronization between activities within a flow activity:

1. Create a flow activity. For information, see Section 9.2.1, "How to Create a Parallel
Flow."

2. Inthe General tab of the Flow activity, click the Add icon.

3. Enter a name for the link, as shown in Figure 9-5.

Using Parallel Flow in a BPEL Process 9-5

Creating a Parallel Flow

Figure 9-5 Link Name Creation

Flow %

| General rnnnotations rDocumentation rTargets rSources |

Mare: | |

Links: EF b4
Mame:

& [pioB |

| heb | | apply || ok || Cancel

4. Click Apply, then OK.

5. Drag appropriate activities into the flow activity to define as the source with the
same link name as defined in Step 3. The value of the link name of the source and
target must be the same as the link name declared in the flow activity. For this
example, an assign activity named A is defined as the source in Figure 9-6.

Figure 9-6 Source Activity

=" Edit Assign |

r General |/ Copy Rules |/ Annotations |/ Diocumentation |/ Targeks |/ Sources |

Sources: '* %
Link. Mame Transition Condition
0)) [akoB [
| Help | | Apply || (o] 4 “ Cancel

Note that each source activity can specify an optional Transition Condition as a
safe guard for following the specified link. Click the row in this column to invoke
the Browser icon for accessing the Expression Builder dialog for creating a
condition. If the Transition Condition column is left blank, it is assumed to
evaluate to true.

6. Define appropriate copy rules for the assign activity.

9-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Parallel Flow

7. Click Apply, then OK.

8. Drag an additional activity into the flow activity to define as the target with the
same link name as defined in Step 3. For this example, another assign activity
named B is defined as the target in Figure 9-7.

Figure 9-7 Target Activity

® Edit Assign _

r General r Copy Rules r Annokations r Documentation r Targeks r Sources |

Targets: l* x
Link. Marme

DEREE] [+

Apply | [o4 J | Cancel

9. Define appropriate copy rules for the assign activity.
10. Click Apply, then OK.
11. Continue design of your BPEL process.

When complete, design can appear similar to that shown in Figure 9-8.

Using Parallel Flow in a BPEL Process 9-7

Creating a Parallel Flow

Figure 9-8 Three Flow Activities Synchronized with Links

Y
-+
A B
Y
-+
3 (@
scopel B
D
+ |_T + |r
scope Sequence_1

9.2.5 What Happens When You Create Synchronization Between Activities Within a
Flow Activity

Example 9-3 shows the .bpel file after design is complete for three flow activities
with links for synchronizing activity execution.

s Flow_1 shows a link between simple activities.

Flow_1 includes a link named AtoB. The activity that is the target of the link,
assign activity B, is only executed if the activity that is the source of the link, assign
activity A, has completed.

= Flow_2 shows a link between simple activity and composite activity.

Flow_2 also includes the link named AtoB. The activity that is the target of the
link, assign activity B, is only executed if the activity that is the source of the link,
scope activity scopel, has completed.

s Flow_3 shows a link between composite activities.

Flow_3 also includes the link named AtoB. The activity that is the target of the
link, sequence activity Sequence_1, is only executed if the activity that is the
source of the link, scope activity scope2, has completed.

Example 9-3 Flow Activities with Links

<!-- link between simple activities -->
<flow name=Flow_1>
<links>
<link name="AtoB"/>
</links>
<assign name="A">
<sources>
<source linkName="AtoB"/>
</sources>
<copy>
<from>concat (Soutput.payload, 'A')</from>
<to>$output.payload</to>

9-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Parallel Flow

</copy>
</assign>
<assign name="B">
<targets>
<target linkName="AtoB"/>
</targets>
<copy>
<from>concat (Soutput.payload, 'B')</from>
<to>$Soutput.payload</to>
</copy>
</assign>
</flow>

<!-- link between simple activity and composite activity -->
<flow name=Flow_2>
<links>
<link name="AtoB"/>
</links>
<scope name="scopel">
<sources>
<source linkName="AtoB"/>
</sources>
<assign name="A">
<copy>
<from>concat ($output.payload, 'A')</from>
<to>$output.payload</to>
</copy>
</assign>
</scope>
<assign name="B">
<targets>
<target linkName="AtoB"/>
</targets>
<copy>
<from>concat (Soutput.payload, 'B')</from>
<to>$output.payload</to>
</copy>
</assign>
</flow>

<!-- link between composite activities -->
<flow name=Flow 3>
<links>
<link name="AtoB"/>
</links>
<scope name="scope2">
<sources>
<source linkName="AtoB"/>
</sources>
<assign name="A">
<copy>
<from>concat ($output.payload, 'A')</from>
<to>Soutput.payload</to>
</copy>
</assign>
</scope>
<sequence name="Sequence_1l>
<targets>
<target linkName="AtoB"/>
</targets>

Using Parallel Flow in a BPEL Process 9-9

Customizing the Number of Parallel Branches

<assign name="B">
<copy>
<from>concat ($output.payload, 'B')</from>
<to>Soutput.payload</to>
</copy>
</assign>
</sequence>
</flow>
</sequence>

9.2.6 What You May Need to Know About Join Conditions in Target Activities

You can specify an optional join condition in target activities. The value of the join
condition is a boolean expression. If a join condition is not specified, the join condition
is the disjunction (that is, a logical OR operation) of the link status of all incoming links
of this activity.

Oracle BPEL Designer does not provide design support for adding join conditions. To
add a join condition, you must manually add the condition to the . bpel file in Source
view in Oracle BPEL Designer.

Example 94 provides an example of a join condition.

Example 9-4 Join Condition in Target Activity

<flow>
<links>
<link name="linkStatus2"/>
</links>
<empty name="E2">
<sources>
<gsource linkName="linkStatus2">
<transitionCondition>false()</transitionCondition>
</source>
</sources>
</empty>
<empty name="E2">
<targets>
<joinCondition>bpws:getLinkStatus('linkStatus2')=true()</joinCondition>
<target linkName="linkStatus2"/>
</targets>
</empty>
</flow>

9.3 Customizing the Number of Parallel Branches

This section describes how to customize the number of parallel branches with the
following activities:

s A FlowN activity in a BPEL version 1.1 project
» A forEach activity in a BPEL version 2.0 project

9.3.1 Customizing the Number of Flow Activities with the flowN Activity in BPEL 1.1

In the flow activity, the BPEL code determines the number of parallel branches.
However, often the number of branches required is different depending on the
available information. The flowN activity creates multiple flows equal to the value of
N, which is defined at runtime based on the data available and logic within the

9-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Customizing the Number of Parallel Branches

process. An index variable increments each time a new branch is created, until the
index variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the
number of elements changes, the BPEL process service component adjusts accordingly.

The branches created by flowN perform the same activities, but use different data.
Each branch uses the index variable to look up input variables. The index variable can
be used in the XPath expression to acquire the data specific for that branch.

For example, suppose there is an array of data. The BPEL process service component
uses a count function to determine the number of elements in the array. The process
then sets N to be the number of elements. The index variable starts at a preset value
(zero is the default), and flowN creates branches to retrieve each element of the array
and perform activities using data contained in that element. These branches are
generated and performed in parallel, using all the values between the initial index
value and N. flowN terminates when the index variable reaches the value of N. For
example, if the array contains 3 elements, N is set to 3. Assuming the index variable
begins at 1, the flowN activity creates three parallel branches with indexes 1, 2, and 3.

The flowN activity can use data from other sources as well, including data obtained
from web services.

Figure 9-9 shows the runtime flow of a flowN activity in Oracle Enterprise Manager
Fusion Middleware Control Console that looks up three hotels. This is different from
the view, because instead of showing the BPEL process service component, it shows
how the process has actually executed. In this case, there are three hotels, but the
number of branches changes to match the number of hotels available.

Using Parallel Flow in a BPEL Process 9-11

Customizing the Number of Parallel Branches

Figure 9-9 Oracle Enterprise Manager Fusion Middleware Control Console View of the
Execution of a flowN activity

receivelnput

(e
|
1 R

Lassign |

getHotelsh
| i i
= Index=1 = Index=2 = Index=3
) =) (e)
"1, | 'L, |
L .E>"!-U|\) L .!.‘$>I|’__':II] _.-.Ia'a:gl'l
setHotel1d setHotel1d setHotelld

805 L
linvoke)
InvokeHotelDe. .. InvokeHotelDe. ..

callback Client
9.3.1.1 How to Create a flowN Activity

To create a flowN activity:
1. In the Component Palette, expand Oracle Extensions.

2. Draga FlowN activity into the designer.
3. Click the + sign to expand the FlowN activity.
4. Double-click the FlowN activity.

Figure 9-10 shows the flowN dialog.

9-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Customizing the Number of Parallel Branches

Figure 9-10 FlowN Dialog

FlowN ®

| General r.ﬂ.nnotations rSkip Condition rTargets rSources |

Mame: |F|0wNCR2 |

M: 2 | B

Index Yariable: |F|0wNCR2_Variable | 4 Q
| Help | | Apply | | a4 | | Cancel

The flowN dialog enables you to:
= Name the activity

= Enter a value or an expression for calculating the value of N (the number of
branches to create)

» Define the index variable (the time to wait in each branch)
5. Drag and define additional activities in the flowN activity.

Figure 9-11 shows how a FlowN activity appears with additional activities.
Figure 9-11 FlowN Activity with Additional Activities

TR Y
&

Flawih_1

Assignid

AssignOukput

9.3.1.2 What Happens When You Create a FlowN Activity

The following code shows the .bpel file that uses the flowN activity to look up
information on an arbitrary number of hotels. The following actions take place.

Example 9-5 shows the sequence name.

Example 9-5 Sequence Name

<sequence name="main">
<!-- Received input from requester.
Note: This maps to operation defined in NflowHotels.wsdl

Using Parallel Flow in a BPEL Process 9-13

Customizing the Number of Parallel Branches

The requester sends a set of hotels names wrapped into the "inputVariable"
-—>

A receive activity calls the client partner link to get the information that the £1owN
activity must define N times and look up the hotel information. Example 9-6 provides
an example.

Example 9-6 Receive Activity

<receive name="receivelnput" partnerLink="client"
portType="client:NflowHotels" operation="initiate" variable="inputVariable"
createInstance="yes" />
<l--
The 'count()' Xpath function is used to get the number of hotelName
noded passed in.
An intermediate variable called "NbParallelFlow" is
used to store the number of N flows being executed
-=>
<assign name="getHotelsN">
<copy>
<from
expression="count ($InputVariable.payload/client:HotelName) ;" />
<to variable="NbParallelFlow"/>
</copy>
</assign>
<!-- Initiating the FlowN activity
The N value is initialized with the value stored in the
"NbParallelFlow" variable
The variable call "Index" is defined as the index variable
NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
-—=>

The £1owN activity begins next. After defining a name for the activity of £1owN, N is
defined as a value from the inputVariable, which is the number of hotel entries.
The activity also assigns index as the index variable. Example 9-7 provides an
example.

Example 9-7 FlowN Activity

<bpelx:flowN name="FlowN" N="bpws:getVariableData ('NbParallelFlow')
indexVariable="Index'>
<sequence name="Sequence_1">
<!-- Fetching each hotelName by indexing the "inputVariable" with the
"Index" variable.

Note the usage of the “"concat()" Xpath function to create the
expression accessing the array element.

-—>

The copy rule shown in Example 9-8 then uses the index variable to concatenate the
hotel entries into a list:

Example 9-8 Assign Activity

<assign name="setHotelId">
<copy>
<from expression=
"bpws:getVariableData ('inputVariable', 'payload',concat('/client:Nflo
wHotelsProcessRequest/client:ListOfHotels/client:HotelName[',
bpws:getVariableData('Index'),']1"))"/>
<to variable="InvokeHotelDetailInputVariable" part="payload"

9-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Customizing the Number of Parallel Branches

query="/ns2:hotelInfoRequest/ns2:1d" />
</copy>
</assign>

Using the hotel information, an invoke activity looks up detailed information for
each hotel through a web service. Example 9-9 provides an example.

Example 9-9 Invoke Activity

<!-- For each hotel, invoke the web service giving detailed information
on the hotel -->
<invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
portType="ns2:getHotelDetail" operation="process"
inputVariable="InvokeHotelDetailInputVariable"
outputVariable="InvokeHotelDetailOutputVariable"/>
<!-- This procees does not do anything with the retrieved information.
In real life, it could then be used to continue the process.
Note: Meanwhile an indexing variable is used. Unlike a while loop, the
activities are executed in parallel, not sequentially.
-—>
</sequence>
</bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client partner
link. Example 9-10 provides an example.

Example 9-10 Invoke Activity

<invoke name="callbackClient" partnerLink="client"
portType="client:NflowHotelsCallback" operation="onResult"
inputVariable="outputVariable"/>
</sequence>
</sequence>

9.3.2 Processing Multiple Sets of Activities with the forEach Activity in BPEL 2.0

You can use a forEach activity to process multiple sets of activities sequentially or in
parallel. The forEach activity executes a contained (child) scope activity exactly N+1
times, where N equals a final counter value minus a starting counter value that you
specify in the Counter Values tab of the For Each dialog. While other structured
activities such as a flow activity can have any type of activity as its contained activity,
the forEach activity can only include a scope activity.

When the forEach activity is started, the expressions you specify for the starting
counter and final counter values are evaluated. Once the two values are returned, they
remain constant for the lifecycle of the activity. Both expressions must return a value
containing at least one character. If these expressions do not return valid values, a fault
is thrown. If the starting counter value is greater than the final counter value, the
contained scope activity is not performed and the forEach activity is considered
complete.

During each iteration, the variable specified in the Counter Name field on the General
tab is implicitly declared in the forEach activity's contained scope. During the first
iteration of the scope, the counter variable is initialized with the starting counter value.
The next iteration causes the counter variable to be initialized with the starting counter
value, plus one. Each subsequent iteration increments the previously initialized
counter variable value by one until the final iteration, where the counter is set to the
final counter value. The counter variable is local to the enclosed scope activity.
Although its value can be changed during an iteration, that value is lost after each

Using Parallel Flow in a BPEL Process 9-15

Customizing the Number of Parallel Branches

iteration. Therefore, the counter variable value does not impact the value of the next
iteration's counter.

The forEach activity supports the following looping iterations:
= Sequential (default)

The forEach activity performs looping iterations sequentially N times over a given
set of activities defined within a scope activity. As an example, the forEach activity
iterates over an incoming purchase order message where the purchase order
message consists of N order items. The enclosed scope activity must be executed
N+1 times, with each instance starting only after the previous iteration has
completed.

s Parallel

All looping iterations are started at the same time and processed in parallel.
Parallel iterations are useful in environments in which sets of independent data
are processed or independent interaction with different partners is performed in
parallel. To enable parallel looping, you select the Parallel Execution checkbox on
the General tab. In these scenarios, execution of the N+1 instances of the contained
scope activity occurs in parallel. Each copy of the scope activity has the same
counter variable that you specify in the Counter Name field of the General tab
declared in the same way as specified for a sequential forEach activity. Each
instance's counter variable must be uniquely initialized in parallel with one of the
integer values beginning with the starting counter value and proceeding up to and
including the final counter value.

Unlike a flow activity, the number of parallel branches is not known at design time
with the forEach activity. The specified counter variable iterates through the
number of parallel branches, controlled by the starting counter value and final
counter value.

You can also specify a completion condition on the Completion tab. This condition
enables the forEach activity to execute the condition and complete without executing
or finishing all the branches specified. As an example, you send out parallel requests
and a sufficient subset of the recipients have responded. A completion condition is
optionally specified to prevent the following:

= Some children from executing (in the sequential case)
s To force early termination of some of the children (in the parallel case)

If you do not specify a completion condition, the forEach activity completes when the
contained scope has completed.

If a premature termination occurs (due to a fault or the completion condition
evaluating to true), then the N+1 requirement does not apply.

Example 9-11 shows the forEach activity syntax.

Example 9-11 forEach Activity

<forEach counterName="MyVariableName" parallel:"yes|no"

standard-attributes>

standard-elements

<startCounterValue expressionLanguage="anyURI"?>
unsigned-integer-expression

</startCounterValue>

<finalCounterValue expressionLanguage="anyURI"?>
unsigned-integer-expression

</finalCounterValue>

9-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Customizing the Number of Parallel Branches

<completionCondition>?
<branches expressionLanguage="anyURI"?
successfulBranchesOnly:“yes|no“?>?
unsigned-integer-expression
</branches>
</completionCondition>
<scope ..>...</scope>
</forEach>

Note: The successfulBranchesOnly attribute is not supported
for this release.

9.3.2.1 How to Create a forEach Activity

To create a forEach activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a For Each activity into the designer, as shown in Figure 9-12.

Note the contained scope activity in the forEach activity.

Figure 9-12 Contained Scope Activity in a forEach Activity

@

ForEach_1

o |

Scope_1

3. Double-click the ForEach activity.

4. In the Counter Name field of the General tab, enter a counter value name, as
shown in Figure 9-13.

Note the Parallel Execution checkbox. If this checkbox is selected, all looping
iterations are started at the same time and processed in parallel.

Using Parallel Flow in a BPEL Process 9-17

Customizing the Number of Parallel Branches

Figure 9-13 General Tab of the forEach Activity

For Each %

Completion rDocumentation rTargets rSources |
General Caounter Yaluss |

Marne: | |

Counter Marne: |i |

[Parallel Executian

| Help | | Apply || [a]4 || Cancel

5. Click the Counter Values tab.

6. Enter the starting counter value and final counter value, as shown in Figure 9-14.

Figure 9-14 Counter Values Tab of the forEach Activity

For Each &

Completion |/ Documentation |/ Targets |/ Sources
General Counter Yalues |

Skark Walus

Expression:

$input. pavloadftns:start Counter+1

Final Yalue

Expression:

$input. payloadftns:finalCounter+1

| Help | | Apply || Ok || Cancel |

7. Click the Completion tab.

8. If you want to specify a completion condition that enables the forEach activity to
execute the condition and complete without executing or finishing all the branches
specified, click the XPath Expression Builder icon in the Expression field to enter
a condition. Figure 9-15 provides details.

9-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Customizing the Number of Parallel Branches

Figure 9-15 Completion Tab of the forEach Activity

For Each %

| Completion rDocumentation rTargets rSources

Genetal Counter Yalues |

Expression:
$input. payload tns:branches+1

| Help | | Apply || [a]4 || Cancel

9. Click Apply, then OK.
10. Expand the contained Scope activity of the ForEach activity.
11. Design the enclosed Scope activity.

When complete, the forEach and contained scope activity can appear similar in
structure to that shown in Figure 9-16.

Figure 9-16 forEach Activity with Contained and Expanded Scope Activity

invokeDummyService

@-

receiveFromDummy Service

9.3.2.2 What Happens When You Create a forEach Activity

Example 9-12 shows the .bpel file after design is complete for a sequential forEach
activity.

Using Parallel Flow in a BPEL Process 9-19

Customizing the Number of Parallel Branches

Example 9-12 forEach Activity - Sequential

<faultHandlers>
<catch faultName="bpel:invalidBranchCondition">
<sequence>
<assign>
<copy>
<from>'invalidBranchCondition happened'</from>
<to>$output.payload</to>
</copy>
</assign>

<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
</sequence>
</catch>
</faultHandlers>
<sequence>
<!-- pick input from requestor -->
<receive name="receive" createlnstance="yes"
partnerLink="client" portType="tns:Test"
operation="process" variable="input"/>
<assign>
<copy>
<from>3</from>
<to>Srequest.payload</to>
</copy>
<copy>
<from>''</from>
<to>$output.payload</to>
</copy>
</assign>

<forEach counterName="i" parallel="no">
<startCounterValue>$input.payload/tns:startCounter+l</startCounterValue>
<finalCounterValue>$input.payload/tns:finalCounter+1l</finalCounterValue>
<completionCondition>
<branches>S$input.payload/tns:branches+l</branches>
</completionCondition>
<scope name="scopel">
<partnerLinks>
<partnerLink name="DummyService" partnerLinkType="tns:DummyService"
myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
</partnerLinks>
<sequence>
<assign>
<copy>
<from>concat (Soutput.payload, $i, 'A')</from>
<to>$output.payload</to>
</copy>
</assign>
<invoke name="invokeDummyService" partnerLink="DummyService"
portType="tns:DummyPortType"
operation="initiate" inputVariable="request"/>
<recelve name="receiveFromDummyService" partnerLink="DummyService"
portType="tns:DummyCallbackPortType"
operation="onResult" variable="response"/>
<assign>
<copy>
<from>concat ($output.payload, $i, 'B')</from>
<to>$output.payload</to>

9-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Customizing the Number of Parallel Branches

</copy>

</assign>

</sequence>
</scope>
</forEach>

<!-- respond output to requestor -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
</sequence>

Example 9-13 shows the .bpel file after design is complete for a parallel forEach
activity.

Example 9-13 forEach Activity - Parallel

<sequence>
<!-- pick input from requestor -->
<receilve name="receive" createlnstance="yes"
partnerLink="client" portType="tns:Test"
operation="process" variable="input"/>
<assign>
<copy>
<from>$input.payload/tns:valuel</from>
<to>S$Srequest.payload</to>
</copy>
<copy>
<from>''</from>
<to>$output.payload</to>
</copy>
</assign>
<forEach counterName="i" parallel="yes">
<startCounterValue> ($input.payload/tns:valuel + 1)</startCounterValue>
<finalCounterValue> ($input.payload/tns:value2 + 2)</finalCounterValue>
<scope name="scopel">
<partnerLinks>
<partnerLink name="DummyService" partnerLinkType="tns:DummyService"
myRole="DummyServiceClient" partnerRole="DummyServiceProvider"/>
</partnerLinks>
<sequence>
<assign>
<copy>
<from>concat ($output.payload, 'A')</from>
<to>$output.payload</to>
</copy>
</assign>
<invoke name="invokeDummyService" partnerLink="DummyService"
portType="tns:DummyPortType"
operation="initiate" inputVariable="request"/>
<receive name="receiveFromDummyService" partnerLink="DummyService"
portType="tns:DummyCallbackPortType"
operation="onResult" variable="response"/>
<assign>
<copy>
<from>concat (Soutput.payload, 'B')</from>
<to>S$output.payload</to>
</copy>
</assign>
</sequence>
</scope>

Using Parallel Flow in a BPEL Process 9-21

Customizing the Number of Parallel Branches

</forEach>
<!-- respond output to requestor -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
</sequence>

9-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

10

Using Conditional Branching in a BPEL

Process

This chapter describes how to use conditional branching in a BPEL process service
component. Conditional branching introduces decision points to control the flow of
execution of a BPEL process service component.

This chapter includes the following sections:

Section 10.1, "Introduction to Conditional Branching"

Section 10.2, "Defining Conditional Branching"

Section 10.3, "Creating a While Activity to Define Conditional Branching"
Section 10.4, "Creating a repeatUntil Activity to Define Conditional Branching”"
Section 10.5, "Specifying XPath Expressions to Bypass Activity Execution”

For additional information on creating conditional branching in a SOA composite
application, see the Fusion Order Demo application.

10.1 Introduction to Conditional Branching

BPEL applies logic to make choices through conditional branching. You can use the
following activities to design your code to select different actions based on conditional
branching;:

Switch activity (in a BPEL version 1.1 project)

Enables you to set up two or more branches, with each branch in the form of an
XPath expression. If the expression is true, then the branch is executed. If the
expression is false, then the BPEL process service component moves to the next
branch condition, until it either finds a valid branch condition, encounters an
otherwise branch, or runs out of branches. If multiple branch conditions are true,
then BPEL executes the first true branch. For information about how to create
switch activities, see Section 10.2.1, "Defining Conditional Branching with the
Switch Activity in BPEL 1.1."

If activity (in a BPEL version 2.0 project)

Enables you to use an if activity when conditional behavior is required for specific
activities to decide between two or more branches. The if activity replaces the
switch activity that appeared in BPEL 1.1 processes. For information about how to
create if activities, see Section 10.2.2, "Defining Conditional Branching with the If
Activity in BPEL 2.0."

While activity

Using Conditional Branching in a BPEL Process 10-1

Defining Conditional Branching

Enables you to create a while loop to select between two actions. Section 10.3,
"Creating a While Activity to Define Conditional Branching" describes while
activities.

Many branches are set up, and each branch has a condition in the form of an XPath
expression.

