

Oracle® Fusion Middleware
Language Reference Guide for Oracle Business Rules

11g Release 1 (11.1.1)

E10227-02

October 2009

Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules, 11g Release 1 (11.1.1)

E10227-02

Copyright © 2005, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Thomas Van Raalte

Contributors: Qun Chen, Ching Chung, David Clay, Kathryn Gruenefeldt, Gary Hallmark, Phil Varner,
Neal Wyse

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents ... viii
Conventions ... viii

1 Rules Programming Concepts

1.1 Starting the Oracle Business Rules RL Language Command-Line 1-2
1.2 Introducing Rules and Rulesets .. 1-2
1.2.1 Rule Conditions ... 1-3
1.2.2 Rule Actions.. 1-3
1.3 Introducing Facts and RL Language Classes .. 1-3
1.3.1 What Are Facts? ... 1-4
1.3.2 Adding Facts to Working Memory with Assert.. 1-4
1.3.3 Using RL Language Classes as Facts .. 1-5
1.3.4 Using Java Classes as Facts .. 1-5
1.4 Understanding and Controlling Rule Firing... 1-6
1.4.1 Rule Activation and the Agenda ... 1-6
1.4.2 Watching Facts, Rules, and Rule Activations .. 1-7
1.4.3 Ordering Rule Firing ... 1-9
1.5 Using Effective Dates .. 1-11
1.6 Integrating RL Language Programs with Java Programs.. 1-12
1.6.1 Using Java Beans Asserted as Facts ... 1-12
1.6.2 Using RuleSession Objects in Java Applications.. 1-14
1.7 Using Decision Tracing ... 1-15
1.7.1 Introduction to Rule Engine Level Decision Tracing .. 1-15
1.7.2 Using Rule Engine Level Decision Tracing... 1-16
1.7.3 Decision Trace Samples for Production and Development Level Tracing 1-18
1.8 Building a Coin Counter Rules Program.. 1-21

2 Rule Language Reference

Ruleset .. 2-2

Types... 2-4

Identifiers ... 2-7

Literals .. 2-8

iv

Definitions.. 2-9

Variable Definitions.. 2-10

Rule Definitions .. 2-12

Class Definitions ... 2-15

Function Definitions... 2-20

Fact Class Declarations.. 2-21

Import Statement ... 2-25

Include Statement .. 2-26

Using Expressions.. 2-27

Boolean Expressions... 2-28

Numeric Expressions ... 2-30

String Expressions .. 2-31

Array Expressions... 2-32

Fact Set Expressions ... 2-33

Comparable Expression ... 2-39

Object Expressions.. 2-40

Primary Expressions... 2-41

Actions and Action Blocks.. 2-45

If Else Action Block... 2-46

While Action Block ... 2-47

For Action Block.. 2-48

Try Catch Finally Action Block... 2-49

Synchronized Action Block ... 2-50

Modify Action ... 2-51

Return Action .. 2-53

Throw Action... 2-54

Assign Action .. 2-55

Increment or Decrement Expressions .. 2-56

Primary Actions .. 2-57

Rulegroup.. 2-58

Built-in Functions... 2-60

assert ... 2-61

assertTree ... 2-63

assertXPath .. 2-64

clearRule... 2-65

clearRulesetStack .. 2-66

clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus, clear-
WatchCompilations, clearWatchAll 2-67

contains .. 2-68

getCurrentDate.. 2-69

getDecisionTrace... 2-70

getDecisionTraceLevel ... 2-71

v

getDecisionTraceLimit ... 2-72

getEffectiveDate .. 2-73

getFactsByType ... 2-74

getRulesetStack ... 2-75

getRuleSession... 2-76

getStrategy ... 2-77

halt .. 2-78

id.. 2-79

object ... 2-80

println ... 2-81

popRuleset ... 2-82

pushRuleset ... 2-83

retract.. 2-84

reset... 2-85

run... 2-86

runUntilHalt .. 2-87

setCurrentDate .. 2-88

setDecisionTraceLevel.. 2-89

setDecisionTraceLimit.. 2-90

setEffectiveDate... 2-91

setRulesetStack.. 2-92

setStrategy.. 2-93

showActivations ... 2-94

showFacts... 2-95

step.. 2-96

watchRules, watchActivations, watchFacts, watchFocus, watchCompilations 2-97

3 Using the Command-line Interface

3.1 Starting and Using the Command-Line Interface .. 3-1
3.2 RL Command-Line Options .. 3-3
3.3 RL Command-Line Built-in Commands ... 3-3
3.3.1 Clear Command... 3-3
3.3.2 Exit Command ... 3-4

4 Using a RuleSession

4.1 RuleSession Constructor Properties... 4-2
4.2 RuleSession Methods.. 4-2
4.3 RL to Java Type Conversion.. 4-2
4.4 Error Handling .. 4-3
4.5 RL Class Reflection ... 4-3
4.6 XML Navigation.. 4-3
4.7 Obtaining Results from a Rule Enabled Program.. 4-4
4.7.1 Overview of Results Examples .. 4-4

vi

4.7.2 Using External Resources to Obtain Results.. 4-5
4.8 Debugging an RL Stacktrace ... 4-5
4.9 Using RuleSession Pooling .. 4-7
4.9.1 How to Create a RuleSession Pool .. 4-7
4.9.2 How to Use a RuleSession Pool ... 4-8
4.10 Using RuleSession Options ... 4-8
4.10.1 Using the CFG_LOGGING System Property .. 4-8
4.10.2 Using the CFG_DECISION_TRACE_LEVEL Option... 4-9
4.10.3 Using the CFG_DECISION_TRACE_LIMIT Option .. 4-9

A Summary of Java and RL Differences

A.1 RL Differences from Java ... A-1

Index

vii

Preface

This Preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules is
intended for application developers and Oracle Application Server administrators
who perform the following tasks:

■ Develop rule enabled applications

■ Debug rule enabled applications

■ Deploy and Administer rule enabled applications.

■ Develop rulesets for those who prefer a technical language environment instead of
the Oracle Business Rules Rule Author graphical environment for rule authoring.

■ Need to use Oracle Business Rules RL Language advanced features that are not
available in the Oracle Business Rules Rule Author environment.

To use this document, you need to be familiar with the Java programming language.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

viii

otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/index.html

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ RL Language Backus-Naur Form Grammar Rules

Conventions in Text

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ix

RL Language Backus-Naur Form Grammar Rules
Each RL Language command in the guide is shown in a format description that
consists of a variant of Backus-Naur Form (BNF) that includes the symbols and
conventions in the following table.

Symbol or
Convention Meaning

[] Brackets enclose optional items.

{ } Braces enclose items only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

* A star indicates that an element can be repeated.

delimiters Delimiters other than brackets, braces, vertical bars, stars, and ellipses
must be entered as shown.

boldface Words appearing in boldface are keywords. They must be typed as
shown.

 (Keywords are case-sensitive in some, but not all, operating systems.)

Words that are not in boldface are placeholders for which you must
substitute a name or value

underline When on the left side of a production (::=) indicates a definition for a
non-terminal symbol.

underline When found on the right side of a production, ::= , a link, which is a
non-terminal symbol, links to the definition for the non-terminal
symbol.

italic text Semantic information about non-terminals, such as the required data
type for an expression or a descriptive tag used in following discussion,
is in italics.

x

1

Rules Programming Concepts 1-1

1 Rules Programming Concepts

This chapter introduces Oracle Business Rules RL Language (RL Language) concepts.
This chapter includes the following sections:

■ Section 1.1, "Starting the Oracle Business Rules RL Language Command-Line"

■ Section 1.2, "Introducing Rules and Rulesets"

■ Section 1.3, "Introducing Facts and RL Language Classes"

■ Section 1.4, "Understanding and Controlling Rule Firing"

■ Section 1.5, "Using Effective Dates"

■ Section 1.6, "Integrating RL Language Programs with Java Programs"

■ Section 1.7, "Using Decision Tracing"

■ Section 1.8, "Building a Coin Counter Rules Program"

Starting the Oracle Business Rules RL Language Command-Line

1-2 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

1.1 Starting the Oracle Business Rules RL Language Command-Line
The Oracle Business Rules environment is implemented in a JVM or in a J2EE
container by the classes supplied with rl.jar. Start the RL Language command-line
interface using the following command:

java -jar $ORACLE_HOME/soa/modules/oracle.rules_11.1.1/rl.jar -p "RL> "

Where ORACLE_HOME is where SOA modules are installed (for example,
c:/Oracle/Middleware). The –p option specifies the prompt.

The RL Language command-line interface provides access to an Oracle Business Rules
RuleSession. The RuleSession is the API that allows Java programmers to access the RL
Language in a Java application (the command-line interface uses a RuleSession
internally).

You can run the program in Example 1–1 using the command-line interface by
entering the text shown at the RL> prompt.

Example 1–1 Using the Command-Line Interface

RL> println(1 + 2);
3
RL> final int low = -10;
RL> final int high = 10;
RL> println(low + high * high);
90
RL> exit;

1.2 Introducing Rules and Rulesets
An RL Language ruleset provides a namespace, similar to a Java package, for RL
classes, functions, and rules. In addition, you can use rulesets to partially order rule
firing. A ruleset may contain executable actions, may include or contain other rulesets,
and may import Java classes and packages.

An RL Language rule consists of rule conditions, also called fact-set-conditions, and an
action-block or list of actions. Rules follow an if-then structure with rule conditions
followed by rule actions.

Example 1–2 shows a program that prints, "Hello World." This example demonstrates
a program that contains a single top-level action in the default ruleset (named main).
Example 1–2 contains only an action, and does not define a rule, so the action executes
immediately at the command-line.

Example 1–2 Hello World Programming Example

RL> println("Hello World");
Hello World
RL>

See Also:

■ Chapter 3, "Using the Command-line Interface" for more details
and for a list of command-line options

■ Chapter 4, "Using a RuleSession" for details on Oracle Business
Rules RuleSession API

Introducing Facts and RL Language Classes

Rules Programming Concepts 1-3

1.2.1 Rule Conditions
A rule condition is a component of a rule that is composed of conditional expressions
that refer to facts.

In the following example the conditional expression refers to a fact (Driver instance
d1), followed by a test that the fact's data member, age, is less than 16.

if (fact Driver d1 && d1.age < 16)

Example 1–3 shows the complete rule, written in RL Language (the rule includes a rule
condition and a rule action).

The Oracle Rules Engine activates a rule whenever there is a combination of facts that
makes the rule’s conditional expression true. In some respects, a rule condition is like a
query over the available facts in the Oracle Rules Engine, and for every row that
returns from the query, the rule activates.

Example 1–3 Defining a Driver Age Rule

RL> rule driverAge{
 if (fact Driver d1 && d1.age < 16)
 {
 println("Invalid Driver");
 }
}

1.2.2 Rule Actions
A rule action is activated if all of the rule conditions are satisfied. There are several
kinds of actions that a rule’s action-block might perform. For example, an action in the
rule’s action-block can add new facts by calling the assert function or remove facts by
calling the retract function. An action can also execute a Java method or perform an RL
Language function (Example 1–3 uses the println function). Using actions, you can
call functions that perform a desired task associated with a pattern match.

1.3 Introducing Facts and RL Language Classes
This section describes Oracle Business Rules facts and includes the following sections:

■ What Are Facts?

■ Adding Facts to Working Memory with Assert

■ Using RL Language Classes as Facts

■ Using Java Classes as Facts

See Also: Understanding and Controlling Rule Firing on page 1-6
for details on rule firing

Note: Rule activation is different from rule firing. For more
information, see Section 1.4, "Understanding and Controlling Rule
Firing".

Introducing Facts and RL Language Classes

1-4 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

1.3.1 What Are Facts?
Oracle Business Rules facts are asserted objects. For Java objects, a fact is a shallow
copy of the object, meaning that each property is cloned, if possible, and if not, then
the fact is a copy of the Java object reference.

In RL Language, a Java object is an instance of a Java class and an RL Object is an
instance of an RL Language class. You can use Java classes in the classpath or you can
define and use RL Language classes in a ruleset. You can also declare additional
properties that are associated with the existing properties or methods of a Java class
using a fact class declaration. You can hide properties of a Java class that are not
needed in facts using a fact class declaration.

An RL Language class is similar to a Java Bean without methods. An RL class contains
set of named properties. Each property has a type that is either an RL class, a Java
object, or a primitive type.

Using Oracle Business Rules, you typically use Java classes, including JAXB generated
classes that support the use of XML, to create rules that examine the business objects in
a rule enabled application, or to return results to the application. You typically use RL
classes to create intermediate facts that can trigger other rules in the Oracle Rules
Engine.

1.3.2 Adding Facts to Working Memory with Assert
Oracle Business Rules uses working memory to contain facts (facts do not exist outside
of working memory). A RuleSession contains the working memory.

A fact in RL Language is an asserted instance of a class. Example 1–4 shows the assert
function that adds an instance of the RL class enterRoom as a fact to working
memory. A class that is the basis for asserted facts may be defined in Java or in RL
Language.

In Example 1–4 the sayHello rule matches facts of type enterRoom, and for each
such fact, prints a message. The action new, shown in the assert function, creates an
instance of the enterRoom class.

In Example 1–4 the run function fires the sayHello rule.

Example 1–4 Matching a Fact Defined by an RL Language Class

RL> class enterRoom { String who; }
RL> assert(new enterRoom(who: "Bob"));
RL> rule sayHello {
 if (fact enterRoom) {
 println("Hello " + enterRoom.who);
 }
}
RL> run();
Hello Bob
RL>

Note: The RL Language new keyword extends the Java new
functionality with the capability to specify initial values for properties.

See Also: "Understanding and Controlling Rule Firing" on page 1-6

Introducing Facts and RL Language Classes

Rules Programming Concepts 1-5

1.3.3 Using RL Language Classes as Facts
You can use RL Language classes in a rules program to supplement a Java
application's object model, without having to change the application code for the Java
application that supplies Java Objects.

Example 1–5 shows the goldCust rule uses a Java class containing customer data,
cust; the rule’s action asserts an instance of the GoldCustomer RL class,
representing a customer that spends more than 500 dollars in a three month period.
The Java Customer class includes a method SpentInLastMonths that is supplied
an integer representing a number of months of customer data to add.

Example 1–5 goldCust Rule

rule goldCust {
 if (fact Customer cust && cust.SpentInLastMonths(3) > 500){
 assert (new GoldCustomer(cust: cust));
 }
}

Example 1–6 shows the goldDiscount rule uses the RL fact GoldCustomer to infer
that if a customer spent $500 within the past 3 months, then the customer is eligible for
a 10% discount.

Example 1–6 goldDiscount Rule

rule goldDiscount {
 if (fact Order ord & fact GoldCustomer(cust: ord.customer))
 {
 ord.discount = 0.1;
 assert(ord);
 }
}

Example 1–7 shows the declaration for the GoldCustomer RL class (this assumes that
you also have the Customer class available in the classpath).

Example 1–7 Declaring an RL Language Class

class GoldCustomer {
 Customer cust;
}

1.3.4 Using Java Classes as Facts
You can use asserted Java objects as facts in an RL Language program. You are not
required to explicitly define or declare the Java classes. However, you must include the
Java classes in the classpath when you run the program. This lets you use the Java
classes in rules, and allows a rules program to access and use the public attributes,
public methods, and bean properties defined in the Java class (bean properties are
preferable for some applications because the Oracle Rules Engine can detect that a Java
object supports PropertyChangeListener; in this case it uses that mechanism to be
notified when the object changes).

In addition, Fact class declarations can fine tune the properties available to use in an
RL program, and may be required for certain multiple inheritance situations.

See Also: "Adding Facts to Working Memory with Assert" on
page 1-4

Understanding and Controlling Rule Firing

1-6 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

When you work with Java classes, using the import statement lets you omit the
package name (see Example 1–8).

Example 1–8 Sample Java Fact with Import

ruleset main
{
 import example.Person;
 import java.util.*;
 rule hasNickNames
 {
 if (fact Person p && ! p.nicknames.isEmpty())
 {
 // accessing properties as fields:
 println(p.firstName + " " + p.lastName + " has nicknames:");
 Iterator i = p.nicknames.iterator();
 while (i.hasNext())
 {
 println(i.next());
 }
 }
}

1.4 Understanding and Controlling Rule Firing
This section covers the following topics:

■ Rule Activation and the Agenda

■ Watching Facts, Rules, and Rule Activations

■ Ordering Rule Firing

1.4.1 Rule Activation and the Agenda
The Oracle Rules Engine matches facts against the rule conditions (fact-set-conditions)
of all rules as the state of working memory changes. The Oracle Rules Engine only
checks for matches when the state of working memory changes, typically when a fact
is asserted or retracted. A group of facts that makes a given rule condition true is
called a fact set row. A fact set is a collection of all the fact set rows for a given rule. Thus
a fact set consists of the facts that match the rule conditions for a rule. For each fact set
row in a fact set, an activation, consisting of a fact set row and a reference to the rule is
added to the agenda (the agenda contains the complete list of activations).

Figure 1–1 shows a RuleSession with an agenda containing activations in working
memory.

See Also:

■ "Fact Class Declarations" on page 2-21

■ "Import Statement" on page 2-25

Understanding and Controlling Rule Firing

Rules Programming Concepts 1-7

Figure 1–1 RuleSession with Working Memory and the Agenda Containing Activations

The run, runUntilHalt, and step functions execute the activations on the agenda, that
is, these commands fire the rules (use the step command to fire a specified number of
activations).

Rules fire when the Oracle Rules Engine removes activations, by popping the
activations off the agenda and performing the rule's actions.

The Oracle Rules Engine may remove activations without firing a rule if the rule
conditions are no longer satisfied. For example, if the facts change or the rule is cleared
then activations may be removed without firing. Further, the Oracle Rules Engine
removes activations from the agenda when the facts referenced in a fact set row are
modified or the facts are retracted, such that they no longer match a rule condition
(and this can also happen in cases where new facts are asserted, when the ! operator
applies).

Note the following concerning rule activations:

1. Activations are created, and thus rules fire only when facts are asserted, modified,
or retracted (otherwise, the rules would fire continuously).

2. If a rule asserts a fact that is mentioned in the rule condition, and the rule
condition is still true, then a new activation is added back to the agenda and the
rule fires again (in this case the rule would fire continuously). This behavior is
often a bug.

3. The actions associated with a rule firing can change the set of activations on the
agenda, by modifying facts, asserting facts, or retracting facts, and this can change
the next rule to fire.

4. Rules fire sequentially, not in parallel.

1.4.2 Watching Facts, Rules, and Rule Activations
You can use the functions watchActivations, watchFacts, watchRules, and
showFacts to help write and debug RL Language programs.

This section covers the following topics:

■ Watching and Showing Facts in Working Memory

■ Watching Activations and Rule Firing

See Also: Ordering Rule Firing on page 1-9

Understanding and Controlling Rule Firing

1-8 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

1.4.2.1 Watching and Showing Facts in Working Memory
Example 1–9 shows the watchFacts function that prints information about facts
entering and leaving working memory.

As shown in Example 1–9, the watchFacts function prints ==> when a fact is
asserted. Each fact is assigned a short identifier, beginning with f-, so that the fact
may be referenced. For example, activations include a reference to the facts that are
passed to the rule actions.

In Example 1–9, notice that the program uses the default ruleset main. This ruleset
contains the enterRoom class.

Example 1–9 Using watchFacts with enterRoom Facts

RL> watchFacts();
RL> class enterRoom {String who;}
RL> assert(new enterRoom(who: "Rahul"));
 ==> f-1 main.enterRoom(who : "Rahul")
RL> assert(new enterRoom(who: "Kathy"));
 ==> f-2 main.enterRoom(who : "Kathy")
RL> assert(new enterRoom(who: "Tom"));
 ==> f-3 main.enterRoom(who : "Tom")
RL>

You can use showFacts to show the current facts in working memory. Example 1–10
shows that the Oracle Rules Engine asserts the initial-fact, f-0 (the Oracle Rules
Engine uses this fact internally).

Example 1–10 Show Facts in Working Memory

RL> showFacts();
f-0 initial-fact()
f-1 main.enterRoom(who : "Rahul")
f-2 main.enterRoom(who : "Kathy")
f-3 main.enterRoom(who : "Tom")
For a total of 4 facts.

Use retract to remove facts from working memory, as shown in Example 1–11. When
watchFacts is enabled, the Oracle Rules Engine prints <== when a fact is retracted.

Example 1–11 Retracting Facts from Working Memory

RL> watchFacts();
RL> retract(object(2));
 <== f-2 main.enterRoom(who : "Kathy")
RL> showFacts();
f-0 initial-fact()
f-1 main.enterRoom(who : "Rahul")
f-3 main.enterRoom(who : "Tom")
For a total of 3 facts.

1.4.2.2 Watching Activations and Rule Firing
The watchActivations function monitors the Oracle Rules Engine and prints
information about rule activations entering and leaving the agenda. The watchRules
function prints information about rules firing.

Example 1–12 shows how run causes the activations to fire. Notice that Rahul is
greeted last even though he entered the room first (this is due to the firing order).

