

Oracle® Fusion Middleware
Forms Services Deployment Guide

11g Release 1 (11.1.1)

E10240-04

January 2011

Oracle Fusion Middleware Forms Services Deployment Guide 11g Release 1 (11.1.1)

E10240-04

Copyright © 2001, 2011, Oracle and/or its affiliates. All rights reserved.

Contributors: Ananth Satyanarayana, Vinay Agarwal, Suvarna Balachandra, Hemant Bansal, Ramesh
Gurubhadraiah, Laiju Mathew, Gururaja Padakandla, Opendro Singh, Ashish Tyagi, Sudarshan Upadhya,
Syed Nisar Ahmed, Dhiraj Madan, James Amalraj, Phil Kuhn, Arthur Housinger, Rubik Sadeghi, Naseer
Syed, Emerson deLaubenfels, Grant Ronald

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xiii

Intended Audience.. xiii
Documentation Accessibility ... xiii
Related Documents ... xiii
Conventions ... xiv

1 What's New in Oracle Forms Services

1.1 JavaScript Integration... 1-1
1.2 Enhanced Java Support .. 1-1
1.3 Support for Server-Side Events... 1-1
1.4 Proxy User Support .. 1-1
1.5 PL/SQL Tracing .. 1-2
1.6 Integration with Oracle Diagnostics and Logging (ODL)... 1-2

2 Introduction to Oracle Forms Services

2.1 Oracle Forms.. 2-1
2.1.1 Oracle Forms Developer ... 2-1
2.1.2 Oracle Forms Services ... 2-2
2.1.3 How Oracle Forms Services Launches a Forms Application .. 2-2
2.2 Oracle Database... 2-2
2.3 Oracle WebLogic Server... 2-2
2.4 Oracle Fusion Middleware .. 2-3
2.5 About Installing or Upgrading Oracle Forms ... 2-3
2.6 Oracle Forms Services Architecture ... 2-4
2.6.1 Oracle Forms Services Components ... 2-5
2.6.1.1 Forms Listener Servlet ... 2-5
2.6.1.2 Forms Runtime Process ... 2-6

3 Basics of Deploying Oracle Forms Applications

3.1 Oracle Forms Services in Action... 3-1
3.2 Configuration Files ... 3-3
3.2.1 Oracle Forms Configuration Files ... 3-3
3.2.1.1 default.env ... 3-3
3.2.1.2 formsweb.cfg ... 3-4
3.2.1.3 ftrace.cfg... 3-4

iv

3.2.2 Forms Java EE Application Deployment Descriptors .. 3-4
3.2.3 Oracle HTTP Listener Configuration File .. 3-5
3.2.3.1 About Editing forms.conf.. 3-5
3.2.3.2 Configuring OHS on a Separate Host ... 3-6
3.2.4 Standard Fonts and Icons File.. 3-6
3.2.5 baseHTML Files ... 3-6
3.2.6 WebUtil Configuration Files .. 3-7
3.2.6.1 Default webutil.cfg ... 3-7
3.2.6.2 Default webutilbase.htm ... 3-7
3.2.6.3 Default webutiljpi.htm... 3-7
3.3 Application Deployment ... 3-7
3.3.1 Deploying Your Application.. 3-8
3.3.2 Specifying Parameters... 3-9
3.3.3 Creating Configuration Sections in Fusion Middleware Control.............................. 3-10
3.3.3.1 Editing the URL to Access Oracle Forms Services Applications........................ 3-10
3.3.4 Specifying Special Characters in Values of Runform Parameters 3-10
3.3.4.1 Default Behavior in the Current Release.. 3-10
3.3.4.2 Behavior in Previous Releases ... 3-12
3.3.4.3 Obtaining the Behavior of Prior Releases in the Current Release 3-12
3.3.4.4 Considerations for Template HTML Files ... 3-12
3.3.4.5 Considerations for Static HTML Pages .. 3-12
3.3.5 Accessing the Listener Servlet Administration Page... 3-13
3.4 Client Browser Support... 3-13
3.4.1 How Configuration Parameters and BaseHTML Files are Tied to Client Browsers

... 3-14
3.4.2 Forms Single Sign-On on Mozilla 3.x... 3-14

4 Configuring and Managing Forms Services

4.1 Fusion Middleware Control and Oracle Forms.. 4-1
4.1.1 Accessing Forms Services with Fusion Middleware Control 4-2
4.2 Configuring Forms Services .. 4-4
4.2.1 Common Tasks in the Web Configuration Page... 4-4
4.2.2 Configuring Parameters with Fusion Middleware Control .. 4-6
4.2.2.1 Parameters that Specify Files .. 4-6
4.2.3 Managing Configuration Sections... 4-6
4.2.3.1 Creating a Configuration Section... 4-6
4.2.3.2 Editing a Named Configuration Description ... 4-7
4.2.3.3 Duplicating a Named Configuration... 4-7
4.2.3.4 Deleting a Named Configuration... 4-8
4.2.4 Managing Parameters ... 4-8
4.2.5 Forms Configuration Parameters .. 4-9
4.2.5.1 Basic Configuration Parameters .. 4-10
4.2.5.2 Single Sign-On Configuration Parameters... 4-11
4.2.5.3 Trace Configuration Parameters ... 4-12
4.2.5.4 Plug-in Configuration Parameters .. 4-12
4.2.5.5 HTML Page Configuration Parameters.. 4-13
4.2.5.6 Applet Configuration Parameters... 4-14

v

4.2.5.7 Advanced Configuration Parameters... 4-15
4.2.5.8 List of Parameters that Cannot be Specified in the URL 4-20
4.3 Managing Environment Variables .. 4-20
4.3.1 Managing Environment Configuration Files.. 4-21
4.3.2 Configuring Environment Variables ... 4-22
4.3.3 Default Environment Variables .. 4-23
4.4 Managing User Sessions ... 4-24
4.5 Managing URL Security for Applications.. 4-29
4.5.1 Securing the Oracle Forms Test Form.. 4-30
4.6 Creating Your Own Template HTML Files.. 4-32
4.6.1 Variable References in Template HTML Files .. 4-32
4.7 Deploying Fonts, Icons, and Images Used by Forms Services .. 4-33
4.7.1 Managing Registry.dat with Fusion Middleware Control ... 4-33
4.7.2 Managing Application Fonts .. 4-34
4.7.3 Deploying Application Icons .. 4-35
4.7.3.1 Storing Icons in a Java Archive File .. 4-36
4.7.3.2 Adding, Modifying, and Deleting Icon Mappings ... 4-36
4.7.4 Splash screen and Background Images .. 4-38
4.7.5 Custom Jar Files Containing Icons and Images.. 4-38
4.7.5.1 Creating a Jar File for Images... 4-38
4.7.5.2 Using Files Within the Jar File ... 4-39
4.7.6 Search Path for Icons and Images... 4-39
4.7.6.1 DocumentBase ... 4-39
4.7.6.2 codebase .. 4-40
4.8 Enabling Language Detection .. 4-40
4.8.1 Specifying Language Detection .. 4-41
4.8.2 Inline IME Support ... 4-41
4.8.3 How Language Detection Works ... 4-41
4.8.3.1 Multi-Level Inheritance .. 4-42
4.9 Enabling Key Mappings.. 4-42
4.9.1 Customizing fmrweb.res ... 4-43
4.9.1.1 Example change: Swapping Enter and Execute Mappings................................. 4-43
4.9.1.2 Exceptions/ Special Key Mappings.. 4-43
4.9.1.2.1 Mapping F2 ... 4-44
4.9.1.2.2 Mapping for ENTER to Fire KEY-ENTER-TRIGGER 4-44
4.9.1.2.3 Mapping Number Keys... 4-44
4.9.1.2.4 Mapping for ESC Key to exit out of a Web Form .. 4-45

5 Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic
Server

5.1 About the Oracle WebLogic Managed Server .. 5-1
5.2 Working with Forms Managed Server .. 5-2
5.2.1 Custom Deployment of Forms Java EE Application .. 5-3
5.2.1.1 Prerequisite Steps ... 5-3
5.2.1.2 Override the Default Servlet Alias and the Context Root 5-4
5.2.1.3 Create the Deployment Plan ... 5-6
5.2.1.4 Deploy the Custom EAR file... 5-8

vi

5.2.1.5 Post-Patching Tasks.. 5-8
5.2.1.6 Test the Custom Deployment ... 5-8
5.2.2 Expanding Forms Managed Server Clusters ... 5-9
5.2.3 Registering Forms Java EE Applications... 5-10
5.2.4 Modification of Forms J2EE Application Deployment Descriptors 5-14
5.3 Performance/Scalability Tuning ... 5-16
5.3.1 Limit the number of HTTPD processes ... 5-16
5.3.2 Set the MaxClients Directive to a High value... 5-16
5.4 Load Balancing Oracle WebLogic Server ... 5-16
5.5 Using HTTPS with the Forms Listener Servlet.. 5-19
5.6 Using an Authenticating Proxy to Run Oracle Forms Applications 5-19
5.7 Oracle Forms Services and SSL.. 5-20
5.8 Enabling SSL with a Load Balancing Router ... 5-20

6 Oracle Forms and JavaScript Integration

6.1 About Oracle Forms Calling External Events... 6-1
6.1.1 Why Call Events Outside of Oracle Forms? .. 6-2
6.2 About JavaScript Events Calling into Oracle Forms.. 6-3
6.2.1 Why Let Events Call into Oracle Forms? ... 6-3
6.3 Integrating JavaScript and Oracle Forms .. 6-3
6.4 Configuration of formsweb.cfg... 6-4
6.5 Configuration of Environment Variables .. 6-4

7 Enhanced Java Support

7.1 Overview.. 7-1
7.1.1 Dispatching Events from Forms Developer... 7-1
7.1.2 Dispatching Events to Forms Services.. 7-1
7.2 About Custom Item Event Triggers ... 7-2
7.2.1 Adding the When-Custom-Item-Event Trigger at Design Time 7-2
7.2.2 About the Custom Item Event Trigger at Runtime .. 7-2
7.2.3 Example: A Java class for a Push Button.. 7-2

8 Working with Server Events

8.1 About Oracle Forms and Server Events .. 8-1
8.2 Creating Events ... 8-3
8.3 Subscribing to Events ... 8-3
8.4 Event Propagation .. 8-3
8.4.1 About the When-Event-Raised Trigger .. 8-4
8.4.2 About Trigger Definition Level and Scope .. 8-4
8.5 Publishing Database Events .. 8-5
8.6 About Application Integration Between Forms ... 8-5
8.6.1 About Synchronous Communication ... 8-6
8.6.2 About Asynchronous Communication .. 8-6
8.6.3 Configuring Asynchronous Communication.. 8-6

vii

9 Using Forms Services with Oracle Single Sign-On

9.1 Overview.. 9-1
9.1.1 Authentication Flow.. 9-2
9.2 Available Features with OracleAS Single Sign-On, Oracle Internet Directory and Forms......

... 9-4
9.2.1 Dynamic Resource Creation When A Resource Is Not Found In Oracle Internet

Directory ... 9-4
9.2.2 Support for Dynamic Directives With Forms and OracleAS Single Sign-On............. 9-5
9.2.3 Support for Database Password Expiration for Forms Running with OracleAS Single

Sign-On .. 9-5
9.3 OracleAS Single Sign-On Components Used By Oracle Forms... 9-5
9.4 Enabling OracleAS Single Sign-On for an Application... 9-6
9.4.1 ssoMode .. 9-7
9.4.2 ssoProxyConnect.. 9-7
9.4.3 ssoDynamicResourceCreate... 9-7
9.4.4 ssoErrorURL ... 9-8
9.4.5 ssoCancelUrl... 9-8
9.4.6 Accessing Single Sign-on Information From Forms ... 9-9
9.4.7 Registering Oracle HTTP Server with OracleAS Single Sign-On Server..................... 9-9
9.5 Integrating Oracle Forms and Reports .. 9-10
9.5.1 Forms and Reports Integration in non-SSO mode... 9-10
9.5.2 Using Multiple Reports Server Clusters in Oracle Forms Services 9-11
9.5.3 Integrating Forms and Reports Installed in Different Instances................................ 9-11
9.6 Enabling and Configuring Proxy Users.. 9-12
9.6.1 Proxy User Overview... 9-12
9.6.2 Enabling Proxy User Connections.. 9-13
9.6.3 Enabling SSO in formsweb.cfg ... 9-14
9.6.4 Accessing the Forms Application... 9-14
9.6.5 Changes in Forms Built-ins ... 9-15
9.6.6 Reports Integration with Proxy Users ... 9-15
9.7 Configuring Oracle Internet Directory ... 9-15

10 Configuring and Managing Java Virtual Machines

10.1 Why Use Java Virtual Machine Pooling? ... 10-1
10.1.1 JVM Pooling in Forms and Reports Integration... 10-2
10.2 About Child Java Virtual Machine Processes .. 10-2
10.2.1 Child JVM Example.. 10-4
10.3 About Multiple JVM Controllers ... 10-4
10.4 JVM Pooling Usage Examples.. 10-5
10.5 Design-time Considerations ... 10-6
10.5.1 Re-importing Your Java Code... 10-6
10.5.2 About Sharing Static Variables Across Multiple JVMs... 10-6
10.6 Overview of JVM Configuration ... 10-7
10.7 Managing JVM Controllers from the Command Line.. 10-7
10.7.1 JVM Controller Command Examples .. 10-7
10.7.2 Command Restrictions... 10-8
10.7.3 Start Command Parameters .. 10-8

viii

10.8 Managing JVM Pooling from Fusion Middleware Control... 10-9
10.8.1 Common Tasks in the JVM Configuration Page .. 10-10
10.8.2 Managing JVM Configuration Sections... 10-11
10.8.2.1 Accessing the JVM Configuration Page ... 10-11
10.8.2.2 Creating a New Configuration Section .. 10-11
10.8.2.3 Editing a Named Configuration Description .. 10-12
10.8.2.4 Duplicating a Named Configuration.. 10-12
10.8.2.5 Deleting a Named Configuration.. 10-12
10.8.3 Managing Parameters .. 10-13
10.8.4 JVM Configuration Parameters and Default Values ... 10-13
10.8.5 Starting and Stopping JVM Controllers with Fusion Middleware Control 10-14
10.8.6 Forms Configuration File Settings.. 10-15
10.8.7 Startup Example.. 10-16
10.9 JVM Controller Logging .. 10-17
10.9.1 Specifying JVM Default Logging Properties ... 10-17
10.9.2 Specifying the JVM Log Directory Location ... 10-18
10.9.3 Accessing Log Files... 10-18
10.9.4 Deleting a Log File for a JVM Controller ... 10-18
10.10 Integrating Forms and Reports .. 10-19
10.11 JVM Pooling Error Messages.. 10-19

11 Forms Services Security Overview

11.1 Forms Services Single Sign-On .. 11-1
11.1.1 Classes of Users and Their Privileges .. 11-1
11.1.1.1 Default Single Sign-On Behavior for User Accounts .. 11-2
11.1.1.2 Users Using Database Proxy Functionality ... 11-2
11.1.2 Resources That Are Protected... 11-2
11.1.2.1 Dynamic Directives ... 11-2
11.1.2.2 Dynamic Resource Creation in Oracle Internet Directory................................... 11-2
11.1.2.3 Database Password Expiration when Using Single Sign-On.............................. 11-3
11.1.3 Authentication and Access Enforcement .. 11-3
11.1.4 Leveraging Oracle Identity Management Infrastructure.. 11-3
11.2 Configuring Oracle Forms Services Security ... 11-3
11.2.1 Configuring Oracle Identity Management Options for Oracle Forms 11-3
11.2.2 Configuring Oracle Forms Options for Oracle Fusion Middleware Security Framework

... 11-4
11.2.3 Securing RADs .. 11-4

12 Tracing and Diagnostics

12.1 About Forms Trace .. 12-1
12.1.1 What Is the Difference between Tracing and Debugging?... 12-1
12.2 Enabling and Configuring Forms Trace ... 12-1
12.2.1 Configuring Forms Trace... 12-2
12.2.2 Specifying URL Parameter Options ... 12-4
12.3 Starting and Stopping Forms Trace... 12-4
12.4 Viewing Forms Trace Output... 12-5
12.4.1 Running the Translate Utility ... 12-6

ix

12.5 List of Traceable Events .. 12-6
12.5.1 List of Event Details.. 12-8
12.5.1.1 User Action Events .. 12-9
12.5.1.2 Forms Services Events .. 12-9
12.5.1.3 Detailed Events .. 12-9
12.5.1.4 Three-Tier Events .. 12-10
12.5.1.5 Miscellaneous Events .. 12-10
12.6 Taking Advantage of Oracle Diagnostics and Logging Tools... 12-10
12.6.1 Enabling Oracle Diagnostics and Logging.. 12-11
12.6.1.1 Specifying Logging.. 12-11
12.6.1.2 Specifying Logging Levels Using Fusion Middleware Control 12-11
12.6.1.3 Specifying Full Diagnostics in the URL that Invokes the Forms Servlet......... 12-12
12.6.2 Viewing Diagnostics Logs ... 12-12
12.6.3 Using the Servlet Page ... 12-12
12.6.4 Location of Log Files .. 12-13
12.6.5 Example Output for Each Level of Servlet Logging.. 12-13
12.6.5.1 (none)... 12-13
12.6.5.2 /session ... 12-14
12.6.5.3 /sessionperf.. 12-14
12.6.5.4 /perf .. 12-14
12.6.5.5 /debug .. 12-15

13 Upgrading to Oracle Forms Services 11g

13.1 Oracle Forms Services Upgrade Items.. 13-1
13.2 Oracle Forms Services Upgrade Tasks.. 13-2
13.2.1 Upgrade Recommendations and Troubleshooting Tips... 13-3
13.2.2 Upgrading Oracle Forms Services Application Modules ... 13-3
13.2.3 Upgrading Common Gateway Interface (CGI) to the Oracle Forms Servlet 13-4
13.2.4 Upgrading Static HTML Start Files to Generic Application HTML Start Files 13-5
13.2.4.1 Using Static HTML Files with Oracle Forms Services ... 13-6
13.2.5 Upgrading the Forms 6i Listener to the Forms Listener Servlet................................ 13-7
13.2.6 Upgrading the Forms Listener Servlet Architecture to Oracle Forms Services 13-8
13.2.7 Upgrading Load Balancing ... 13-9
13.2.8 Usage Notes... 13-9
13.2.8.1 Deploying Icon Images with the Forms Servlet .. 13-10
13.2.8.2 Upgrading Integrated Calls to Oracle Forms to use Oracle Reports 13-10
13.2.8.3 Creating Forms Listener Servlet Alias Names .. 13-11
13.2.8.4 Accessing the Listener Servlet Administration Page ... 13-11
13.3 Validating the Oracle Forms Services Upgrade .. 13-11

14 Performance Tuning Considerations

14.1 Built-in Optimization Features of Forms Services .. 14-1
14.1.1 Monitoring Forms Services ... 14-1
14.1.1.1 Monitoring Forms Services Instances... 14-1
14.1.1.2 Monitoring Forms Events... 14-2
14.1.2 Forms Services Web Runtime Pooling... 14-2

x

14.1.2.1 Configuring Prestart Parameters... 14-3
14.1.2.2 Starting Runtime Pooling ... 14-4
14.1.3 Minimizing Client Resource Requirements.. 14-4
14.1.4 Minimizing Forms Services Resource Requirements .. 14-4
14.1.5 Minimizing Network Usage.. 14-4
14.1.6 Maximizing the Efficiency of Packets Sent Over the Network 14-5
14.1.7 Rendering Application Displays Efficiently on the Client ... 14-5
14.2 Tuning Oracle Forms Services Applications.. 14-6
14.2.1 Location of the Oracle Forms Services with Respect to the Data Server 14-6
14.2.2 Minimizing the Application Startup Time.. 14-6
14.2.2.1 Using Java Files.. 14-7
14.2.2.2 Using Sun's Java Plug-in... 14-7
14.2.2.3 Using Caching.. 14-7
14.2.3 Reducing the Required Network Bandwidth... 14-8
14.2.4 Other Techniques to Improve Performance ... 14-9
14.3 Web Cache and Forms Integration.. 14-10

A Troubleshooting Oracle Forms Services

A.1 Verifying The Installation ... A-1
A.1.1 Use The Web Form Tester ... A-1
A.1.2 Find Port Information .. A-2
A.2 Diagnosing FRM-XXXXX Errors.. A-2
A.2.1 The Oracle Forms Applet .. A-2
A.3 Diagnosing Server Crashes with Stack Traces... A-2
A.3.1 About Stack Traces ... A-3
A.3.2 Configuring and Using Stack Traces ... A-3
A.3.2.1 Verifying the Environment .. A-3
A.3.2.2 Understanding UNIX Stack Traces ... A-3
A.3.2.3 Understanding Windows Stack Traces .. A-3
A.4 Diagnosing Client Crashes ... A-4
A.4.1 About Diagnosing Client Crashes.. A-4
A.4.2 Diagnosing Hanging Applications .. A-4
A.4.2.1 Causes of Hanging Applications... A-4
A.5 Forms Trace and Servlet Logging Tools ... A-5
A.6 Resolving Memory Problems... A-5
A.6.1 How Java Uses Memory .. A-5
A.6.2 Setting the Initial Java Heap.. A-5
A.6.3 About Memory Leaks... A-5
A.6.3.1 Memory Leaks in Java .. A-6
A.6.3.2 Identifying Memory Leaks... A-6
A.6.4 Improving Performance with Caching.. A-6
A.7 Troubleshooting Tips .. A-7
A.8 Need More Help?... A-8

B Configuring Java Plug-ins

B.1 Supported Configurations .. B-1
B.2 Legacy Lifecycle Behavior And Configuration Requirements.. B-1

xi

B.2.1 Configuration Requirements... B-1

C Locations and Samples of Configuration Files

C.1 Locations of Forms Configuration Files ... C-1
C.2 Default formsweb.cfg .. C-2
C.3 Platform Specific default.env Files .. C-6
C.3.1 Default default.env File for Windows ... C-6
C.3.2 Default default.env File for UNIX and Linux... C-7
C.4 base.htm and basejpi.htm Files .. C-10
C.4.1 Parameters and variables in the baseHTML file .. C-10
C.4.1.1 Usage Notes.. C-11
C.4.2 Default base.htm File.. C-11
C.4.3 Default basejpi.htm File ... C-12
C.5 web.xml ... C-14
C.5.1 Default web.xml File .. C-15
C.6 weblogic.xml... C-16
C.7 forms.conf.. C-17
C.7.1 Default forms.conf .. C-17
C.8 Registry.dat ... C-18
C.8.1 Registry.dat... C-18
C.9 Default jvmcontroller.cfg .. C-19
C.10 Default webutil.cfg .. C-19
C.11 Default webutilbase.htm... C-22
C.12 Default webutiljpi.htm .. C-24

Index

xii

xiii

Preface

Intended Audience
This manual is intended for software developers who are interested in deploying
Oracle Forms applications to the Web with Oracle Fusion Middleware.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following manuals:

xiv

■ Oracle Fusion Middleware Release Notes for Linux x86

■ Oracle Fusion Middleware Release Notes for Microsoft Windows

■ Oracle Forms Upgrading Oracle Forms 6i to Oracle Forms 11g

■ Oracle Fusion Middleware Library on OTN

■ Oracle Forms Builder Online Help, available from the Help menu in Oracle Forms
Developer.

In addition, you will find white papers and other resources at
http://www.oracle.com/technology/products/forms/.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/technology/products/forms/

1

What's New in Oracle Forms Services 1-1

1 What's New in Oracle Forms Services

This chapter describes the features and improvements in 11g Release 1 of Oracle
Fusion Middleware Forms Services.

■ Section 1.1, "JavaScript Integration"

■ Section 1.2, "Enhanced Java Support"

■ Section 1.3, "Support for Server-Side Events"

■ Section 1.4, "Proxy User Support"

■ Section 1.5, "PL/SQL Tracing"

■ Section 1.6, "Integration with Oracle Diagnostics and Logging (ODL)"

1.1 JavaScript Integration
Use JavaScript integration that is now available in Oracle Forms 11g to have JavaScript
call into your Forms applet, or have your Forms applet execute JavaScript.

For more information, see Chapter 6, "Oracle Forms and JavaScript Integration."

1.2 Enhanced Java Support
You can extend Pluggable Java Components (PJC) to raise events in Oracle Forms
Services.

For more information, see Section 7, "Enhanced Java Support."

1.3 Support for Server-Side Events
Oracle Forms Services supports external events from outside of Forms Services. An
event can be raised by the database or by BPEL through Oracle Advanced Queueing.

For more information, see Chapter 8, "Working with Server Events."

1.4 Proxy User Support
In this release of Oracle Forms, Forms developers can choose to have users connect to
the database as a proxy user, a single database user is a user with connection privileges
only, adding security and simplifying user management in the process while
maintaining automatic database auditing.

For more information, see Section 9.6, "Enabling and Configuring Proxy Users."

PL/SQL Tracing

1-2 Forms Services Deployment Guide

1.5 PL/SQL Tracing
In Oracle Forms Services 11g, you can enable logging of the names and parameters for
called PL/SQL Procedures and functions, then view the output in Forms Trace.

For more information, see Chapter 12, "Tracing and Diagnostics."

1.6 Integration with Oracle Diagnostics and Logging (ODL)
Oracle Diagnostic logging (ODL) is a feature of Oracle Fusion Middleware that
extends the J2SE logging framework. ODL makes it easier to diagnose problems and
manage log files in Oracle Fusion Middleware.

For more information, see Section 12.6, "Taking Advantage of Oracle Diagnostics and
Logging Tools."

2

Introduction to Oracle Forms Services 2-1

2 Introduction to Oracle Forms Services

This chapter introduces Oracle Forms. It provides an overview of the development
and deployment environment for Oracle Forms, and provides references where you
can find more information on associated components in Oracle Fusion Middleware.

This chapter contains the following sections:

■ Section 2.1, "Oracle Forms"

■ Section 2.2, "Oracle Database"

■ Section 2.3, "Oracle WebLogic Server"

■ Section 2.4, "Oracle Fusion Middleware"

■ Section 2.5, "About Installing or Upgrading Oracle Forms"

■ Section 2.6, "Oracle Forms Services Architecture"

2.1 Oracle Forms
Oracle Forms is a component of Oracle Fusion Middleware. Oracle Forms is used to
develop and deploy Forms applications. The Forms applications provide a user
interface to access Oracle Database in an efficient and tightly-coupled way. The
applications can be integrated with Java and web services to take advantage of service
oriented architectures (SOA).

Oracle Forms includes the following:

■ Oracle Forms Developer, used to develop and compile Forms applications.

■ Oracle Forms Services, a server component, used to deploy the applications.

2.1.1 Oracle Forms Developer
Oracle Forms Developer is used to develop a form that can access an Oracle database
and present the data. Wizards and utilities are provided to speed up application
development. The source form (*.fmb) is created and compiled into an "executable"
(*.fmx). The Forms application is run (interpreted) by the Forms Runtime process.

For more information about the Oracle Forms Developer, refer to the following
documentation:

■ Oracle Forms Builder Online Help, which is accessible from Oracle Forms Builder,
provides information on how to use Oracle Forms Developer to develop and
compile Forms applications.

■ Upgrading Oracle Forms 6i to Oracle Forms 11g: describes obsolete features of Oracle
Forms Developer and instructions for upgrading your Forms applications.

Oracle Database

2-2 Forms Services Deployment Guide

2.1.2 Oracle Forms Services
Oracle Forms Services is a comprehensive application framework optimized to deploy
Forms applications in a multitiered environment. It takes advantage of the ease and
accessibility of the Web and elevates it from a static information-publishing
mechanism to an environment capable of supporting complex applications.

The Form applications that you design and develop in Oracle Forms Developer are
deployed on Oracle Fusion Middleware. These applications run on the middle tier (see
Figure 2–2). The user interface is presented on the client tier as a Java applet in the
client's browser.

This guide describes the configuration files, and environment variables that can be
used to customize deployment of Forms applications. It also provides information on
performance, logging and monitoring your deployment. You can use Oracle Fusion
Middleware Enterprise Manager Control to manage the configuration files, and
environment variables, and monitor the deployment.

2.1.3 How Oracle Forms Services Launches a Forms Application
When a user first starts an Oracle Forms application by clicking a link to the
application's URL, the baseHTML file is read by the Forms servlet. Any variables
(%variablename%) in the baseHTML file are replaced with the appropriate parameter
values specified in the formsweb.cfg file, and from query parameters in the URL
request (if any).

You can easily modify the configuration files with Oracle Enterprise Manager Fusion
Middleware Control as your needs change. Section 2.6, "Oracle Forms Services
Architecture" describes the processes that are involved in deploying and running a
typical Forms application.

2.2 Oracle Database
Oracle Database is the latest generation of RDBMS. Among the numerous capabilities
are unlimited scalability and industry-leading reliability with Oracle Real Application
Clusters; high availability technology including advancements in standby database
technology (Oracle Data Guard); and built-in OLAP, data mining and Extract,
Transform and Load (ETL) functions.

For more information on Oracle Database, refer to
http://www.oracle.com/technology/documentation/index.html.

2.3 Oracle WebLogic Server
Oracle WebLogic Server 11g Release 1 is an application server for building and
deploying enterprise Java EE applications with support for new features for lowering
cost of operations, improving performance and supporting the Oracle applications
portfolio.

Regardless of whether you want to create a staging, production, or testing
environment, you begin by creating a WebLogic domain. A WebLogic domain
includes instances of WebLogic Server, of which one is configured as an
Administration Server. The Administration Server maintains configuration data for a
domain. You can deploy your application on Administration Server but it is
recommended to create a managed server and deploy your application in managed
server. For more information on Oracle WebLogic Server, refer to Oracle Fusion
Middleware Introduction to Oracle WebLogic Server.

About Installing or Upgrading Oracle Forms

Introduction to Oracle Forms Services 2-3

During configuration, a managed server for Forms is created (WLS_FORMS). For more
information on WLS_FORMS, refer to Section 5.1, "About the Oracle WebLogic
Managed Server."

2.4 Oracle Fusion Middleware
Oracle Fusion Middleware includes Web servers, application servers, content
management systems, and developer tools that provide complete support for
development, deployment, and management of software applications. Among the
components are Oracle Forms Services, Oracle WebLogic Server, and Oracle
Enterprise Manager Fusion Middleware Control, which together provide the
technology to fully realize the benefits of Internet computing.

You can manage and monitor Oracle Forms using Oracle Enterprise Manager Fusion
Middleware Control.

For a complete overview, list of components, and conceptual information about Oracle
Fusion Middleware, refer to the following manuals:

■ Oracle Fusion Middleware Concepts

■ Oracle Fusion Middleware Administrator’s Guide

2.5 About Installing or Upgrading Oracle Forms
Oracle Forms is installed from the Oracle Portal, Forms, Reports and Discoverer 11g
(11.1.1.4.0) DVD. In the installer, you can selectively configure any one of these
products or all of them. For more information on installing Oracle Forms, refer to the
following guides:

■ Oracle Fusion Middleware Installation Planning Guide

■ Oracle Fusion Middleware Installation Guide for Oracle Portal, Forms, Reports and
Discoverer

■ Oracle Fusion Middleware Quick Installation Guide for Oracle Portal, Forms, Reports,
and Discoverer

For upgrade information, refer to the following documents:

■ Oracle Fusion Middleware Upgrade Planning Guide

■ Oracle Fusion Middleware Upgrade Guide for Oracle Portal, Forms, Reports, and
Discoverer

For information on upgrading Forms 6i to Oracle Forms 11g, see Chapter 13,
"Upgrading to Oracle Forms Services 11g."

For information about changed or obsolete features, see the Oracle Forms Upgrading
Oracle Forms 6i to Oracle Forms 11g Guide.

Oracle Forms Services Architecture

2-4 Forms Services Deployment Guide

2.6 Oracle Forms Services Architecture
Figure 2–1 shows the three-tier architecture that makes up Forms Services:

■ The client tier, at the top of the image, contains the Web browser, where the
application is displayed. In addition to the browser, Java Runtime Environment
(JRE) and Java Plug-In (JPI) are required. For more information, see Appendix B,
"Configuring Java Plug-ins" and http://java.sun.com/reference/docs/.

■ The middle tier, in the center of the image, is the application server, where
application logic and server software are stored.

■ The database tier, in the lower portion of the image, is the database server, where
database server software is stored.

Figure 2–1 Oracle Forms Services Architecture

Note: After you have installed Oracle Forms, you can use the
following options to save RAM in a development-only environment:

■ You can choose to stop WLS_REPORTS (or other managed servers
that may be running). To test Forms applications, only WLS_
FORMS is required.

■ By default, formsapp and formsconfigmbeans run on WLS_
FORMS. You can retarget these applications to run on the
Administration Server and stop the Forms managed server (WLS_
FORMS).

Oracle Forms Services Architecture

Introduction to Oracle Forms Services 2-5

2.6.1 Oracle Forms Services Components
Oracle Forms Services is a middle-tier application framework for deploying complex,
transactional forms applications to a network such as an intranet or the Internet.
Developers build Forms applications with Forms Developer and deploy them with
Forms Services. Developers can also take current applications that were previously
deployed in client/server and move them to a three-tier architecture. Some minor
changes in application code may be required when moving to a three-tier architecture.

As shown in Figure 2–2, the three-tier configuration for running a form consists of:

■ The Client, at the top of the image, resides on the client tier

■ The Forms Listener servlet, in the center of the image, resides on the middle tier

■ The Forms Runtime process, also resides on the middle tier

Figure 2–2 Three-tier configuration for running a form

2.6.1.1 Forms Listener Servlet
The Forms Listener servlet is a broker between the Java client and the Forms Runtime
process. It takes connection requests from Java client processes and initiates a Forms
Runtime process on their behalf.

Figure 2–3 illustrates how the client sends HTTP requests and receives HTTP
responses from Forms Services. Oracle Forms Services uses the Forms Listener servlet
to start, stop, and communicate with the Forms Runtime process. In this image, the
client is to the left. In the center of the image, the HTTP Listener acts as the network
endpoint for the client, keeping the other server computers and ports from being
exposed at the firewall.

Oracle Forms Services Architecture

2-6 Forms Services Deployment Guide

The Forms Runtime process, in the right side of the image, executes the code contained
in a particular Forms application. The Forms Listener servlet manages the creation of a
Forms Runtime process for each client and manages the network communications
between the client and its associated Forms Runtime process.

Figure 2–3 Architecture using the Forms Listener Servlet

2.6.1.2 Forms Runtime Process
The Forms Runtime process plays two roles: when it communicates with the client
browser, it acts as a server by managing requests from client browsers and it sends
metadata to the client to describe the user interface; when it is communicating with the
database server, it acts as a client by querying the database server for requested data.

For each Oracle Forms session, there is one Oracle Forms Runtime process on the
application server. This process is where Oracle Forms actually runs, and manages
application logic and processing. It also manages the database connection; queries and
updates data; runs any PL/SQL in the Form; executes triggers; and so on. It uses the
same forms, menus, and library files that were used for running in client/server mode.

The Forms Runtime process also contains the Java Virtual Machine (JVM) to run Java
in your application. As an optimization feature, the JVM is started if the Forms

Note: The Forms Listener servlet is configured for you during the
Oracle Fusion Middleware installation process.

Internet

HTTP / HTTPS

Client side
Firewall

Server side
Firewall

HTTP Listener Oracle WebLogic
Managed Server

Forms Listener
Servlet

Forms Runtime
Process

Oracle Forms Services Architecture

Introduction to Oracle Forms Services 2-7

application uses the Java Importer. In 10g, the JVM pooling feature is used only by the
Java Importer. In 11g, Forms Runtime Process no longer creates a separate JVM when
it calls Reports. Instead, if a JVM controller is configured for a form, the form can use
the shared JVM when calling Reports. This results in a reduction of memory
consumption, freeing more resources on the server. For more information about
managing JVM usage and pooling, see Chapter 10, "Configuring and Managing Java
Virtual Machines."

Oracle Forms Services Architecture

2-8 Forms Services Deployment Guide

3

Basics of Deploying Oracle Forms Applications 3-1

3 Basics of Deploying Oracle Forms
Applications

This chapter describes how Forms Services run in Oracle Fusion Middleware, and
describes the steps to deploy Forms applications. This chapter also describes the basic
configuration files. After installation is completed, you can use the information in this
chapter to change your initial configuration or make modifications as your needs
change.

This chapter contains the following sections:

■ Section 3.1, "Oracle Forms Services in Action"

■ Section 3.2, "Configuration Files"

■ Section 3.3, "Application Deployment"

■ Section 3.4, "Client Browser Support"

3.1 Oracle Forms Services in Action
This section describes how Forms Services run in Oracle Fusion Middleware, and how
the configuration files are used, with the assumption that the Forms servlet is used to
generate the initial HTML page. For example, assume the Web server is running on
port 8888 on a computer called "example.com". Also assume no modifications have
been made to the standard configuration created during the Oracle Fusion
Middleware installation process.

When a user runs an Oracle Forms Services application, the following sequence of
events occur:

1. The user starts the Web browser and goes to a URL such as:

http://example.com:8888/forms/frmservlet?config=myapp&form=hr
app

In this example, the top level form module to be run is called "hrapp" using the
configuration section called "myapp".

2. Oracle HTTP Server listener receives the request. It finds /forms path in the URL
and forwards the request to the correct Oracle WebLogic Managed Server based
on the WebLogic handler mappings. The mapping is defined in forms.conf.

3. Oracle WebLogic Managed Server maps the request to the Oracle Forms Services
application that has a context root named /forms. It maps the request to the
Forms servlet using the frmservlet mapping specified in the web.xml file.

Oracle Forms Services in Action

3-2 Forms Services Deployment Guide

4. The Forms servlet running on the Oracle WebLogic Managed Server processes the
request. The Forms servlet:

■ Opens the servlet configuration file (formsweb.cfg by default), which is
located in $DOMAIN_HOME/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config.

■ Determines which configuration section to use in the formsweb.cfg file. In
this example, the URL contains the query parameter config=myapp,
therefore, the [myapp] section is used.

■ Determines which baseHTML file to use, based on (a) what browser
(user-agent) made the request, (b) what platform the browser is running on,
and (c) the settings of various parameters in the formsweb.cfg file
(specifically, basejpi.htm, and base.htm).

■ Reads the baseHTML file, and returns the contents as an HTML page to the
user's Web browser, after performing variable substitutions as follows:

Whenever a variable (like %myParam%) is encountered, the Forms servlet looks
for a matching URL query parameter (for example, &myParam=xxx), or,
failing that, looks for a matching parameter in the formsweb.cfg file. If a
matching parameter is found, the variable (%myParam%) is replaced with the
parameter value.

In this example, the baseHTML file contains the text %form%. This is replaced
with the value "hrapp".

5. Depending on which baseHTML file the Forms servlet selected, the HTML page
returned to the Web browser contains an applet, object or embed tag to start the
Forms applet (thin client). The Forms client runs in the JVM environment
provided by Sun's Java plug-in.