You can program a conditional branch to have a timeout. That is, if a response cannot
be generated in a specified period, the BPEL flow can stop waiting and resume its
activities. Chapter 14, "Using Events and Timeouts in BPEL Processes" explains this
feature in detail.

Note: You can also define conditional branching logic with business
rules. See Oracle Fusion Middleware User’s Guide for Oracle Business
Rules and the WebLogic Fusion Order Demo application for details.

10.2 Defining Conditional Branching

This section describes how to define conditional branching with the following
activities:

= Switch activity in a BPEL version 1.1 project

» If activity in a BPEL version 2.0 project

10.2.1 Defining Conditional Branching with the Switch Activity in BPEL 1.1

Assume you designed a flow activity in the BPEL process service component that
gathered loan offers from two companies at the same time, but did not compare either
of the offers. Each offer was stored in its own global variable. To compare the two bids
and make decisions based on that comparison, you can use a switch activity.

Figure 10-1 provides an overview of a BPEL conditional branching process that has
been defined in a switch activity.

Figure 10-1 Conditional Branching

condition 1 Boolean XPATH Expression

BPEL

Process

<switch> O

|m—— === = ————

| <case : | <otherwise> |

 conditon 1>)
1 1

1 Select N Select 1

1| unitedLoan | starLoan |

1 <assign> . <assign> |

1 [1

1 [1

10-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Defining Conditional Branching

10.2.1.1 How to Create a Switch Activity

To create a switch activity:

1.
2.

In the Component Palette, expand BPEL Constructs.
Drag a Switch activity into the designer, as shown in Figure 10-2.

The Switch activity has two switch case branches by default, each with a box for
functional elements. If you want to add more branches, select the entire switch
activity, right-click, and select Add Switch Case from the menu.

Figure 10-2 Switch Activity

3.

3

In the first branch, double-click the condition box.

A dialog for entering a condition is displayed, as shown in Figure 10-3.

Figure 10-3 Condition Dialog

Label: | |

Description: | |
Condition:
| Ok | | Cancel |
4. In the Label field, enter a name for the condition branch. When complete, this
name is displayed in Oracle BPEL Designer.
5. In the Description field, enter a description of the capabilities of this condition
branch.
6. In the Condition field, click the Expression Builder icon to access the Expression
Builder dialog.
7. Create your expression.

bpws:getVariableDate (’loanOfferl’, 'payload’,’'/loanOffer/APR’) >
bpws:getVariableData(’loanOffer2’, 'payload’,’/loanOffer/APR’)

In this example, two loan offers from completing loan companies are stored in the
global variables 1oanOfferl and loanOffer2. Each loan offer variable contains
the loan offer’s APR. The BPEL flow must choose the loan with the lower APR.
One of the following switch activities takes place:

s If loanOfferl has the higher APR, then the first branch selects loanOffer?2
by assigning the 1oanOffer2 payload to the selectedLoanOffer payload.

Using Conditional Branching in a BPEL Process 10-3

Defining Conditional Branching

s If loanOfferl does not have the lower APR than 1loanOffer2, the
otherwise case assigns the loanOfferl payload to the
selectedLoanOffer payload.

8. Click OK.
The expression is displayed. The value you entered in the Label field of the dialog

becomes the name of the condition branch. Figure 104 provides details.

Figure 10-4 Completed Condition Dialog

x> —
&l
L L S . O s
| Choose the Loan with the Lower APT ' X
Label: |Choose the Loan with the Lower APT |

[}
i
1
!l Description: |uity chooses the loan offer with the lower .C\PI.l
1
1
1

Condition:

bpws:getvariableDateiloanOfferl’,
payload’, MloanOffer JAPRT =
bpws:getvariableDatailoanOfferz’,”
payload’, floanoffer APR

i | [8]4 | | Cancel

9. Click OK.

10. Add and configure additional activities as needed. Figure 10-5 provides details.

Figure 10-5 Switch Activity Design

30

Choose the Loan with the Lower PR

selectUnitedLoan selectStarLoan

10.2.1.2 What Happens When You Create a Switch Activity

A switch activity, like a flow activity, has multiple branches. In Example 10-1, there are
only two branches shown in the .bpel file after design completion. The first branch,
which selects a loan offer from a company named United Loan, is executed if a case
condition containing an XPath boolean expression is met. Otherwise, the second
branch, which selects the offer from a company named Star Loan, is executed. By
default, the switch activity provides two switch cases, but you can add more if you
want.

Example 10-1 Switch Activity

<switch name="switch-1">
<case condition="bpws:getVariableData ('loanOfferl', 'payload',
'/autoloan:loanOffer/autoloan:APR') >
bpws :getVariableData ('loanOffer2', 'payload', '/autoloan:loanOffer/autoloan:APR
1) " >

10-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Defining Conditional Branching

" name="Choose_the_Loan_with_the_ Lower_ APR">
<bpelx:annotation>
<bpelx:general>
<bpelx:property name="userLabel">Choose the Loan with
the Lower APR</bpelx:property>
</bpelx:general>
</bpelx:annotation>
<assign name="selectUnitedLoan">
<copy>
<from variable="loanOfferl" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>
</copy>
</assign>
</case>
<otherwise>
<assign name="selectStarLoan">
<copy>
<from variable="loanOffer2" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>
</copy>
</assign>
</otherwise>
</switch>

10.2.2 Defining Conditional Branching with the If Activity in BPEL 2.0

You can use an if activity when conditional behavior is required for specific activities
to decide between two or more branches. Only one activity is selected for execution
from a set of branches. The if activity consists of a list of one or more conditional
branches that are considered for execution in the following order:

s Theif branch
= Optional elseif branches
= An optional else branch

The first branch whose condition evaluates to true is taken, and its contained activity
is performed. If no branch with a condition is taken, then the else branch is taken (if
present). The if activity is complete when the contained activity of the selected branch
completes, or immediately when no condition evaluates to true and no else branch is
specified.

The if activity is a BPEL version 2.0 feature that replaces the switch activity that was
included in BPEL version 1.1.

Example 10-2 shows the if activity syntax.

Example 10-2 If Activity

<if standard-attributes>

standard-elements

<condition>some conditon expression</condition>

activity

<elseif>*
<condition>some condition expression</condition>
some activity

</elseif>

<else>?
some activity

Using Conditional Branching in a BPEL Process 10-5

Defining Conditional Branching

</else>
</if>

10.2.2.1 How to Create an If Activity

To create an If activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag an If activity into the designer.

The if and else conditions are displayed, as shown in Figure 10-6.
Figure 10-6 If Activity

Q@I

if else
<label= <label=

3. If you want to add elseif conditions, highlight the If activity, and select the Add
icon to invoke a menu.

4. Click the if branch.

5. In the Condition field, enter a condition, as shown in Figure 10-7. You can also
click the XPath Expression Builder icon to invoke the Expression Builder dialog.

Figure 10-7 if Branch of the If Activity

f if 1 elseif else
“lahel> - “lahel> <lahel=

Label: |

Condition: i,

finput.pavload =0

Java

e

oK | | Cancel

6. Click OK.

7. Drag and define additional activities into the if condition, as needed. These
activities are executed if the if condition evaluates to true.

8. Click the elseif branch (if you added this branch).

9. In the Condition field, enter a condition, as shown in Figure 10-8.

10-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Defining Conditional Branching

Figure 10-8 elseif Branch of the If Activity

——————————— LY
if elseif) else
<label= <label = - <label>
Label: ||
&=

bpwws:getYariableDatalinput’, ‘pavload’y < 0

|
]
]
I
]
]
i
]
! Condition: it
]
]
:
Java_Embedding '
i
]
]
]

ak | | Cancel

10. Click OK.

11. Drag and define additional activities into the elseif condition, as needed. These
activities are executed if the if branch did not evaluate to true, and this elseif
branch evaluates to true.

12. Click the else label.

13. Enter a condition or drag and define additional activities into the else condition,
as needed. These activities are executed if the if and any elseif branches did not
evaluate to true, and this else branch evaluates to true.

Figure 10-9 shows a completed if activity in which each branch includes contained
activities.

Figure 10-9 Completed If Activity

QI
if elseif else
<label= <label= <label=

Java_Embedding

10.2.2.2 What Happens When You Create an If Activity

Example 10-3 provides an example of the . bpel file after design completion. The if
activity has if, elseif, and else branches defined. The first branch to evaluate to true is
executed.

Example 10-3 If Activity

<sequence>
<!-- receive input from requestor -->
<receive name="receivelnput" partnerLink="client" portType="tns:Test"
operation="process" variable="input" createInstance="yes"/>
<!-- assign default value -->
<assign>
<copy>

Using Conditional Branching in a BPEL Process 10-7

Creating a While Activity to Define Conditional Branching

<from>'Value is greater than zero'</from>
<to>$output.payload</to>
</copy>
<assign>
<copy>
<from>'Value is greater than zero'</from>
<to>$Soutput.payload</to>
</copy>
</assign>
<!-- switch depends on the input value field -->
<if>
<condition>$input.payload > 0</condition>
<extensionActivity>
<bpelx:exec name="Java_Embedding" version="1.5" language="java">
System.out.println("if condition is true.\n");
</bpelx:exec>
</extensionActivity>
<elseif>
<condition>bpws:getVariableData('input', 'payload') < 0</condition>
<assign>
<copy>
<from>'Value is less than zero'</from>
<to>S$Soutput.payload</to>
</copy>
</assign>
</elseif>
<else>
<assign>
<copy>
<from>'Value is equal to zero'</from>
<to>S$Soutput.payload</to>
</copy>
</assign>
</else>
</if>

<!-- respond output to requestor -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
</sequence>

10.3 Creating a While Activity to Define Conditional Branching

Another way to design your BPEL code to select between multiple actions is to use a
while activity to create a while loop. The while loop repeats an activity until a
specified success criteria is met. For example, if a critical web service is returning a
service busy message in response to requests, you can use the while activity to keep
polling the service until it becomes available. The condition for the while activity is
that the latest message received from the service is busy, and the operation within the
while activity is to check the service again. Once the web service returns a message
other than service busy, the while activity terminates and the BPEL process service
component continues, ideally with a valid response from the web service.

10.3.1 How To Create a While Activity

To create a while activity:
1. In the Component Palette, expand BPEL Constructs.

10-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a While Activity to Define Conditional Branching

2. Drag a While activity into the designer.
3. (Click the + sign to expand the while activity.

The while activity has icons to allow you to build condition expressions and to
validate the while definition. It also provides an area for you to drag an activity to
define the while loop.

4. Drag and define additional activities for using the while condition into the Drop
Activity Here area of the While activity (for example, a Scope activity).

The activities can be existing or new activities.

5. Press Ctrl+Space to invoke the XPath Building Assistant or click the XPath
Expression Builder icon to open the Expression Builder dialog.

6. Enter an expression to perform repeatedly, as shown in Figure 10-10. This action is
performed until the given boolean while condition is no longer true. In this
example, this activity is set to loop while less than 5.

Figure 10-10 While Activity with an Expression

While %

| General r.ﬁ.nnotations rSkip Condition rTargets rSDurces |

Mame: |Whi|e_1 |

Condition: G‘x
bpws:getvariableData’dbstatus') < 5

| Help | | Apply || [o]4 || Cancel

7. Click OK when complete.

10.3.2 What Happens When You Create a While Activity

Example 104 provides an example of the . bpel file after design completion. The
while activity includes a scope activity. The scope activity includes invoke, assign, and
wait activities. Database exception handling tasks are performed by creating a local
variable and placing the invoke activity inside the scope activity. The local variable is
set to false (represented by 0). You attempt to call the external partner service in the
while loop activity until the local variable is satisfied (set to 1). The while activity is set
to loop a maximum of five times. In the case of an exception, you reset the flag to false

(0).

Example 10-4 While Activity

<while name="While_1" condition="bpws:getVariableData ('dbStatus') > 5">
<scope name="Scope_1">
<faultHandlers>
<catchAll>

Using Conditional Branching in a BPEL Process 10-9

Creating a repeatUntil Activity to Define Conditional Branching

<sequence name="Sequence_2">
<assign name="assign DB_retry">
<copy>
<from expression="bpws:getVariableData ('dbStatus') + 1"/>
<to variable="dbStatus"/>
</copy>
</assign>
<wait name="Wait_30_sec" for="'PT31S'"/>
</sequence>
</catchall>
</faultHandlers>
<sequence name="Sequence_1">
<invoke name="Write_ DBWrite" partnerLink="WriteDBRecord"
portType="ns2:WriteDBRecord_ptt" operation="insert"
inputVariable="Invoke_DBWrite_merge_InputVariable"/>
<assign name="Assign_dbComplete">
<copy>
<from expression="'10"'"/>
<to variable="dbStatus"/>
</copy>
</assign>
</sequence>
</scope>
</while>

10.4 Creating a repeatUntil Activity to Define Conditional Branching

If the body of an activity must be performed at least once, use a repeatUntil activity
instead of a while activity. The XPath expression condition in the repeatUntil activity is
evaluated after the body of the activity completes. The condition is evaluated
repeatedly (and the body of the activity processed) until the provided boolean
condition is true.

Note: This activity is supported in BPEL version 2.0 projects.

10.4.1 How to Create a repeatUntil Activity

To create a repeatUntil activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Repeat Until activity into the designer.
3. Double-click the Repeat Until activity.

4. Enter a name or accept the default value.
5

In the Condition field, click the XPath Expression Builder icon to enter an XPath
expression condition.

The Expression Builder dialog is displayed.
6. Enter a boolean XPath expression condition, and click OK.

The condition you entered is displayed in the Repeat Until dialog, as shown in
Figure 10-11.

10-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a repeatUntil Activity to Define Conditional Branching

Figure 10-11 Completed Repeat Until Dialog

Repeat Until b4

| General rDocumentation rTargets rSources

Mame: |RepeatPurchaseOrder\-‘alidation |

Condition

Condition:

getvariableProperty('PurchaseOrderstateResponse, kst
wcompletionStatus’y < 5

| Help | | Apply || [o]'8 || Cancel

7. Click Apply, then OK.
8. [Expand the Repeat Until activity, as shown in Figure 10-12.

Figure 10-12 repeatUntil Activity Being Expanded

Rese...

9. Design the body of the activity by dragging in activities from the Component
Palette and defining their property values. These activities are evaluated until the
XPath expression condition is evaluated to true.

10.4.2 What Happens When You Create a repeatUntil Activity

Example 10-5 provides an example of the . bpel file after design completion. In this
scenario, purchase order validation must be performed at least once, then repeatedly,
based on evaluating the completion status until the status is updated to 5.

Example 10-5 repeatUntil Activity

<repeatUntil>
<sequence>
<invoke name="PurchaseOrderValidation" ... />
<receive name="receivevValidation"
partnerLink="PurchaseOrderValidation"
operation="returnPurchaseOrderValidation"
variable="PurchaseOrderStatusResponse" />
</sequence>
<condition>
bpel:getVariableProperty (
"PurchaseOrderStatusResponse", "tst:completionStatus") < 5
</condition>
</repeatUntil>

Using Conditional Branching in a BPEL Process 10-11

Specifying XPath Expressions to Bypass Activity Execution

10.5 Specifying XPath Expressions to Bypass Activity Execution

You can specify an XPath expression in an activity that, when evaluated to true, causes
that activity to be skipped. This functionality provides an alternative to using a switch
activity for conditionally executing activities. The skip condition for activities is
specified as follows:

<activity bpelx:skipCondition="boolean-expr"/>

The bpelx:skipCondition attribute causes an XPath expression to be evaluated
immediately upon creation of the activity instance. If the skip expression returns a
false boolean value, the activity is executed. If the skip expression returns a true
boolean value, the activity is completed immediately and execution moves to the
activity immediately following that one.

This construct is equivalent to a switch/case structured activity with a single case
element with a condition that is the opposite of the skip condition.

Note: The skip condition is only available in BPEL projects that
support BPEL version 1.1.

Example 10-6 provides an example of bpelx:skipCondition attribute use. If
myvalue is 0, the expression evaluates to true, and the assign activity is skipped. If
myvalue is 10, the expression evaluates to false, and the copy operation of the assign
activity is executed.

Example 10-6 Use of bpelx:skipCondition Attribute

<assign bpelx:skipCondition="bpws:getVariableData ('input',
'payload', '/tns:inputMsg/tns:myvalue') <= 0">
<copy>
<from expression="'Value is greater than zero'"/>
<to variable="output" part="payload"
query="/tns:resultMsg/tns:valueResult"/>
</copy>
</assign>

The equivalent functionality used with a switch activity is shown in Example 10-7.

Example 10-7 Equivalent Functionality with a Switch Activity

<switch>
<case condition="bpws:getVariableData ('input',
'payload', '/tns:inputMsg/tns:value') > 0">
<assign>
<copy>
<from expression="'Value is greater than zero'"/>
<to variable="output" part="payload"
query="/tns:resultMsg/tns:valueResult"/>
</copy>
</assign>
</case>
</switch>

You can also use built-in and custom XPath functions and $variable references
within the skip condition expression. Example 10-8 provides several examples:

10-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Specifying XPath Expressions to Bypass Activity Execution

Example 10-8 Built-in and Custom XPath Functions and $variable References

<assign bpelx:skipCondition="bpws:getVariableData('crOutput', 'payload',
'/tns:rating') > 0">

<assign bpelx:skipCondition="custom:validateRating()" ... />

<assign xmlns:fn="http://www.w3.0rg/2005/xpath-functions’
bpelx:skipCondition="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a
BPEL fault and thrown from the activity.

An event is added to the BPEL instance audit trail for activities that are bypassed due
to the skip condition expression evaluating to true. Even if the skip condition
evaluates to false (meaning the activity is performed), the fact that a skip condition
expression was evaluated is still logged to the audit trail for debugging purposes.

If the XPath engine fails to evaluate the boolean value, bpws : subLanguageFault is
thrown. This is the same fault thrown when a switch/case condition does not evaluate
to a boolean value. This is also logged to the audit trail for debugging purposes.

10.5.1 How to Specify XPath Expressions to Bypass Activity Execution

To specify XPath expressions to bypass activity execution:
1. In the Component Palette, expand BPEL Constructs.

2. Drag the activity into the designer in which to create the skip condition.
3. Click the Skip Condition tab.

4. Specify an XPath expression that, when evaluated to true, causes an activity to be
skipped. Figure 10-13 provides details.

Figure 10-13 Skip Condition XPath Expression

& Edit Assign |

Skip Condition:

I/General r Copy Rules r.ﬂ.nnotations rSkjp Condition r Targets r Sources |

Help

Apply || [o]4 || Cancel

Using Conditional Branching in a BPEL Process 10-13

Specifying XPath Expressions to Bypass Activity Execution

5. Click Apply, then OK.

10.5.2 What Happens When You Specify XPath Expressions to Bypass Activity
Execution

The code segment in the .bpel file defines the specific operation after design
completion.

For example, the XPath expression shown in Example 10-9, when evaluated to true
(for example, input is 20), causes the assign activity to be skipped.

Example 10-9 skipCondition Attribute For Bypassing Activity Execution

<sequence name="main">

<assign name="Assign_ 1"

bpelx:skipCondition="number (bpws:getVariableData ('inputVariable', 'payload','/clien

t:
process/client:input')) > 10">
<copy>
<from expression="'Assign Block is not Skipped'"/>
<to variable="inputVariable" part="payload"
query="/client:process/client:input"/>
</copy>
</assign>
</sequence>

10-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

11

Using Fault Handling in a BPEL Process

This chapter describes how to use fault handling in a BPEL process. Fault handling
allows a BPEL process service component to handle error messages or other exceptions
returned by outside web services, and to generate error messages in response to
business or runtime faults. You can also define a fault management framework to
catch faults and perform user-specified actions defined in a fault policy file.

This chapter includes the following sections:

s Section 11.1, "Introduction to a Fault Handler"

s Section 11.2, "Introduction to BPEL Standard Faults"

= Section 11.3, "Introduction to Categories of BPEL Faults"
= Section 11.4, "Using the Fault Management Framework"
= Section 11.5, "Catching BPEL Runtime Faults"

= Section 11.6, "Getting Fault Details with the getFaultAsString XPath Extension
Function”

= Section 11.7, "Throwing Internal Faults"

= Section 11.8, "Rethrowing Faults with the Rethrow Activity"

= Section 11.9, "Returning External Faults"

= Section 11.10, "Using a Scope Activity to Manage a Group of Activities"

= Section 11.11, "Re-executing Activities in a Scope Activity with the Replay
Activity"

= Section 11.12, "Using Compensation After Undoing a Series of Operations"
= Section 11.13, "Stopping a Business Process Instance"
= Section 11.14, "Throwing Faults with Assertion Conditions"

For additional information on creating fault handling in a SOA composite application,
see the Fusion Order Demo application.

11.1 Introduction to a Fault Handler

Fault handlers define how the BPEL process service component responds when web
services return data other than what is normally expected (for example, returning an
error message instead of a number). An example of a fault handler is where the web

service normally returns a credit rating number, but instead returns a negative credit
message.

Using Fault Handling in a BPEL Process 11-1

Introduction to a Fault Handler

Figure 11-1 provides an example of how a fault handler sets a credit rating variable to
-1000.

Figure 11-1 Fault Handling

WSDL BPEL
Process

— <receive>
o

l WSDL

<scope> Negative
Credit

prepare |

crin
<assign> —> I Credit
Rating

Service
call

service
<invoke>

Read
crOut
<assign>

<scope>

credit to
-1000 | <¢
<assign>

:

<reply>

The code segment in Example 11-1 defines the fault handler for this operation in the
BPEL file:

Example 11-1 Fault Handler Definition

<faultHandlers>
<catch faultName="services:NegativeCredit" faultVariable="crError">
<assign name="crin">
<copy>
<from expression="-1000">
</from>
<to variable="input" part="payload"
query="/autoloan:loanApplication/autoloan:creditRating" />
</copy>
</assign>
</catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is
a catch activity, which defines the fault name and variable, and the copy instruction
that sets the creditRating variable to -1000.

11-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to BPEL Standard Faults

When you select web services for the BPEL process service component, determine the
possible faults that may be returned and set up a fault handler for each one.

11.2 Introduction to BPEL Standard Faults

This section identifies the standard faults for BPEL 1.1 and BPEL 2.0.

11.2.1 BPEL 1.1 Standard Faults

This section identifies the standard faults for BPEL 1.1. Unless otherwise noted below,
the Business Process Execution Language for Web Services Specification defines the
following standard faults in the namespace of
http://schemas.xmlsoap.org/ws/2003/03/business-process/:

bindingFault (BPEL extension fault defined in
http://schemas.oracle.com/bpel/extension)

conflictingReceive
conflictingRequest
correlationViolation
forcedTermination
invalidReply

joinFailure
mismatchedAssignmentFailure

remoteFault (BPEL extension fault defined in
http://schemas.oracle.com/bpel/extension)

repeatedCompensation
selectionFailure

uninitializedvVariable

Standard faults are defined as follows:

Typeless, meaning they do not have associated messageTypes
Not associated with any Web Services Description Language (WSDL) message
Caught without a fault variable:

<catch faultName="bpws:selectionFailure">

11.2.2 BPEL 2.0 Standard Faults

The following list specifies the standard faults defined within the WS-BPEL
specification. All standard fault names are qualified with the standard WS-BPEL
namespace.

ambiguousReceive
completionConditionFailure
conflictingReceive
conflictingRequest
correlationViolation

invalidBranchCondition

Using Fault Handling in a BPEL Process 11-3

Introduction to BPEL Standard Faults

invalidExpressionValue
invalidvariables
joinFailure
mismatchedAssignmentFailure
missingReply
missingRequest
scopelInitializationFailure
selectionFailure
subLanguageExecutionFault
uninitializedPartnerRole
uninitializedvariable
unsupportedReference
xsltInvalidSource

xsltStylesheetNotFound

11.2.2.1 Fault Handling Order of Precedence in BPEL 2.0

In BPEL 2.0, the order of precedence for catching faults thrown without associated
data is as follows:

If there is a catch activity with a matching faultName value that does not specify
a faultvVariable attribute, the fault is sent to the identified catch activity.

Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault
handler.

Otherwise, the fault is processed by the default fault handler.

In BPEL 2.0, the order of precedence for catching faults thrown with associated data is
as follows:

If there is a catch activity with a matching faultName value that does not specify
a faultVariable attribute, the fault is sent to the identified catch activity.

If the fault data is a WSDL message type in which the following exists:
— The message contains a single part defined by an element.