Understanding and Controlling Rule Firing

Rules Programming Concepts 1-9

Example 1–12 Using WatchActivations and WatchRules

RL> clear;
RL> class enterRoom {String who;}
RL> assert(new enterRoom(who: "Rahul"));
RL> assert(new enterRoom(who: "Kathy"));
RL> assert(new enterRoom(who: "Tom"));
RL> watchActivations();
RL> rule sayHello {
if (fact enterRoom) {
 println("Hello " + enterRoom.who);
 }
}
==> Activation: main.sayHello : f-1
==> Activation: main.sayHello : f-2
==> Activation: main.sayHello : f-3
RL> watchRules();
RL> run();
Fire 1 main.sayHello f-3
Hello Tom
Fire 2 main.sayHello f-2
Hello Kathy
Fire 3 main.sayHello f-1
Hello Rahul
RL>

1.4.3 Ordering Rule Firing
To understand the ordering algorithm for firing rule activations on the agenda, we
introduce the ruleset stack. Each RuleSession includes one ruleset stack. The
RuleSession’s ruleset stack contains the top of the stack, called the focus ruleset, and
any non focus rulesets that are also on the ruleset stack. You place additional rulesets
on the ruleset stack using either the pushRuleset or setRulesetStack built-in functions.
You can manage the rulesets on the ruleset stack with the clearRulesetStack,
popRuleset, and setRulesetStack functions. In this case, the focus of the ruleset stack is
the current top ruleset in the ruleset stack (see Example 1–13).

Example 1–13 Ruleset Stack - Picture

RuleSet Stack

 Focus Ruleset --> Top_Ruleset
 Next_down_Ruleset
 Lower_Ruleset
 Bottom_Ruleset

When activations are on the agenda, the Oracle Rules Engine fires rules when run,
runUntilHalt, or step executes. The Oracle Rules Engine sequentially selects a rule
activation from all of the activations on the agenda, using the following ordering
algorithm:

1. The Oracle Rules Engine selects all the rule activations for the focus ruleset, that is
the ruleset at the top of the ruleset stack (see the pushRuleset and setRulesetStack
built-in functions).

Note: Activations may be removed from the agenda before they are
fired if their associated facts no longer make the condition true.

Understanding and Controlling Rule Firing

1-10 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

2. Within the set of activations associated with the focus ruleset, rule priority
specifies the firing order, with the higher priority rule activations selected to be
fired ahead of lower priority rule activations (the default priority level is 0).

3. Within the set of rule activations of the same priority, within the focus ruleset, the
most recently added rule activation is the next rule to fire. However, note that in
some cases multiple activations may be added to the agenda at the same time, the
ordering for such activations is not defined.

4. When all of the rule activations in the current focus fire, the Oracle Rules Engine
pops the ruleset stack, and the process returns to Step 1, with the current focus.

If a set of rules named R1 must all fire before any rule in a second set of rules named
R2, then you have two choices:

■ Use a single ruleset and set the priority of the rules in R1 higher than the priority
of rules in R2.

■ Use two rulesets R1 and R2, and push R2 and then R1 on the ruleset stack.

Generally, using two rulesets with the ruleset stack is more flexible than using a single
ruleset and setting the priority to control when rules fire. For example if some rule R in
R1 must trigger a rule in R2 before all rules in R1 fire, a return in R pops the ruleset
stack and allows rules in R2 to fire.

If execution must alternate between two sets of rules, for example, rules to produce
facts and rules to consume facts, it is easier to alternate flow with different rulesets
than by using different priorities.

Example 1–14 shows that the priority of the keepGaryOut rule is set to high, this is
higher than the priority of the sayHello rule (the default priority is 0). If the
activations of both rules are on the agenda, the higher priority rule fires first. Notice
that just before calling run, sayHello has two activations on the agenda. Because
keepGaryOut fires first, it retracts the enterRoom(who: "Gary") fact, which
removes the corresponding sayHello activation, resulting in only one sayHello
firing.

The rule shown in Example 1–14 illustrates two additional RL Language features.

1. The fact operator, also known as a fact set pattern, uses the optional var
keyword to define a variable, in this case the variable g, that is bound to the
matching facts.

2. You can remove facts in working memory using the retract function.

Example 1–14 Using Rule Priority with keepGaryOut Rule

RL> final int low = -10;
RL> final int high = 10;
RL> rule keepGaryOut {
 priority = high;
 if (fact enterRoom(who: "Gary") var g) {
 retract(g);
 }
}
RL> assert(new enterRoom(who: "Gary"));
==> f-4 main.enterRoom(who: "Gary")
==> Activation: main.sayHello : f-4
==> Activation: main.keepGaryOut : f-4
RL> assert(new enterRoom(who: "Mary"));
==> f-5 main.enterRoom(who: "Mary")
==> Activation: main.sayHello : f-5

Using Effective Dates

Rules Programming Concepts 1-11

RL> run();
Fire 1 main.keepGaryOut f-4
<== f-4 main.enterRoom(who: "Gary")
<== Activation: main.sayHello : f-4
Fire 2 main.sayHello f-5
Hello Mary
RL>

Example 1–15 shows the sayHello rule that includes a condition that matches the
asserted enterRoom fact; this match adds an activation to the agenda. Example 1–15
demonstrates the following RL Language programming features.

1. The Oracle Rules Engine matches facts against the rule conditions
(fact-set-conditions) of all rules as the state of working memory changes. Thus, it
does not matter whether facts are asserted before the rule is defined, or after.

2. The run function processes any activations on the agenda. No activations on the
agenda are processed before calling run.

Example 1–15 enterRoom Class with sayHello Rule

RL> class enterRoom { String who; }
RL> rule sayHello {
 if (fact enterRoom) {
 println("Hello " + enterRoom.who);
 }
}
RL> assert(new enterRoom(who: "Bob"));
RL> run();
Hello Bob
RL>

Notes for ordering rule firing.

1. When you use the return action, this changes the behavior for firing rules. A
return action in a rule pops the ruleset stack, so that execution continues with
the activations on the agenda that are from the ruleset that is currently at the top of
the ruleset stack.

If rule execution was initiated with either the run or step functions, and a return
action pops the last ruleset from the ruleset stack, then control returns to the caller
of the run or step function.

If rule execution was initiated with the runUntilHalt function, then a return action
does not pop the last ruleset from the ruleset stack. The last ruleset is popped with
runUntilHalt when there are not any activations left. The Oracle Rules Engine then
waits for more activations to appear. When they do, it places the last ruleset on the
ruleset stack before resuming ruleset firing.

2. Rule priority is only applicable within rules in a given ruleset. Thus, the priority of
rules in different rulesets are not comparable.

1.5 Using Effective Dates
By default, the value of the effective date is managed implicitly by the rules engine. In
this case, when a run family of built-in functions is invoked, the effective date is
updated to the current system date. This is done before any rules fire so that the new
effective date is applied before rules begin to fire. In the case of runUntilHalt, this
update occurs each time there is a transition from 0 rules on the agenda to > 0 rules on
the agenda.

Integrating RL Language Programs with Java Programs

1-12 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

In Oracle Business Rules RL Language, the effective start and end dates and the active
property are only applied to rules (and do not apply for rulesets). The effective start
and end date properties of a rule can be specified in the rule.

For example,

rule myrule2 {
 active = true;
 effectiveDateForm = Rule.EDFORM_DATETIME:
 effectiveStartDate = JavaDate.fromDateTimeString("2008-11-01");
 effectiveEndDate = JavaDate.fromDateTimeString("2008-11-16");

 if (fact Foo)
 {
 .
 .
 }

}

If you use the RuleSession Java API, you can access the effective start and end
date.

Setting a property from RL Language requires a long expression or several statements.

For example, given a ruleset:

ruleset MyRules {
 rule myRule { if fact foo { }}
}

To set the active property, use the following:

Rule r = getRuleSession().getRuleset("MyRules").getRule("myRule");

r.setActive(false);

1.6 Integrating RL Language Programs with Java Programs
This section describes integrating RL Language programs with Java programs. This
section covers the following topics:

■ Using Java Beans Asserted as Facts

■ Using RuleSession Objects in Java Applications

1.6.1 Using Java Beans Asserted as Facts
Example 1–16 shows the Java source for a simple bean. Use the javac command to
compile the bean, example.Person shown in Example 1–16 into a directory tree.

The following shows how an RL Language command-line can be started that can
access this Java bean:

java -classpath $ORACLE_HOME/soa/modules/oracle.rules_11.1.1/rl.jar;BeanPath
oracle.rules.rl.session.CommandLine -p "RL> "

See Also: "Working with Rules SDK Decision Point API" in the
Oracle Business Rules User's Guide

Integrating RL Language Programs with Java Programs

Rules Programming Concepts 1-13

Where BeanPath is the classpath component to any supplied Java Bean classes.

Example 1–16 Java Source for Person Bean Class

package example;
import java.util.*;
public class Person
{
 private String firstName;
 private String lastName;
 private Set nicknames = new HashSet();

 public Person(String first, String last, String[] nick) {
 firstName = first; lastName = last;
 for (int i = 0; i < nick.length; ++i)
 nicknames.add(nick[i]);
 }
 public Person() {}
 public String getFirstName() {return firstName;}
 public void setFirstName(String first) {firstName = first;}
 public String getLastName() {return lastName;}
 public void setLastName(String last) {lastName = last;}
 public Set getNicknames() {return nicknames;}
}

Example 1–17 shows how the RL Language command-line can execute an RL
Language program that uses example.Person. The import statement, as in Java,
allows a reference to the Person class using "Person" instead of "example.Person".
Rules reference the Person bean class and its properties and methods. In order to
create a Person fact you must assert a Java Person bean.

Example 1–17 uses the new operator to create an array of Person objects, named
people. The people array is declared final so that reset does not create more
people. The numPeople variable is not declared final so that reset re-invokes the
assertPeople function and re-asserts the Person facts using the existing Person
objects.

Example 1–17 Ruleset Using Person Bean Class

ruleset main
{
 import example.Person;
 import java.util.*;
 rule hasNickNames
 {
 if (fact Person(nicknames: var nns) p && !nns.isEmpty())
 {
 // accessing properties as fields:
 println(p.firstName + " " + p.lastName + " has nicknames:");
 Iterator i = nns.iterator();
 while (i.hasNext())
 {
 println(i.next());
 }
 }
}
rule noNickNames
{
 if fact Person(nicknames: var nns) p && nns.isEmpty()
 {

Integrating RL Language Programs with Java Programs

1-14 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

 // accessing properties with getters:
 println(p.getFirstName() + " " + p.getLastName() + " does not have nicknames");
 }
}
 final Person[] people = new Person[] {
new Person("Robert", "Smith", new String[] { "Bob", "Rob" }), // using constructor
new Person(firstName: "Joe", lastName: "Schmoe") // using attribute value pairs
};

function assertPeople(Person[] people) returns int
{
 for (int i = 0; i < people.length; ++i) {
 assert(people[i]);
}
 return people.length;
 }
 int numPeople = assertPeople(people);
 run();
}

Note the following when working with Java beans as facts:

1. The fact operator can include a pattern that matches or retrieves the bean
properties. The properties are defined by getter and setter methods in the bean
class.

2. The new operator can include a pattern that sets property values after invoking the
default no-argument constructor, or can pass arguments to a user-defined
constructor.

3. Outside of the fact and new operators, the bean properties may be referenced or
updated using getter and setter methods, or using the property name as if it were
a field.

4. If a bean has both a property and a field with the same name, then the field cannot
be referenced in RL Language.

If Example 1–18 executes using the same RuleSession following the execution of
Example 1–17, the output is identical to the Example 1–17 results (both person facts
are reasserted).

Example 1–18 Using Reset with a RuleSession

reset();
run();

1.6.2 Using RuleSession Objects in Java Applications
Java programs can use the RuleSession interface to execute rulesets, invoke RL
Language functions passing Java objects as arguments, and redirect RL Language
watch and println output. Example 1–19 and Example 1–20 each contain a Java
program fragment that uses a RuleSession that prints "hello world". Like many Java
program fragments, these examples are also legal RL Language programs.

Note: The RL Language command-line interpreter internally creates
a RuleSession when it starts (and when you use the clear
command).

Using Decision Tracing

Rules Programming Concepts 1-15

The RL Language environment provides multiple rule sessions. Each rule session can
be used by multiple threads, but rules are fired by a single thread at a time.

Each rule RuleSession has its own copy of facts and rules. To create a fact from a Java
Object, use a call such as:

rs.callFunctionWithArgument("assert", Object;);

To create a rule, a function, or an RL Language class, define a string containing a
ruleset, and use the executeRuleset method.

Example 1–19 Using a RuleSession Object with callFunctionWithArgument

import oracle.rules.rl.*;
try {
 RuleSession rs = new RuleSession();
 rs.callFunctionWithArgument("println", "hello world");
} catch (RLException rle) {
 System.out.println(rle);
}

Example 1–20 Using a RuleSession with ExecuteRuleset

import oracle.rules.rl.*;
try {
 RuleSession rs = new RuleSession();
 String rset =
 "ruleset main {" +
 " function myPrintln(String s) {" +
 " println(s);" +
 " }" +
 "}";
 rs.executeRuleset(rset);
 rs.callFunctionWithArgument("myPrintln", "hello world");
} catch (RLException rle) {
 System.out.println(rle);
}

1.7 Using Decision Tracing
Using Oracle Business Rules, a decision trace is a trace of rule engine execution that
includes information on the state of the rule engine, including the state of facts when
rule fire. The Oracle Business Rules rule engine constructs and returns a decision trace
using JAXB generated Java classes generated from the decision trace XML schema.

1.7.1 Introduction to Rule Engine Level Decision Tracing
To provide a business analyst friendly presentation of a decision trace requires that the
associated rule dictionary is available. Using the rule dictionary associated with a trace
allows for a more flexible and efficient approach, as the trace output does not need to
include all of the related dictionary content information in the trace.

The XML schema is in the file decisiontrace.xsd and it is part of the Jar file rl.jar
as: oracle/rules/rl/trace/decisiontrace.xsd. The packages of interest are
oracle.rules.rl.trace, oracle.rules.rl.extensions.trace, and
oracle.rules.sdk2.decisiontrace. The Java classes packages generated from
the decisiontrace XML schema are in the package oracle.rules.rl.trace and are

Using Decision Tracing

1-16 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

included in the Javadoc. For more information, see Oracle Business Rules Java API
Reference.

1.7.2 Using Rule Engine Level Decision Tracing
A decision trace is a set of XML elements showing rule engine events that occur
during rule evaluation. The types of events that are added to a decision trace depend
on the trace level selected, and can include:

■ Fact operations (assert, retract, modify)

■ Rules fired

■ Rule activations added or removed from the agenda

■ Ruleset stack changes

■ Rule compilation

■ Reset (which is needed for maintaining state for decision trace analysis)

Each trace contains information about a particular event. For example, a fact operation
event entry consists of:

■ The operation type (assert, modify, retract)

■ The ID of the fact in working memory

■ Fact type name (fact classed in RL)

■ Runtime object type name

■ The fact object data, including the property name and value for zero or more fact
properties

■ Name of rule, RL name, if the operation was the result of a rule action

■ Millisecond timestamp

In a fact operation event trace, the fact object content reflects the structure of the object
as a Java Bean. If the bean properties are references to other beans the related bean
content is included in the trace. The value of a bean property can be one of the
following alternatives.

■ A string representation of the property. This is the case for primitive types and
classes in the java.* and javax.* packages.

■ A nested bean object with its property values.

■ A fact ID. This occurs when the property value is an object which has itself been
asserted as a fact. The data for the fact at the time of the trace can be retrieved from
the RuleEngineState using the fact ID when analyzing the trace.

■ A collection of values accessed as a List in the trace.

■ An array of values accessed as a List in the trace.

At runtime, to determine which alternative is included in the trace you can test for
null; only the correct alternative has a non-null value.

Table 1–1 shows the RL functions that provide control over decision tracing in the rule
engine and provide access to a decision trace.

Using Decision Tracing

Rules Programming Concepts 1-17

The decision trace level may be set by invoking the setDecisionTraceLevel function.
You can also configure the initial trace level in a RuleSession or in a RuleSessionPool
by including the RuleSession.CFG_DECISION_TRACE_LEVEL initialization
parameter and specifying a level in the configuration Map passed to the RuleSession
or RuleSessionPool constructor. This sets the decision trace level at the time a
RuleSession is created.

You can invoke the setDecisionTraceLevel function on a RuleSession or a
RuleSessionPool object after initialization. When you invoke reset(), this function
returns the decision trace level to the configured value (if the level was changed
during rule execution). Thus, the reset() function resets the decision trace limit to
the value set during initialization of a RuleSession or a RuleSessionPool. In these cases,
reset() restores the values established using the initialization parameters.

The size of a trace is limited by limiting the number of entries in a decision trace. This
necessary to avoid infinite rule fire loops, due to a possible bug in the rules, from
creating a trace that consumes all available heap in the JVM. Set the trace limit with
the setDecisionTraceLimit function. The limit may also be configured in a RuleSession
(or RuleSessionPool) by including the RuleSession.CFG_DECISION_TRACE_
LIMIT initialization parameter with the desired limit in the configuration Map passed
to the RuleSession or RuleSessionPool constructor.

For rules applications that use runUntilHalt, it is the responsibility of the application
to invoke getDecisionTrace before the trace limit is hit.

The decision trace provides structure to the trace data so that it can be manipulated
programmatically. However, the trace by itself can be cumbersome to analyze. A trace
analysis class (oracle.rules.rl.extensions.trace.TraceAnalysis)
analyzes a decision trace and facilitates exploration of the trace. Use this class to
construct the state of working memory, the agenda, and the ruleset stack from the
trace.

The TraceAnalysis API supports the following:

■ Obtain a list of fact types that appear in the trace.

■ Obtain a list of names of the rules that fired in the trace.

Table 1–1 RL Decision Trace Functions

Function Description

getDecisionTrace Returns the current trace and starts a new trace.

getDecisionTraceLevel Gets the current decision trace level.

getDecisionTraceLimit Returns the current limit on the number of events in a trace.

setDecisionTraceLevel Sets the decision trace level to the specified level.

setDecisionTraceLimit Sets the limit on the number of events in a trace.

Default limit value is 10000.

Note: These reset() semantics for a RuleSession are only valid for
a RuleSession initialized with either or both of the CFG_DECISION_
TRACE_LIMIT and the CFG_DECISION_TRACE_LEVEL initialization
parameters (or that is obtained from a RuleSessionPool when the pool
is created with either or both of the CFG_DECISION_TRACE_LIMIT
and the CFG_DECISION_TRACE_LEVEL initialization parameters.

Using Decision Tracing

1-18 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

■ Obtain a list of the last fact traces for each instance of a specific fact type.

■ Obtain the last fact trace for a specific fact identified by its fact ID.

■ Obtain all of the fact traces for a fact identified by its fact ID.

■ For a fact trace, if the fact trace was created by a rule action, get the rule trace that
rule firing in which the action executed.

■ For a rule trace, get the list of fact traces for each fact that matched and resulted in
the rule firing.

■ Get the next or previous trace. Exploration of the trace is typically not an iteration
over the trace. For example, obtaining a rule trace from a fact trace is essentially
jumping to that rule trace. The traces near the rule trace can be explored directly.

■ Obtain a list of rule traces for a rule identified by its name.

■ Obtain the rule engine state for a trace entry. The rule engine state reflects the state
of the rule engine after the activity that generated the trace. This API enables
inspecting the rule engine state at the time of each trace. This API is most useful
with development level tracing. With production level tracing, only the facts in
working memory can be tracked and they will not include any fact contents.

Example 1–21 shows a code sample that uses the decision trace analysis API.

Example 1–21 Decision Trace Analysis API Usage

DecisionTrace trace;
...
TraceAnalysis ta = new TraceAnalysis(trace);
// Get all of the last fact traces for a fact type.
List<FactTrace> factTraces = ta.getLastFactTraces("com.example.MyFactType");
// From a particular fact trace, how it was arrived at may be explored, first by
// obtaining the rule that asserted or modified the fact.
// From the FactRecord, the rule that resulted in the record can be obtained.
FactTrace factTrace = factTraces.get(0); // assumes there is one
RuleTrace ruleTrace = ta.whichRule(factTrace);
 // The ruleTrace will be null if the fact operation was not part of a rule
action.
System.out.print("Fact " + factTrace.getFactId() + ", a " +
factTrace.getFactType() + " " + factRecord.getFactOp());
if (ruleTrace != null)
 System.out.println(" by rule " + ruleTrace.getRuleName());
else
 System.out.println("");
// The analysis can continue by obtaining the list of FactRecords that matched the
rule and
// proceeding to analyze the trace back in time.
List<FactTrace> matchingFacts = ta.getRuleMatchedFacts(ruleTrace);

1.7.3 Decision Trace Samples for Production and Development Level Tracing
Example 1–22 shows a sample production level trace document.