6. In order to start the Forms applet, its Java code must first be loaded. The location
of the applet is specified by the applet codebase and archive parameters.

The virtual path definition in the weblogic.xml file for /forms/java allows
the applet code to be loaded from the Web server.

Note: The Forms applet code is only loaded over the network the first time the
user runs an Oracle Forms Services application or if a newer version of Oracle
Forms Services is installed on the Web server. Otherwise, it is loaded from the
cache of the Java plug-in on the local disk.

7. Once the Oracle Forms Services applet is running, it starts a Forms session by
contacting the Forms Listener servlet at URL
http://example.com:8888/forms/lservlet.

8. The Oracle HTTP Server listener receives the request. It forwards the request to
Oracle WebLogic Managed Server, since the path /forms/lservlet matches a
servlet mapping in the web.xml file (the one for the Forms Listener servlet).

9. The Forms Listener servlet (lservlet) starts a Forms run-time process
(frmweb.exe or frmweb) for the Forms session.

10. Communication continues between the Forms applet and the Forms run-time
process, through the Listener Servlet, until the Forms session ends.

11. The attribute value in a URL (such as the name of the form to run) is passed to the
Forms run-time process. Part of the serverArgs value in the baseHTML file is
%form%, which is replaced by "hrapp". Therefore, the run-time process runs the
form in the file "hrapp.fmx".

Configuration Files

Basics of Deploying Oracle Forms Applications 3-3

This file must be present in any of the directories named in the FORMS_PATH
environment setting, which is defined in the environment file (default.env by
default). You can also specify the directory in formsweb.cfg (for example,
form=c:\<path>\myform).

12. The Forms sessions end when either of the following occurs:

■ The top-level form is exited (for example, by the PL/SQL trigger code which
calls the "exit_form" built-in function). The user is prompted to save changes if
there are unsaved changes. exit_form(no_validate) exits the form
without prompting.

■ If the user quits the Web browser, any pending updates are lost.

3.2 Configuration Files
This section introduces the basic files used to configure Forms applications. For more
advanced configuration topics, see Chapter 4, "Configuring and Managing Forms
Services."

This section contains the following:

■ Section 3.2.1, "Oracle Forms Configuration Files"

■ Section 3.2.2, "Forms Java EE Application Deployment Descriptors"

■ Section 3.2.3, "Oracle HTTP Listener Configuration File"

■ Section 3.2.4, "Standard Fonts and Icons File"

■ Section 3.2.5, "baseHTML Files"

■ Section 3.2.6, "WebUtil Configuration Files"

3.2.1 Oracle Forms Configuration Files
Oracle Forms configuration files allow you to specify parameters for your Forms. You
can manage these files through the Oracle Enterprise Manager Fusion Middleware
Control. These configuration files include:

■ default.env

■ formsweb.cfg

■ ftrace.cfg

3.2.1.1 default.env
Location: $DOMAIN_HOME/config/fmwconfig/servers/<MANAGED_
SERVER>/applications/<appname>_<appversion>/config

Note: Location of files are given relative to the DOMAIN_HOME and
ORACLE_INSTANCE directory. Forward slashes should be replaced
by back slashes on Windows. For more information on terminology
used such as Middleware home, Oracle home, Oracle instance, and
so on, see the Oracle Fusion Middleware Administrator’s Guide.

Note: For a list of Forms configuration files and their respective
locations, refer to Table C–1.

Configuration Files

3-4 Forms Services Deployment Guide

Typically, this location is $DOMAIN_HOME/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config

This file contains environment settings for Forms run time. On UNIX and Linux,
default.env includes the PATH and LD_LIBRARY_PATH.

For a sample default.env file, see Appendix C.3, "Platform Specific default.env
Files."

For more information about default.env, see Chapter 4.3, "Managing Environment
Variables."

3.2.1.2 formsweb.cfg
Location: $DOMAIN_HOME/config/fmwconfig/servers/<MANAGED_
SERVER>/applications/<appname>_<appversion>/config

Typically, this location is $DOMAIN_HOME/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config

This Forms configuration file contains the following:

■ Values for Forms run-time command line parameters, and the name of the
environment file to use (envFile setting).

■ Most of the servlet configuration parameter settings that you set during
installation. You can modify these parameters, if needed.

Variables (%variablename%) in the base.htm file are replaced with the appropriate
parameter values specified in the formsweb.cfg file and from query parameters in
the URL request (if any).

For a sample formsweb.cfg file, see Appendix C.2, "Default formsweb.cfg."

For more information about formsweb.cfg, see Chapter 4.2.2, "Configuring
Parameters with Fusion Middleware Control."

3.2.1.3 ftrace.cfg
Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server

This file is used to configure Forms Trace. Forms Trace replaces the functionality that
was provided with Forms Runtime Diagnostics (FRD) and Performance Event
Collection Services (PECS), which were available in earlier releases of Oracle Forms.
Forms Trace traces the execution path through a form (for example, steps the user took
while using the form).

For more information about ftrace.cfg, see Chapter 12, "Tracing and Diagnostics."

3.2.2 Forms Java EE Application Deployment Descriptors
The Forms Services Java EE application EAR (Enterprise Archive) file formsapp.ear
is deployed to the WLS_FORMS (Oracle WebLogic Managed Server) when you
configure Oracle Forms.

This results in the creation of a directory structure under $DOMAIN_HOME
/servers/WLS_FORMS/tmp/_WL_user/formsapp_11.1.1/<random_
string1>/APP-INF directory that is similar to the following:

./APP-INF

./APP-INF/lib

./APP-INF/lib/frmconfig.jar

./APP-INF/lib/frmconfigmbeans.jar

./META-INF

Configuration Files

Basics of Deploying Oracle Forms Applications 3-5

./META-INF/application.xml

./META-INF/jazn-data.xml

./META-INF/jps-config.xml

./META-INF/mbeans.xml

./META-INF/weblogic-application.xml

This following directory structure is created under $DOMAIN_HOME/servers/WLS_
FORMS/tmp/_WL_user/formsapp_11.1.1/<random_string2>/war/WEB-INF
directory.

./WEB-INF

./WEB-INF/lib

./WEB-INF/lib/frmsrv.jar

./WEB-INF/web.xml

./WEB-INF/weblogic.xml

Deployment descriptors:

■ application.xml and weblogic-application.xml define the structure of
the EAR file.

■ web.xml defines the aliases frmservlet and lservlet for the Forms servlet
and the Forms Listener servlet.

■ weblogic.xml defines the context parameters and any user defined virtual
directory mappings.

For a sample web.xml file, see Appendix C.5, "web.xml."

3.2.3 Oracle HTTP Listener Configuration File
This section describes the file used to configure Oracle HTTP Listener for Oracle
Forms Services.

Location: $ORACLE_INSTANCE/config/OHS/<OHS INSTANCE
NAME>/moduleconf

forms.conf is the Oracle HTTP listener configuration file for Oracle Forms Services.
forms.conf defines WebLogic handler mappings for the Managed Server where the
Forms Services applications are deployed.

3.2.3.1 About Editing forms.conf
forms.conf is an Oracle HTTP Server directives file. In Oracle Fusion Middleware,
the forms.conf file is included in the Oracle HTTP Server configuration directory at
$ORACLE_INSTANCE/config/OHS/<OHS INSTANCE NAME>/moduleconf.

If you add any custom Oracle HTTP Server directives to forms.conf, you must
restart the Oracle HTTP Server node where it resides.

For more information about forms.conf, see Appendix C.7, "forms.conf."

Note: The sub-directories in $DOMAIN_HOME/servers/WLS_
FORMS/tmp/_WL_user/formsapp_11.1.1 are created by the
nostage deployment process of Oracle WebLogic Server. They are
named with a random string. For example, e18uoi, wb1h9e and so on.

Configuration Files

3-6 Forms Services Deployment Guide

3.2.3.2 Configuring OHS on a Separate Host
If you choose to configure Oracle HTTP Server on a separate host, then perform the
following tasks:

1. Copy the Forms OHS directives file, forms.conf.backup from the tier hosting
Forms to the tier hosting OHS and rename it to forms.conf.

Source location (on Forms tier):

$ORACLE_
INSTANCE/config/FormsComponent/forms/server/forms.conf.backup

Destination location (on OHS tier):

$ORACLE_INSTANCE/config/OHS/<OHS Component
Instance>/moduleconf/forms.conf

2. Specify the appropriate managed server cluster or the managed server for the
default forms Java EE application context root (/forms).

Example of cluster entry:

<Location /forms>
 SetHandler weblogic-handler
 WebLogicCluster <HOSTNAME>:<WLS_PORT>
 DynamicServerList OFF
</Location>

Example of non-cluster entry:

<Location /forms>
 SetHandler weblogic-handler
 WebLogicHost = <HOSTNAME>
 WebLogicPort = <PORT>
</Location>

3. Make sure that any directories referenced in user-added directives are accessible
on the OHS tier.

4. Restart OHS instance on the OHS tier.

3.2.4 Standard Fonts and Icons File
Registry.dat is the file that contains the default font, font mappings, and icon
information that Forms Services uses.

Location: $DOMAIN_HOME/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_
11.1.1/config/forms/registry/oracle/forms/registry

For a sample of the default Registry.dat, see Appendix C.8, "Registry.dat."

For more information about Registry.dat, see Chapter 4.7, "Deploying Fonts, Icons, and
Images Used by Forms Services."

3.2.5 baseHTML Files
Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server/

The base.htm and basejpi.htm are used as templates by the Forms servlet when
generating the HTML page used to start an Oracle Forms application.

Application Deployment

Basics of Deploying Oracle Forms Applications 3-7

Oracle recommends that you make configuration changes in the formsweb.cfg file
using Enterprise Manager and avoid editing these files. To change the baseHTML files,
create your own versions and reference them from the formsweb.cfg file by
changing the appropriate settings.

For a sample baseHTML file, see Appendix C.4, "base.htm and basejpi.htm Files."

3.2.6 WebUtil Configuration Files
This section describes the files used to configure WebUtil at run time. For information
about using WebUtil at design time, see the Oracle Forms Developer Online Help.
WebUtil configuration files include:

■ Default webutil.cfg

■ Default webutilbase.htm

■ Default webutiljpi.htm

3.2.6.1 Default webutil.cfg
Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server.

This file provides all of the configuration settings for WebUtil, including:

■ Logging Options

■ Installation Options

■ File Upload and Download Options

■ Server Side Logging Options for logging errors and log messages

For a sample of the webutil.cfg file, see Appendix C.10, "Default webutil.cfg."

3.2.6.2 Default webutilbase.htm
Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server/

This is the default baseHTML file for running a form on the Web using a generic
APPLET tag to include a Forms applet with a certificate registration for WebUtil.

For a sample of the webutilbase.htm file, , see Appendix C.11, "Default
webutilbase.htm."

3.2.6.3 Default webutiljpi.htm
Location: $ORACLE_INSTANCE/config/FormsComponent/forms/server/

This is the default baseHTML file for running a form on the Web using the JDK Java
Plugin. For example, this file can be used when running a form on the Web with
Firefox on UNIX and a certificate registration for WebUtil.

For a sample of the webutiljpi.htm file, , see Appendix C.12, "Default
webutiljpi.htm."

3.3 Application Deployment
Once you have created your application in Forms Developer, you are ready for
application Web deployment. Oracle Forms Services accesses an application in Oracle
Fusion Middleware through a specified URL. The URL then accesses the HTTP
Listener, which communicates with the Listener Servlet. The Listener Servlet starts a

Application Deployment

3-8 Forms Services Deployment Guide

Forms run-time process (frmweb.exe on Windows or frmweb on UNIX and Linux)
for each Forms Services session.

For more information about how Forms Services run, see Section 3.1, "Oracle Forms
Services in Action."

3.3.1 Deploying Your Application
To deploy a basic form with the default parameters set up by the installer:

1. Create your application in Forms Developer and save it.

The .fmb file is a design time file that can only be opened in Forms Developer. The
.fmx file is the run-time file created when you compile the .fmb and is used for
Web deployment.

For more information about Forms Developer, see the Help menu in Forms
Developer.

2. Modify the formsweb.cfg file so that Oracle Forms Services can access your
application module. You edit this file in the Web Configuration page of Fusion
Middleware Control. For more information, see Section 4.2, "Configuring Forms
Services".

Table 3–1 shows the configuration of an application called "my_application" with a
form module called "form=hrapp.fmx":

When configured, the Oracle Forms Services module hrapp.fmx is accessible on
the Web by entering "...?config=my_application" in the browser URL (the
name of the Web Configuration section in formsweb.cfg).

3. Make sure the .fmx file location is specified in the FORMS_PATH environment
variable.

For example, in Windows, if your .fmx file is located in d:\my_
files\applications, in the FORMS_PATH, include d:\my_
files\applications. On Windows, use semi-colons to separate directory
locations if specifying multiple locations. On UNIX/Linux, use colons for
separators. Specify this information in the Environment Configuration page for
the environment file.

4. To modify an environment file, select the file in the Environment Configuration
page of Fusion Middleware Control and add or edit environment variables as
needed by your application. For example, you can add the environment variable
shown in Table 3–2.

Table 3–1 Example of Configuration Section Parameter Values

Configuration Section
Name Forms Module Name Value

my_application hrapp.fmx

Note: The name of the configuration section must not include
spaces and must contain only alphanumeric characters.

Application Deployment

Basics of Deploying Oracle Forms Applications 3-9

If you specified these environment variables in an environment file, specify this
environment file in the respective configuration section of the formsweb.cfg in
the Web Configuration page.

5. Enter the name of your application in the URL as shown:

http://example.com:8888/forms/frmservlet?

where "example" is the hostname of your computer and "8888" is the port used by
your HTTP Listener.

Once you have created a configuration section, add "config=" and the name of the
configuration section. In this example, the URL to access hrapp.fmx is:

http://example.com:8888/forms/frmservlet?config=my_
application

3.3.2 Specifying Parameters
There are two ways to predefine parameter values for your Oracle Forms Services
applications. You can define parameters by:

■ Editing your application settings in the default section of the Web Configuration
page of Fusion Middleware Control. The default configuration section displays the
default values that are used by Oracle Forms Services.

■ Managing (adding, editing, copying, deleting) other system and user parameter
values in the named application configuration section (see Section 3.3.3, "Creating
Configuration Sections in Fusion Middleware Control"). For example, in the
configuration section you create for myApp, you can add or change these
parameters and their values, as shown in Table 3–3.

Table 3–2 Example of Environment Variable Values

Environment Variable
Name Environment Variable Value

NLS_LANG NLS_LANG=GERMAN_GERMANY.WE8ISO8859P1

Table 3–3 Example Configuration Section: Parameter Values for myApp

Parameter Name Parameter Value

baseHTML mybase.htm

baseHTMLjpi mybasejpi.htm

form hrapp.fmx

userid scott/tiger@orcl

Note: Parameters specified in the named configuration section of
a Web Configuration override the settings in the default section.

Note: System Parameters cannot be overridden in the URL, while
user parameters can.

Application Deployment

3-10 Forms Services Deployment Guide

3.3.3 Creating Configuration Sections in Fusion Middleware Control
Under the configuration sections you created in step 2 of Section 3.3.1, "Deploying
Your Application", you can specify parameters for your Oracle Forms Services
applications. You can specify any application and system parameters that are available
in the default section for Web Configuration page.

For example, you can set the look and feel of the application to the Oracle look and feel
by setting the lookAndFeel parameter to the value of oracle and clicking Apply.

You can also override the default parameter values in the named configuration section.
For example, to predefine the connect information of an application to
scott/tiger@orcl, the parameter value for userid must be set in the named
configuration section by changing the parameter value of userid to
scott/tiger@orcl.

For other parameters that you can edit, see Chapter 4.2.5, "Forms Configuration
Parameters."

3.3.3.1 Editing the URL to Access Oracle Forms Services Applications
You can directly type parameters in the URL that accesses your Oracle Forms Services
application. Using the previous example, instead of specifying the form parameter in
your configuration file, you could also type it into the URL as follows:

http://example.com:8888/forms/frmservlet?config=my_application&form=hrapp

You can use the ampersand (&) to call a combination of a form and named
configuration parameters. In the above example, you are calling the form "hrapp"
with the parameter settings you specified in "my_application".

3.3.4 Specifying Special Characters in Values of Runform Parameters
Certain considerations apply if values passed to runform parameters contain special
characters. This section describes these considerations, and compares the default
behavior in this release with the behavior in prior releases.

Runform parameters are those that are specified in the serverArgs applet parameter of
the template HTML file. The value specified for the serverArgs parameter in the
template HTML file, after variable substitution, is sometimes referred to as the
command-line parameters string. It consists of a series of blank-separated
name=value pairs. The name must consist solely of alphanumeric or underscore
characters. The value portion of a name=value pair can be an arbitrary string.

3.3.4.1 Default Behavior in the Current Release
The value of a runform parameter can be specified in one of three places:

1. In the value of the serverArgs parameter in the template HTML file (for
example, base.htm).

2. In the value of a variable specified in the configuration file (for example,
formsweb.cfg), which is substituted (directly or recursively) for a variable
reference in (1). Such values are typically maintained using Fusion Middleware
Control; see Chapter 4.2, "Configuring Forms Services."

Note: Parameters specified in the URL override the parameters set
in the configuration section. See Chapter 4.5, "Managing URL
Security for Applications" for more information.

Application Deployment

Basics of Deploying Oracle Forms Applications 3-11

3. As an attribute value in a URL, which is substituted directly for a variable
reference in (1) or (2).

For case (3), URL syntax rules (as enforced by the browser and the application server)
require that certain characters be entered as URL escape sequences ('%' followed by 2
hexadecimal digits representing the ASCII value of the character, for a total of three
characters).

This requirement includes the % character itself (which must be entered as %25). In
addition, Oracle Forms Services currently requires that the quote character ('"') be
entered as %22, even if the browser and the application server allow a quote to be
entered without escaping.

URL syntax rules also allow a space to be entered as a + (as an alternative to the URL
escape sequence %20). However in the value of the otherparams configuration
parameter, a + is treated specially; it separates name=value pairs as opposed to
indicating a space embedded in the value of a runform parameter.

For example, if a runform application has user parameters param1 and param2, and
you want to assign them the values 'a b' and 'c d', you do so by incorporating the
following into a URL:

&otherparams=param1=a%20b+param2=c%20d

When specifying runform parameters in the template HTML files or in the
configuration files (cases (1) and (2)), Forms requires URL escape sequences in some
circumstances, allows them in others, and forbids them in still others.

Outside of the values of runform parameters, URL escape sequences must not be used.
For example, the = in a name=value pair must always be specified simply as =, and the
space that separates two adjacent name=value pairs must always be specified simply
as " " (a single space character).

Within the value of a runform parameter, space (' ') must be specified as a URL escape
sequence (%20). The HTML delimiter character (specified in the configuration file)
must also be specified as a URL escape sequence. And when the runform parameter is
specified in the template HTML file (case (1)), quote ('"') must also be specified as a
URL escape sequence (%22).

Any other 7-bit ASCII character may also be specified as a URL escape sequence,
although this is not required (except possibly for %, as noted below). Certain additional
restrictions apply to the % character. These include:

■ If the HTML delimiter is % (the default), then an occurrence of % within the value
of a runform parameter must be escaped (specified as %25). (This actually follows
from the requirement stated above, that the HTML delimiter character be
escaped). Furthermore, variable names must never begin with two hexadecimal
digits that represent a 7-bit ASCII value (that is, two hexadecimal digits, the first of
which is in the range 0-7).

■ If the HTML delimiter is not %, then an occurrence of % must be escaped if it is
immediately followed by an octal digit and then a hexadecimal digit. It is
recommended that other occurrences of '%' also be escaped; but this is not a
requirement.

(You might choose to ignore this recommendation if you have existing template HTML
files or configuration files created in prior releases, which use an HTML delimiter
other than '%', and which contain '%' in runform parameter values).

Application Deployment

3-12 Forms Services Deployment Guide

3.3.4.2 Behavior in Previous Releases
Release 9.0.4 and later behave the same as the current release except that a quote must
be escaped (%22) within the value of a runform parameter in a configuration file, and
in the template HTML file.

Releases before 9.0.4 did not allow URL escape sequences in runform parameter values
specified in the template HTML file or the configuration file (cases (1) and (2) above).
In all three cases, it was difficult or impossible to specify certain special characters,
notably space, quote, and apostrophe. Also, certain transformations were applied to
the parameter value before passing it to runform. Most notably, if a value began and
ended with an apostrophe, these were typically stripped off. However, these
transformations were not well-defined, and they differed between the Web and
client/server environments.

3.3.4.3 Obtaining the Behavior of Prior Releases in the Current Release
If your applications are dependent on the behavior of prior releases, you can obtain
that behavior in the current release, by simply setting the value of the escapeparams
variable to False in the configuration file (this can be accomplished using Fusion
Middleware Control).

If you want to obtain the old behavior only for selected applications, you can specify
different values for the escapeparams variable in different configuration sections.
Applications that require the old behavior can specify a configuration section in which
the escapeparams variable is set to False; applications that require (or tolerate) the
behavior in the current release can specify a configuration section in which the
escapeparams variable is set to True.

3.3.4.4 Considerations for Template HTML Files
If you are creating your own template HTML files, then bear in mind the following:

It is recommended that a reference to the escapeparams variable (the string
%escapeparams%, if '%' is the HTML delimiter character) appear at the beginning of
the value of the serverArgs applet parameter, followed by a space. See the shipped
base.htm file for an example.

References to the escapeparams variable must appear nowhere else in the template
HTML file. If you choose to enclose the value of the serverArgs applet parameter in
apostrophes instead of quotes, then within the value of a runform parameter in your
template HTML file, apostrophes must be escaped (%27). Quotes do not require escape
sequences.

It is permissible to omit the reference to the escapeparams variable from the
beginning of the value of the serverArgs applet parameter. This results in the
behavior of prior releases, regardless of the value specified in the configuration file for
the escapeparams variable.

3.3.4.5 Considerations for Static HTML Pages
If you are invoking the runform engine using static HTML, and you want to obtain the
behavior in the current release, then you must take certain steps.

The basic rule is that your static HTML must look like the HTML generated by the
Forms servlet. Specifically, the value of the serverArgs applet parameter must begin
with the string escapeparams=true (case-insensitive).

Also, in the value portion of each name=value pair, in the value of the serverArgs
applet parameter, certain characters must be specified by a URL escape sequence, as
listed in Table 3–4:

Client Browser Support

Basics of Deploying Oracle Forms Applications 3-13

It is also permissible to escape other 7-bit ASCII characters in the value portion of a
name=value pair.

Here's an example of what the serverArgs applet parameter might look like in static
HTML. This is for a form named "my form" (quotes not included), which is being
passed the value "foo'bar" (quotes again not included) to the user-defined parameter
named myparam.

<PARAM NAME="serverArgs" VALUE="escapeparams=true module=my%20form
userid=scott/tiger@mydb myparam=foo%27bar">

3.3.5 Accessing the Listener Servlet Administration Page
You can display a test page for the Listener Servlet by accessing the following URL:

http://<hostname>:<port>/forms/frmservlet/admin

The information displayed depends on the value of the initialization parameter
TestMode. This parameter is set in the $DOMAIN_HOME/servers/WLS_
FORMS/tmp/_WL_user/formsapp_11.1.1/<random_string>/war/WEB-INF
/web.xml file. An example is shown below:

<init-param>
<!-- Display sensitive options on the /admin page ? -->
 <param-name>TestMode</param-name>
 <param-value>true</param-value>
</init-param>

3.4 Client Browser Support
Users can view Oracle Forms applications on the Web using Sun's Java Plug-in. In
future patch releases other virtual machines may be supported.

For more information about client browser support, including the latest supported
platforms, go to the Forms Developer menu and choose Help | Forms on OTN... to
locate the Client Platform Statement of Direction.

You can also find information on certification on OTN at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html

Table 3–4 URL Escape Sequences for Static HTML pages

Characters that must be
escaped URL Escape Sequence

newline ' \n ' %0a

space ' ' %20

quote ' " ' %22

percent ' % ' %25

apostrophe ' ' ' %27

left parenthesis ' (' %28

right parenthesis ') ' %29

Client Browser Support

3-14 Forms Services Deployment Guide

3.4.1 How Configuration Parameters and BaseHTML Files are Tied to Client Browsers
When a user starts a Web-enabled application (by clicking a link to the application's
URL), the Forms servlet:

1. Detects which browser is being used.

2. Selects the appropriate baseHTML file using Table 3–5:

3. Replaces variables (%variablename%) in the baseHTML file with the appropriate
parameter values specified in the Forms servlet.initArgs file,
formsweb.cfg file, and from query parameters in the URL request (if any).

4. Sends the HTML file to the user's browser.

3.4.2 Forms Single Sign-On on Mozilla 3.x
Ensure that you have enabled cookies from Oracle site when using Forms and Single
Sign-On on Mozilla 3.x. To enable the cookies, perform the following steps:

1. Open Mozilla Firefox, select Tools.

2. Select Options and then Privacy.

3. Select the Accept Cookies from site box.

These steps are not required for other browsers.

For more information on default browser settings in Mozilla, refer to
http://www.mozilla.com.

Table 3–5 baseHTML file descriptions

Detected Browser Base HTML file used

Internet Explorer basejpi.htm

Mozilla FireFox 3.0 basejpi.htm

All other browsers and
Macintosh clients

base.htm

4

Configuring and Managing Forms Services 4-1

4 Configuring and Managing Forms Services

This chapter contains the following sections:

■ Section 4.1, "Fusion Middleware Control and Oracle Forms"

■ Section 4.2, "Configuring Forms Services"

■ Section 4.3, "Managing Environment Variables"

■ Section 4.4, "Managing User Sessions"

■ Section 4.5, "Managing URL Security for Applications"

■ Section 4.6, "Creating Your Own Template HTML Files"

■ Section 4.7, "Deploying Fonts, Icons, and Images Used by Forms Services"

■ Section 4.8, "Enabling Language Detection"

■ Section 4.9, "Enabling Key Mappings"

4.1 Fusion Middleware Control and Oracle Forms
The Fusion Middleware Control is a Web-based tool that you launch from your
default browser. The default URL is:

http://<example.com>:7001/em

Use the Web-based Oracle Enterprise Manager Fusion Middleware Control to:

■ Monitor metrics for a Forms Services instance. See Section 14.1.1.1, "Monitoring
Forms Services Instances" for more information.

■ Manage user sessions. See Section 4.4, "Managing User Sessions" for more
information.

■ Configure parameters for a Forms Services instance. See Section 4.2.2,
"Configuring Parameters with Fusion Middleware Control" for more information.

■ Configure Forms Trace and monitor trace metrics. See Section 12.2, "Enabling and
Configuring Forms Trace" and Section 12.6, "Taking Advantage of Oracle
Diagnostics and Logging Tools" for more information.

■ Configure multiple environment files. See Section 4.3, "Managing Environment
Variables" for more information.

■ Configure and use JVM pooling. See Section 10.8, "Managing JVM Pooling from
Fusion Middleware Control" for more information.

Fusion Middleware Control and Oracle Forms

4-2 Forms Services Deployment Guide

4.1.1 Accessing Forms Services with Fusion Middleware Control
To perform most management tasks for a Forms instance using Fusion Middleware
Control, you start by navigating to the Forms home page in Fusion Middleware
Control.

To navigate to the Forms Home page in Fusion Middleware Control:

1. Navigate to the home page for the Fusion Middleware Control that contains the
Forms instance you want to manage.

For introductory information about using the Enterprise Manager Fusion
Middleware Control, see "Overview of Oracle Fusion Middleware Administration
Tools" in the Oracle Fusion Middleware Administrator’s Guide.

2. In the Farm pane, click the Fusion Middleware folder, then click the link for the
Forms instance. This displays the Forms Home page (Figure 4–1) in the Fusion
Middleware Control.

Figure 4–1 Forms Home page

3. The Forms Home page provides information on the Forms applications that are
deployed on the Oracle instance. Table 4–1 describes the information displayed on
the Forms Home page.

Table 4–1 Forms Deployment Fields

Field Description

Forms Application Lists the names of the Forms applications that are deployed on
the Oracle WebLogic Server instance. Click the name to view the
Forms application home page.

WLS Instance Name of Oracle WebLogic Server instance where the application
is deployed.

Status Indicates the status of the forms application. A green up arrow
indicates the application is running. A red down arrow indicates
the application is not started.

Number of Forms Sessions Displays the number of active forms sessions.

Servlet URL Displays the URL for the Forms servlet.

New Connections Indicates whether new connections are enabled or not.

Fusion Middleware Control and Oracle Forms

Configuring and Managing Forms Services 4-3

To access the Forms Menu in Fusion Middleware Control:

1. Navigate to the Forms home page in Fusion Middleware Control.

2. Click Forms on the top left. This displays the Forms Menu. Table 4–2 lists the
Menu Selections that are available in the Forms Menu.

Web Configuration Link to the Web Configuration page.

Environment Configuration Link to the Environment Configuration page.

Servlet Logs Link to the Servlet Logs.

Table 4–2 Forms Menu Options

Select To Display

Home Forms Home page. This page displays a list of the Forms
deployments and their details. This page also displays the
Response and Load statistics and a set of useful links in the
Resource Center.

Monitoring - Performance
Summary

Performance Summary page. This page displays a set of default
performance charts that show the values of specific performance
metrics.

For more information, see the Oracle Fusion Middleware
Performance Guide.

Monitoring - Servlet Log Log Messages page. Oracle Fusion Middleware components
generate log files containing messages that record all types of
events.

JVM Controllers JVM Controllers page. This page is used to manage the JVM
controller for the Forms instance.

User Sessions User Sessions page. This page is used to monitor and trace User
Sessions within a Forms instance.

Web Configuration Web Configuration page. This page is used to configure
deployment of Forms applications and manage configuration
sections and parameters in formsweb.cfg.

Trace Configuration Trace Configuration page. This page is used to manage the
settings used for tracing of user sessions.

Fonts and Icons Mapping Fonts and Icons Mapping page. This page is used to change,
add, or delete parameters in the Registry.dat file.

JVM Configuration JVM Configuration page. This page is used to modify the JVM
controllers that can be subsequently spawned for the Forms
instance.

Environment Configuration Environment Configuration page. This page is used to manage
environment variables that define environment settings for
Forms run time.

Associate/Disassociate OID Associate/Disassociate OID page. This page is used to associate
and disassociate a forms deployment with an Oracle Internet
Directory host to enable Single Sign-On functionality.

General Information Displays information about the Target Name, Version, Oracle
Home, Oracle Instance, and Host.

Table 4–1 (Cont.) Forms Deployment Fields

Field Description

Configuring Forms Services

4-4 Forms Services Deployment Guide

4.2 Configuring Forms Services
Use the Web Configuration page in Fusion Middleware Control to configure
deployment of Forms applications by modifying formsweb.cfg.

To access Web Configuration page:

1. Start Fusion Middleware Control.

2. From the Fusion Middleware Control main page, click the link to the Oracle Forms
Services instance that you want to configure.

3. From the Forms menu list, select Web Configuration.

The Web Configuration page (Figure 4–2) is displayed.

Figure 4–2 Web Configuration Page

4. See Table 4–3 and Table 4–4 for the tasks that you can do.

4.2.1 Common Tasks in the Web Configuration Page
Table 4–3 describes the common tasks that you can do to edit configuration with the
sections of a configuration file and their parameters.

Note: For the pages that include a Help icon, click the Help icon to
access the page-level help. The page-level help describes each element
in the page.

Note: As with most Web applications, it is easy to lose unsaved
changes by switching pages. Be sure to save any changes you make
through Fusion Middleware Control to Forms configuration or
environment files before proceeding to other pages.

The length of time it takes for changes to be saved is affected by the
number of lines you have changed. For example, an additional fifty
lines of comments takes longer to save than just the deletion of a
single entry.

Configuring Forms Services

Configuring and Managing Forms Services 4-5

Table 4–4 describes the tasks that you can do to modify the parameters within a named
configuration section:

Table 4–3 Common Tasks for Working with Configuration Sections

Task Description Comment

Create Like Creates a copy of a
configuration section.

Use to create a configuration
section based on the parameters
of an existing configuration
section.

Edit Opens the Edit Description
dialog.

Allows editing of the text
description of a configuration
section.

Delete Opens the Confirmation
dialog when deleting a
configuration section.

Irrevocably deletes a
configuration section and its
contents when you click Delete in
the Confirmation dialog.

Create Opens the Create Section
dialog.

Creates a configuration section.
You must supply a required
name and an optional description
for it.

Table 4–4 Common Tasks for Working with Parameters

Task Description Comment

Show Drop down list for selecting
named groups of parameters in
a configuration section.

Use for viewing and editing groups of
parameters. The groups of parameters
include:

■ basic

■ sso

■ trace

■ plugin

■ HTML

■ applet

■ advanced

■ all

For more information, see
Section 4.2.5, "Forms Configuration
Parameters".

Revert Enables you to revert all
changes made to parameters in
a configuration section since the
last apply.

Does not allow you to revert
individual changes in a configuration
section.

Apply Applies and activates all
changes made to parameters in
a configuration section.

Once applied, you cannot revert
changes to individual parameters.

Hide
Inherited

Enables you to hide or display
parameters that are inherited
from a parent configuration
section.

Use this to view parameters that have
been explicitly added to a
configuration section or to view all
parameters (including those that are
inherited from the default section).

Add Displays the Add Parameter
dialog.

Add a parameter to a configuration
section based on a mandatory name
and an optional value and description.

Configuring Forms Services

4-6 Forms Services Deployment Guide

4.2.2 Configuring Parameters with Fusion Middleware Control
For a description and the location of the Forms servlet configuration file
(formsweb.cfg), see Section 3.2.1.2, "formsweb.cfg".

4.2.2.1 Parameters that Specify Files
Three configuration parameters specify files. Of these, two baseHTML parameters
must point to appropriate .htm files. Typically, the following values and their
parameters should appear in the default configuration section, as shown in Table 4–5.

All of these parameters specify file names. If no paths are given (as in this example),
the files are assumed to be in the same directory as the Forms servlet configuration file
(formsweb.cfg), that is $DOMAIN_HOME/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config

4.2.3 Managing Configuration Sections
This section describes creating, editing, duplicating, and deleting named configuration
sections.

4.2.3.1 Creating a Configuration Section
You can create a configuration section in formsweb.cfg from the Web Configuration
page of Fusion Middleware Control. These configurations can be requested in the
end-user's query string of the URL that is used to run a form.

To create a configuration section:

1. Start the Enterprise Manager Fusion Middleware Control.

2. From the Fusion Middleware Control main page, click the link to the Forms
Services instance that you want to configure.

3. From the Forms menu list, select the Web Configuration.

4. Click Create at the top of the Web Configuration region.

The Create Section dialog appears.

5. Enter a name and description for the configuration section and click Create.

Delete Deletes a parameter. There is no Confirmation dialog. Once
applied, you cannot revert changes to
individual parameters.

Override Allows overriding and editing
of a parameter which is
inherited from the default
section.

Click Apply to save and activate your
changes.

Table 4–5 Default Configuration Parameters that Specify Files

Parameter Value

baseHTML base.htm

baseHTMLjpi basejpi.htm

envFile default.env

Table 4–4 (Cont.) Common Tasks for Working with Parameters

Task Description Comment

Configuring Forms Services

Configuring and Managing Forms Services 4-7

The configuration section is added.

For example, to create a configuration to run Forms in a separate browser window
with the Oracle look and feel, create a section called sepwin and add the following
parameters from Table 4–6:

Your users would type the following URL to launch a form that uses the "sepwin" (or
the name you applied) configuration:

http://server:port/forms/frmservlet?config=sepwin

4.2.3.2 Editing a Named Configuration Description
You can edit the description (comments) for a named configuration from the Web
Configuration page.

To edit a named configuration description:
1. In the Web Configuration region, select the row containing the configuration

section you want to edit.

2. Click Edit.

3. The Edit Description dialog appears.

4. Enter the text for the comment.

5. Click Save.

The Edit Description dialog box is dismissed, and your changes are saved.

4.2.3.3 Duplicating a Named Configuration
You can make a copy of a named configuration for backup purposes, or create
configuration sections from existing configurations or other duplicates.

To duplicate a named configuration:

1. In the Web Configuration region, select Create Like.

2. In the Create Like dialog, from the Section to Duplicate menu list, select the name
of an existing configuration section you want to duplicate.

3. In the New Section Name field, enter a name for the configuration section. The
name for the configuration section must be unique.

Note: The name must not contain any special characters such as #, *.

Table 4–6 Sample Parameters to Add to a Configuration Section

Parameter Value

form <module>

separateFrame True

lookandfeel Oracle

Note: You can make a backup of the configuration section you are
about to edit by duplicating it first. For more information, see
Section 4.2.3.3, "Duplicating a Named Configuration"

Configuring Forms Services

4-8 Forms Services Deployment Guide

4. Click Create.

A section with the same parameters, parameter values and comments of the
section you are duplicating is created.

4.2.3.4 Deleting a Named Configuration
When you delete a named configuration, you delete all the information within it. If
you only want to delete specific parameters, see Section 4.2.4, "Managing Parameters".

To delete a named configuration:

1. From the Web Configuration region, select the row of the configuration section
you want to delete.

2. Click Delete.

The Confirmation dialog appears.

3. Click Delete.

The configuration section is deleted.

Oracle Enterprise Manager returns to the Web Configuration page and displays
the remaining configurations.

4.2.4 Managing Parameters
Use Fusion Middleware Control to manage parameters within a named configuration.
You can add, edit, or delete parameters from the Section pane of Fusion Middleware
Control.

To edit a new or overridden parameter in a configuration section:

1. From the Web Configuration region, select the row of the configuration section
that contains the parameter(s) you want to edit.

2. In the Section region, select the parameter group from the Show menu list. The
parameters of the group are displayed.

3. Select the row of the parameter you want to edit. Enter the Value and Comments.

4. Click Apply to save the changes or Revert to discard them.

To add a parameter to a configuration:

1. In Fusion Middleware Control, from the Web Configuration region, select the
configuration section row to which you want to add a parameter.

2. Click Add to add a parameter.

The Add dialog box is displayed.

3. Enter the Name, Value and Comments for the parameter.

Note: You cannot delete the Default configuration section.

Note: You can edit new or overridden parameters. Inherited
parameters must first be overridden so they can be edited. In
Figure 4–3, test1 is an example of a new parameter and
lookandfeel is an example of an overridden parameter.

Configuring Forms Services

Configuring and Managing Forms Services 4-9

4. Click Create to add the parameter.

5. Click Apply to save the changes or Revert to discard them.

To delete a parameter in a configuration:

1. In Fusion Middleware Control, from the Web Configuration region, select the
configuration section row that contains the parameter you want to delete.

2. In the Sections region, from the Show menu list, select the parameter group that
contains the parameter you want to delete.