— There exists a catch activity with a matching faultName value that has a
faultVariable whose associated faultElement QName matches the
(QName of the runtime element data of the single WSDL message part.

Then, the fault is sent to the identified catch activity with the faultVariable
initialized to the value in the single part’s element.

Otherwise, if there is a catch activity with a matching faul tName value that does
not specify a faultVariable attribute, the fault is sent to the identified catch
activity. In this case, the fault value is not available from within the fault handler,
but is available to the rethrow activity.

Otherwise, if there is a catch construct without a faul tName attribute that has a
faultVariable whose type matches the type of the runtime fault data, then the
fault is sent to the identified catch activity.

11-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Categories of BPEL Faults

s Otherwise, if the fault data is a WSDL message type in which the message contains
a single part defined by an element and there exists a catch activity without a
faultName attribute that has a faultvariable whose associated faultElement’s
QName matches the QName of the runtime element data of the single WSDL
message part, the fault is sent to the identified catch activity with the
faultVariable initialized to the value in the single part’s element.

» Otherwise, if there is a catchAll activity, the fault is sent to the catchAll fault
handler.

s Otherwise, the fault is handled by the default fault handler.

11.3 Introduction to Categories of BPEL Faults

A BPEL fault has a fault name called a Qname (name qualified with a namespace) and
a possible messageType. There are two categories of BPEL faults:

» Business faults

s Runtime faults

11.3.1 Business Faults

Business faults are application-specific faults that are generated when there is a
problem with the information being processed (for example, when a social security
number is not found in the database). A business fault occurs when an application
executes a throw activity or when an invoke activity receives a fault as a response. The
fault name of a business fault is specified by the BPEL process service component. The
messageType, if applicable, is defined in the WSDL. A business fault can be caught
with a faultHandler using the faultName and a faultVariable.

<catch faultName="nsl:faultName" faultVariable="varName">

11.3.2 Runtime Faults

Runtime faults are the result of problems within the running of the BPEL process
service component or web service (for example, data cannot be copied properly
because the variable name is incorrect). These faults are not user-defined, and are
thrown by the system. They are generated if the process tries to use a value incorrectly,
a logic error occurs (such as an endless loop), a Simple Object Access Protocol (SOAP)
fault occurs in a SOAP call, an exception is thrown by the server, and so on.

Several runtime faults are automatically provided. These faults are included in the
http://schemas.oracle.com/bpel/extension namespace. These faults are
associated with the messageType RuntimeFaultMessage. The WSDL file shown in
Example 11-2 defines the messageType:

Example 11-2 messageType Definition

<?xml version="1.0" encoding="UTF-8" ?>

<definitions name="RuntimeFault"
targetNamespace="http://schemas.oracle.com/bpel/extension"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<message name="RuntimeFaultMessage">
<part name="code" type="xsd:string" />
<part name="summary" type="xsd:string" />
<part name="detail" type="xsd:string" />

Using Fault Handling in a BPEL Process 11-5

Using the Fault Management Framework

</message>
</definitions>

If a faultvariable (of messageType RuntimeFaul tMessage) is used when
catching the fault, the fault code can be queried from the faultVariable, along with
the fault summary and detail.

11.3.2.1 bindingFault

A bindingFault is thrown inside an activity if the preparation of the invocation
fails. For example, the WSDL of the process fails to load. A bindingFault is not
retryable. This type of fault usually must be fixed by human intervention.

11.3.2.2 remoteFault

A remoteFault is also thrown inside an activity. It is thrown because the invocation
fails. For example, a SOAP fault is returned by the remote service.

11.3.2.3 replayFault

A replayFault replays the activity inside a scope. At any point inside a scope, this
fault is migrated up to the scope. The server then re-executes the scope from the
beginning.

11.4 Using the Fault Management Framework

Oracle SOA Suite provides a generic fault management framework for handling faults
in BPEL processes. If a fault occurs during runtime in an invoke activity in a process,
the framework catches the fault and performs a user-specified action defined in a fault
policy file associated with the activity. If a fault results in a condition in which human
intervention is the prescribed action, you perform recovery actions from Oracle
Enterprise Manager Fusion Middleware Control Console. The fault management
framework provides an alternative to designing a BPEL process with catch activities in
scope activities.

This section provides an overview of the components that comprise the fault
management framework.

s The fault management framework catches all faults (business and runtime) for an
invoke activity.

= A fault policy file defines fault conditions and their corresponding fault recovery
actions. Each fault condition specifies a particular fault or group of faults, which it
attempts to handle, and the corresponding action for it. A set of actions is
identified by an ID in the fault policy file.

= A set of conditions invokes an action (known as fault policy).

= A fault policy bindings file associates the policies defined in the fault policy file
with the following;:

- SOA composite applications
- BPEL process and Oracle Mediator service components

- Reference binding components for BPEL process and Oracle Mediator service
components

The framework looks for fault policy bindings in the same directory as the
composite.xml file of the SOA composite application or in a remote location
identified by two properties that you set.

11-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

Note: A fault policy configured with the fault management
framework overrides any fault handling defined in catch activities of
scope activities in the BPEL process. The fault management
framework can be configured to rethrow the fault handling back to the
catch activities.

» The fault policy file (fault-policies.xml) and fault policy bindings file
(fault-bindings.xml) are placed in either of the following locations:

— In the same directory as the composite.xml file of the SOA composite
application.

- In a different location that is specified with two properties that you add to the
composite.xml file. This option is useful if a fault policy must be used by
multiple SOA composite applications. This option overrides any fault policy
files that are included in the same directory as the composite.xml file.
Example 11-3 provides details about these two properties. In this example, the
fault policy files are placed into the SOA Metadata Service (MDS) shared area.

Example 11-3 Fault Policies used by Multiple SOA Composite Applications

<property
name="oracle.composite.faultPolicyFile">oramds:/apps/faultpolicyfiles/
fault-policies.xml

</property>

<property
name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
fault-bindings.xml

</property>

See Chapter 22, "Using Oracle Mediator Error Handling" for details about Oracle
Mediator fault handling capabilities.

11.4.1 How to Design a Fault Policy

This section describes how to design a fault policy.

Note: The Facades API enables you to programmatically perform the
abort, retry (with a success action), continue, rethrow, and replay
recovery options. For information, see Oracle Fusion Middleware
Infrastructure Management Java API Reference for Oracle SOA Suite.

11.4.1.1 Understanding How Fault Policy Binding Resolution Works

A fault policy bindings file associates the policies defined in a fault policy file with the
SOA composite application or the component (service component or reference binding
component). The framework attempts to identify a fault policy binding in the
following order:

= Reference binding component defined in the composite.xml file.

= BPEL process or Oracle Mediator service component defined in the
composite.xml file.

s SOA composite application defined in the composite.xml file.

Using Fault Handling in a BPEL Process 11-7

Using the Fault Management Framework

During the resolution process, if no action is found that matches the condition, the
framework assumes that resolution failed and moves to the next resolution level.

For example, assume an invoke activity faults with faultname="abc". Thereis a
policy binding specified in the fault-binding.xml file:

s SOA composite application binds to policy-id-1

s BPEL process or Oracle Mediator service component or reference binding
component binds to policy-id-2

In the fault-bindings.xml file, the following bindings are also specified:

s SOA composite application binds to policy-id-3

= Reference binding component or service component binds to policy-id-4
The fault management framework behaves as follows:

s First match the resolve binding (in this case, policy-id-2).

» If the fault resolution fails, go to the next possible match (policy-id-4).

» If the fault resolution fails, go to the next possible match (policy-id-3).

» If the fault resolution fails, go to the next possible match (in this case,
policy-id-1).

= If the fault resolution still fails, the fault is sent to the BPEL fault catch activity.

11.4.1.2 Creating a Fault Policy File for Automated Fault Recovery
1. Create a fault policy file (for example, named fault-policies.xml). This file
includes condition and action sections for performing specific tasks.

2. DPlace the file in the same directory as the composite.xml file or place it in a
different location and define the oracle.composite.faultPolicyFile
property. Example 11-4 provides details.

Example 11-4 Defining Properties
<property
name="oracle.composite.faultPolicyFile">oramds: /apps/faultpolicyfiles/
fault-policies.xml
</property>
<property
name="oracle.composite.faultBindingFile">oramds:/apps/faultpolicyfiles/
fault-bindings.xml
</property>
3. Define the condition section of the fault policy file.
= Note the following details about the condition section:
— This section provides a condition based on faul tName.
— Multiple conditions may be configured for a faul tName.

- Each condition has one test section (an XPath expression) and one
action section.

— The test section (XPath expression) is evaluated for the fault variable
available in the fault.

— The action section has a reference to the action defined in the same file.

- You can only query the fault variable available in the fault.

11-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

— The order of condition evaluation is determined by the sequential order in
the document.

Table 11-1 provides examples of condition section use in the fault policy
file. All actions defined in the condition section must be associated with an
action in the action section.

Table 11-1 Use of the condition Section in the Fault Policy File

Condition Example Fault Policy File Syntax

This condition is checking a fault <condition>

variable for code = <test>$fault.code="WSDLReading Error"
"WSDLFailure" </test>

An action of ora-terminateis <action ref="ora-terminate"/>
specified. </condition>

No test condition is provided. This <condition>

is a catchAll condition for a given <action ref="ora-rethrow"/>
faultName. </condition>

If the faultName name attribute is <faultName > . . . </faultName>

missing, this indicates a catchAll
activity for faults that have any
QName.

4. Define the action section of the fault policy file. Note that validation of fault
policy files is done during deployment. If you change the fault policy, you must
redeploy the SOA composite application that includes the fault policy.

Table 11-2 provides several examples of action section use in the fault policy file.
You can provide automated recovery actions for some faults. In all recovery
actions except retry and human intervention, the framework performs the actions
synchronously.

Using Fault Handling in a BPEL Process 11-9

Using the Fault Management Framework

Table 11-2 Use of action Section in the Fault Policy File

Recovery Actions Fault Policy File Syntax
Retry: Provides the following actions <Action id="ora-retry">
for retrying the activity. <Retry>
= Retry a specified number of <retryCount>3</retryCount>
times. <retryInterval>2</retryInterval>

<exponentialBackoff/>
<retryFailureAction ref="ora-java"/>
<retrySuccessAction ref="ora-java"/>
= Increase the interval with an </Retry>

exponential back off.

= Provide a delay between retries
(in seconds).

</Action>
s Chain to a retry failure action if
retry N times fails. Note the following details:
= Chain toaretry success actionif , The framework chains to the retry success action if the retry attempt is
a retry is successful. successful.

Note: Exponential back off indicates ¢ 5] retry attempts fail, the framework chains to the retry failure
the next retry attempt is scheduled at action.

2 x the delay, where delay is the
current retry interval. For example, if
the current retry interval is 2
seconds, the next retry attempt is
scheduled at 4, the next at 8, and the
next at 16 seconds until the
retryCount value is reached.

Human Intervention: Causes the <Action id="ora-human-intervention">
current activity to stop processing. <humanIntervention/></Action>

You can now go to Oracle Enterprise

Manager Fusion Middleware Control

Console and perform manual

recovery actions on this instance.

Terminate Process: Terminates the <Action id="ora-terminate"><abort/></Action>
process

Java Code: Enables you to execute an <Action id="ora-java">
external Java class. <!-- this is user provided custom java

returnvalue: The implemented class-->

Java class must implement a method <javaAction className="mypackage.myClass"

that returns a string. The policy can defaultAction="ora-terminate">
chain to a new action based on the <returnValue value="REPLAY"
returned string. ref="ora-terminate"/>

For additional information, see <returnValue value="RETRHOW"
Section 11.4.3, "How to Use a Java ref="ora-rethrow-fault"/>
Action Fault Policy." <returnValue value="ABORT"

ref="ora-terminate"/>
<returnValue value="RETRY" ref="ora-retry"/>
<returnValue value="MANUAL"
ref="ora-human-intervention"/>
</javaAction>
</Action>

Rethrow Fault: The framework sends <Action id="ora-rethrow-fault"><rethrowFault/></Action>
the fault to the BPEL fault handlers

(catch activities in scope activities). If

none are available, the fault is sent

up.

Replay Scope: Raises a replay fault. <Action id="ora-replay-scope"><replayScope/></Action>

11-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

Note: The preseeded recovery action tag names (ora-retry,
ora-human-intervention, ora-terminate, and so on) are only
samples. You can substitute these names with ones appropriate to
your environment.

Example 11-5 shows a fault policy file with fully-defined condition and action
sections.

Notes:

s Fault policy file names are not restricted to one specific name.
However, they must conform to the fault-policy.xsd schema
file.

= Example 11-5 provides an example of catching faults based on
fault names. You can also catch faults based on message types, or
on both:

<fault name="myfault" type="fault:faultType">

Example 11-5 Fault Policy File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<faultPolicy version="0.0.1" id="FusionMidFaults"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Conditions>
<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
<condition>
<action ref="MediatorJavaAction"/>
</condition>
</faultName>
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:remoteFault">
<condition>
<action ref="BPELJavaAction"/>
</condition>
</faultName>
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:bindingFault">
<condition>
<action ref="BPELJavaAction"/>
</condition>
</faultName>
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:runtimeFault">
<condition>
<action ref="BPELJavaAction"/>
</condition>
</faultName>
</Conditions>
<Actions>
<!-- Generics -->

Using Fault Handling in a BPEL Process 11-11

Using the Fault Management Framework

11-12

<Action id="default-terminate">

<abort/>

</Action>

<Action id="default-replay-scope">
<replayScope/>

</Action>

<Action id="default-rethrow-fault">
<rethrowFault/>

</Action>

<Action id="default-human-intervention">
<humanIntervention/>

</Action>
<Action id="MediatorJavaAction">
<!-- this is user provided class-->

<javaAction className="MediatorJavaAction.myClass"
defaultAction="default-terminate">
<returnValue value="MANUAL" ref="default-human-intervention"/>
</javaAction>
</Action>
<Action id="BPELJavaAction">
<!-- this is user provided class-->
<javaAction className="BPELJavaAction.myAnotherClass"
defaultAction="default-terminate">
<returnValue value="MANUAL" ref="default-human-intervention"/>
</javaAction>
</Action>
</Actions>
</faultPolicy>
</faultPolicies>

11.4.1.3 Associating a Fault Policy with Fault Policy Binding

Note: The fault policy file binding file must be named
fault-bindings.xml. This conforms to the
fault-bindings.xsd schema file.

1. Create a fault policy binding file (fault-bindings.xml) that associates the
policies defined in the fault policy file with the level of fault policy binding you
are using (either a SOA composite application or a component (reference binding
component or BPEL process or Oracle Mediator service component).

2. Place the file in the same directory as the composite.xml file or place itina
remote location and define the oracle.composite.faultBindingFile
property as shown in Step 2 of Section 11.4.1.2, "Creating a Fault Policy File for
Automated Fault Recovery."

Example 11-6 shows a fault policy bindings file that associates the fault policies
defined in the fault-policies.xml file with the FusionMidFaults SOA
composite application.

Example 11-6 fault-buildings.xml File

<?xml version="1.0" encoding="UTF-8" ?>

<faultPolicyBindings version="0.0.1"

xmlns="http://schemas.oracle.com/bpel/faultpolicy"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<composite faultPolicy="FusionMidFaults"/>
<!--<composite faultPolicy="ServiceExceptionFaults"/>-->

Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

<!--<composite faultPolicy="GenericSystemFaults"/>-->
</faultPolicyBindings>

11.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples

This section provides additional samples of fault policy and fault policy binding files.
Example 11-7 shows the fault-policies.xml file contents.

Example 11-7 fault-policies.xml File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1"
id="CRM_ServiceFaults"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Conditions>
<!-- Fault if wsdlRuntimeLocation is not reachable -->
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:remoteFault">
<condition>
<test>$fault.code="WSDLReadingError"</test>
<action ref="ora-terminate"/>
</condition>
<condition>
<action ref="ora-java"/>
</condition>
</faultName>
<!-- Fault if location port is not reachable-->
<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
name="bpelx:bindingFault">
<!1--0ORA-00001: unique constraint violated on insert-->
<condition>
<test>$fault.code="1"</test>
<action ref="ora-java"/>
</condition>
<!--ORA-01400: cannot insert NULL -->
<condition>
<test xmlns:test="http://test">$fault.code="1400"</test>
<action ref="ora-terminate"/>
</condition>
<!--0RA-03220: required parameter is NULL or missing -->
<condition>
<test>$fault.code="3220"</test>
<action ref="ora-terminate"/>
</condition>
<condition>
<action ref="ora-retry-crm-endpoint"/>
</condition>
</faultName>
<!-- Business faults -->
<!-- Fault comes with a payload of error, make sure the name space is
provided here or at root level -->
<faultName xmlns:credit="http://services.otn.com"
name="credit:NegativeCredit">
<!-- you get this fault when SSN starts with 0-->
<condition>

Using Fault Handling in a BPEL Process 11-13

Using the Fault Management Framework

<test>S$fault.payload="Bankruptcy Report"</test>
<action ref="ora-human-intervention"/>
<!--action ref="ora-retry"/-->
</condition>
<!-- you get this fault when SSN starts with 1-->
<condition>
<test>S$fault.payload="Bankruptcy Report-abort"</test>
<action ref="ora-terminate"/>
</condition>
<!-- you get this fault when SSN starts with 2-->
<condition>
<test>S$fault.payload="Bankruptcy Report-rethrow"</test>
<action ref="ora-rethrow-fault"/>
</condition>
<!-- you get this fault when SSN starts with 3-->
<condition>
<test>S$fault.payload="Bankruptcy Report-replay"</test>
<action ref="ora-replay-scope"/>
</condition>
<!-- you get this fault when SSN starts with 4-->
<condition>
<test
xmlns:myError="http://services.otn.com">$fault.payload="Bankruptcy
Report-human"</test>
<action ref="ora-human-intervention"/>
</condition>
<!-- you get this fault when SSN starts with 5-->
<condition>
<test>S$fault.payload="Bankruptcy Report-java"</test>
<action ref="ora-java"/>

</condition>
</faultName>
</Conditions>
<Actions>
<Action id="ora-retry">
<retry>

<retryCount>3</retryCount>
<retryInterval>2</retryInterval>
<exponentialBackoff/>
<retryFailureAction ref="ora-java"/>
<retrySuccessAction ref="ora-java"/>
</retry>
</Action>
<Action id="ora-retry-crm-endpoint">
<retry>
<retryCount>5</retryCount>
<retryFailureAction ref="ora-java"/>
<retryInterval>5</retryInterval>
<retrySuccessAction ref="ora-java"/>

</retry>

</Action>

<Action id="ora-replay-scope">
<replayScope/>

</Action>

<Action id="ora-rethrow-fault">
<rethrowFault/>

</Action>

<Action id="ora-human-intervention">
<humanIntervention/>

11-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

</Action>

<Action id="ora-terminate">
<abort/>

</Action>

<Action id="ora-java">
<!-- this is user provided class-->
<javaAction

className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"
defaultAction="ora-terminate" propertySet="prop-for-billing">
<returnValue value="REPLAY" ref="ora-terminate"/>
<returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
<returnValue value="ABORT" ref="ora-terminate"/>
<returnValue value="RETRY" ref="ora-retry"/>
<returnValue value="MANUAL" ref="ora-human-intervention"/>

</javaAction>
</Action>
</Actions>
<Properties>

<propertySet name="prop-for-billing">
<property name="user_email_recipient">bpeladmin</property>
<property name="email_recipient">joe@abc.com</property>
<property name="email_recipient">mike@xyz.com</property>
<property name="email_threshold">10</property>
<property name="sms_recipient">+429876547</property>
<property name="sms_recipient">+4212345</property>
<property name="sms_threshold">20</property>
<property name="user_email_recipient">john</property>
</propertySet>
<propertySet name="prop-for-order">
<property name="email_recipient">john@abc.com</property>
<property name="email_recipient">jill@xyz.com</property>
<property name="email_ threshold">10</property>
<property name="sms_recipient">+42222</property>
<property name="sms_recipient">+423335</property>
<property name="sms_threshold">20</property>
</propertySet>

</Properties>

</faultPolicy>

<faultPolicy version="2.0.1"
id="Billing_ServiceFaults"
xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<Conditions>
<faultName>
<condition>
<action ref="ora-manual"/>
</condition>
</faultName>
</Conditions>
<Actions>
<Action id="ora-manual">
<humanIntervention/>
</Action>
</Actions>
</faultPolicy>

Using Fault Handling in a BPEL Process 11-15

Using the Fault Management Framework

</faultPolicies>

Example 11-8 shows the fault-buildings.xml file that associates the fault policies
defined in fault-policies.xml.

Example 11-8 Fault Policy Bindings File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
xmlns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<composite faultPolicy="ConnectionFaults"/>
<component faultPolicy="ServiceFaults">
<name>Componentl</name>
<name>Component2</name>
</component>
<!-- Below listed component names use polic CRM_SeriveFaults -->
<component faultPolicy="CRM_ServiceFaults">
<name>HelloWorld</name>
<name>ShippingComponent</name>
<name>AnotherComponent "</name>
</component>
<!-- Below listed reference names and port types use polic CRM_ServiceFaults
-=>
<reference faultPolicy="CRM_ServiceFaults">
<name>creditRatingService</name>
<name>anotherReference</name>
<portType
xmlns:credit="http://services.otn.com">credit:CreditRatingService</portType>
<portType
xmlns:db="http://xmlns.oracle.com/pcbpel /adapter/db/insert/">db:insert_
plt</portType>
</reference>
<reference faultPolicy="testl">
<name>CreditRating3</name>
</reference>
</faultPolicyBindings>

11.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers

If you design a fault policy that uses the action handler for rejected messages, note that
only one write action can be performed. Multiple write actions cannot be performed,
even if you define multiple rejection handlers, as shown in Example 11-9. In this case,
only the first rejection handler defined (for this example, ora-queue) is executed.

Example 11-9 Fault Policy with Multiple Rejection Handlers

<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
<condition>
<action ref="ora-queue"/>

</condition>
</faultName>
<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
<condition>
<action ref="ora-file"/>

</condition>

11-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

</faultName>

11.4.2 How to Execute a Fault Policy

You deploy a fault policy as part of a SOA composite application. After deployment,
you can perform the following fault recovery actions from Oracle Enterprise Manager
Fusion Middleware Control Console:

Retry the activity

Modify a variable (available to the faulted activity)
Continue the instance (mark the activity as a success)
Rethrow the exception

Abort the instance

Throw a replay scope exception

For additional information, see Oracle Fusion Middleware Administrator’s Guide for
Oracle SOA Suite and Oracle BPM Suite for the following:

Instructions on executing a fault policy in Oracle Enterprise Manager Fusion
Middleware Control Console

Use cases in which you define a fault policy that uses human intervention

11.4.3 How to Use a Java Action Fault Policy

Note the following details when using the Java action fault policy:

The Java class provided follows a specific interface. This interface returns a string.
Multiple values can be provided for output and fault policy to take after execution.

Additional fault policy can be executed by providing a mapping from the output
value (return value) of implemented methods to a fault policy.

If no Returnvalue is specified, the default fault policy is executed, as shown in
Example 11-10.

Example 11-10 Java Action Fault Policy

<Action id="ora-java">

<javaAction className="mypackage.myclass"

defaultAction="ora-human-intervention" propertySet="prop-for-billing">

<!--defaultAction is a required attribute, but propertySet is optional-->
<!-- attribute-->

<ReturnValue value="RETRY" ref="ora-retry"/>
<!--value is not nilable attribute & cannot be empty-->
<ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>

</javaAction>

</Action>

Table 11-3 provides an example of Returnvalue use.

Table 11-3 System Interpretation of Java Action Fault Policy

Code Description
<ReturnValue value="RETRY" Execute the ora-retry action if the method
ref="ora-retry"/> returns a string of RETRY.

Using Fault Handling in a BPEL Process 11-17

Using the Fault Management Framework

Table 11-3 (Cont.) System Interpretation of Java Action Fault Policy

Code Description

<ReturnValue value="" Fails in validation.
ref="ora-rethrow” />

<javaAction Execute ora-human-intervention after Java

className="mypackage.myclass" code execution. This attribute is used if the return
from the method does not match any provided
ReturnvValue.

defaultAction="ora-human-intervention
s

<ReturnValue value="RETRY" Fails in validation.
ref="ora-retry"/>

<ReturnValue value="" ref=""/>

<javaAction Fails in validation.
className="mypackage.myclass"

defaultAction="

ora-human-intervention">
<ReturnvValue></ReturnvValue>

To invoke a Java class, you can provide a class that implements the
IFaultRecoveryJavaClass interface. IFaul tRecoveryJavaClass is included
in the fabric-runtime. jar file. The package name is
oracle.integration.platform. faultpolicy.