Example 1–22 Sample Production Level Decision Trace

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<decision-trace xmlns="http://xmlns.oracle.com/rules/decisiontrace">
 <trace-entries xsi:type="rule-trace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Using Decision Tracing

Rules Programming Concepts 1-19

 <timestamp>1248975549890</timestamp>
 <rule-name>OrderDiscount.goldCustomer</rule-name>
 <token-time>0</token-time>
 <sequence-number>1</sequence-number>
 </trace-entries>
 <trace-entries xsi:type="rule-trace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <timestamp>1248975549893</timestamp>
 <rule-name>OrderDiscount.goldCustomerDiscount</rule-name>
 <token-time>0</token-time>
 <sequence-number>2</sequence-number>
 </trace-entries>
 <trace-entries xsi:type="rule-trace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <timestamp>1248975549894</timestamp>
 <rule-name>OrderDiscount.applyDiscount</rule-name>
 <token-time>0</token-time>
 <sequence-number>3</sequence-number>
 </trace-entries>
</decision-trace>

Example 1–23 Sample Development Level DecisionTrace

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<decision-trace xmlns="http://xmlns.oracle.com/rules/decisiontrace">
 <trace-entries xsi:type="fact-trace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <timestamp>1248975491008</timestamp>
 <fact-id>1</fact-id>
 <operation>assert</operation>
 <fact-type>com.example.Customer</fact-type>
 <object-type>com.example.Customer</object-type>
 <fact-object>
 <properties>
 <name>YTDOrderAmount</name>
 <value>
 <string>2000.0</string>
 </value>
 </properties>
 <properties>
 <name>level</name>
 <value>
 <string>null</string>
 </value>
 </properties>
 <properties>
 <name>name</name>
 <value>
 <string>OneLtd</string>
 </value>
 </properties>
 <properties>
 <name>pastDue</name>
 <value>
 <string>false</string>
 </value>
 </properties>
 </fact-object>
 </trace-entries>
 <trace-entries xsi:type="activation-trace"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <timestamp>1248975491024</timestamp>

Using Decision Tracing

1-20 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

 <rule-name>OrderDiscount.goldCustomer</rule-name>
 <token-time>2</token-time>
 <fact-ids>1</fact-ids>
 <operation>add</operation>
 </trace-entries>
 <trace-entries xsi:type="fact-trace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <timestamp>1248975491025</timestamp>
 <fact-id>2</fact-id>
 <operation>assert</operation>
 <fact-type>com.example.Order</fact-type>
 <object-type>com.example.Order</object-type>
 <fact-object>
 <properties>
 <name>customerName</name>
 <value>
 <string>OneLtd</string>
 </value>
 </properties>
 <properties>
 <name>discount</name>
 <value>
 <string>0.0</string>
 </value>
 </properties>
 <properties>
 <name>grossAmount</name>
 <value>
 <string>400.0</string>
 </value>
 </properties>
 <properties>
 <name>netAmount</name>
 <value>
 <string>0.0</string>
 </value>
 </properties>
 <properties>
 <name>number</name>
 <value>
 <string>1001</string>
 </value>
 </properties>
 </fact-object>
 </trace-entries>
 <trace-entries xsi:type="activation-trace"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <timestamp>1248975491035</timestamp>
 <rule-name>OrderDiscount.goldCustomerDiscount</rule-name>
 <token-time>5</token-time>
 <fact-ids>2</fact-ids>
 <fact-ids>1</fact-ids>
 <operation>add</operation>
 </trace-entries>
 <trace-entries xsi:type="rule-trace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <timestamp>1248975491036</timestamp>
 <rule-name>OrderDiscount.goldCustomerDiscount</rule-name>
 <token-time>5</token-time>
 <fact-ids>2</fact-ids>
 <fact-ids>1</fact-ids>
 <sequence-number>2</sequence-number>

Building a Coin Counter Rules Program

Rules Programming Concepts 1-21

 </trace-entries>
...
 <trace-entries xsi:type="rule-trace" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <timestamp>1248975491036</timestamp>
 <rule-name>OrderDiscount.applyDiscount</rule-name>
 <token-time>7</token-time>
 <fact-ids>2</fact-ids>
 <sequence-number>3</sequence-number>
 </trace-entries>
...
 <trace-entries xsi:type="ruleset-stack-trace"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <timestamp>1248975491037</timestamp>
 <operation>pop</operation>
 <ruleset-name>OrderDiscount</ruleset-name>
 </trace-entries>
</decision-trace>

1.8 Building a Coin Counter Rules Program
This section shows a sample that uses RL Language to solve a puzzle:

How many ways can 50 coins add up to $1.50?

The rules program that solves this puzzle illustrates an important point for rule-based
programming; knowledge representation, that is, the fact classes that you select, can be
the key design issue. It is often worthwhile to write procedural code to shape your
data into a convenient format for the rules to match and process.

To use this example, first copy the RL Language program shown in Example 1–25 to a
file named coins.rl. You can include this from the RL Language command-line
using the include command. Before you include the coins program, use the clear;
command to erase everything in the current rule session, as follows:

RL> clear;
RL> include file:coins.rl;
RL>

Example 1–24 shows the debugging functions that show the count coins sample facts,
activations, and rules for the coin counter. All facts are asserted, and activations for all
solutions are placed on the agenda. Notice that the facts are matched to the rule
condition as they are generated by populate_facts, and that find_solution
prints the matches.

Example 1–24 Using Debugging Functions with Coins Example

RL> watchFacts();
RL> watchActivations();
RL> watchRules();
RL> reset();
RL> showActivations();
RL> run();
The rule is fired for each activation, printing out the solutions
RL>

In Example 1–25, the keyword final in front of a global variable definition such as
coinCount and totalAmount marks that variable as a constant, as in Java. You can

Building a Coin Counter Rules Program

1-22 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

reference constants in rule conditions, but you cannot reference variables in rule
conditions.

In RL Language, you must initialize all variables. The initialization expression for a
final variable is evaluated once when the variable is defined. The initialization
expression for a non-final variable is evaluated when the variable is defined, and again
each time the reset function is called. Because the reset function retracts all facts
from working memory, it is good practice to assert initial facts in a global variable
initialization expression, so that the facts are re-asserted when reset is called.

Example 1–25 illustrates how to use global variable initialization expressions. The
initialized global variable is initialized with the populate_facts function. This
function is re-executed whenever reset is called. The populate_facts function has
a while loop nested within a for loop. The for loop iterates over an array of coin
denomination Strings. For each denomination, the while loop asserts a fact that
expresses a count and a total that does not exceed the total amount of $1.50. For
example, for half dollars:

coin(denomination "half-dollar", count:0, amount:0)
coin(denomination "half-dollar", count:1, amount:50)
coin(denomination "half-dollar", count:2, amount:100)
coin(denomination "half-dollar", count:3, amount:150)

With such facts in working memory, the rule find_solution matches against each
denomination with a condition that requires that the counts sum to coinCount and
the amounts sum to totalAmt. The run function fires the find_solutions
activations.

Example 1–25 Count Coins Program Source

final int coinCount = 50;
final int totalAmt = 150;
final String[] denominations = new String[]
{"half-dollar" , "quarter", "dime", "nickel", "penny" };
class coin {
 String denomination;
 int count;
 int amount;
}
function populate_facts() returns boolean
{
 for (int i = 0; i < denominations.length; ++i) {
 String denom = denominations[i];
 int count = 0;
 int total = 0;
 int amount = 0;
 if (denom == "half-dollar") { amount = 50; }
 else if (denom == "quarter") { amount = 25; }
 else if (denom == "dime") { amount = 10; }
 else if (denom == "nickel") { amount = 5; }
 else { amount = 1; }

 while (total <= totalAmt && count <= coinCount)
 {
 assert(new coin(denomination: denom,
 count : count,
 amount : total));
 total += amount;
 count ++;
 }

Building a Coin Counter Rules Program

Rules Programming Concepts 1-23

 }
return true;
}
boolean initialized = populate_facts();
rule find_solution
{
 if(fact coin(denomination: "penny") p
 && fact coin(denomination: "nickel") n
 && fact coin(denomination: "dime") d
 && fact coin(denomination: "quarter") q
 && fact coin(denomination: "half-dollar") h
 && p.count + n.count + d.count + q.count + h.count == coinCount
 && p.amount + n.amount + d.amount + q.amount + h.amount == totalAmt)
 {
 println("Solution:"
 + " pennies=" + p.count
 + " nickels=" + n.count
 + " dimes=" + d.count
 + " quarters=" + q.count
 + " half-dollars=" + h.count
);
 }
}
run();

Building a Coin Counter Rules Program

1-24 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

2

Rule Language Reference 2-1

2 Rule Language Reference

This chapter contains a detailed and complete reference to the Oracle Business Rules
RL Language (RL Language) syntax, semantics, and built-in functions.

Grammar rules define the RL Language. Each grammar rule defines a non-terminal
symbol on the left of the ::= symbol in terms of one or more non-terminal and
terminal symbols on the right of the ::= symbol.

Reserved Words
aggregate, boolean, break, byte, catch, char, class, constant, continue, double, else,
exists, extends, fact, factpath, false, final, finally, float, for, function, hide, if, import,
include, instanceof, int, long, modify, new, null, property, public, query, return,
returns, rule, rulegroup, ruleset, short, supports, synchronized, throw, true, try,
while, var

Note: Reserved words in bold apply to the current release. Reserved
words that are not shown in bold typeface are planned for a future RL
Language release, and include the words: break, continue, and query.

Ruleset

2-2 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Ruleset

A ruleset groups a set of definitions. A ruleset is a collection of rules and other
definitions that are all intended to be evaluated at the same time. A ruleset may also
contain executable actions, may include or contain other rulesets, and may import Java
classes and packages.

Format
ruleset ::= named-ruleset | unnamed-ruleset

named-ruleset ::= ruleset ruleset-name { unnamed-ruleset }

unnamed-ruleset ::= (import | include | named-ruleset | definition | action | fact-class | rulegroup)*

ruleset-name ::= identifier

Usage Notes
A named-ruleset creates or adds definitions to the specified ruleset named
ruleset-name.

An unnamed-ruleset adds definitions to the default ruleset named main.

Rulesets may be nested, that is they may contain or include other rulesets. Nesting
does not affect ruleset naming, but it does affect ruleset visibility in a way similar to
Java import's affect on package visibility.

You can execute a ruleset using the RL Language command-line, or using the Java
RuleSession API.

A named-ruleset ruleset-name must be unique within a RuleSession.

Examples
Example 2–1 contains two definitions, enterRoom and sayHello, and two actions
(assert and run).

The rule shown in Example 2–1 will not fire until:

1. An enterRoom fact is asserted.

2. The run function executes, which pushes the rule's containing ruleset, hello onto
the ruleset stack.

Example 2–1 Using a Named Ruleset

ruleset hello {
 class enterRoom { String who; }
 rule sayHello {
 if (fact enterRoom) {
 println("Hello " + enterRoom.who);
 }
 }
 assert(new enterRoom(who: "Bob"));
 run("hello");
}

In Example 2–2, if ruleset R2 is nested in ruleset R1, the name R2 must be unique
within the rule session. R2 is not named relative to R1. For example, the class C2
defined in R2 is globally named R2.C2, not R1.R2.C2. If R2 is nested in R1, a public

Ruleset

Rule Language Reference 2-3

class C1 defined in R1 may be referenced in R2 using either the full name R1.C1 or the
short name C1 (assuming R2 does not also define C1).

Example 2–2 Using a Nested Ruleset

ruleset R1 {
 public class C1 {
 public String s;
 }
 C1 apple = new C1(s: "apple");
 ruleset R2 {
 public class C2 {
 public String s;
 }
 C1 c1 = apple; // finds C1 and apple in containing ruleset R1
 c1.s = "delicious";
 C2 c2 = new C2(s: "pear");
 }
 R2.C2 pear = R2.c2; // finds R2.C2 and R2.c2 because they are fully qualified
 println(apple.s + " " + pear.s); // prints "delicious pear"

 pear = c2; // UndefinedException: c2 not in R1 or a containing ruleset
}

Types

2-4 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Types

RL Language is a strongly typed language. Each variable and value has a specified
type.

Format
type ::= simple-type [[]]

simple-type ::= primitive | object-type

primitive ::= boolean | numeric

numeric ::= int | double | float | long | short | byte | char

object-type ::= class-definition-name | Java-class-name

class-definition-name ::= qname

Java-class-name ::= qname

Type Conversion
There are several ways that a value can be converted from one type to another:

1. Conversion from any type to String using the String concatenation operator + .

2. Implicitly from context. For example, by adding an int to a double first converts
the int to a double and then adds the 2 doubles.

3. Casting between 2 numeric types.

4. Casting between 2 classes related by inheritance.

5. Invoking a function or method that performs the conversion. For example,
toString.

Table 2–1 summarizes the implicit conversions for various types. Rows indicate how
the type in the From column may be implicitly converted, as shown in the list of types
shown in the To column.

Table 2–1 Implicit Type Conversions

From To

int double, float, long

float double

long double, float

short int, double, float, long

byte int, double, float, long, short

char int, double, float, long

String Object

Object Object (if the From Object is a subclass of the To Object)

fact set boolean

array Object

Types

Rule Language Reference 2-5

Table 2–2 summarizes the allowed cast conversions for various types where a cast can
be used to convert a primitive with more bits to a primitive with fewer bits, without
throwing an exception.

The type conversions shown in Table 2–2 require an explicit cast operator. For
example,

int i = 1;
short s = (short)i;

When you use a cast to convert a primitive with more bits, to a primitive with fewer
bits, the RL Language discards extra, high order, bits without throwing an exception.

For example,

short s = -134;
byte b = (byte)s;
println("s = " + s + ", b = " + b);
prints: s = -134, b = 122

Primitive Types
A primitive type may be any of the following

■ An int, which is a 32 bit integer. Literal values are scanned by
java.lang.Integer.parseInt

■ A long. Literal values are scanned by java.lang.Long.parseLong

■ A short. Literal values are scanned by java.lang.Short.parseShort

■ A byte. Literal values are scanned by java.lang.Byte.parseByte

■ A char.

■ A double. Literal values are scanned by java.lang.Double.parseDouble

Note: An Object is an instance of a Java or RL Language class or
array. Type conversion is possible only if the classes are related by
inheritance (implements or extends).

Note: Type conversions such as those shown in Table 2–2 that
involve numeric types may lose high order bits, and such conversions
involving Objects may throw a RLClassCastExeption.

Table 2–2 Explicit Type Conversions

From To

double float, long, int, short, byte, char

float long, int, short, byte, char

long int, short, byte, char

short byte, char

byte char

char byte

Types

2-6 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

■ A float. Literal values are scanned by java.lang.Float.parseFloat

■ A boolean true or false

Object Types
An object type may be:

■ A java Object, identified by the qualified name, qname, of its class. For example,
java.lang.String.

■ An RL Language Object, identified by the qualified name, qname of its class. For
example, ruleset1.Class1.

String Types
RL Language uses Java strings, where:

■ Strings are instances of the class java.lang.String.

■ A string literal is delimited by double quotes ("string").

Use \" to include the double quote character in a string.

■ Strings may be concatenated using the + operator as follows:

– If any operand of a + operator is a String then the remaining operands are
converted to String and the operands are concatenated.

– An Object is converted to a String using its toString method.

– An instance of an RL Language class is converted to a String using a built-in
conversion.

Array Types

Square brackets [] denote arrays. An array in RL Language has the same syntax and
semantics as a Java 1-dimensional array.

Note: RL Language does not support multi-dimensional arrays.

Identifiers

Rule Language Reference 2-7

Identifiers

RL Language supports both the Java and the XML variant of identifiers and
namespace packages. To use the XML variant, the identifier must be enclosed in back
quotes.

Format
identifier ::= java-identifier | xml-identifier

java-identifier ::= valid-Java-identifier

xml-identifier ::= `valid-xml-identifier or URI `

Where:

valid-Java-identifier is: a legal Java identifier, for example, JLd_0.

valid-xml-identifier is: a legal XML identifier, for example x-1.

URI is: a legal Uniform Resource Identifier, for example, http://www.oracle.com/rules

Usage Notes
An xml-identifier can contain characters that are illegal Java identifier characters, for
example, ':' and '-'. The JAXB specification defines a standard mapping of XML
identifiers to Java identifiers, and includes preserving the Java conventions of
capitalization. The JAXB specification also defines a standard mapping from the
schema target namespace URI to a Java package name, and a mapping from
anonymous types to Java static nested classes.

Examples
RL Language supports both the Java and the XML variant of identifiers and
namespaces or packages. Enclose an identifier in back quotes to use the XML variant,
as shown in Example 2–3.

You can use the back quote notation anywhere an identifier or package name is legal
in RL Language. To use the XML variant of identifiers in String arguments to
assertXPath, back quotes are not needed.

Example 2–3 Sample Mapping for XML Identifiers Using Back Quotes

`http://www.mycompany.com/po.xsd` -> com.mycompany.po
`my-attribute` -> myAttribute
`Items/item` -> Items$ItemType

Literals

2-8 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Literals

Table 2–3 summarizes the RL Language literals. The literals are the same as Java
literals.

Table 2–3 RL Language Literals

A literal such as Can be assigned to variables of these types

An integer in range 0..127 or a char with
UCS2 encoding in range 0...127

byte, char, short, int, long, float, double

An integer in range 0..65535 or a char char, int, long, float, double

An integer in range -128..127 byte, short, int, long, float, double

An integer in range -32768..32767 short, int, long, float, double

An integer int, long, float, double

An integer with L suffix long, float, double

A floating point constant double

A floating point constant with F suffix float, double

A String enclosed in "" String, Object

Definitions

Rule Language Reference 2-9

Definitions

When a definition within a ruleset is executed, it is checked for correctness and then
saved for use later in the rule session.

Format
definition ::= variable | rule | rl-class-definition | function

name ::= identifier

qname ::= [ruleset-or-packagename.]name

ruleset-or-packagename ::= qname

Usage Notes
Every definition has a unique name within its containing ruleset, and thus a unique
qualified name, qname, within the rule session.

Variables defined at the ruleset level are global. Global variables are visible to all
expressions contained in the ruleset using the name of the variable and visible to
expressions in other rulesets using the variable qname. Functions and public classes
may also be referenced from other rulesets using the respective qname.

Java classes and their methods and properties also have qnames.

Example
The qname of the class definition in Example 2–4 is hello.enterRoom.

Example 2–4 Class Definition Within a Named Ruleset

ruleset hello {
 class enterRoom { String who; }
 rule sayHello {
 if (fact enterRoom) {
 println("Hello " + enterRoom.who);
 }
 }
 assert(new enterRoom(who: "Bob"));
 run("hello");
}

Variable Definitions

2-10 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Variable Definitions

Variables are declared as in Java, but initialization is always required.

Format
variable ::= [final] (numeric name = numeric-expression

| boolean name = boolean-expression

| type [] name = array-expression | null

| object-type name = object-expression | null)

) ;

Usage Notes
The type of the array initialized with the array-expression must be the same as the
type specified for the array elements.

A variable can have a primitive type, a Java class name, or an RL Language class
name, and may be an array of elements of the same type.

The type of the object-expression must be the same as the object-type of the variable
being declared. A class instance or array may be initialized to null.

Variables may be local or global in scope. The initialization expression is required.
Local variables may not be final.

Global Variables
Variables immediately enclosed in a ruleset, that is, in a definition, are global to a rule
session in scope. The initialization expression for a final global variable is executed
when the global variable is defined.

The initialization expression for a non-final global variable is executed both:

■ When the global variable is defined.

■ Each time the reset function is called.

Global variables declared as final may not be modified after they are initialized.

Global variables referenced in a rule condition (fact-set-condition) must be final.

Examples
Example 2–5 shows that the reset function performs initialization for the non-final
global variable i. Thus, this example prints 0, not 1.

Example 2–5 Non-Final Global Variable Initialization After Reset Function

RL> int i = 0;
RL> i++;
RL> reset();
RL> println(i);

Be careful when initializing global variables with functions that have side effects. If
you do not want the side effects repeated when calling reset, you should declare the

Definitions

Rule Language Reference 2-11

variable final. For example, Example 2–6 prints "once" twice and Example 2–7 prints
"once" once.

Example 2–6 Initializing a Global Variable with Side Effects with Reset

RL> clear;
RL> function once() returns int
{
 println("once");
 return 1;
}
RL> int i = once();
once
RL> reset();
once
RL>

Example 2–7 Initializing a Final Global Variable to Avoid Side Effects with Reset

RL> clear;
RL> function once() returns int
{
 println("once");
 return 1;
}
RL> final int i = once();
once
RL> reset();
RL>

Rule Definitions

2-12 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Rule Definitions

The Oracle Rules Engine matches facts against the fact-set-conditions of all rules in the
rule session to build the agenda of rules to execute. A fact set row is a combination of
facts that makes the conditions of a rule true. An activation is a fact set row paired
with a reference to the action-block of the rule. The agenda is the list of all activations
in the rules session. The Oracle Rules Engine matches facts and rules when the state of
working memory changes, typically when a fact is asserted or retracted.

The run, runUntilHalt, and step functions execute activations. Activations are
removed from the agenda after they are executed, or if the facts referenced in their fact
set row are modified or retracted such that they no longer match the rule's condition.

Activations are executed in order of the ruleset stack. You can manage the ruleset stack
with the getRulesetStack, clearRulesetStack, pushRuleset, and popRuleset functions.

In order for a rule to fire, three things must occur:

1. An activation of that rule must be on the agenda.

2. The containing ruleset must be at the top of the ruleset stack.

3. You must invoke run, runUntilHalt, or step.

The fact set produced in a fact-set-condition is available to the rule actions. For each
row in the fact set, the action-block is activated as follows:

■ The rule’s action-block is scheduled for execution at the specified rule priority.

■ References from the action-block to the matched facts are bound to the current
row.

■ If a matched fact is retracted before the action-block is executed, the dependent
activations are destroyed (removed from the agenda).