3. Select the row that contains the parameter you want to delete.

4. Click Delete.

5. Click Apply to save the changes or Revert to discard them.

Figure 4–3 Parameter States

4.2.5 Forms Configuration Parameters
The section provide information about Forms configuration parameters. These
parameters can be specified in the Forms configuration file (formsweb.cfg), as
described in preceding sections. Many of these parameters can also be specified in the
URL. Parameters that cannot be specified in the URL are listed in Section 4.2.5.8. A
value in the URL overrides a value from formsweb.cfg. The following notes apply
to all the parameter tables from Section 4.2.5.1 to Section 4.2.5.7:

■ Required/Optional: A parameter is required if the Forms Services requires a
non-null value (from formsweb.cfg or, where allowed, from the URL) to
function correctly.

■ Default values: For required parameters, the parameter description lists the
default value from the default section of the formsweb.cfg that is shipped with
the Forms product (or at least indicates that it specifies an appropriate value).

Note: You can delete/edit multiple parameters at a time.

Note: You can only delete user-defined parameters. Inherited
parameters (such as enableJavascriptEvent in Figure 4–3) cannot
be deleted.

Note: When you delete an overridden parameter, the parameter is
not deleted but instead regains its inherited status.

Configuring Forms Services

4-10 Forms Services Deployment Guide

For optional parameters, the parameter description may show a non-null default
value from the default section of the formsweb.cfg that is shipped with the
Forms product. In addition, the parameter description may show the default
value that is assumed if no value is specified. (This is the non-null value that
produces the same behavior as a null value). When the description for an optional
parameter simply shows an unqualified default value, the implication is that this
value is both the default value from the default section of the formsweb.cfg that
is shipped with the Forms product, and also the default value that is assumed if no
value is specified.

When the description for an optional parameter does not explicitly specify a
default value, the implication is that the default value is null.

■ Runform parameters: The descriptions for some parameters indicate that they are
runform parameters. They are passed to the frmweb process using the serverArgs
applet parameter. For such a parameter, the syntax rules documented in
Section 3.3.4 must be adhered to when specifying a value that contains special
characters.

■ Sub-arguments for otherparams: The descriptions for some parameters indicate
that they are sub-arguments for otherparams. That means that in order for the
parameter to take effect (when specified in formsweb.cfg or the URL), it must
appear in the form "name=%name%" within the value of the otherparams
parameter. So, for example, if you are adding the parameter "array" (with a value
of "no") to a configuration section, you must also add "array=%array%" to the
value of the otherparams parameter.

Note that these parameters are all runform parameters (since the otherparams
parameter is itself a runform parameter), and so the syntax rules documented in
Section 3.3.4 must be adhered to when specifying a value that contains special
characters.

This section includes:

■ Section 4.2.5.1, "Basic Configuration Parameters"

■ Section 4.2.5.2, "Single Sign-On Configuration Parameters"

■ Section 4.2.5.3, "Trace Configuration Parameters"

■ Section 4.2.5.4, "Plug-in Configuration Parameters"

■ Section 4.2.5.5, "HTML Page Configuration Parameters"

■ Section 4.2.5.6, "Applet Configuration Parameters"

■ Section 4.2.5.7, "Advanced Configuration Parameters"

■ Section 4.2.5.8, "List of Parameters that Cannot be Specified in the URL"

4.2.5.1 Basic Configuration Parameters
These basic parameters control the behavior of the Forms servlet. These parameters are
described in Table 4–7:

Configuring Forms Services

Configuring and Managing Forms Services 4-11

4.2.5.2 Single Sign-On Configuration Parameters

Table 4–7 Basic Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

envFile Required Specifies the name of the environment
configuration file.

Default value from formsweb.cfg is
default.env.

form Required Specifies the name of the top level Forms
module (fmx file) to run.

Default value from formsweb.cfg is
test.fmx. This parameter is a runform
parameter.

height Required Specifies the height of the form applet, in
pixels.

Default value from formsweb.cfg is 600.

userid Optional Login string. For example:
scott/tiger@ORADB. This parameter is a
runform parameter.

width Required Specifies the width of the form applet, in
pixels.

Default value from formsweb.cfg is 750.

Table 4–8 Single Sign-On Configuration Parameters

Parameter
Required /
Optional Parameter Value and Description

ssoCancelUrl Optional Specifies the Cancel URL for the dynamic
resource creation DAS page.

ssoDynamicResourceCr
eate

Optional Specifies whether dynamic resource
creation is enabled if the resource is not
yet created in the OID.

Default value is true.

ssoErrorUrl Optional Specifies the URL to redirect to if
ssoDynamicResourceCreate is set to
false.

ssoMode Optional Specifies whether the URL is protected in
which case, mod_osso is given control
for authentication or continue in the
FormsServlet if not. Set it to true in an
application-specific section to enable
Single Sign-On for that application.

Default value is false.

ssoProxyConnect Optional Specifies whether session should operate
in proxy user support or not. Set
ssoProxyConnect to yes to enable for
particular application.

Default value is no. This parameter is a
sub-argument for otherparams.

Configuring Forms Services

4-12 Forms Services Deployment Guide

4.2.5.3 Trace Configuration Parameters

4.2.5.4 Plug-in Configuration Parameters
These parameters are for use with Sun Java Plug-in.

Table 4–9 Trace Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

debug Optional Allows running in debug mode.

Default value is No. This parameter is a
runform parameter.

EndUserMonitoringEnabl
ed

Optional Indicates whether End User Monitoring
integration is enabled. Default value is
false.

EndUserMonitoringURL Optional Indicates where to record End User
Monitoring data.

host Optional Specifies the host for the debugging
session. This parameter should be used
for debugging purposes only. It identifies
the host on which the forms engine
process is started.

This parameter is a runform parameter.

log Optional Supports tracing and logging. The value
of this parameter, if set, is the file name of
the trace log file.

This parameter is a sub-argument for
otherparams.

port Optional Port to use for debugging. This
parameter should be used for debugging
purposes only. The value of this
parameter identifies the port on which
the forms engine process is listening. If
not specified, the default value is 9000.
This parameter is ignored if serverURL
has been specified.

This parameter is a runform parameter.

record Optional Supports tracing and logging.

This parameter is a sub-argument for
otherparams.

tracegroup Optional Supports tracing and logging.

This parameter is a sub-argument for
otherparams.

Configuring Forms Services

Configuring and Managing Forms Services 4-13

4.2.5.5 HTML Page Configuration Parameters

Table 4–10 Sun Java Plug-in Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

archive Optional Comma-delimited list of archive files that
are used or downloaded to the client. For
each file, include the file name if the file is
in the codebase directory, or include the
virtual path and file name.

Default value for formsweb.cfg is
frmall.jar.

codebase Required Virtual directory you define to point to the
physical directory ORACLE_
HOME/forms/java, where, by default,
the applet JAR files are downloaded from.

Default value from formsweb.cfg is
/forms/java.

imageBase Optional Indicates where icon files are stored. Legal
values:

■ codeBase, which indicates that the
icon search path is relative to the
directory that contains the Java
classes. Use this value if you store
your icons in a JAR file
(recommended).

■ documentBase, which is the URL
pointing to the HTML file.

Default value from formsweb.cfg is
codeBase. If no value is specified, then the
value of documentBase is used.

jpi_classid Required Sun's Java Plug-in class ID.
formsweb.cfg specifies an appropriate
value.

jpi_codebase Required Sun's Java Plug-in codebase setting.
formsweb.cfg specifies an appropriate
value.

jpi_download_page Required Sun's Java Plug-in download page.
formsweb.cfg specifies an appropriate
value.

jpi_mimetype Required Parameter related to version of Java
Plug-in. formsweb.cfg specifies an
appropriate value.

Table 4–11 HTML Page Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

baseHTML Required The default base HTML file.

Default value from formsweb.cfg is
base.htm.

Configuring Forms Services

4-14 Forms Services Deployment Guide

4.2.5.6 Applet Configuration Parameters
These parameters are specified in the baseHTML file as values for object or applet
parameters. They describe the visual behavior and appearance of the applet.

baseHTMLjpi Required Physical path to HTML file that contains
Java Plug-in tags. Used as the baseHTML file
if the client browser is not on Windows and
the client browser is either Firefox or IE
without the IE native settings.

Default value from formsweb.cfg is
basejpi.htm.

HTMLafterForm Optional HTML content to add to the page below the
area where the Forms application is
displayed.

HTMLbeforeForm Optional HTML content to add to the page above the
area where the Forms application is
displayed.

HTMLbodyAttrs Optional Attributes for the <BODY> tag of the HTML
page.

pageTitle Optional HTML page title, attributes for the BODY
tag, and HTML to add before and after the
form.

Default value fromformsweb.cfg is
Oracle Fusion Middleware Forms
Services.

Table 4–12 Applet or Object Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

background Optional Specifies the .GIF file that should appear in the
background. Set to NO for no background.
Leave empty to use the default background.

colorScheme Optional Determines the application's color scheme.
Legal values: Teal, Titanium, Red,
Khaki, Blue, BLAF, SWAN, Olive, or
Purple. Default value from formsweb.cfg
is teal.

Note: colorScheme is ignored if
LookAndFeel is set to Generic.

logo Optional Specifies the .GIF file that should appear at the
Forms menu bar. Set to NO for no logo. Leave
empty to use the default Oracle logo.

lookAndFeel Optional Determines the applications look-and-feel.
Legal values: Oracle or Generic (Windows
look-and-feel).

Default value from formsweb.cfg is
Oracle.

separateFrame Optional Determines whether the applet appears within
a separate window. Legal values: true or
false (default).

Table 4–11 (Cont.) HTML Page Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

Configuring Forms Services

Configuring and Managing Forms Services 4-15

4.2.5.7 Advanced Configuration Parameters

splashScreen Optional Specifies the .GIF file that should appear
before the applet appears. Set to NO for no
splash. Leave empty to use the default splash
image.

To set the parameter include the file name (for
example, myfile.gif) or the virtual path and file
name (for example, images/myfile.gif).

Table 4–13 Advanced Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

allowAlertClipboa
rd

Optional Forms applet parameter.

Default value is true.

allowNewConnectio
ns

Optional Determines whether new Forms sessions are
allowed. This is also used by the Forms Home
page in Fusion Middleware Control to show
the current Forms status.

Default value is true.

applet_name Optional Configuration for JavaScript integration. This
is name of the Forms applet that can be used
to refer to it from a JavaScript code.

array Optional Set this parameter to no to suppress array
processing. This causes Forms to send only a
single row at a time to the database for an
INSERT, UPDATE, or DELETE, and it causes
the database to return only a single row of
query results at a time. This usually results in
the first retrieved record displaying faster, but
the total time to display all rows in the query
result is longer.

Default value if not specified is yes. This
parameter is a sub-argument for otherparams.

buffer_records Optional Set this parameter to yes to set the number of
records buffered in memory to the number of
rows displayed, plus 3 (for each block). This
saves Forms Runtime memory, but may slow
down processing because of increased disk
I/O. Sub argument for otherparams.

Default value if not specified is no. This
parameter is a sub-argument for otherparams.

clientDPI Optional Specifies the dots per inch (DPI) and overrides
the DPI setting returned by the JVM, allowing
you to manage varying DPI settings per
platform. Oracle recommends that you use an
integer between 50 and 200.

connectionDisallo
wedURL

Optional This is the URL shown in the HTML page that
is not allowed to start a session.

Table 4–12 (Cont.) Applet or Object Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

Configuring Forms Services

4-16 Forms Services Deployment Guide

cursorBlinkRate Optional To modify the cursor blink rate, or disable
blinking, set the client parameter
cursorBlinkRate as follows: <PARAM
NAME="cursorBlinkRate"
VALUE="1000">.

The default is 600 milliseconds: the cursor
completes one full blink every 1.2 seconds
(1200 ms). A value of zero disables the
blinking and the cursor remains visible all the
time.

debug_messages Optional Set this parameter to yes to cause Forms to
display ongoing messages about trigger
execution while the form runs.

Default value if not specified is no. This
parameter is a sub-argument for otherparams.

defaultcharset Optional Specifies the character set to be used in servlet
requests and responses. Defaults to ISO-8859-1
(also known as Latin-1). Ignored if the servlet
request specifies a character set (for example,
in the content-type header of a POST). The
values of this parameter may be specified
either as an IANA character set name (for
example, SHIFT_JIS) or as an Oracle character
set name (for example, JA16SJIS). It should
match the character set specified in the NLS_
LANG environment variable, and it should
also be a character set that the browser can
display. Also, if the browser allows multibyte
characters to be entered directly into a URL,
for example, using the IME, as opposed to
URL escape sequences, and to allow end users
to do this, then the value of this parameter
should match the character set that the
browser uses to convert the entered characters
into byte sequences.

Note: If your configuration file contains
configuration sections with names that
contain characters other than 7-bit ASCII
characters, then the following rules apply. If a
config parameter is specified in a URL or in
the body of a POST request with no specified
character set, and the value contains non-7-bit
ASCII characters, then the value is interpreted
using a character set named in the
defaultcharset parameter. However, only the
language-dependent default section and the
language-independent default section of the
configuration file is searched for the
defaultcharset parameter. No other
configuration section is searched because the
name is not yet known.

digitSubstitution Optional Determines the BIDI digitSubstitution.
Permissible values are none, national, and
context. Default value is context.

Table 4–13 (Cont.) Advanced Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

Configuring Forms Services

Configuring and Managing Forms Services 4-17

disableMDIScrollb
ars

Optional Set this parameter to true to disable
horizontal and vertical scrollbars in the Forms
main applet window.

You can also add this parameter in
basejpi.html, in the OBJECT tag:

<PARAM NAME="disableMDIscrollbars"

VALUE="%disableMDIScrollbars%">.

In the tag <EMBED SRC> add

disableMDIScrollbars="%disableMDIS
crollbars%".

Default value if not specified is false.

disableValidateCl
ipboard

Optional Forms applet parameter.

Default value is false.

enableJavascriptE
vent

Optional Configuration for JavaScript integration.

Default value is true.

escapeparams Optional Set this parameter to false for runform to
treat special characters in runform parameters
as it did in releases before 9.0.4. This
parameter is a Forms run-time argument and
specifies whether to escape certain special
characters in values extracted from the URL
for other run-time arguments.

Default value is false.

formsMessageListe
ner

Optional Forms applet parameter that specifies the
class that the Forms client uses to enable
recording of Forms messages for Tool Vendor
Interface (TVI) / Intercept Server.

heartBeat Optional Use this parameter to set the frequency at
which a client sends a packet to the server to
indicate that it is still running. Define this
integer value in minutes or in fractions of
minutes, for example, 0.5 for 30 seconds.
Default value, if not specified, is 2 minutes.

If the heartBeat is less than FORMS_
TIMEOUT, the user's session is kept active,
even if they are not actively using the form.

Note: If heartBeat is higher than the
parameter session-timeout, then the value of
session-timeout takes precedence over
heartBeat. To increase the value of
heartBeat, the value of session-timeout
must be greater than heartBeat. For more
information on this parameter, see
"Session-timeout" in Oracle Fusion Middleware
Developing Web Applications, Servlets, and JSPs
for Oracle WebLogic Server.

highContrast Optional When highContrast is set to true, frame
labels are black if foreground and background
colors are not specified. Default value is
false.

Table 4–13 (Cont.) Advanced Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

Configuring Forms Services

4-18 Forms Services Deployment Guide

HTMLdelimiter Optional This parameter defines the delimiter for
parameters in the base HTML files.

Default delimiter is %.

JavaScriptBlocksH
eartBeat

Optional Configuration variable that indicates if
HeartBeat is blocked when a JavaScript call
is a blocking call.

Default value is false.

legacy_lifecycle Optional Applet parameter for Sun’s Java Plug-in. A
value of true causes a running applet to be
reused when requested. This parameter also
affects the contents of the initial page that is
generated as the response from the Forms
servlet, to ensure the reusability of the applet
when legacy_lifecycle is set to true.
When set to true, JavaScript must be enabled
on the Java client.

Default value is false.

maxRuntimeProcess
es

Optional This specifies the maximum allowable
number of concurrent Forms run-time
processes. It should be set a value that reflects
the customer's hardware configuration (and
the portion that can be used by Forms
applications). A value of 0 (the default)
indicates that there is no explicit limit. This
default is not recommended, because it leaves
the system vulnerable to Denial of Service
attacks.

Default value if not specified is 0.

networkRetries Optional Number of times client should retry if a
network failure occurs.

Default value is 0.

obr Optional For internal use only.

Default value is no. This parameter is a
sub-argument for otherparams.

otherparams Optional This setting specifies command line
parameters to pass to the Forms run-time
process in addition to form and userid. This
parameter is a runform parameter. Default
value from formsweb.cfg is obr=%obr%
record=%record%
tracegroup=%tracegroup% log=%log%
term=%term%
ssoProxyConnect=%ssoProxyConnect%

Note: Special syntax rules apply to this
parameter when it is specified in a URL: a +
may be used to separate multiple name=value
pairs (see Section 3.3.4, "Specifying Special
Characters in Values of Runform Parameters"
for more information). For production
environments, to provide better control over
which runform parameters, end users can
specify in a URL, include the otherparams
parameter in the value of the
restrictedURLparams parameter.

Table 4–13 (Cont.) Advanced Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

Configuring Forms Services

Configuring and Managing Forms Services 4-19

prestartIncrement Optional The number of run-time processes to be
created when the number of prestarted
run-time processes is less than minRuntimes.

Default value if not specified is 1.

prestartInit Optional Number of the run-time processes that should
be spawned initially.

Default value if not specified is 1.

prestartMin Optional Minimum number of run-time processes to
exist in the pool. Default value if not specified
is 0.

prestartRuntimes Optional Run-time prestarting or pooling is enabled
only if true.

Default value if not specified is false.

prestartTimeout Optional Time in minutes after which all the prestarted
processes of this pool (configuration section)
is stopped. A run-time process is removed
from the prestart pool after the client
connection is made and thus is not stopped.

Default value if not specified is 0.

query_only Optional Set this parameter to yes to prevent the end
user from inserting, updating, or deleting
records.

Default value if not specified is no. This
parameter is a sub-argument for otherparams.

quiet Optional Set this parameter to yes to prevent messages
from producing an audible beep.

Default value if not specified is no. This
parameter is a sub-argument for otherparams.

recordFileName Optional Forms applet parameter that specifies the
name of file (for example, d:\temp\is) that
stores the recorded Forms messages.

Default value if not specified is ’is’ (without
the quotes).

restrictedURLpara
ms

Optional Forms applet parameter. Specifies a
comma-delimited list of parameters which is
rejected if specified in a URL.

Default value from formsweb.cfg is
"pageTitle,HTMLbodyAttrs,HTMLbefor
eForm,HTMLafterForm,log".

restrictedURLchar
s

Optional Forms applet parameter. Specifies a
comma-delimited characters that is restricted
for use in the request URL's query string.

serverApp Optional Forms applet parameter.

Default value is default.

serverURL Required Determines the URL path to Forms Listener
Servlet.

Default value is /forms/lservlet.

Table 4–13 (Cont.) Advanced Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

Managing Environment Variables

4-20 Forms Services Deployment Guide

4.2.5.8 List of Parameters that Cannot be Specified in the URL
This section lists the parameters that can be specified only in the servlet configuration
file (formsweb.cfg). If any are specified in the URL, the value is ignored. In
addition, any parameter that is listed in the value of the restrictedURLparams
parameter is rejected if specified in the URL.

■ allowNewConnections

■ baseHTML

■ baseHTMLjpi

■ connectionDisallowedURL

■ defaultCharset

■ envFile

■ escapeparams

■ HTMLdelimiter

■ maxRuntimeProcesses

■ prestartIncrement

■ prestartInit

■ prestartMin

■ prestartRuntimes

■ prestartTimeout

■ restrictedURLparams

■ restrictedURLchars

■ serverURL

■ ssoCancelURL

■ ssoDynamicResourceCreate

■ ssoErrorURL

■ ssoMode

■ workingDirectory

4.3 Managing Environment Variables
Use the Environment Configuration page of Fusion Middleware Control to manage
environment variables. From this page, you can add, edit, or delete environment
variables as necessary.

term Optional The full path of a custom key binding file (to
be used instead of the standard fmrweb or
fmrweb_utf8 files).

This parameter is a sub-argument for
otherparams.

Table 4–13 (Cont.) Advanced Configuration Parameters

Parameter
Required/
Optional Parameter Value and Description

Managing Environment Variables

Configuring and Managing Forms Services 4-21

The environment variables such as PATH, ORACLE_INSTANCE, ORACLE_HOME, and
FORMS_PATH for the Forms run-time executable (frmweb.exe on Windows and
frmweb on UNIX) are defined in default.env. The Forms listener servlet calls the
executable and initializes it with the variable values provided in the environment file,
which is found in the $DOMAIN_HOME/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config directory by default.

Any environment variable that is not defined in default.env is inherited from the
Oracle WebLogic Managed Server. The environment file must be named in the
envFile parameter in the Default section of the Web Configuration page.

A few things to keep in mind when customizing environment variables are:

■ Environment variables may also be specified in the Windows registry. Values in
the environment file override settings in the registry. If a variable is not set in the
environment file, the registry value is used.

■ You need administrator privileges to alter registry values.

■ The server does not require restarting for configuration changes to take effect.

■ Existing Forms processes are not affected by environment variables that were
defined after they were started.

■ Environment variables not set in the environment file or Windows registry are
inherited from the environment of the parent process, which is the Oracle
WebLogic Managed Server.

Table 4–14, " Default Environment Variables" describes important environment
variables that are specified in default.env.

4.3.1 Managing Environment Configuration Files

To access the Environment Configuration page:

1. Start Fusion Middleware Control.

2. From the Fusion Middleware Control main page, click the link to the Oracle Forms
Services instance that you want to configure.

3. From the Forms menu list, select Environment Configuration. The Environment
Configuration page (Figure 4–4) is displayed.

Figure 4–4 Environment Configuration page

Managing Environment Variables

4-22 Forms Services Deployment Guide

To duplicate an environment configuration file:

1. From the Environment Configuration page, click Duplicate File.

The Duplicate File dialog is displayed.

2. Select the file which you want to duplicate and enter a unique name for the file.

3. Click Duplicate to create the file.

To delete an environment configuration file:

1. In the Environment Configuration page, from the Show menu list, select the
environment configuration file you want to delete.

2. Click Delete File.

The Confirmation dialog is displayed.

3. Click Yes to confirm the deletion.

To view an environment configuration file:

1. In the Environment Configuration page, from the Show menu list, select the
environment configuration file that you want to view.

2. The parameters and their values are displayed.

4.3.2 Configuring Environment Variables

To edit an environment variable:

1. In the Environment Configuration page, select the row of the parameter that
contains the environment variable you want to edit.

2. Enter the Value and Comments.

3. Click Apply to save the changes or Revert to discard them.

To add an environment variable:

1. From the Show menu list, select the environment configuration file to which you
want to add the variable.

2. Click Add to add a parameter.

The Add dialog box is displayed.

3. Enter the Name, Value and Comments.

4. Click Create.

5. Click Apply to save the changes or Revert to discard them.

To delete an environment variable:

1. From the Show menu list, select the environment configuration file where you
want to delete an environment variable.

2. Select the rows of the parameters you want to delete. You can delete more than
one parameter at a time.

Note: You cannot delete default.env. You can delete only
user-defined environment configuration files.

Managing Environment Variables

Configuring and Managing Forms Services 4-23

3. Click Delete.

4. Click Apply to save the changes or Revert to discard them.

4.3.3 Default Environment Variables
Table 4–14 provides the valid values and a description of some of the environment
variables.

Table 4–14 Default Environment Variables

Parameter Valid Values Description

ORACLE_HOME ORACLE_HOME (default) Points to the base installation
directory of any Oracle product.

ORACLE_INSTANCE ORACLE_INSTANCE (default) Contains all configuration files,
repositories, log files, deployed
applications, and temporary
files.

PATH ORACLE_HOME/bin (default) Contains the executables for
Oracle products.

FORMS_PATH ORACLE_
HOME/forms:ORACLE_
INSTANCE/FormsComponen
t/forms (default)

Specifies the path that Oracle
Forms searches when looking
for a form, menu, or library to
run.

For Windows, separate paths
with a semi-colon (;).

For UNIX, separate paths with a
colon (:).

FORMS_RESTRICT_
ENTER_QUERY

TRUE (default) Disable or remove this variable
for end-users who need access
to the query-where functionality
which potentially allows them
to enter arbitrary SQL
statements when in enter-query
mode.

TNS_ADMIN ORACLE_INSTANCE/config Specifies the path name to the
TNS files such as
TNSNAMES.ORA,
SQLNET.ORA and so on.

CLASSPATH ORACLE_
HOME/jdk/bin/java

Specifies the Java class path,
which is required for the Forms
debugger.

Managing User Sessions

4-24 Forms Services Deployment Guide

4.4 Managing User Sessions
Administrators can manage user sessions, and related features such as monitoring,
debugging and tracing using Fusion Middleware Control.

LD_LIBRARY_PATH Set the LD_LIBRARY_PATH
environment variable for the
first time to

ORACLE_HOME/lib.

You can reset LD_LIBRARY_
PATH in the Bourne shell by
entering:

$ set LD_LIBRARY_
PATH=ORACLE_
HOME/lib:${LD_LIBRARY_
PATH}

$ export LD_LIBRARY_
PATH

or in the C shell by entering:

% setenv LD_LIBRARY_
PATH ORACLE_
HOME/lib:${LD_LIBRARY_
PATH}

Oracle Forms Developer and
Reports Developer products use
dynamic, or shared, libraries.
Therefore, you must set LD_
LIBRARY_PATH so that the
dynamic linker can find the
libraries.

WEBUTIL_CONFIG ORACLE_
INSTANCE/config/FormsC
omponent/forms/server/
webutil.cfg

FORMS_MESSAGE_
ENCRYPTION

TRUE Possible values are TRUE or
FALSE. Use this environment
variable to turn off or on the
proprietary obfuscation applied
to Forms messages when using
HTTP mode. By default,
communication is obfuscated.

LD_PRELOAD <JDK_
HOME>/jre/lib/i386/lib
jsig.so

Specifies the location of the
library libjsig.so. This
library is used for the
signal-chaining facility offered
by JVM 1.5. The signal-chaining
facility enables an application to
link and load the shared library
libjsig.so before the system
libraries. Ensure this is set for
Forms and Reports integration
on UNIX/Linux.

Note: If there are multiple
environment files, ensure that
LD_PRELOAD has the same
settings as in default.env.

Note: On Windows, Oracle Forms Services reads Oracle
environment settings from the Windows Registry unless they are
set as environment variables.

Table 4–14 (Cont.) Default Environment Variables

Parameter Valid Values Description

Managing User Sessions

Configuring and Managing Forms Services 4-25

A user session starts when the frmweb process starts. Use the Forms User Sessions
pages to monitor and trace the Forms sessions within a Forms Instance. The Forms
User Sessions page is accessed from the Forms menu list by selecting User Sessions.

To view Forms user sessions:

1. Start Fusion Middleware Control.

2. From the Forms menu list, select User Sessions.

The User Sessions page (Figure 4–5) is displayed.

Figure 4–5 User Sessions page

3. Table 4–15 describes the fields on the User Sessions page.

Table 4–15 User Sessions Page

Field Description

Process ID The process ID of the user session.

Database The database name used by the Forms application for the user
session. Click the Database name to view the Database Sessions
page.

CPU Usage The percentage of CPU used by the run-time process.

Private Memory (KB) The memory used by the run-time process. On Linux platforms,
private memory is not the actual private memory but indicates
the Resident Set Size (RSS).

IP Address The IP address of the client computer used to connect to Forms
Services.

Username Database user name.

Connect Time The time when the user connected to Forms Services. If the client
connection time and client IP are empty, the session is a
prestarted session, which is not yet connected to any client.

Managing User Sessions

4-26 Forms Services Deployment Guide

To enable new Forms user sessions:

By default, new Forms user sessions are enabled. You can disable them by using
Fusion Middleware Control to set the allowNewConnections parameter to false.

1. Start Fusion Middleware Control.

2. From the Forms menu, select Web Configuration.

3. Select the default configuration section. allowNewConnections cannot be
overridden in named sections.

4. In the Sections region, find and edit the value for the allowNewConnections
parameter. A value of true (default) enables new user sessions, whereas false
disables them.

5. Click Apply to save the changes.

To disable new Forms user sessions:

1. Start Fusion Middleware Control.

2. From the Forms menu, select Web Configuration.

3. Select the default configuration section. allowNewConnections cannot be
overridden in named sections.

4. In the Sections region, find and edit the value for the allowNewConnections
parameter. A value of true (default) enables new user sessions, whereas false
disables them.

5. Click Apply to save the changes.

When new user sessions are disabled, attempted connections are directed to a URL
identified by the formsweb.cfg parameter connectionDisallowedURL (in the
default section). You must specify a complete and valid URL as the value.

If connectionDisallowedURL is not specified, then the following message is
displayed in the browser:

The Forms servlet will not allow new connections. Please contact
your System Administrator.

Trace Group The trace group used for tracing the user session. When tracing
is enabled, this column shows the trace group name or the
events being traced. The events are displayed if the events of the
trace group that was enabled for the session have been later
modified in the trace configuration.

Note that the Trace group name that is displayed may not be
indicate the accurate events being traced if built-ins are used to
control the tracing.

Trace Log Displays the trace log if one exists for the user session.

Configuration Section Indicates the configuration section used by the Forms
application.

Form Name Indicates the module name of the form application.

CPU Time Indicates total CPU time used by forms sessions since Connect
time.

Table 4–15 (Cont.) User Sessions Page

Field Description

Managing User Sessions

Configuring and Managing Forms Services 4-27

When you disable new user sessions, existing forms sessions are unaffected and the
Oracle WebLogic Managed Server instance remains up.

To enable tracing for a Forms user sessions:

1. Start Fusion Middleware Control.

2. In the User Sessions page, select the row that has the user session for which you
want to enable tracing.

3. Select Enable Tracing.

4. From the Select Trace Group list, select an available trace group and click OK.

To disable tracing for a Forms user sessions:

1. In the User Sessions page, select the row that has the user session for which you
want to disable tracing.

2. Click Disable Tracing.

3. Click OK. The Disable Tracing dialog is dismissed and tracing is now stopped for
the selected Forms user session.

To terminate a Forms user session:

1. Select the link to the Forms Services instance that has the user session to be
terminated.

2. From the Forms menu, select User Sessions.

3. Click the row of the user session to be deleted.

4. Click Stop.

5. The Confirmation dialog is displayed.

6. Click Yes.

The user session is deleted and the Runform instance is terminated.

To view trace logs of a Forms user sessions:

1. From the Forms menu, select User Sessions.

2. For a user session that is active, click View Trace Log in the Trace Log column. Log
in to view the trace file.

To search for a Forms user sessions:

1. From the Forms menu, select User Sessions.

2. Select the column name in which you want to search.

3. Enter the search string.

4. Click the blue arrow to search. The search results are displayed.

To sort the list of Forms user sessions:

1. From the Forms menu, select User Sessions.

2. Move the mouse over the column.

3. Click the up or down arrow to sort in ascending or descending order. The page is
refreshed showing the sorted user sessions. You can sort in order of all columns
except Trace Logs.

Managing User Sessions

4-28 Forms Services Deployment Guide

To customize your view of Forms user sessions:

1. From the User Sessions page, click View.

2. From the View menu, you can:

■ Select Show All to view all columns.

■ Select specific columns you want displayed.

■ Select Reorder Columns to organize the order of display of the columns.

■ Select Show More Columns to hide or display specific columns.

To view database sessions for a Forms user session:

1. From the Forms menu, select User Sessions.

2. Click the Database name in the Database column.

Log in to view the Database Sessions page (Figure 4–6). You need Database
Administrator privileges to log in to Database Sessions page.

Figure 4–6 Database Sessions Page

3. Table 4–16, Table 4–17, and Table 4–18 describe the information displayed in the
Database Sessions page.

Table 4–16 Database Sessions Page

Field Description

Username Database username used for connection to the database.

Session ID Database session identifier.

Logon Time Date and time when user logged on to the session.

Serial # Session serial number. Used to uniquely identify a session's
objects. Guarantees that session-level commands are applied to
the correct session objects if the session ends and another session
begins with the same session ID.

Status Indicates whether the session is active or not.

SQL HASH Used to identify the SQL statement executed

CPU Usage (%) CPU Usage (in percentage) on the Database system for the given
session.

Managing URL Security for Applications

Configuring and Managing Forms Services 4-29

4.5 Managing URL Security for Applications
Oracle Forms applications are web-deployed solutions that users access through a
browser. Oracle Forms architecture allows Forms developers two ways to choose and

Logical Reads Number of Logical Reads for the given session.

Physical Reads Number of Physical Reads for the given session.

PGA (Program Global Area)
Memory

Size of PGA (Program Global Area) Memory after an interval.

Table 4–17 Details of Selected Database Session

Field Description

SQL Statement for the
selected Database Session

Displays the most recent SQL statement.

Table 4–18 Execution Plan for the Selected Database Session

Field Description

Operation Name of the internal operation performed in the execution step
(for example, TABLE ACCESS).

Object Name of the table or index.

Object Type Type of the object.

ID A number assigned to each step in the execution plan.

Parent ID ID of the next execution step that operates on the output of the
current step.

Depth Depth (or level) of the operation in the tree. It is not necessary to
issue a CONNECT BY statement to get the level information,
which is generally used to indent the rows from the PLAN_
TABLE table. The root operation (statement) is level 0.

Position Order of processing for all operations that have the same
PARENT_ID.

Rows Estimate, by the cost-based optimizer, of the number of rows
produced by the operation.

Size (KB) Estimate, by the cost-based optimizer, of the number of bytes
produced by the operation.

Cost Cost of the operation as estimated by the optimizer's cost-based
approach. For statements that use the rule-based approach, this
column is null.

Time (sec) Elapsed time (in seconds) of the operation as estimated by the
optimizer's cost-based approach. For statements that use the
rule-based approach, this column is null.

CPU Cost CPU cost of the operation as estimated by the optimizer's
cost-based approach. For statements that use the rule-based
approach, this column is null.

I/O Cost I/O cost of the operation as estimated by the optimizer's
cost-based approach. For statements that use the rule-based
approach, this column is null.

Table 4–16 (Cont.) Database Sessions Page

Field Description

Managing URL Security for Applications

4-30 Forms Services Deployment Guide

configure how a Forms application runs. One option is to set the parameter and the
value in the URL. The second option is to set the parameter and its value(s) in the
configuration file, that is, formsweb.cfg. The parameter that is set in the
formsweb.cfg can be overridden by the parameter set in the URL.

A Forms administrator can override this default behavior, and give the Forms
administrator full control over what parameter can be used in the URL.

Here are two scenarios to consider when deciding which parameters to allow or not
allow in a URL. The first scenario is when an administrator just wants to restrict the
usage of the USERID parameter in the URL that forces the end-user to always log in
using the default login window. The second scenario is when an administrator
disables all parameters except a few, such as CONFIG=MyApp in a URL.

The parameter restrictedURLparams allows flexibility for the Forms administrator
to consider any URL-accessible parameter in the formsweb.cfg file as restricted to a
user. An administrator can specify this parameter in a named configuration section to
override the one specified in the default configuration section. The
restrictedURLparams parameter itself cannot be set in the URL.

By design, command line arguments passed in a URL always override similar
definitions in the formsweb.cfg.

In this example, the userid is defined as scott/tiger and debug is set to false.
An application that is configured to connect to the database as scott/tiger can
connect as a different user with the userid parameter added as a URL parameter. To
prevent this, the userid parameter is defined in the restrictedURLparams as
shown in Figure 4–7, "Defining the restrictedURLparams Parameter".

Figure 4–7 Defining the restrictedURLparams Parameter

Similarly, an administrator can use the restrictedURLparams parameter to redirect
a user to a page which lists the restricted parameters that were used.

4.5.1 Securing the Oracle Forms Test Form
The test form runs when you access an Oracle Forms URL but do not specify an
application to run. For example, normally you call an Oracle Forms application with
the following syntax:

http://<host>:<port>/forms/frmservlet?config=myApp

The Forms servlet locates [myApp] in the formsweb.cfg file and launches that
application. However, when no application is specified, for example:

http://<host>:<port>/forms/frmservlet

The Forms servlet uses the settings in the default section of the formsweb.cfg file.
These settings are located under [default] in the Forms Configuration file (anytime
an application does not override any of these settings, the defaults are used). The
default section has the following setting:

Managing URL Security for Applications

Configuring and Managing Forms Services 4-31

form=test.fmx

This is the test form which enables you to test your Oracle Forms Services installation
and configuration. Thus if you do not specify an application, Forms launches the
test.fmx file. You could change this to:

form=

And the form does not run. However, this is not optimal; the Forms servlet still sends
the dynamically generated HTML file to the client, from which a curious user could
obtain information. The optimally secure solution is to redirect requests to an
informational HTML page that is presented to the client instead. Some parameters in
the formsweb.cfg file must be changed.

Here are the parameters to change, along with their default values when you install
Oracle Forms Services:

 # System parameter: default base HTML file
 baseHTML=base.htm
 # System parameter: base HTML file for use with Sun's Java Plug-In
 baseHTMLjpi=basejpi.htm

These parameters are templates for the HTML information that are sent to the client.
Create an informational HTML page and have these variables point to that instead.
For example, in the $ORACLE_
INSTANCE/config/FormsComponent/forms/server directory, create a simple
HTML page called forbidden.html with the following content:

 <html>
 <head>
 <title>Forbidden</title>
 </head>
 <body>
 <h1>Forbidden!</h1>
 <h2>You may not access this Forms application.</h2>
 </body>
 </html>

Next, modify the formsweb.cfg parameters by commenting out or modifying the
original parameters:

 # System parameter: default base HTML file
 #baseHTML=base.htm
 baseHTML=forbidden.html
 # System parameter: base HTML file for use with Sun's Java Plug-In
 #baseHTMLjpi=basejpi.htm
 baseHTMLjpi=forbidden.html
 # System parameter: base HTML file for use with Microsoft Internet Explorer
 # (when using the native JVM)

When a user enters the URL

http://<host>:<port>/forms/frmservlet

Note: This message page displayed as a result of redirecting of client
information is different from the page that the Web server returns
when the requested content has restricted permissions on it.

Creating Your Own Template HTML Files

4-32 Forms Services Deployment Guide

the customized Web page is presented. Of course, you can customize
forbidden.html, including its contents, its filename, and its location if you make
the corresponding changes to these parameters in the formsweb.cfg file.
Administrators can put any information, such as warnings, errors, time stamps, IP
logging, or contact information in this information Web page with minimal impact on
the server configuration.

4.6 Creating Your Own Template HTML Files
Consider creating your own HTML file templates (by modifying the templates
provided by Oracle). By doing this, you can hard-code standard Forms parameters and
parameter values into the template. Your template can include standard text, a
browser window title, or images (such as a company logo) that would appear on the
first Web page users see when they run Web-enabled forms. Adding standard
parameters, values, and additional text or images reduces the amount of work
required to customize the template for a specific application. To add text, images, or a
window title, you must include the appropriate tags in the template HTML file.