The IFaultRecoveryJavaClass interface has two methods, as shown in
Example 11-11.

Example 11-11 implementation of IFaultRecoveryJavaClass

public interface IFaultRecoveryJavaClass

{

public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleFault(IFaultRecoveryContext ctx);

}

Note the following details:

= handleRetrySuccess is invoked upon a successful retry attempt. The retry
policy chains to a Java action on retrySuccessAction.

= handleFault is invoked to execute a policy of type javaAction.

Example 11-12 shows the data available with ITFaultRecoveryContext:

Example 11-12 Data Available with IFaultRecoveryContext

public interface IFaultRecoveryContext {

/**
* Gets implementation type of the fault.
* @return
*/

public String getType();

/**
* @return Get property set of the fault policy action being executed.
*/

public Map getProperties();

11-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

/**
* @return Get fault policy id of the fault policy being executed.
*/

public String getPolicyId();

/**
* @return Name of the faulted partner link.
*/

public String getReferenceName () ;

/**
* @return Port type of the faulted reference .
*/

public QName getPortType() ;

}

The service engine implementation of this interface provides more information (for
example, Oracle BPEL Process Manager). Example 11-13 provides details.

Example 11-13 Service Engine Implementation of IFaultRecoveryContext

public class BPELFaultRecoveryContextImpl extends BPELXExecLetUtil implements
IBPELFaultRecoveryContext, IFaultRecoveryContext{

Oracle BPEL Process Manager-specific data is available with
IBPELFaultRecoveryContext, as shown in Example 11-14.

Example 11-14 Oracle BPEL Process Manager-Specific Data

public interface IBPELFaultRecoveryContext {
public void addAuditTrailEntry(String message) ;

public void addAuditTrailEntry(String message, Object detail);

public void addAuditTrailEntry (Throwable t);

/*'k
* @return Get action id of the fault policy action being executed.
*/

public String getActionId();

/**
* @return Type of the faulted activity.
*/

public String getActivityId();

/**
* @return Name of the faulted activity.
*/

public String getActivityName() ;

/**
* @return Type of the faulted activity.
*/

public String getActivityType();

/**
* @return Correleation id of the faulted activity.
*/

Using Fault Handling in a BPEL Process 11-19

Using the Fault Management Framework

public String getCorrelationId();

/**
* @Qreturn BPEL fault that caused the invoke to fault.
*/

public BPELFault getFault();

/*'k
* @return Get index value of the instance
*/

public String getIndex(int 1i);

/**
* @return get Instance Id of the current process instance of the faulted
* activity.
*/

public long getInstanceId();

/**
* @return Get priority of the current process instance of the faulted
* activity.
*/

public int getPriority();

/**
* @return Process DN.
*/
public ComponentDN getProcessDN();

/**
* @return Get status of the current process instance of the faulted
* activity.
*/

public String getStatus();

/**
* @return Get title of the current process instance of the faulted
* activity.
*/

public String getTitle();

public Object getVariableData(String name) throws BPELFault;

public Object getVariableData(String name, String partOrQuery)
throws BPELFault;

public Object getVariableData(String name, String part, String query)
throws BPELFault;

/*'k

* @param priority

* Set priority of the current process instance of the faulted
* activity.

* @return

*/

public void setPriority(int priority);

/**
* @param status
* Set status of the current process instance of the faulted

11-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

* activity.
*/
public void setStatus(String status);

/**

* @param title

* Set title of the current process instance of the faulted
* activity.

* @return

*/

public String setTitle(String title);
public void setVariableData (String name, Object value) throws BPELFault;

public void setVariableData (String name, String partOrQuery, Object value)
throws BPELFault;

public void setVariableData (String name, String part, String query,
Object value) throws BPELFault;
}

Example 11-15 provides an example of javaAction implementation.

Example 11-15 Implementation of a javaAction

public class TestJavaAction implements IFaultRecoveryJavaClass {
public void handleRetrySuccess (IFaultRecoveryContext ctx) {
System.out.println("This is for retry success");

handleFault (ctx) ;

}

public String handleFault (IFaultRecoveryContext ctx) {
System.out.println("----- Inside handleFault----- \n" + ctx.toString());

dumpProperties (ctx.getProperties());
/* Get BPEL specific context here */
BPELFaultRecoveryContextImpl bpelCtx = (BPELFaultRecoveryContextImpl) ctx;
bpelCtx.addAuditTrailEntry("hi there");
System.out.println("Policy Id" + ctx.getPolicyId());

11.4.4 What You May Need to Know About Fault Management Behavior When the
Number of Instance Retries is Exceeded

When you configure a fault policy to recover instances with the ora-retry action
and the number of specified instance retries is exceeded, the instance is marked as
open. faulted (in-flight state). The instance remains active.

Marking instances as open . faulted ensures that no instances are lost. You can then
configure another fault handling action following the ora-retry action in the fault
policy file, such as the following:

s Configure an ora-human-intervention action to manually perform instance
recovery from Oracle Enterprise Manager Fusion Middleware Control Console.

s Configure an ora-terminate action to close the instance (mark it as
closed. faulted) and never retry again.

Using Fault Handling in a BPEL Process 11-21

Using the Fault Management Framework

However, if you do not set an action to be performed after an ora-retry action in the
fault policy file and the number of instance retries is exceeded, the instance remains
marked as open. faulted, and recovery attempts to handle the instance.

For example, if no action is defined in the fault policy file shown in Example 11-16
after ora-retry:

Example 11-16 No Action Defined
<Action id="ora-retry">
<retry>
<retryCount>2</retryCount>
<retryInterval>2</retryInterval>
<exponentialBackoff/>
</retry>
</Action>

The following actions are performed:

= The invoke activity is attempted (using the above-mentioned fault policy code to
handle the fault).

= Two retries are attempted at increasing intervals (after two seconds, then after four
seconds).

» If all retry attempts fail, the following actions are performed:
- A detailed fault error message is logged in the audit trail.
- The instance is marked as open. faulted (in-flight state).
- The instance is picked up and the invoke activity is re-attempted.

= Recovery may also fail. In that case, the invoke activity is re-executed. Additional
audit messages are logged.

11.4.5 What You May Need to Know Executing the Retry Action with Multiple Faults in
the Same Flow

The fault policy retry action may not execute with multiple faults in the same flow.
This may be because the retry count has already been reached for any of the previous
faults.

For example, assume you define a fault policy with two fault conditions: faultl and
fault2. For both fault conditions, the retry action is specified with a retry count of
three. Assume faultl occurs and the retry action executes three times. You correct
the problem for faultl by modifying the payload, but ensure that fault2 is to be
raised when the instance is resubmitted. You then resubmit the faulted instance using
Oracle Enterprise Manager Fusion Middleware Control Console. You expect the
second fault condition, fault?2, to retry three times according to the fault policy
specification. However, this does not occur because the maximum number of retries
was already executed for the previous faultl fault condition.

11.4.6 What You May Need to Know About Binding Level Retry Execution Within Fault
Policy Retries

If you are testing retry actions on adapters with both JCA-level retries for the
outbound direction and a retry action in the fault policy file for outbound failures, the
JCA-level (or binding level) retries are executed within the fault policy retries. For
example, assume you have designed the application shown in Figure 11-2:

11-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using the Fault Management Framework

Figure 11-2 SOA Composite Application

& &
= @ Mediator FP 22 = G
Mediator_FP_ep EQ
Operations: Operations:
aexecute Enqueue

You specify the retry parameters shown in Example 11-17 in the composite.xml file:

Example 11-17 Retry Parameters

<property name="jca.retry.count" type="xs:int" many="false"
override="may">2</property>

<property name="jca.retry.interval" type="xs:int" many="false"
override="may">2</property>

<property name="jca.retry.backoff" type="xs:int" many="false"
override="may">2</property>

In the fault policy file for the EQ reference binding component for the outbound
direction, you specify the actions shown in Example 11-18.

Example 11-18 Retry Actions

<retryCount>3</retryCount>
<retryInterval>3</retryInterval>

If an outbound failure occurs, the expected behavior is for the JCA retries to occur
within the fault policy retries. When the first retry of the fault policy is executed, the
JCA retry is called. In this example, a JCA retry of 2 with an interval of 2 seconds and
exponential back off of 2 is executed for every retry of the fault policy:

= Fault policy retry 1:
— JCAretry 1 (with 2 seconds interval)
— JCA retry 2 (with 4 seconds interval)
= Fault policy retry 2:
— JCAretry 1 (with 2 seconds interval)
- JCA retry 2 (with 4 seconds interval)
= Fault policy retry 3:
— JCAretry 1 (with 2 seconds interval)
— JCA retry 2 (with 4 seconds interval)

11.4.7 What You May Need to Know About Defining the ora-java Option

Assume you invoke a SOA composite application with a fault policy /binding defined
and see a recoverable fault in Oracle Enterprise Manager Fusion Middleware Control
Console. After you perform a successful fault recovery retry, note that there is no
ora-java option available for selection by default in the After Successful Retry list of
the Faults tab of the Instance of process_name page.

This is the expected behavior. For the ora-java option to display, you must explicitly
define it in the fault-policies.xml file during design-time. For example, perform
the following steps.

Using Fault Handling in a BPEL Process 11-23

Catching BPEL Runtime Faults

7.

Create a fault-policies.xml file in which you explicitly add
retrySuccessAction ref="ora-java"/>tothe fault-policies.xml
file.

<Action id="ora-retry">
<Retry>
<retryCount>3</retryCount>
<retryInterval>2</retryInterval>
<exponentialBackoff/>
<retryFailureAction ref="ora-java"/>
<retrySuccessAction ref="ora-java"/>
</Retry>
</Action>

Deploy the composite and create an instance.
Click the composite instance to invoke the instance trace of the composite.

Click the component in which there is a recoverable fault (for example, Oracle
BPEL Process Manager, Oracle Mediator, or Oracle BPM).

Go to the Faults tab.
Select the Retry option to successfully retry the fault.
If fault recovery is successful, the After Successful Retry list is displayed.

Select the list and note that the ora-java option is now listed.

For more information about recovering from faults in Oracle Enterprise Manager
Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator’s
Guide for Oracle SOA Suite and Oracle BPM Suite.

11.5 Catching BPEL Runtime Faults

BPEL runtime faults can be caught as a named BPEL fault. The bindingFault and
remoteFault can be associated with a message. This action enables the
faultHandler to get details about the faults.

11.5.1 How to Catch BPEL Runtime Faults

The following procedure shows how to use the provided examples to generate a fault
and define a fault handler to catch it. In this case, you modify a WSDL file to generate
a fault, and create a catch attribute to catch it.

To catch BPEL runtime faults:

1.

Import RuntimeFault.wsdl into your process WSDL. RuntimeFault.wsdl is
seeded into the MDS from soa.mar inside soa-infra-wls.ear during its
deployment.

You may see a copy of soa.mar in the deployed SOA Infrastructure in the Oracle
WebLogic Server domain, which is a JAR/ZIP file containing
RuntimeFault.wsdl.

Declare a variable with messageType bpelx:RuntimeFaultMessage.
Catch it using the following syntax:

<catch faultName="bpelx:remoteFault" | "bpelx:bindingFault"
faultName="varName">

11-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Throwing Internal Faults

11.6 Getting Fault Details with the getFaultAsString XPath Extension
Function

The catchAll activity is provided to catch possible faults. However, BPEL does not
provide a method for obtaining additional information about the captured fault. Use
the getFaultAsString () XPath extension function to obtain additional
information.

11.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function

Example 11-19 shows how to use this function.

Example 11-19 getFaultAsString() XPath Extension Function
<catchAll>
<sequence>
<assign>
<from expression="bpelx:getFaultAsString()"/>
<to variable="faultVar" part="message"/>
</assign>
<reply faultName="nsl:myFault" variable="faultVar" .../>
</sequence>
</catchAll>

11.7 Throwing Internal Faults

A BPEL application can generate and receive fault messages. The throw activity has
three elements: its name, the name of the fault, and the fault variable. The fault thrown
by a throw activity is internal to BPEL. You cannot use a throw activity on an
asynchronous process to communicate with a client. Throw activity syntax includes
the throw name, fault name, and fault variable:

<throw name="delay" faultName="nsPrefix:fault-1" faultVariable="fVar"/>

11.7.1 How to Create a Throw Activity

To create a throw activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Throw activity into the designer.

3. Double-click and define the Throw activity.

4. Optionally enter a name or accept the default value.
5

To the right of the Namespace URI field, click the Search icon to select the fault to
monitor.

6. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field.
Your fault selection also automatically displays in the Local Part field.

Figure 11-3 provides an example of a completed Throw dialog. This example
shows the Throw_Fault_CC_Denied throw activity of the Scope_
AuthorizeCreditCard scope activity in the Fusion Order Demo application. This
activity throws a fault for orders that are not approved.

Using Fault Handling in a BPEL Process 11-25

Rethrowing Faults with the Rethrow Activity

Figure 11-3 Throw Dialog

Throw R’

[General | Annotations | Skip Condition | Targets | Sources |

Mame: |Thr0w_FauIt_CC_Denied |

Fault Qkame
Mamespace URI: |\l.globalcompany.example.com,l'ns,l'orderBookingService|
Local Part: |OrderPr0cessorFauIt |
Fault Yariable: |g0rderProcessorFauItVariable | 4 Q,
| Help | | Apply || [o]'8 || Cancel

7. Click Apply, then OK.

11.7.2 What Happens When You Create a Throw Activity

Example 11-20 shows the throw activity in the .bpel file after design completion. The
OrderProcessor process terminates after executing this throw activity.

Example 11-20 Throw Activity

<throw name="Throw_Fault_CC_Denied"
faultName="client:0rderProcessorFault"/>

11.8 Rethrowing Faults with the Rethrow Activity

The rethrow activity rethrows faults originally captured by the immediately enclosing
fault handler. Only use the rethrow activity within a fault handler (for example, within
catch and catchAll activities). The rethrow activity is used in fault handlers to rethrow
the captured fault (that is, the fault name and the fault data (if present) of the original
fault). The rethrow activity must ignore modifications to fault data. For example:

» If the fault handler modifies fault data and then calls a rethrow activity, the
original fault data is rethrown, and not the modified fault data.

» If a faultis captured using the functionality that enables message type faults with
one part defined using an element to be caught by fault handlers looking for the
same element type, then the rethrow activity rethrows the original message type
data.

Note: This activity is supported in BPEL version 2.0 projects.

11.8.1 How to Create a Rethrow Activity

To create a rethrow activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag a Rethrow activity into the designer.

11-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Rethrowing Faults with the Rethrow Activity

3. Double-click and define the Rethrow activity.

4. Optionally enter a name or accept the default value, as shown in Figure 11-4.

Figure 11-4 Rethrow Dialog

Rethrow ®

| GEneral r.ﬁ.nnotations rDocumentation rTargets rSources |

Name: |Rethr0w1| |

| Help | | Apply || [a]'4 || Cancel

5. Click Apply, then OK.

When complete, design can look similar to that shown in Figure 11-5.

Figure 11-5 Throw Activity in BPEL Process

&«

\ g

tns:error

s

Rethrow_

11.8.2 What Happens When You Rethrow Faults

Example 11-21 shows the . bpel file after design is complete for a rethrow activity.
The rethrow activity is inside a fault handler (catch activity).

Example 11-21 Rethrow Activity

<scope name="scopel">
<faultHandlers>
<catch faultName="tns:error" faultVariable="tmpVar"
faultElement="tns:fault">
<sequence>

Using Fault Handling in a BPEL Process 11-27

Returning External Faults

<assign>
<copy>
<from>concat ('caught fault: ', StmpVar)</from>
<to>Soutput.payload</to>
</copy>
</assign>
<rethrow name="Rethrow 1"/>
</sequence>
</catch>
</faultHandlers>
<throw faultName="tns:error" faultVariable="fault"/>
</scope>

11.9 Returning External Faults

A BPEL process service component can send a fault to another application to indicate a
problem, as opposed to throwing an internal fault. In a synchronous operation, the
reply activity can return the fault. In an asynchronous operation, the invoke activity
performs this function.

11.9.1 How to Return a Fault in a Synchronous Interaction

The syntax of a reply activity that returns a fault in a synchronous interaction is shown
in Example 11-22:

Example 11-22 Reply Activity

<reply partnerlinke="partner-link-name"
portType="port-type-name"
operation="operation-name"
variable="variable-name" (optional)
faultName="fault-name">

</reply>

Always returning a fault in response to a synchronous request is not very useful. It is
better to make the activity part of a conditional branch, in which the first branch is
executed if the data requested is available. If the requested data is not available, then
the BPEL process service component returns a fault with this information.

For more information, see the following chapters:

s Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process" for
synchronous interactions

» Chapter 10, "Using Conditional Branching in a BPEL Process" for setting up the
conditional structure

11.9.2 How to Return a Fault in an Asynchronous Interaction

In an asynchronous interaction, the client does not wait for a reply. The reply activity is
not used to return a fault. Instead, the BPEL process service component returns a fault
using a callback operation on the same port type that normally receives the requested
information, with an invoke activity.

For more information about asynchronous interactions, see Chapter 8, "Invoking an
Asynchronous Web Service from a BPEL Process."

11-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using a Scope Activity to Manage a Group of Activities

11.10 Using a Scope Activity to Manage a Group of Activities

A scope activity provides a container and a context for other activities. A scope
provides handlers for faults, events, compensation, data variables, and correlation sets.
Using a scope activity simplifies a BPEL flow by grouping functional structures. This
grouping enables you to collapse them into what appears to be a single element in
Oracle BPEL Designer.

Example 11-23 shows a scope named Scope_FulfillOrder from the WebLogic
Fusion Order Demo application. This scope invokes the FulfillOrder Oracle
Mediator component, which determines the shipping method for the order.

Example 11-23 Scope Activity

<scope name="Scope_FulfillOrder">
<variables>
<variable name="1FulfillOrder_InputVariable"
messageType="nsl7:requestMessage" />
</variables>
<sequence>
<assign name="Assign_OrderData">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovosDO" />
<to variable="1FulfillOrder_InputVariable"
part="request" query="/ns4:orderInfovOSDO"/>
</copy>
</assign>
<invoke name="Invoke_ FulfillOrder"
inputVariable="1FulfillOrder_InputVariable"
partnerLink="FulfillOrder.FulfillOrder"
portType="nsl7:execute_ptt" operation="execute"/>
</sequence>
</scope>

11.10.1 How to Create a Scope Activity

To create a scope activity:
1. In the Component Palette, expand BPEL Constructs.

2. Draga Scope activity into the designer.

3. Open the scope activity by double-clicking it or by single-clicking the Expand
icon.

4. From the Component Palette, drag and define activities to build the functionality
within the scope. Figure 11-6 provides details.

Using Fault Handling in a BPEL Process 11-29

Using a Scope Activity to Manage a Group of Activities

Figure 11-6 Expanded Scope Activity

5. Click OK.

When complete, scope activity design can look as shown in Figure 11-7. This
example shows the Scope_AuthorizeCreditCard scope activity of the Fusion
Order Demo application.

Figure 11-7 Scope Activity After Design Completion

= = &

Assign_CreditCheckInput i; i:

bpws:selectionFailure nsZ InvalidCredit
InvokeCheckCreditCard
Assign_noC”CHumber Assign_InvalidCreditFault
X = =
A /Ny
bpws:getiiarisble. . Throw_hoCreditCard Throw_CrderProcessingFault

A

Throw_Fault_CC_Denied

11.10.2 How to Add Descriptive Notes and Images to a Scope Activity

You can add descriptive notes to scope activities that provide simple descriptions of
the functionality of the scope. You can also change the graphical image of scopes. The
notes and images display in Oracle BPEL Designer. This helps to make a scope easier
to understand.

To add descriptive notes and images to a scope activity:
1. Perform one of the following steps:

= Right-click the scope and select User Documentation.
= Double-click the scope and select the User Documentation tab.
The Documentation dialog appears.

2. Inthe Comment field, enter a brief description of the functionality of the scope.

11-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using a Scope Activity to Manage a Group of Activities

3. Inthe Image field, click the Search icon to optionally change the graphical image
for the scope.

4. Click OK.
Your changes display in Oracle BPEL Designer, as shown in Figure 11-8.

Figure 11-8 Scope with Descriptive Note and Modified Image

T

& |

Scope_RetrieveCustomerForOrder

+ This scope calls the
ﬁ CredibCardauthorizationService

service ba retrieve

Scope_futhorizeCreditCard | - stamer information. T
assigns the order kokal,
credit card tvpe, and the
account number fram
global variable
gOrderInfovariable to
local variable
lZreditCardInput for the
SCORE,

COR]
S

Assign_DefaulthlotRequiresApprowval

5. To edit the note, double-click it.

11.10.3 What Happens After You Create a Scope Activity

Example 11-24 shows the scope activity in the .bpel file after design completion. The
Scope_AuthorizeCreditCard scope activity consists of activities that perform the
following actions:

= A catch activity for catching faulted orders in which the credit card number is not
provided or the credit type is not valid.

= A throw activity that throws a fault for orders that are not approved.

= An assign activity that takes the credit card type, credit card number, and purchase
amount, and assigns this information to the input variable for the
CreditCardAuthorizationService service.

= Aninvoke activity that calls a CreditCardAuthorizationService service to
retrieve customer information.

= A switch activity that checks the results of the credit card validation.

Example 11-24 Scope Activity

<scope name="Scope_AuthorizeCreditCard">
<variables>
<variable name="1CreditCardInput"
messageType="ns2:CreditAuthorizationRequestMessage"/>
<variable name="1CreditCardOutput"
messageType="ns2:CreditAuthorizationResponseMessage" />

Using Fault Handling in a BPEL Process 11-31

Using a Scope Activity to Manage a Group of Activities

</variables>
<faultHandlers>
<catch faultName="bpws:selectionFailure">
<sequence>
<assign name="Assign_noCCNumber">
<copy>
<from expression="string('CreditCardCheck - NO
CreditCard')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name ="Throw_NoCreditCard"
faultVariable="gOrderProcessorFaultVariable"
faultName="ns9:0rderProcessingFault" />

</sequence>
</catch>
<catch faultName="ns2:InvalidCredit">
<sequence>
<assign name="Assign_InvalidCreditFault">
<copy>

<from expression="concat (bpws:getVariableData
('gOrderInfovariable', '/ns4:orderInfovOSDO/
nsd:CardTypeCode'), ' is not a valid
creditcard type')"/>
<to variable="gOrderProcessorFaultVariable"
part="summary"/>
</copy>
<copy>
<from expression="string('CreditCardCheck - NOT VALID')"/>
<to variable="gOrderProcessorFaultVariable"
part="code"/>
</copy>
</assign>
<throw name="Throw_OrderProcessingFault"
faultName="ns9:0rderProcessingFault"
faultVariable="gOrderProcessorFaultVariable"/>
</sequence>
</catch>
</faultHandlers>
<sequence>
<assign name="Assign_CreditCheckInput">
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4:0rderTotal" />
<to variable="1lCreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:PurchaseAmount" />
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4:CardTypeCode" />
<to variable="1lCreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCType" />
</copy>
<copy>
<from variable="gOrderInfoVariable"
query="/ns4:orderInfovOSDO/ns4 : AccountNumber" />
<to variable="1lCreditCardInput" part="Authorization"
query="/ns8:AuthInformation/ns8:CCNumber" />
</copy>

11-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using a Scope Activity to Manage a Group of Activities

</assign>
<invoke name="InvokeCheckCreditCard"
inputVariable="1CreditCardInput"
outputVariable="1CreditCardOutput"
partnerLink="CreditCardAuthorizationService"
portType="ns2:CreditAuthorizationPort"
operation="AuthorizeCredit"/>
<switch name="Switch_EvaluateCCResult">
<case condition="bpws:getVariableData ('lCreditCardOutput', 'status',"
/ns8:status') != '"APPROVED'">
<bpelx:annotation>
<bpelx:pattern>status <> approved</bpelx:pattern>
</bpelx:annotation>
<throw name="Throw_Fault_CC_Denied"
faultName="client:0rderProcessorFault"/>
</case>
/switch>
</sequence>
</scope>

11.10.4 What You May Need to Know About Scopes

Scopes can use a significant amount of CPU and memory and should not be overused.
Sequence activities use less CPU and memory and can make large BPEL flows more
readable.