Format
rule ::= rule rule-name { property* fact-set-condition action-block }

rule-name ::= name

property ::= priority | autofocus | logical | active

priority ::= priority = numeric-expression

autofocus ::= autofocus = boolean-literal

logical ::= logical = (boolean-literal | positive-integer-literal)

active ::= active = boolean-literal

effectiveDateForm ::= effectiveDateForm = an int restricted to one of values defined in
oracle.rules.rl.Rule: EDFORM_DATE, EDFORM_DATETIME, or EDFORM_TIME

effectiveStartDate ::= effectiveStartDate = expression of type java.util.Calendar

effectiveEndDate ::= effectiveEndDate = expression of type java.util.Calendar

Where:

positive-integer-literal is: an integer literal that is > 0

Definitions

Rule Language Reference 2-13

Usage Notes
The priority property specifies the priority for a rule. Within a set of activations of
rules from the same ruleset, activations are executed in priority order (see "Ordering
Rule Firing" on page 1-9). When rules have different priorities, the rules with a higher
priority are activated before those with a lower priority. The default priority is 0.
Within a set of activations of rules of the same priority, the most recently added
activations are executed first, but this behavior can be changed (see the getStrategy
and setStrategy functions).

A rule with the autofocus property equal to true automatically pushes its containing
ruleset onto the ruleset stack whenever it is activated.

A rule with the logical property makes all facts asserted by the rule's action block
dependent on some or all facts matched by the rule's condition. An integer value of n
for the logical property makes the dependency on the first n top-level &&ed fact set
expressions in the rule's condition. A boolean value of true for the logical property
makes the dependency on the fact set expression of the condition. Anytime a fact
referenced in a row of the fact set changes such that the rule's logical conditions no
longer apply, the facts asserted by the activation associated with that fact set row are
automatically retracted. A rule with the logical property enabled makes all facts that
are asserted by an action block in the rule dependent on facts matched in the rule
condition. Anytime a fact referenced in the rule condition changes, such that the rule's
conditions no longer apply, the facts asserted by the rule condition are automatically
retracted.

The active property defaults to true.

effectiveStartDate date defaults to null.

effectiveEndDate date default to null.

effectiveDateForm defaults to Rule.EDFORM_DATETIME

Examples
Example 2–8 shows a rule with the inference, Socrates is mortal, which depends on the
fact, Socrates is a man.

Example 2–8 Defining and Using Rule allMenAreMortal

RL> clear;
RL> class Man {String name;}
RL> class Mortal {String name;}
RL> Mortal lastMortal = null;
RL> rule allMenAreMortal {
 logical = true;
 if (fact Man)
 {
 assert(lastMortal = new Mortal(name: Man.name));
 }
}
RL> watchAll();
RL> Man socrates = new Man(name: "Socrates");
RL> assert(socrates);
 ==> f-1 main.Man (name : "Socrates")
==> Activation: main.allMenAreMortal : f-1
RL> run();
Fire 1 main.allMenAreMortal f-1
 ==> f-2 main.Mortal (name : "Socrates")
 <== Focus main, Ruleset stack: {}

Rule Definitions

2-14 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

RL> retract(socrates);
 <== f-1 main.Man (name : "Socrates")
 <== f-2 main.Mortal (name : "Socrates")
RL> showFacts();
f-0 initial-fact()

Example 2–9 shows that it is possible for the same fact to be asserted by multiple rules,
or to be asserted by a top-level ruleset action or function. Such a fact will not be
automatically retracted unless all asserters have logical clauses that call for automatic
retraction. A fact that is asserted by a top level action or function will never be
automatically retracted.

Note that the fact that Socrates is mortal is not retracted, because it was asserted by a
top level action that is not dependent on the fact that Socrates is a man.

Example 2–9 Asserting Facts Unconditionally

RL> assert(socrates);
 ==> f-3 main.Man(name : "Socrates")
==> Activation: main.allMenAreMortal : f-3
RL> run();
Fire 1 main.allMenAreMortal f-3
 ==> f-4 main.Mortal(name : "Socrates")
 <== Focus main, Ruleset stack: {}
RL> assert(lastMortal);
 <=> f-4 main.Mortal(name : "Socrates")
RL> retract(socrates);
 <== f-3 main.Man(name: "Socrates")
RL> showFacts();
f-0 initial-fact()
f-2 main.Mortal(name: "Socrates")

Definitions

Rule Language Reference 2-15

Class Definitions

All referenced classes must be defined with an RL Language class definition or must
be on the Java classpath (Java classes must be imported).

Both RL Language classes and Java classes can support xpath using the supports
keyword, with a supplied xpath.

Format
rl-class-definition ::= [public] [final] class name [extends] [supports] { type-property* }

type-property ::= [public] type name [= expression] ;

extends ::= extends qname extended-class-name

extended-class-name ::= qname

Usage Notes
The type of the optional initialization expression must be the same as the type of the
property or implicitly convertible to that type.

A public class is visible from all rulesets. A non-public class is visible only in the
containing ruleset.

A final class cannot be extended.

The extended class must be a defined RL Language class not an imported Java class.

Each property may have an optional initializer. The initializer is evaluated when the
class is instantiated by new. If an initial value is also passed to new, the value passed to
new overwrites the value computed by the initializer in the class definition.

A public property is visible from all rulesets. A non-public property is visible only
within its containing ruleset.

Examples
In RL Language, the type of an property may be the name of the containing class
definition (see Example 2–10). RL Language, unlike Java, does not support forward
references to class definitions (see Example 2–11).

Example 2–10 Class Definition with Type of Property with Name of Containing Class

class C0 {
 C0 next;
}

Example 2–11 Class Definitions with Forward References are Not Allowed

class C1 {
 C2 c2; // causes an UndefinedException
}
class C2 {
 C1 c1;
}

Class Definitions

2-16 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

xpath Support

Both RL Language classes and Java classes support xpath.

An xml identifier does not need to be surrounded by back quotes within an xpath.

The built-in assertXPath function supports a simple xpath-like syntax to assert a tree of
objects as facts. The nodes in the tree are objects from classes in the same package or
ruleset that support xpath. The links between parent and child nodes are instances of
the XLink class. All of the properties in a class that supports xpath may be used in the
xpath expression.

Format
supports ::= supports xpath

xpath ::= first-step next-step*

first-step ::= (. | /* | [//] (identifier | *)) predicate*

predicate ::= [identifier xrelop literal]

next-step ::= (/ | //) (identifier | *) predicate*

xrelop ::= eq | lt | gt | le | ge | ne | == | < | > | <= | >= | !=

literal ::= integer-literal | decimal-literal | double-literal | string-literal | true | false | dateTime-literal
 | date-literal | time-literal

integer-literal ::= [-] d+

d ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

decimal-literal ::= [-] (. d+ | d+ . d*)

double-literal ::= [-] (. d+ | d+ [. d*]) (e | E) [+ | -] d+

string-literal ::= " char* " | ' char* '

dateTime-literal ::= local-date T time-literal

date-literal ::= local-date [time-zone]

time-zone ::= Z | (+ | -) d d : d d

local-date ::= d d d d - d d - d d

time-literal ::= d d : d d : d d [. d+] [time-zone]

Usage Notes
RL Language xpath support was designed to work with classes that conform to the
Java XML Binding (JAXB) 1.0 standard. All JAXB elements from the given root to the
elements selected by the xpath, inclusive, are asserted. Additional XLink facts are
asserted to aid in writing rules about the parent-child relationships among the asserted
elements.

If a JAXB element is retracted or re-asserted, using assert, then all of its children, and
XLinks, are retracted. Instead of re-asserting, use assertXPath again.

Note that RL Language Xpath is not a proper subset of W3C Xpath 2.0. Note the
following differences:

Note: xpath support has been deprecated. For more information, see
assertTree.

Definitions

Rule Language Reference 2-17

■ The lt and <, gt and >, are synonymous in RL Language but different in W3C.

■ Date literals must use xs:date() and other constructors in W3C.

■ Constructors are not supported in RL Language, and literals, other than string
literals, must not be quoted in RL Language.

Examples
Table 2–4 shows the xpath selection options for use with the built-in assertXPath
function. In the descriptions, select means that the element is asserted as a fact, and the
selected property of the XLink whose element property refers to the asserted element
is true. The ancestors of a selected element, up to and including the root element, are
always asserted, but not necessarily selected.

Example 2–12 instantiates an RL Language class called Person to build a family tree, as
follows:

First Generation Second Generation Third Generation
Ida
 Mary
 Fred
 John
 Rachel
 Sally
 Evan

Example 2–12 uses the assertXPath function twice, with two xpaths:

//kids[male==true]
//kids[male==false]

Example 2–12 defines two rules:

■ sibling: prints all pairs of siblings.

■ brotherSister: prints all pairs of brothers and all pairs of sisters.

Example 2–13 shows the output from running Example 2–12.

Example 2–12 Sample Family Tree Rule Using supports xpath

import java.util.*;
ruleset xp {
 public class Person supports xpath {
 public String name;

Table 2–4 xpath Selection Strings

xpath Select String Description of Selection

//* Select all elements including the root

.//* Select all but the root

. Select only the root

//foo Select all objects that are the value of a property named foo.

.[x==1]/y Select children or attributes of root named y only if the root has a
child element or attribute named x and equal to 1

Class Definitions

2-18 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

 public boolean male;
 public List kids;
 }
 // Build the Family Tree
 Person p = new Person(name: "Fred", male: true);
 List k = new ArrayList();
 k.add(p);
 p = new Person(name: "John", male: true);
 k.add(p);
 p = new Person(name: "Mary", male: false, kids: k);
 Person gramma = new Person(name: "Ida", male: false, kids: new ArrayList());
 gramma.kids.add(p);
 p = new Person(name: "Sally", male: false);
 k = new ArrayList();
 k.add(p);
 p = new Person(name: "Evan", male: true);
 k.add(p);
 p = new Person(name: "Rachel", male: false, kids: k);
 gramma.kids.add(p);
 // test for siblings.
 // Note the test id(p1) < id(p2) halves the Cartesian product p1 X p2.
 rule sibling {
 if (fact Person p1 && fact Person p2 && id(p1) < id(p2) &&
 exists(fact XLink(element: p1) x &&
 fact XLink(element: p2, parent: x.parent))) {
 println(p1.name + " is sibling of " + p2.name);
 }
 }
 // test for brothers and sisters, given the following 2 assertXPath() calls
 rule brotherSister {
 if (fact Person p1 && fact Person p2 && id(p1) < id(p2) &&
 exists(fact XLink(element: p1, selected: true) x &&
 fact XLink(element: p2, selected: true,
 parent: x.parent) y &&
 x.samePath(y))) {
 println(p1.name + " and " + p2.name + " are " +
 (p1.male ? "brothers" : "sisters"));
 }
 }
 assertXPath("xp", gramma, "//kids[male==true]");
 assertXPath("xp", gramma, "//kids[male==false]");
 run("xp");
}

Example 2–13 Output from Run of Family Tree Example

Mary and Rachel are sisters
Evan is sibling of Sally
Fred and John are brothers
Fred is sibling of John
Mary is sibling of Rachel

Example 2–14 shows that when you retract an element that was asserted with
assertXPath, all its descendents are retracted as well.

The result is:

f-0 initial-fact()

For a total of 1 fact.

Definitions

Rule Language Reference 2-19

Example 2–14 Retract the Family Tree

retract(xp.gramma);
showFacts();

Example 2–15 prints all pairs of ancestors. First, the family tree is asserted.
Example 2–16 shows the output of a run of the code from Example 2–15.

Example 2–15 Print Ancestor Pairs with Class Ancestor

assertXPath("xp", xp.gramma, "//*");
class Ancestor { Object element; Object ancestor; }
rule parents {
 if (fact XLink x) {
 assert(new Ancestor(element: x.element, ancestor: x.parent));
 }
}
rule ancestors {
 if (fact XLink x && fact Ancestor(ancestor: x.element) a) {
 assert(new Ancestor(element: a.element, ancestor: x.parent));
 }
}
rule printAncestor {
 if (fact xp.Person p && fact xp.Person a &&
 fact Ancestor(element: p, ancestor: a) {
 println(a.name + " is an ancestor of " p.name);
 }
}
run();

Example 2–16 Output from Run of Ancestor Example

Mary is an ancestor of John
Ida is an ancestor of John
Mary is an ancestor of Fred
Ida is an ancestor of Fred
Ida is an ancestor of Mary
Rachel is an ancestor of Evan
Ida is an ancestor of Evan
Rachel is an ancestor of Sally
Ida is an ancestor of Sally
Ida is an ancestor of Rachel

Function Definitions

2-20 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Function Definitions

A function is similar to a Java static method.

Format
function ::= function name parameters [returns type] action-block

parameters ::= ([type identifier (, type identifier)*])

Usage Notes
The action-block may invoke the function being defined. However, the action-block
may not contain a forward reference to a function that has not already been defined
(see Example 2–17 and Example 2–18).

Functions may be overloaded. For example, the built-in println function is overloaded.

Examples

Example 2–17 Valid Function Definition Containing Recursive Reference

function factorial(long x) returns long {
 if (x <= 1) { return 1; }
 else { return x * factorial(x - 1); }
}

Example 2–18 Invalid Function Definition Containing Reference to Undefined Function

function f1() {
 f2(); // causes an UndefinedException
}
function f2() {
}

Fact Class Declarations

Rule Language Reference 2-21

Fact Class Declarations

Any Java class can be used as an RL Language fact in a fact context.

A fact context is one of:

■ The class of a fact-class declaration.

■ The class of a fact-set-pattern.

■ The declared class of an argument to the assert function.

■ The declared class of an argument to the retract function.

■ The declared class of an element argument to the assertXPath function.

If a class or interface B implements or extends class or interface A, and both A and B
appear in fact contexts, then A must appear before B. Failure to follow this rule will
result in a FactClassException.

Fact class definitions are not required when using RL Language classes.

For xpath support, use the supports xpath clause of the RL Language class definition.

Format
fact-class ::= fact class class-name [supports] (fact-class-body | ;)

class-name ::= qname

fact-class-body ::= { [hidden-properties | properties]}

hidden-properties ::= hide property * ; | (hide property ((name ,)* name | *) ;)+

properties ::= property * ; | (property ((name ,)* name | *) ;)+

Usage Notes
The fact-class-body is optional in a fact-class declaration. The default fact-class-body
is:

{ property *; }

Either the property or hide property keywords can be used in a body, but not
both.

If hide property is used with a list of property names, then those property names
are hidden and not available for use in RL Language.

If hide property is used with the wildcard "*", then no properties other than those
exposed by a superclass or superinterface are available for use in RL Language.

If property is used with a list of property names, then those properties are exposed
and available for use in RL Language. If property is used with the wildcard *, then all
properties other than those hidden by a superclass or superinterface are available for
use in RL Language.

A HiddenPropertyException will be thrown if a superclass exposes a property
that its subclass hides or if a subclass exposes a property that its superclass hides.

Fact Class Declarations

2-22 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Examples
Suppose a Java class Vehicle has subclasses Car and Truck. The rule shown in
Example 2–19, matchVehicle, generates a TypeCheckException wrapping a
FactClassException because the subclasses are referenced before the superclass.
Wrapping is used instead of subclassing for both FactClassException and
MultipleInheritanceException because in some fact contexts, these exceptions
are not thrown until runtime and then are wrapped by a RLRuntimeException.

Example 2–19 matchVehicle Rule with Subclasses Referenced Before the Superclass

assert(new Car()); // fact context for Car
assert(new Truck()); // fact context for Truck
rule matchVehicle {
 if (fact Vehicle v) { // fact context for Vehicle - too late!
 if (v instanceof Car) {
 println("car");
 } else {
 println("truck");
 }
 }
 } // generates a TypeCheckException wrapping a FactClassException

In Example 2–20, the matchVehicle rule is the first reference to the superclass, so no
exception is thrown.

Example 2–20 matchVehicle Rule with References to Superclass First

clear;
rule matchVehicle {
 if (fact Vehicle v) {
 if (v instanceof Car) {
 println("car");
 } else {
 println("truck");
 }
 }
 }
assert(new Car());
assert(new Truck());
run(); // prints "truck" then "car"

In Example 2–21, a fact class declaration is the first reference to the superclass, so no
exception is thrown.

Example 2–21 matchVehicle Rule with Fact Class Declaration with Reference to
Superclass First

clear;
fact class Vehicle;
assert(new Car());
assert(new Truck());
rule matchVehicle {
 if (fact Vehicle v) {
 if (v instanceof Car) {
 println("car");
 } else {
 println("truck");
 }
 }

Fact Class Declarations

Rule Language Reference 2-23

 }
run(); // prints "truck" then "car"

Facts do not support multiple inheritance. Consider the Java classes and interfaces
shown in Example 2–22.

Example 2–22 Java Classes and Sample Multiple Inheritance

package example;
public class Car {}
public interface Sporty {}
public class SportsCar extends Car implements Sporty {}

Example 2–23 entered at the command-line results in a TypeCheckException that
wraps a MultipleInheritanceException. Use the getCause method on the
TypeCheckException to retrieve the wrapped
MultipleInheritanceException exception.

Example 2–23 MultipleInheritance Exception for Facts

import example.*;
fact class Sporty;
fact class Car;
fact class SportsCar; // throws TypeCheckException wrapping a
MultipleInheritanceException

Example 2–24 illustrates an exception that occurs at runtime when the Oracle Rules
Engine attempts to assert the rx8 object and discovers its true type is SportsCar, not
Object. To avoid the MultipleInheritanceException, you must choose
whether to use Sporty or Car in a fact class context. You cannot use both.

Example 2–24 RLRuntimeException wraps MultipleInheritanceException

import example.*;
fact class Sporty;
fact class Car;
Object rx8 = new SportsCar();
assert(rx8); // throws RLRuntimeException wrapping a MultipleInheritanceException

Example 2–25 FactClassException Possible Cause

oracle.rules.rl.FactClassException: fact class for 'X' should be declared earlier
in rule session

Note the fact context rule is:

If X is a subclass or subinterface, of Y, then Y must appear in a fact context before X. A
fact context is a fact-class declaration, a rule fact pattern, or the argument of assert,
assertXPath, or retract.

In some cases you need to consider the fact context. For example, with an XML schema
such as the following:

<schema>
 <element name=A type=T/>
 <complexType name=T>
 <sequence>
 <element name=B type=T/>

Fact Class Declarations

2-24 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

 </sequence>
 </complexType>
</schema>

JAXB generates:

interface T {
 List getB(); // List has TImpl objects
}
interface A extends T;
class AImpl implements A extends TImpl;
class TImpl implements T;

In an example with the following order of appearance in fact contexts:

1. fact class T

2. assertXPath AImpl

3. assert TImpl (performed internally by the assertXPath implementation)

The, AImpl precedes TImpl in the ordering, yet AImpl extends TImpl, which would
give the exception. The fix for this fact context is to explicitly issue fact class
TImpl; anywhere before Step 2.

Import Statement

Rule Language Reference 2-25

Import Statement

An import statement makes it possible to omit the package name qualification when
referencing Java classes.

Format
import ::= import (Java-class-name | Java-package-name.*) ;

Java-package-name ::= qname

Usage Notes
Import commands can be placed inside a ruleset, implying that the scope of the import
is the ruleset where the import is located, but the import actually applies globally. For
example, in the following code if the imports were scoped to the rulesets, then the
PrintWriter reference in r2 would not compile.

class X { }

ruleset rl {
 import java.io.*;
 rule A {
 if (fact X) {
 @ PrintWriter pw = null;
 }
}
}

ruleset r2 {
 rule B {
 if (fact X) {
 @ PrintWriter pw = null;
 }
 }
}

Include Statement

2-26 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Include Statement

Include the ruleset at the location specified by the URL.

Format
include ::= include URL ;

Where:

URL is: A legal Uniform Resource Locator.

Usage Notes
The file: and http: schemes are supported.

Example
include file:example.rl;

Using Expressions

Rule Language Reference 2-27

Using Expressions

Expressions in RL Language use familiar Java syntax (with minor variations as noted).
For example,

(a + 1) * (b - 2)

Use expressions in a condition or in an action, with some restrictions. Expressions are
strongly typed.

Format
expression ::= boolean-expression

 | numeric-expression

 | string-expression

 | array-expression

 | fact-set-expression

 | object-expression

 | comparable-expression

Boolean Expressions

2-28 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Boolean Expressions

Boolean expressions, as in Java, may be either true or false.

Format
boolean-expression ::= boolean-assignment

 | boolean-expression ? boolean-expression : boolean-expression

 | boolean-expression || boolean-expression

 | boolean-expression && boolean-expression

 | numeric-expression equal-op numeric-expression

 | object-expression equal-op object-expression

 | boolean-expression equal-op boolean-expression

 | object-expression instanceof type-name

 | numeric-expression relop numeric-expression

 | string-expression relop string-expression

 | ! boolean-expression

 | boolean-primary-expression

boolean-assignment ::= boolean-target-expression = boolean-expression

equal-op ::= == | !=

relop ::= < | > | <= | >=

type-name ::= qname

Usage Notes
For strings, < is Unicode UCS2 code point order.

For objects,!= does not test for inequality of object references, but rather is the
negation of the equals methods.

Thus, the statement:

if (object1 != object2){}

Is equivalent to the statement:

if (! (object1.equals(object2)){}

RL Language, unlike Java, does not support testing for equality of object references.

Example
Example 2–26 shows use of a boolean expression in RL Language.

Using Expressions

Rule Language Reference 2-29

Example 2–26 RL Boolean Expression

if (
 (true ? "a" < "b" : false)
 && (1 == 0 || 1.0 > 0)
 && "x" instanceof Object)
{
 println("all true");
};

Numeric Expressions

2-30 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Numeric Expressions

Numeric expressions, as in Java, implicitly convert integer operands to floating point if
other operands are floating point. Table 2–1 shows other implicit conversions.