See Chapter 3.3.4, "Specifying Special Characters in Values of Runform Parameters" for
information about coding the serverArgs applet parameter.

Any user-added customized configuration files (such as user client registry files or
user key binding files or multiple environment files) must be copied to the same
directory as the corresponding default configuration file.

 For example, if the user has created a French environment configuration file
default_fr.env, then it must be placed in the $DOMAIN_
HOME/config/fmwconfig/servers/WLS_FORMS/applications/formsapp_
11.1.1/config directory.

4.6.1 Variable References in Template HTML Files
When a variable reference occurs within a string delimited by quotes or apostrophes
(for example, the value of an applet parameter), then when the value of the variable is
substituted for the variable reference, HTML metacharacters ('&', '<', '>', quote, and
apostrophe) are replaced by HTML escape sequences.

This sequence is not done for variable references outside delimited strings. Therefore,
such variables should be specified in the restrictedURLparams system default
configuration parameter, for security reasons.

Note: Overriding the base HTML template entries in the default
section of formsweb.cfg requires that you add the same entries
pointing to the original values (or some other valid HTML file) in
your application-specific named configuration:

[myApp]
form=myApplication.fmx
lookandfeel=oracle
baseHTML=base.htm
baseHTMLjpi=basejpi.htm

If you do not specify these base HTML values, and when a user runs
an application, the forbidden.html page is displayed because the
application-specific configuration section has not overridden the
default values.

Deploying Fonts, Icons, and Images Used by Forms Services

Configuring and Managing Forms Services 4-33

4.7 Deploying Fonts, Icons, and Images Used by Forms Services
This section explains how to specify the default location and search paths for fonts,
icons, and images in Registry.dat. To look at a sample of the default Registry.dat file,
see Section C.8.1, "Registry.dat".

4.7.1 Managing Registry.dat with Fusion Middleware Control
Use Fusion Middleware Control to change, add, or delete parameters from
Registry.dat.

To access the Fonts and Icon Mapping page:
1. Start Fusion Middleware Control.

2. From the Forms menu list, select Font and Icon Mapping.

The Font and Icon Mapping page (Figure 4–8) is displayed.

Figure 4–8 Font and Icon Mapping Page

To edit a Registry.dat parameter value:
1. Start Fusion Middleware Control.

2. From the Forms menu list, select Font and Icon Mapping.

3. Select the row containing the parameter to modify and change the value(s) for it in
the Value text field.

4. Click Apply to save the changes.

To add a Registry.dat parameter and its value:
1. From the Forms menu list, select Font and Icon Mapping.

Note: To modify the cursor blink rate, or disable blinking, set the
client parameter cursorBlinkRate as follows.

 <PARAM NAME="cursorBlinkRate" VALUE="1000">

The default is 600 milliseconds: the cursor completes one full blink
every 1.2 seconds (1200 ms).

A value of zero disables the blinking and the cursor remains visible all
the time.

Deploying Fonts, Icons, and Images Used by Forms Services

4-34 Forms Services Deployment Guide

2. Click Add.

The Add dialog appears.

3. Enter the name, value, and comments for this parameter.

4. Click Create.

5. Click Apply to save or Revert to discard the changes.

To delete a Registry.dat parameter and its value:
1. From the Forms menu list, select Font and Icon Mapping.

2. Select the row containing the parameter to delete and click Delete.

3. The parameter is deleted.

4. Click Apply to save or Revert to discard the changes.

4.7.2 Managing Application Fonts
Using Fusion Middleware Control, you can also change the default font and font
settings by the Registry.dat file. All font names are Java Font names. Each of these
parameters represents the default property to use when none is specified.

To change the font settings for a deployed application:
1. Start Fusion Middleware Control.

2. From the Forms menu list, select Font and Icon Mapping.

3. Change any of the settings to reflect your desired font setting, based on Table 4–19:

Table 4–19 Default Font Values

Font Name Default Value

default.fontMap.defaultFontname Dialog

Represents the default Java fontName.

default.fontMap.defaultSize 900

Represents the default fontSize. Note that the size is
multiplied by 100 (for example, a 10pt font has a size
of 1000).

default.fontMap.defaultStyle PLAIN

Represents the default fontStyle, PLAIN or ITALIC.

Deploying Fonts, Icons, and Images Used by Forms Services

Configuring and Managing Forms Services 4-35

For example, to change your default font to Times New Roman, replace Dialog
with Times New Roman.

You can change the default font face mappings:

default.fontMap.appFontnames=Courier New,Courier,
courier,System,Terminal,Fixed,Fixedsys,Times,Times New Roman,
MS Sans Serif,Arial
default.fontMap.javaFontnames=MonoSpaced,MonoSpaced,MonoSpaced,Dialog,
MonoSpaced,Dialog,Dialog,Serif,Serif,Dialog,SansSerif

4. Click Apply to save the changes.

Some fonts on Windows are not supported in Java. For this reason you can specify
(map) Java-supported fonts that appear when a non-supported font is encountered. In
the previous sample, each font in default.fontMap.appFontnames corresponds to a
font in default.fontMap.javaFontnames.

4.7.3 Deploying Application Icons
When deploying an Oracle Forms application, the icon files used must be in a
Web-enabled format, such as JPG or GIF (GIF is the default format).

By default, the icons are found relative to the DocumentBase directory. That is,
DocumentBase looks for images in the directory relative to the base directory of the
application start HTML file. As the start HTML file is dynamically rendered by the
Forms servlet, the forms directory becomes the document base.

For example, if an application defines the icon location for a button with
myapp/<iconname>, then the icon is looked up in the directory forms/myapp.

To change the default location, set the imageBase parameter to codebase in the Web
Configuration page of Enterprise Manager Fusion Middleware Control. Alternatively,
you can change the default.icons.iconpath value of the Registry.dat file in the
$DOMAIN_HOME/config/fmwconfig/servers/WLS_

default.fontMap.defaultWeight PLAIN

Represents the default fontWeight, PLAIN or BOLD.

default.fontMap.appFontnames Courier
New,Courier,courier,System,Terminal,Fixedsys,Time
s,Times New Roman,MS Sans Serif,Arial

Default Font Face mapping. Represents a comma
delimited list of application font names.

The number of entries in the appFontname list
should match the number in the javaFontname list.
The elements of the list are comma separated and all
characters are taken literally; leading and trailing
spaces are stripped from Face names.

Note that this file uses the Java 1.1 font names to
handle the NLS Plane.

default.fontMap.javaFontnames MonoSpaced,MonoSpaced,MonoSpaced,Dialog,Mon
oSpaced,Dialog,Dialog,Serif,Serif,Dialog,SansSerif

Represents a comma delimited list of Java font
names.

Table 4–19 (Cont.) Default Font Values

Font Name Default Value

Deploying Fonts, Icons, and Images Used by Forms Services

4-36 Forms Services Deployment Guide

FORMS/applications/formsapp_
11.1.1/config/forms/registry/oracle/forms/registry directory.

Setting the imageBase parameter to codebase enables Oracle Forms to search the
forms/java directory for the icon files. Use this setting if your images are stored in a
Java archive file. Changing the image location in the Registry.dat configuration file is
useful to store images in a central location independent of any application and
independent of the Oracle Forms installation.

4.7.3.1 Storing Icons in a Java Archive File
If an application uses a lot of custom icon images, it is recommended you store icons in
a Java archive file and set the imageBase value to codebase. The icon files can be
zipped to a Java archive using the Jar command of any Java Software Development Kit
(Java SDK).

For example, the command jar -cvf myico.jar *.gif packages all files with
the extension .gif into an archive file with the name myico.jar.

In order for Oracle Forms to access the icon files stored in this archive, the archive
must be stored into the forms/java directory. Also, the name of the archive file must
be part of the archive tag used in the custom application section of the formsweb.cfg
file. Now, when the initial application starts, the icon files are downloaded and
permanently stored on the client until the archive file is changed.

4.7.3.2 Adding, Modifying, and Deleting Icon Mappings
Use Fusion Middleware Control to add icon changes to the Registry.dat file used by
your application.

To add icon mappings:

1. Start Fusion Middleware Control.

2. From the Forms menu, select Font and Icon Mapping.

3. Click Add.

The Add dialog appears.

4. Enter the name, value, and an optional comment.

5. Click Create to create the mapping.

The mapping is added to the list.

6. Click Apply to save the changes.

To modify icon mappings:
1. From the Font and Icon Mapping region, select the mapping you want to modify.

2. Change the name and value of the mapping. For example,

■ Modify the iconpath parameter specifying your icon location:

default.icons.iconpath=/mydir

(for an absolute path)

Note: Oracle Forms default icons (for example, icons present in
the default smart icon bar) do not require deployment, as they are
part of the frmall.jar file.

Deploying Fonts, Icons, and Images Used by Forms Services

Configuring and Managing Forms Services 4-37

or

default.icons.iconpath=mydir

(for a relative path, starting from the DocumentBase Directory)

■ Modify the iconextension parameter:

default.icons.iconextension=gif

or

default.icons.iconextension=jpg

3. Click Apply to save and activate the changes.

To delete an icon mapping:
1. From the Font and Icon Mapping region, select the mapping you want to delete.

2. Click Delete.

3. The selected icon mapping is deleted.

4. Click Apply to save or Revert to discard the changes.

To reference the application file:

■ In a specific named configuration section in the formsweb.cfg file, modify the
value of the serverApp parameter and set the value to the location and name of
your application file.

For example:

[my_app]

ServerApp=/appfile/myapp

(for an absolute path)

or

[my_app]

ServerApp=appfile/myapp

(for a relative path, relative to the CodeBase directory)

Table 4–20 describes the correct locations where to place your application icons:

Table 4–20 Icon Location Guide

Icon Location When How

DocumentBase Default.
Applications with
few or no custom
icons.

Store icons in forms directory or in a
directory relative to forms.

Java Archives Applications that
use many custom
icons.

Set ImageBase to codebase, create Java
archive file for icons, and add archive file
to the archive parameter in
formsweb.cfg.

Deploying Fonts, Icons, and Images Used by Forms Services

4-38 Forms Services Deployment Guide

4.7.4 Splash screen and Background Images
When you deploy your applications, you have the ability to specify a splash screen
image (displayed during the connection) and a background image file.

Those images are defined in the HTML file or you can use the Web Configuration
page in Enterprise Manager:

<PARAM NAME="splashScreen" VALUE="splash.gif">

<PARAM NAME="background" VALUE="back.gif">

The default location for the splash screen and background image files is in the
DocumentBase directory containing the baseHTML file.

4.7.5 Custom Jar Files Containing Icons and Images
Each time you use an icon or an image (for a splash screen or background), an HTTP
request is sent to the Web server. To reduce the HTTP round-trips between the client
and the server, you have the ability to store your icons and images in a Java archive
(Jar) file. Using this technique, only one HTTP round-trip is necessary to download the
Jar file.

4.7.5.1 Creating a Jar File for Images
The Java SDK comes with an executable called jar. This utility enables you to store files
inside a Java archive. For more information, see http://java.sun.com/.

For example:

jar -cvf myico.jar Splash.gif Back.gif icon1.gif

This command stores three files (Splash.gif, Back.gif, icon1.gif) in a single Jar
file called myico.jar.

Registry.dat Applications with
custom icons that
are stored in a
different location
as the Oracle
Forms install (can
be another server).

Useful to make
other changes to
the Registry.dat file
such as font
mapping.

Copy Registry.dat and change ServerApp
parameter in formsweb.cfg.

Note: Image formats for splash screens and icons are the standard
formats that are supported by java.awt.Image. For more
information on java.awt.Image, refer to the Java Advanced
Imaging (JAI) API at http://java.sun.com.

Table 4–20 (Cont.) Icon Location Guide

Icon Location When How

http://java.sun.com/

Deploying Fonts, Icons, and Images Used by Forms Services

Configuring and Managing Forms Services 4-39

4.7.5.2 Using Files Within the Jar File
The default search path for the icons and images is relative to the documentBase.
However, when you want to use a Jar file to store those files, the search path must be
relative to the codebase directory, the directory which contains the Java applet.

To use a Jar file to store icons and images, you must specify that the search path is
relative to codebase using the imageBase parameter in the formsweb.cfg file or
HTML file.

This parameter accepts two different values:

■ documentBase The search path is relative to the documentBase directory. If no
value is specified for imageBase, then the value of documentBase is used.

■ codeBase The search path is relative to the codeBase directory, which gives the
ability to use Jar files.

In this example, we use a JAR file containing the icons and we specify that the search
should be relative to codeBase. If the parameter imageBase is not set, the search is
relative to documentBase and the icons are not retrieved from the Jar file.

For example (formsweb.cfg):

archive=frmall.jar, icons.jar

imageBase=codeBase

4.7.6 Search Path for Icons and Images
The icons and images search path depends on:

■ What you specify in your custom application file (for the icons).

■ What you specified in the splashScreen and background parameters of your
default Forms configuration file or HTML file (for the images).

■ What you specify in the imageBase parameter in the Web Configuration page of
Fusion Middleware Control for the file or HTML file (for both icons and images).

Forms Services searches for the icons depending on what you specify. This example
assumes:

■ host is the computer name.

■ DocumentBase is the URL pointing to the HTML file.

■ codebase is the URL pointing to the location of the starting class file (as specified
in the formsweb.cfg file or HTML file).

■ mydir is the URL pointing to your icons or images directory.

4.7.6.1 DocumentBase
The default search paths for icons and images are relative to the DocumentBase. In
this case, do not specify the imageBase parameter:

Table 4–21 Search Paths for Icons

Location Specified Search path used by Forms Services

default http://host/documentbase

iconpath=mydir

(specified in your
application file)

http://host/documentbase/mydir

(relative path)

Enabling Language Detection

4-40 Forms Services Deployment Guide

4.7.6.2 codebase
Use the imageBase=codebase parameter to enable the search of the icons
(Table 4–23) and images (Table 4–24) in a Jar file:

4.8 Enabling Language Detection
Oracle Forms architecture supports deployment in multiple languages. The purpose of
this feature is to automatically select the appropriate configuration to match a user's
preferred language. In this way, all users can run Oracle Forms applications using the
same URL, yet have the application run in their preferred language. As Oracle Forms

iconpath=/mydir

(specified in your
application file)

http://host/mydir

(absolute path)

Table 4–22 Search Paths for Images

Location Specified Search Path Used by Forms Services

file.gif (specified, for
example, in formsweb.cfg
as splashscreen=file.cfg)

http://host/documentbase/file.gif

mydir/file.gif http://host/documentbase/mydir/file.gif

(relative path)

/mydir/file.gif http://host/mydir/file.gif

(absolute path)

Table 4–23 Icon Search Paths Used by Forms Services

Location Specified Search Path Used by Forms Services

default http://host/codebase or root of the Jar file

iconpath=mydir

(specified in your
application file)

http://host/codebase/mydir or in the mydir directory in
the Jar file

(relative path)

iconpath=/mydir

(specified in your
application file)

http://host/mydir

(absolute path)

No Jar file is used.

Table 4–24 Image Search Paths Used by Forms Services

Location Specified Search Path Used by Forms Services

file.gif http://host/codebase/file.gif or root of the Jar file

mydir/file.gif

(specified in your HTML
file)

http://host/codebase/mydir/file.gif or in the mydir
directory in the Jar file

(relative path)

/mydir/file.gif

(specified in your HTML
file)

http://host/mydir/file.gif

(absolute path)

No Jar file is used.

Table 4–21 (Cont.) Search Paths for Icons

Location Specified Search path used by Forms Services

Enabling Language Detection

Configuring and Managing Forms Services 4-41

Services do not provide an integrated translation tool, you must have translated
application source files.

4.8.1 Specifying Language Detection
For each configuration section in the Web Configuration page, you can create
language-specific sections with names like <config_name>.<language-code>. For
example, if you created a configuration section "hr", and wanted to create French and
Chinese languages, your configuration section might look like the following:

[hr]
lookAndFeel=oracle
width=600
height=500
envFile=default.env
workingDirectory=/private/apps/hr
[hr.fr]
envFile=french.env
workingDirectory=/private/apps/hr/french
[hr.zh]
envFile=chinese.env
workingDirectory=/private/apps/hr/chinese

4.8.2 Inline IME Support
Inline IME support enables Forms Web applications to properly display the composing
text in which each character may not be directly represented by a single keystroke (for
example, Asian characters) near the insertion cursor (so called inline, or on-the-spot). It
is enabled by default. To disable, set the applet parameter "inlineIME" to "false" in the
baseHTML file:

<HTML>
<!-- FILE: base.htm (Oracle Forms) -->
 <BODY>
 ...
 <OBJECT classid=...
>
<PARAM NAME="inlineIME" VALUE="false">
<EMBED SRC="" ...
inlineIME="false"
>
...
.
</BODY>
</HTML>

For more information about using baseHTML, see Appendix C.4, "base.htm and
basejpi.htm Files".

4.8.3 How Language Detection Works
When the Forms servlet receives a request for a particular configuration (for example,
http://myserv/servlet/frmservlet?config=hr) it gets the client language
setting from the request header "accept-language". This gives a list of languages
in order of preference. For example, accept-language: de, fr, en_us means the order of

Enabling Key Mappings

4-42 Forms Services Deployment Guide

preference is German, French, then US English. The servlet looks for a
language-specific configuration section matching the first language. If one is not
found, it looks for the next and so on. If no language-specific configuration is found, it
uses the base configuration.

When the Forms servlet receives a request with no particular configuration specified
(with no "config=" URL parameter, for example,
http://myserv/servlet/frmservlet), it looks for a language-specific section in
the default section matching the first language (for example, [.fr]).

4.8.3.1 Multi-Level Inheritance
For ease of use, to avoid duplication of common values across all language-specific
variants of a given base configuration, only parameters which are language-specific to
be defined in the language-specific sections are allowed. Four levels of inheritance are
now supported:

1. If a particular configuration is requested, using a URL query parameter like
config=myconfig, the value for each parameter is looked for in the
langage-specific configuration section which best matches the user's browser
language settings (for example in section [myconfig.fr]),

2. Then, if not found, the value is looked for in the base configuration section
([myconfig],

3. Then, failing that, in the language-specific default section (for example, [.fr]),

4. And finally in the default section.

Typically, the parameters which are most likely to vary from one language to another
are "workingDirectory" and "envFile". Using a different envFile setting for
each language lets you have different values of NLS_LANG (to allow for different
character sets, date and number formats) and FORMS_PATH (to pick up
language-specific fmx files). Using different workingDirectory settings provides
another way to pick up language-specific .fmx files.

4.9 Enabling Key Mappings
A key binding connects a key to an application function. When you bind a key to a
function, the program performs that function when you type that keystroke. You
define key bindings in the fmrweb.res file in the $ORACLE_
INSTANCE/config/FormsComponent/forms/admin/resource/<lang>
directory in UNIX, for example $ORACLE_
INSTANCE/config/FormsComponent/forms/admin/resource/US. For
Windows, the location is ORACLE_INSTANCE\config\FormsComponent\forms.

By defining key bindings, you can integrate a variety of keyboards to make an
application feel similar on each of them. On some platforms not all keys are able to be
re-mapped. For example, on Microsoft Windows, because keys are defined in the
Windows keyboard device driver, certain keys cannot be re-mapped. Key
combinations integral to Windows, such as Alt-F4 (Close Window) and F1 (Help)
cannot be re-mapped. As a general rule, keys which are part of the "extended"
keyboard also cannot be re-mapped. These keys include the number pad, gray arrow
and editing keys, Print Screen, Scroll Lock, and Pause.

Enabling Key Mappings

Configuring and Managing Forms Services 4-43

It is possible to pass this parameter directly within the URL. For example:

http://hostname:port/forms/frmservlet?Form=test.fmx&term=fullpat
h/filename.res

You can also set this parameter in the formsweb.cfg file, for example:

otherParams=term=fullpath\filename.res

4.9.1 Customizing fmrweb.res
fmrweb.res is a text file which can edited with a text editor such as vi in UNIX or
Notepad or Wordpad on Windows. Unlike Oracle 6i Forms, Oracle Terminal editor is
no longer required. The text file is self-documented.

4.9.1.1 Example change: Swapping Enter and Execute Mappings
In the section marked USER-READABLE STRINGS, find the entries with

122 : 0 : "F11" : 76 : "Enter Query"
122 : 2 : "Ctrl+F11" : 77 : "Execute Query"
and change them to:

122 : 2 : "Ctrl+F11" : 76 : "Enter Query"
122 : 0 : "F11" : 77 : "Execute Query"

A file called fmrpcweb.res has also been provided which gives the Microsoft
Windows client/server keyboard mappings. To use this file, rename fmrpcweb.res
to fmrweb_orig.res, and copy fmrpcweb.res to fmrweb.res. Alternatively, use
the term parameter as described above.

4.9.1.2 Exceptions/ Special Key Mappings
The following examples show special key mappings:

■ Section 4.9.1.2.1, "Mapping F2"

■ Section 4.9.1.2.2, "Mapping for ENTER to Fire KEY-ENTER-TRIGGER"

■ Section 4.9.1.2.3, "Mapping Number Keys"

■ Section 4.9.1.2.4, "Mapping for ESC Key to exit out of a Web Form"

Note: If running with different NLS_LANG settings, for example,
NLS_LANG=GERMAN_GERMANY=WE8ISO8859P1, a different resource
file, fmrwebd.res, is used. There is a resource file for each supported
language. To override this, pass parameter
term=fullpath\filename.res to the Oracle Forms Runtime
process.

Note: The customization is limited, particularly compared to
character mode forms. You cannot edit fmrweb.res with Oracle
Enterprise Manager Fusion Middleware Control.

Note: By default fmrweb.res does not reflect the Microsoft
Windows client/server keyboard mappings. It reflects the key
mapping if running client/server on UNIX X-Windows/Motif.

Enabling Key Mappings

4-44 Forms Services Deployment Guide

4.9.1.2.1 Mapping F2

To map F2, change the default entry for F2, "List Tab Pages", to another key. Here is an
example of the default entry:

113: 0 : "F2" : 95 : "List Tab Pages"

This must be explicitly changed to another key mapping such as the following:

113: 8 : "F2" : 95 : "List Tab Pages"

To map the F2 function to the F2 key, comment out the lines that begin with "113 : 0"
and "113 : 8" with a # symbol and add the following lines to the bottom of the resource
file:

113: 0 : "F2" : 84 : "Function 2"
113: 8 : " " : 95 : " "
Since a new function has been added which uses F2 by default, it is necessary to
explicitly map this new function to something else to map the F2 key. This function
was added to allow for keyboard navigation between the tab canvas pages and it
defaults to F2. Even if it is commented out and not assigned to F2, the F2 key cannot be
mapped unless this function, Forms Function Number 95, is mapped to another key.

4.9.1.2.2 Mapping for ENTER to Fire KEY-ENTER-TRIGGER

By default, whether deploying client/server or over the Web pressing the ENTER key
takes the cursor to the next navigable item in the block. To override this default
behavior it is necessary to modify the forms resource file to revise the key mapping
details.

Modify fmrweb.res and change the Forms Function Number (FFN) from 27 to 75 for
the Return Key. The line should be changed to the following:

10 : 0 : "Return" : 75 : "Return"

By default, the line is displayed with an FFN of 27 and looks as follows:

10 : 0 : "Return" : 27 : "Return"

This line should NOT fire the Key-Enter trigger since the Return or Enter key is
actually returning the Return function represented by the FFN of 27. The FFN of 75
represents the Enter function and fires the Key-Enter trigger.

4.9.1.2.3 Mapping Number Keys

The objective is to map CTRL+<number> keys in fmrweb.res for numbers 0 to 9 and
there are no Java Function keys mentioned for the numbers in fmrweb.res. The steps to
be performed along with an example that shows the steps needed to map CTRL+1 to
'Next Record' are:

1. List the Java function key numbers that could be implemented in fmrweb.res file
for the Key Mapping. For example:

public static final int VK_1 = 0x31;
2. The hexadecimal values have to be converted to their decimal equivalents before

their use in fmrweb.res.

In step (1), 0x31 is a hexadecimal value that has to be converted to its decimal
equivalent. (Note:1019580.6). For example,

SQL> select hextodec('31') from dual;
HEXTODEC('31')

Enabling Key Mappings

Configuring and Managing Forms Services 4-45

49

3. Use this decimal value for mapping the number key 1 in fmrweb.res. For
example, CTRL+1 can be mapped to 'Next Record' as:

49 : 2 : "CTRL+1" : 67 : "Next Record"

4.9.1.2.4 Mapping for ESC Key to exit out of a Web Form

1. Make a backup copy of fmrweb.res.

2. Open the fmrweb.res file present in the path ORACLE_HOME/FORMS and add the
following entry in it:

27 : 0 : "Esc" : 32 : "Exit"

3. Ensure that you comment or delete the old entry

#115 : 0 : "F4" : 32 : "Exit"

The first number (115) might differ on different versions or platforms. When you
run the Web Form and press the ESC key, then the Form exits.

Enabling Key Mappings

4-46 Forms Services Deployment Guide

5

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-1

5 Using Oracle Forms Services with the HTTP
Listener and Oracle WebLogic Server

Oracle WebLogic Server is a scalable, enterprise-ready Java EE application server. It
implements the full range of Java EE technologies, and provides many more additional
features such as advanced management, clustering, and Web services. It forms the core
of the Oracle Fusion Middleware platform, and provides a stable framework for
building scalable, highly available, and secure applications.

This chapter contains the following sections:

■ Section 5.1, "About the Oracle WebLogic Managed Server"

■ Section 5.2, "Working with Forms Managed Server"

■ Section 5.3, "Performance/Scalability Tuning"

■ Section 5.4, "Load Balancing Oracle WebLogic Server"

■ Section 5.5, "Using HTTPS with the Forms Listener Servlet"

■ Section 5.6, "Using an Authenticating Proxy to Run Oracle Forms Applications"

■ Section 5.7, "Oracle Forms Services and SSL"

■ Section 5.8, "Enabling SSL with a Load Balancing Router"

5.1 About the Oracle WebLogic Managed Server
Managed Servers host business applications, application components, Web services,
and their associated resources. To optimize performance, managed servers maintain a
read-only copy of the domain's configuration document. When a managed server
starts up, it connects to the domain's administration server to synchronize its
configuration document with the document that the administration server maintains.

Oracle Fusion Middleware system components (such as SOA, WebCenter, and Identity
Management components), as well as customer-deployed applications, are deployed
to managed servers in the domain.

During configuration, some managed servers are created specifically to host the Oracle
Fusion Middleware system components (for example, wls_soa, wls_portal, and wls_
forms).

Figure 5–1 shows a simple scenario of the Oracle WebLogic Managed Server. In the left
side of the image, the Forms servlet renders the start HTML file and provides the
information about the Forms Listener servlet to the client. An HTTP request is then
received by the Oracle HTTP Server Listener, which passes it off to the Forms Listener
servlet running inside Oracle WebLogic Managed Server, in the right side of the

Working with Forms Managed Server

5-2 Forms Services Deployment Guide

image. The Forms Listener servlet establishes a runtime process and is responsible for
on-going communication between the client browser and the runtime process. As
more users request Oracle Forms sessions, the requests are received by the Oracle
HTTP Server Listener. The HTTP Listener again passes them off to the Forms Listener
servlet, which establishes more runtime processes. The Forms Listener servlet can
handle many Forms runtime sessions simultaneously. While there is, of course, a limit
to the number of concurrent users, the architecture presents a number of opportunities
for tuning and configuration to achieve better performance (see the next section).

Figure 5–1 Oracle WebLogic Managed Server and Forms Services

5.2 Working with Forms Managed Server
By default (out-of-the-box installation), the Forms Services Java EE application
(formsapp.ear) is deployed on Forms Managed Server (WLS_FORMS). You can
manage WLS_FORMS and formsapp.ear using Oracle WebLogic Administration
Console or Oracle Enterprise Manager Fusion Middleware Control. Refer to the
following topics for more information:

■ Starting and Stopping Forms Managed Server: For more information, refer to
"Overview of Starting and Stopping Procedures" in Oracle Fusion Middleware
Administrator’s Guide.

■ Deploying Forms Application to Forms Managed Server: For more information,
refer to "Install an Enterprise application" in WebLogic Administration Console
Online Help. For information on deploying, undeploying, and redeploying
applications, see "Deploying Applications" in Oracle Fusion Middleware
Administrator's Guide.

■ Custom deployment of Forms Java EE application: For more information, refer to
Section 5.2.1, "Custom Deployment of Forms Java EE Application".

■ Expanding Forms Managed Server Clusters: For more information, refer to
Section 5.2.2, "Expanding Forms Managed Server Clusters".

■ Managing Cloned Managed Servers: For more information on using Fusion
Middleware Control to manage cloned managed servers, see Section 5.2.3,
"Registering Forms Java EE Applications."

Forms Runtime Process

JAF

JavaMail

JDBC

JMS

JNDI

Forms Client

HTTP

Oracle Fusion Middleware

Oracle WebLogic Managed Server Process

Oracle HTTP
Server

powered
by Apache

mod_weblogic

Web Container

Forms Servlet

Forms Listener Servlet

JB Container

Client.jar

Working with Forms Managed Server

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-3

■ Modifying weblogic.xml, web.xml, application.xml and
weblogic-application.xml post deployment: For more information, refer to
Section 5.2.4, "Modification of Forms J2EE Application Deployment Descriptors".

■ Starting Forms Managed Server as a Windows Service: For more information, refer
to "Setting Up a WebLogic Server Instance as a Windows Service" in Oracle Fusion
Middleware Managing Server Startup and Shutdown for Oracle WebLogic Server.

5.2.1 Custom Deployment of Forms Java EE Application
To create a custom managed server and deploy Forms application on it, perform the
following steps:

5.2.1.1 Prerequisite Steps
1. Set the following environment variables to the paths specified:

■ MW_HOME: Set this variable to point to the Oracle Middleware Home location
(for more information, see "A.9 Specify Installation Location Screen" in Oracle
Fusion Middleware Installation Guide for Oracle Portal, Forms, Reports and
Discoverer).

■ ORACLE_HOME: Set this variable with the absolute path of the Oracle Home
directory. For more information, see "A.9 Specify Installation Location Screen"
in Oracle Fusion Middleware Installation Guide for Oracle Portal, Forms, Reports
and Discoverer.

■ DOMAIN_HOME: Set this variable with the location of the folder created by
Oracle WebLogic Server for the domain specified in "A.7 Select Domain
Screen" in Oracle Fusion Middleware Installation Guide for Oracle Portal, Forms,
Reports and Discoverer.

2. Specify the JDK path in the system path.

Enter the path to the Java executable. For example on UNIX operating systems,
enter$MW_HOME/jdk<version>/bin in the system path (on Windows operating
systems, the path is %MW_HOME%\jdk<version>\bin).

3. Create a managed server, for example, WLS_FORMS_CUSTOM_APP, as part of the
same cluster as the default managed server (WLS_FORMS).

For more information on adding a managed server, refer to "Adding Additional
Managed Servers to a Domain" in Oracle Fusion Middleware Administrator’s Guide.

4. Specify the following properties of the managed server using the WebLogic
Administration Console.

■ Classpath: Specify the value: <ORACLE_HOME>/opmn/lib/optic.jar (on
Windows operating systems: <ORACLE_HOME>\opmn\lib\optic.jar).
Replace <ORACLE_HOME> with the absolute path.

■ Arguments: Specify the following values:

Dclassic.oracle.home=<ORACLE_HOME> -
Doracle.instance=<ORACLE_INSTANCE> -
Doracle.instance.name=<ORACLE_INSTANCE_NAME> -Doracle.forms.weblogic=1

Make sure all the entries are in a single line (without any carriage returns).
Replace <ORACLE_HOME>, <ORACLE_INSTANCE> with the absolute paths.
Replace <ORACLE_INSTANCE_NAME> with the name of the Oracle Instance
(default name asinst_1).

Working with Forms Managed Server

5-4 Forms Services Deployment Guide

For more information, refer to "Server Start" in Oracle WebLogic Administration
Console Help.

5. Perform the following steps to create a folder structure in ORACLE_HOME:

a. On UNIX operating systems, create a new folder for the custom application.

For example, create customapp as follows:

mkdir -p $ORACLE_HOME/customapp

Create a Java folder in customapp and create a symbolic link for the folder as
follows:

For example:

cd $ORACLE_HOME/customapp

ln -s $ORACLE_HOME/forms/java $ORACLE_HOME/customapp/java

Copy the application files to the new folder.

For example:

cp -rpf $ORACLE_HOME/forms/j2ee $ORACLE_HOME/customapp/

b. On Windows operating systems, use the following commands to create a
folder structure under ORACLE_HOME directory:

mkdir %ORACLE_HOME%\customapp\java

mkdir %ORACLE_HOME%\customapp\j2ee

cd %ORACLE_HOME%\customapp

xcopy /S /E %ORACLE_HOME%\forms\java %ORACLE_
HOME%\customapp\java

xcopy /S /E %ORACLE_HOME%\forms\j2ee %ORACLE_
HOME%\customapp\j2ee

5.2.1.2 Override the Default Servlet Alias and the Context Root
1. Extract the EAR file.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee

jar xvf formsapp.ear

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee

jar xvf formsapp.ear

2. Extract the WAR file.

For example, on UNIX operating systems:

mkdir -p $ORACLE_HOME/customapp/j2ee/warfile

cd $ORACLE_HOME/customapp/j2ee/warfile

jar xvf $ORACLE_HOME/customapp/j2ee/formsweb.war

On Windows operating systems:

mkdir %ORACLE_HOME%\customapp\j2ee\warfile

Working with Forms Managed Server

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-5

cd %ORACLE_HOME%\customapp\j2ee\warfile

jar xvf %ORACLE_HOME%\customapp\j2ee\formsweb.war

3. Override the servlet alias in web.xml deployment descriptor that is located in the
WEB-INF folder.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee/warfile/WEB-INF

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee\warfile\WEB-INF

Edit web.xml in an editor and replace frmservlet with customservlet (entries
under tags <Servlet-Name>, <url-pattern>, <welcome-file>).

4. Repackage the WAR file.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee/warfile

jar cvfM formsweb.war ./*

mv formsweb.war $ORACLE_HOME/customapp/j2ee/

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee\warfile

jar cvfM formsweb.war .*

copy formsweb.war %ORACLE_HOME%\customapp\j2ee\

del formsweb.war

5. Override the application context root in application.xml deployment descriptor
that is located in the META-INF folder.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee/META-INF

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee\META-INF

Edit application.xml, change context-root to customapp.

6. Modify the codebase and serverURL entries in formsweb.cfg.

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee/config

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee\config

Edit formsweb.cfg and change the context-root entries in serverURL and
codebase parameters.

For example,

Change serverURL=/forms/lservlet to
serverURL=/customapp/lservlet.

Change codebase from /forms/java to customapp/java.

7. Repackage the EAR file.

Working with Forms Managed Server

5-6 Forms Services Deployment Guide

For example, on UNIX operating systems:

cd $ORACLE_HOME/customapp/j2ee

jar cvfM customapp.ear META-INF/MANIFEST.MF APP-INF/*
config/* formsweb.war META-INF/*

On Windows operating systems:

cd %ORACLE_HOME%\customapp\j2ee

jar cvfM customapp.ear META-INF\MANIFEST.MF APP-INF*
config* formsweb.war META-INF*

8. Clean the extracted EAR file contents. On UNIX operating systems:

rm -rf META-INF APP-INF config META-INF formsweb.war

On Windows operating systems:

RMDIR META-INF APP-INF config META-INF /s /q

DEL formsweb.war

5.2.1.3 Create the Deployment Plan
1. Create a folder in customapp named 11.1.1.

For example, on UNIX operating systems:

mkdir -p $DOMAIN_HOME/deploymentplans/customapp/11.1.1

On Windows operating systems,

mkdir %DOMAIN_HOME%\deploymentplans\customapp\11.1.1

2. Copy the following entries to a file $DOMAIN_
HOME/deploymentplans/customapp/11.1.1/plan.xml (on Windows
operating systems, %DOMAIN_
HOME%\deploymentplans\customapp\11.1.1\plan.xml). Example 5–1
describes a deployment plan with application name of customapp and managed
server name of WLS_FORMS_CUSTOM_APP. Ensure you make the following
changes:

■ Replace the custom application name, location of EAR file, and managed
server with the names and locations in your environment.

■ Replace <DOMAIN_HOME>, <ORACLE_HOME> with the absolute paths.

Example 5–1 Example of Deployment Plan

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan
 http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd"
 global-variables="false">
 <application-name>customapp</application-name>
 <variable-definition>
 <variable>
 <name>vd-<ORACLE_HOME>/customapp</name>
 <value><ORACLE_HOME>/customapp</value>
 </variable>
 <variable>
 <name>vd-<DOMAIN_HOME>/config/fmwconfig/servers/WLS_FORMS_CUSTOM_
APP/applications/customapp_11.1.1/config/customapp</name>

Working with Forms Managed Server

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-7

 <value><DOMAIN_HOME>/config/fmwconfig/servers/WLS_FORMS_CUSTOM_
APP/applications/customapp_11.1.1/config/customapp</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>customapp.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>application</root-element>
 <uri>META-INF/application.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 </module-descriptor>
 </module-override>
 <module-override>
 <module-name>formsweb.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 <variable-assignment>
 <name>vd-<ORACLE_HOME>/customapp</name>

<xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="java/*"]/l
ocal-path</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>vd-<ORACLE_HOME>/customapp</name>

<xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="webutil/*"
]/local-path</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>vd-<DOMAIN_HOME>/config/fmwconfig/servers/WLS_FORMS_CUSTOM_
APP/applications/customapp_11.1.1/config/customapp</name>

<xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="registry/*
"]/local-path</xpath>
 </variable-assignment>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 </module-descriptor>
 </module-override>
</deployment-plan>

5.2.1.4 Deploy the Custom EAR file
Deploy the custom EAR file using WebLogic Scripting Tool (WLST) commands. For
example, on UNIX operating systems:

$MW_HOME/oracle_common/common/bin/wlst.sh

Working with Forms Managed Server

5-8 Forms Services Deployment Guide

On Windows operating systems: %MW_HOME%\oracle_
common\common\bin\wlst.cmd

Use the WLST deploy command to deploy the application:

wls:/offline> connect('weblogic','welcome1')

wls:/ClassicDomain/serverConfig> deploy('customapp', '<ORACLE_
HOME>/customapp/j2ee/customapp.ear', 'WLS_FORMS_CUSTOM_APP',
'nostage','<DOMAIN_
HOME>/deploymentplans/customapp/11.1.1/plan.xml')

Be sure to make the following changes in the command:

■ Replace customapp with actual context root.

■ Replace <DOMAIN_HOME>, <ORACLE_HOME> with the absolute paths.