11.10.5 How to Use a Fault Handler Within a Scope

If a fault is not handled, it creates a faulted state that migrates up through the
application and can throw the entire process into a faulted state. To prevent this from
occurring, place the parts of the process that have the potential to receive faults within
a scope. The scope activity includes the following fault handling capabilities:

s The catch activity works within a scope to catch faults and exceptions before they
can throw the entire process into a faulted state. You can use specific fault names
in the catch activity to respond in a specific way to an individual fault.

» The catchAll activity catches any faults that are not handled by name-specific
catch activities.

Example 11-25 shows the syntax for catch and catchAll activities. Assume that a fault
named x : foo is thrown. The first catch is selected if the fault carries no fault data. If
there is fault data associated with the fault, the third catch is selected if the type of the
fault's data matches the type of variable bar. Otherwise, the default catchAll handler
is selected. Finally, a fault with a fault variable whose type matches the type of bar
and whose name is not x : foo is processed by the second catch. All other faults are
processed by the default catchAll handler.

Example 11-25 Catch and CatchAll Activities

<faulthandlers>
<catch faultName="x:foo">
<empty/>
</catch>
<catch faultVariable="bar">
<empty/>
</catch>
<catch faultName="x:foo" faultVariable="bar">
<empty/>
</catch>

Using Fault Handling in a BPEL Process 11-33

Using a Scope Activity to Manage a Group of Activities

<catchAll>
<empty/>
</catchAll>
</faulthandlers>

11.10.6 How to Create a Catch Activity in a Scope

To create a catch activity in a scope:
1. In the expanded Scope activity, click Add Catch. Figure 11-9 provides details.

Figure 11-9 Add Catch

This creates a catch activity in the right side of the scope activity.
Double-click the Catch activity.
Optionally enter a name.

To the right of the Namespace URI field, click the Search icon to select the fault.

a & 0N

Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field.
Your fault selection also automatically displays in the Local Part field.

Figure 11-10 provides an example of a Catch dialog. This example shows the
selectionFailure catch activity of the Scope_AuthorizeCreditCard scope activity
in the Fusion Order Demo application. This catch activity catches orders in which
the credit card number is not provided.

11-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using a Scope Activity to Manage a Group of Activities

Figure 11-10 Catch Dialog

Catch b4
| General | Annotations
Fault QName
Q,
Mamespace URI: |f,l'schemas.xmlsoap.org,l'ws,1'2DDS,I'DS,I'husiness—process,l'|
Local Part: |selecti0nFaiIure |
Fault Variable: | | & Q
| Help | | Apply || QK || Cancel |

6. Design additional fault handling functionality.
7. Click OK.

Figure 11-11 provides an example of two catch activities for the Scope_
AuthorizeCreditCard scope activity. The second catch activity catches credit types
that are not valid.

Figure 11-11 Catch Activities in the Designer

Azsign_CreditCheckInput C i/\

bpws :selectionFailure ns2: InvalidCredit

11.10.7 What Happens When You Create a Catch Activity in a Scope

Example 11-26 shows the catch activity in the .bpel file after design completion.
The selectionFailure catch activity catches orders in which the credit card
number is not provided and the InvalidCredit catch activity catches credit types
that are not valid.

Example 11-26 Catch Branch

<faultHandlers>
<catch faultName="bpws:selectionFailure">
<sequence>
<assign name="Assign_noCCNumber">
<copy>
<from expression="string('CreditCardCheck - NO CreditCard')"/>
<to variable="gOrderProcessorFaultVariable"
part="code" />
</copy>
</assign>
<throw name ="Throw_NoCreditCard"

Using Fault Handling in a BPEL Process 11-35

Using a Scope Activity to Manage a Group of Activities

faultVariable="gOrderProcessorFaultVariable"
faultName="ns9:0rderProcessingFault" />

</sequence>
</catch>
<catch faultName="ns2:InvalidCredit">
<sequence>
<assign name="Assign_InvalidCreditFault">
<copy>

<from expression="concat (bpws:getVariableData
('gOrderInfovariable', '/ns4:orderInfov0SDO/ns4:CardTypeCode'), '
is not a valid creditcard type')"/>
<to variable="gOrderProcessorFaultVariable"
part="summary"/>
</copy>
<copy>
<from expression="string('CreditCardCheck - NOT VALID')"/>
<to variable="gOrderProcessorFaultVariable"
part="code" />
</copy>
</assign>
<throw name="Throw_OrderProcessingFault"
faultName="ns9:0rderProcessingFault"
faultVariable="gOrderProcessorFaultVariable" />
</sequence>
</catch>
</faultHandlers>

11.10.8 How to Create an Empty Activity to Insert No-Op Instructions into a Business

Process

There is often a need to use an activity that does nothing. An example is when a fault
must be caught and suppressed. In this case, you can use the empty activity to insert a
no-op instruction into a business process.

To create an empty activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag an Empty activity into the designer.
3. Double-click the Empty activity.
The Empty dialog appears, as shown in Figure 11-12.

11-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Re-executing Activities in a Scope Activity with the Replay Activity

Figure 11-12 Empty Activity

Empty b4

| General rnnnotations rSkip Condition rTargets rSources |

Marne: |Empty_1 |

| Help | | Apply || [a]4 || Cancel

4. Optionally enter a name.

5. Click OK.

11.10.9 What Happens When You Create an Empty Activity

The syntax for an empty activity is shown in Example 11-27.

Example 11-27 Empty Activity

<empty standard-attributes>
standard-elements
</empty>

If no catch or catchAll is selected, the fault is not caught by the current scope and
is rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown
to) the global process scope, and there is no matching fault handler for the fault at the
global level, the process terminates abnormally. This is as though a terminate activity
(described in Section 11.13.1, "Stopping a Business Process Instance with the Terminate
Activity in BPEL 1.1") had been performed.

11.11 Re-executing Activities in a Scope Activity with the Replay Activity

You can create a replay activity inside a scope activity to re-execute all of the activities
inside the scope.

11.11.1 How to Create a Replay Activity

To create a replay activity:
1. In the Component Palette, expand Oracle Extensions.

2. Drag a Replay activity into the designer.
3. Double-click the Replay activity.

4. Enter an optional name.
5

Select the scope to re-execute, as shown in Figure 11-13.

Using Fault Handling in a BPEL Process 11-37

Re-executing Activities in a Scope Activity with the Replay Activity

Figure 11-13 Replay Dialog

Replay &8
| General r Diocurnentation r Targets r SOUrces
Mame: |Replay5c0pe |
Scope: | sropEz v|
| Help | | Apply | | [0]'4 | | Cancel

6. Click Apply, then click OK.
7. Continue with the design of your scope activity.

When complete, design of the scope activity can look similar to that shown in
Figure 11-14.

Figure 11-14 Replay Activity in a Scope Activity

QL

if else
<label= <label=

B

ReplayScope

11.11.2 What Happens When You Create a Replay Activity

Example 11-28 shows the . bpel file after design is complete for a replay activity in a
BPEL project that supports BPEL version 2.0. In BPEL 2.0, the replay activity is
wrapped in an extensionActivity element.

Example 11-28 Replay Activity

<scope name="scope2">
<sequence>
<assign>

11-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Compensation After Undoing a Series of Operations

<copy>
<from>$counter2 + 1</from>
<to>$counter2</to>
</copy>
</assign>
<scope name="scope3">
<sequence>
<assign>
<copy>
<from>$counter + 1</from>
<to>$counter</to>
</copy>
</assign>
<if>
<condition>$counter = 3</condition>
<empty/>
<else>
<extensionActivity>
<bpelx:replay name="ReplayScope" scope="scopel"/>
</extensionActivity>
</else>
</if>
</sequence>
</scope>
</sequence>
</scope>

In BPEL 1.1, the replay activity is coded as a bpelx extension.

<bpelx:replay name="ReplayScope" scope="Scopel"/>

11.12 Using Compensation After Undoing a Series of Operations

Compensation occurs when the BPEL process service component cannot complete a
series of operations after some have completed, and the BPEL process service
component must backtrack and undo the previously completed transactions. For
example, if a BPEL process service component is designed to book a rental car, a hotel,
and a flight, it may book the car and the hotel and then be unable to book a flight for
the right day. In this case, the BPEL flow performs compensation by going back and
unbooking the car and the hotel.

In a scope activity, the compensation handler can reverse previously completed
process steps. The compensation handler can be invoked after successful completion
of its associated scope with either of the following activities.

s Compensate activity (in BPEL version 1.1 and 2.0 projects)

This activity causes the compensation handler of all successfully completed and
not yet compensated child scopes to be executed in default order.

= compensateScope activity (in a BPEL version 2.0 project)

This activity causes the compensation handler of one specific successfully
completed scope to be executed.

11.12.1 Using a Compensate Activity

You can invoke a compensation handler by using the compensate activity, which
names the scope for which the compensation is to be performed (that is, the scope
whose compensation handler is to be invoked). A compensation handler for a scope is

Using Fault Handling in a BPEL Process 11-39

Using Compensation After Undoing a Series of Operations

available for invocation only when the scope completes normally. Invoking a
compensation handler that has not been installed is equivalent to using the empty
activity (it is a no-op). This ensures that fault handlers do not have to rely on state to
determine which nested scopes have completed successfully. The semantics of a
process in which an installed compensation handler is invoked multiple times are
undefined.

The ability to explicitly invoke the compensate activity is the underpinning of the
application-controlled error-handling framework of Business Process Execution
Language for Web Services Specification. You can use this activity only in the following
parts of a business process:

= Inafault handler of the scope that immediately encloses the scope for which
compensation is to be performed.

s In the compensation handler of the scope that immediately encloses the scope for
which compensation is to be performed.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process service
component invokes the instances of the compensation handlers in the successive
iterations in reverse order.

If the compensation handler for a scope is absent, the default compensation handler
invokes the compensation handlers for the immediately enclosed scopes in the reverse
order of the completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity,
explicitly invokes this default behavior. This is useful when an enclosing fault or
compensation handler must perform additional work, such as updating variables or
sending external notifications, in addition to performing default compensation for
inner scopes. The compensate activity in a fault or compensation handler attached to
the outer scope invokes the default order of compensation handlers for completed
scopes directly nested within the outer scope. You can mix this activity with any other
user-specified behavior except for the explicit invocation of the nested scope within
the outer scope. Explicitly invoking compensation for such a scope nested within the
outer scope disables the availability of default-order compensation.

11.12.2 How to Create a Compensate Activity

To create a compensate activity:
1. In the Component Palette, expand BPEL Constructs.

2. Draga Compensate activity into the designer
3. Double-click the Compensate activity.

4. Select a scope activity in which to invoke the compensation handler, as shown in
Figure 11-15.

11-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Compensation After Undoing a Series of Operations

Figure 11-15 Compensate Activity

Compensate %

| General r.ﬁ.nnotations rSkip Condition rTargets rSources |

Mame: |C0mpensateCR |
SCope: |assignCR | %
| Help | | Apply | | [o]4 | | Cancel

5. Click Apply, then OK.

11.12.3 What Happens When You Create a compensate Activity

If an invoke activity has a compensation handler defined inline, then the name of the
activity is the name of the scope to be used in the compensate activity. The syntax is
shown in Example 11-29:

Example 11-29 Compensation Handler

<compensate scope="ncname"? standard-attributes>
standard-elements
</compensate>

11.12.4 Using a compensateScope Activity in BPEL 2.0

The compensateScope activity is used to start compensation on a specified inner scope
that has already completed successfully. This activity must only be used from within a
fault handler, another compensation handler, or a termination handler.

When you create a compensateScope activity, you select a target that must refer to the
immediately-enclosed scope. The scope must include a fault handler or compensation
handler.

11.12.5 How to Create a compensateScope Activity

Note: This activity is supported in BPEL 2.0 projects.

To create a compensateScope activity:
1. In the Component Palette, expand BPEL Constructs.

2. Draga CompensateScope activity into the designer

3. Double-click the CompensateScope activity.

Using Fault Handling in a BPEL Process 11-41

Stopping a Business Process Instance

4. Select a specific scope activity in which to invoke the compensation handler.
Figure 11-16 provides details.

Figure 11-16 CompensateScope Activity

CompensateScope b4

| General rDocumentation rTargets rSDurces

Mame: |C0mpensateScopeCreditRating |
Target: |ScopenssignCreditRating b |
| Help | | Apply | | (a4 | | Cancel

5. Click Apply, then OK.

11.12.6 What Happens When You Create a compensateScope Activity

Example 11-30 shows the . bpel file after design is complete for a compensateScope
activity. The compensateScope activity is defined in a catchall fault handler. The scope
in which to invoke the compensation handler is defined.

Example 11-30 compensateScope Activity

<scope name="ScopeAssignCreditRating">
<faultHandlers>
<catchAll>
<compensateScope target="ScopeAssignScreditRating2" />
</catchAll>
</faultHandlers>
<sequence>
<scope name="ScopeAssignScreditRating2">
<compensationHandler>
<!-- undo work -->
</compensationHandler>
<!-- do some work -->
</scope>
<!-- do more work -->
<!-- a fault is thrown here; results of ScopeAssignScreditRating2 must be
undone -->
</sequence>
</scope>

11.13 Stopping a Business Process Instance
You can stop a business process instance with either of the following activities:

s Terminate activity (in a BPEL version 1.1 project)

11-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Stopping a Business Process Instance

= Exit activity (in a BPEL version 2.0 project)

11.13.1 Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1

The terminate activity immediately terminates the behavior of a business process
instance within which the terminate activity is performed. All currently running
activities must be terminated as soon as possible without any fault handling or
compensation behavior. The terminate activity does not send any notifications of the
status of a BPEL process service component. If you are going to use the terminate
activity, first program notifications to the interested parties.

11.13.1.1 How to Create a Terminate Activity

To create a terminate activity:
1. In the Component Palette in Oracle JDeveloper, expand BPEL Constructs.

2. Drag a Terminate activity into the designer. Figure 11-17 provides an example.

Figure 11-17 Terminate Activity

Terminake_2

3. Double-click the terminate activity.
4. Optionally enter a name.

5. Click OK.

11.13.1.2 What Happens When You Create a Terminate Activity

The syntax for the terminate activity is shown in Example 11-31. This stops the
business process instance.

Example 11-31 Terminate Activity

<terminate standard-attributes>
standard-elements
</terminate>

11.13.2 Immediately Ending a Business Process Instance with the Exit Activity in BPEL

2.0

You can use the exit activity to immediately end all currently running activities on all
parallel branches without involving any termination handling, fault handling, or
compensation handling mechanisms. This activity is useful for environments in which
there may not be a reasonable way for dealing with unexpected, severe failures.

Note: Any open conversations are also impacted by the exit activity.
For example, other partners interacting with the process may wait for
a response that never arrives.

Using Fault Handling in a BPEL Process 11-43

Stopping a Business Process Instance

11.13.2.1 How to Create an Exit Activity

To create an exit activity:
1. In the Component Palette, expand BPEL Constructs.

2. Drag an Exit activity into the section of your BPEL process in which you want to
execute the exit activity.

3. Double-click the Exit activity, as shown in Figure 11-18.

Figure 11-18 Exit Activity

Exit b4

| General r.ﬁ.nnotations rDocumentation rTargets rSDurces |

Mame: |Exit_1| |

| Help | | Apply || [o]4 || Cancel

4. Optionally enter a name.
5. Click Apply, then OK.

When complete, the exit activity in a BPEL process appears similar to that shown
in Figure 11-19.

Figure 11-19 Exit Activity in a BPEL Process

@)~

receivelnput

L3

clienk

reply Cukput

11.13.2.2 What Happens When You Create an Exit Activity

Example 11-32 shows the . bpel file after design is complete for an exit activity.

11-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Throwing Faults with Assertion Conditions

Example 11-32 Exit Activity

<sequence>
<!-- receive input from requestor -->
<receive name="receivelnput" partnerLink="client" portType="tns:Test"
operation="process" variable="input" createInstance="yes"/>
<assign>
<copy>
<from>$input.payload</from>
<to>S$output.payload</to>
</copy>
</assign>
<!-- respond output to requestor -->
<reply name="replyOutput" partnerLink="client"
portType="tns:Test" operation="process" variable="output"/>
<exit/>
</sequence>

11.14 Throwing Faults with Assertion Conditions

You can specify an assertion condition that is executed upon receipt of a callback
message in request-response invoke activities, receive activities, reply activities, and
onMessage branches of pick and scope activities. The assertion specifies an XPath
expression that, when evaluated to false, causes a BPEL fault to be thrown from the
activity. This condition provides an alternative to creating a potentially large number
of switch, assign, and throw activities after a partner callback.

Note: The assertion condition is only available in BPEL projects that
support BPEL version 1.1

The assertion condition is specified as a nested extension element. Example 11-33
provides details.

Example 11-33 Assertion Condition
<invoke | receive | onMessage>
standard-elements
<bpelx:postAssert name="ncname"? expression="boolean-expr" faultName="QName"+
message="generic-expr"+/> *
</invoke | receive | onMessage>

The bpelx:postAssert extension specifies the XPath expression to evaluate upon
receipt of a callback message from a partner. If the assertion expression returns a false
boolean value, the specified fault is thrown from the activity. If the assertion
expression returns a true boolean value, no fault is thrown and the activities following
the invoke activity, receive activity, or the onMessage branch of pick and scope
activities are executed as in a normal BPEL process flow.

The bpelx:preAssert or bpelx:postAssert extension is similar to the Java
assert statement. In Java, if the assert expression does not evaluate to true, an
error is reported by the JVM. Similarly, the expression in the bpelx:preAssert or
bpelx:postAssert extension must evaluate to true; otherwise, the specified fault is
thrown.

For example, with the invoke activity shown in Example 11-34, if the XPath expression
specified in the assertion condition returns false, the NegativeCredit faultis
thrown.

Using Fault Handling in a BPEL Process 11-45

Throwing Faults with Assertion Conditions

Example 11-34 Invoke Activity

<scope>
<faultHandlers>
<catch faultName="services:NegativeCredit" faultVariable="crError">
<empty/>
</catch>
</faultHandlers>
<sequence>
<invoke name="invokeCR" partnerLink="creditRatingService"
portType="services:CreditRatingService" operation="process"
inputVariable="crInput" outputVariable="crOutput">
<bpelx:postAssert name="negativeCredit"
expression="$crOutput.payload/tns:rating > 0"
faultName="services:NegativeCredit" message="'Negative
Credit'" />
</invoke>
</sequence>
</scope>

The optional name attribute for bpelx:preAssert or bpelx:postAssert is used
while creating the audit trail event message. The name in this instance enables you to
identify the assertion element in case multiple assertions are specified. If no name
attribute is specified, the line number of the assertion element in the BPEL file may be
used.

11.14.1 bpelx:postAssert and bpelx:preAssert Extensions

Depending upon the activity, you can specify when to execute a condition by clicking
the Add icon in the Assertions tab of invoke, receive, reply, and onMessage branches
of pick and scope activities, and selecting either Pre Assert or Post Assert. Based on
your selection, the following bpelx extensions are used:

» bpelx:preAssert:If you select Pre Assert, the condition is executed before the
invoke or reply activity send out the outbound message.

» bpelx:postAssert: If you select Post Assert, the condition is executed after an
invoke activity, receive activity, or onMessage branch receives the inbound
message.

Example 11-35 shows multiple bpelx:postAssert extensions in a receive activity:

Example 11-35 bpelx:postAssert Extension in a Receive Activity

<receive name="Receive_1" createInstance="no"
variable="Receive_1_processResponse_InputVariable"
partnerLink="AsyncBPELService"
portType="nsl:AsyncBPELServiceCallback"
bpelx:for=""'PT10S""
operation="processResponse">

<bpelx:postAssert name="assertl" expression="true()" message="'assert
true failed'" faultName="client:faultl"/>
<bpelx:postAssert name="assert2" expression="false()" message="'assert
false failed'" faultName="client:fault2"/>
</receive>

Example 11-36 shows multiple bpelx:preAssert extensions in an invoke activity:

Example 11-36 bpelx:preAssert Extension in a Invoke Activity

<invoke name="Invoke_l1" inputVariable="Invoke_1_process_InputVariable"

11-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Throwing Faults with Assertion Conditions

outputVariable="Receive_l_processResponse_InputVariable"
partnerLink="SyncBPELService" portType="nsl:SyncBPELService"
operation="process">

<bpelx:preAssert name="assertl" expression="true()" message="'assert true
failed'"/>

<bpelx:preAssert name="assert2"
expression="bpws:getVariableData('counter') = 3" message="concat ('The value of
counter is ', S$counter)"/>

For information on using the Assertions tab, see Section 11.14.8, "How to Create
Assertion Conditions."

11.14.2 Use of faultName and message Attributes

You can specify the faul tName and message attributes of the bpelx:postAssert
element, as shown in Example 11-37.

Example 11-37 faultName and message Altributes

<invoke | receive | onMessage>

standard-elements

<bpelx:postAssert name="ncname"? expression="boolean-expr" faultName="QName"+
message="generic-expr"+/> *
</invoke | receive | onMessage>

If you do not specify the faultName attribute, the fault defaults to
bpelx:postAssertFailure. If the message attribute is not specified, the message
value defaults to the name of the activity.

<bpelx:postAssert expression="boolean-expr" />

The specified fault is thrown whenever the assertion condition evaluates to false.
Analysis is performed on the faul tName QName to ensure that it properly resolves to
a fault that has been defined in the partner WSDL portType. The message expression
is a general expression that can evaluate to any XPath value type (string, number, or
boolean). If a nonstring value is returned, the string equivalent of the value is used.

11.14.3 Multiple Assertions

You can nest multiple assertions in receive activities, invoke activities, and the
onMessage branch of pick and scope activities, with evaluation of the assertions
continuing in the order in which they were declared until an expression evaluates to
false. Example 11-38 provides details.

Example 11-38 Nesting Multiple Assertions

<invoke name="invokeCR" partnerLink="creditRatingService"
portType="services:CreditRatingService" operation="process"
inputVariable="crInput" outputVariable="crOutput">
<bpelx:postAssert name="negativeCredit"
expression="$crOutput.payload/tns:rating >
0||
faultName="services:NegativeCredit" message="'Negative Credit'"
/>
<bpelx:postAssert name="insufficientCredit"
expression="$crOutput.payload/tns:rating > 600"
faultName="services:InsufficientCredit" message="'Insufficient
Credit'" />
</invoke>

Using Fault Handling in a BPEL Process 11-47

Throwing Faults with Assertion Conditions

In Example 11-38, the assertion with the expression that checks that the response
credit rating is greater than zero is evaluated first. Table 114 describes the assertion
behavior.

Table 11-4 Assertion Behavior

If The Credit Rating For The
Returned Response Is... Then...

Less than zero The services:NegativeCredit faultis thrown.

Greater than or equal to zero The assertion is correct and the second assertion is evaluated.

Less than 600 The services:InsufficientCredit faultis thrown.

Greater than or equal to 600 The assertion is correct and no fault is thrown from the invoke
activity.

Any number of assertions can be nested. For no fault to be thrown from the activity, all
assertions specified must evaluate to true.

This construct enables you to apply multiple levels of validation on an incoming
payload, similar to 1f. . .else if. . .else statements in Java.

To enable a fault to always be thrown regardless of validation logic, the assertion
expression can be specified as false (). This is similar to the else construct in Java.

11.14.4 Use of Built-in and Custom XPath Functions and $variable References

You can also use built-in and custom XPath functions and $variable references
within the assertion condition. Example 11-39 provides several examples.

Example 11-39 Built-in and Custom XPath Functions

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
'/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn="http://www.w3.0rg/2005/xpath-functions’
expression="fn:false()" ... />

If an error is thrown by the XPath expression evaluation, the error is wrapped with a
BPEL fault and thrown from the activity.

Faults that are thrown from a request-response invoke activity, receive activity, or
onMessage branch of a pick or scope activity because of a failed assertion evaluation
can be caught and handled by BPEL's fault policy framework. The fault policy
framework enables you to specify the action to take whenever a fault (business or
system) is thrown from an invoke activity. For example:

= Retry of the invocation with exponential backoff
s Execution of custom Java classes
= Replay of the immediate scope containing the invoke activity

= Review of the activity by an administrator and the permitting of manual editing of
variables

Faults that are not caught and handled within a BPEL process flow are thrown from a
BPEL component if the component WSDL declares the fault on the operation. If the

11-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Throwing Faults with Assertion Conditions

fault is not declared on the operation, the fault is converted into a
FabricInvocationException, which is a runtime fault. This fault can be caught
by any caller components (including BPEL components), but the fault type is no longer
the one originally thrown (however, the fault message string still retains traces of the
original fault message).