Format
numeric-expression ::= numeric-assignment

 | boolean-expression ? numeric-expression : numeric-expression

 | numeric-expression(+ | -) numeric-expression

 | numeric-expression (* | / | %) numeric-expression

 | numeric-expression ** numeric-expression

 | (numeric-cast) numeric-expression

 | (+ | -) numeric-expression

 | (++ | --) numeric-primary-expression

 | numeric-primary-expression [++ | --]

numeric-assignment ::= numeric-target-expression (= | += | -= | *= | /= | %=) numeric-expression

numeric-cast ::= numeric

Usage Notes
Table 2–5 shows the precedence order, from highest to lowest, for a
numeric-expression.

Table 2–5 Expression Operator Precedence

Symbols Category Description

++
--

Post-increment or
Post-decrement

numeric-primary-expression [++ | --]

++
--

Pre-increment or
Pre-decrement

(++ | --) numeric-primary-expression

-
+

Unary minus or
Unary plus

(+ | -) numeric-expression

(type) Type cast (numeric cast) numeric-expression

** Exponentiation numeric-expression ** numeric-expression

*, /, % Multiply or Divide or
Remainder

numeric-expression (* | / | %) numeric-expression

+ , - Addition or Subtraction numeric-expression(+ | -) numeric-expression

Conditional boolean-expression ? numeric-expression : numeric-expression

= Assignment Operators numeric-target-expression (= | += | -= | *= | /= | %=) numeric-expression

Using Expressions

Rule Language Reference 2-31

String Expressions

As in Java, any expression can be converted to a string using the concatenation +
operator. In RL Language, unlike Java, when an array is converted to a string, the
array contents are converted to a string, with array elements separated by commas and
surrounded with curly braces. When an instance of an RL Language class is converted
to a string, the class name appears followed by property value pairs separated by
commas and surrounded with parentheses. This RL Language feature is useful for
logging, tracing, and debugging.

When + operator is applied to an operand that is a String, then all operands are
converted to Strings and the operands are concatenated.

Format
string-expression ::= string-assignment

 | boolean-expression ? string-expression : string-expression

 | string-expression + expression

 | expression + string-expression

 | string-primary-expression

 |

string-assignment ::= string-target-expression (= | +=) string-expression

Example
Example 2–27 shows use of a string expression in RL Language. The example prints "1
2.0 true {1,2}"

Example 2–27 RL String Expression

int i = 1;
double f = 2.0;
boolean b = true;
int[] v = new int[]{i, 2};
println(i + " " + f + " " + b + " " + v);

Array Expressions

2-32 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Array Expressions

RL Language arrays behave just like Java arrays, but are limited to one dimension. The
base type of an array is the type of the members of the array. All members must be of
the same type. An array element may contain an array but only if the containing array
is of type Object[].

Format
array-expression ::= array-assignment

 | boolean-expression ? array-expression : array-expression

 | (array-cast) (array-expression | object-expression)

 | array-primary-expression

array-assignment ::= array-target-expression = array-expression

array-cast ::= type

Usage Notes
The type of an array-cast must be an array type.

Note: RL Language does not directly support multi-dimensional
arrays.

Using Expressions

Rule Language Reference 2-33

Fact Set Expressions

A fact-set-expression matches, filters, and returns facts from working memory. A
fact-set-expression is legal only in a rule fact-set-condition. The if keyword indicates a
fact-set-condition; however, a fact-set-condition is different from an if action. A rule’s
fact-set-condition iterates through all the rows in a fact set that match the
fact-set-condition. The if action tests a boolean expression.

Format
fact-set-condition ::= if fact-set-expression

fact-set-expression ::= fact-set-expression || fact-set-expression

 | fact-set-expression && fact-set-expression

 | fact-set-expression && boolean-expression

 | ! fact-set-expression

 | exists fact-set-expression

 | fact-set-pattern

 | (fact-set-expression)

 | aggregate

fact-set-pattern ::= fact [(property-pattern (, property-pattern)*)]

 [var] local-object-variable

local-object-variable ::= identifier

property-pattern ::= property-name : field-pattern

field-pattern ::= var local-property-variable | constraint

local-property-variable ::= identifier

simple-expression ::= string literal

 | object-target-expression

 | numeric literal

 | numeric-target-expression

 | boolean-literal

 | boolean-target-expression

constraint ::= simple-expression

property-name ::= name

aggregate ::= aggregate fact-set-expression : aggregate-spec (, aggregate-spec)*

aggregate-spec ::= aggregate-function [var] identifier

aggregate-function ::=

average (numeric-expression)

| sum (numeric-expression)

Fact Set Expressions

2-34 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

| minimum (comparable-expression)

| maximum (comparable-expression)

| count ()

| collection (object-expression)

| user-defined (expression type Tin)

user-defined ::= qname

Usage Notes
A fact-set-expression can limit the facts it returns using either a simple-expression as a
constraint in a fact-set-pattern or using a supported operator with the
fact-set-expression.

A fact-set-expression may not contain any of the following:

■ assert

■ modify

■ new

■ References to non-final global variables.

Operator precedence is as in Java. Use parentheses to force desired precedence. For
example,

fact person var p && (p.age < 21 || p.age > 65)

Without the parentheses, the p in p.age is undefined (see Table 2–5 for more details
on operator precedence).

A local-object-variable or local-property-variable is in scope for all expressions
following the pattern that are following the pattern and connected with the &&
operator. If the pattern is not contained in an exists, ||, or ! expression, the variable
is also in scope in the rule's action-block. The &&'ed expressions may filter the returned
facts, so that only the facts surviving the filter are returned.

Fact Set Pattern - Fetch From Working Memory
The most primitive fact-set-expression is the fact-set-pattern that returns some or all
facts of the given class that have been asserted into working memory. A
fact-set-pattern searches working memory for facts of the given class and with the
optional constraint on the property values. The returned fact set contains a row for
each matching fact. A local row variable can be defined to refer to each row, or local
field variables can be defined to refer to fields within a row. If no local row variable is
supplied, the name part of the class qname can be used to refer to each row (see
Example 2–31).

Join Operator
The && operator defines the cross product or join of two fact-set-expression operands.
The left-hand-side of a fact-set-expression && operator must be a fact set. The
right-hand-side of a join operator is another fact-set-expression. The result of applying
the && operator to two fact sets is the joined fact set.

Filter Operator
The && operator defines a filter operator that rejects facts in its left-hand-side
fact-set-expression that do not match the right-hand-side boolean-expression. The

Using Expressions

Rule Language Reference 2-35

left-hand-side of filter must be a fact-set-expression. The right-hand-side of a filter is a
boolean-expression.

A filter right-hand-side may include references to variables defined, using the var
keyword, in the left-hand-side.

Union Operator
The || operator defines the union of two fact-set-expression operands. When the||
operator is applied to fact-set-expressions, the following is true:

■ The expression’s vars cannot be referenced outside the containing expression.

■ The|| returns the concatenation of its input fact sets, but the contents of the
produced fact set are not accessible. Thus, || is typically used in a ! or exists
expression. Rather than a top-level || in a condition, it is usually better to use two
or more rules with top-level && operators so that vars defined in the condition can
be referenced in the action-block.

Empty Operator
The ! operator tests if the fact-set-expression is empty. When the ! is applied to the
fact-set-expression, the following is true:

■ The expression’s vars cannot be referenced outside the containing ! expression.

■ The ! operator returns a single row if the fact-set-expression is empty, else the !
operator returns an empty fact set.

Exists (Not Empty) Operator
The exists operator tests if the fact-set-expression is not empty.

When the exists operator is applied to the fact-set-expression, the following is true:

■ The expression’s vars cannot be referenced outside the containing exists
expression.

■ The exists returns a single row if the expression is not empty, else exists
returns an empty fact set.

Var Keyword
Note that when you use var, the fact is only visible using the var defined variable
(and not using the original name). Thus, the following example works, assuming
action.kind is defined:

if (fact action) {
 println(action.kind);
}

However, for the following example, after var a is defined, the action.kind
reference produces a syntax error because you need to use a.kind after the var a
definition.

if (fact action var a) {

Note: In the following construction:

if (fact X || fact W) {}

If both an X and a W are asserted, this rule fires twice, one time for each
fact.

Fact Set Expressions

2-36 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

 println(action.kind);
}

Aggregate
Aggregates support the following functions:

RL Language supports the aggregate pattern that applies one or more aggregate
functions to a factRowCollection, and binds the aggregates to pattern variables.
The usual SQL set of built-in aggregates is supported, and user-defined aggregates are
supported when a user-supplied Java class is supplied.

If an aggregate function uses primitive wrapper types, for example Long, Double, then
these will be unboxed such that the bind variable for the result has the appropriate
raw primitive type.

If the fact expression in an aggregate is empty, then the rule will not fire. This ensures
that if there are no matching facts for the expression, the aggregate function does not
return a number that is meaningless in this context. For example, the "sum" of a
property of a zero-size set is not meaningful.

For example, print the names of employees who are paid better than average:

if fact Emp emp && aggregate fact Emp(salary: var sal) : average(sal) var avgSal
&& emp.salary > avgSal {
 println(emp.name);
}

Print the names of employees, who are paid better than the average of employees who
make over $100,000:

if fact Emp emp && aggregate fact Emp(salary: var sal) && Emp.salary > 100000
average(sal) var avgSal
&& emp.salary > avgSal {
 println(emp.name);
}

User-defined aggregates are supported by providing a public class named
user-defined with a public 0-arg constructor that implements:

public interface IncrementalAggregate<Tin, Tout> extends Serializable
{
 public void initialize();
 public void add(Tin value);
 public void remove(Tin value);
 public Tout getResult();

Table 2–6 Aggregate Functions

Function Description

average() Provides the average for matching facts. The result is double.

sum() Provides the sum for the matching facts. The result is double or long.

count() The result is long.

minimum() Provides the minimum for the matching facts.

maximum() Provides the maximum for the matching facts.

collection() The result is java.util.List of Facts.

user defined For a user-defined function the result is type Tout.

Using Expressions

Rule Language Reference 2-37

 public boolean isValid();
}

Implementations must support the following invocation sequence:

new (initialize (add|remove)+ isValid getResult)*

isValid should return true when the result of the user defined aggregate is valid
and false otherwise.

Examples
Example 2–28 shows the action is placed on the agenda for all Counter facts with a
value of 1.

Example 2–28 Fact Set Expression for Counter.value

class Counter { int id; int value; }
rule ex1a {
 if (fact Counter c && c.value == 1)
 { println("counter id " + c.id + " is 1"); }
}

Example 2–29 shows an equivalent way to express the rule from Example 2–28, using a
constraint.

Example 2–29 Using a Fact Set Constraint

rule ex1b {
 if (fact Counter(value: 1) c)
 { println("counter id " + c.id + " is 1"); }
}
assert(new Counter(id: 99, value: 1));
run(); // prints twice, once for each rule

Example 2–30 shows an illegal use of a fact set, because c is used before it is defined.

Example 2–30 Illegal Use of Fact Set

rule ex2 {
 if (c.value == 1 && fact Counter c)
 { println("counter id " + c.id + " is 1"); }
}

Example 2–31 shows an action is placed on the agenda for all AttFacts with the
property a2==0 and without a matching, equal first elements, Counter.

Example 2–31 Using a Fact Set with && Operator for Counter Fact

class AttFact {int a1; int a2;}
rule ex3 {
 if (fact AttFact(a2: 0) && ! fact Counter(id: AttFact.a1))
 { println(AttFact.a1); }
}
assert(new AttFact()); // will match because a1=a2=0
assert(new AttFact(a1: 1, a2: 0)); // will not match
run(); // rule fires once

Fact Set Expressions

2-38 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Example 2–32 shows the condition, if (fact Ca a && fact Cb(v: a.v) b) is
interpreted as follows:

■ The fact Ca a returns a fact set containing a(v: 1), a(v: 2), a(v: 3)

■ The && operator returns a fact set containing the two rows {a(v: 1),b(v:
1)}, {a(v: 2),b(v: 2)}

Example 2–32 Using a Fact Set with && Operator

class Ca {int v;}
assert(new Ca(v: 1));
assert(new Ca(v: 2));
assert(new Ca(v: 3));
class Cb {int v;}
assert(new Cb(v: 0));
assert(new Cb(v: 1));
assert(new Cb(v: 2));
rule r {
 if (fact Ca a && fact Cb(v: a.v) b) {
 println("row: " + a + " " + b);
 }
}
run(); // prints 2 rows

Using Expressions

Rule Language Reference 2-39

Comparable Expression

Comparable expressions allow objects that implement java.lang.Comparable to be
compared using the ==, !=, <, <=, >, and >= operators. This allows dates to be easily
compared. Also, BigDecimal, often used to represent money, can be compared in
such expressions.

Format
comparable-expression ::=

 qname variable of type implementing java.lang.Comparable

 | member of type implementing java.lang.Comparable

Object Expressions

2-40 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Object Expressions

The only expression operators for objects are assignment and cast.

Format
object-expression ::= object-assignment | (ob-cast) object-expression |
 boolean-expression ? object-expression : object-expression

object-assignment ::= object-target-expression = object-primary-expression

ob-cast ::= object-type

Using Expressions

Rule Language Reference 2-41

Primary Expressions

Primary expressions include assignment targets such as variables, properties, array
elements, class members and other tightly binding expression syntax such as literals,
method and function calls, and object and fact construction. The syntax is very similar
to Java except where noted.

Format
primary-expression ::= array-primary-expression

 | string-primary-expression

 | numeric-primary-expression

 | boolean-primary-expression

 | object-primary-expression

array-primary-expression ::=

 array-constructor

 | function-call returning array

 | method-call* returning 1-dim Java array

 | (array-expression)

 | array-target-expression

array-constructor ::= new (

 simple-type [numeric-expression integer]

 | numeric [] { numeric-expression (, numeric-expression)* } numeric expression must be
implicitly convertible to base

 | boolean [] { boolean-expression (, boolean-expression)* }

 | object-type [] { object-expression (, object-expression)* }

)

array-target-expression ::=

 qname variable of type array

 | member of type array

 | array-primary-expression base type is Object [numeric-expression int]

string-primary-expression ::=

 string literal (see "Literals" on page 2-8)

 | object-primary-expression object is java.lang.String

string-target-expression ::= object-target-expression object is java.lang.String

Primary Expressions

2-42 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

numeric-primary-expression ::=

 numeric literal

 | function-call returning numeric

 | method-call returning numeric

 | array-primary-expression . length

 | (numeric-expression)

 | numeric-target-expression

numeric-target-expression ::=

 qname variable of type numeric

 | member of type numeric

 | array-primary-expression base type is numeric [numeric-expression]

boolean-primary-expression ::=

 boolean-literal

 | function-call returning boolean

 | method-call returning boolean

 | (boolean-expression)

 | boolean-target-expression

boolean-literal ::= true | false

boolean-target-expression ::=

 qname variable of type boolean

 | member of type boolean

 | array-primary-expression base type is boolean [numeric-expression int]

object-primary-expression ::=

 new class-definition-name ([expression (, expression)*] argument list)

 | new class-definition-name ([property-pattern (, property-pattern)*] property-value pairs)

 | function-call returning Java object

 | method-call returning Java object

 | object-target-expression

object-target-expression ::=

 qname variable of type object

Using Expressions

Rule Language Reference 2-43

 | member of type Java object

 | array-primary-expression base type is object [numeric-expression int]

function-call ::= qname function name ([expression (, expression)*] argument list)

method-call ::= object-primary-expression . identifier method name
 ([expression (, expression)*] argument list)

member ::= object-primary-expression . identifier member name

Examples
Example 2–33 shows the RL Language literal syntax (which is the same as Java).

Example 2–33 Use of Literals

String s = "This is a string."
int i = 23;
double f = 3.14;
boolean b = false;

Methods and functions can be overloaded. However, unlike Java, RL Language uses a
first fit algorithm to match an actual argument list to the overloaded functions.

Example 2–34 shows an example of example of overloading

Example 2–34 Overloading

function f(int i);
function f(Object o);
function f(String s); // can never be called

f(1); // calls first f
f("a"); // calls second f, because "a" is an Object

new
RL Language classes do not have user-defined constructors. The default constructor
initializes properties to their default values. The RL Language new operator permits
specifying some property values (this works for Java bean properties, too).

A Java bean property may have a getter but no setter. Such a property may not be
modified.

Example

Example 2–35 Initialization Using the New Operator

class C { int i = 1; int j = 2; }
C c = new C();
println(c); // c.i == 1 and c.j == 2
c = new C(i: 3);

Primary Expressions

2-44 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

println(c); // c.i == 3 and c.j == 2
c = new C(i: 0, j: 0);
println(c); // c.i == c.j == 0

Actions and Action Blocks

Rule Language Reference 2-45

Actions and Action Blocks

RL Language, unlike Java, requires action blocks and does not allow a single
semicolon terminated action.

Format
action ::= action-block | if | while | for | try | synchronized | return | throw

 | assign | incr-decr-expression | primary-action

action-block ::= { (variable | action)* }

Usage Notes
An action block is any number of local variable declarations and actions. The variables
are visible to subsequent variable initialization expressions and actions within the
same action block.

In RL Language, unlike in Java, all local variables must be initialized when they are
declared. Local variables may not be final.

To exit, you can invoke the System.exit(int) method from within an action.

Example

Example 2–36 Action Block Sample

RL> {
 int i = 2;
 while (i-- > 0) { println("bye"); }
}
bye
bye
RL>

If Else Action Block

2-46 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

If Else Action Block

Using the if else action, if the test is true, execute the first action block, and if the test
is false, execute the optional else part, which may be another if action or an action
block.

RL Language, unlike Java, requires action blocks and does not allow a single
semicolon terminated action.

Format
if ::= if if-test action-block [else if | action-block]

if-test ::= boolean-expression

Examples
Example 2–37 shows an RL Language if else action block. Example 2–38 shows that an
action block is required.

Example 2–37 Sample If Else Action

String s = "b";

if (s=="a") { println("no"); } else
if (s=="b") { println("yes");}
else { println("no"); }

Example 2–38 Illegal If Action Without an Action Block

if (s=="a") println("no");

Actions and Action Blocks

Rule Language Reference 2-47

While Action Block

While the test is true, execute the action block. A return, throw, or halt may exit the
action block.

Format
while ::= while while-test action-block

while-test ::= boolean-expression

Usage Notes
RL Language, unlike Java, requires action blocks and does not allow single semicolon
terminated action.

Examples
Example 2–39 prints "bye" twice.

Example 2–39 Sample While Action

int i = 2;
while (i-- > 0) {
 println("bye");
}

Example 2–40 Illegal While Action Without an Action Block

while (i-- > 0) println("no");

For Action Block

2-48 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

For Action Block

RL Language, like Java, has a for loop. Using the for action block, the for-init portion
executes, then while the boolean-expression is true, first the specified action block is
executed then the for-update executes. A return, throw, or halt may exit the action
block.

Format
for ::= for (for-init ; boolean-expression ; for-update) action-block

for-init ::= variable | for-update

for-update ::= incr-decr-expression | assign | primary-expression

Usage Notes
RL Language does not allow a comma separated list of expressions in the for init
or for update clauses (Java does allow this).

Example
Example 2–41 shows RL Language code that converts an int[] to a double[].

Example 2–41 For Action

int[] is = new int[]{1,2,3};
double[] fs = is; // error!
double[] fs = new double[3];
for (int i = 0; i < is.length; ++i) {
 fs[i] = is[i];
}
println(fs);

Actions and Action Blocks

Rule Language Reference 2-49

Try Catch Finally Action Block

Execute the first action block. Catch exceptions thrown during executions that match
the Throwable class in a catch clause. For the first match, execute the associated catch
action block. Bind the Throwable class instance to the given identifier and make it
available to the catch action block. Whether an exception is thrown in the try action
block, execute the finally action block, if given.

Uncaught exceptions are printed as error messages when using the RL Language
command-line and are thrown as RLExceptions when using a RuleSession's
executeRuleset or callFunction methods. The try, catch, and finally in RL
Language is like Java both in syntax and in semantics. There must be at least one
catch or finally clause.

Format
try ::= try action-block

(catch (class-implementing-throwable identifier) action-block)*

[finally action-block]

class-implementing-throwable ::= qname

Usage Notes
In order to fully understand how to catch exceptions in RL Language, one must
understand how the stack frames are nested during rule execution. Rules do not call
other rules the way that functions or methods may call functions or methods.
Therefore, you cannot use a catch block in one rule's action block to catch exceptions in
another rule's action block. Exceptions thrown during rule firing must either be
handled by the firing rule's action block, or must be handled by a caller to the run,
runUntilHalt, or step functions that caused the rule to fire.

Examples
Example 2–42 shows the try catch and finally actions. The output from running this
example is:

exception in invoked Java method
this is really bad!
but at least it's over!

Example 2–42 Try Catch and Finally Action Blocks

try {
 throw new Exception("this is really bad!");
} catch (Exception e) {
 println(e.getMessage());
 println(e.getCause().getMessage());
} finally {
 println("but at least it's over!");
}

Note that RL Language treats the explicitly thrown Exception ("this is really
bad!") as an exception from an invoked Java method, and wraps the Exception in a
JavaException. The explicitly thrown Exception is available as the cause of the
JavaException.

Synchronized Action Block

2-50 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Synchronized Action Block

As in Java, the synchronized action is useful for synchronizing the actions of multiple
threads. The synchronized action block lets you acquire the specified object's lock, then
execute the action-block, then release the lock.

Format
synchronized ::= synchronized object-primary-expression action-block

Example
Example 2–43 changes the name of a Person object, adding old names to the
nicknames, and synchronizes so that a concurrent reader of the Java object who is also
synchronizing will see a consistent view of the Person (See Example 2–12 details on
the Person bean).