5.2.1.5 Post-Patching Tasks
If you have patched your existing Oracle Fusion Middleware 11g Patch Set 1 (Release
11.1.1.2.0) or Patch Set 2 (Release 11.1.1.3.0) environment to consume the latest patch
set, perform the following steps:

1. Copy the Forms J2EE application files to the customapp directory. On Unix
operating systems:

cp -rpf $ORACLE_HOME/forms/j2ee/* $ORACLE_
HOME/customapp/j2ee/*

On Windows operating systems:

xcopy /S /E %ORACLE_HOME%\forms\java %ORACLE_
HOME%\customapp\java

xcopy /S /E %ORACLE_HOME%\forms\j2ee %ORACLE_
HOME%\customapp\j2ee

2. Repeat the steps in "Override the Default Servlet Alias and the Context Root".

3. Restart the custom managed server.

5.2.1.6 Test the Custom Deployment
Test the deployment using the URL: http://<Host>:<Port Number>/<context
root>/<servlet name>.

For the example in this section, the URL would be http://<Host>:<Port
Number>/customapp/customservlet.

5.2.2 Expanding Forms Managed Server Clusters
To improve the scalability and performance of Forms deployments on high-end
machines (multiprocessor and high-memory configuration machines), expand the
Forms Managed Server cluster (cluster_forms). Perform the following manual
steps to expand the Forms Managed Server cluster:

1. Perform the following steps to add a new Managed Server to the cluster
(cluster_forms):

a. Using the Oracle WebLogic Server Administration Console, you can choose to
either clone the default Forms Managed Server (WLS_FORMS) or create a new
Managed Server (for example, WLS_FORMS_1, with port number 9010).

Working with Forms Managed Server

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-9

For more information on using Fusion Middleware Control to manage the
new or cloned managed server, see Section 5.2.3, "Registering Forms Java EE
Applications".

b. In the Server Properties page, add the newly created Managed Server to the
Forms cluster cluster_forms.

c. In the General Tab, assign a port number to the Managed Server.

d. Assign a machine to the Managed Server.

2. Perform the following steps to edit the configuration of the new managed server:

a. Using the Oracle WebLogic Server Administration Console, in the Server Start
Tab, set the following Server Start properties.

b. Add the following system properties without any carriage returns to the
arguments:

-Dclassic.oracle.home=<ORACLE_HOME
location>-Doracle.instance=<ORACLE_INSTANCE
location>-Doracle.instance.name=<ORACLE_INSTANCE Name>

-Doracle.forms.weblogic=1

c. Add the following to the CLASSPATH: <ORACLE_
HOME>/opmn/lib/optic.jar:<FMW_HOME>/oracle_
common/modules/oracle.ldap_11.1.1/ldapjclnt11.jar:<FMW_
HOME>/oracle_common/jlib/rcucommon.jar

3. Activate the changes and start the new Managed Server.

4. Add the new Managed Server’s host and port information to the WebLogicCluster
entry in forms.conf.

<Location /forms>

 SetHandler weblogic-handler

 WebLogicCluster <HostName>:9001, <HostName>:9010

 DynamicServerList OFF

</Location>

5. Restart OHS.

5.2.3 Registering Forms Java EE Applications
To use Fusion Middleware Control to manage the new or cloned managed servers
under the default Forms WLS cluster, you register the Forms Java EE applications.

 Perform the following steps to register the Forms Java EE applications:

1. Create a sample WLST script as shown in Example 5–2. In this example, the script
is named formsappRegistration.py.

Example 5–2 Sample WLST Script

#
formsappRegistration.py
Workaround script to register/unregister Forms J2EE application Mbean
as a member of Forms System Component Mbean
#
from javax.management import ObjectName, Attribute
from jarray import array

Working with Forms Managed Server

5-10 Forms Services Deployment Guide

import getopt, sys
#
function prints the usage
#
def usage():
 message =
"--"
 + \
 "\nUsage : " + \
 "\n $FMW_HOME/oracle_common/common/bin/wlst.sh " + sys.argv[0] + "
 --adminServerName=<admin server name> --asinstName=<Oracle Instance name>
 --managedServer=<newly added Forms managed server name> --formsappName=<forms
 J2EE application name> -o <option> " + \
 "\n \n valid options - registerApp or unregisterApp" + \
 "\n \nexamples:" + \
 "\n $FMW_HOME/oracle_common/common/bin/wlst.sh " + sys.argv[0] +"
 --adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1
 --formsappName=formsapp -o registerApp " + \
 "\n $FMW_HOME/oracle_common/common/bin/wlst.sh " + sys.argv[0] + "
 --adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1
 --formsappName=formsapp -o unregisterApp " + \

"\n---
-"
 print message
#
getFormsCompMbeanObjectName - function to generate the Forms System Component
Mbean ObjectName.
#
def getFormsCompMbeanObjectName(asInstName, adminServerName):
 frmCompONameString = "oracle.as.management.mbeans.register:" \
 + "Location="+ adminServerName +
",type=SystemComponent,name=/" \
 + asinstName +"/forms,instance=" + asinstName \
 + ",component=forms,EMTargetType=oracle_forms";
 print frmCompONameString
 frmCompOName = ObjectName(frmCompONameString)
 return frmCompOName
#
getFormsAppMbeanObjectName - function to generate the Forms J2EE application
ObjectName.
#
def getFormsAppMbeanObjectName(appName, managedServer):
 frmappONameString = "com.bea:Name="+formsappName+ "#11.1.1,Location=" +\
 managedServer+ ",Type=AppDeployment"
 frmappOName = ObjectName(frmappONameString)
 return frmappOName
#
doesMemberExist - utility function to check if app is already registered as a
 member
#
def doesMemberExist(member, list):
 for item in list:
 if item == member:
 return 1
 return None
#
registerFormsApp - registers Forms J2EE application Mbean as a member of
Forms System Component Mbean
#

Working with Forms Managed Server

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-11

def registerFormsApp(formsCompMbean, frmappMbean):
 domainRuntime()
 membersArray = mbs.getAttribute(formsCompMbean,"Members")
 membersList = membersArray.tolist()

 if membersList == []:
 print "Members list is empty"
 else:
 print "Members list is not empty"

 if doesMemberExist(frmappMbean, membersList):
 print "Member already registered, skipping registration"
 else:
 print "Member is not found, append it to the members list"
 membersList.append(frmappMbean)
 membersArray = array(membersList, ObjectName)
 membersAttrib = Attribute("Members",membersArray)
 mbs.setAttribute(formsCompMbean, membersAttrib)
#
unregisterFormsApp - unregisters Forms J2EE application Mbean as a member of
Forms System Component Mbean
#
def unregisterFormsApp(formsCompMbean, frmappMbean):
 domainRuntime()
 membersArray = mbs.getAttribute(formsCompMbean,"Members")
 membersList = membersArray.tolist()

 if membersList == []:
 print "Members list is empty"
 else:
 print "Members list is not empty"

 if doesMemberExist(frmappMbean, membersList):
 print "Found the Member, removing it."
 membersList.remove(frmappMbean)
 membersArray = array(membersList, ObjectName)
 membersAttrib = Attribute("Members",membersArray)
 mbs.setAttribute(formsCompMbean, membersAttrib)
 else:
 print "Member not found, skipping unregister"
#
execution starts here
#

if len(sys.argv) != 7 :
 print "invalid arguments passed to the script"
 usage()
 sys.exit(0)

trim the first argument which is the name of the script

args = sys.argv[1:7]
optlist, args = getopt.getopt(args,'o', [
'adminServerName=','asinstName=','managedServer=','formsappName='])
options = dict(optlist)

adminServerName = options["--adminServerName"]
asinstName = options["--asinstName"]
managedServer = options["--managedServer"]
formsappName = options["--formsappName"]

Working with Forms Managed Server

5-12 Forms Services Deployment Guide

if adminServerName == [] or \
 managedServer == [] or formsappName == [] or not args:
 print "invalid arguments passed to the script "
 usage()
 sys.exit(0)

argument = args[0]
print "enter the WLST connection paramters ..."
connect()

frmcompMbean = getFormsCompMbeanObjectName(asinstName,adminServerName)
print frmcompMbean

frmappMbean = getFormsAppMbeanObjectName(formsappName,managedServer)
print frmappMbean

if argument == "registerApp":
 print "registering Forms J2EE application " + formsappName
 registerFormsApp(frmcompMbean,frmappMbean)
elif argument == "unregisterApp":
 print "unregistering Forms J2EE application " + formsappName
 unregisterFormsApp(frmcompMbean,frmappMbean)

else:
 print "invalid option passed to the scripts ..."
 usage()

disconnect()
print "done... "

2. Execute the script. You can use the help argument for more information as shown
in Example 5–3.

Example 5–3 Sample Script Execution

$FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py help

--
Usage :
 $FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py
 --adminServerName=<admin server name> --asinstName=<Oracle Instance name>
 --managedServer=<newly added Forms managed server name> --formsappName=<forms
 J2EE application name> -o <option>

 valid options - registerApp or unregisterApp

examples:
 $FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py
 --adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1
 --formsappName=formsapp -o registerApp
 $FMW_HOME/oracle_common/common/bin/wlst.sh formsappRegistration.py
 --adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1
 --formsappName=formsapp -o unregisterApp
--

3. When prompted, enter the administration server username, password, and
connection information.

4. Accept the default server URL.

Working with Forms Managed Server

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-13

5. Example 5–4 shows a sample of the execution and results of server registration.

Example 5–4 Sample Execution and Results

$FMW_HOME/oracle_common/common/bin () -> ./wlst.sh formsappRegistration.py –
adminServerName=AdminServer --asinstName=asinst_1 --managedServer=WLS_FORMS1 –
formsappName=formsapp -o registerApp

CLASSPATH=.
.
.
Your environment has been set.

Initializing WebLogic Scripting Tool (WLST) ...

Welcome to WebLogic Server Administration Scripting Shell

Type help() for help on available commands

enter the WLST connection paramters ...
Please enter your username :weblogic
Please enter your password :
Please enter your server URL [t3://localhost:7001] :
Connecting to t3://localhost:7001 with userid weblogic ...
Successfully connected to Admin Server 'AdminServer' that belongs to domain
'ClassicDomain'.

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admin port should be used instead.

registering Forms J2EE application formsapp
Location changed to domainRuntime tree. This is a read-only tree with DomainMBean
as the root.
For more help, use help(domainRuntime)

Members list is not empty
Member is not found, append it to the members list
Disconnected from weblogic server: AdminServer
done...

5.2.4 Modification of Forms J2EE Application Deployment Descriptors
Post-deployment, Forms J2EE application deployment descriptors (weblogic.xml,
web.xml, application.xml and weblogic-application.xml) cannot be
modified in Oracle WebLogic Server.

As a workaround, perform the following steps to customize the Forms J2EE
application deployment descriptors and redeploy the application:

1. Back up the default formsapp deployment plan, $DOMAIN_
HOME/deploymentplans/formsapp/11.1.1/plan.xml.

2. Add the deployment descriptors customizations to the Forms J2EE application’s
deployment plan. See the "Modifying the Deployment Plan" for an example.

Note: For more information on updating the deployment plan, refer
to the Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server.

Working with Forms Managed Server

5-14 Forms Services Deployment Guide

3. Using the WebLogic Administration Console, update the forms application
(redeploy) and select the option Update this application in place with new
deployment plan changes.

4. Restart the Forms J2EE application using the WebLogic Administration Console.

Modifying the Deployment Plan
In this example, the deployment plan is modified to override the Forms Servlet
testMode parameter and set it to true. To modify the deployment plan, perform the
following steps:

1. Enter the following commands:

mkdir –p $CLASSIC_ORACLE_HOME/forms/j2ee/backup
cd $CLASSIC_ORACLE_HOME/forms/j2ee
cp $DOMAIN_HOME/deploymentplans/formsapp/11.1.1/plan.xml backup/
vi $DOMAIN_HOME/deploymentplans/formsapp/11.1.1/plan.xml

2. Modify the deployment plan. The following is a sample of the deployment plan
with the added entries highlighted in bold:

<?xml version='1.0' encoding='UTF-8'?>
<deployment-plan xmlns="http://xmlns.oracle.com/weblogic/deployment-plan"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/deployment-plan
http://xmlns.oracle.com/weblogic/deployment-plan/1.0/deployment-plan.xsd"
global-variables="false">
 <application-name>formsapp</application-name>
 <variable-definition>
 <variable>
 <name>vd-/scratch/t_work/Oracle/Middleware/as_1/forms</name>
 <value>/scratch/t_work/Oracle/Middleware/as_1/forms</value>
 </variable>
 <variable>
 <name>vd-/scratch/t_work/Oracle/Middleware/user_
projects/domains/ClassicDomain/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config/forms</name>
 <value>/scratch/t_work/Oracle/Middleware/user_
projects/domains/ClassicDomain/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config/forms</value>
 </variable>
 <variable>
 <name>FormsServlet_InitParam_testMode</name>
 <value>true</value>
 </variable>
 </variable-definition>
 <module-override>
 <module-name>formsapp.ear</module-name>
 <module-type>ear</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-application</root-element>
 <uri>META-INF/weblogic-application.xml</uri>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>application</root-element>
 <uri>META-INF/application.xml</uri>
 </module-descriptor>
 <module-descriptor external="true">
 <root-element>wldf-resource</root-element>
 <uri>META-INF/weblogic-diagnostics.xml</uri>
 </module-descriptor>

Performance/Scalability Tuning

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-15

 </module-override>
 <module-override>
 <module-name>formsweb.war</module-name>
 <module-type>war</module-type>
 <module-descriptor external="false">
 <root-element>weblogic-web-app</root-element>
 <uri>WEB-INF/weblogic.xml</uri>
 <variable-assignment>
 <name>vd-/scratch/t_work/Oracle/Middleware/as_1/forms</name>
<xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="java/*"]/local
-path</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>vd-/scratch/t_work/Oracle/Middleware/as_1/forms</name>
<xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="webutil/*"]/lo
cal-path</xpath>
 </variable-assignment>
 <variable-assignment>
 <name>vd-/scratch/t_work/Oracle/Middleware/user_
projects/domains/ClassicDomain/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config/forms</name>
<xpath>/weblogic-web-app/virtual-directory-mapping/[url-pattern="registry/*"]/l
ocal-path</xpath>
 </variable-assignment>
 </module-descriptor>
 <module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>FormsServlet_InitParam_testMode</name>
<xpath>/web-app/servlet/[servlet-name="frmservlet"]/init-param/[param-name="tes
tMode"]/param-value</xpath>
 </variable-assignment>
 </module-descriptor>
 </module-override>
</deployment-plan>

3. Using the WebLogic Administration Console, update the Forms J2EE application
deployment (formsapp (11.1.1)). For more information on redeploying Forms J2EE
application, refer to Oracle Fusion Middleware Administrator’s Guide.

4. Restart the Forms J2EE application using the WebLogic Administration Console.

5.3 Performance/Scalability Tuning
The steps for tuning the Forms Listener servlet are similar to steps for tuning any high
throughput servlet application. You have to take into account resource management
and user needs for optimal tuning of your particular Forms Services configuration. For
more information, see Oracle Fusion Middleware Performance Guide available on OTN at
http://www.oracle.com/technology/documentation/.

5.3.1 Limit the number of HTTPD processes
To control spawning HTTPD processes (which is memory consuming) set the
KeepAlive directive in the Oracle HTTP Listener configuration file (httpd.conf):
KeepAlive Off

KeepAlive specifies whether or not to allow persistent connections (more than one
request per connection). If you must use KeepAlive On, for example, for another

http://www.oracle.com/technology/documentation/

Load Balancing Oracle WebLogic Server

5-16 Forms Services Deployment Guide

application, make sure that KeepAliveTimeout is set to a low number for example,
15 seconds, which is the default. The KeepAlive setting is used to maintain a persistent
connection between the client (Browser) and the OHS server. It does not have anything
to do with the OHS to Oracle WebLogic Server connection.

5.3.2 Set the MaxClients Directive to a High value
You can let the HTTP Listener determine when to create more HTTPD processes.
Therefore, set the MaxClients directive to a high value in the configuration file
(httpd.conf). However, you need to consider the memory available on the system
when setting this parameter.

MaxClients=256 indicates that the listener can create up to 256 HTTPD processes to
handle concurrent requests.

If your HTTP requests come in bursts, and you want to reduce the time to start the
necessary HTTPD processes, you can set MinSpareServers and MaxSpareServers
(in httpd.conf) to have an appropriate number of processes ready. However, the
default values of 5 and 10 respectively are sufficient for most sites.

5.4 Load Balancing Oracle WebLogic Server
The Forms Listener servlet architecture allows you to load balance the system using
any of the standard HTTP load balancing techniques available.

The Oracle HTTP Server Listener provides a load balancing mechanism that allows
you to run multiple WebLogic instances on the same host as the HTTP process, on
multiple, different hosts, or on any combination of hosts. The HTTP Listener then
routes HTTP requests to Oracle WebLogic Managed Server instances.

The following scenarios are just a few of the possible combinations available and are
intended to show you some of the possibilities. The best choice for your site will
depend on many factors.

For a complete description of this feature, refer to the Oracle Fusion Middleware
Performance Guide (available on OTN at
http://www.oracle.com/technology/documentation/index.html).

The following images illustrate four possible deployment scenarios:

■ Figure 5–2 shows the Oracle HTTP Server balancing incoming requests between
multiple Oracle WebLogic Managed Servers on the same host as the Oracle HTTP
Listener.

■ Figure 5–3 shows the Oracle HTTP Server balancing incoming requests between
multiple Oracle WebLogic Managed Servers on a different host to the Oracle HTTP
Listener.

■ Figure 5–4: shows the Oracle HTTP Server balancing incoming requests between
multiple Oracle WebLogic Managed Servers on multiple different hosts and
multiple different hosts each running an Oracle HTTP Listener.

■ Figure 5–5: shows the Oracle HTTP Server balancing incoming requests between
multiple Oracle WebLogic Managed Servers on a single host but with multiple
different hosts each running an Oracle HTTP Listener.

http://www.oracle.com/technology/documentation/index.html

Load Balancing Oracle WebLogic Server

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-17

Figure 5–2 Multiple Oracle WebLogic Servers on the same host as the Oracle HTTP
Listener

Figure 5–3 Multiple Oracle WebLogic Servers on a different host to the Oracle HTTP
Listener

Host 1

Oracle HTTP
Listener

Forms Server
Runtime

Forms Server
Runtime

Oracle WebLogic
Managed Server

Oracle WebLogic
Managed Server

Host 2Host 1

Oracle HTTP
Listener

Forms Server
Runtime

Forms Server
Runtime

Oracle WebLogic
Managed Server

Oracle WebLogic
Managed Server

Load Balancing Oracle WebLogic Server

5-18 Forms Services Deployment Guide

Figure 5–4 Multiple Oracle WebLogic Servers and multiple Oracle HTTP Listeners on
different hosts

Host 4Host 3

Oracle HTTP
Listener

Forms Server
Runtime

Forms Server
Runtime

Host 2Host 1

Oracle HTTP
Listener

Forms Server
Runtime

Forms Server
Runtime

Oracle WebLogic
Managed Server

Oracle WebLogic
Managed Server

Oracle WebLogic
Managed Server

Oracle WebLogic
Managed Server

Using an Authenticating Proxy to Run Oracle Forms Applications

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-19

Figure 5–5 Multiple Oracle HTTP Listeners on different hosts with multiple Oracle
WebLogic Servers on one host

For more information about tuning and optimizing Forms Services with the HTTP
Listener and Oracle WebLogic Server, see Oracle Fusion Middleware Performance Guide,
available on Oracle Technology Network (OTN) at
http://www.oracle.com/technology/documentation/index.html.

5.5 Using HTTPS with the Forms Listener Servlet
Using HTTPS with Oracle Forms is no different than using HTTPS with any other
Web-based application. HTTPS requires the use of digital certificates (for example,
VeriSign). Because Forms Services servlets are accessed via your Web server, you do
not need to purchase special certificates for communications between the Oracle
Forms client and the server. You only need to purchase a certificate for your Web
server from a recognized certificate authority.

5.6 Using an Authenticating Proxy to Run Oracle Forms Applications
The default configuration as set up by the Oracle Fusion Middleware installation
process supports authenticating proxies. An authenticating proxy is one that requires
the user to supply a username and password in order to access the destination server
where the application is running. Typically, authenticating proxies set a cookie to

Host 3

Oracle HTTP
Listener

Host 2

Host 1

Oracle HTTP
Listener

Forms Server
Runtime

Forms Server
Runtime

Oracle WebLogic
Managed Server

Oracle WebLogic
Managed Server

http://www.oracle.com/technology/documentation/index.html

Oracle Forms Services and SSL

5-20 Forms Services Deployment Guide

detect whether the user has logged on (or been authenticated). The cookie is sent in all
subsequent network requests to avoid further logon prompts.

The codebase and server URL values that are set up by the Oracle WebLogic Server
installation process include $ORACLE_HOME/forms/java and /forms/lservlet.
As these are under the document base of the page ($ORACLE_HOME/forms),
authenticating proxies will work.

5.7 Oracle Forms Services and SSL
To run Oracle Forms Services applications in SSL mode:

■ Create a Wallet to manage certificates.

■ Enable the HTTPS port in Oracle HTTP Server. By default, Oracle HTTP Server
has one SSL Port enabled (8890).

■ Enable Web Cache to accept HTTPS connections from Oracle HTTP Server.

For more information on the above topics, see the section "SSL Configuration in Oracle
Fusion Middleware" in the Oracle Fusion Middleware Administrator's Guide.

5.8 Enabling SSL with a Load Balancing Router
Running a Forms application that uses an HTTPS port requires a certificate to be
imported. If Oracle Forms is behind a load balancing router, and SSL terminates at it,
you need to import the certificate from the load balancing router.

To enable SSL with your Forms applications over a load balancing router:
1. Start a Web browser and enter the Forms application HTTPS URL containing the

fully qualified host name (including port number if required) used by your own
Oracle installation. For example:
https://example.com:443/forms/frmservlet

The Security Alert dialog box is displayed.

2. Click View Certificate.

3. Click the Details tab in the Certificate dialog.

4. Click Copy to File...

5. In the Welcome page of the Certificate Export Wizard, click Next.

6. In the Export File Format page, select Base-64 encoded X.509 (.CER), then click
Next.

7. Enter a file name such as c:\temp\forms, then click Next.

8. Click Finish.

A message appears saying that the export was successful.

9. Click OK.

Note: When you change the Oracle Web Cache port using Enterprise
Manager, regenerate the osso.conf and copy the generated
osso.conf file to $ORACLE_INSTANCE/config/OHS/<OHS_
INSTANCE>/moduleconf directory. Restart the Oracle HTTP Server
and Oracle Web Cache for the changes to take effect.

Enabling SSL with a Load Balancing Router

Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server 5-21

10. Close the Certificate Export Wizard, but keep the Security Alert dialog open.

11. Import the security certificate file that you saved earlier into the certificate store of
the JVM you are using. For more information, see the next section.

12. At the Security Alert dialog, click Yes to accept the security certificate and start the
Forms application.

Importing the certificate into Java Plugin
1. On the client machine, open the Control Panel.

2. Open Java.

3. Navigate to Securities tab.

4. Click Certificate.

5. Import the certificate that was exported in the previous section.

6. Click Apply.

Enabling SSL with a Load Balancing Router

5-22 Forms Services Deployment Guide

6

Oracle Forms and JavaScript Integration 6-1

6Oracle Forms and JavaScript Integration

This chapter contains the following sections:

■ Section 6.1, "About Oracle Forms Calling External Events"

■ Section 6.2, "About JavaScript Events Calling into Oracle Forms"

■ Section 6.3, "Integrating JavaScript and Oracle Forms"

■ Section 6.4, "Configuration of formsweb.cfg"

■ Section 6.5, "Configuration of Environment Variables"

6.1 About Oracle Forms Calling External Events
In previous releases of Oracle Forms, you had to implement OLE and DDE to interact
with a limited number of event types outside of Forms. In later versions, Forms offered
web.show_document and Java integration to interface with external application
sources. But in terms of calling out to the Web page where Forms is displayed, there
was no easy solution. It was also not possible to call from the Web page into Forms,
perhaps to update a value acquired from an HTML form.

In Oracle Forms 11g, JavaScript integration provides the ability to have JavaScript
events call into Forms, or have Forms execute JavaScript events. Figure 6–1 shows how
JavaScript and Oracle Forms work together. In the left side of the image, JavaScript is
executed in the page in which the Forms applet is hosted. Oracle Forms now has the
capability to call JavaScript functions using native built-ins. Also, JavaScript functions
can now trigger a Oracle Forms trigger by using a new API that has been provided.

Figure 6–1 Oracle Forms and JavaScript

HTML Page

Forms Applet

JavaScript
Forms Server

About Oracle Forms Calling External Events

6-2 Forms Services Deployment Guide

Two new calls are available in the web Built-in package:

■ web.javascript_eval_expr

■ web.javascript_eval_function

The first call web.javascript_eval_expr is a procedure which takes two
arguments: an expression and a target, both of data type varchar2. This legal
JavaScript expression is interpreted in the Web page in which the Forms applet is
embedded. The expression can be a call to a function that is defined in the target page
or any valid JavaScript expression that can be executed on the target page, for
example, document.bgColor='red'. The expression is executed, using
LiveConnect's JSObject.eval() method, in the context of the page or frame that is
named in the target argument. If the target argument is null, then it is executed in the
page or frame in which the Forms applet is embedded.

The second call, web.javascript_eval_function is a function and returns a
varchar2 value. Both web.javascript_eval_expr and web.javascript_eval_
function have the same functionality except that javascript_eval_expr does
not send any return value from the Forms client to the Forms Services. If your
application does not need a return value, use web.javascript_eval_expr. The
additional network trip that is required to carry the return value from the Forms client
to the Forms Services is eliminated.

To set the value of an HTML text item with the ID outside_field_id to the value of
the Forms field called inside, you could write this PL/SQL code:

web.javascript_eval_expr('
document.getElementById("outside_field_id").value='
||:inside
);

Note that the PL/SQL string must use single quotes while JavaScript is flexible
enough to use single or double quotes. Using double quotes inside the expression
works without having to use escape sequences. You could also write a function in the
Web page:

<SCRIPT>
 function set_field(field_id, myvalue){
 document.getElementById(field_id).value=myvalue;
 };
</SCRIPT>

To get the value of the outside field and assign it to the inside field, you could write
the following PL/SQL code:

:inside:=web.javascript_eval_function('
 document.getElementById("outside_field_id").value
 ');

6.1.1 Why Call Events Outside of Oracle Forms?
In Oracle Forms 11g, the newly added JavaScript functionality allows you to integrate
Forms with HTML-based application technologies in the Web browser. For example
you can use JavaScript integration when the Forms-based application is required to
integrate on the page with new functionality based on an HTML front end.

Integrating JavaScript and Oracle Forms

Oracle Forms and JavaScript Integration 6-3

6.2 About JavaScript Events Calling into Oracle Forms
You can also allow JavaScript calls into Oracle Forms by using JavaScript in the Web
page that hosts the Forms applet. There is new functionality available on the
embedded Forms object in the DOM (Document Object Model) tree. You use
JavaScript to do:

document.forms_applet.raiseEvent(event_name, payload);

The assumption here is that you have set the ID configuration variable to forms_
applet.

When the surrounding Web page executes this JavaScript code, Oracle Forms fires a
new type of trigger called WHEN-CUSTOM-JAVASCRIPT-EVENT. In this trigger there
are only two valid system variables: system.javascript_event_value and
system.javascript_event_name. These variables contain the payload and event
name that were passed into Forms through the raiseEvent method. On calling the
raiseEvent method, a trigger named WHEN-CUSTOM-JAVASCRIPT-EVENT is fired
on the server side.

declare
 event_val varchar2(300):= :system.javascript_event_value;
begin
 if (:system.javascript_event_name='show') then
 handleShowEvent(event_val);
 elsif(:system.javascript_event_name='grab') then
 handleGrabEvent(event_val);
 else
 null;
 end if;
end;

This PL/SQL code recognizes two events: 'show' and 'grab'. Any other name is
ignored.

6.2.1 Why Let Events Call into Oracle Forms?
You can synchronize an HTML based application, whether it is Java-based or
otherwise, with a Forms-based application in the same hosting Web page. For
example, you can use the HTML-based application to query data and use Forms to
update it if, and only if, the user has the correct access privileges.

6.3 Integrating JavaScript and Oracle Forms
This section describes an example for integrating JavaScript in Oracle Forms
application. To integrate JavaScript in Oracle Forms applications, perform the
following steps:

1. Build a Forms application using the JavaScript events as described in Section 6.1,
"About Oracle Forms Calling External Events" and Section 6.2, "About JavaScript
Events Calling into Oracle Forms". Use the :system.javascript_event_name
and :system.javascript_event_value in the
WHEN-CUSTOM-JAVASCRIPT-EVENT trigger. Compile the module. For more
information, refer to the Forms Builder Online Help.

2. Create an html file (for example, test.html) that the Forms servlet will use as a
template when generating the HTML page used to start an Oracle Forms

Configuration of formsweb.cfg

6-4 Forms Services Deployment Guide

application. Copy the file to the Forms configuration directory: $ORACLE_
INSTANCE/config/FormsComponent/forms/server

3. Copy any required images, html files, JavaScript files, and css files to the following
directory: $DOMAIN_HOME/servers/WLS_FORMS/tmp/_WL_
user/formsapp_11.1.1/<random_string2>/war/

4. Create an html file that uses the JavaScripts (for example, js.html) and invokes
the servlet URL.

5. Using Enterprise Manager, create a new configuration section or modify an
existing one and enable enableJavascriptEvent. Set baseHTMLjpi to
test.html.

6. Using Enterprise Manager, edit the default.env file and add the directory
where you saved the forms application to the environment variable FORMS_PATH.

7. Run the application by using the URL in your browser:
http://<localhost>:9001/forms/js.html

6.4 Configuration of formsweb.cfg
The administrator of the Forms application can enable or disable JavaScript integration
by setting the parameter enableJavascriptEvent in formsweb.cfg to "true" or
"false". If enableJavascriptEvent is not set to true, then calls from JavaScript
would be ignored. The applet_name parameter must be set to the value that is used by
the HTML developer to reference the forms applet via document.<applet_name>.

The administrator can also set JavaScriptBlocksHeartBeat (default value is
false) in formsweb.cfg to true. This blocks Form's HEARTBEAT during the time
JavaScript is executed. If the JavaScript calls complete execution before the FORMS_
TIMEOUT period, setting JavaScriptBlocksHeartBeat to true provides an increase in
performance by avoiding additional network messages.

Note that if JavaScriptBlocksHeartBeat is set to true, Forms would abnormally
terminate if the time taken for executing a JavaScript is more than FORMS_TIMEOUT.

6.5 Configuration of Environment Variables
An environment variable called FORMS_ALLOW_JAVASCRIPT_EVENTS in
default.env is also used to enable or disable JavaScript integration. By default, the
value of the variable is true. If this is set to false, then JavaScript integration is not
enabled for any Forms aplication that uses that instance of default.env, no matter
what value is set for enableJavascriptEvent in formsweb.cfg.

7

Enhanced Java Support 7-1

7Enhanced Java Support

This chapter contains the following sections:

■ Section 7.1, "Overview"

■ Section 7.2, "About Custom Item Event Triggers"

7.1 Overview
Oracle Forms provides Java classes that define the appearance and behavior of
standard user interface components such as buttons, text areas, radio groups, list
items, and so on. A Forms pluggable Java component (PJC) can be thought of as an
extension of the default Forms client component. When you create a PJC, you write
your own Java code to extend the functionality of any of the provided default classes.

7.1.1 Dispatching Events from Forms Developer
In addition to extending the standard Forms user interface components, you can also
create a PJC that includes Java Swing user interface components in your form. A
pluggable Java component extends a class provided by Forms, that is,
oracle.forms.ui.VBean, and lives in the Bean Area as seen on the Forms canvas.
The Bean Area does not have its own user interface, but rather is a container. On the
layout editor or on a canvas, you see only an empty rectangle until you associate an
implementation class with it and add some user interface components.

In earlier releases of Oracle Forms, Forms user interface components implemented the
IView interface. However, it did not have any special method to add or remove
CustomListener from the pluggable Java component or the view. In Oracle Forms 11g,
you can add or remove CustomListener in the IView interface.

7.1.2 Dispatching Events to Forms Services
Oracle Forms 11g makes it easier to dispatch CustomEvent along with parameters and
payloads. Since JavaBean classes do this by exposing the public method
dispatchCustomEvent, you need to add the same method for your PJC. You call the
dispatchCustomEvent method from the PJC to dispatch the CustomEvent.

Since CustomEvent is usually associated with parameters, Forms provides a way to
add them. In a JavaBean, you can use the getHandler().setProperty() method
to set the parameters. Users must be able to do the same for PJC. For more
information, see Section 7.2.2, "About the Custom Item Event Trigger at Runtime".

About Custom Item Event Triggers

7-2 Forms Services Deployment Guide

7.2 About Custom Item Event Triggers
In Oracle Forms 11g, you can add the WHEN-CUSTOM-ITEM-EVENT trigger to items at
design time and code the pluggable Java components so that the trigger can be fired at
runtime. This trigger fires whenever a JavaBean custom component in the form causes
the occurrence of an event. You can use a WHEN-CUSTOM-ITEM-EVENT trigger to
respond to a selection or change of value of a custom component. The system variable
SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS stores a parameter name that contains
the supplementary arguments for an event that is fired by a custom control. Control
event names are case sensitive.

7.2.1 Adding the When-Custom-Item-Event Trigger at Design Time
The most common way of adding a trigger to an item is by clicking the Create button
in the Object Navigator toolbar in Oracle Forms Developer, while the focus is on the
Trigger node, or by pressing the corresponding shortcut key. Forms Developer
presents to you a list of available triggers at that level or for that item.

Another way of adding some of the commonly used triggers is by right-clicking the
trigger node of the item in the Object Navigator. Then, select one of the triggers listed
in the smart Triggers menu.

For more information on working with triggers, see the Oracle Forms Developer
online help.

7.2.2 About the Custom Item Event Trigger at Runtime
In Oracle Forms 11g, pluggable Java components can raise the
WHEN-CUSTOM-ITEM-EVENT trigger. This enhanced trigger provides greater control
over the content of the communication between the client and server.

The Forms client dispatches CustomEvent through the pluggable Java component,
which fires the WHEN-CUSTOM-ITEM-EVENT trigger on the Forms Services. The
WHEN-CUSTOM-ITEM-EVENT trigger provides a simple way to retrieve the event
name and parameter values that are passed from the client pluggable Java component
through CustomEvent. The event name is stored in SYSTEM.CUSTOM_ITEM_EVENT;
parameters (name and value) are stored in SYSTEM.CUSTOM_ITEM_EVENT_
PARAMETERS.

The Forms Built-in get_parameter_attr is used to retrieve the values and different
parameters from SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS. The supported
datatype for the values or payloads that are returned from get_parameter_attr is a
VARCHAR2 string.

7.2.3 Example: A Java class for a Push Button
In this example, a Java class is created for a push button that enables selecting a client
file using the File Open option and returns the path to the server.

1. Create a Java class for a push button with simple PJC code such as:

 // MyButtonPJC.java
 import java.awt.event.ActionEvent;
 import java.awt.event.ActionListener;
 import javax.swing.JFileChooser;
 import oracle.forms.ui.CustomEvent;
 import oracle.forms.ui.VButton;
 import oracle.forms.properties.ID;
 public class MyButtonPJC extends VButton implements ActionListener

About Custom Item Event Triggers

Enhanced Java Support 7-3

 {
 private static final ID CLIENT_SELECTED_FILE = ID.registerProperty("CLIENT_
SELECTED_FILE");
 public MyButtonPJC()
 {
 addActionListener(this);
 }
 public void actionPerformed(ActionEvent event)
 {
 JFileChooser fc = new JFileChooser();
 if(fc.showOpenDialog(getHandler().getApplet()) == JFileChooser.APPROVE_
OPTION)
 {
 CustomEvent ce = new CustomEvent(getHandler(), "MyButtonPJC_Event");
 ce.setProperty(CLIENT_SELECTED_FILE,
fc.getSelectedFile().getAbsolutePath());
 this.dispatchCustomEvent(ce);
 }
 }
 public void destroy()
 {
 removeActionListener(this);
 super.destroy();
 }
}

2. Ensure CLASSPATH variable is defined in the environment and $ORACLE_
HOME/forms/java/frmall.jar is added to it.

3. Compile the Java class. For ease of creating the jar later, place the output class files
in a separate directory by using the -d <output-directory> option of the
javac (java compiler).

4. Navigate to the output directory and create a jar file, for example,
MyButtonPJC.jar, containing the generated class files by using the command

jar cvf <jar-file-path> *

5. MyButtonPJC.jar needs to be signed before deploying in Forms applet. You can
use sign_webutil.sh (sign_webutil.bat in Windows) that is available in
the directory $ORACLE_INSTANCE\bin to sign the jar file. For more information,
see Forms Builder Online Help.

6. Copy MyButtonPJC.jar to $ORACLE_HOME/forms/java directory.

7. Add the path of MyButtonPJC.jar to the FORMS_BUILDER_CLASSPATH. This
makes the class files in that jar available in Forms Builder.

8. Add the push button on the layout in the Forms application.

9. In Property Palette of the push button, set MyButtonPJC as the implementation
class.

10. Add WHEN-CUSTOM-ITEM-EVENT trigger to the push button.

11. Add the following PL/SQL code to the WHEN-CUSTOM-ITEM-EVENT trigger of
the push button. This code handles the CustomEvent dispatched by the PJC and
then extracts the parameters in the event.

 declare
 filePath VARCHAR2(1024);
 dataType PLS_INTEGER;
 begin
 Message('Custom Event Name='||:SYSTEM.CUSTOM_ITEM_EVENT);

About Custom Item Event Triggers

7-4 Forms Services Deployment Guide

 get_parameter_attr(:SYSTEM.CUSTOM_ITEM_EVENT_PARAMETERS,'CLIENT_SELECTED_
FILE',dataType, filePath);
 Message('The selected client file path is '|| filePath);
 end;

12. Add MyButtonPJC.jar to the list of comma-separated jars (only jar file name, not
the full path) in the archive parameter in Forms configuration file
(formsweb.cfg). This ensures that the jar file is loaded in Forms applet on the
client side.

8

Working with Server Events 8-1

8Working with Server Events

This chapter contains the following:

■ Section 8.1, "About Oracle Forms and Server Events"

■ Section 8.2, "Creating Events"

■ Section 8.3, "Subscribing to Events"

■ Section 8.4, "Event Propagation"

■ Section 8.5, "Publishing Database Events"

■ Section 8.6, "About Application Integration Between Forms"

8.1 About Oracle Forms and Server Events
With the exception of timers, most events in Oracle Forms occur from some kind of
user interaction. In previous versions of Oracle Forms, there was no easy support to
receive an external event if it could not be bound to the Form's graphical user
interface. Forms clients had to use techniques such as polling through a great deal of
coding to respond to these events to deal with external events that it did not initiate.