For more information about fault policies, see Section 11.4, "Using the Fault
Management Framework."

11.14.5 Assertion Condition Evaluation Logging of Events to the Instance Audit Trail

Each assertion condition that is evaluated causes an event to be logged to the instance
audit trail. The event indicates whether the assertion passed or failed (for failure, the
fault name and message are printed). The event also includes the name attribute
specified in the assertion element; if no name attribute is provided, the line number of
the assertion element in the BPEL process flow is used. The assertion condition printed
in the audit event helps identify the assertion and better enables debugging of the
flow.

11.14.6 Expressions Not Evaluating to an XML Schema Boolean Type Throw a Fault

If the assertion condition XPath expression does not evaluate to an XML schema
boolean type, a bpelx:postAssertFailure fault is thrown from the activity. An
event in the instance audit trail is also logged indicating the error. Example 11-40
provides details.

Example 11-40 Throwing a bpelx:assertFailure Fault

<bpelx:postAssert expression="bpws:getVariableData('crOutput', 'payload',
'/tns:rating') > 0" ... />

<bpelx:postAssert expression="custom:validateRating()" ... />

<bpelx:postAssert xmlns:fn='http://www.w3.0rg/2005/xpath-functions'
expression="fn:false()" ... />

Analysis of the assertion expression is performed by the BPEL compiler and errors are
reported if an expression does not evaluate to an XML schema boolean type. For
custom XPath functions, this type of analysis is not performed.

11.14.7 Assertion Conditions in a Standalone Assert Activity

You can also create assertion conditions in a standalone assert activity in BPEL 1.1. The
assertion specifies an XPath expression that, when evaluated to false, causes a BPEL
fault to be thrown from the activity.

The bpelx:assert extension implements assertions in the standalone assert activity:

<bpelx:assert name="Assertl" expression="string" message="string"/>

For information on using the standalone assert activity, see Section 11.14.8, "How to
Create Assertion Conditions."

11.14.8 How to Create Assertion Conditions

You can create assertion conditions in the following activities:

= Ininvoke activities, receive activities, reply activities, and OnMessage branches

Using Fault Handling in a BPEL Process 11-49

Throwing Faults with Assertion Conditions

s In standalone assert activities

To create assertion conditions in invoke activities, receive activities, reply
activities, and OnMessage branches:

1. In the SOA Composite Editor, double-click the version 1.1 BPEL process service
component.

2. In the Component Palette, expand BPEL Constructs.

o

Drag a Receive activity, Invoke activity, Pick activity, or Scope activity into the
designer.

Expand the Receive, Invoke, or onMessage branch of the Pick or Scope activity.
Click the Assertions tab.
Click the Add icon.

N o a &

Select when to execute the condition.

» Pre Assert: If selected, the condition is executed before the invoke or reply
activity send out the outbound message.

» Post Assert: If selected, the condition is executed after an invoke activity,
receive activity, or onMessage branch receives the inbound message.

Based on your selection, the Pre Assert or Post Assert dialog is displayed.

8. Specify values for the assertion condition, as shown in Figure 11-20. For this
example, Post Assert was selected for an assertion condition on a receive activity.

a. Select the Fault QName to be thrown by clicking the Search icon and selecting
an existing fault from the Fault Chooser dialog. You can also provide your
own values for the Namespace URI and Local Part fields of the fault. If you
do not specify anything for the Fault QName, then a
bpelx:assertFailure fault is thrown.

Figure 11-20 Assertion Condition Values

Message: |'assert true Failed'

Expression: |true() | Ef‘l
Fault Qlame

Q,
Namespace URL |http:,l',l'><mlns.oracle.com,l'test,l'nsyncBPELCIient |
Local Park; |fau|t1 |
[reb o JCex=]

9. When complete, click OK to return to the Assertions tab of the activity. The
completed assertion condition is displayed, as shown in Figure 11-21.

11-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Throwing Faults with Assertion Conditions

Figure 11-21 Assertions Tab with Data

Receive

| skip Condition | Timeout | Targets | Sources | Headers |

®

r General r Correlations r Properties

r Annokations

r Assertions

Assertions: ‘*' / ®
Marne Type Expression Fault Mame Message

Fop assertl Post Assert true() fhttpeffxmin... ‘assert brue ...

f@ assertZ Post Assert False() {httpe/fxmin, . ‘assert False, ..

| Help | | Apply || [o]4 || Cancel

10. Click Apply, then OK.

To create an assertion condition in standalone assert activities:
1. In the SOA Composite Editor, double-click the version 1.1 BPEL process service

component.

Expand the Assert activity.

Create an expression.

When complete, click OK.

N o a » o Db

Drag an Assert activity into the designer.

In the Component Palette, expand BPEL Constructs.

To the right of the Expression field, click the XPath Expression Builder icon.

The Assert dialog looks as shown in Figure 11-22.

Using Fault Handling in a BPEL Process 11-51

Throwing Faults with Assertion Conditions

Figure 11-22 Assert Dialog

Assert b4

| General rSkip Condition

Marne: |AssertTrue |

Message: |'g0t asserkion Fallure on brue expression’ |

Expression:
truedibpws: getLinkstatus

| Help | | Apply || Ok || Cancel

8. Click Apply, then OK.

11.14.9 How to Disable Assertions

You can disable assertions in either of two ways:

= By setting the System MBean Browser property DisableAsserts to true in Oracle
Enterprise Manager Fusion Middleware Control Console.

= Bysetting bpel.config.disableAsserts to true in the composite.xml file
of the SOA composite application, as shown in Example 11-41.

Example 11-41 Disable Assertions
<component name="AsyncBPELClient">
<implementation.bpel src="AsyncBPELClient.bpel"/>
<property name="bpel.config.disableAsserts">true</property>
</component>

For more information about setting System MBean Browser properties, see Oracle
Fusion Middleware Administrator’s Guide for Oracle SOA Suite and Oracle BPM Suite.

11.14.10 What Happens When You Create Assertion Conditions

The code segment in the .bpel file defines the specific operation after design
completion.

For Example 11-42, the bpelx:assert condition in the invoke activity, when
evaluated to false (for example, a credit rating of 0 is submitted), returns a Negative
Credit message. If the condition evaluates to true, no fault is thrown from the invoke
activity and the remaining activities in the BPEL process flow are executed normally.

Example 11-42 Assertion Condition in an Invoke Activity

<invoke name="callbackClient" partnerLink="internalwarehouseservice_client"
portType="client:InternalWarehouseServiceCallback" operation="processResponse"
inputVariable="outputVariable">
<bpelx:assert name="negativeCredit"
expression="$crOutput.payload/tns:rating > 0"

11-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Throwing Faults with Assertion Conditions

message="Negative Credit"/>
</invoke>

In Example 11-43, the bpelx:assert condition in the standalone assert activity,
when evaluated to false, returns a got assertion failure on true
expression message. If the condition evaluates to true, no fault is thrown from the
assert activity and the remaining activities in the BPEL process flow are executed
normally.

Example 11-43 Assertion Condition in a Standalone Assert Activity

<bpelx:assert expression="true()bpws:getLinkStatus()" message="'got assertion
failure on true expression'"

Using Fault Handling in a BPEL Process 11-53

Throwing Faults with Assertion Conditions

11-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

12

Transaction and Fault Propagation
Semantics in BPEL Processes

This chapter describes transaction and fault propagation semantics in Oracle BPEL
Process Manager.

This chapter includes the following sections:
s Section 12.1, "Introduction to Transaction Semantics"

» Section 12.2, "Introduction to Execution of One-way Invocations"

12.1 Introduction to Transaction Semantics

Transaction semantics in release 11¢ enable you to use the underlying Java Transaction
API (JTA) infrastructure used in the execution of components. This section describes
transaction semantics for Oracle BPEL Process Manager

12.1.1 Oracle BPEL Process Manager Transaction Semantics

As with previous releases, Oracle BPEL Process Manager by default creates a new
transaction on a request basis. That is, if a transaction exists, it is suspended, and a
new transaction is created. Upon completion of the child (new) transaction, the master
(suspended) transaction resumes.

However, if the request is asynchronous (that is, one-way), the transaction is either:
= Inherited for insertion into the dehydration store (table d1v_message).
» Enlisted transparently into the transaction (if one exists).

There is no message loss. Either the invocation message is inserted into the
dehydration store for processing or the consumer is notified through a fault.

In release 10.1.3.x, there were several properties to set on the consuming process (that
is, on the partner link) and the providing process. This enabled you to chain an
execution into a single global transaction. On the consuming side, you set
transaction=participate on the partner link binding in the bpel . xm1l file. On
the providing side, you set transaction=participate in the
<configurations> section of bpel .xml.

In release 11g, you only must set a new transaction property on the BPEL
component being called (known as the callee process). You add
bpel.config.transaction into a BPEL process service component section in the
composite.xml file (note the required prefix of bpel.config.). This property
configures the transaction behavior for BPEL instances with initiating calls.

Transaction and Fault Propagation Semantics in BPEL Processes 12-1

Introduction to Transaction Semantics

Example 12-1 provides details.

Example 12-1 Setting a New Transaction

<component name="InternalWarehouseService">
<implementation.bpel src="InternalWarehouseService.bpel"/>
<property name="bpel.config.transaction"
many="false" type="xs:string">required | requiresNew</property>
</component>

There are two possible values: required and requiresNew. Table 12-1 describes
these values and summarizes the behavior of the BPEL instance based on the settings.

Table 12-1 bpel.config.transaction Property Behavior

With bpel.config.transaction With bpel.config.transaction

For... Set to required... Set to requiresNew...

Request/response The caller’s transaction is A new transaction is always

(initiating) invocations joined (if there is one) or anew created and an existing
transaction is created (if there transaction (if there is one) is
is not one). suspended.

One-way initiating Invoked messages are A new transaction is always

invocations in which processed using the same created and an existing

bpel.config.oneWayDel thread in the same transaction. transaction (if there is one) is

iveryPolicyis set to suspended.

sync.

Note: The bpel.config.transaction property does notapply
for midprocess receive activities. In those cases, another thread in
another transaction is used to process the message. This is because
correlation is needed and it is always done asynchronously.

For additional information about setting the bpel.config. transaction property,
see Section C.1.1, "How to Define Deployment Descriptor Properties."

The following sections describe the transaction and fault behavior of setting
bpel.config.transaction to either required or requiresNew.

12.1.1.1 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
requiresNew

In Table 122, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel .config. transaction set to requiresNew.
Table 12-2 describes fault propagation and transaction behavior when
bpel.config.transaction is set to this value.

Table 12-2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to

requiresNew

Then The BPELCallee
If The BPELCallee... Transaction... And The BPELCaller...
Replies with a fault (that is, it uses Is saved. Gets the fault and can catch
<reply>). it.
Throws a fault that is not handled Is rolled back. Gets the fault and can catch
(that is, it uses <throw>). it.

12-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Transaction Semantics

Table 12-2 (Cont.) BPELCaller Calls BPEL Callee That Has bpel.config.transaction Set to
requiresNew

Then The BPELCallee
If The BPELCallee... Transaction... And The BPELCaller...

Replies back with a fault (FaultOne), Is rolled back. Gets FaultTwo.
and then throws a fault (FaultTwo).

Throws a bpelx:rollback fault Is rolled back. Gets a remote fault.
(that is, it uses <throw>).

12.1.1.2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
required

In Table 12-3, the BPELCaller process calls the BPELCallee process. The BPELCallee
process has the property bpel.config. transaction set to required. Table 12-3
describes fault propagation and transaction behavior when
bpel.config.transaction is set to this value.

Table 12-3 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to
required

If The BPELCallee... Then The BPELCaller...

Replies with a fault (that is, it uses Gets the fault and can catch it. The BPELCaller owns

<reply>). the transaction. Therefore, if it catches it, the
transaction is committed. If the BPELCaller does not
handle it, a global rollback occurs.

Throws a fault (that is, it uses Gets the fault and can catch it.
<throw>).

Replies back with a fault (FaultOne), Gets FaultTwo.
and then throws a fault (FaultTwo).

Throws (that is, it uses <throw>) a Gets its transaction rolled back; there is no way to
bpelx:rollback fault. catch it. This fault cannot be handled.

As an example, assume you create two synchronous processes (BPELMaster and
BPELChild) that each use the same database adapter reference to insert the same
record (and therefore, causes a permission key (PK) violation). The
xADatasourceName is set for both.

Without bpel . config. transaction set, after the fault occurs, and it is not
handled, BPELChild is rolled back. If BPELMaster has a catch block, its transaction is
committed. Therefore, you end up with the record from BPELMaster in the database.

If you do not catch the fault in BPELMaster as well, you get a second rollback
(however, in two different transactions).

If bpel.config.transaction is set to required for the same test case and no
fault handlers are in place, the entire transaction is rolled back based on BPELMaster's
unhandled fault.

If you add a fault handler in BPELMaster to catch the fault from BPELChild and throw
a rollback fault, the transaction is globally rolled back.

This feature enables you to control transaction boundaries and model end-to-end
transactional flows (if your sources and targets are also transactional).

Transaction and Fault Propagation Semantics in BPEL Processes 12-3

Introduction to Execution of One-way Invocations

12.2 Introduction to Execution of One-way Invocations

A one-way invocation (with a possible callback) is typically exposed in a WSDL as
shown in Example 12-2.

Example 12-2 WSDL Exposure

<wsdl:operation name="process">
<wsdl:input message="client:0OrderProcessorRequestMessage"/>
</wsdl:operation>

This causes the BPEL process service engine to split the execution into two parts:

s For the first part, and always inside the caller transaction, the insertion into the
dlv_message table of the dehydration store occurs (in release 10.1.3.x, it was
inserted into the inv_message table).

n For the second part, the transaction and the new thread executes the work items,
and a new instance is created.

This has several advantages in terms of scalability, because the service engine’s thread
pool (invoker threads) executes when a thread is available. However, the disadvantage
is that there is no guarantee that it executes immediately.

If you require a synchronous-type call based on a one-way operation, then you can use
the onewayDeliveryPolicy property, which is similar to the
deliveryPersistPolicy property of release 10.1.3.x.

Specify bpel.config.oneWayDeliveryPolicy in the BPEL process service
component section of the composite.xml file. If this value is not set in
composite.xml, the value for oneWayDeliveryPolicy in the System MBean
Browser in Oracle Enterprise Manager Fusion Middleware Control Console is used.
The following values are possible.

s async.persist: Messages are persisted in the database hash map.
= sync.cache: Messages are stored in memory.
s sync: Direct invocation occurs on the same thread.

For more information about setting the bpel.config.oneWayDeliveryPolicy
property, see Section C.1.1, "How to Define Deployment Descriptor Properties."

Table 12—4 describes the behavior when the main process calls the subprocess
asynchronously. Table 12—4 is based on the use cases described in Section 12.1.1.1,
"BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew"
and Section 12.1.1.2, "BPELCaller Calls BPELCallee That Has bpel.config.transaction
Set to required.”

Table 12-4 Main Process Calls the Subprocess Asynchronously

If The Subprocess Throws If The Subprocess Throws

If... Any Fault... a bpelx:rollback...

onewayDeliveryPolicy=async The BPELCaller does not The BPELCaller does not

.persist get a response because the get a response because the
message is saved in the message is saved in the

(The BPELCallee process runs in a

separate thread,/ transaction.) delivery service. The delivery service. The

BPELCallee transaction is BPELCallee instance is
rolled back if the fault is not rolled back on the
handled. unhandled fault.

12-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Execution of One-way Invocations

Table 12-4 (Cont.) Main Process Calls the Subprocess Asynchronously

If The Subprocess Throws If The Subprocess Throws
If... Any Fault... a bpelx:rollback...

onewayDeliveryPolicy=sync The BPELCaller receivesa The BPELCaller receives a
FabricInvocationExce FabricInvocationExce

and ption. The BPELCallee ption. The BPELCallee
transaction=requiresNew transaction rolls back if the transaction is rolled back.
fault is not handled.

(The BPELCallee runs in the same
thread, but a different transaction.)

onewayDeliveryPolicy=sync The BPELCallee faulted. The whole transaction is
The BPELCaller receivesa rolled back.
FabricInvocationExce
transaction=required ption. The BPELCaller has

(The BPELCallee runs in the same a chance to handle the fault.
thread and the same transaction.)

and

Transaction and Fault Propagation Semantics in BPEL Processes 12-5

Introduction to Execution of One-way Invocations

12-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

13

Incorporating Java and Java EE Code in a

BPEL Process

This chapter describes how to incorporate sections of Java code into BPEL process
service components in SOA composite applications.

This chapter includes the following sections:

Section 13.1, "Introduction to Java and Java EE Code in BPEL Processes"
Section 13.2, "Incorporating Java and Java EE Code in BPEL Processes"
Section 13.3, "Adding Custom Classes and JAR Files"

Section 13.4, "Using Java Embedding in a BPEL Process in Oracle JDeveloper”
Section 13.5, "Embedding Service Data Objects with bpelx:exec"

Section 13.6, "Sharing a Custom Implementation of a Class with Oracle BPEL
Process Manager"

13.1 Introduction to Java and Java EE Code in BPEL Processes

This chapter explains how to incorporate sections of Java code into a BPEL process.
This is particularly useful when there is Enterprise JavaBeans Java code that can
perform the necessary function, and you want to use the existing code rather than start
over with BPEL.

13.2 Incorporating Java and Java EE Code in BPEL Processes

There are several methods for incorporating Java and Java EE code in BPEL processes:

Wrap as a Simple Object Access Protocol (SOAP) service

Embed Java code snippets into a BPEL process with the bpelx:exec tag
Use an XML facade to simplify DOM manipulation

Use bpelx: exec built-in methods

Use Java code wrapped in a service interface

13.2.1 How to Wrap Java Code as a SOAP Service

You can wrap the Java code as a SOAP service. This method requires that the Java
application have a BPEL-compatible interface. A Java application wrapped as a SOAP
service appears as any other web service, which can be used by many different kinds
of applications. There are also tools available for writing SOAP wrappers.

Incorporating Java and Java EE Code in a BPEL Process 13-1

Incorporating Java and Java EE Code in BPEL Processes

13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service

A Java application wrapped as a SOAP service has the following drawbacks:

s There may be reduced performance due to the nature of converting between Java
and SOAP, and back and forth.

= Since SOAP inherently has no support for transactions, this method loses atomic
transactionality, that is, the ability to perform several operations in an all-or-none
mode (such as debiting one bank account while crediting another, where either
both transactions must be completed, or neither of them).

13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag

You can embed Java code snippets directly into the BPEL process using the Java BPEL
exec extension bpelx:exec. The benefits of this approach are speed and
transactionality. It is recommended that you incorporate only small segments of code.
BPEL is about separation of business logic from implementation. If you remove a lot of
Java code in your process, you lose that separation. Java embedding is recommended
for short utility-like operations, rather than business code. Place the business logic
elsewhere and call it from BPEL.

The server executes any snippet of Java code contained within a bpelx: exec activity,
within its Java Transaction API (JTA) transaction context.

The BPEL tag bpelx: exec converts Java exceptions into BPEL faults and then adds
them into the BPEL process.

The Java snippet can propagate its JTA transaction to session and entity beans that it
calls.

For example, a SessionBeanSample.bpel file uses the bpelx:exec tag shown in
Example 13-1 to embed the invokeSessionBean Java bean:

Example 13—-1 bpelx:exec Extension

<bpelx:exec name="invokeSessionBean" language="java" version="1.5">
<! [CDATA[
try {
Object homeObj = lookup("ejb/session/CreditRating");
Class cls = Class.forName (
"com.otn.samples.sessionbean.CreditRatingServiceHome") ;

CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
PortableRemoteObject.narrow (homeObj, cls) ;
if (ratingHome == null) {
addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
+ ". Ensure that the bean has been"

+ " successfully deployed");
return;
}

CreditRatingService ratingService = ratingHome.create();
// Retrieve ssn from scope
Element ssn =

(Element)getVariableData ("input", "payload", "/ssn");

int rating = ratingService.getRating(ssn.getNodeValue());
addAuditTrailEntry("Rating is: " + rating);

setVariableData ("output", "payload",
"/tns:rating", new Integer(rating));

13-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Incorporating Java and Java EE Code in BPEL Processes

} catch (NamingException ne) {
addAuditTrailEntry (ne);

} catch (ClassNotFoundException cnfe) {
addAuditTrailEntry (cnfe) ;

} catch (CreateException ce) {
addAuditTrailEntry(ce);

} catch (RemoteException re) ({
addAuditTrailEntry (re);

}

11>

</bpelx:exec>

13.2.4 How to Embed Java Code Snippets in a BPEL Process in BPEL 2.0

The examples in this chapter focus primarily on how to embed Java code snippets
with the bpelx: exec extension. For BPEL projects that support version 2.0 of the
BPEL specification, the syntax is slightly different. The bpelx: exec extension and
Java code are wrapped in an <extensionActivity> element. Example 13-2
provides details.

Example 13-2 bpelx:exec Extension in BPEL 2.0
<extensionActivity>

<bpelx:exec language="java">

<! [CDATA[

java code

11>

</bpelx:exec>
</extensionActivity>

When you drag a Java Embedding activity into a BPEL process in Oracle BPEL
Designer, the <extensionActivity> element and bpelx:exec tag are
automatically added.

Example 13-3 shows the import syntax for BPEL 2.0:

Example 13-3 Import Syntax in BPEL 2.0

<import location="class/package name"
importType="http://schemas.oracle.com/bpel/extension/java"/>

Example 13-4 shows a BPEL file with two Java embedding activities for a project that
supports BPEL version 2.0.

Example 13-4 Java Embedding Activities in a BPEL File for Version 2.0

<process name="Test" targetNamespace="http://samples.otn.com/bpel2.0/chl0.9"

<import location="oracle.xml.parser.v2.XMLElement"
importType="http://schemas.oracle.com/bpel/extension/java"/>

<sequence>

<extensionActivity>
<bpelx:exec language="java">
XMLElement elem = (XMLElement) getVariableData ("output", "payload");
elem.setTextContent ("set by java exec");
</bpelx:exec>
</extensionActivity>

Incorporating Java and Java EE Code in a BPEL Process 13-3

Incorporating Java and Java EE Code in BPEL Processes

<extensionActivity>
<bpelx:exec language="java">
<! [CDATA[XMLElement elem = (XMLElement) getVariableData("output",

"payload") ;
String t = elem.getTextContent();
elem.setTextContent (t + ", set by java exec 2");]1]>

</bpelx:exec>
</extensionActivity>

</sequence>
</process>

For information on using this activity, see Section 13.4, "Using Java Embedding in a
BPEL Process in Oracle JDeveloper."

13.2.5 How to Use an XML Facade to Simplify DOM Manipulation

You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process
Manager provides a lightweight Java Architecture for XML Binding (JAXB)-like Java
object model on top of XML (called a facade). An XML facade provides a Java
bean-like front end for an XML document or element that has a schema. Facade classes
can provide easy manipulation of the XML document and element in Java programs.

You add the XML facade by using a createFacade method within the bpelx:exec
statement in the . bpel file. Example 13-5 provides an example:

Example 13-5 Addition of XML facade

<bpelx:exec name= ...
<! [CDATA

Element element = ...
(Element)getVariableData ("input", "payload", "/loanApplication/"):

//Create an XMLFacade for the Loan Application Document

LoanApplication xmlLoanApp=
LoanApplicationFactory.createFacade (element) ;

13.2.6 How to Use bpelx:exec Built-in Methods

Table 13-1 lists a set of bpelx: exec built-in methods that you can use to read and
update scope variables, instance metadata, and audit trails.