Example 2–43 Synchronized Action

import example.Person; // this Java bean is defined in example J1
function changeName(Person p, String first, String last) {
 synchronized(p) {
 java.util.Set s = p.getNicknames();
 s.add(p.getFirstName());
 s.add(p.getLastName());
 p.setFirstName(first);
 p.setLastName(last);
 }
 assert(p);
}
Person person = new Person("Elmer", "Fudd", new String[]{"Wabbit Wuver"});
println(person.nicknames.toArray());
changeName(person, "Bugs", "Bunny");
println(person.nicknames.toArray());

Actions and Action Blocks

Rule Language Reference 2-51

Modify Action

Modify updates the named properties using the associated expressions. It also updates
the associated shadow fact, if any, and causes rules whose conditions reference the
updated properties and evaluate to true to be activated. Rules whose conditions do
not reference the updated properties are not activated.

The object argument to modify must be an object that has already been asserted, then
the values of that object are updated and network is updated with the slot-specific
semantics. The result is the object and the network are consistent.

Format
modify ::= modify (object-expression , property-update (, property-update)*)

property-update ::= property-name : expression.

Usage Notes
It is common for a fact to have properties that are set or modified by rules. For
example, a customer in an application might have a status of "", "silver", or "gold". The
status may be set by rules that examine other properties of customer and related facts
(such as past orders). It is also common for these computed properties to be used in
further rule conditions. For example, give gold customers a 10% discount. A rule that
modifies a fact and reasserts it must be careful to add an extra condition so that it does
not reactive itself over and over. For example, if the following rule fires once, it will
fire over and over:

if fact Customer c && c.pastYearSpend > 1000 {
 c.status = "gold";
 assert(c);
}

You can fix this looping using the following rule definition:

if fact Customer c && c.pastYearSpend > 1000 && c.status != "gold" {
 c.status = "gold";
 assert(c);
}

Example 2–44 prevents the loop but does not activate rules that are looking for gold
customers

Example 2–44 Example Showing Bad Rules Programming Practice to be Avoided

if fact Customer c && c.pastYearSpend > 1000 {
 c.status = "gold";
}

Example 2–44 demonstrates bad rules programming practice because it changes the
value of the customer object but not the value of the, shadow, customer fact. The
modify action lets you modify the object and fact together. Modify also activates rules
that test the modified properties but does not activate rules that test non-modified
properties.

if fact Customer c && c.pastYearSpend > 1000 {
 modify(c, status: "gold");
}

Modify Action

2-52 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

This rule does not loop because the tested properties and modified properties are
disjoint. This rule can be used in an inference to fire subsequent rules that test for
status=="gold".

A second rule that illustrates infinite looping is the rule described as follows:

Give Employees earning at least $50,000 a 5% raise.

if Employee emp && emp.sal > 50000 {
 modify(emp, sal: sal * 1.05);
}

Even using modify, this rule will self-trigger because it is testing the same property
(sal) that it is modifying, and the test is true after modification. To avoid looping in
this case, you could also add a raise property test, as follows:

if Employee emp && emp.sal > 50000 && !emp.raise {
 modify(emp, sal: emp.sal * 1.05, raise: true);
}

Alternatively, to avoid looping in this case you could also add a fact to handle the
raise. For example:

public class RaiseGiven
{
 Employee emp; // or possibly just an employee ID
}

if Employee emp && emp.sal > 500000 && !RaiseGiven(emp: emp) {
 modify(emp, sal: sal * 1.05);
 assert(new RaiseGiven(emp: emp));
}

Actions and Action Blocks

Rule Language Reference 2-53

Return Action

The return action returns from the action block of a function or a rule.

A return action in a rule pops the ruleset stack, so that execution continues with the
activations on the agenda that are from the ruleset that is currently at the top of the
ruleset stack.

If rule execution was initiated with either the run or step functions, and a return action
pops the last ruleset from the ruleset stack, then control returns to the caller of the run
or step function.

If rule execution was initiated with the runUntilHalt function, then a return action will
not pop the last ruleset from the ruleset stack. The last ruleset is popped with
runUntilHalt when there are not any activations left. The Oracle Rules Engine then
waits for more activations to appear. When they do, it places the last ruleset on the
ruleset stack before resuming ruleset firing.

Format
return ::= return [return-value] ;

return-value ::= expression

If the function has a returns clause, then the return-value must be specified and it
must be of the type specified by the returns clause.

Usage Notes
A return action in a rule or a function without a returns clause must not specify a
return-value.

Throw Action

2-54 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Throw Action

Throw an exception, which must be a Java object that implements
java.lang.Throwable. A thrown exception may be caught by a catch in a try
action block.

Format
throw ::= throw throwable ;

throwable ::= object-primary-expression

Actions and Action Blocks

Rule Language Reference 2-55

Assign Action

An assignment in RL Language, as in Java, is an expression that can appear as an
action.

Format
assign ::= assignment-expression ;

assignment-expression ::= boolean-assignment

 | numeric-assignment

 | string-assignment

 | object-assignment

 | array-assignment

Example
Example 2–45 shows the use of the RL Language assignment expression. This prints "6
5".

Example 2–45 Assignment Expression

clear;
int i = 1;
int j = 2;
i += j += 3;
println(i + " " + j);

Increment or Decrement Expressions

2-56 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Increment or Decrement Expressions

Increment and decrement in RL Language, as in Java, are expressions that can appear
as actions.

Format
incr-decr ::= incr-decr-expression ;

incr-decr-expression ::= (++ | --) numeric-target-expression | numeric-target-expression (++ | --)

Examples
Example 2–46 shows the use of the RL Language decrement action. This example
prints "0".

Example 2–46 Decrement Action

clear;
int i = 1;
--i;
println(i);

Actions and Action Blocks

Rule Language Reference 2-57

Primary Actions

A primary action is a primary expression such as a function call, assert, or Java method
call executed for its side-effects. For example, the println function is often used as a
primary action.

Format
primary-action ::= primary-expression ;

Rulegroup

2-58 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Rulegroup

A rulegroup provides support for decision table overrides. This supports the following
decision table features: the ability for one rule to override one or more other rules

Format
rulegroup ::= rulegroup rulegroup-name { rulegroup-property* (rule | rulegroup)* }

rulegroup-name ::= identifier

rulegroup-property ::= mutex

mutex ::= mutex = boolean-literal ;

Usage Notes
A rulegroup construct is a top level construct in a ruleset. A rulegroup has an optional
boolean property:

■ mutex: The mutex property enables mutual exclusion between rules. The common
case is that the rules reside in the same rulegroup that has set mutex to true. In
more complex rulegroup hierarchies, two rules mutually exclude each other if
their closest common ancestor rulegroup has mutex set to true. When a rules fires,
existing activations for rules which it mutually excludes are removed from the
agenda preventing them from firing. Theses activations must be directly related as
identified by the set of facts that resulted in the activations being placed on the
agenda. This leads to the requirement that the conditions of all rules that mutually
exclude each other have the same fact clauses specified in the same order. This
occurs naturally for decision tables.

Example
Example 2–47 demonstrates the use of rulegroups with the mutex property. Note that
r2 and r3 reference the same set of fact types in the same order in the rule condition.
This is required within a mutex group. The tests in the patterns can be different. The
restriction on the shape of the rule condition in a mutex group extends to its
descendent groups. Thus, rules r4 and r5 also must reference the same set of fact types
in the same order. Assume that one instance of A and one instance of B have been
asserted and that r1, r2, r3, r4 and r5 have activations on the agenda. r3 will fire since it
has a higher priority. The activation of r2 will be removed without firing since r2 is in a
group with mutex=true. Since group2 is a member of group1, the activations of r4 and
r5 will also be removed without firing. Rule r1 will fire. Now, assume that r2, r4, and
r5 have activations on the agenda and assume that r4 fires first. The activation for r2
will be remove without firing since any rule in group2 firing mutually excludes both
r2 and r3. r5 will fire. It is not mutually excluded since group2 does not have
mutex=true.

Example 2–47 Ruleset with Rulegroup with Specified Fact Order of Reference

ruleset set1
{
 rule r1 { ... }
 rulegroup group1
 {
 mutex = true;
 rule r2 { if fact A && fact B ... { ... }}
 rule r3 { priority = 2; if fact A && fact B ... { ... }}

Rulegroup

Rule Language Reference 2-59

 rulegroup group2
 {
 rule r4 { if fact A && fact B ... { ... }}
 rule r5 { if fact A && fact B ... { ... }}
 }
 }
}

Built-in Functions

2-60 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Built-in Functions

This section covers the following RL Language built-in functions:

assert, assertTree, assertXPath, clearRule, clearRulesetStack, clearWatchRules,
clearWatchActivations, clearWatchFacts, clearWatchFocus, clearWatchCompilations,
clearWatchAll, contains, getCurrentDate, getDecisionTrace, getDecisionTraceLevel,
getDecisionTraceLimit, getEffectiveDate, getFactsByType, getRulesetStack,
getRuleSession, getStrategy, halt, id, object, println, popRuleset, pushRuleset, retract,
reset, run, runUntilHalt, setCurrentDate, setDecisionTraceLevel,
setDecisionTraceLimit, setEffectiveDate, setRulesetStack, setStrategy, showActivations,
showFacts, step, watchRules, watchActivations, watchFacts, watchFocus,
watchCompilations

Built-in Functions

Rule Language Reference 2-61

assert

Adds a fact to working memory or updates a fact already in working memory based
on the properties of the supplied object obj. If the supplied object obj is a Java instance,
then properties are Java bean properties defined by an associated BeanInfo class or
by the existence of getter and setter methods. If obj is an RL Language class instance,
then the properties are the fields of the class.

Format
function assert(Object obj);

Usage Notes
The fact in working memory is a shadow of the supplied object obj, and this shadow
contains a copy, clone, or reference to each property prop. If prop is a primitive type,
then prop is copied to the shadow. If prop implements the Java Cloneable interface,
then a clone, shallow copy, of prop is shadowed. Otherwise, only the reference to prop
is shadowed. The more a shadow can copy its object's properties, the better a rule with
references to several facts can be optimized.

Note that because == and != when applied to an Object in RL Language always
invokes the Object equals method, whether a shadow contains copies, clones, or
references is transparent to the RL Language program.

Assert may affect the agenda. Rules whose conditions now return a fact set because of
a new fact place activations on the agenda. Activations that test for non-existence of
facts, using !, may be removed from the agenda. Updates to facts may affect the
agenda. Activations whose rule conditions no longer match the changed facts are
removed from the agenda. Rules whose conditions return a fact set because of the
changed facts have activations placed on the agenda.

Assert should be used to update the fact in working memory if any part of the obj’s
state has been updated that could possibly have an effect on a rule condition, unless
the obj is a Java bean that supports registering property change listeners, and all that is
changed is the value of a bean property.

Examples
Example 2–48 prints, "Pavi has highest salary 65000.0" and Example 2–49 prints, "dept
10 has no employees!".

Example 2–48 Using Assert Function in the highestSalary Rule

class Emp { String ename; double salary; }
 rule highestSalary {
 if (fact Emp hi && !(fact Emp e && e.salary > hi.salary))
 {
 println(hi.ename + " has highest salary " + hi.salary);
 }
 }
 Emp e1 = new Emp(ename: "Pavi", salary: 55000.00);
 assert(e1); // put in working memory
 Emp e2 = new Emp(ename: "Fred", salary: 60000.00);
 assert(e2); // put in working memory
 e1.salary += 10000.00; // Pavi is now the highest paid
 assert(e1); // MUST re-assert before allowing rules to fire
 run();

assert

2-62 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Example 2–49 Using Assert Function in the emptyDept Rule

import java.util.*;
class Dept { int deptno; List emps = new ArrayList(); }
 rule emptyDept {
 if (fact Dept d && d.emps.isEmpty()) {
 println("dept " + d.deptno + " has no employees!");
 }
 }
 Dept d = new Dept(deptno: 10);
 d.emps.add(e1);
 assert(d); // put in working memory with 1 employee
 d.emps.remove(0);
 assert(d); // MUST re-assert before allowing rules to fire
 run();

See Also
assertTree, id, object, retract

Built-in Functions

Rule Language Reference 2-63

assertTree

The assertTree built-in function asserts object in an object tree as facts.

The assertTree built-in function supports JAXB 2.0.

Format
assertTree(Object root)

assertTree(String spec, Object root)

Usage Notes
There are two assertTree() signatures:

■ assertTree(Object root) is necessary with SDK2. This format traverses the object
graph and asserts objects as directed by internal metadata generated by SDK2.

■ assertTree(String spec, Object root) is necessary when SDK2 is not involved. Similar
to assertXPath, spec is a package specification enhanced to allow the specification
of multiple packages separated by a colon. This format asserts objects and
traverses the bean properties of an object if the object is in one of the specified
packages. Typically, the package specification will be the same one used in
establishing the JAXBContext.

The assertTree function does the following:

■ asserts objects starting with the root and every fact (object with a visible declared
fact type) referenced from the root, recursively.

■ assert JAXBElement instances it encounters, extract the value class object it
contains and continue.

See Also
assert

assertXPath

2-64 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

assertXPath

The assertXPath function is deprecated. Use assertTree instead.

Add a tree of facts to working memory using the specified element as the root and an
XML xpath-like expression to define the objects in the tree. The pkg is the Java package
or RL Language ruleset that contains the classes of objects in the tree. All objects in the
tree must be in the same package or ruleset.

In addition to asserting "element" and selected descendants, XLink facts are asserted
that link parent and child objects. The classes of all objects in the tree must use the
supports xpath (supports) clause of the RL class (rl-class-definition) or fact-class
declaration.

Format
function assertXPath(String pkg, Object element, String xpath);

See Also
assert, id, object, retract

Built-in Functions

Rule Language Reference 2-65

clearRule

Clears the named rule from the rule session. Removes all of the rule’s activations from
the agenda.

Format
function clearRule(String name);

See Also
getRuleSession

clearRulesetStack

2-66 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

clearRulesetStack

Empties the ruleset stack.

Format
function clearRulesetStack();

See Also
getRulesetStack, getStrategy, popRuleset, pushRuleset, run, setStrategy

Built-in Functions

Rule Language Reference 2-67

clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAll

The clearWatch functions stop printing debug information.

Format
function clearWatchRules();

function clearWatchActivations();

function clearWatchFacts();

function clearWatchFocus();

function clearWatchCompilations();

function clearWatchAll();

See Also
watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

contains

2-68 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

contains

The contains() function is similar to the contains() method on Java
Collection but with includes the ability to handle the presence of JAXBElement in
the collection.

Format
contains(Collection c, Object o) returns boolean

Usage
When contains() encounters a JAXBElement in the collection c, it obtains the value
class from the JAXBElement and compares it to the Object o.

See Also
assertTree

Built-in Functions

Rule Language Reference 2-69

getCurrentDate

The getCurrentDate function returns the date associated with the CurrentDate fact.

Format
getCurrentDate() returns Calendar

Usage Notes
The effective date and the current date are two orthogonal items. The effective date is
used to determine which rules are in affect according to the start and end effective date
properties. The CurrentDate fact allows reasoning on a rules engine managed fact
representing the "current" date.

Setting the current date does not affect the effective date semantics.

If you want to create rules to reason on the date explicitly in the rules, then use the
CurrentDate fact. If you want to assign start and or end effective dates to rules and
have the rules in effect determined from a date in the data, then use
setEffectiveDate().

See Also
setCurrentDate, getEffectiveDate, setEffectiveDate

getDecisionTrace

2-70 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

getDecisionTrace

Returns the current trace and starts a new trace.

Format
getDecisionTrace() returns DecisionTrace

Usage Notes

See Also
getDecisionTraceLevel, getDecisionTraceLevel, watchRules, watchActivations,
watchFacts, watchFocus, watchCompilations

Built-in Functions

Rule Language Reference 2-71

getDecisionTraceLevel

Gets the current decision trace level.

Format
getDecisionTraceLevel() returns int

Usage Notes
Supported decision trace levels include the following levels:

■ Off: decision tracing is disabled. This is defined as RuleSession.DECISION_
TRACE_OFF.

■ Production: rules fired are shown in trace. This is defined as
RuleSession.DECISION_TRACE_PRODUCTION.

■ Development: full decision tracing similar in detail to watchAll(). This is
defined as RuleSession.DECISION_TRACE_DEVELOPMENT.

See Also
getDecisionTrace, getDecisionTraceLimit, watchRules, watchActivations, watchFacts,
watchFocus, watchCompilations

getDecisionTraceLimit

2-72 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

getDecisionTraceLimit

Returns the current limit on the number of events in a trace.

Format
getDecisionTraceLimit() returns int

Usage Notes

See Also
getDecisionTrace, getDecisionTraceLevel

Built-in Functions

Rule Language Reference 2-73

getEffectiveDate

The getEffectiveDate function returns the current value of the effective date.

Format
getEffectiveDate() returns Calendar

Usage Notes
The effective date and the current date are two orthogonal items. The effective date is
used to determine which rules are in affect according to the start and end effective date
properties. The CurrentDate fact allows reasoning on a engine managed fact
representing the "current" date. Both may be set explicitly.

Setting the current date does not affect the effective date semantics. Setting the
effective date does not affect the CurrentDate fact.

If you want to create rules to reason on the date explicitly in the rules, then use the
CurrentDate (setCurrentDate()). If you want to assign start and or end effective
dates to rules and have the rules in effect determined from a date in the data, then use
setEffectiveDate().

See Also
setEffectiveDate, getCurrentDate, setCurrentDate

getFactsByType

2-74 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

getFactsByType

Returns a list of all facts in working memory that are instances of a specified class.

Format
function getFactsByType(String className) returns List

See Also
showFacts, watchRules, watchActivations, watchFacts, watchFocus,
watchCompilations

Built-in Functions

Rule Language Reference 2-75

getRulesetStack

Returns the ruleset stack as an array of ruleset names.

Format
function getRulesetStack() returns String[];

Usage Notes

Returns: the ruleset stack as an array of ruleset names.

Entry 0, the top of the stack, is the focus ruleset. The focus ruleset is the ruleset whose
activations are fired first by a subsequent run, runUntilHalt, or step function
execution.

See Also
clearRulesetStack, getStrategy, popRuleset, pushRuleset, setRulesetStack, setStrategy

getRuleSession

2-76 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

getRuleSession

Returns a Java RuleSession object. An RL Language program could use this
RuleSession to dynamically define new classes, rules, functions, or variables.

Format
function getRuleSession() returns RuleSession;

Example
rule learn {
 if (fact f1 && …)
 {
 RuleSession rs = getRuleSession();
 rs.executeRuleset("rule newRule { if fact f1 && fact f2 && … { … } }");
 }
}

See Also
clearRule

Built-in Functions

Rule Language Reference 2-77

getStrategy

Returns the current strategy. Table 2–7 shows the possible strategy values.

Format
function getStrategy() returns String;

See Also
clearRulesetStack, getRulesetStack, popRuleset, pushRuleset, setStrategy

halt

2-78 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

halt

The halt function halts execution of the currently firing rule, and returns control to the
run, runUntilHalt, or step function that caused the halted rule to run. The agenda is
left intact, so that a subsequent run, runUntilHalt, or step can be executed to resume
rule firings.

The halt function has no effect if it is invoked outside the context of a run,
runUntilHalt, or step function.

Format
function halt();

See Also
reset, run, runUntilHalt, step

Built-in Functions

Rule Language Reference 2-79

id

Return the fact id associated with the object obj. If obj is not associated with a fact,
returns -1.

Format
function id(Object obj) returns int;

See Also
assert, object, retract

object

2-80 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

object

Return the object associated with the given fact id. If there is no such fact id, returns
null.

Format
function object(int factId) returns Object;

See Also
assert, id, retract

Built-in Functions

Rule Language Reference 2-81

println

Print the given value to the RuleSession output writer.

Format
function println(char c);

function println(char[] ca);

function println(int i);

function println(long l);

function println(float f);

function println(double d);

function println(boolean b);

function println(Object obj);

popRuleset

2-82 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

popRuleset

If the stack is empty, popRuleset throws RLRuntimeException. If the stack is not
empty, popRuleset pops the focus off the stack and returns it.

All entries are shifted down one position, and the new focus is the new top of stack,
entry 0.

Entry 0, the top of the stack, is the focus ruleset. The focus ruleset is the ruleset whose
activations are fired first by a subsequent run, runUntilHalt, or step function
execution.

Format
function popRuleset() returns String;

Example 2–50 Using popRuleset and Throwing RLRuntimeException

clearRulesetStack();
popRuleset(); // RLRuntimeException

See Also
clearRulesetStack, getRulesetStack, getStrategy, pushRuleset, setStrategy

Built-in Functions

Rule Language Reference 2-83

pushRuleset

Push the given ruleset onto the stack and make it the focus. It is an error to push a
ruleset that is already the focus (RLIllegalArgumentException is thrown for this
error).

Entry 0, the top of the stack, is the focus ruleset. The focus ruleset is the ruleset whose
activations are fired first by a subsequent run, runUntilHalt, or step function
execution.

Format
function pushRuleset(String focus);

Examples
Example 2–51 shows the RL Language using the pushRuleset function.
Example 2–52 shows the RL Language using the popRuleset function.