With Oracle Forms 11g and Oracle Database, you can handle external events, such as
asynchronous events, by using the database queue. Note that in order to work with
database queues in Oracle Forms 11g you must be using Oracle Database 10g Release 2
or later. Oracle Streams Advanced Queuing (AQ), an asynchronous queuing feature,
enables messages to be exchanged between different programs. AQ functionality is
implemented by using interfaces such as DBMS_AQ, DBMS_AQADM, and DBMS_
AQELM, which are PL/SQL packages. For more information about Advanced
Queuing, see the Oracle Streams Advanced Queuing User's Guide at
http://www.oracle.com/technology/documentation/index.html.

In general, the steps required to integrate events and database queues are:

Database
■ Create a queue table: Define the administration and access privileges (AQ_

ADMINISTRATOR_ROLE, AQ_USER_ROLE) for a user to set up advanced
queuing. Define the object type for the payload and the payload of a message that
uses the object type. Using the payload, define the queue table.

■ Create a queue: Define the queue for the queue table. A queue table can hold
multiple queues with the same payload type.

■ Start the queue: Enable enqueue/dequeue on the queue.

About Oracle Forms and Server Events

8-2 Forms Services Deployment Guide

■ Enqueue a message: Write messages to the queue using the DBMS_AQ.ENQUEUE
procedure.

Forms Builder
■ Create an event object: Create a new event in the Events node in the Object

Navigator in the Forms Builder.

■ Subscribe the event object to the queue: The name of the queue is specified in the
Subscription Name property.

■ Code necessary notification: Write the event handling function, which is queued
up for execution by Forms and is executed when the server receives a request from
the client. Write the trigger code for the When-Event-Raised trigger that is
attached to the Event node.

Forms Services
■ Run the form and register the subscription

■ Invoke the When-Event-Raised trigger upon event notification

In earlier versions of Forms, handling external events was only possible through
custom programming, usually done in Java with the help of Forms' Java Bean support.
In Oracle Forms 11g it is possible to call into Forms from any technology that can
interface with Advanced Queuing (AQ), for example Java Messaging (JMS).

Figure 8–1 shows the flow of events that take advantage of the improved integration of
the different components your application might work with. In the left side of the
image, the Oracle Forms has two-way communication with the AQ functionality of
Oracle Database. In the center of the image, the AQ function of Oracle Database also
has two-way communication with the possible outside events that can trigger internal
Forms events. In the right side of the image, these external events can include
technologies such as files with dynamic content, Web services, mail, JMS, or database
content that interact with BPEL processes which in turn interact with AQ. BPEL,
however, is not necessary. JMS, as an example, can interact with AQ directly without
having to go through BPEL.

Note: Third party tools such as antivirus and security software may
prevent Advanced Queuing from working correctly with Oracle
Forms. As a workaround, turn off any third party security tools.

Event Propagation

Working with Server Events 8-3

Figure 8–1 Oracle Forms Handles Outside Events with Advanced Queueing in Oracle Database

8.2 Creating Events
Oracle Forms Developer provides a declarative environment for creating and
managing event objects. For known external events, Forms Developer provides a list
of available events that can be subscribed to. The property of the event object can be
set at runtime or at design time. The ability to end a subscription to a particular
external event is also provided through a dynamic setting of the event object property.

Most of the new event functionality is also available through standard Oracle
interfaces. Both client and server-side PL/SQL provide all the necessary functionality
to create, subscribe, and publish a database event. Oracle Forms provides a declarative
and user-friendly way of registering a database event. Oracle Forms provides a
standard way of responding to the event by hiding most of the complexity from
end-users.

8.3 Subscribing to Events
The Forms Services gets notified when events it has registered interest in are added to
the event queue. Registration is done either when the runtime starts up or when
connecting to the database, depending on the type of the event. For database events,
the type of the event queue (persistent or non-persistent) is also saved as part of the
event creation.

8.4 Event Propagation
Figure 8–2 shows a situation where a Forms client is idle. Since Oracle Forms is driven
by the HTTP protocol, which is a request/response protocol only, nothing can change
on the client if the client is idle. A new applet property MaxEventWait, expressed in
milliseconds, governs how long the application should wait before checking for an
event. In other words, you can specify how often the client should send a request to
the server, thus causing the execution of the PL/SQL that is specified as a response to
an event.

Note, however, that, on the server-side, Forms Services receives all the events without
polling. However, the server does not start running the WHEN_EVENT_RAISED triggers

Forms

BPEL

Advanced
Queuing

Files with
Dynamic Content

Web Service

Mail, Wireless

JMS

Database Data

.Net

B2B, EDI

Event Propagation

8-4 Forms Services Deployment Guide

until it receives the notification from the Forms Client (because of the HTTP
request/reply paradigm of the Forms Client and hence the need for the
MaxEventWait property).

Figure 8–2 Notification flow with idle or active clients

8.4.1 About the When-Event-Raised Trigger
Oracle Forms responds to or fires a trigger in response to a variety of events. For both
Forms Developer and internal events, Forms provides entry points in terms of triggers
so that an application developer can associate and execute some code in response to an
event.

For example, a defined trigger is attached to a specific object in a form. The object to
which a trigger is attached defines the scope of the trigger. For example, the
WHEN-BUTTON-PRESSED trigger corresponds to the Button Pressed event which
occurs when an operator selects a button. The name of the trigger establishes the
association between the event and the trigger code. When a user clicks on a button,
Forms responds by executing the code in the WHEN-BUTTON-PRESSED trigger.

This new event object has a corresponding trigger defined at the event object level. The
WHEN-EVENT-RAISED trigger fires in response to the occurrence of a database event
for which it has a subscription. The firing of the new trigger is similar to the internal
processing of triggers. However, the source of the event is, in this case, an external
event such as a database event (firing as a result of an operation) and not the result of
any user interaction with forms or as a result of an internal form processing.

8.4.2 About Trigger Definition Level and Scope
Oracle Forms triggers are usually attached to a specific object, such as an item, block,
or Form. The object to which a trigger is attached determines the trigger's definition
level in the object hierarchy. A trigger's definition level determines the trigger's scope.
The scope of a trigger is its domain within the Forms object hierarchy, and determines
where an event must occur for the trigger to respond to it. Although the
WHEN-EVENT-RAISED trigger is attached to an event object, it has an application level
scope because of the nature of the server-centric events. When the event notification is
invoked as a result of an asynchronous callback mechanism for registered database
events, any number of forms running within that application and with a subscription

About Application Integration Between Forms

Working with Server Events 8-5

for that event receive the notification. This alleviates the need for the application
developer to code complex logic to deal with the event.

There is also a Form-level scope so that the event will only be handled if the
application is running the specific form from where the event is defined.

8.5 Publishing Database Events
You use the standard PL/SQL interface for publishing a database event from Forms.
For example, you can publish the SalaryExceed event by calling the enqueue
interface and providing all the necessary arguments. You can also call a stored
procedure to perform this task.

The following program unit can be called from a WHEN-BUTTON-PRESSED trigger
by passing the queue name. Depending on how you have defined the queue in the
database, a commit might or might not be necessary to actually publish the event. The
following sample code will not actually publish the event since there is no commit
issued.

Declare
 msgprop dbms_aq.message_properties_t;
 enqopt dbms_aq.enqueue_options_t;
 enq_msgid raw(16);
 payload raw(10);
 correlation varchar2(60);
begin
 payload := hextoraw('123');
 correlation := 'Jones';
 enqopt.visibility := dbms_aq.IMMEDIATE;
 msgprop.correlation := correlation;
 DBMS_AQ.ENQUEUE(queue, enqopt, msgprop, payload, enq_msgid);
end;

For more information about database events, see Oracle Database PL / SQL Reference.

8.6 About Application Integration Between Forms
Many enterprise applications are made of a large number of forms which are defined
to perform specific tasks such as purchasing, accounting, and sales force management.
These applications may also interact with other non-Forms based applications as part
of performing a task. The need to provide an integration model where an enterprise
can easily integrate its applications (including passing data) with those of its partners,
suppliers, and distributors is extremely important.

In previous releases, Oracle Forms attempted to integrate loosely coupled applications
through mechanisms ranging from using user_exit calls and some polling via timers to
using pluggable Java components. These methods are all useful in some limited
circumstances, but they do not provide a formal infrastructure for enterprise
application integration.

Apart from the deployment concerns and performance issues, the main reason why
these methods do not fully integrate applications is that the integration is only
provided through Forms Developer as almost all events are bound to Forms visual
components. Also, the communication with the Forms Services is always initiated by
the Forms client via a request-reply model.

To provide better support for application integration, Oracle Forms 11g supports
synchronous and asynchronous server-centric events.

About Application Integration Between Forms

8-6 Forms Services Deployment Guide

8.6.1 About Synchronous Communication
Synchronous communication follows a request-reply paradigm, where a program
sends a request to another program and waits until the reply arrives. HTTP follows
this paradigm. This model of communication (also called online or connected) is
suitable for programs that need to get the reply before they can proceed with their
work. Traditional client-server architectures are based on this model. Earlier releases of
Oracle Forms client-server architecture is also an example of this model. One of the
drawbacks of the synchronous model of communication is that all the programs must
be available and running for the application to work. In the event of network or
machine failure, programs cease to function. For example, if the Forms Services dies,
the Forms client ceases to function as well. The synchronous communication model is
also in use when the Forms Services interacts with other systems such as PL/SQL or
the database. The Forms system would be blocked waiting for the current operation to
end before continuing with its work. Another drawback of synchronous
communication is that the calling program has to wait for a response and unexpected
events cannot be handled without first polling for them.

8.6.2 About Asynchronous Communication
Asynchronous communication is when a user or form places a request in a queue and
then proceeds with its work without waiting for a reply or when an asynchronous
event is received without any initial request. Programs in the role of consumers
retrieve requests from the queue and act on them. This model is well-suited for
applications that can continue with their work after placing a request in the queue
because they are not blocked waiting for a reply. It is also suited to applications that
can continue with their work until there is a message to retrieve.

Oracle Forms 11g supports asynchronous communication with the help of database
events. A thin queuing mechanism provides the mechanism for asynchronous events.
The queue is checked for messages once there are no more current operations to be
performed.

For example, an application might require data to be entered or an operation executed
at a later time, after specific conditions are met. The recipient program retrieves the
request from the queue and acts on it.

8.6.3 Configuring Asynchronous Communication
Oracle Forms uses a polling technique at the application level. The client polls the
server for an update after specified intervals of time. The frequency of polling can be
modified using the parameters - MaxEventWait and HEARTBEAT. A higher frequency
of polling may ensure that a client polls the server more frequently for updates;
however, this may result in consumption of considerable resources.

The frequency value for polling is set in formsweb.cfg. The value assigned to this
constant is in milliseconds and is a positive number.

In the absence of the configuration file setting, the current Oracle Forms HEARTBEAT
setting is used. However, special attention and care should be made with regards
setting and using of MaxEventWait. In a default setting where MaxEventWait is not
set, the HEARTBEAT mechanism is used for polling. The default delay when the
HEARTBEAT mechanism is used is two minutes. You can set the MaxEventWait
(which is in milliseconds) to a value smaller than the HEARTBEAT for faster response.

For more information on configuring these parameters using the Enterprise Manager,
see Chapter 4.2.4, "Managing Parameters".

9

Using Forms Services with Oracle Single Sign-On 9-1

9 Using Forms Services with Oracle Single
Sign-On

This chapter contains the following sections:

■ Section 9.1, "Overview"

■ Section 9.2, "Available Features with OracleAS Single Sign-On, Oracle Internet
Directory and Forms"

■ Section 9.3, "OracleAS Single Sign-On Components Used By Oracle Forms"

■ Section 9.4, "Enabling OracleAS Single Sign-On for an Application"

■ Section 9.5, "Integrating Oracle Forms and Reports"

■ Section 9.6, "Enabling and Configuring Proxy Users"

■ Section 9.7, "Configuring Oracle Internet Directory"

9.1 Overview
Oracle Forms Services applications can run in a Single Sign-on environment using
Oracle Application Server Single Sign-On Server (OracleAS Single Sign-On) and
Oracle Internet Directory to store user name and password information. OracleAS
Single Sign-On is designed to work in Web environments where multiple Web-based
applications are accessible from a browser. Without OracleAS Single Sign-On, each
user must maintain a separate identity and password for each application they access.
Maintaining multiple accounts and passwords for each user is unsecured and
expensive.

OracleAS Single Sign-On Server 10g enables an application to authenticate users by
means of a shared authentication token or authentication authority. That means that a
user authenticated for one application is automatically authenticated for all other
applications within the same authentication domain.

Forms applications use OracleAS Single Sign-On Server 10g only for obtaining
database connection authentication. Once this connection is made, interaction with
OracleAS Single Sign-On Server 10g no longer occurs. Exiting a Forms application
does not perform an OracleAS Single Sign-On Server 10g logout. Conversely, logging
out of an OracleAS Single Sign-On Server session does not terminate an active Forms
session. The database session exists until the Forms Runtime (for example,
frmweb.exe) on the server terminates, usually by explicitly exiting the form.

OracleAS Single Sign-On Server 10g can be used to authenticate other applications that
are not Oracle products, for example, custom-built Java EE applications.

Overview

9-2 Forms Services Deployment Guide

Oracle Forms applications integrate into a company's OracleAS Single Sign-On Server
architecture based on OracleAS Single Sign-On Server and the Oracle Internet
Directory. Oracle Forms Services provides out-of-the box support for single sign-on
for as many Forms applications as run by the server instance with no additional
coding required in the Forms application.

9.1.1 Authentication Flow
Figure 9–1 describes the authentication flow of OracleAS Single Sign-On Server 10g
support in Oracle Forms the first time the user requests an application URL that is
protected by OracleAS Single Sign-On Server 10g :

Note: Refer to the Section 3.4.2, "Forms Single Sign-On on Mozilla
3.x" for more information on browser support for Forms and single
sign-on.

Note: Oracle Forms Services applications runs in a Single Sign-on
environment using the following OID and SSO combinations:

■ Oracle Internet Directory 10g (10.1.2.3) with Oracle Single Sign-On
10g (10.1.2.3)

■ Oracle Internet Directory 10g (10.1.4.3) with Oracle Single Sign-On
10g (10.1.4.3)

■ Oracle Internet Directory 11g (11.1.1) with Oracle Single Sign-On
10g (10.1.4.3)

 For more information on OracleAS Single Sign-On, see the Oracle
Application Server Single Sign-On Administrator's Guide on OTN.

 For more information on Oracle Internet Directory, see Oracle Fusion
Middleware Enterprise Deployment Guide for Oracle Identity Management.

Overview

Using Forms Services with Oracle Single Sign-On 9-3

Figure 9–1 Authentication Flow for First Time Client Request

1. In the upper left of the image, the user requests a Forms URL similar to
http(s)://<hostname>:<port>/forms/frmservlet?config=
<application>&...

2. The Forms servlet redirects the user to the OracleAS Single Sign-On Server login
page, indicated on the bottom left of the image.

3. The user provides user name and password through the login form.

4. The password is verified through Oracle Internet Directory (LDAP Server), shown
at the center of the image.

5. The user is redirected to the URL with sso_userid information, indicated in the
upper right of the image.

6. The Forms servlet retrieves the database credentials from Oracle Internet
Directory.

7. The Forms servlet sets the user ID parameter in the Runform session and permits
the applet to connect to the Forms listener servlet.

8. The Forms servlet starts the Forms server.

Figure 9–2 describes the authentication flow of single sign-on support in Oracle Forms
Services when a user, authenticated through another partner application, requests an
application that is protected by OracleAS Single Sign-On Server.

Note: Use the HTTP or Web Cache port number in the Forms URL
for Forms applications that use single sign-on. The Forms URL is
similar to http://<host name>:<http
port>/forms/frmservlet?config=ssoapp where ssoapp is the
name of the section in forms configuration file with single sign-on
(ssoMode) enabled.

Client
Browser

mod_osso

Forms Servlet

Single Sign-On
Server

Forms
Server

OID
(LDAP Server)

7

86

4

3

1

2

5

Available Features with OracleAS Single Sign-On, Oracle Internet Directory and Forms

9-4 Forms Services Deployment Guide

Figure 9–2 Authentication Flow for Subsequent Client Requests

1. The user requests the Forms URL, as shown in the upper left side of the image.

2. The Forms servlet redirects the user to the OracleAS Single Sign-On Server server
and its login page, indicated on the bottom left of the image.

3. The user is redirected to the URL with the sso_userid information.

4. The Forms servlet retrieves the database credentials from Oracle Internet
Directory, as shown in the center of the image.

5. The Forms servlet sets the user ID parameter in the Runform session and the
applet connects to the Forms listener servlet.

6. The Forms servlet starts the Forms server, shown on the bottom right of the image.

9.2 Available Features with OracleAS Single Sign-On, Oracle Internet
Directory and Forms

The following features and enhancements are available with this release of Oracle
Forms Services:

■ Section 9.2.1, "Dynamic Resource Creation When A Resource Is Not Found In
Oracle Internet Directory"

■ Section 9.2.2, "Support for Dynamic Directives With Forms and OracleAS Single
Sign-On"

■ Section 9.2.3, "Support for Database Password Expiration for Forms Running with
OracleAS Single Sign-On"

9.2.1 Dynamic Resource Creation When A Resource Is Not Found In Oracle Internet
Directory

In single-sign on mode, when a user tries to connect to a database using Forms, the
user is authenticated by mod_osso in combination with the OracleAS Single Sign-On
Server and Oracle Internet Directory. Once the user is authenticated, the user is

Client
Browser

mod_osso

Forms Servlet

Single Sign-On
Server

Forms
Server

OID
(LDAP Server)

643

1

2

5

OracleAS Single Sign-On Components Used By Oracle Forms

Using Forms Services with Oracle Single Sign-On 9-5

directed to the Forms servlet which takes the user's request information containing the
single sign-on user name. The user name and the application name build a unique pair
that identifies the user's resource information for this application in Oracle Internet
Directory.

When an authenticated Forms user has neither the resource for a particular application
that is being requested nor a default resource in Oracle Internet Directory, then the
user is redirected to the self-service console page of Oracle Internet Directory/DAS to
dynamically create them. After creating the resource, the user is redirected back to the
original Forms request URL.

The way Forms Services handles the missing resource information can be customized
by the application or Forms Services administrator. The following options are
available:

■ Allow dynamic resource creation (default)

■ Redirect the user to a pre-defined URL as specified by the ssoErrorUrl parameter

■ Display the Forms error message

The redirection URL is provided by the system administrator in the Forms
configuration files and should be either absolute or relative.

9.2.2 Support for Dynamic Directives With Forms and OracleAS Single Sign-On
Enforcing single sign-on in Forms is done within the formsweb.cfg file. The single
sign-on parameter, ssoMode, when set to TRUE, indicates that the application
requires authentication by OracleAS Single Sign-On Server.

This parameter allows a Forms Services instance to handle both application types,
ones protected by database password and ones protected by OracleAS Single Sign-On
Server. Because single sign-on is configured in the formsweb.cfg file, Enterprise
Manager Fusion Middleware Control can be used to manage this aspect of
authentication.

9.2.3 Support for Database Password Expiration for Forms Running with OracleAS
Single Sign-On

In previous releases of Oracle Forms, changing a database password would be
successful, but the changes (including expirations) would not propagate to Oracle
Internet Directory.

In Oracle Forms Services 11g, if the database password has expired, the Forms Services
application, running in single sign-on mode, is used to renew it, the new password
entered by the user is used to update the Resource Access Descriptor (RAD) in Oracle
Internet Directory for this application. This feature ensures that authenticating a Forms
user via OracleAS Single Sign-On Server with Forms continues to work even when the
user's database password has changed. However, if password changes are made in
SQL*PLUS, and not in Oracle Forms, the database connect string is not updated in
Oracle Internet Directory.

9.3 OracleAS Single Sign-On Components Used By Oracle Forms
The following software components in Oracle Fusion Middleware are involved when
running Forms applications in single sign-on mode:

Enabling OracleAS Single Sign-On for an Application

9-6 Forms Services Deployment Guide

■ OracleAS Single Sign-On Server - an authentication service in Oracle Fusion
Middleware that uses Oracle Internet Directory to store user names and
passwords

■ mod_osso - The HTTP module mod_osso simplifies the authentication process
by serving as the sole partner application to the OracleAS Single Sign-On Server,
rendering authentication transparent for applications. Oracle Forms Services and
Oracle Reports Services use mod_osso to register as partner applications with the
OracleAS Single Sign-On Server.

■ Oracle Internet Directory - A LDAP v3 compliant directory server that stores user
login information. An LDAP server is a special database that is optimized for read
access.

■ Forms servlet - The Oracle Forms Services component that accepts the initial user
request to start a Forms application. The Forms servlet detects if an application
requires OracleAS Single Sign-On Server, directs the request to the OracleAS
Single Sign-On Server and accesses the Oracle Internet Directory to obtain the
database connect information.

■ formsweb.cfg - The Forms configuration file that contains the parameters to
enable a Forms application for single sign-on. The formsweb.cfg file is located
in the $DOMAIN_HOME/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config directory.

9.4 Enabling OracleAS Single Sign-On for an Application
Oracle Forms applications are configured using a central configuration file, the
formsweb.cfg file in the $DOMAIN_HOME/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config directory. The recommended method
of managing formsweb.cfg file is using Fusion Middleware Control.

Single sign-on and error handling are defined by the following parameters in the
formsweb.cfg file:

■ ssoMode [true|false]

■ ssoProxyConnect [yes|no]

■ ssoDynamicResourceCreate [true|false]

■ ssoErrorUrl [String URL]

■ ssoCancelUrl [String URL]

These Oracle Forms parameters in the formsweb.cfg file are set in the User
Parameter section, which define the behavior for all Forms applications run by the
server. These parameters can also be set in a Named Configuration, which define the
settings for a particular application only. A single sign-on parameter set in a Named
Configuration section overrides the same parameter set in the User Parameter section.

To enable single sign-on for an application:

1. Start Fusion Middleware Control.

2. Select Web Configuration from the Forms menu.

3. Select the row that lists the configuration section for your application.

4. In the Section region, select sso in the Show drop down list.

5. In the Section region, select the row containing ssoMode.

Enabling OracleAS Single Sign-On for an Application

Using Forms Services with Oracle Single Sign-On 9-7

6. In the Value field, enter true.

7. Click Apply to update the formsweb.cfg file.

Single sign-on is now enabled for the selected application.

To disable single sign-on for an application:

1. Select Web Configuration from the Forms menu.

2. Select the row that lists the configuration section for your application.

3. In the Section region, select sso in the Show drop down list.

4. In the Section region, select the row containing ssoMode.

5. In the Value column, enter false.

6. Click Apply.

Single sign-on is now disabled for the selected application.

9.4.1 ssoMode
The ssoMode parameter enables a Forms Services application to connect to OracleAS
Single Sign-On Server. By default, Oracle Forms applications are not configured to run
in single sign-on mode. The ssoMode parameter can be set in two places in the
formsweb.cfg file:

■ By setting ssoMode in the default section of formsweb.cfg with a value of
true which allows all applications to run in single sign-on mode by this Forms
Services instance

■ By setting the ssoMode parameter in a named configuration of an Oracle Forms
application which enables or disables single sign-on only for this particular
application, for example:

[myApp]
form=myFmx
ssoMode=true

9.4.2 ssoProxyConnect
The ssoProxyConnect parameter enables a user to control when Oracle Forms
should use a proxy connection to the database and when it should not. The
ssoProxyConnect parameter can be set in two ways:

■ By setting ssoProxyConnect in the default section of formsweb.cfg with a
value of yes which allows all applications to run in single sign-on mode by this
Forms Services instance

■ By passing the ssoProxyConnect parameter in the URL at runtime, for example
http://<host>:<port>/?config=myapp&……&ssoProxyConnect=yes

9.4.3 ssoDynamicResourceCreate
The ssoDynamicResourceCreate parameter is set to true by default which
allows the user to create a Resource Access Descriptor (RAD) entry in Oracle Internet
Directory to run the application if this resource entry does not exist. The Web page
used is a standard form provided by the Oracle Delegated Administration Services.
This Web page cannot be customized as it is not owned by Oracle Forms.

Enabling OracleAS Single Sign-On for an Application

9-8 Forms Services Deployment Guide

Allowing dynamic resource creation simplifies Oracle Internet Directory
administration because there is no longer the need for an administrator to create user
RAD information in advance. The ssoDynamicResourceCreate parameter can be
set as a system parameter in the formsweb.cfg file or as a parameter of a named
configuration. Because the default is set to true, this parameter may be used in a
named configuration for a specific application to handle a missing RAD entry
differently from the default.

Note that enabling an application for single sign-on with the value of the
ssoDynamicResourceCreate parameter set to false, while not specifying a value
for the ssoErrorURL, causes Oracle Forms to show an error message if no RAD
resource exists for the authenticated user and this application.

Since not all administrators want their users to create resources for themselves (and
potentially raising issues with Oracle Internet Directory), these parameters allow
administrators to control Oracle Internet Directory resource creation. Although the
default behavior is to direct users to an HTML form that allows them to create the
resource, the administrator can change the setting and redirect the user to a custom
URL.

For the configuration section for the Forms application, you need to set these
parameters:

[myApp]
form=myFmx
ssoMode=true
ssoDynamicResourceCreate=false

For information about setting these parameters through Enterprise Manager Fusion
Middleware Control, see Section 4.2.4, "Managing Parameters".

9.4.4 ssoErrorURL
The ssoErrorURL parameter allows an administrator to specify a redirection URL
that handles the case where a user RAD entry is missing for a particular application.
This parameter only has effect if the ssoDynamicResourceCreate parameter is set
to false, which disables the dynamic resource creation behavior. The ssoErrorURL
parameter can be defined in the default section and as a parameter in a named
configuration section. The URL can be of any kind of application, a static HTML file,
or a custom Servlet (JSP) application handling the RAD creation, as in the example
below.

[myApp]
form=myFmx
ssoMode=true
ssoDynamicResourceCreate=false
ssoErrorURL=http://example.com:7779/servlet/handleCustomRADcreation.jsp
…

9.4.5 ssoCancelUrl
The ssoCancelURL parameter is used in combination with the dynamic RAD
creation feature (ssoDynamicResourceCreate= true) and defines the URL that a
user is redirected to if the user presses the cancel button in the HTML form that is used
to dynamically create the RAD entry for the requested application.

Enabling OracleAS Single Sign-On for an Application

Using Forms Services with Oracle Single Sign-On 9-9

9.4.6 Accessing Single Sign-on Information From Forms
Optionally, if you need to work with OracleAS Single Sign-On Server authentication
information in a Forms application, the GET_APPLICATION_PROPERTY() Built-in
can be used to retrieve the following single sign-on login information: single sign-on
user ID, the user distinguished name (dn), and the subscriber distinguished name
(subscriber dn)

authenticated_username := get_application_property(SSO_USERID);
userDistinguishedName := get_application_property(SSO_USRDN);
subscriberName := get_application_property(SSO_SUBDN);
config := get_application_property(CONFIG).

9.4.7 Registering Oracle HTTP Server with OracleAS Single Sign-On Server
Perform these steps if you chose to install and configure Forms in non-SSO mode and
later need to enable SSO. Perform the following steps to register the module mod_
osso in the WebTier OHS with the OracleAS Single Sign-On Server as a partner
application.

1. Generate and copy the osso.conf file as mentioned in steps 3, and 4 of "To
re-associate an OID Host with a Forms Application".

2. Create a mod_osso.conf file under $ORACLE_INSTANCE/config/OHS/<OHS_
INSTANCE>/moduleconf directory. The contents of the file should look similar
to this:

 LoadModule osso_module ${ORACLE_HOME}/ohs/modules/mod_osso.so
<IfModule mod_osso.c>
OssoIpCheck off
OssoSecureCookies off
OssoIdleTimeout off
OssoConfigFile osso.conf

Insert Protected Resources: (see Notes below for
how to protect resources)

#______-

Notes

#______-

1. Here's what you need to add to protect a resource,
e.g. <ApacheServerRoot>/htdocs/private:

<Location /private>
require valid-user
AuthType Osso
</Location>

</IfModule>

If you would like to have short hostnames redirected to
fully qualified hostnames to allow clients that need
authentication via mod_osso to be able to enter short

Note: config can be obtained even in non-SSO mode.

Integrating Oracle Forms and Reports

9-10 Forms Services Deployment Guide

hostnames into their browsers uncomment out the following
lines

#PerlModule Apache::ShortHostnameRedirect
#PerlHeaderParserHandler Apache::ShortHostnameRedirect

3. Add the following lines to the beginning of forms.conf file.

<IfModule !mod_osso.c>
LoadModule osso_module ${ORACLE_HOME}/ohs/modules/mod_osso.so
</IfModule>
<IfModule mod_osso.c>
OssoHTTPOnly off
</IfModule>

4. Associate the OID Host in Enterprise Manager as given in the topic "To Associate
OID Host with a Forms Application" of the Section 9.7, "Configuring Oracle Internet
Directory".

5. Restart the Oracle WebLogic Managed Server (WLS_FORMS) and the front-end
OHS for the changes to take effect.

9.5 Integrating Oracle Forms and Reports
Oracle Reports is installed with OracleAS Single Sign-On Server enabled.

The best practice for Oracle Forms applications calling integrated Oracle Reports is to
use the Oracle Forms Built-in, RUN_REPORT_OBJECT.

When requesting a report from a SSO-enabled Oracle Forms application, the
authenticated user's SSO identity is implicitly passed to the Reports Server with each
call to RUN_REPORT_OBJECT built-in. The SSO identity is used to authenticate the
user to the Reports Server for further authorization checking, if required.

A Forms application running in non-SSO mode can run a report on a SSO-secured
Reports Server, but fails if the Reports Server requires authorization. Also, users must
provide their SSO credentials when retrieving the Reports output on the Web.

For more information on enabling single sign-on in Forms, see Section 9.4, "Enabling
OracleAS Single Sign-On for an Application".

For more information on configuring single sign-on in Reports, refer to the Oracle
Fusion Middleware Publishing Reports to the Web with Oracle Reports Services.

For more information about integrating Oracle Forms and Oracle Reports, see the
white paper Integrating Oracle Forms 11g and Oracle Reports 11g at
http://www.oracle.com/technology/products/forms/.

9.5.1 Forms and Reports Integration in non-SSO mode
Prior to 11g Release 1 (11.1.1), Oracle Reports generated sequential job IDs, making it
easy to predict the job ID. This meant that unauthorized or malicious users could
potentially view the job output using GETJOBID through rwservlet to obtain job
output that belongs to another user. In 11g, Oracle Reports generates random and
non-sequential job IDs to make it impossible to predict the job ID for a particular job.
Only the user who runs a report from Oracle Forms Services is able to see its output.
Other users should not be able to see the report output as job IDs are random
non-sequential numbers.

http://www.oracle.com/technology/products/forms/

Integrating Oracle Forms and Reports

Using Forms Services with Oracle Single Sign-On 9-11

For a non-secure Reports Server, the user ID and password for administrators can be
set in the identifier element of the Reports Server configuration file.

For more information on configuring the access levels for the users, refer to the Oracle
Fusion Middleware Publishing Reports to the Web with Oracle Reports Services.

9.5.2 Using Multiple Reports Server Clusters in Oracle Forms Services
If your Oracle Forms application from a prior release uses multiple Reports Server
cluster names, you can map each of those cluster names to a different Reports Server.
In Oracle Reports 11g Release 1 (11.1.1), Reports Server clustering was deprecated. An
Oracle Forms application from prior releases that includes a Reports Server cluster
name will fail to bind to the Reports Server cluster it references.

To resolve this issue, the reports_servermap element maps a cluster name to a Reports
Server name. This avoids the necessity to change the cluster name in all Oracle Forms
applications.

An Oracle Forms application can call Oracle Reports in the following ways:

■ Using RUN_REPORT_OBJECT: If the call specifies a Reports Server cluster name
instead of a Reports Server name, the reports_servermap environment
variable must be set in the Oracle Forms Services default.env file. If your
Oracle Forms application uses multiple Reports Server cluster names, you can
map each of those cluster names to a different Reports Server using reports_
servermap in rwservlet.properties, as follows:

<reports_servermap>

cluster1:repserver1;cluster2:repserver2;cluster3:repserver3

</reports_servermap>

For example, if your Oracle Forms application includes 3 clusters with names
dev_cluster, prd_cluster, and qa_cluster in 10.1.2, you can map these
cluster names to respective server names in later releases, as follows:

<reports_servermap>

dev_cluster:dev_server;prd_cluster:prd_server;qa_cluster:qa_
server

</reports_servermap>

■ Using WEB.SHOW_DOCUMENT: In this case, the request is submitted to rwservlet. If
the call specifies a Reports Server cluster name instead of a Reports Server name,
the reports_servermap element must be set in the rwservlet.properties file.
For example:

<reports_servermap>

cluster:repserver

</reports_servermap>

For more information, see the Oracle Fusion Middleware Publishing Reports to the Web
with Oracle Reports Services.

9.5.3 Integrating Forms and Reports Installed in Different Instances
In 11g, Forms and Reports can be configured separately in different instances. If you
chose to install Forms and Reports in different Oracle instances, and later require
Forms and Reports integration, you need to manually configure files required to

Enabling and Configuring Proxy Users

9-12 Forms Services Deployment Guide

establish communication with Reports Servers. For more information, see Oracle
Fusion Middleware Publishing Reports to the Web with Oracle Reports Services.

9.6 Enabling and Configuring Proxy Users
This section contains the following:

■ Section 9.6.1, "Proxy User Overview"

■ Section 9.6.2, "Enabling Proxy User Connections"

■ Section 9.6.3, "Enabling SSO in formsweb.cfg"

■ Section 9.6.4, "Accessing the Forms Application"

■ Section 9.6.5, "Changes in Forms Built-ins"

■ Section 9.6.6, "Reports Integration with Proxy Users"

9.6.1 Proxy User Overview
Many large applications, including Oracle's own E-Business Suite, use a single
username for all connections. This makes it possible to manage users in a way that
often suits large companies better but it creates a problem with auditing. All inserts,
updates and removals of records appear, from the database's perspective, to have been
done by a single user. To restore auditing, the application developers must write and
implement customized auditing code in the database that requires a user name to be
passed to the database from the application. This step not only takes development
time, but also duplicates functionality that is already implemented in the Oracle
Database.

The second issue is security. If that single user access is ever compromised, the
compromised user will have access to the entire application schema.

To address these two issues, Oracle Database supports proxy user authentication,
which allows a client user to connect to the database through an application server, as
a proxy user.

Figure 9–3 describes the authentication of a Forms proxy user.

Figure 9–3 Proxy User Authentication

Enabling and Configuring Proxy Users

Using Forms Services with Oracle Single Sign-On 9-13

■ Oracle Forms authenticates the user through Oracle Internet Directory or LDAP,
as shown in the center of the image.

■ Forms then connects as the proxy user with or without a password, passing in the
real username from the Oracle Internet Directory repository.

■ Typically, the proxy user is configured with least set of privileges. In the following
procedure, the proxy user has "connect" and "create session" privileges.

■ The database accepts the create session action for the proxy user and uses the
real username in audits and access control.

■ The Oracle Internet Directory user cannot connect to the database independently
without configuration of the proxy user account.

■ The proxy user account isolates the client from direct SQL*Plus connections.

9.6.2 Enabling Proxy User Connections
To use a proxy support in Forms, you first need to create a proxy user. In this example,
the proxy user is called midtier:

1. Create a proxy user in the database.

SQL> CREATE USER midtier IDENTIFIED BY midtierPW;

2. Assign connect and create session privileges to midtier:

SQL> GRANT CONNECT,CREATE SESSION TO midtier;

At this point, this proxy user has connect and create session privileges and has no
grants on any of the user schemas.

3. Create a database user which has one-to-one mapping with a SSO username (that
is, if appuser is the SSO username create database user appuser).

SQL> CREATE USER appuser IDENTIFIED BY appuserPW;

4. Assign create session privileges to appuser.

SQL> GRANT CREATE SESSION TO appuser;

5. To make it possible to connect through the midtier user you need to alter the
database user:

SQL> ALTER USER appuser GRANT CONNECT THROUGH midtier;

The user appuser can now connect through the midtier account.

Alternatively, you can define the roles that the proxy user can connect to the
database as

SQL> ALTER USER appuser GRANT CONNECT THROUGH midtier WITH ROLE <role_name>;

Repeat Step 3 and 4 for all database users who need to use the proxy user account.

It is also possible to set up the database users in Oracle Internet Directory with the
help of the database functionality called Enterprise User Security. If you choose this
method, the proxy user is the only user defined in the database and the additional
benefit of easy administration is gained. For more information on using Enterprise
User Security, refer to the Oracle Fusion Middleware Administrator's Guide for Oracle
Internet Directory 11g Release 1 (11.1.1).

Enabling and Configuring Proxy Users

9-14 Forms Services Deployment Guide

The application user's password is not presented to the database; only the user name
and the proxy user's user name and password. Forms, with the help of OCI calls,
issues the equivalent of:

SQL> connect midtier[appuser]/midtierPW@databaseTnsName

For example, suppose your application always connects to the database using midtier.
This midtier now informs the database that the actual user is appuser. Without using
proxy users, the SQL command select USER from DUAL would return midtier,
but, using proxy users, this query returns appuser. This essentially tells the database
to trust that the user is authenticated elsewhere and to let the user connect without a
password and to grant the connect role.

9.6.3 Enabling SSO in formsweb.cfg
Create a configuration section in formweb.cfg for single sign-on (for example,
ssoapp) and set SSOProxyConnect to yes and ssoMode to true.

The username and password that is used for the proxy connection is defined in the
RAD entry in Oracle Internet Directory for the user that is logging on. If
ssoProxyConnect=yes, the connect string equivalent issued by Forms is in effect:

SQL> connect RADUsername[appuserName]/RADPassword@databaseTnsName

9.6.4 Accessing the Forms Application
After enabling proxy user connections and single sign-on, perform the following steps
to access the forms applications:

1. Run the forms application with the URL http://<host name>:<http
port>/forms/frmservlet?config=ssoapp where ssoapp is the name of the
configuration section with single sign-on (ssoMode) is enabled.

2. Use the single sign-on user name and password to log in (in this example given in
Section 9.6.2, "Enabling Proxy User Connections", the single sign-on username is
appuser and password is appuserPW).

Note:

■ In the Step 3 of the above procedure, the database users are
typically configured to have a subset of permissions granted to a
schema. For example, appuser is granted CREATE permissions to
the schema app_schema with the SQL command:

SQL> GRANT CREATE ON SCHEMA app_schema TO appuser
Thus, the appuser is restricted to perform only a set of actions in
proxy user mode.

■ When the database user (for example, appuser) is connected in
proxy mode, user actions of the database users are audited rather
than that of the proxy user. For more information on user action
auditing, refer to the Oracle Database documentation at
http://www.oracle.com/technology/documentation/in
dex.html.

Configuring Oracle Internet Directory

Using Forms Services with Oracle Single Sign-On 9-15

9.6.5 Changes in Forms Built-ins
The Built-in get_application_property now takes a new parameter called IS_
PROXY_CONNECTION (a Boolean). When this parameter is supplied, the call returns
true if the form is running in proxy user mode, false otherwise.