Table 13—-1 Built in Methods for bpelx:exec

Method Name Description

Object lookup(String name) JNDI access

long getInstanceId() Unique ID associated with each instance
String setTitle(String title) / Title of this instance

String getTitle()

String setStatus(String status) / Status of this instance
String getStatus()

void Set the composite instance title
setCompositeInstanceTitle(String
title)

13-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Incorporating Java and Java EE Code in BPEL Processes

Table 13-1 (Cont.) Built in Methods for bpelx:exec

Method Name Description

void setIndex(int i, String value) Sixindexes can be used for a search
/ String getIndex(int 1)

void setCreator(String creator) / Who initiated this instance
String getCreator ()

void setCustomKey(String customKey Second primary key

)

/ String getCustomKey ()

void setMetadata(String metadata) Metadata for generating lists
/ String getMetadata ()

String getPreference(String key) Access preference

void addAuditTrailEntry (String Add an entry to the audit trail

message, Object detail)

void addAuditTrailEntry (Throwable t) Access file stored in the suitcase

Object getVariableData(String name) Access and update variables stored in the
throws BPELFault scope

Object getVariableData (String name, Access and update variables
String partOrQuery) throws BPELFault

Object getVariableData(String name, Accessand update variables
String part, String query)

void setVariableData (String name, Set variable data
Object wvalue)

void setVariableData (String name, Set variable data
String part, Object value)

void setVariableData (String name, Set variable data
String part, String query, Object
value)

13.2.7 How to Use Java Code Wrapped in a Service Interface

Not all applications expose a service interface. You may have a scenario in which a
business process must use custom Java code. For this scenario, you can:

Write custom Java code.

Create a service interface in which to embed the code.

Invoke the Java code as a web service over SOAP.

For example, assume you create a BPEL process service component in a SOA
composite application that invokes a service interface through a SOAP reference
binding component. For this example, the service interface used is an Oracle
Application Development Framework (ADF) Business Component.

The high-level instructions for this scenario are as follows.

To use Java code wrapped in a service interface:

1.

Create an Oracle ADF Business Component service in Oracle JDeveloper.
This action generates a WSDL file and XSD file for the service.

Create a SOA application that includes a BPEL process service component. Ensure
that the BPEL process service component is exposed as a composite service. This

Incorporating Java and Java EE Code in a BPEL Process 13-5

Adding Custom Classes and JAR Files

automatically connects the BPEL process to an inbound SOAP service binding
component.

3. Import the Oracle ADF Business Component service WSDL into the SOA
composite application.

4. Create a web service binding to the Oracle ADF Business Component service
interface.

5. Design a BPEL process in which you perform the following tasks:

a. Create a partner link for the Oracle ADF Business Component service
portType.

b. Create an assign activity. For this example, this step copies data (for example, a
static XML fragment) into a variable that is passed to the Oracle ADF Business
Component service.

c. Create an invoke activity and connect to the partner link you created in Step
5a.

6. Connect (wire) the partner link reference to the composite reference binding
component. This reference uses a web service binding to enable the Oracle ADF
Business Component service to be remotely deployed.

7. Deploy the SOA application.

8. Invoke the SOA application from the Test Web Service page in Oracle Enterprise
Manager Fusion Middleware Control Console.

For more information on creating Oracle ADF Business Components, see Oracle Fusion
Middleware Fusion Developer’s Guide for Oracle Application Development Framework.

For more information on invoking a SOA composite application, see Oracle Fusion
Middleware Administrator’s Guide for Oracle SOA Suite and Oracle BPM Suite.

13.3 Adding Custom Classes and JAR Files

You can add custom classes and JAR files to a SOA composite application. A SOA
extension library for adding extension classes and JARs to a SOA composite
application is available in the SORACLE_HOME/soa/modules/oracle.soa.ext_
11.1.1 directory. For Oracle JDeveloper, custom classes and JARs are added to the
application_name/project/sca-inf/1ib directory.

13.3.1 How to Add Custom Classes and JAR Files

If the classes are used in bpelx:exec, you must also add the JARs with the
BpelcClasspath property in the System MBean Browser of Oracle Enterprise Manager
Fusion Middleware Control Console.

To add JARs to BpelcClasspath:

1. From the SOA Infrastructure menu, select SOA Administration > BPEL
Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

3. Click BpelcClasspath.
4. In the Value field, specify the class path.
5. Click Apply.

13-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Using Java Embedding in a BPEL Process in Oracle JDeveloper

6. Click Return.

In addition, ensure that the JARs are loaded by the SOA composite application.

To add custom classes:

1.
2

Copy the classes to the classes directory.

Restart Oracle WebLogic Server.

To add custom JARs:

1.
2.
3.

Copy the JAR files to this directory or its subdirectory.
Run ant.

Restart Oracle WebLogic Server.

13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper

In Oracle JDeveloper, you can add the bpelx: exec activity and copy the code
snippet into a dialog.

Note: For custom classes, you must include any JAR files required
for embedded Java code in the BpelcClasspath property in the System
MBean Browser of Oracle Enterprise Manager Fusion Middleware
Control Console. See Section 13.3.1, "How to Add Custom Classes and
JAR Files" for instructions. The JAR files are then added to the class
path of the BPEL loader. If multiple JAR files are included, they must
be separated by a colon (:) on UNIX and a semicolon (;) on Windows.

13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper

To use Java embedding in a BPEL process in Oracle JDeveloper:

1.

2
3
4.
5

From the Component Palette, expand Oracle Extensions.

Drag the Java Embedding activity into the designer.

Double-click the Java Embedding activity to display the Java Embedding dialog.
In the Name field, enter a name.

In the Code Snippet field, enter (or cut and paste) the Java code. Figure 13-1
provides details.

Incorporating Java and Java EE Code in a BPEL Process 13-7

Embedding Service Data Objects with bpelx:exec

Figure 13-1 bpel:exec Code Example

& Edit Java Embedding _

r General r Skip Condition r Annotations |

Mame: |Java_Embedding1 |

Java Version: | 1.5

Code Snippet: try {

Object homelb] = lookup(“ejb/session/CreditRating™);

Class cls = Class.forName|

"Comw. oth. Sanples. sessionbean. CreditRatingServiceHone™) ;
CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
PortableRenmoteObject.narrow(honelb],cls) ;

if (ratingHome == null) {

addinditTrailEntry("Failed to lookup 'ejb.session.CreditRating'™
+ ". Ensure that the bean has been”

+ " successfully deployed™):

return;

'

CreditRatingService ratingService = ratingHome.create();

/¢ Betriewve ssn from scope
Element ssn =

[Element)getVariableData(" input”, "payload”,”/ssn") ;

int rating = rating3ervice.getRating(ssn.getNodeValue()):
addinditTrailEntry ("Rating is: " + rating):

setVariableData("output”, "payload”,
Titns:rating”, new Integer(rating)):

} catch (NamingException ne) |
addiuditTrailEntry(ne)

} catch (ClassNotFoundException cnfe) |

Help | Apply || OF || Cancel

Note: As an alternative to writing Java code in the Java Embedding
activity, you can place your Java code in a JAR file, put it in the class
path, and call your methods from within the Java Embedding activity.

13.4.2 What You May Need to Know About Using thread.sleep() in a Java Embedding
Activity

If you create and deploy a BPEL process that uses thread.sleep () ina Java
Embedding activity, the executing thread is blocked and the transaction associated
with that thread is prevented from committing. This causes BPEL instances to appear
only after the wait is over, which is the expected behavior.

Instead, use a wait activity, which releases the resource upon entering the activity and

enables the ongoing transaction to commit and the BPEL instance data to hydrate into
the data store.

13.5 Embedding Service Data Objects with bpelx:exec

You can embed service data object (SDO) code in the . bpel file with the bpelx:exec

tag. In the syntax provided in Example 13-6, mytest . apps.SDOHelper is a Java
class that modifies SDOs.

Example 13-6 Embedding SDO Objects with the bpelx:exec tag
</bpelx:exec>

<bpelx:exec name="ModifyInternalSDO" version="1.5" language="java'">
<! [CDATA[try({

Object o = getVariableData("VarSDO") ;
Object out = getVariableData("ExtSDO");

13-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

System.out.println("BPEL:Modify VarSDO... " + o + " ExtSDO: " + out);
mytest.apps.SDOHelper.print(o);
mytest.apps.SDOHelper.print (out);
mytest.apps.SDOHelper.modifySDO(0) ;
System.out.println("BPEL:After Modify VarSDO... " + o + " ExtSDO: " + out);
mytest.apps.SDOHelper.print (o) ;
mytest.apps.SDOHelper.print (out) ;
}catch (Exception e)
{
e.printStackTrace() ;
1>
</bpelx:exec>

Example 13-7 provides an example of the Java classes modifySDO (o) and print (o)
that are embedded in the BPEL file.

Example 13—-7 Java Classes

public static void modifySDO (Object o) {
if (o instanceof commonj.sdo.DataObject)
{

((DataObject)o) .getChangeSummary () .beginLogging () ;
SDOType type = (SDOType) ((DataObject)o).getType();
HelperContext hCtx = type.getHelperContext();

List<DataObject> 1lines =

(List<DataObject>) ((DataObject)o).get("line");
for (DataObject line: lines) {
line.set("eligibilityStatus", "Y");
}

} else {
System.out.println("SDOHelper.modifySDO(): " + o + " is not a
DataObject!");
}
}
public static void print (Object o) {
try{

if (o instanceof commonj.sdo.DataObject)
{
DataObject sdo = (commonj.sdo.DataObject)o;
SDOType type = (SDOType) sdo.getType();
HelperContext hCtx = type.getHelperContext();
System.out.println (hCtx.getXMLHelper () .save(sdo, type.getURI(),
type.getName()));
} else {
System.out.println("SDOHelper.print(): Not a sdo " + 0);
}
}catch (Exception e)
{
e.printStackTrace();

} }

13.6 Sharing a Custom Implementation of a Class with Oracle BPEL
Process Manager

When you implement a custom Connection Manager class with the same name as a
class used by Oracle BPEL Process Manager, you must ensure that the custom class
does not override the class used by Oracle BPEL Process Manager.

Incorporating Java and Java EE Code in a BPEL Process 13-9

Sharing a Custom Implementation of a Class with Oracle BPEL Process Manager

For example, assume the following is occurring;:

You are using embedded Java in a BPEL project.

The Connection Manager custom class is overriding the BPEL Connection
Manager class.

A java.lang.NoClassDefFoundError is occurring at runtime.

13.6.1 How to Configure the BPEL Connection Manager Class to Take Precedence

To configure the BPEL Connection Manager class to take precedence:

1.

2
3
4.
5
6

N

Start Oracle JDeveloper.

Highlight the BPEL project.

From the Edit main menu, select Properties.

Select Libraries and Classpath.

Click Add JAR/Directory.

Navigate to the location of the custom JAR file and click Select.
This adds the custom Connection Manager JAR file to the classpath.
Click OK.

Redeploy the BPEL project and retest.

13-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

14

Using Events and Timeouts in BPEL
Processes

This chapter describes how to use events and timeouts. Because web services can take
a long time to return a response, a BPEL process service component must be able to
time out and continue with the rest of the flow after a period of time.

This chapter includes the following sections:

= Section 14.1, "Introduction to Event and Timeout Concepts"

= Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or
Waiting"

= Section 14.3, "Setting Timeouts for Request-Response Operations in Receive
Activities"

m Section 14.4, "Creating a Wait Activity to Set an Expiration Time"

= Section 14.5, "Specifying Events to Wait for Message Arrival with an OnEvent
Branch in BPEL 2.0"

= Section 14.6, "Setting Timeouts for Synchronous Processes"

14.1 Introduction to Event and Timeout Concepts

This chapter provides an example of how to program a BPEL process service
component to wait one minute for a response from a web service named Star Loan that
provides loan offers. If Star Loan does not respond in one minute, then the BPEL
process service component automatically selects an offer from another web service
named United Loan. In the real world, the time limit is more like 48 hours. However,
for this example, you do not want to wait that long to see if your BPEL process service
component is working properly.

Because asynchronous web services can take a long time to return a response, a BPEL
process service component must be able to time out, or give up waiting, and continue
with the rest of the flow after a certain amount of time.

You can use a pick activity to configure a BPEL flow to either wait a specified amount
of time or to continue performing its duties. To set an expiration period for the time,
you can use the wait activity.

Using Events and Timeouts in BPEL Processes 14-1

Creating a Pick Activity to Select Between Continuing a Process or Waiting

14.2 Creating a Pick Activity to Select Between Continuing a Process or

Waiting

The pick activity provides two branches, each one with a condition. The branch that
has its condition satisfied first is executed. In the following example, one branch’s
condition is to receive a loan offer, and the other branch’s condition is to wait a
specified amount of time.

Figure 14-1 provides an overview. The following activities take place (in order of
priority):

1.

3.

An invoke activity initiates a service, in this case, a request for a loan offer from
Star Loan.

The pick activity begins next. It has the following conditions:

onMessage

This condition has code for receiving a reply in the form of a loan offer from
the Star Loan web service. The onMessage code matches the code for receiving
a response from the Star Loan web service before a timeout was added.

onAlarm

This condition has code for a timeout of one minute. This time is defined as
PT1M, which means to wait one minute before timing out. In this timeout
setting:

— S stands for seconds
— M for one minute

— Hfor hour

- Dforday

- Y for year

In the unlikely event that you want a time limit of 1 year, 3 days, and 15
seconds, you enter it as PT1Y3D158S. The remainder of the code sets the loan
variables selected and approved to false, sets the annual percentage rate
(APR) at 0. 0, and copies this information into the 1oanOf fer variable.

The time duration format is specified by the BPEL standard. For more detailed
information on the time duration format, see the duration section of the most
current XML Schema Part 2: Datatypes document at:

http://www.w3.org/TR/xmlschema-2/#duration

The pick activity condition that completes first is the one that the BPEL process
service component executes. The other branch then is not executed.

14-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Pick Activity to Select Between Continuing a Process or Waiting

Figure 14-1 Overview of the Pick Activity

BPEL
Process l
Initiate
service
<invoke>
<pick> l WSDL
| |
Wait for Time out
callback in1M
<onMessage> <onAlarm> >
* * Star
P AP P AN Loan
| Logic ! | Logic ' <+
| Post : I _Post :
I Callback I_Timeout ,
v

An onMessage branch is similar to a receive activity in that it receives operations.
However, you can define a pick activity with multiple onMessage branches that can
wait for similar partner links and port types, but have different operations. Therefore,
separate threads and parallel processes can be invoked for each operation. This differs
from the receive activity in which there is only one operation. Another difference is
that you can create a new instance of a business process with a receive activity (by
selecting the Create Instance checkbox), but you cannot do this with a pick activity.

Note: You can also create onMessage branches in BPEL 1.1 scope
activities and onAlarm branches in BPEL 1.1 and 2.0 scope activities.
Expand the Scope activity in Oracle JDeveloper, and browse the icons
on the left side to find the branch you want to add.

14.2.1 How To Create a Pick Activity

To create a pick activity:
1. In the SOA Composite Editor, double-click the BPEL process service component.

2. In the Component Palette, expand BPEL Constructs.
3. Drag a Pick activity into the designer.

The Pick activity includes an onMessage branch. Figure 14-2 provides an
example.

Using Events and Timeouts in BPEL Processes 14-3

Creating a Pick Activity to Select Between Continuing a Process or Waiting

Figure 14-2 Pick Activity

©

v

OnMessage

4. Double-click the onMessage branch. Figure 14-3 provides an example.

Figure 14-3 onMessage Branch

OnMessage b4

| Annotations r Assertions r Skip Condition r Headers |
r General r Correlations r Propetties |
Conversation ID: | | ity
Interaction Type: |-¢.;§ Partret Link'|

Partrer Link: |bpelpr0c9553_client | Ck
Ciperation: | Ty process o |
Yariable: |OnMessagegrocess_lnput\-'ariable | + Qs

| Help | | Apply || Ok || Cancel |

5. Editits attributes to receive the response from the loan service.
6. Select the Pick activity.

Icons for adding additional onMessage branches and an OnAlarm branch are
displayed.

7. Click Add onAlarm, as shown in Figure 14-4.

14-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating a Pick Activity to Select Between Continuing a Process or Waiting

Figure 14-4 onAlarm Branch Creation

add Cnalarm

OnMessage

An OnAlarm branch is displayed.

8. Double-click the OnAlarm branch of the pick activity and set its time limit to 1
minute. Figure 14-5 provides an example.

Figure 14-5 OnAlarm Branch

OnAlarm b4

| General r.ﬂ.nnotations rSkip Condition |
() Far () Until
-:E- Time: |E| ¥rs El Mons El Days El Hrs Mins El Secs |:~|

fx

| Help | Apply || [o]4 || Cancel

9. Click OK.

14.2.2 What Happens When You Create a Pick Activity

The code segment in Example 14-1 defines the pick activity for this operation after
design completion:

Example 14-1 Pick Activity

<pick>
<!-- receive the result of the remote process -->
<onMessage partnerLink="LoanService"
portType="services:LoanServiceCallback"
operation="onResult" variable="loanOffer">

<assign>

Using Events and Timeouts in BPEL Processes 14-5

Creating a Pick Activity to Select Between Continuing a Process or Waiting

<copy>
<from variable="loanOffer" part="payload"/>
<to variable="output" part="payload"/>
</copy>
</assign>

</onMessage>
<!-- wait for one minute, then timesout -->
<onAlarm for="PTIM">
<assign>
<copy>
<from>
<loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
<providerName>Expired</providerName>
<selected type="boolean">false</selected>
<approved type="boolean">false</approved>
<APR type="double">0.0</APR>
</loanOffer>
</from>
<to variable="loanOffer" part="payload"/>
</copy>
</assign>
</onAlarm>
</pick>

14.2.3 What You May Need to Know About Simultaneous onMessage Branches in BPEL
2.0

Oracle BPEL Process Manager’s implementation of BPEL 2.0 does not support
simultaneous onMessage branches of a pick activity.

When a process has a pick activity with two onMessage branches as its starting
activity (both with initiate set to join in their correlation definitions) and an
invoking process that posts the invocations one after the other, it is assumed that both
invocations reach the same instance of the invoked process. However, in Oracle BPEL
Process Manager’s implementation of BPEL 2.0, two instances of the invoked process
are created for each invocation.

This is the expected behavior, but it differs from what is described in the BPEL 2.0
specification.

For example, assume you have synchronous BPEL process A, which has a flow activity
with two parallel branches:

= Branch one invokes operation processMessagel on asynchronous BPEL process B.

= Branch two invokes operation processMessage2 on asynchronous BPEL process B.
The invocation occurs after a five second wait. BPEL process A then waits on a
callback from BPEL process B and returns the output back to the client.

The idea is to create one instance of the invoked process and ensure that the second
invocation happens after the first instance is already active and running.

BPEL process B has a pick activity with createInstance set to yes. The pick
activity has two onMessage branches within it:

= One branch is for the processMessagel operation. For this operation, it goes to
sleep for about 10 seconds.

» The other branch is for the processMessage2 operation. For this operation, it waits
for five seconds.

14-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Setting Timeouts for Request-Response Operations in Receive Activities

Both operations have the same input message type and correlation is defined with
initiatesetto join.

The expectation is that the processMessagel invocation is invoked immediately and
the BPEL process B instance is created, which should sleep for ten seconds. After five
seconds, the invoking process should then post the processMessage2 invocation to
BPEL process B and this invocation should go to the already existing instance instead
of creating a new one (since the correlation ID is the same and initiate is set to
join).

However, for each invocation, a new instance of BPEL process B is created and the
result cannot be predicted.

» If the processMessage2 operation branch finishes first, then the subsequent assign
operation fails because the input variable from processMessagel is assumed to be
null (for that instance).

» If the processMessagel operation branch finishes first, then the process returns
callback data with only partial information (does not include the input from
processMessage2).

In Oracle BPEL Process Manager’s implementation, either one of the two operations
(processMessagel or processMessage2) creates a new instance. This is implemented so
that database queries do not need to be made to see if there are already instances
created.

The workaround is to create two processes that are initiated by the two different
operations.

14.3 Setting Timeouts for Request-Response Operations in Receive

Activities

You can provide a timeout setting for request-response operations in receive activities.
This provides an alternative to using the onMessage and onAlarm branches of a pick
activity to specify a timeout duration for partner callbacks.

The following sections provide an overview of this functionality:

= Timeout settings relative from activity invocation

= Timeout settings as an absolute date time

= Timeout settings computed dynamically with an XPath expression

= bpelx:timeout fault thrown during an activity timeout

= Events added to the BPEL instance audit trail during an activity timeout

= Recoverable timeout activities during a server restart

Note: The timeout setting for request-response operations is not
available in BPEL projects that support BPEL version 2.0.

14.3.1 Timeout Settings Relative from When the Activity is Invoked

You can specify a timeout setting relative from when the activity is invoked. This
setting is specified as a relative duration using the syntax shown in Example 14-2.

Example 14-2 Timeout Settings Relative from When the Activity is Invoked

<receive \ bpelx:for="duration-expr">

Using Events and Timeouts in BPEL Processes 14-7

Setting Timeouts for Request-Response Operations in Receive Activities

standard-elements
</receive>

This type uses the bpelx: for attribute to specify a static value or an XPath
expression that must evaluate to an XML schema type duration. Only one of the
bpelx:for or bpelx:until attributes is permitted for an activity.

If the XPath expression evaluates to a negative duration, the timeout is ignored and an
event is logged to the instance audit trail indicating that the duration value is invalid.

Once a valid duration value is retrieved, the expiration date for the activity is set to the
current node time (or cluster time after this is available), plus the duration value. For
example, the duration value bpelx: for=""PT5M' " specifies that the activity expects
an inbound message to arrive no later than five minutes after the activity has started
execution.

Note: The timeout setting attribute does not apply to the onMessage
branch of a pick activity because the same functionality currently
exists with the onMessage and onAlarm branches of that activity.

Timeout durations can only be specified on the following:
= Midprocess receive activities
= Receive activities that do not specify createInstance="true"

A receive activity can only time out after it has been instantiated, which is not the case
with entry receive activities.

14.3.2 Timeout Settings as an Absolute Date Time

You can specify a timeout setting as an absolute deadline for request-response receive
activities. This type uses the syntax shown in Example 14-3.

Example 14-3 Timeout Settings as an Absolute Date Time

<receive bpelx:until="deadline-expr">
standard-elements
</receive>

The expected expiration time for the bpelx:until attribute must be at least two
seconds ahead of the current time. Otherwise, the timer scheduling is ignored and
skipped, just as if the timer was never specified.

The bpelx:until attribute specifies a static value or an XPath expression that must
evaluate to an XML schema type datetime or date. Only one of the bpelx: for or
bpelx:until attributes is permitted for an activity.

XPath version 1.0 is not XML schema-aware. Therefore, none of the built-in functions
of XPath version 1.0 can create or manipulate dateTime or date values. However, it
is possible to perform one of the following;:

= Write a constant (literal) that conforms to XML schema definitions and use that as
a deadline value

= Extract a field from a variable (part) of one of these types and use that as a
deadline value

XPath version 1.0 treats that literal as a string literal, but the result can be interpreted
as a lexical representation of a dateTime or date value.

14-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Setting Timeouts for Request-Response Operations in Receive Activities

Once a valid datetime or date value has been retrieved, the expiration date for the
activity is set to the specified date. For example, the datetime value
bpelx:until=""'2009-12-24T18:00+01:00" " specifies that the activity expects
an inbound message to arrive no later than Dec 24, 2009 6:00 pm UTC+1 after the
activity has started execution.

Note: The timeout setting attribute does not apply to the onMessage
branch of a pick activity because the same functionality currently
exists with the onMessage and onAlarm branches of the pick activity.

Timeout dates can only be specified on the following activities:
= Midprocess receives
= Receive activities that do not specify createInstance="true"

A receive activity can only time out after it has been instantiated, which is not the case
with entry receive activities.

14.3.3 Timeout Settings Computed Dynamically with an XPath Expression

The timeout setting for request-response receive and onMessage branches of pick
activities can be set using an XPath expression instead of entering a static duration or
datetime value. In this case, the value of the expression must return either:

= A string that can be interpreted as a static XML duration or datetime value
= An XML schema duration or datetime type

Example 14—4 shows the syntax for using XPath expressions.

Example 14-4 Timeout Settings Computed Dynamically with an XPath Expression

<bpelx:for="bpws:getVariableData('input', 'payload',
'/tns:waitValue/tns:for')"/>

<bpelx:until="bpws:getVariableData ('input', 'payload',
'/tns:waitValue/tns:until')"/>

If the returned expression value cannot be interpreted as an XML schema duration or
datetime type, an event is logged in the instance audit trail indicating that an invalid
duration and datetime value was specified, and no activity expiration time can be
set.