Example 2–51 Using pushRuleset - Throws RLIllegalArgumentException

clearRulesetStack();
pushRuleset("main"); // focus is "main"
pushRuleset("main"); // RLIllegalArgumentException

Example 2–52 Using popRuleset - Throws RLRuntimeException

clearRulesetStack();
popRuleset(); // RLRuntimeException

See Also
clearRulesetStack, getRulesetStack, getStrategy, popRuleset, setStrategy

retract

2-84 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

retract

Remove the fact associated with the object obj from working memory.

Format
function retract(Object obj);

Usage Notes
Retract may affect the agenda. Activations that depend on the retracted fact are
removed from the agenda.

Note, rules that have conditions that test for non-existence of facts (using !) may place
new activations on the agenda.

See Also
assert, id, object

Built-in Functions

Rule Language Reference 2-85

reset

Clears all facts from working memory, clears all activations from the agenda, and
reevaluates non-final global variable initialization expressions.

Format
function reset();

See Also
halt, run, runUntilHalt, step

run

2-86 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

run

Fire rule activations on the agenda until:

■ A rule action calls halt directly or indirectly. For example, when halt is called by a
function called by a rule action.

■ The agenda is empty.

■ The ruleset stack is empty.

Format
function run() returns int;

function run(String rulesetName) returns int;

Usage Notes
If the argument, rulesetName is supplied, the named ruleset is pushed on the top of the
ruleset stack before firing any rules.

If a null rulesetName is supplied, the ruleset stack is not modified before firing rules.

If no rulesetName is supplied and the default main ruleset is not on the ruleset stack,
then the main ruleset is placed at the bottom of the ruleset stack before firing any
rules.

Returns: int, the number of rules fired.

See Also
halt, reset, runUntilHalt, step

Built-in Functions

Rule Language Reference 2-87

runUntilHalt

This function fires rule activations until halt is called. Unlike run and step,
runUntilHalt does not return when the agenda is empty. Also, runUntilHalt does not
pop the bottommost ruleset name from the ruleset stack. Instead, it waits for the
agenda to contain activations.

Format
function runUntilHalt() returns int;

Usage Notes
The only way for activations to be added to the agenda while the main RuleSession
thread is busy executing runUntilHalt is for a second thread to either:

1. Modify Java bean facts with PropertyChangeListeners.

2. Execute assert or retract functions.

Rules must be designed carefully when using runUntilHalt. For example, a rule that
attempts to find a fact with the minimum value of a property will fire when the first
instance of the fact is asserted, and then every time another instance is asserted with a
lower valued property.

See Also
halt, reset, run, step

setCurrentDate

2-88 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

setCurrentDate

The setCurrentDate function sets the date for reasoning on an engine managed fact
representing the "current" date (with the CurrentDate fact).

Format
setCurrentDate(Calendar newDate)

Usage Notes
The RLIllegalArgumentException exception is thrown if the newDate argument is
null.

If you need to reason on the date explicitly in the rules, then use the CurrentDate
fact. If you want to assign start and end effective dates to rules and have the rules in
effect determined from a date in the data, then they should use setEffectiveDate. The
setEffectiveDate function does not affect the CurrentDate fact.

By default the value of the current date is managed implicitly by the rules engine. The
value of the CurrentDate fact is updated to the current system date and (re)asserted
internally when a run family of built-in functions is invoked. This is done before any
rules fire so that the new current date is evaluated in rule conditions. In the case of
runUntilHalt, this update occurs each time there is a transition from 0 rules on the
agenda to > 0 rules on the agenda.

After the user invokes the setCurrentDate function, it becomes the responsibility of
the user to update the current date as required. The rules engine no longer manages it
implicitly. This remains in effect until the reset function is invoked. After the current
date is set explicitly with setCurrentDate, any invocation of setCurrentDate
function that would result in time going backward, set to an earlier point in time, is an
error and an RLIllegalArgumentException is thrown. After the reset function is
invoked, the current date may be set to any value.

See Also
getCurrentDate, getEffectiveDate, setEffectiveDate

Built-in Functions

Rule Language Reference 2-89

setDecisionTraceLevel

Sets the decision trace level to the specified level.

Format
setDecisionTraceLevel(int level)

Usage Notes
Supported decision trace levels include the following levels:

■ Off: decision tracing is disabled. This is defined as RuleSession.DECISION_
TRACE_OFF.

■ Production: rules fired are shown in trace. This is defined as
RuleSession.DECISION_TRACE_PRODUCTION.

■ Development: full decision tracing similar in detail to watchAll(). This is
defined as RuleSession.DECISION_TRACE_DEVELOPMENT.

See Also
getDecisionTrace, getDecisionTraceLevel, getDecisionTraceLevel,
setDecisionTraceLimit, watchRules, watchActivations, watchFacts, watchFocus,
watchCompilations

setDecisionTraceLimit

2-90 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

setDecisionTraceLimit

Sets the limit on the number of events in a trace.

Format
setDecisionTraceLimit(int count)

Usage Notes
The default value is 10000.

See Also
getDecisionTrace, getDecisionTraceLevel, getDecisionTraceLevel,
setDecisionTraceLevel

Built-in Functions

Rule Language Reference 2-91

setEffectiveDate

The setEffectiveDate function updates the effective date in the rules engine.

By default, the value of the effective date is managed implicitly by the rules engine. In
this case, when a run family of built-in functions is invoked the effective date is
updated to the current system date. This is done before any rules fire so that the new
effective date is applied before rules begin to fire. In the case of runUntilHalt, this
update occurs each time there is a transition from 0 rule activations on the agenda to >
0 rule activations on the agenda.

Format
setEffectiveDate(Calendar newDate)

Usage Notes
Invoking setEffectiveDate is the only way that you can alter the effective date. After
the reset function is invoked, the effective date may be set to any value.

The RLIllegalArgumentException exception is thrown if the newDate argument is
null.

After you invoke the setEffectiveDate function, it becomes the responsibility of the
application to update the effective date as required. The rules engine no longer
manages it implicitly.

This remains in effect until the reset function is invoked.

This is useful for debugging, performing rule evaluation at a "point in time", or other
use cases that require application control of the effective date.

See Also
getEffectiveDate, getCurrentDate, setCurrentDate

setRulesetStack

2-92 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

setRulesetStack

Sets the ruleset stack to the given array of ruleset names.

Entry 0, the top of the stack, is the focus ruleset, which is the ruleset whose activations
will be fired first by a subsequent run, runUntilHalt, or step function execution.

Format
function setRulesetStack(String[] rulesetStack

See Also
clearRulesetStack, getRulesetStack, getStrategy, popRuleset, pushRuleset, setStrategy

Built-in Functions

Rule Language Reference 2-93

setStrategy

Strategy specifies the order in which activations from the same ruleset and with the
same priority are executed. Table 2–7 shows the valid strategy values.

Format
function setStrategy(String strategy);

See Also
clearRulesetStack, getRulesetStack, getStrategy, popRuleset, pushRuleset

Table 2–7 Strategy Values for setStrategy and getStrategy Functions

Strategy Description

queue Activations are fired in order from oldest to newest.

stack Activations are fired in order from newest to oldest.

showActivations

2-94 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

showActivations

The show functions print rule session state to the output Writer. State that can be
shown is: Activations all activations on the agenda

Format
function showActivations();

See Also
clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAll, showFacts, watchRules, watchActivations,
watchFacts, watchFocus, watchCompilations

Built-in Functions

Rule Language Reference 2-95

showFacts

The show functions print rule session state to the output Writer. State that can be
shown is: all facts in working memory.

Format
function showFacts();

See Also
clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAll, showActivations, watchRules,
watchActivations, watchFacts, watchFocus, watchCompilations

step

2-96 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

step

Fire rule activations on the agenda until:

■ The specified number of rule activations, numRulesToFire have been fired.

■ A rule action calls halt directly or indirectly. For example, by a function called by a
rule action.

■ The agenda is empty.

■ The ruleset stack is empty.

Format
function step(int numRulesToFire) returns int;

function step(int numRulesToFire, String rulesetName) returns int;

Usage Notes
If no ruleset name is supplied and the main ruleset is not on the ruleset stack, then the
main ruleset is placed at the bottom of the ruleset stack before firing any rules.

If a ruleset named, rulesetName, is supplied, the specified ruleset is pushed on the top
of the ruleset stack before firing any rules. If a null ruleset name is supplied, the ruleset
stack is not modified before firing rules.

Returns the integer number of rules fired.

See Also
halt, reset, run, runUntilHalt

Built-in Functions

Rule Language Reference 2-97

watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

The watch functions turn on printing of information about important rule session
events. The information is printed to the output Writer whenever the events occur. Use
a clearWatch function to turn off printing.

Table 2–8 describes the available debugging information.

Format
function watchRules();

function watchActivations();

function watchFacts();

function watchFocus();

function watchCompilations();

function watchAll();

See Also
clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus,
clearWatchCompilations, clearWatchAll, showActivations, showFacts

Table 2–8 Watch Functions Event Descriptions

Debug Watch Rule Session Event Description

watch Rule session event description

Rules Information about rule firings (execution of activations)

Activations Addition or removal of activations from the agenda

Facts Assertion, retraction, or modification of facts in working memory

Focus Pushing or popping of the ruleset stack. The top of the ruleset stack is
called the focus ruleset, and all activations on the agenda from the focus
ruleset will be fired before the focus is popped and the next ruleset on the
stack becomes the focus.

Compilations When a rule's conditions are added to the rete network, information
about how the condition parts are shared with existing rules is printed.
"=" indicates sharing. The order that rules are defined can affect sharing
and thus can affect performance.

All Includes information shown with watch Rules, watch Activations, watch
Facts, watch Compilations and watch Focus.

watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

2-98 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

3

Using the Command-line Interface 3-1

3 Using the Command-line Interface

This chapter describes the RL command-line that reads rulesets from System.in and
writes output from the functions println, watch, and, show to System.out.

This chapter includes the following topics:

■ Section 3.1, "Starting and Using the Command-Line Interface"

■ Section 3.2, "RL Command-Line Options"

■ Section 3.3, "RL Command-Line Built-in Commands"

3.1 Starting and Using the Command-Line Interface
The following invocation provides a simple command-line interface, with the prompt,
RL>. Example without Java Beans:

java -jar SOA_ORACLE_HOME/soa/modules/oracle.rules_11.1.1/rl.jar -p "RL> "

Where SOA_ORACLE_HOME is where SOA modules are installed (for example,
c:/Oracle/Middleware). The –p option specifies the prompt.

The following shows how an RL Language command-line can be started that can
access this Java bean:

java -classpath SOA_ORACLE_HOME/soa/modules/oracle.rules_11.1.1/rl.jar;BeanPath
oracle.rules.rl.session.CommandLine -p "RL> "

Where BeanPath is the classpath component to any supplied Java Bean classes.

To exit the command-line interface, use the special action exit; at the command
prompt. The exit; action cannot be in an included ruleset. Alternatively, to exit you
can invoke the System.exit(int) method in any action.

The RL command-line interface accumulates input line by line, and interprets the
input when the input stream includes either:

■ A complete named ruleset

■ One or more complete import, include, ruleset, definition, action
commands within an unnamed ruleset.

Starting and Using the Command-Line Interface

3-2 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Example 3–1 Sample RL Command-Line Input Processing

RL> int i = 1;
RL> if (i > 0) {println("i positive");}
// nothing happens - waiting for possible "else"
;
i positive
RL>

Input must be complete at the end of a line. For example, if an action ends in the
middle of a line, then that action is not interpreted until some following action is
complete at the end of a line.

Example 3–2 Sample Command-Line Input Processing - Waiting for End of Line

RL> println("delayed"
); println("hello"
); println("world");
delayed
hello
world
RL>

Notes for using command-line input processing:

1. The command-line segments its input into blocks and then feeds each block to the
interpreter. If you never type a closing brace or semicolon, no error is raised
because the command line waits for input before it does a full parse of the block

2. The command-line interpreter, when used interactively or with the –i option,
collapses the input, for line numbering purposes, into "small" rulesets ending at a
newline. Errors are reported with numbers within the ruleset.

For example, if the input consists of the following:

int i = 0; i = 1; // this is a ruleset
i = "i"; // this is another ruleset

For this example, command-line reports an error as follows:

Oracle Business Rules RL: type check error
ConversionException: cannot convert from type 'java.lang.String' to type 'int'
at line 1 column 5 in main

To avoid this behavior, you can explicitly enclose the input in a ruleset. For
example,

ruleset main {
 int i = 0; i = 1;
 i = "i";
}

Note: The if,else and try, catch, and finally actions require
lookahead to determine where they end. In order to execute an if
without an else clause, or a try without a finally clause at the RL
command-line, you should add a semicolon terminator.

This is not necessary if you execute RL using include, or using the
RuleSession API.

RL Command-Line Built-in Commands

Using the Command-line Interface 3-3

Now, the error is on line 3 or, you can include the input file using an include.

3.2 RL Command-Line Options

3.3 RL Command-Line Built-in Commands
This section lists commands that are implemented by the RL command-line interface
(these commands are not part of RL). Thus, these commands cannot appear in blocks
or be included rulesets.

3.3.1 Clear Command
Discard the current RuleSession object and allocate a new one. The effect is that all
rules, variables, classes, and functions are discarded.

Instead of using clear; to restart a command-line you can also type exit; and then
reissue the Java command to start another command-line.

Table 3–1 RL Command-Line Options

Flag Description

–i Read rulesets from the file named by the next argument, instead of from the
default, System.in.

For example,

-i myInput.rl

Note: the command-line segments its input into blocks and then feeds each
block to the interpreter. If the file myInput.rl does not include a closing
brace or semicolon at the end, then, no error is raised because the command
line waits for additional input before it does a full parse of the block. Thus,
there are cases where an incomplete input file supplied using the –i option
could run and execute the valid part of the code from the file myInput.rl,
and exit, while still waiting for command line input.

–c Executes the next argument as the first RL command, then start reading
input. This option is useful to include a file of settings and functions for
debugging.

For example,

-c "include file:debugSettings.rl;"

If you do not want to read from the input after executing the command,
include "exit;" after the command.

For example,

-c "include file:script.rl; exit;"

–p Sets the next argument as the prompt string.

For example,

-p "RL> "

-o Specifies where to write output from println, watch, and show to the file
named by the next argument, instead of to System.out.

For example:

–o debug.log

–v Print version information.

RL Command-Line Built-in Commands

3-4 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

3.3.2 Exit Command
Exit the command-line interface. The command-line interface also exits when
end-of-file is reached on its input.

4

Using a RuleSession 4-1

4 Using a RuleSession

This chapter includes the following sections:

■ Section 4.1, "RuleSession Constructor Properties"

■ Section 4.2, "RuleSession Methods"

■ Section 4.3, "RL to Java Type Conversion"

■ Section 4.4, "Error Handling"

■ Section 4.5, "RL Class Reflection"

■ Section 4.6, "XML Navigation"

■ Section 4.7, "Obtaining Results from a Rule Enabled Program"

■ Section 4.8, "Debugging an RL Stacktrace"

■ Section 4.9, "Using RuleSession Pooling"

■ Section 4.10, "Using RuleSession Options"

RuleSession Constructor Properties

4-2 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

4.1 RuleSession Constructor Properties
This section shows you the steps for creating a rule enabled application and describes
using a RuleSession object. The package oracle.rules.rl contains the RuleSession
object.

The RuleSession no argument constructor returns a RuleSession with the default
locale and logging options set.

Table 4–1 shows the RuleSession constructor properties.

4.2 RuleSession Methods
The outputWriter property determines where println, watch, and show output
goes.

The rulesetName property sets the ruleset when RL statements are executed without
an explicit named ruleset. The default rulesetName is main.

The executeRuleset methods parse and execute the given ruleset text (given as a String
or a java.io.Reader).

The callFunction method invokes the named RL function (which must either be a
built-in RL function or must have been previously defined with no parameters using
one of the executeRuleset methods) and returns its result. Functions with a single
argument can be invoked with the callFunctionWithArgument method. Functions
taking any number of arguments can be called using the
callFunctionWithArgumentList or callFunctionWithArgumentArray
methods. The argument List or array must contain a Java Object for each RL function
parameter.

4.3 RL to Java Type Conversion
Table 4–2 describes how Java Object types are be converted to RL types for passing
arguments to RL functions, and conversely how RL types are converted to Java types
for passing the RL function return value to Java.

Table 4–1 RuleSession Properties

Property Name Property Value

oracle.rules.rl.configLocale A Locale object for the desired Locale. If not present in the map, the
default Locale is used.

Default Value: the JVM default Locale.

oracle.rules.rl.configLogging Logging is enabled by default (true). If this property is present
and the value is false, logging is disabled.

Default Value: true

Table 4–2 RL to Java Object Conversion

Java Class RL Type

java.lang.Integer int

java.lang.Character char

java.lang.Byte byte

java.lang.Short short

java.lang.Long long

XML Navigation

Using a RuleSession 4-3

4.4 Error Handling
RuleSession method invocations that throw a ParseException or
TypeCheckException do not affect the state of the RuleSession. A Java application,
for example, an interactive command-line, can catch these exceptions and continue
using the RuleSession.

RuleSession method invocations that throw a RLRuntimeException may have
affected the state of the RuleSession and the RuleSession may not be in a usable state
for the application to proceed. Robust applications should attempt to catch and
recover from RLRuntimeExceptions in RL at a point near where the exception is
thrown.

Other exceptions likely indicate a serious problem that the application cannot handle.

4.5 RL Class Reflection
You can use an RL class like a Java class in an RL program. The new, instanceof,
and cast operators work on both kinds of class. However, when an instance of an RL
class is passed to a Java program, it is actually an instance of
oracle.rules.rl.RLObject. A Java program can use the following classes:
RLClass, RLProperty, and RLArray to examine the RLObject in a manner similar
to using the java.lang.Class, java.lang.reflect.Field, and
java.lang.Array classes to reflect a java.lang.Object. The package
oracle.rules.rl contains RLCLass, RLProperty, and RLArray.

4.6 XML Navigation
XLink objects are created and asserted as facts by the assertTree function. An RL rule
can use XLinks to reason about the hierarchy of elements asserted by assertTree.

java.lang.Double double

java.lang.Float float

java.lang.Boolean boolean

Object Object

int[] int[]

char[] char[]

byte[] byte[]

short[] short[]

long[] long[]

double[] double[]

float[] float[]

boolean[] boolean[]

Object[] Object[]

Table 4–2 (Cont.) RL to Java Object Conversion

Java Class RL Type

Obtaining Results from a Rule Enabled Program

4-4 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

4.7 Obtaining Results from a Rule Enabled Program
When you create a a rule enabled program with Oracle Business Rules, a common
question is, "How do I get the results of the evaluation?"

This section one approaches to extracting or exposing results of rule evaluation from
the rule engine.

This section covers the following:

■ Overview of Results Examples

■ Using External Resources to Obtain Results

4.7.1 Overview of Results Examples
The examples in this section show a highway incident notification system. These
examples show the different approaches to access the results of rule engine evaluation.
The examples use two Java classes: traffic.TrafficIncident and
traffic.IncidentSubscription.

The TrafficIncident class represents information about an incident affecting
traffic and contains the following properties:

■ Which highway

■ Which direction

■ Type of incident

■ Time incident occurred

■ Estimated delay in minutes

The IncidentSubscription class describes a subscription to notifications for
incidents on a particular highway and contains the following properties:

■ Subscriber - the name of the subscriber

■ The highway

■ The direction

In the example using these classes, when an incident occurs that affects traffic on a
highway, a TrafficIncident object is asserted and rule evaluation determines to
whom notifications are sent.

In the examples, the sess object is a RuleSession and a number of incident
subscriptions are asserted. As a simplification, it is assumed that the
TrafficIncident objects are short lived. They are effectively an event that gets
asserted and only those subscribers registered at that time are notified.

The classes in these examples are all Java classes. However, it is possible to manipulate
instances of RL classes in Java using the RL class reflection.

See Also: "Working with Rules SDK Decision Point API" in the
Oracle Business Rules User's Guide

Note: The traffic.* sample classes are not included in the Oracle
Business Rules distribution.

Debugging an RL Stacktrace

Using a RuleSession 4-5

4.7.2 Using External Resources to Obtain Results
This approach is similar to asserting a container for results, except that instead of a
container, the object is a means to affecting resources external to the rules engine. For
example, this could involve queuing up or scheduling work to be done, updating a
database, sending a message. Any Java method accessible in the action may be
invoked to effect the results. As with the container use case, the objects used in this
example to access the external resources are not re-asserted since their content is not
being reasoned on.

Example 4–1 shows the IncidentDispatcher object that is asserted and then used
to dispatch the notification.

Example 4–1 Obtaining Results Using External Resources

 rule incidentAlert
 {
 if (fact TrafficIncident ti &&
 fact IncidentSubscription s &&
 s.highway == ti.highway &&
 s.direction == ti.direction &&
 fact IncidentDispatcher dispatcher)
 {
 dispatcher.dispatch(s.subscriber, ti);
 }
 }

Example 4–2 shows Java code that asserts an IncidentDispatcher and a
TrafficIncident, and then invokes the rule engine. This could also be
accomplished using an object that is being reasoned on, but this would require a test in
the rule condition to avoid an infinite loop of rule firing.