9.6.6 Reports Integration with Proxy Users
The integration with Reports is maintained when a proxy user is used in Forms. The
Oracle Reports administrator has to set up a proxy user. Ensure that the following
configuration has been completed in the Reports configuration files.

In rwserver.conf, enter the Forms configuration section name (frm_config_
name) and database SID name that is configured for proxy user support (dbname).

<dbProxyConnKeys>

 <dbProxyKey name="frm_config_name" database="dbname"/>

</dbProxyConnKeys>

In rwservlet.properties, ensure that Proxy mode is enabled.

<enabledbproxy>yes</enabledbproxy>

For more information about Reports configuration files, see the Oracle Fusion
Middleware Publishing Reports to the Web with Oracle Reports Services

9.7 Configuring Oracle Internet Directory
The users connecting through a Forms application as proxy users must also be defined
in OracleAS Single Sign-On Server and Oracle Internet Directory. Oracle Forms
authenticates the user via OracleAS Single Sign-On Server (using OracleAS Single
Sign-On Server with Forms is a requirement when employing a proxy user). Oracle
Forms then connects to the database as the proxy user with a username and password
that is in the RAD for the Oracle Internet Directory entry for the application user.

For more information on Oracle Forms and Identity Management integration, see
Section 11.1.4, "Leveraging Oracle Identity Management Infrastructure."

To access the Associate/Disassociate OID page:
1. Start Enterprise Manager.

2. Navigate to the Forms Home page.

3. From the Forms menu, select Associate/Disassociate OID.

The Associate/Disassociate OID page is displayed.

Note: When you change the Oracle Web Cache port using Enterprise
Manager, regenerate the osso.conf and copy the generated
osso.conf file to $ORACLE_INSTANCE/config/OHS/<OHS_
INSTANCE>/moduleconf directory. Restart the Oracle HTTP Server
and Oracle Web Cache for the changes to take effect.

Configuring Oracle Internet Directory

9-16 Forms Services Deployment Guide

Figure 9–4 Associate/Disassociate OID

To Associate OID Host with a Forms Application
1. To associate an Oracle Internet Directory host with a Forms application for the first

time, from the Associate/Disassociate OID page, select the Forms application.
Click Associate.

The Associate dialog appears.

2. Enter the Oracle Internet Directory Host details as described in Table 9–1, " Oracle
Internet Directory Host Details".

3. Click Associate.

The Associate/Disassociate OID page reappears.

4. On the OracleAS Single Sign-On Server, run the ssoreg.sh script from
$ORACLE_HOME/sso/bin.

ORACLE_HOME/sso/bin/ssoreg.sh
-oracle_home_path <ORACLE_HOME>
-site_name www.example.com
-config_mod_osso TRUE
-mod_osso_url http://www.oidtierexample.com:7777
-config_file osso.conf
-remote_midtier

Table 9–1 Oracle Internet Directory Host Details

Parameter Description

OID Host Select the Oracle Internet Directory Host from the list or select
New OID host to add new Host details.

New OID host Host name of the LDAP directory server. This field is enabled if
you have selected to add new Oracle Internet Directory Host.

New OID Port Port number on which LDAP is listening. This field is enabled if
you have selected to add new Oracle Internet Directory Host.

Username Oracle Administrator username

Password Oracle Administrator password

Use SSL Port Select this box if the connection to the Oracle Internet Directory
Host should use SSL (in which case the port number provided
should be the SSL port).

Configuring Oracle Internet Directory

Using Forms Services with Oracle Single Sign-On 9-17

On Windows, run the ssoreg.bat file.

5. Copy the generated osso.conf file to $ORACLE_INSTANCE/config/OHS/<OHS_
INSTANCE>/. For more information, see the Oracle Application Server Single
Sign-On Administrator's Guide on OTN.

6. Restart the Oracle WebLogic Managed Server and the front-end OHS for the
changes to take effect.

To prevent users from being inadvertently disconnected from active forms
sessions, ensure you choose to restart Oracle WebLogic Managed Server and the
front-end OHS at a convenient time when users are not running any forms
sessions.

To Disassociate OID Host from a Forms Application
1. From the Associate/Disassociate OID page, select the Forms application. Click

Disassociate.

A confirmation box appears.

2. Click Yes.

The Oracle Internet Directory host is disassociated from the Forms application.

3. Restart the Oracle WebLogic Managed Server and the front-end OHS for the
changes to take effect.

To prevent users from being inadvertently disconnected from active forms
sessions, ensure you choose to restart Oracle WebLogic Managed Server and the
front-end OHS at a convenient time when users are not running any forms
sessions.

To re-associate an OID Host with a Forms Application
1. From the Associate/Disassociate OID page, select the Forms application. Click

Disassociate.

2. From the Associate/Disassociate OID page, select the Forms application. Click
Associate.

Enter the Oracle Internet Directory Host details as described in Table 9–1, " Oracle
Internet Directory Host Details".

3. On the OracleAS Single Sign-On Server, run the ssoreg.sh script from
$ORACLE_HOME/sso/bin.

ORACLE_HOME/sso/bin/ssoreg.sh
-oracle_home_path <ORACLE_HOME>
-site_name www.example.com
-config_mod_osso TRUE
-mod_osso_url http://www.oidtierexample.com:7777
-config_file osso.conf
-remote_midtier

On Windows, run the ssoreg.bat file.

4. Copy the generated osso.conf file to $ORACLE_INSTANCE/config/OHS/<OHS_
INSTANCE>/. For more information, see the Oracle Application Server Single
Sign-On Administrator's Guide on OTN.

5. Restart the Oracle WebLogic Managed Server and the front-end OHS for the
changes to take effect.

Configuring Oracle Internet Directory

9-18 Forms Services Deployment Guide

To prevent users from being inadvertently disconnected from active forms
sessions, ensure you choose to restart Oracle WebLogic Managed Server and the
front-end OHS at a convenient time when users are not running any forms
sessions.

10

Configuring and Managing Java Virtual Machines 10-1

10 Configuring and Managing Java Virtual
Machines

This chapter contains the following sections:

■ Section 10.1, "Why Use Java Virtual Machine Pooling?"

■ Section 10.2, "About Child Java Virtual Machine Processes"

■ Section 10.3, "About Multiple JVM Controllers"

■ Section 10.4, "JVM Pooling Usage Examples"

■ Section 10.5, "Design-time Considerations"

■ Section 10.6, "Overview of JVM Configuration"

■ Section 10.7, "Managing JVM Controllers from the Command Line"

■ Section 10.8, "Managing JVM Pooling from Fusion Middleware Control"

■ Section 10.9, "JVM Controller Logging"

■ Section 10.10, "Integrating Forms and Reports"

■ Section 10.11, "JVM Pooling Error Messages"

10.1 Why Use Java Virtual Machine Pooling?
When a Forms application calls out to Java, a JVM is attached to each Forms process
the first time the process makes a call. This JVM remains attached to each process for
the remainder of the processes' lives, even though any individual process may never
call out to Java again, potentially causing resource contention. JVM pooling makes
provisions for sharing a limited number of JVMs among all participating Forms
processes. Even though all Forms processes might at one point call out to Java, if only
a subset of these call out to Java at any given point in time, only as many JVMs as are
necessary at peak usage, need be started. Using JVM pooling brings the potential to
significantly reduce resource usage for a Forms installation that calls out to Java.

When a Forms runtime process needs to execute Java, it sends a message to the Java
Virtual Machine (JVM) that is contained in the JVM controller. The JVM creates a new
thread for that Forms runtime process. The JVM then continues to listen for the next
new request from a different Forms runtime process while the newly created thread
processes the request and sends the results back to the Forms runtime process. For the
life of this Forms session, the Forms runtime process communicates directly with that
thread.

Java Virtual Machine pooling is a separate process that contains the JVM controller.
With JVM pooling, the JVM runs outside of the Forms runtime process. The JVM can

About Child Java Virtual Machine Processes

10-2 Forms Services Deployment Guide

also be shared by multiple Forms runtime processes. The JVM controller process is not
a JVM itself, but a container that contains a JVM in a similar way that the Forms
Runtime process contains an in-process JVM. Using JVM pooling is optional.
Administrators can choose to not use JVM pooling and have the JVM contained in the
Forms runtime process.

Java Virtual Machine (JVM) pooling works in conjunction with the Java Importer. It
also works with Forms' ability to call out to Reports. The Java Importer allows
developers at design time to reference Java classes from PL/SQL within the Forms
Builder. At runtime, Forms uses a Java Virtual Machine (JVM) to execute Java code. In
earlier versions of Oracle Forms, each Forms session that used the Java Importer had
its own JVM instance to execute Java code. In this model, each JVM consumes memory
on the server, and if there are many concurrent users, the amount of memory
consumed by the multiple JVM processes becomes significant.

For more information on the Java Importer, see the Oracle Forms Developer online
help.

When you enable JVM pooling, administrators can consolidate the number of running
JVM instances so that the Forms sessions can share JVMs rather than each one having
its own instance. The result is a large reduction in memory consumption, thus freeing
up more resources on your server.

You also need to consider JVM pooling in application design and deployment. For
more information, see Chapter 10.5, "Design-time Considerations".

10.1.1 JVM Pooling in Forms and Reports Integration
In 10g, Forms Runtime process creates a separate JVM before calling Reports and
Reports uses this JVM to execute the java methods. This JVM is part of the Forms
Runtime process. In 10g, the JVM pooling feature is used only by the Java Importer.
However, in 11g, with JVM pooling enabled, Oracle Forms Services uses a shared JVM
controller for Oracle Reports requests.

Instead of each Forms Runtime process having its own instance of the JVM, JVMs can
be shared by multiple Forms Runtime processes. With JVM pooling, a process called
JVM controller is available which houses the JVM. Forms Runtime processes can share
this JVM. This would result in a large reduction of memory consumption, freeing more
resources on the server.

A form can be configured to use a specific JVM controller using the jvmcontroller
parameter. The jvmcontroller parameter indicates to the Forms Runtime process which
JVM controller to use. This can be set in the Forms Configuration File,
formsweb.cfg. Alternatively, this information can also be passed as a parameter in
the URL for invoking the Forms Application. The parameters that need to be used
during startup of the jvmcontroller have to be specified in the JVM controller’s
configuration file, jvmcontrollers.cfg.

For more information on using JVM pooling for Reports integration, see Section 10.10,
"Integrating Forms and Reports".

10.2 About Child Java Virtual Machine Processes
Since each Forms runtime process has its own thread within the JVM, there is
concurrency. If the JVM reaches a specified number of concurrent requests, it will
spawn a child JVM to share the load. Moreover, it's possible to have multiple JVM
controllers, each of which may have multiple child JVMs.

About Child Java Virtual Machine Processes

Configuring and Managing Java Virtual Machines 10-3

For example, different Forms applications may want to use different JVMs with
different options or classpaths. You can specify which JVM controller and Forms
application should be used in the named sections of the Forms configuration file
(formsweb.cfg). See Section 10.8.6, "Forms Configuration File Settings" for more
information.

Figure 10–1 shows an example of what an environment might look like using JVM
pooling. There are two JVM controllers: the first one is using only its in-process JVM,
the second one is using three JVMs.

Figure 10–1 Multiple JVM Controllers with Child Processes

Although it's not shown in Figure 10–1, each JVM controller has a unique name which
is used in starting and stopping, or for referencing in the Forms configuration file.

Figure 10–1 is conceptual only in that it shows different Forms applications using
different JVM controllers. However, the Forms runtime process does not communicate
with the JVM controller, but directly with one of the available JVMs. Therefore, the
first two clients in the diagram can only use the in-process JVM; the rest have three
available JVMs to work with.

When the performance of a JVM degrades significantly, it probably means it is
servicing too many requests. In that case, it is possible to have multiple "child" JVMs
for the same JVM controller which get created dynamically as needed.

The JVM parameter maxsessions specifies how many Forms runtime processes are
allowed to attach to a JVM before a new child JVM is created. When a child JVM is
started, it inherits the same parameters as the JVM controller.

If any JVM has maxsessions connections, it does not take any request from new
Forms runtime processes. When a new Forms runtime process first attempts to execute
Java code, it attaches to a JVM that is available, that is, has fewer than maxsessions

Application Server

Forms Runtime
Process

Client

Forms Runtime
Process

Client

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

JVM Controller “In-process” JVMClient

Client

Client

Client

Client

JVM Controller “In-process” JVM

Child JVM Child JVM

About Multiple JVM Controllers

10-4 Forms Services Deployment Guide

connections. The method of choosing the JVM is entirely arbitrary; there is no load
balancing or round-robin algorithm.

If a JVM reaches maxsessions connections, but another JVM has not, no new JVM is
created. If all JVMs have simultaneously reached maxsessions connections, another
child JVM is created, and so on.

Child JVMs are not automatically removed when the load is reduced. So if you want to
remove some child JVMs, the JVM controller must be stopped, which also stops all
child JVMs. Then the JVM controller can be restarted.

The scope of a child JVM is within the context of a JVM controller namespace. For
example, if you have two JVM controllers, ordersJVM and hrJVM, ordersJVM and its
child JVMs do not affect – nor are affected by – hrJVM or its child JVMs.

10.2.1 Child JVM Example
Suppose the JVM controller called ordersJVM has maxsessions=50. Each Orders
application that runs sends requests to ordersJVM. Each time a new Forms runtime
process sends a request to ordersJVM, a new thread is created that communicates with
the Forms runtime process. The JVM controller then returns to listening for new
requests. As users end their sessions, the threads in the JVM are also terminated.

When the ordersJVM controller receives the 50th concurrent request (not necessarily
the first 50 users because some of them may have quit before the later users started) it
will spawn a child JVM. Since it inherits its parent's settings, maxsessions for this
child JVM will also be 50. At this stage, the JVM controller has 50 connections, and the
child JVM has none.

As new users start this Oracle Forms application and execute Java code, the Forms
runtime process attaches to a JVM that is listening within the JVM controller
namespace. Since the JVM controller has 50 connections, it is unavailable and the child
JVM receives the request. Later, when the parent JVM controller has fewer connections
because some users have quit their applications, it is available to receive new requests
as long as it has not reached maxsessions connections.

While all this is going on, the hrJVM is operating independently. Overflow
connections from ordersJVM will not connect to hrJVM, only to child JVMs of
ordersJVM.

10.3 About Multiple JVM Controllers
The JVM pooling architecture allows you to have multiple JVM controllers, each of
which may have child JVMs. You would use multiple JVM controllers if:

■ You want each application to have its own JVM controller so that it can be started
and stopped independently of others.

■ Different applications require different settings. For example, you may not want to
mix classpaths or JVM settings between different controllers.

■ You want to monitor resource usage of the JVM controllers from Fusion
Middleware Control. If different JVM controllers are used by different
applications and/or groups of users, you can determine how resources are being
consumed by your Java Importer code.

■ You have multiple development, test, or production environments on the same
computer.

■ You do not want different applications to share static data.

JVM Pooling Usage Examples

Configuring and Managing Java Virtual Machines 10-5

10.4 JVM Pooling Usage Examples
Consider, for example, an Oracle Forms application that has a user interface button.
When a user presses the button, Oracle Forms takes the value from a field on the
screen, and passes it to Java (using the Java Importer feature) to do some complex
calculation which cannot be done in PL/SQL. The result is then returned and
displayed in a field in the Form. One JVM process is running to execute this Forms
session.

Figure 10–2 shows how this Oracle Forms session has its own in-process JVM
because JVM pooling is not enabled. In the left side of the image, there are multiple
clients running their own Forms session. In the center of the image, each client makes
a call to its own Forms Runtime process, which contains its own JVM process.

Figure 10–2 Forms Runtime with no JVM Pooling

Figure 10–3 shows the Forms Runtime processes sharing a single JVM process when
JVM pooling is enabled, as shown in the right side of the image.

Application Server

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

JVM

JVM

JVM

JVM

JVM

Client

Client

Client

Client

Client

Design-time Considerations

10-6 Forms Services Deployment Guide

Figure 10–3 Forms Runtime with JVM Pooling Enabled

In this example, five clients working in the same application through their own
runtime processes are using a pooled JVM process instead of each Forms Runtime
process spawning its own JVM instance. This can be a significant savings in memory
usage and system resources.

10.5 Design-time Considerations
This section contains the following:

■ Section 10.5.1, "Re-importing Your Java Code"

■ Section 10.5.2, "About Sharing Static Variables Across Multiple JVMs"

10.5.1 Re-importing Your Java Code
If you used the Java Importer feature of Oracle Forms prior to the availability of JVM
Pooling, you will need to reimport your Java classes before using JVM pooling. When
you originally imported your Java classes, PL/SQL wrappers for the Java classes were
generated, which you can see in the Program Units that were created in your Form.
However, the PL/SQL wrappers that are generated by the Java Importer to utilize
JVM pooling are different.

From Oracle Forms Services 10g and later, the Java Importer generates the "new"
PL/SQL wrappers. If you want to use the Java Importer, but do not wish to take
advantage of JVM pooling, the in-process JVM will work with the new PL/SQL
wrappers. It will also continue to work with the older-style PL/SQL wrappers.

10.5.2 About Sharing Static Variables Across Multiple JVMs
One advantage of JVM pooling is the ability to share data between instances of a class
by using static variables. However, static variables will be shared between instances of
the same class within a JVM, but not across JVMs. You will need to plan accordingly.

For example, suppose your loan class has a static variable called interestRate
because all instances use the same interest rate in calculations. If you are using only

Application Server

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

JVM

Client

Client

Client

Client

Client

Managing JVM Controllers from the Command Line

Configuring and Managing Java Virtual Machines 10-7

one JVM, and one of the instances of your loan class changes interestRate, all of
the other instances will be affected (which is what you want).

However, if the JVM controller has one or more child JVMs, there may be at least two
JVMs. If interestRate changes in one JVM, the loan instances in the other JVMs won't
see this new value. For more information about managing child JVMs, see Section 10.2,
"About Child Java Virtual Machine Processes". Prior to JVM pooling, if you changed
interestRate it would not affect any other instances because each Oracle Forms
Runtime process had its own in-process JVM.

If you rely on static variables to share information between instances of your class,
ensure that no child JVM is spawned by setting maxsessions to 65535.

10.6 Overview of JVM Configuration
To configure JVM using Fusion Middleware Control, perform the following steps:

1. Using Fusion Middleware Control, add a new configuration section or modify an
existing section in formsweb.cfg to enable or disable use of JVM controller for
applications. For more information, refer to Section 10.8.6, "Forms Configuration
File Settings".

2. Ensure CLASSPATH is updated in default.env or in jvmcontrollers.cfg.

3. Using Fusion Middleware Control, configure the JVM parameters. For more
information, refer to Section 10.8.3, "Managing Parameters".

4. Start the JVM controller. For more information, refer to Section 10.8.5, "Starting
and Stopping JVM Controllers with Fusion Middleware Control".

10.7 Managing JVM Controllers from the Command Line
If you manage JVM controllers from the command line, you must know the options to
start and stop them, as well as specify the environment. You can only access the JVM
controllers on the same computer from which they are running.

10.7.1 JVM Controller Command Examples
This section describes examples of JVM controller commands. For a detailed
explanation on the example, see Section 10.8.7, "Startup Example."

■ dejvm -start jvmcontroller=hrJVM

Starts a JVM controller with ID hrJVM. The controller name hrJVM is defined as a
named section in the configuration file. Therefore, JVM options and classpath
parameters are taken from the configuration file. maxsessions is 50 as defined
in the Default section, and other parameters take their default values.

■ dejvm -start jvmcontroller=myJVM

Starts a JVM controller with ID is myJVM. Since no option was specified, and there
is no named section in jvmcontrollers.cfg, the JVM options parameter is

Note: The mechanics for controlling the JVM controller as described
in this chapter are mostly relevant at the command line. It is easier to
use Fusion Middleware Control with its user-friendly screens and
online help. Fusion Middleware Control users are still urged to read
through the following information, however, to understand what the
different fields and options mean, and how the JVM controller works.

Managing JVM Controllers from the Command Line

10-8 Forms Services Deployment Guide

"-Xms512m -Xmx1024m" and maxsessions=50 as set in the Default section.
The other parameters take on their default values. For instance, the CLASSPATH
value is the system CLASSPATH.

■ dejvm -start jvmcontroller=hrJVM jvmoptions="-Xms128m
-Xmx256m" maxsessions=75

Sets the classpath to /myJava/hrClasses as defined in the named section. JVM
options are "-Xms128m -Xmx256m" because the command line overrides the
jvmcontrollers.cfg file. Similarly, maxsessions is 75. All other parameters
take on their default values.

■ dejvm -start jvmcontroller=myJVM maxsessions=100
classpath=/myJava/myClasses;/moreJava/moreClasses

The controller has jvmoptions="-Xms512m -Xmx1024m" as defined in the
default section of jvmcontrollers.cfg. maxsessions is 100 which overrides the
default section, and classpath is
/myJava/myClasses;/moreJava/moreClasses. All other parameters take on
their default values.

■ dejvm -stop jvmcontroller=hrJVM

Stops the hrJVM controller. It must already be started for you to issue this
command successfully.

10.7.2 Command Restrictions
Keep these command restrictions in mind:

■ The commands are case sensitive.

■ You can only issue one command at a time to a JVM controller.

■ You can only issue a command to one JVM controller at a time.

The available commands for the JVM controller (or the dejvm process) are specified in
Table 10–1. If you are using Enterprise Manager, there are screens that have an
interface for issuing these commands. If you are using the command line, you may not
be able to manage the JVM controller using the Enterprise Manager.

10.7.3 Start Command Parameters
Table 10–1 describes the JVM parameters used to start the JVM from the command
line.

Table 10–1 JVM Parameters

Parameter Description

jvmcontroller Enter a name for this JVM. This name must contain a legal
Oracle identifier that starts with a letter and contains an
alphanumeric character, '_', '$' or '#' . An Oracle identifier has a
maximum length of 30 bytes.

Hint: You may want to enter a name based on the application
that will be accessing it. You cannot change the name of this JVM
controller later.

maxsessions Specifies the maximum number of concurrent Oracle Forms
sessions this JVM will serve before a new JVM is spawned. This
value will override any set for the default JVM controller.

Managing JVM Pooling from Fusion Middleware Control

Configuring and Managing Java Virtual Machines 10-9

10.8 Managing JVM Pooling from Fusion Middleware Control
Fusion Middleware Control provides a Web-based environment to manage all
available JVM pooling options. It also lists all JVM controllers in your environment
and allows you to (remotely) manage them. For example, you can start and stop JVM
controllers; add new ones; or reconfigure existing ones. In addition, Fusion
Middleware Control also provides metric information such as resources (memory and
CPU) that are consumed by JVM controllers, number of Forms connected, total JVMs,
and so on.

While the Forms runtime process interacts directly with a JVMs, the JVM controller
manages the JVM, such as starting and stopping a JVM, or getting the state of one, etc.
For example, when an administrator stops the JVM controller, the JVM controller
ensures that all child JVMs are terminated. You use Fusion Middleware Control to
manage the JVM controller.

The JVM controller can be started in three ways:

■ From Fusion Middleware Control

■ When a Forms application that is bound to an existing JVM controller requests that
the controller start up

■ From the command line

Fusion Middleware Control reads the JVM controller configuration file. It works in a
similar way to the Forms configuration file (formsweb.cfg) in that it contains
name-value pairs, has a default section, and has named sections. The parameters
contained in jvmcontrollers.cfg correspond to the start parameters of the JVM
controller.

When you start a JVM controller, it takes its settings from the configuration file. You
may specify none, some, or all options in this file, both in the default section and in
named sections.

Use the JVM Configuration and JVM Controller pages in Fusion Middleware Control
to manage JVM pooling tasks:

■ Section 10.8.1, "Common Tasks in the JVM Configuration Page"

■ Section 10.8.2, "Managing JVM Configuration Sections"

classpath When you specify a classpath, it will override the system
classpath or any classpath specified in your environment or any
classpath set for the default JVM controller.

jvmoptions Enter any valid options to pass to the JVM. This value will
override any set for the default JVM controller. Refer to the Sun
Java documentation for a list of valid JVM startup options.

logdir Leave Log Directory blank to use the log location for the default
JVM controller. If any other directory is set, the log file may not
be accessible through Enterprise Manager.

logging On, or Off.

Note: You cannot change the location or name of the JVM controllers
configuration file.

Table 10–1 (Cont.) JVM Parameters

Parameter Description

Managing JVM Pooling from Fusion Middleware Control

10-10 Forms Services Deployment Guide

■ Section 10.8.3, "Managing Parameters"

■ Section 10.8.4, "JVM Configuration Parameters and Default Values"

■ Section 10.8.5, "Starting and Stopping JVM Controllers with Fusion Middleware
Control"

■ Section 10.8.6, "Forms Configuration File Settings"

■ Section 10.8.7, "Startup Example"

10.8.1 Common Tasks in the JVM Configuration Page
This section describes the common tasks that you can do to edit configuration with the
sections of a JVM configuration file and their parameters.

Table 10–2 describes the tasks you can do with the configuration sections within a JVM
configuration file:

Table 10–3 describes the tasks that you can do to modify the parameters within a
named configuration section:

Table 10–2 Tasks for Working with Configuration Sections

Task Description Comment

Create Like Creates a copy of a
configuration section.

Use to create a configuration
section based on the parameters
of an existing configuration
section.

Edit Opens the Edit Description
dialog.

Allows editing the text
description of a configuration
section.

Delete Opens the Confirmation
dialog when deleting a
configuration section.

Irrevocably deletes a
configuration section and its
contents when you press Delete
in the Confirmation dialog.

Create Opens the Create Section
dialog.

Creates a new configuration
section. You must supply a
required name and an optional
description for it.

Table 10–3 Tasks for Working with Parameters in a Named Configuration Section

Task Description Comment

Revert Allows you to revert back
to the previous version of
the configuration section.

Does not allow you to
revert individual
changes in a
configuration section.

Apply Applies and activates all
changes made to
parameters in a
configuration section.

Once applied, you
cannot revert changes
to individual
parameters.

Add Opens the Add Parameter
dialog.

Add a parameter to a
configuration section
based on a mandatory
name and an optional
value and description.

Managing JVM Pooling from Fusion Middleware Control

Configuring and Managing Java Virtual Machines 10-11

10.8.2 Managing JVM Configuration Sections
This section describes creating, editing, duplicating, and deleting named JVM
configuration sections.

10.8.2.1 Accessing the JVM Configuration Page

To access the JVM configuration page:

1. Start the Enterprise Manager Fusion Middleware Control.

2. From the Fusion Middleware Control main page, click the link to the Forms
Services instance that you want to configure.

3. From the Forms menu list, select the JVM Configuration menu item.

The JVM Configuration page (Figure 10–4) is displayed.

Figure 10–4 JVM Configuration Page

10.8.2.2 Creating a New Configuration Section
You can create new configuration sections in jvmcontrollers.cfg from the JVM
Configuration page of Fusion Middleware Control. These configurations can be
requested in the end-user's query string of the URL that is used to run a form.

To create a new configuration section:

1. From the Fusion Middleware Control main page, click the link to the Forms
Services instance that you want to configure.

2. From the Forms menu list, select JVM Configuration.

3. Click Create.

The Create dialog appears.

Delete Deletes a parameter. Use Apply to save
changes or Revert to
discard them. Once
applied, you cannot
revert changes to
individual parameters.

Table 10–3 (Cont.) Tasks for Working with Parameters in a Named Configuration Section

Task Description Comment

Managing JVM Pooling from Fusion Middleware Control

10-12 Forms Services Deployment Guide

4. Enter a name and description for your new configuration section and click Create.

The new configuration section is added.

10.8.2.3 Editing a Named Configuration Description
You can edit the description (comments) for a named configuration from the JVM
Configuration page.

To edit a named configuration description:
1. In the JVM Configuration region, select the row containing the named

configuration for which you want to edit the description.

2. Click Edit.

3. The Edit Description dialog appears.

4. Enter the description in the Comments field.

5. Click Save.

The Edit Description dialog box is dismissed, and your changes are saved and
displayed.

10.8.2.4 Duplicating a Named Configuration
You can make a copy of a named configuration for backup purposes, or create new
configuration sections from existing configuration sections.

To duplicate a named configuration:
1. In the JVM Configuration region, select Create Like.

2. In the Create Like dialog, from the Section to Duplicate menu, select the name of
an existing configuration section you want to duplicate.

3. In the New Section Name field, enter a name for the new configuration section.
The name for the new configuration section must be unique.

4. Click Create.

A new section with exactly the same parameters, parameter values and comments
of the section you are duplicating is created.

10.8.2.5 Deleting a Named Configuration
When you delete a named configuration section, you delete all the information within
it. If you only want to delete specific parameters, see Section 10.8.3, "Managing
Parameters".

To delete a named configuration:
1. From the JVM Configuration region, select the row of the configuration section

you want to delete.

2. Click Delete.

The Confirmation dialog appears.

3. Click Delete.

The configuration section is deleted.

Oracle Enterprise Manager returns to the JVM Configuration page and displays
the remaining configurations.

Managing JVM Pooling from Fusion Middleware Control

Configuring and Managing Java Virtual Machines 10-13

10.8.3 Managing Parameters
Use Fusion Middleware Control to manage parameters within a named configuration.
You can add, edit, or delete parameters using Fusion Middleware Control.

To edit a parameter in a configuration section:
1. From the JVM Configuration region, select the row of the configuration section

that contains the parameter(s) you want to edit.

2. Select the row of the parameter you want to edit. Enter the Value and Comments.

3. Click Apply to save the changes or Revert to discard them.

To add a parameter to a configuration section:
1. In Fusion Middleware Control, from the JVM Configuration region, select the

configuration section row for which you want to add a parameter.

2. Click Add to add a new parameter.

The Add dialog box is displayed.

3. Enter the Name, Value and Comments for the parameter.

4. Click Create to add the parameter.

5. Click Apply to save the changes or Revert to discard them.

To delete a parameter in a configuration section:
1. In Fusion Middleware Control, from the JVM Configuration region, select the

configuration section from which you want to delete a parameter.

2. Select the row that contains the parameter you want to delete.

3. Click Delete.

4. Click Apply to save the changes or Revert to discard them.

10.8.4 JVM Configuration Parameters and Default Values
Table 10–4 describes the JVM configuration parameters and their default values.

Note: You cannot delete the Default configuration section.

Table 10–4 JVM Configuration Parameters

Parameter Description Default Value

Maximum
Sessions per
JVM

Specifies the maximum number of concurrent
Oracle Forms sessions the default JVM will serve
before a new JVM is spawned.

65535

Classpath When you specify a classpath, it will override the
system classpath or any classpath specified in your
environment.

$ORACLE_
HOME/jdk/bin/java

JVM Options Enter any valid options to pass to the JVM. Refer to
the Sun Java documentation for a list of valid JVM
startup parameters.

Null

Managing JVM Pooling from Fusion Middleware Control

10-14 Forms Services Deployment Guide

10.8.5 Starting and Stopping JVM Controllers with Fusion Middleware Control
Fusion Middleware Control is the recommended tool for managing Oracle Forms
Services, such as starting, stopping, and restarting a JVM controller.

If a JVM controller is down, you can start it. If a JVM controller is already running, you
can restart it without first having to manually stop it. Fusion Middleware Control does
this step for you.

To access the JVM Controller page:
1. Start the Enterprise Manager Fusion Middleware Control.

2. From the Forms home page, select JVM Controllers.

The JVM Controllers page (Figure 10–5) is displayed.

Figure 10–5 JVM Controller Page

To start a JVM controller that is not running:
1. From the Forms menu, select JVM Controllers.

The JVM Controllers page is displayed.

Log
Directory

Leave Log Directory blank to use the log location
for the default JVM controller. If any other
directory is set, the log file cannot be viewed
through Enterprise Manager.

$ORACLE_
INSTANCE/FRCompone
nt/frcommon/tools/
jvm/log

Logging Specifies whether logging is enabled or not. Valid
values: On, Off.

On

Comment Add any comments about this default JVM in this
text area.

Null

Note: Ensure that users have stopped the forms sessions that are
using the JVM controller before you stop or restart the JVM. Users
may want to restart sessions when the JVM is restarted.

Table 10–4 (Cont.) JVM Configuration Parameters

Parameter Description Default Value

Managing JVM Pooling from Fusion Middleware Control

Configuring and Managing Java Virtual Machines 10-15

2. Select the JVM controller that you want to start. A JVM that is not running is
indicated by a red, down arrow.

3. Click Start.

When the JVM controller has started, a green, up arrow (Figure 10–5) is displayed
in the Status.

To restart a running JVM controller:
1. From the Forms menu, select JVM Controllers.

The JVM Controllers page is displayed.

2. Select the JVM controller to be restarted.

3. Click Restart.

4. Click Yes on the Confirmation dialog.

The JVM Controller page reappears.

When the JVM controller has restarted, a green, up arrow is displayed in the
Status.

To stop a JVM Controller
1. From the Forms menu, select JVM Controllers.

The JVM Controllers page is displayed.

2. Select the running JVM controller that you want to stop, indicated by a green, up
arrow.

3. Click Stop.

4. Click Yes on the Confirmation dialog.

When the JVM controller has been stopped, a red, down arrow (Figure 10–5) is
displayed in the Status.

To view additional details of a JVM Controller
1. From the Forms menu, select JVM Controllers.

The JVM Controllers page is displayed.

2. Click the plus symbol next to the JVM controller. The row is expanded to display
additional details (Figure 10–5) of the JVM controller.

10.8.6 Forms Configuration File Settings
This section describes the JVM pooling parameters that are used in the Forms
configuration file (formsweb.cfg) to enable or disable use of JVM controller for
applications. The parameter names are not case-sensitive. You can use Fusion
Middleware Control to administer the Forms configuration file.

Table 10–5, " Oracle Forms JVM Controller Startup Parameters" describes the startup
options that you specify in the formsweb.cfg file.

For more information on modifying the parameters in formsweb.cfg, see
Section 4.2.4, "Managing Parameters".

Managing JVM Pooling from Fusion Middleware Control

10-16 Forms Services Deployment Guide

10.8.7 Startup Example
This example illustrates an environment of multiple JVMs for multiple applications.

As shown in Table 10–6, formsweb.cfg is configured with four configuration
sections.

If a user starts an ordersApp application, and the application executes Java code, the
Forms runtime process will route the request to the JVM controller named
commonJVM. Because the [ordersApp] application section does not specify which
JVM controller to use, the Forms runtime process uses the global one. If the JVM
controller is not started, it will be dynamically started. If a second user starts the same
application, it too will attach to commonJVM.

When a user starts an hrApp application and it executes Java code, the Forms runtime
process sends the request to the JVM controller named hrJVM because the [hrApp]
application section overrides the global setting. If the JVM controller is not started, it
will be dynamically started. When a second user starts the same application, it too will
attach to hrJVM.

Table 10–5 Oracle Forms JVM Controller Startup Parameters

Parameter Description

jvmcontroller Valid values: name of jvmcontroller. In addition, you
can specify no JVM by leaving it blank.

Default value: none

Note: In order to specify this parameter in
formsweb.cfg, you must first specify this parameter
in otherparams in the form
jvmcontroller=%jvmcontroller%. For more
information on otherparams, see Table 4–13,
" Advanced Configuration Parameters".

This parameter can be set globally in the default
section, or any application section can choose to
override it. This tells the Forms runtime process which
JVM controller to use. It corresponds to the
jvmcontroller parameter for the dejvm executable.

If jvmcontroller does not have a value
(jvmcontroller=), then the Forms runtime process
will start its own in-process JVM, which means that the
Java Importer uses pre-10g behavior.

allowJVMControllerAutoStart Valid values: true, false

Default value: true

This parameter enables Oracle Forms to run the JVM
controller if Forms is configured to use the JVM
controller which is not already running.

Table 10–6 Multiple JVMs for Multiple Applications

Named Configuration Section JVM Configuration

default jvmcontroller=commonJVM

ordersApp None

hrApp jvmcontroller=hrJVM

salesApp jvmcontroller=

JVM Controller Logging

Configuring and Managing Java Virtual Machines 10-17

When a user starts a salesApp application and it executes Java code, the Forms
runtime process starts an in-process JVM in the same way the Java Importer works
without JVM pooling. When a second user starts the same application, the application
will get their own in-process JVM, thus consuming more memory, as shown in
Figure 10–6:

Figure 10–6 Multiple JVMs for multiple applications

10.9 JVM Controller Logging
When logging is enabled, the JVM controller logs certain information to the log file:

■ The values of the JVM parameters (maxsessions, classpath, and so on);

■ When a JVM controller starts and stops;

■ When a child JVM is spawned;

■ When an Forms runtime process starts a new connection, along with its process ID

This is useful for knowing which Forms runtime processes are connected to which
JVM controller for diagnostics or administration;

■ When an Forms runtime process session ends and disconnects from the JVM.

This section contains the following:

■ Section 10.9.1, "Specifying JVM Default Logging Properties"

■ Section 10.9.2, "Specifying the JVM Log Directory Location"

■ Section 10.9.3, "Accessing Log Files"

■ Section 10.9.4, "Deleting a Log File for a JVM Controller"

10.9.1 Specifying JVM Default Logging Properties
Use Fusion Middleware Control to manage the properties for JVM controller logging.

Application Server

Forms Runtime
Process

“In-process” JVMsalesApp Client

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

Forms Runtime
Process

“In-process” JVM

commonJVM

hrJVM

salesApp Client

hrApp Client

hrApp Client

ordersApp Client

ordersApp Client

JVM Controller Logging

10-18 Forms Services Deployment Guide

1. In the JVM Configuration page, select the the JVM configuration section.

2. For the Logging parameter, enter On or Off.

3. Click Apply.

10.9.2 Specifying the JVM Log Directory Location
You can specify the log file directory in the JVM controller. You can also specify the
default JVM controller log file location for other JVM controllers to use.

To specify the log file directory location:
1. Create a JVM controller. For more information, see Section 10.8.2.2, "Creating a

New Configuration Section" or Section 10.8.2.4, "Duplicating a Named
Configuration".

2. Add the Log Directory parameter. For more information, see Section 10.8.3,
"Managing Parameters."

If you have duplicated a named configuration section that has Log Directory
parameter defined in it, you can edit the existing parameter as given in the
Section 10.8.3, "Managing Parameters."

3. Click Apply to save the changes.

The JVM Configuration page reappears.

10.9.3 Accessing Log Files
When the log file exists, an icon is displayed in the Logfile column.

To access a log file:
■ Click the Log File link in the Logfile column that is available for that JVM

controller.

The Log File page appears and displays the log information.

10.9.4 Deleting a Log File for a JVM Controller
Use Fusion Middleware Control to delete log files.

To delete a log file for a JVM controller:
1. From the JVM Controllers page, select the the target JVM.

2. Click Delete Logfile.

The Delete Confirmation dialog appears.

3. Click Delete.

The logfile is deleted and the JVM Controllers page reappears.

Note: If you delete a log file of a JVM that is running, the log file will
be available again when the JVM is restarted. Logging is possible only
when the JVM is restarted.