14.3.4 bpelx:timeout Fault Thrown During an Activity Timeout

If a valid XML schema duration or datetime value is returned from the bpelx: for
or bpelx:until attribute, a bpelx: timeout faultis thrown from the timed-out
activity. This fault can be caught by any catch or catchAll block and handled like a
regular BPEL fault. The message of the fault is the name of the activity. In addition, an
event is logged to the instance audit trail indicating that the activity has timed out
because the expected callback message failed to be received before the timeout
duration.

If the activity receives a callback from the partner before the timeout period, no fault is
thrown. If a callback is received while the activity is being timed out, the callback
message is not delivered to the activity and it is marked as canceled in the delivery
message table. If a timeout action is attempted at the same time that a callback

Using Events and Timeouts in BPEL Processes 14-9

Setting Timeouts for Request-Response Operations in Receive Activities

message is handled, the timeout action is ignored. As of 11¢ Release 1, instances are
locked optimistically (as opposed to pessimistic locking in Release 10g). Therefore, the
second action in line is still performed. However, the instance version check fails upon
dehydration of the instance.

The bpelx: timeout fault can be thrown from a BPEL component if the component
WSDL declares the fault on the operation. If the fault is not declared on the operation,
the fault is converted into a FabricInvocationException, which is a runtime
fault. This fault can be caught by any caller components (including BPEL components),
but the fault type is no longer bpelx: timeout (however, the fault message string still
indicates that the fault was originally a timeout fault).

14.3.5 Event Added to the BPEL Instance Audit Trail During an Activity Timeout

Once a bpelx:timeout fault is thrown from a timed-out activity, an event is logged
to the instance audit trail indicating that the activity has timed out, as opposed to
having received the expected callback message from its partner.

14.3.6 Recoverable Timeout Activities During a Server Restart (Refresh Expiration

Alarm Table)

Activities that specify a valid timeout duration or datetime are likely implemented
in a similar manner to wait and onAlarm activities with an expiration date for the
underlying work item object. If the node that scheduled these activities with the
scheduler goes down (either through graceful shutdown or abrupt termination), all
these activities must be rescheduled with the scheduler upon server restart.

It is not possible to have a single node (the master node) in the cluster be responsible
for rescheduling these activities upon node shutdown.

14.3.7 How to Set Timeouts for Request-Response Operations in Receive Activities

To set timeouts for request-response operations in receive activities:

1. In the SOA Composite Editor, double-click the version 1.1 BPEL process service
component.

In the Component Palette, expand BPEL Constructs.
Drag a Receive activity into the designer.

Expand the activity.

a0 Dbn

Click the Timeout tab.

This tab enables you to set a timeout for request-response operations, as shown in
Figure 14-6.

14-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Setting Timeouts for Request-Response Operations in Receive Activities

Figure 14-6 Timeout Tab

Receive b4

| Skip Condition rTimeout rTargets rSources rHeaders |
r General r Correlations r Properties r Annotations r Assertions |

(%) Far () Uil
-:E- Timme: |[|'1"rs El Mons El Days El Hrs El Mins El Secs |:~|
@ |

B3

| Help | | Apply || OF || Cancel |

6. Specify appropriate values, and click Apply. For example:

» To specify a timeout setting relative from when the activity is invoked, click
the For button and enter a value or click the Expression button and specify an
XPath expression.

» To specify a timeout setting as an absolute deadline for a request-response
operation, click the Until button and enter a value or click the Expression
button and specify an XPath expression.

7. Click Apply, then OK.

14.3.8 What Happens When You Set Timeouts for Request-Response Operations in
Receive Activities

The code segment in the .bpel file defines the specific operation after design
completion.

For example, if you specified that the activity expects an inbound message to arrive no
later than five minutes after the activity has started execution, the syntax displays as
shown in Example 14-5.

Example 14-5 Static Duration
bpelx:for=""'PTHM'" />

For example, if you specified that the activity expects an inbound message to arrive no
later than January 24, 2010 11:00 AM UTC+1 after the activity has started execution,
the syntax displays as shown in Example 14-6.

Example 14-6 datetime Value
bpelx:until="'2010-01-24T11:00:00-08:00"'"/>

Using Events and Timeouts in BPEL Processes 14-11

Creating a Wait Activity to Set an Expiration Time

For example, if you specified an XPath expression to obtain a value for a timeout
relative from when the activity is invoked, syntax similar to that shown in
Example 14-7 can display.

Example 14-7 XPath Expression

bpelx:for="bpws:getVariableData ('inputVariable', 'payload', '/tns:waitValue/tns:for"
) " />

14.4 Creating a Wait Activity to Set an Expiration Time

The wait activity allows a process to wait for a given time period or until a time limit
has been reached. Exactly one of the expiration criteria must be specified. A typical use
of this activity is to invoke an operation at a certain time. You typically enter an
expression that is dependent on the state of a process.

When specifying a time period for waiting, note the following:

= Wait times cannot be guaranteed if they are scheduled with other events that
require processing. Due to this additional processing, the actual wait time can be
greater than the wait time specified in the BPEL process.

= Wait times of less than two seconds are ignored by the server. Wait times above
two seconds, but less than one minute, may not get executed in the exact, specified
time. However, wait times in minutes do execute in the specified time.

s The default value of 2 seconds for wait times is specified with the MinBPELWait
property in the System MBean Browser of Oracle Enterprise Manager Fusion
Middleware Control Console. You can set this property to any value and the wait
delay is bypassed for any waits less than MinBPELWait.

Note: Quartz version 1.6 is supported for scheduling expiration
events on wait activities.

14.4.1 How To Specify the Minimum Wait Time

You can specify the minimum time duration for a BPEL process to perform a wait that
involves a dehydration. If the wait duration is less than or equal to the value, BPEL
continues executing activities in the same thread and transaction.

1. From the SOA Infrastructure menu, select SOA Administration > BPEL
Properties.

2. At the bottom of the BPEL Service Engine Properties page, click More BPEL
Configuration Properties.

3. Click MinBPELWait.

4. In the Value field, specify a value in seconds.
5. Click Apply.

6. Click Return.

14.4.2 How to Create a Wait Activity

To create a wait activity:
1. In the Component Palette, expand BPEL Constructs.

14-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

Drag a Wait activity into the designer.
Double-click the Wait activity to display the Wait dialog.

In the For section, enter the amount of time for which to wait.

o ©Dbd

In the Until section, select the deadline for which to wait, as shown in Figure 14-7.

Figure 14-7 Wait Dialog

Wait b4

| General rnnnotations rSkip Condition rTargets rSDurces |
(%) Far () Unil
-:E- Time: “El Yrs El Mons El Days El Hrs El Mins Secs |:~|

=
|
(2 ¢

| Help | | Apply || ok || Cancel

14.4.3 What Happens When You Create a Wait Activity

Exactly one of the expiration criteria must be specified, as shown in Example 14-8.

Example 14-8 Wait Activity

<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
standard-elements
</wait>

14.5 Specifying Events to Wait for Message Arrival with an OnEvent
Branch in BPEL 2.0

You can create an onEvent branch in a scope activity that causes a specified event to
wait for a message to arrive. For example, assume you have a credit request process
that is initiated by a customer’s credit request message. The request may be
completely processed without the need for further interaction, and the results
submitted to the customer. In some cases, however, the customer may want to inquire
about the status of the credit request, modify the request content, or cancel the request
entirely while it is being processed. You cannot expect these interactions to occur only
at specific points in the business order processing. An event handler such as an
onEvent branch enables the business process to accept requests (such as status request,
modification request, or cancellation request) to arrive in parallel to the primary
business logic flow.

The onEvent event handlers are associated with an enclosed scope. The onEvent event
handlers are enabled when their scope is initialized and disabled when their scope

Using Events and Timeouts in BPEL Processes 14-13

Specifying Events to Wait for Message Arrival with an OnEvent Branch in BPEL 2.0

ends. When enabled, any number of events can occur. They are processed in parallel to
the scope’s primary activity and in parallel to each other. Message events also
represent services operations exposed by a process and modeled as onEvent elements.
Event handlers cannot create new process instances. Therefore, message events are
always received by a process instance that is already active.

14.5.1 How to Create an onEvent Branch in a Scope Activity

To create an onEvent branch in a scope activity:
1. In the expanded Scope activity, click Add OnEvent, as shown in Figure 14-8.

Figure 14-8 Add OnEvent Icon

%

&dd CnEvent

This creates an OnEvent branch and an enclosed scope activity.
2. Double-click the OnEvent branch.

The OnEvent dialog is displayed, as shown in Figure 14-9.
Figure 14-9 OnEvent Dialog

OnEvent b4

| General rCDrrelations rDocumentation rProperties

Partmer Link: | | C%

Port Type: | b |

Operation: | b |

() Yariable () From Parts

Variable: | |

Data Type

() Message Type

(%) Element | Ck

| Help | | Apply || [o]4 || Cancel |

3. In the Partner Link field, click the Search icon to select the partner link that
contains the endpoint reference on which the message is expected to arrive.

The Port Type and Operation fields define the port type and operation invoked by
the partner in order to cause the event.

14-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Setting Timeouts for Synchronous Processes

4. Specify a method for receiving the message from the partner through use of a
variable or From Parts elements.

5. Click Apply, then click OK.
6. Continue the design of your BPEL process.

14.5.2 What Happens When You Create an OnEvent Branch

Example 14-9 provides an overview of onEvent branches in the . bpel file after
design completion. The onEvent branches inquire about the status of the credit
request, modify the request content, or cancel the request entirely while it is being
processed

Example 14-9 onEvent Branch

<process name="creditRequestProcess" . . .>
<eventHandlers>
<onEvent partnerLink="requestCreditScore"
operation="queryCreditRequestStatus" ...>
<scope name="scopeStatus">...</scope>
</onEvent>
<onEvent partnerLink="requestCreditScore"
operation="modifyCreditRequest" ...>
<scope name="scopeRequest">...</scope>
</onEvent>
<onEvent partnerLink="requestCreditScore"
operation="cancelCreditRequest" ...>
<scope name="scopeCancel">...</scope>
</onEvent>
</eventHandlers>
</process>

14.6 Setting Timeouts for Synchronous Processes

For synchronous processes that connect to a remote database, you must increase the
SyncMaxWaitTime timeout property in the System MBean Browser of Oracle
Enterprise Manager Fusion Middleware Control Console.

For information on setting this property, see Section 7.3, "Specifying Timeout Values."

Using Events and Timeouts in BPEL Processes 14-15

Setting Timeouts for Synchronous Processes

14-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

15

Coordinating Master and Detail Processes

This chapter describes how to coordinate master and detail processes in a BPEL
process. This coordination enables you to specify the tasks performed by a master
BPEL process and its related detail BPEL processes. This is sometimes referred to as a
parent and child relationship.

This chapter includes the following sections:
s Section 15.1, "Introduction to Master and Detail Process Coordinations"

» Section 15.2, "Defining Master and Detail Process Coordination in Oracle
JDeveloper"

15.1 Introduction to Master and Detail Process Coordinations

Master and detail coordinations consist of a one-to-many relationship between a single
master process and multiple detail processes.

For example, assume a business process imports sales orders into an application. Each
sales order consists of a header (customer information, ship-to address, and so on) and
multiple lines (item name, item number, item quantity, price, and so on).

The following tasks are performed to execute the order:
= Validate the header. If the header is invalid, processing stops.

= Validate each line. If any lines are invalid, they are marked as invalid and
processing stops.

s Perform inventory checks for each item. If an item is not available, a work order is
created to assemble it.

= Stage items at the shipping dock after items for each line are available.
= Ship the order to the customer.

To perform these tasks, create a master process to check and validate each header and
multiple BPEL processes to check and validate each line item.

Potential coordination points are as follows:

= The master process must signal the detail processes that header validation is
successful and to continue processing.

s Each detail process must signal the master process after line item validation is
complete.

s Each detail process must signal the master process after the line item is available in
inventory.

Coordinating Master and Detail Processes 15-1

Introduction to Master and Detail Process Coordinations

= After all line items are available, the master must signal each detail process to
move its line item to the shipping dock (the dock may become too crowded if
items are simply moved as soon as they are available).

= After all lines have been moved, the master process must execute logic to ship the
fulfilled order to the customer.

Figure 15-1 provides an overview of the header and line item validation coordination
points between one master process and two detail processes.

Figure 15-1 Master and Detail Coordination Overview (One BPEL Process to Two Detail Processes)

Sales Order 1 Sales Order 2
Header) Master BPEL) Header
- Customer Information | < Validates Header Process [Validates Header P | - Customer Information
- Ship-To Address - Ship-To Address
Completes Header Line Items
Validation and <4
‘) - ltem Names
Signals Detail . ltem Number
- Process to Coml Pri
Line ltems Continue ompletes - Price
LineValidation - Quantity
- Iltem Names and Signals
- ltem Number Master
- Price Process 7'\
- Quantity Completes Completes
Detail BPEL Header Line \(ahdauon
Process 1 Validation and and Slgnals
Signals Detail Master
Process to Process
Continue
Detail BPEL
Process 2
Validates Line Items

The following BPEL process activities coordinate actions between the master and
detail processes:

= signal: notifies the other processes (master or detail) to continue processing

= receive signal: waits until it receives the proper notification signal from the other
process (master or detail) before continuing its processing

Both activities are coordinated with label attributes defined in the BPEL process files.
Labels are declared per master process definition.

Figure 15-2 provides an overview of the BPEL process flow coordination.

15-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Master and Detail Process Coordinations

Figure 15-2 Master and Detail Syntax Overview (One BPEL Process to One Detail Process)

Master Process Detail Process

Signal Activity

to="details"

label="startDetailProcess"

v

Invoke Activity

partnerlink="DetailProcess" label="StartDetailProcess"

bbélx:invokeAsDetaiI="true"

Receive Signal Activity

e | from="master"

v

from="details"

Receive Signal Activity Signal Activity
label="CompleteDetailProcess" — label="CompleteDetailProcess"

to="master"

As shown in Figure 15-2, each master and detail process includes a signal and receive
signal activity. Table 15-1 describes activity responsibilities based on the type of
process in which they are defined.

Table 15-1 Master and Detail Process Coordination Responsibilities
If A... Contains A... Then...

Master process Signal activity The master process signals all of its associated
detail processes at runtime.

Detail process Receive signal activity =~ The detail process waits until it receives the signal
executed by its master process.

Detail process Signal activity The detail process signals its associated master
process at runtime that processing is complete.

Master process ~ Receive signal activity =~ The master process waits until it receives the
signal executed by all of its detail processes.

If the signal activity executes before the receive signal activity, the state set by the
signal activity is persisted and still effective for a later receive signal activity to read.

15.1.1 BPEL File Definition for the Master Process

The BPEL file for the master process defines coordination with the detail processes.
The BPEL file shows that the master process interacts with the partner links of several
detail processes. Example 15-1 provides an example.

Example 15-1 BPEL File Definition for the Master Process

<process name="MasterProcess"

<partnerLinks>
<partnerLink name="client"
partnerLinkType="tns:MasterProcess"

Coordinating Master and Detail Processes 15-3

Introduction to Master and Detail Process Coordinations

myRole="MasterProcessProvider"
partnerRole="MasterProcessRequester" />
<partnerLink name="DetailProcess"
partnerLinkType="dp:DetailProcess"
myRole="DetailProcessRequester"
partnerRole="DetailProcessProvider"/>
<partnerLink name="DetailProcessl"
partnerLinkType="dpl :DetailProcessl"
myRole="DetailProcesslRequester"
partnerRole="DetailProcesslProvider"/>
<partnerLink name="DetailProcess2"
partnerLinkType="dp2:DetailProcess2"
myRole="DetailProcess2Requester"
partnerRole="DetailProcess2Provider" />
</partnerLinks>

A signal activity shows the label value and the detail process coordinated with this
master process. The label value (startDetailProcess) matches with the label value
in the receive signal activity of all detail processes. This ensures that the signal is
delivered to the correct process. There is one signal process per receive signal process.
The master process signals all detail processes at runtime. This syntax shows a signal
activity in a BPEL process that supports BPEL version 1.1.

<bpelx:signal name="notifyDetailProcess" label="startDetailProcess" to="details"/>

Note: In BPEL 2.0, the signal activity syntax is slightly different. The
signal activity is wrapped in an extensionActivity element.

<extensionActivity>
<bpelx:signal name="notifyDetailProcess"
label="startDetailProcess" to="details"/>
</extensionActivity>

Assign, invoke, and receive activities describe the interaction between the master and
detail processes. This example shows interaction between the master process and one
of the detail processes (DetailProcess). Similar interaction is defined in this BPEL
file for all detail processes.

In the invoke activity, ensure that the Invoke As Detail checkbox is selected.
Figure 15-3 provides details.

Figure 15-3 Invoke As Detail Checkbox

Conversation ID: | | G"!

Detail Label: | |
Invoke as Detail

This selection creates the partner process instance (DetailProcess) as a detail
instance. You must select this checkbox in the invoke activity of the master process for
each detail process with which to interact. Example 15-2 provides an example of the
BPEL file contents after you select the Invoke As Detail checkbox.

Example 15-2 bpelx:invokeAsDetail Attribute

<assign>
<copy>
<from variable="input" part="payload" query="/tns:processInfo/tns:value"/>
<to variable="detail_input" part="payload" query="/dp:input/dp:number"/>

15-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Introduction to Master and Detail Process Coordinations

</copy>
</assign

<invoke name="receiveInput" partnerLink="DetailProcess"
portType="dp:DetailProcess"
operation="initiate"
inputVariable="detail_input"
bpelx:invokeAsDetail="true"/>

<!-- receive the result of the remote process -->

<receive name="receive_DetailProcess" partnerLink="DetailProcess"
portType="dp:DetailProcessCallback"
operation="onResult" variable="detail_output"/>

The master BPEL process includes a receive signal activity. This activity indicates that
the master process waits until it receives a signal from all of its detail processes. The
label value (detailProcessComplete) matches with the label value in the signal
activity of each detail process. This ensures that the signal is delivered to the correct
process. Example 15-3 provides an example. This syntax shows a receive signal
activity in a BPEL process that supports BPEL version 1.1.

Example 15-3 Receive Signal Activity

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
label="detailProcessComplete"
from="details"/>

Note: In BPEL 2.0, the receive signal activity syntax is slightly
different. The receive signal activity is wrapped in an
extensionActivity element.

<extensionActivity>
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
label="detailProcessComplete" from="details"/>
</extensionActivity>

15.1.1.1 Correlating a Master Process with Multiple Detail Processes

For environments in which you have one master and multiple detail processes, use the
bpelx:detailLabel attribute for signal correlation. Example 15-4 shows how to
use this attribute.

The first invoke activity invokes the DetailsProcess detail process and associates it
with a label of detailProcessCompleteO.

Example 15-4 First Invoke Activity

<invoke name="invokeDetailProcess" partnerLink="DetailProcess"
portType="dp:DetailProcess"
operation="initiate"
inputVariable="detail_input"
bpelx:detaillabel="detailProcessCompletel"
bpelx:invokeAsDetail="true"/>

The second invoke activity invokes the DetailsProcessl detail process and
associates it with a label of detailProcessCompletel. Example 15-5 provides an
example.

Coordinating Master and Detail Processes 15-5

Introduction to Master and Detail Process Coordinations

Example 15-5 Second Invoke Activity

<invoke name="invokeDetailProcessl" partnerLink="DetailProcessl"
portType="dpl:DetailProcessl"
operation="initiate"
inputVariable="detail_inputl"
bpelx:detailLabel="detailProcessCompletel-2"
bpelx:invokeAsDetail="true"/>

The third invoke activity invokes the DetailsProcess2 detail process again through
a different port and with a different input variable. It associates the
DetailsProcess2 detail process with a label of detailProcessCompletel-2, as
shown in Example 15-6.

Example 15-6 Third Invoke Activity

<invoke name="invokeDetailProcess2" partnerLink="DetailProcess2"
portType="dp2:DetailProcess2"
operation="initiate"
inputVariable="detail_input2"
bpelx:detailLabel="detailProcessCompletel-2"
bpelx:invokeAsDetail="true" />

The receive signal activity of the master process shown in Example 15-7 waits for a
return signal from detail process DetailProcess0.

Example 15-7 Receive Signal Activity
<!-- This is a receiveSignal waiting for 1 child to signal back -->

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0"
label="detailProcessComplete0" from="details"/>

The second receive signal activity of the master process shown in Example 15-8 also
waits for a return signal from DetailProcessl and DetailProcess2.

Example 15-8 Second Receive Signal Activity

<!-- This is a receiveSignal waiting for 2 child (detail) processes to signal back

-—=>

<bpelx:receiveSignal name="waitForNotifyFromDetailProcessl-2"
label="detailProcessCompletel-2" from="details"/>

Note: If there is only one receive signal activity in the BPEL process,
do not specify the bpelx:detaillLabel attribute in the invoke
activity. In these situations, a default bpelx:detailLabel attribute
is assumed and does not need to be specified.

15.1.2 BPEL File Definition for Detail Processes

The BPEL process file of each detail process defines coordination with the master
process.

A receive signal activity indicates that the detail process shown in Example 15-9 waits
until it receives a signal executed by its master process. The label value
(startDetailProcess) matches with the label value in the signal activity of the
master process.

15-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Defining Master and Detail Process Coordination in Oracle JDeveloper

Example 15-9 startDetailProcess Label Value

<bpelx:receiveSignal name="waitForNotifyFromMasterProcess"
label="startDetailProcess" from="master"/>

A signal activity indicates that the detail process shown in Example 15-10 signals its
associated master process at runtime that processing is complete. The label value
(detailProcessComplete) matches with the label value in the receive signal
activity of each master process.

Example 15-10 Signal Activity

<bpelx:signal name="notifyMAsterProcess" label="detailProcessComplete"
to="master"/>

15.2 Defining Master and Detail Process Coordination in Oracle
JDeveloper

This section provides an overview of how to define master and detail process
coordination in Oracle BPEL Designer. In this example, one master process and one
detail process are defined.

Note: This section only describes the tasks specific to master and
detail process coordination. It does not describe the standard activities
that you define in a BPEL process, such as creating variables, creating
assign activities, and so on.

15.2.1 How to Create a Master Process

To create a master process:

1. In the SOA Composite Editor, create a BPEL process service component. For this
example, the process is named MasterProcess.

Double-click the MasterProcess BPEL process.
In the Component Palette, expand Oracle Extensions.

Drag a Signal activity into the designer.

a » w0 Db

Double-click the Signal activity.
This activity signals the detail process to perform processing at runtime.

6. Enter the details described in Table 15-2:

Table 15-2 Signal Dialog Fields and Values

Field Value
Name Enter a name (for this example, contactDetailProcess).
Label Enter a label name (for this example, beginDetailProcess).

This label must match the receive signal activity label you set in
the detail process in Step 6 on page 15-9.

To Select details as the type of process to receive this signal.

Figure 15—4 shows the Signal dialog.

Coordinating Master and Detail Processes 15-7

Defining Master and Detail Process Coordination in Oracle JDeveloper

Figure 15-4 Signal Dialog

Signal ®
| General

MNarne: |c0ntactDetaiIPr0cess |

Label; |beginDetaiIPr0cess| |

To: |details hd |

| Help | Apply || [a]4 || Cancel

7. Click OK.
8. Drag a Receive Signal activity into the designer.
9. Double-click the Receive Signal activity.

This activity enables the master process to wait until it receives the signal executed
by all of its detail processes.

10. Enter the details shown in Table 15-3:

Table 15-3 Receive Signal Dialog Fields and Values

Field Value
Name Enter a name (for this example, waitForDetailProcess).
Label Enter a label name (for this example,

completeDetailProcess). This label must match the signal
activity label you set in the detail process in Step 10 on
page 15-10.

To Select details as the type of process from which to receive the
signal.

Figure 15-5 shows the Receive Signal dialog.

15-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Defining Master and Detail Process Coordination in Oracle JDeveloper

Figure 15-5 Receive Signal Dialog

Receive Signal b4

| General

Mame! |waitF0rDetaiIPr0cess |

Label: |c0mpleteDetaiIPr0cess |

From: |details '|

| Help | Apply || QK || Cancel

11. Click OK.
The master process has now been designed to:
= Signal the detail process to perform processing at runtime.

= Wait until it receives the signal executed by the detail process.

15.2.2 How to Create a Detail Process

To create a detail process:

1. In the SOA Composite Editor, create a second BPEL process service component.
For this example, the process is named DetailProcess.

Double-click the D