Example 4–2 Sample Showing Results with External Resources

 sess.callFunctionWithArgument("assert", new IncidentDispatcher());

 // An accident has happened
 TrafficIncident ti = new TrafficIncident();
 ti.setHighway("I5");
 ti.setDirection("south");
 ti.setIncident("accident");
 ti.setWhen(new GregorianCalendar(2005, 1, 25, 5, 4));
 ti.setDelay(45);

 sess.callFunctionWithArgument("assert", ti);
 sess.callFunction("run");

4.8 Debugging an RL Stacktrace
The runtime provides detailed debugging information in an RL stacktrace. When
possible, if there is an error, the runtime provides extra context that helps identify the

See Also: For documentation see the Javadoc for the RLClass,
RLObject, RLProperty and RLArray classes in the oracle.rules.rl
package. Thus, RL objects, or instances of RL classes, can be used to
hold rule engine results as well as Java objects.

Debugging an RL Stacktrace

4-6 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

location of a problem. This extra context is useful when working with Rules SDK and
Rules Designer.

The stacktrace includes the extra context showing the information for rule conditions,
rule actions, functions, variables, and RL class definitions. The XPath style format
consists of an RL construct and, if named, followed by the name enclosed in
parentheses. If a number, n, appears in brackets after a construct it indicates the nth
item following the previous construct. In combination with Rules SDK, RL generation
should significantly assist in identifying a location for an error in Rules Designer.

For example, consider the ruleset shown in Example 4–3. When this ruleset executes, it
gives the following report:

RLNullPointerException: object cannot be null
 at line 12 column 13 in stackTraceContext /Rule(porsche)/Pattern(car)/Test[1]
 at line 17 column 5 in stackTraceContext

Example 4–3 Test Ruleset

ruleset stackTraceContext
{
 class Car
 {
 String make;
 String model;
 }

 rule porsche
 {
 if (fact Car car &&
 car.make.startsWith("Porsche"))
 {
 println(car.make + " " + car.model);
 }
 }

 assert(new Car());
}

ruleset stackTraceContext

{

 class Car

 {

 String make;

 String model;

 }

 rule porsche

 {

 if (fact Car car &&

 car.make.startsWith("Porsche"))

 {

 println(car.make + " " + car.model);

Using RuleSession Pooling

Using a RuleSession 4-7

 }

 }

 assert(new Car());

4.9 Using RuleSession Pooling
A typical application that uses rules evaluates the same rules multiple times, with
different facts corresponding to separate requests. Initializing a RuleSession typically
takes a few seconds depending on the number of rules involved. In contrast, the time
to execute the rules is typically much less. Therefore, better performance can be
achieved by initializing a RuleSession one time and reusing it for each new request.
Using RuleSession pooling, you can create a pool of RuleSession instances that
supports improved performance and scalability of applications that use rules.

4.9.1 How to Create a RuleSession Pool
In order for performance to scale up with increasing load, more than one RuleSession
is required. A pool of RuleSession instances supports improved performance and
scalability of applications that use rules. A pool is instantiated with a list of the RL
code that is used to initialize each RuleSession created by the pool. The RL code is
executed in the order in which it appears in the list. The number of RuleSession
instances to create initially may be specified. In general, this should be a small value
and usually the default should be sufficient.

Typically, the RL code is generated from a RuleDictionary created with the Rules SDK.
Example 4–4 demonstrates creating and using a RuleSessionPool with RL code from a
RuleDictionary.

Example 4–4 Creating a RuleSession Pool

 RuleDictionary rd;
 // Code to load rule dictionary not shown
 List rlList = new ArrayList();
 rlList.add(rd.dataModelRL());
 List rulesetAliases = rd.getRuleSetAliases(true);
 for (String alias : rulesetAliases)
 {
 rlList.add(rd.ruleSetRL(alias));
 }

 RuleSessionPool pool = new RuleSessionPool(rlList);

If the rules in use by an application are updated, the application may need to load the
new rules so that subsequent rule executions use the new rules. This is supported by
the pool by invoking the refreshPool method passing it a list of the new RL. After the
pool has been refreshed, RuleSessions returned by getPoolableRuleSession will have
been initialized with the new RL code. When RuleSessions that were obtained before
the refresh are returned using returnPoolableRuleSession, they are not placed back in
the pool. The refreshed pool will only contain RuleSessions initialized with the new RL
code.

Using RuleSession Options

4-8 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

4.9.2 How to Use a RuleSession Pool
To execute rules using a RuleSession, you obtain a RuleSession from the pool and then
return it after execution is complete. A poolable RuleSession is acquired by invoking
the getPoolableRuleSession method. The pool creates new RuleSessions as required.
An invocation of getPoolableRuleSession will not block waiting for a free RuleSession.

When rule execution has been completed, the poolable RuleSession is returned to the
pool by invoking the returnPoolableRuleSession method. When a RuleSession is
returned to the pool it is reset by the pool by invoking the built-in RL function, reset().
This removes all facts from working memory to prepare the RuleSession for the next
execution. Every RuleSession that is retrieved from the pool should be returned to the
pool. If an error has occurred during rule execution that results in the RuleSession
being unfit for further use, the pool detects this and discards it.

Besides clearing working memory, the reset() function re-executes the initializers of all
non-final global variables. The initializer of a non-final global variable can be used to
perform other initialization at reset if this is required.

 Example 4–5 demonstrates using a RuleSession from the pool.

Example 4–5 Using a Rule Session Pool

 PoolableObject po = pool.getPoolableRuleSession();
 RuleSession engine = po.getPooledObject();
 // use the RuleSession to execute rules as required here
 pool.returnPoolableRuleSession(po);

A soft upper bound on the size of the pool can be specified. This allows the pool to
respond to temporary increases in demand by growing the pool while allowing the
pool to shrink down to this soft upper bound when demand subsides.

Using the RuleSession pooling implementation, you create RuleSession instances
when the getPoolableRuleSession method is invoked and the pool is empty. If the load
is heavy enough, this will result in an instance count that is greater than the soft limit.

As the load subsides, the number of RuleSesion instances in the pool will
automatically be decreased to the soft limit.

4.10 Using RuleSession Options
The RL runtime with a RuleSession supports the following options:

■ RuleSession.CFG_LOGGING.

■ RuleSession.CFG_DECISION_TRACE_LEVEL

■ RuleSession.CFG_DECISION_TRACE_LIMIT

4.10.1 Using the CFG_LOGGING System Property
RL Language runtime looks for CFG_LOGGING as a system property as well as a
Boolean in the config Map passed to the RuleSession constructor. A value in the Map
overrides the system property value.

Using RuleSession Options

Using a RuleSession 4-9

4.10.2 Using the CFG_DECISION_TRACE_LEVEL Option
You can configure the trace level in a RuleSession or in a RuleSessionPool by including
the RuleSession.CFG_DECISION_TRACE_LEVEL initialization parameter and
specifying a level in the configuration Map passed to the RuleSession or
RuleSessionPool constructor. This sets the decision trace level at the time a RuleSession
is created; invoking reset() guarantees that the level after the reset() is returned
to the configured value, in case it had been changed during rule execution. For more
information, see Section 1.7.2, "Using Rule Engine Level Decision Tracing".

4.10.3 Using the CFG_DECISION_TRACE_LIMIT Option
The size of a trace is limited by limiting the number of entries in a decision trace. This
necessary to avoid infinite rule fire loops, due to a possible bug in the rules, from
creating a trace that consumes all available heap in the JVM. Set the trace limit with
the setDecisionTraceLimit function. The limit may also be configured in a RuleSession
(or RuleSessionPool) by including the RuleSession.CFG_DECISION_TRACE_
LIMIT initialization parameter with the desired limit in the configuration Map passed
to the RuleSession or RuleSessionPool constructor. For more information, see
Section 1.7.2, "Using Rule Engine Level Decision Tracing".

Using RuleSession Options

4-10 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

A

Summary of Java and RL Differences A-1

A Summary of Java and RL Differences

This appendix includes descriptions of differences between the RL Language and Java
languages.

A.1 RL Differences from Java
■ RL does not include interfaces or methods.

■ RL global variables are similar to Java static class variables, but there is one
instance for each rule session.

■ RL does not have a static keyword.

■ RL has rulesets instead of packages. Rulesets group definitions and actions.

■ Instances of RL and Java classes can be asserted as facts in working memory.

■ RL facts are not garbage collected; they must be explicitly retracted.

■ RL is interpreted. There is no compilation or class loading.The include statement
can be used to read and interpret a ruleset at the given URL. Classes and functions
must be defined before they are used.

■ RL classes may not contain constructors or methods, only data fields. The data
fields behave like Java bean properties.

■ Java bean properties can be accessed as fields in RL.

■ The new operator can explicitly assign values to named properties, regardless of
whether a constructor is defined. The fact operator can match values to named
properties and retrieve, using the var keyword, values from named properties. A
property is either a Java bean property, for Java objects, or a field, for RL objects.

■ RL arrays are limited to one dimension.

■ The if and while actions must be in a block, enclosed in curly braces ({}).

■ RL does not include a switch action, continue statement, break statement, or
labeled statements for breaking out of nested loops.

■ An RL for loop cannot contain multiple comma separated initialization or update
expressions.

■ RL does not support bitwise & and | operators.

■ RL supports function overloading and Java method overloading using first fit.

■ RL variables must be initialized when they are defined.

RL Differences from Java

A-2 Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

■ For RL and Java objects, == always invokes the object equals method. RL does
not allow testing for object reference equality. For objects,!= does not test for
inequality of object references, but rather is the negation of the equals methods.

Thus, the statement:

if (object1 != object2){}

Is equivalent to the statement:

if (! (object1.equals(object2)){}

■ Forward references to classes or functions is not allowed.

■ In Java the Java Bean introspector will include write only properties. RL does not
include such properties as Beans, since they cannot be reasoned on in a rule. Thus,
in order for Java fact type bean properties to be properly accessed in RL they must
have both a getter and setter. Properties which have a setter but not a getter, that is
write-only properties, are not allowed in the RL new syntax.

For example, if a bean Foo only has the method setProp1(int i), then you
cannot use the following in RL, Foo f = new Foo(prop1: 0)

Index-1

Index

A
action, 2-45

assign, 2-55
modify, 2-51
primary, 2-57
return, 2-53
throw, 2-54

action-block, 2-45
catch, 2-49
else, 2-46
finally, 2-49
for, 2-48
if, 2-46
synchronized, 2-50
try, 2-49
while, 2-47

activation, 1-6
active property, 2-13
agenda, 1-6
aggregate functions, 2-36
aggregate keyword, 2-36
array-expression, 2-32
assert function, 2-61
assertTree function, 2-63
assertXpath function, 2-64
assignment-expression, 2-55
association keyword, 2-21
autofocus, 2-12
autofocus= keyword, 2-12
average aggregate, 2-36

B
back quote

and xml identifiers, 2-7
boolean keyword, 2-4, 2-10
byte keyword, 2-4

C
catch keyword, 2-49
CFG_DECISION_TRACE_LEVEL parameter, 4-9
CFG_DECISION_TRACE_LIMIT parameter, 4-9
CFG_LOGGING system property, 4-8
char keyword, 2-4

class-definition-name, 2-4
clear function, 2-67
clearRule function, 2-65
clearRulesetStack function, 2-66
clearWatch function, 2-67
clearWatchActivation function, 2-67
clearWatchAll function, 2-67
clearWatchCompilations function, 2-67
clearWatchFacts function, 2-67
clearWatchFocus function, 2-67
clearWatchRules function, 2-67
collection aggregate, 2-36
command line

starting, 1-2
comparable expression, 2-39
concatenation, 2-6

string, 2-31
contains function, 2-68
count aggregate, 2-36

D
decision table

logical option, 2-13
decrement expression, 2-56
definition, 2-9

name, 2-9
qname, 2-9
variable, 2-10

double keyword, 2-4

E
effectiveEndDate property, 2-13
effectiveStartDate property, 2-13
else

action-block, 2-46
else keyword, 2-46
exception

throw, 2-54
exists keyword, 2-33
expression

array-expression, 2-32
boolean-expression, 2-28
comparable, 2-39
decrement, 2-56

Index-2

definition, 2-27
increment, 2-56
numeric-expression, 2-30
object-expression, 2-40
primary-expression, 2-41
string-expression, 2-31

F
fact keyword, 2-33
fact set, 1-6, 2-33
fact set row, 1-6
fact-class-body, 2-21
factpath, 2-33
facts

and working memory, 1-4
definition of, 1-4
Java classes as, 1-5
RL classes as, 1-5

fact-set expression, 2-33
fact-set-expression, 2-33
final keyword, 2-10
finally keyword, 2-49
fire rule, 1-7
float keyword, 2-4
for

action-block, 2-48
for-init, 2-48
for-update, 2-48

function
assert, 2-61
assertTree, 2-63
assertXpath, 2-64
clear, 2-67
clearRule, 2-65
clearRulesetStack, 2-66
contains, 2-68
definition, 2-20
getCurrentDate, 2-69
getDecisionTrace, 2-70
getDecisionTraceLevel, 2-71
getDecisionTraceLimit, 2-72
getEffectiveDate, 2-73
getFactsbyType, 2-74
getRuleSession, 2-76
getRuleSetStack, 2-75
getStrategy, 2-77
halt, 2-78
id, 2-79
keyword, 2-20
object, 2-80
popRuleset, 2-82
println, 2-81
pushRuleset, 2-83
recursive, 2-20
reset, 2-85
retract, 2-84
run, 2-86
runUntilHalt, 2-87
setCurrentDate, 2-88

setEffectiveDate, 2-91
setRulesetStack, 2-92
setStrategy, 2-93
showActivation, 2-94
showFacts, 2-95
step, 2-96
watch, 2-97

G
getCurrentDate function, 2-69
getEffectiveDate function, 2-73
getFactsbyType function, 2-74
getRuleSession function, 2-76
getRulesetStack function, 2-75
getStrategy function, 2-77
global variable, 2-10

H
halt function, 2-78
hide keyword, 2-21

I
id function, 2-79
identifier, 2-7

java-identifier, 2-7
xml-identifier, 2-7

if action-block, 2-46
implicit conversion, 2-4
import keyword, 2-25
importing

Java class, 2-25
include

file, 2-26
http, 2-26

increment expression, 2-56
instanceof keyword, 2-28
int keyword, 2-4

J
Java class

importing, 2-25
Java-class-name, 2-4
java-identifier, 2-7
java.lang.String, 2-6
JAXB and xml support, 2-16

L
literals, 2-8
logical, 2-12
logical option, 2-13
logical= keyword, 2-12
long keyword, 2-4

M
maximum aggregate, 2-36

Index-3

minimum aggregate, 2-36
modify action, 2-51
mutex property, 2-58

N
name

definition, 2-9
named-ruleset, 2-2
nested ruleset, 2-2
null keyword, 2-10
numeric, 2-4
numeric-expression, 2-30

precedence, 2-30

O
object function, 2-80
object type, 2-6
object-expression, 2-40
object-type, 2-4
options

-c command-line, 3-3
-i command-line, 3-3
-o command-line, 3-3
-p command-line, 1-2, 3-3
-v command-line, 3-3

P
popRuleset function, 2-82
precedence

numeric-expression, 2-30
primary action, 2-57
primary-expression, 2-41
primitive, 2-4
primitive type, 2-5
println function, 2-81
priority, 2-12
priority= keyword, 2-12
property, 2-12
property keyword, 2-21
pushRuleset function, 2-83

Q
qname

definition, 2-9
queue strategy, 2-93

R
references keyword, 2-21
reserved words, 2-1
reset function, 2-85
results

obtaining, 4-4
using external resources, 4-5

retract function, 1-8, 2-84
return keyword, 2-53
returns keyword, 2-20

reverses keyword, 2-21
RL

reserved words, 2-1
rulegroup, 2-58

mutext property, 2-58
rules

active property, 2-13
autofocus, 2-12
definition, 2-12
effectiveEndDate property, 2-13
effectiveStartDate property, 2-13
fire, 1-7
logical option, 2-13
logical property, 2-12
ordering, 1-9
priority, 1-9, 2-12
rule action, 1-2, 1-3
rule condition, 1-2, 1-3

rulesession
CFG_DECISION_TRACE parameter, 4-9
CFG_DECISION_TRACE_LEVEL parameter, 4-9

ruleset, 2-2
include, 2-26
nested, 2-2
using, 1-2

ruleset stack, 1-9
ruleset-name, 2-2
run function, 2-86
runUntilHalt function, 2-87

S
setCurrentDate function, 2-88
setEffectiveDate function, 2-91
setRulesetStack function, 2-92
setStrategy

function, 2-93
queue strategy, 2-93
stack strategy, 2-93

short keyword, 2-4
showActivations function, 2-94
showFacts function, 1-8, 2-95
simple-type, 2-4
stack strategy, 2-93
starting command line interface, 1-2
step function, 2-96
string

+ operator, 2-31
concatenation, 2-6, 2-31
literal, 2-6
type, 2-6

string-expression, 2-31
sum aggregate, 2-36
supports keyword, 2-16
synchronized

keyword, 2-50

T
throw keyword, 2-54

Index-4

try keyword, 2-49
type, 2-4

conversion, 2-4
implicit conversion, 2-4
java.lang.String, 2-6
object, 2-6
primitive, 2-5
simple-type, 2-4
string, 2-6

types
simple-type, 2-4

U
unnamed-ruleset, 2-2
user defined aggregate, 2-36

V
var keyword, 2-33
variable

definition, 2-10
global, 2-10

W
watchActivations function, 1-7, 2-97
watchAll function, 2-97
watchCompilations function, 2-97
watchFacts function, 1-7, 2-97
watchFocus function, 2-97
watchRules function, 1-7, 2-97
while

action-block, 2-47
keyword, 2-47

working memory, 1-4

X
XML

binding, 2-16
support, 2-16
XLINK class, 2-16
xpath support, 2-16

xml-identifier, 2-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Rules Programming Concepts
	1.1 Starting the Oracle Business Rules RL Language Command-Line
	1.2 Introducing Rules and Rulesets
	1.2.1 Rule Conditions
	1.2.2 Rule Actions

	1.3 Introducing Facts and RL Language Classes
	1.3.1 What Are Facts?
	1.3.2 Adding Facts to Working Memory with Assert
	1.3.3 Using RL Language Classes as Facts
	1.3.4 Using Java Classes as Facts

	1.4 Understanding and Controlling Rule Firing
	1.4.1 Rule Activation and the Agenda
	1.4.2 Watching Facts, Rules, and Rule Activations
	1.4.2.1 Watching and Showing Facts in Working Memory
	1.4.2.2 Watching Activations and Rule Firing

	1.4.3 Ordering Rule Firing

	1.5 Using Effective Dates
	1.6 Integrating RL Language Programs with Java Programs
	1.6.1 Using Java Beans Asserted as Facts
	1.6.2 Using RuleSession Objects in Java Applications

	1.7 Using Decision Tracing
	1.7.1 Introduction to Rule Engine Level Decision Tracing
	1.7.2 Using Rule Engine Level Decision Tracing
	1.7.3 Decision Trace Samples for Production and Development Level Tracing

	1.8 Building a Coin Counter Rules Program

	2 Rule Language Reference
	Ruleset
	Types
	Identifiers
	Literals
	Definitions
	Variable Definitions
	Global Variables

	Rule Definitions
	Class Definitions
	xpath Support

	Function Definitions

	Fact Class Declarations
	Import Statement
	Include Statement
	Using Expressions
	Boolean Expressions
	Numeric Expressions
	String Expressions
	Array Expressions
	Fact Set Expressions
	Comparable Expression
	Object Expressions
	Primary Expressions
	new

	Actions and Action Blocks
	If Else Action Block
	While Action Block
	For Action Block
	Try Catch Finally Action Block
	Synchronized Action Block
	Modify Action
	Return Action
	Throw Action
	Assign Action
	Increment or Decrement Expressions
	Primary Actions

	Rulegroup
	Built-in Functions
	assert
	assertTree
	assertXPath
	clearRule
	clearRulesetStack
	clearWatchRules, clearWatchActivations, clearWatchFacts, clearWatchFocus, clearWatchCompilations, clearWatchAll
	contains
	getCurrentDate
	getDecisionTrace
	getDecisionTraceLevel
	getDecisionTraceLimit
	getEffectiveDate
	getFactsByType
	getRulesetStack
	getRuleSession
	getStrategy
	halt
	id
	object
	println
	popRuleset
	pushRuleset
	retract
	reset
	run
	runUntilHalt
	setCurrentDate
	setDecisionTraceLevel
	setDecisionTraceLimit
	setEffectiveDate
	setRulesetStack
	setStrategy
	showActivations
	showFacts
	step
	watchRules, watchActivations, watchFacts, watchFocus, watchCompilations

	3 Using the Command-line Interface
	3.1 Starting and Using the Command-Line Interface
	3.2 RL Command-Line Options
	3.3 RL Command-Line Built-in Commands
	3.3.1 Clear Command
	3.3.2 Exit Command

	4 Using a RuleSession
	4.1 RuleSession Constructor Properties
	4.2 RuleSession Methods
	4.3 RL to Java Type Conversion
	4.4 Error Handling
	4.5 RL Class Reflection
	4.6 XML Navigation
	4.7 Obtaining Results from a Rule Enabled Program
	4.7.1 Overview of Results Examples
	4.7.2 Using External Resources to Obtain Results

	4.8 Debugging an RL Stacktrace
	4.9 Using RuleSession Pooling
	4.9.1 How to Create a RuleSession Pool
	4.9.2 How to Use a RuleSession Pool

	4.10 Using RuleSession Options
	4.10.1 Using the CFG_LOGGING System Property
	4.10.2 Using the CFG_DECISION_TRACE_LEVEL Option
	4.10.3 Using the CFG_DECISION_TRACE_LIMIT Option

	A Summary of Java and RL Differences
	A.1 RL Differences from Java

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