JVM Pooling Error Messages

Configuring and Managing Java Virtual Machines 10-19

10.10 Integrating Forms and Reports
JVM Controller (dejvm) is used for Reports integration in Forms. All requests related
to Reports such as running a report on Reports Server, getting the status of a Report,
getting Reports output, or cancelling the job submitted to Reports Server are routed to
the dejvm for dejvm-enabled runform to make calls to Reports.

To use dejvm for reports integration, perform the following steps. These settings are
not required when Oracle Forms makes Reports call directly.

To use dejvm for Reports integration:
1. Enable JVM pooling in formsweb.cfg. For more information, see Section 10.8.6,

"Forms Configuration File Settings".

2. Two additional .jar files are required by dejvm for Reports integration. Set the
classpath in jvmcontrollers.cfg to include these jars: zrcclient.jar
($ORACLE_HOME/jlib/zrclient.jar) and rwrun.jar ($ORACLE_
HOME/reports/jlib/rwrun.jar).

10.11 JVM Pooling Error Messages
PDE-JM001: Unable to communicate with the JVM Controller: <jvm_name>.

Cause: Failed to start the JVM controller or connect to an existing JVM controller.

Action: Notify your administrator.

JVM Pooling Error Messages

10-20 Forms Services Deployment Guide

11

Forms Services Security Overview 11-1

11 Forms Services Security Overview

The ability to control user access to Web content and to protect your site against people
breaking into your system is critical. This chapter describes the architecture and
configuration of security for Oracle Forms Services:

■ Section 11.1, "Forms Services Single Sign-On"

■ Section 11.2, "Configuring Oracle Forms Services Security"

11.1 Forms Services Single Sign-On
Single Sign-on in Oracle Forms Services is available through mod_osso, an Oracle
module for the Oracle HTTP Server. mod_osso authenticates a user against Oracle
Single Sign-On Server, which in turn uses Oracle Internet Directory as a user
repository, before further passing the Forms application request to the Forms servlet.

Forms applications expect a database connect string to be passed along with the
application request, otherwise a logon dialog is shown. To retrieve the database
connect information in a Oracle Single Sign-On Server environment, the Forms servlet
queries Oracle Internet Directory for the value of the combined unique key that is
constructed from the user's Oracle Single Sign-On Server name, the authenticated user
name, and the name of the application that the user is requesting to start.

Resource Access Descriptors (RAD) are entries in Oracle Internet Directory that are
defined for each user and application which contain the required database connect
information. The Forms servlet reads the database connect information from the RAD
and passes it along with the command line that starts the Forms Web application.
Although the Forms authentication is still database-centric, mod_osso and the Forms
servlet are now integrated in a Web-based Oracle Single Sign-On Server environment.

11.1.1 Classes of Users and Their Privileges
Historically, Forms applications use the database to authenticate application users. To
use Oracle Forms Services with Oracle Single Sign-On Server, the user account and its
connect information must be available in Oracle Internet Directory. Oracle Internet

See Also: For additional information about security, refer to the
following documents:

■ The Oracle Fusion Middleware Security Overview provides an
overview of Oracle Fusion Middleware security and its core
functionality.

■ The Oracle Fusion Middleware Getting Started with Oracle Identity
Management provides guidance for administrators of the Oracle
security infrastructure.

Forms Services Single Sign-On

11-2 Forms Services Deployment Guide

Directory provides several ways of provisioning user data, using PL/SQL, Java or the
Oracle Delegated Administration Services. Oracle Delegated Administration Services
is a Web-based user interface for Oracle Single Sign-On Server users and delegated
administrators to administer self-service data in Oracle Internet Directory for which
they are authorized.

Once a user account is created in Oracle Internet Directory, the Resource Access
Descriptors (RAD) entries can be created dynamically the first time that a user
requests a Forms application, assuming the user knows about the database connect
information required for this application.

Another option is to use the RAD entries that can be created using Oracle Delegated
Administration Services. The default RAD entries are accessible for all users that are
authenticated through Oracle Single Sign-On Server. Use the default RAD if all users
share the same database connect information when running a particular Forms
application on the Web. This way, users are authenticated individually by their Oracle
Single Sign-On Server credentials; however, all users share a common database
connect (information) for the application defined by a default RAD entry.

11.1.1.1 Default Single Sign-On Behavior for User Accounts
By default, OracleAS Single Sign-On Server is enabled and no proxy user is involved.
Oracle Forms users need to authenticate with OracleAS Single Sign-On Server, retrieve
Resource Access Descriptors from the identity store (which is usually Oracle Internet
Directory) and use these credentials to connect to the database.

11.1.1.2 Users Using Database Proxy Functionality
There is a new Oracle Single Sign-On Server parameter, ssoProxyConnect. Setting
this to true allows users to connect as proxy users. The user is then required to
authenticate with Oracle Single Sign-On Server, and a Resource Access Descriptor is
configured which holds the proxy user's username and password. There is additional
database configuration that needs to be implemented by the database administrator to
allow for proxy connections.

11.1.2 Resources That Are Protected
When you enable Oracle Single Sign-On Server for your Forms applications, you can
secure your Forms applications with these features:

11.1.2.1 Dynamic Directives
The dynamic mod_osso directive runs Oracle Single Sign-On Server protected Forms
applications. This directive can optionally be used to run non-protected Forms
applications from the same Oracle Forms Services instance. These applications use the
same configuration files and Forms servlet. Single sign-on is enabled for applications
by a OracleAS Single Sign-On Server parameter in the application definition of the
formsweb.cfg configuration file.

11.1.2.2 Dynamic Resource Creation in Oracle Internet Directory
In some previous releases of Oracle Forms Services, if no resource access descriptor
(RAD) definition was found for a specific application and user, an error message was
displayed which locked out the user from running that Forms application, despite
having authentication to do so. In this release of Oracle Forms Services, you can now
configure Oracle Forms Services to allow users to create the RAD for this application
on the fly if it does not exist. The funtionality to redirect to DAS pages is achieved with
the single sign-on parameter ssoDynamicResourceCreate.

Configuring Oracle Forms Services Security

Forms Services Security Overview 11-3

11.1.2.3 Database Password Expiration when Using Single Sign-On
In some previous releases of Oracle Forms Services, the RAD information in Oracle
Internet Directory was not updated if the database password had expired, and users
then renewed them when connecting to a Forms application. In this release, Oracle
Forms Services automatically updates the RAD information in Oracle Internet
Directory whenever a database password is updated through Forms. There is no extra
configuration necessary to enable this feature in Oracle Forms Services.

11.1.3 Authentication and Access Enforcement
For detailed information about the authentication flow of Oracle Single Sign-On Server
support in Oracle Forms Services, such as when the first time the user requests an
Oracle Forms Services URL, or from a partner application, see Section 9.1.1,
"Authentication Flow".

11.1.4 Leveraging Oracle Identity Management Infrastructure
Oracle Forms Services has tighter integration with Oracle Internet Directory with
minimal configuration. When you configure Oracle Single Sign-On Server Server for
your Forms applications, Oracle Forms Services handles much of the configuration
and interaction with Oracle Internet Directory.

With the absence of Repository API in 11g, Oracle Forms and Identity Management
integration involves the registration of Forms application identity at the time of
deployment when a relationship is established between Forms and the Oracle Internet
Directory (OID) host. This process is know as associating with the Oracle Internet
Directory. Related information such as Forms Distinguished Name (formsDN) and the
password are stored in Credential Storage Framework (CSF). At run time, a JNDI
connection is made to Oracle Internet Directory after extracting the required
information from CSF. Oracle Forms and Identity Management integration involves
the following:

■ Integration at bootstrap: The Forms application entity (and Distinguished Name)
with a password is created in Oracle Internet Directory.

■ Integration at run time: Previously, the connection to Oracle Internet Directory
used Repository API. In 11g, a JNDI call is used to directly connect to Oracle
Internet Directory.

For more information about associating and disassociating Oracle Internet Directory,
see Section 9.7, "Configuring Oracle Internet Directory."

11.2 Configuring Oracle Forms Services Security
Configuring security for Oracle Forms Services is done through Oracle Fusion
Middleware Control. Online help is available for each screen. For more information,
see Chapter 4, "Configuring and Managing Forms Services" and Chapter 9, "Using
Forms Services with Oracle Single Sign-On".

11.2.1 Configuring Oracle Identity Management Options for Oracle Forms
Oracle Forms Services can be configured to create resources dynamically in Oracle
Internet Directory, or have a user with no Oracle Internet Directory resource use a
common resource.

For more information, see Chapter 9, "Using Forms Services with Oracle Single
Sign-On".

Configuring Oracle Forms Services Security

11-4 Forms Services Deployment Guide

11.2.2 Configuring Oracle Forms Options for Oracle Fusion Middleware Security
Framework

For more detailed information about configuring and securing Oracle Forms, see the
following chapters:

■ Chapter 3, "Basics of Deploying Oracle Forms Applications"

■ Chapter 4, "Configuring and Managing Forms Services"

■ Chapter 9, "Using Forms Services with Oracle Single Sign-On"

■ Chapter 12, "Tracing and Diagnostics"

11.2.3 Securing RADs
To increase the security of RADs and prevent them from being viewable by the OID
administrator, perform the following steps:

1. Copy the contents enclosed by ---aci-change.ldif--- into the file
aci-change.ldif

---aci-change.ldif---
dn: cn=Extended Properties,%s_OracleContextDN%
changetype: modify
delete: orclaci
orclaci: access to attr=(orclUserIDAttribute,orclPasswordAttribute) by
guidattr=(orclOwnerGUID)(read,search,compare,write) by
dnattr=(orclresourceviewers) (read,search, compare, write) by
groupattr=(orclresourceviewers) (read,search, write) by * (none)
-
add: orclaci
orclaci: access to attr=(orclUserIDAttribute,orclPasswordAttribute)
DenyGroupOverride by guidattr=(orclOwnerGUID)(read,search,compare,write) by
dnattr=(orclresourceviewers) (read,search, compare, write) by
groupattr=(orclresourceviewers) (read,search, write) by * (none)
---aci-change.ldif---

2. In the LDIF file, replace %s_OracleContextDN% with the distinguished name
(DN) of the realm-specific Oracle Context.

For example, if the DN in the deployment is dc=acme,dc=com, then the
realm-specific Oracle Context is cn=OracleContext,dc=acme,dc=com.

3. Execute the following command on the OID tier:

ldapmodify -p <port> -h <host> -D cn=orcladmin -q -v -f
aci-change.ldif

4. When this command is run, it will prompt for the cn=orcladmin password since
the password is not included as a command-line parameter.

To undo these changes, issue the same command (subject to the notes as above), but
using the following contents in the .ldif file:

---aci-revert.ldif---
dn: cn=Extended Properties,%s_OracleContextDN%

Note: In aci-change.ldif, the line beginning with orclaci:
access to attr= is a single line ending with by * (none) and
should not have any line breaks in the middle.

Configuring Oracle Forms Services Security

Forms Services Security Overview 11-5

changetype: modify
delete: orclaci
orclaci: access to attr=(orclUserIDAttribute,orclPasswordAttribute)
DenyGroupOverride by guidattr=(orclOwnerGUID)(read,search,compare,write) by
dnattr=(orclresourceviewers) (read,search, compare, write) by
groupattr=(orclresourceviewers) (read,search, write) by * (none)
-
add: orclaci
orclaci: access to attr=(orclUserIDAttribute,orclPasswordAttribute) by
guidattr=(orclOwnerGUID)(read,search,compare,write) by
dnattr=(orclresourceviewers) (read,search, compare, write) by
groupattr=(orclresourceviewers) (read,search, write) by * (none)
---aci-revert.ldif---

Configuring Oracle Forms Services Security

11-6 Forms Services Deployment Guide

12

Tracing and Diagnostics 12-1

12 Tracing and Diagnostics

This chapter contains the following sections:

■ Section 12.1, "About Forms Trace"

■ Section 12.2, "Enabling and Configuring Forms Trace"

■ Section 12.3, "Starting and Stopping Forms Trace"

■ Section 12.4, "Viewing Forms Trace Output"

■ Section 12.5, "List of Traceable Events"

■ Section 12.6, "Taking Advantage of Oracle Diagnostics and Logging Tools"

12.1 About Forms Trace
Forms Trace allows you to record information about a precisely defined part of forms
functionality or a class of user actions. This is accomplished by defining events for
which you want to collect trace information. For example, you can record information
about trigger execution, mouse-clicks, or both. From the Enterprise Manager Fusion
Middleware Control, you can use trace output to diagnose performance and other
problems with Oracle Forms applications.

Forms Trace replaces the functionality that was provided with Forms Runtime
Diagnostics (FRD) and Performance Event Collection Services (PECS), which were
available in earlier releases of Oracle Forms. Forms Trace allows you to trace the
execution path through a form, for example, the steps the user took while using the
form.

12.1.1 What Is the Difference between Tracing and Debugging?
You use Forms debugging to find out what happens when a user presses a button.
Debugging allows a remote developer to connect to an existing Forms user session and
to trace the user actions as the application runs or to debug on a local machine. Forms
Trace provides information about the timing of specific events. Oracle Support uses
tracing to isolate and analyze issues. For example, you use Forms trace to find out
which query takes the longest time to execute, or which trigger causes performance
issues with Oracle Forms.

12.2 Enabling and Configuring Forms Trace
An event is something that happens inside Oracle Forms as a direct or indirect result of
a user action. An example is when a user presses a button that executes a query. An

Enabling and Configuring Forms Trace

12-2 Forms Services Deployment Guide

event set specifies a group of events that you can trace simply by specifying the event
set name rather than each event number individually when you start the trace.

Use the Trace Configuration selection in the Forms menu of Oracle Enterprise
Manager page to define the events that you want to trace. This page manages all
changes in the ftrace.cfg file for you.

Keep these items in mind when working with Forms Trace:

■ If you first switch off trace, and then switch it on again with new settings, then
trace is enabled with the new trace group.

■ In order to trace Forms Processes on Windows, the Process Manager Service needs
to have the check box "Allow service to interact with the desktop" selected. When
this is not set, attempting to switch on Trace will result in the error:
oracle.sysman.emSDK.emd.comm.RemoteOperationException. Check
the User Name and Password.

■ Backup the ftrace.cfg and default.env files before editing them with Fusion
Middleware Control.

■ As with most Web applications, it is easy to lose unsaved changes by switching
pages. Be sure to save any changes you make through Fusion Middleware Control
to Forms configuration, trace, or environment files before proceeding to other
pages.

The length of time it takes for changes to be saved is affected by the number of
lines you have changed. For example, an additional fifty lines of comments will
take longer to save than just deleting a single entry.

See Section 12.5, "List of Traceable Events" for a list of events and their corresponding
event numbers.

12.2.1 Configuring Forms Trace

To access the Trace Configuration page:
1. Start Fusion Middleware Control.

2. From the Fusion Middleware Control main page, click the link to the Oracle Forms
Services instance that you want to configure.

3. From the Forms menu list, select Trace Configuration.

The Trace Configuration page (Figure 12–1) is displayed.

Enabling and Configuring Forms Trace

Tracing and Diagnostics 12-3

Figure 12–1 Trace Configuration Page

To create a new trace group:
1. From the Fusion Middleware Control main page, click the link to the Oracle Forms

Services instance that you want to configure.

2. From the Forms menu list, select Trace Configuration.

The Trace Configuration page is displayed.

3. Click Add.

The Add dialog is displayed.

4. Enter the information for the new trace group:

Name: Enter a name for the trace group.

Value: See Table 12–2 for the values of traceable events.

Comment : Enter a comment.

■ The trace group name must not contain spaces. For example, a_b_c is an
acceptable trace group name.

■ There must be a comma between each event number you specify in the Value.
For example, 65,66,96,194 is an acceptable value.

■ You can use a range of numbers. For example, 32-46 is an acceptable range.

5. Click Add.

The new trace group is added.

6. Click Apply to save the changes, or Revert to discard them.

To delete a trace group:

1. In the Trace Configuration page, select the group you want to delete.

2. Click Delete.

The trace group is deleted and the Trace Configuration page reappears.

3. Click Apply to save the changes, or Revert to discard them.

To edit an existing trace group:

1. In the Trace Configuration page, select the group you want to edit.

Starting and Stopping Forms Trace

12-4 Forms Services Deployment Guide

2. Enter the value and description for the trace group.

3. Click Apply to save the changes, or Revert to discard them.

12.2.2 Specifying URL Parameter Options
The following command line parameters are used to configure Forms Trace:

Record =
Tracegroup =
Log = <filename>

Table 12–1 describes the parameter values:

12.3 Starting and Stopping Forms Trace
You start a trace by specifying trace entries in the URL or from Fusion Middleware
Control. Entries should include the grouping of events to collect and the trace file
name. Trace collection starts when the form executes.

The following are sample URLs to start a trace:

http://example.com/forms/frmservlet?form=cxl&record=forms&tracegroup=0-199
http://example.com/forms/frmservlet?form=cxl&record=forms&tracegroup=mysql

Table 12–1 Forms Trace Command Line Parameters

Parameter Values Description

Record forms Enables Forms Trace.

Tracegroup Name, event
number, or event
range

Indicates which events should be recorded
and logged.

■ If Tracegroup is not specified, only
error and Startup messages are
collected.

■ Tracegroup is ignored if Forms Trace is
not switched on at the command line.

■ You can create a named set of events
using the Tracegroup keyword, for
example

Tracegroup=<keyword>, where
<keyword> is specified in ftrace.cfg (for
example, Tracegroup=MyEvents).

This lets you log the events in the named
set MyEvents.

■ You can log all events in a specified
range using the Tracegroup keyword,
for example

Tracegroup = 0-3

This lets you log all events in the range
defined by 0 <= event <=3.

■ You can log individual events using
the Tracegroup keyword, for example

Tracegroup = 34,67

■ You can combine event sets using the
Tracegroup keyword, for example

Tracegroup = 0-3,34,67,SQLInfo

Viewing Forms Trace Output

Tracing and Diagnostics 12-5

To start tracing a session from Fusion Middleware Control:
1. From the Forms menu, select User Sessions.

The User Sessions page appears.

2. Select the row containing the Forms user session for which you want to enable
tracing.

3. Click Enable Tracing.

The Enable Tracing dialog appears.

4. From the Select Trace Group list, select an available trace group and click OK.

The Enable Tracing dialog is dismissed and tracing is now enabled for the selected
Forms user session.

To stop tracing a session from Fusion Middleware Control:
1. From the Forms menu, select User Sessions.

The User Sessions page appears.

2. Select the row containing the Forms user session for which you want to disable
tracing.

3. Click Disable Tracing.

The Disable Tracing dialog is displayed.

4. Click OK.

The Disable Tracing dialog is dismissed and tracing is now stopped for the
selected Forms user session.

To switch between trace groups for a session:
1. Select the row containing the Forms user session for which you want to change the

trace group.

2. Click Enable Tracing.

The Enable Tracing dialog is displayed.

3. From the Select Trace Group list, select the new trace group and click OK.

The Enable Tracing dialog is dismissed. Refresh the page.

12.4 Viewing Forms Trace Output
Only administrators or a user belonging to administrators' group can view trace log
files. Once the user has logged in, he or she does not have to log in again in the same
browser session to view trace log files for different sessions.

Trace data is stored in a binary file with a *.trc extension. The default location of the
trace log is $ORACLE_INSTANCE/FormsComponent/forms/trace/forms_
pid.trc where pid is the process ID of the user session. If you are not using
Enterprise Manager Fusion Middleware Control, you need to use the Translate utility.
For more information on running the Translate Utility, see the next section
Section 12.4.1, "Running the Translate Utility."

To view trace data:

List of Traceable Events

12-6 Forms Services Deployment Guide

1. From the Forms menu in Fusion Middleware Control, select the User Sessions
menu item.

2. Select a User Session row and click Trace Log to see the contents of the trace log.

3. Log in to view the trace file.

12.4.1 Running the Translate Utility
The Translate utility converts trace data to XML, HTML, or text formats. You need to
specify an additional parameter "OutputClass" which has three legal values:
"WriteOutTEXT", "WriteOutXML" and "WriteOutHTML". If you do not specify the
outputclass, the output file is in text format. These values are case-sensitive.

To convert trace data to Text format:

■ At the command line, enter:

java oracle.forms.diagnostics.Xlate datafile=a.trc
outputfile=myfile.txt outputclass=WriteOutTEXT

This creates a file called myfile.txt in text format.

To convert trace data to HTML format:
■ At the command line, enter:

java oracle.forms.diagnostics.Xlate datafile=a.trc
outputfile=myfile.html outputclass=WriteOutHTML

This creates a file called myfile.html in HTML format.

To convert trace data to XML format:
■ To create myfile.xml, at the command line, enter:

java oracle.forms.diagnostics.Xlate datafile=a.trc
outputfile=myfile.xml outputclass=WriteOutXML

This creates a file called myfile.xml in XML format.

12.5 List of Traceable Events
Table 12–2, " List of Traceable Events" lists the events that can be defined for tracing. In
future releases of Forms, more events may be added to this list.

Event types are as follows:

■ Point event: An event that happens in Oracle Forms as the result of a user action
or internal signal for which there is no discernible duration, for example,
displaying an error message on the status line. Each instance of this event type
creates one entry in the log file.

■ Duration event: An event with a start and end, for example, a trigger. Each
instance of this event type creates a pair of entries in the log file (a start and end
event).

Note: To use the Translate Utility:

1. Set the PATH variable to include the path to the directory containing the
Java executable.

2. Set the CLASSPATH variable to include the path to frmxlate.jar.

List of Traceable Events

Tracing and Diagnostics 12-7

■ Built-in event: An event associated with a built-in. Each instance of this event type
provides a greater quantity of information about the event (for example, argument
values).

Table 12–2 List of Traceable Events

Event
Number Definition Type

0 Abnormal Error point

1 Error during open form point

2 Forms Died Error point

3 Error messages on the status
bar

point

4-31 Reserved for future use NA

32 Startup point

33 Menu point

34 Key point

35 Click point

36 Double-click point

37 Value point

38 Scroll point

39 LOV Selection point

40 not used not used

41 Window Close point

42 Window Activate point

43 Window Deactivate point

44 Window Resize point

45 Tab Page point

46 Timer point

47 DB Event point

48 Reserved for future use NA

49-63 Reserved for future use NA

64 Form (Start & End) duration

65 Program Unit (Start & End) duration

66 Trigger (Start & End) duration

67 LOV (Start & End) duration

68 Opening a Editor point

69 Canvas point

70 Alert duration

71 GetFile point

72-95 Reserved for future use NA

96 Builtin (Start & End) builtin

List of Traceable Events

12-8 Forms Services Deployment Guide

* These event numbers do not have a TYPE because they are not really events, but
rather details for events. For example, the State Delta is something you can choose to
see - it is triggered by a real action or event.

12.5.1 List of Event Details
The following tables list event details that can be defined for tracing:

■ Table 12–3, " User Action Event Details"

■ Table 12–4, " Forms Services Event Details"

■ Table 12–5, " Detailed Events"

■ Table 12–6, " Three-Tier Event Details"

97 User Exit (Start & End) duration

98 SQL (Start & End) duration

99 MenuCreate (Start & End) duration

100 DB PU (Start & End) duration

101 Execute Query duration

102-127 Reserved for future use NA

128 Client Connect point

129 Client Handshake point

130 Heartbeat point

131 HTTP Reconnect point

132 Socket (Start & End) duration

133 HTTP (Start & End) duration

134 SSL (Start & End) duration

135 DB Processing (Start & End) duration

136 DB Logon (Start & End) duration

137 DB Logoff (Start & End) duration

138-159 Reserved for future use NA

160-191 Reserved for future use NA

192* Environment Dump N/A

193* State Delta N/A

194* Builtin Arguments N/A

195* UserExit Arguments N/A

196* Program Unit Arguments. point

256 and
higher

User defined NA

1024 and
higher

Reserved for internal use NA

Table 12–2 (Cont.) List of Traceable Events

Event
Number Definition Type

List of Traceable Events

Tracing and Diagnostics 12-9

■ Table 12–7, " Miscellaneous Event Details"

12.5.1.1 User Action Events

12.5.1.2 Forms Services Events

12.5.1.3 Detailed Events

Note: Event names are case sensitive.

Table 12–3 User Action Event Details

Action Details Number

Menu Selection Menu Name, Selection 33

Key Key Pressed, Form, Block, Item 34

Click Mouse/Key, Form, Block, Item 35

DoubleClick Form, Block, Item 36

Value Form, Block, Item 37

Scroll Form, Up, Down, Page, Row 38

LOV Selection LOV Name, Selection Item 39

Alert AlertName, Selection 40

Tab Form 45

DB Event Queue Name 47

Window Activate,
Deactivate,Close, Resize

WindowName, FormName, Size 41,42,43,44

Table 12–4 Forms Services Event Details

Event Name Details Number

Form Form ID, Name, Path, Attached
Libraries, Attached Menus

64

Program Unit Program Unit Name, FormID 65

Trigger TriggerName, FormName,
BlockName, ItemName, FormID

66

LOV LOV name, FormId 67

Editor FormId , Editor Name 68

Canvas FormId , Canvas Name 69

Table 12–5 Detailed Events

Event Name Details Number

Builtin BuiltinName, FormId 96

User Exit UserExitName, FormId 97

MenuCreate MenuName, FormID 99

PLSQL PLSQLSTmt, FormID 100

ExecQuery Block Name 101

Taking Advantage of Oracle Diagnostics and Logging Tools

12-10 Forms Services Deployment Guide

12.5.1.4 Three-Tier Events

12.5.1.5 Miscellaneous Events

12.6 Taking Advantage of Oracle Diagnostics and Logging Tools
Oracle Diagnostics and Logging (ODL) is a feature of Oracle Fusion Middleware that
enables administrators to keep a record of all Oracle Forms sessions, monitor Oracle
Forms-related network traffic, and debug site configuration problems. Some of the
features of Oracle Diagnostics and Logging available to Forms Services include:

■ Recording of all Oracle Forms sessions, including session start and end times, and
the user's IP address and host name (session-level logging)

■ Monitoring of Oracle Forms-related network traffic and performance
(session-performance and request-performance-level logging)

■ Generating debugging information for site configuration issues (debug-level
logging)

■ Logging handled through Fusion Middleware Control

■ Correlating events in these log files with events in the database

■ Automatic handling of log file rotation.

■ Handling of log size restriction by the mechanism rather than by OS level scripts
as was done previously

Table 12–6 Three-Tier Event Details

Event Name Details Number

Client Connect Timestamp 128

Client Handshake Timestamp 129

Heartbeat Timestamp 130

HTTP Reconnect NA 131

Socket FormId, Packets, Bytes 132

HTTP FormId, Packets, Bytes 133

HTTPS FormId, Packets, Bytes 134

DB Processing FormId, Statement 135

DB Logon FormId 136

DB Logoff FormId 137

Table 12–7 Miscellaneous Event Details

Event Name Details Number

Environment Dump Selected environment information 192

State Delta Changes to internal state caused by
last action/event

193

Builtin Args Argument values to a builtin 194

Userexit args Arguments passed to a userexit 195

Procedure Args Arguments (in|out) passed to a
procedure.

196

Taking Advantage of Oracle Diagnostics and Logging Tools

Tracing and Diagnostics 12-11

These sections on the servlet logging tools contain the following:

■ Section 12.6.1, "Enabling Oracle Diagnostics and Logging"

■ Section 12.6.4, "Location of Log Files"

■ Section 12.6.5, "Example Output for Each Level of Servlet Logging"

12.6.1 Enabling Oracle Diagnostics and Logging
When you turn on logging, the Listener Servlet writes log messages to the servlet log
file. Examples of output for the various levels of logging are in Section 12.6.5,
"Example Output for Each Level of Servlet Logging".

Table 12–8 describes the supported logging capabilities. If no string is appended to
serverURL, then default logging is supported. To start other loggers, they must be
specified in serverURL as described in the next section.

12.6.1.1 Specifying Logging
To specify logging for all users, change the serverURL entry in the default section in
the Web Configuration page to the following:

serverURL=/forms/lservlet/<string>

where <string> specifies the logging capability as defined in Table 12–8. If no string is
provided, the default logging For example, if you want to start session-level logging,
modify the serverURL as follows:

serverURL=/forms/lservlet/session

12.6.1.2 Specifying Logging Levels Using Fusion Middleware Control
To set the log levels for Forms servlet logging using Fusion Middleware Control,
perform the following:

1. From the Fusion Middleware Control, select the managed server (for example
WLS_FORMS).

Table 12–8 Supported logging capabilities

String appended
to serverURL
client parameter Description of logging

(none) During Forms servlet initialization, a message is written to the log file
stating the name and path of the configuration file being used.
Messages of levels higher and equal to the log level set for the default
logger in logging.xml are logged. Default Value is set to
NOTIFICATION:1 and levels NOTIFICATION:1, WARNING:1,
ERROR:1 and INTERNAL_ERROR are logged.

/session Log messages are written whenever a Forms session starts or ends.
These give the host name and IP address of the client (the computer on
which the user's Web browser is running), the runtime process id, and
a unique internal session id number.

/sessionperf Performance summary statistics are included with the session end
message.

/perf A performance message is written for every request from the client.

/debug Full debug messages. Other debug messages are written in addition to
the messages mentioned above. This logging level is verbose and is
intended mainly for debugging and support purposes.

Taking Advantage of Oracle Diagnostics and Logging Tools

12-12 Forms Services Deployment Guide

2. From the WebLogic Server menu, select Logs, then Log Configuration.

3. In the Logger Name field, expand Root Logger. Expand each of the following:
oracle, oracle.forms. The Logger name defined in serverURL as described in
Section 12.6.1.1, "Specifying Logging" is displayed, for example
(oracle.forms.servlet.debug).

4. Choose the Log level as required from the list in the Oracle Diagnostic Logging
Level field. Refer to Table 12–9 for the mapping of the internal Forms log level to
the Java levels.

This configuration modifies the logging.xml file for the managed server.

12.6.1.3 Specifying Full Diagnostics in the URL that Invokes the Forms Servlet
To start full diagnostics, specify the parameter serverURL in formsweb.cfg as
follows:

serverURL=/forms/lservlet/debug

Start the Oracle Forms application using a URL as follows:

http://example.com/forms/frmservlet/debug?

12.6.2 Viewing Diagnostics Logs
You view the contents of diagnostics logs from Fusion Middleware Control.

To view the contents of diagnostics logs:
1. From the Forms menu, select Home.

The Fusion Middleware Control home page is displayed.

2. In the Forms Deployment region, scroll to the Servlet Logs column.

3. Click the corresponding Logs link for the target deployed application.

The Log Messages page is displayed.

12.6.3 Using the Servlet Page
From the Forms menu, select Monitoring and then Servlet Logs. Use this page to
search, sort, view, download, and export collected server diagnostics logs.

Table 12–9 Oracle Diagnostic Logging Levels

Internal Forms Log Levels Java Log Levels

DEBUG TRACE:32

REQUEST_PERFORMANCE TRACE:16

SESSION_PERFORMANCE TRACE:1

SESSION_START_END NOTIFICATION:16

NOTIFICATION NOTIFICATION:1

WARNING WARNING:1

ERROR ERROR:1

INTERNAL_ERROR INTERNAL_ERROR

Taking Advantage of Oracle Diagnostics and Logging Tools

Tracing and Diagnostics 12-13

For additional information on managing and viewing the log files, refer to the Oracle
Fusion Middleware Administrator’s Guide.

12.6.4 Location of Log Files
The default servlet log file is named formsapp-diagnostic.log. It is written to the
WLS_FORMS/logs directory of the Oracle WebLogic Managed Server to which Forms
is deployed.

In Oracle Forms Services, the full path is:

$DOMAIN_HOME/servers/WLS_FORMS/logs/<application
name>-diagnostic.log

The trace logs are stored in files named forms_pid.trc by default, where pid is the
process ID of the user session. The default location of the trace log is:

$ORACLE_INSTANCE/FormsComponent/forms/trace/forms_pid.trc

Use the Translate Utility described in Section 12.4.1, "Running the Translate Utility" to
view them.

12.6.5 Example Output for Each Level of Servlet Logging
The following are examples of the type of output you get when you use the following
levels of logging:

■ (none)

■ /session

■ /sessionperf

■ /perf

■ /debug

12.6.5.1 (none)
[2008-09-10T06:58:47.106-07:00] [WLS_FORMS] [NOTIFICATION] [FRM-93100]
 [oracle.forms.servlet] [tid: 11] [ecid: 0000HlCYKnmD4i8nvgy0V118lx4u000000,0]
 [APP: formsapp] [arg:
configFileName: <configfilename>
testMode: false] Initializing the Forms Servlet. Initialization
 parameters are:[[
 configFileName: <configfilename>
 testMode:
false
]]
[2008-09-10T06:58:53.517-07:00] [WLS_FORMS] [NOTIFICATION] [FRM-93180]
 [oracle.forms.servlet] [tid: 11] [ecid: 0000HlCZfTDD4i8nvgy0V118lx4u000003,0]
 [APP: formsapp] [arg:
envFile: null
WorkingDirectory: null
executable: null
WaitTime: 500
MaxBlockTime: 1000]
Initializing ListenerServlet. Initialization parameters
 are:[[
 envFile: null
 WorkingDirectory: null
 executable: null
 WaitTime: 500

Taking Advantage of Oracle Diagnostics and Logging Tools

12-14 Forms Services Deployment Guide

 MaxBlockTime: 1000
]]

12.6.5.2 /session
[2008-09-11T07:35:01.507-07:00] [WLS_FORMS] [NOTIFICATION:16] [FRM-93251]
[oracle.forms.servlet.session] [tid: 14] [ecid:
0000HlHpYGDD4i8nvgy0V118mFuv00000V,0] [SRC_CLASS:
oracle.forms.servlet.RunformSession] [APP: formsapp] [SRC_METHOD: <init>] [FORMS
SESSION_ID: ..8] [arg: supadhya-pc1] [arg: 10.177.254.46] Runtime session started
for client <pc1> (IP address <ip address>).
2008-09-11T07:35:01.798-07:00] [WLS_FORMS] [NOTIFICATION:16] [FRM-93548]
[oracle.forms.servlet.session] [tid: 14] [ecid:
0000HlHpYGDD4i8nvgy0V118mFuv00000V,0] [SRC_CLASS:
oracle.forms.servlet.RunformProcess] [APP: formsapp] [SRC_METHOD: connect] [FORMS
SESSION_ID: ..8] [arg: 7765] Runtime process ID is 7765.
2008-09-11T07:38:11.372-07:00] [WLS_FORMS] [NOTIFICATION:16] [FRM-93252]
[oracle.forms.servlet.session] [tid: 14] [ecid:
0000HlHpYGDD4i8nvgy0V118mFuv00000V,0] [SRC_CLASS:
oracle.forms.servlet.RunformSession] [APP: formsapp] [SRC_METHOD: stop] [FORMS
SESSION_ID: ..8] Forms session ended.

12.6.5.3 /sessionperf
[2008-09-11T07:40:25.923-07:00] [WLS_FORMS] [NOTIFICATION:16] [FRM-93251]
[oracle.forms.servlet.sessionperf] [tid: 17] [ecid:
0000HlHqlS9D4i8nvgy0V118mFuv00000Y,0] [SRC_CLASS:
oracle.forms.servlet.RunformSession] [APP: formsapp] [SRC_METHOD: <init>] [FORMS
SESSION_ID: ..9] [arg: <pc1>] [arg: 10.177.254.46] Runtime session started
for client <pc1> (IP address 10.177.254.46).
2008-09-11T07:40:26.223-07:00] [WLS_FORMS] [NOTIFICATION:16] [FRM-93548]
 [oracle.forms.servlet.sessionperf] [tid: 17] [ecid:
0000HlHqlS9D4i8nvgy0V118mFuv00000Y,0] [SRC_CLASS:
oracle.forms.servlet.RunformProcess] [APP: formsapp] [SRC_METHOD: connect] [FORMS
SESSION_ID: ..9] [arg: 8023] Runtime process ID is 8023.
2008-09-11T07:40:43.593-07:00] [WLS_FORMS] [NOTIFICATION:16] [FRM-93252]
[oracle.forms.servlet.sessionperf] [tid: 17] [ecid:
0000HlHqlS9D4i8nvgy0V118mFuv00000Y,0] [SRC_CLASS:
oracle.forms.servlet.RunformSession] [APP: formsapp] [SRC_METHOD: stop] [FORMS
SESSION_ID: ..9] Forms session ended.
[2008-09-11T07:40:43.594-07:00] [WLS_FORMS] [TRACE] [FRM-93710]
[oracle.forms.servlet.sessionperf] [tid: 17] [ecid:
0000HlHqlS9D4i8nvgy0V118mFuv00000Y,0] [SRC_CLASS:
oracle.forms.servlet.RunformSession] [APP: formsapp] [SRC_METHOD: stop] [FORMS
SESSION_ID: ..9] [arg: 1.557] [arg: 6] [arg: 0] [arg: 1.000] [arg: 0.259] [arg:
5106] [arg: 352] Total duration of network exchanges is 1.557.[[
Total number of network exchanges is 6 (0 long ones over 1.000 sec).
Average time for one network exchange (excluding long ones) is 0.259.
Total number of bytes sent is 5106.
Total number of bytes received is 352.
]]

12.6.5.4 /perf
[2008-09-11T07:42:46.560-07:00] [WLS_FORMS] [NOTIFICATION:16] [FRM-93251]
[oracle.forms.servlet.perf] [tid: 14] [ecid: 0000HlHrJmWD4i8nvgy0V118mFuv00000^,0]
[SRC_CLASS: oracle.forms.servlet.RunformSession] [APP: formsapp] [SRC_METHOD:
<init>] [FORMS_SESSION_ID: ..10] [arg: <pc1>] [arg: 10.177.254.46] Runtime
session started for client <pc1> (IP address <ip address>).
[2008-09-11T07:42:46.854-07:00] [WLS_FORMS] [NOTIFICATION:16] [FRM-93548]

Taking Advantage of Oracle Diagnostics and Logging Tools

Tracing and Diagnostics 12-15

[oracle.forms.servlet.perf] [tid: 17] [ecid: 0000HlHqlS9D4i8nvgy0V118mFuv00000Y,0]
[SRC_CLASS: oracle.forms.servlet.RunformProcess] [APP: formsapp] [SRC_METHOD:
connect] [FORMS_SESSION_ID: ..10] [arg: 8149] Runtime process ID is 8149.
[2008-09-11T07:42:46.865-07:00] [WLS_FORMS] [TRACE:16] [FRM-93700]
[oracle.forms.servlet.perf] [tid: 17] [ecid: 0000HlHqlS9D4i8nvgy0V118mFuv00000Y,0]
[SRC_CLASS: oracle.forms.servlet.ListenerServlet] [APP: formsapp] [SRC_METHOD:
doPost] [FORMS_SESSION_ID: ..10] [arg: 0.011] [arg: 8] [arg: 8] [arg: null]
Request duration is 0.011 seconds. Request size is 8 bytes; response size is 8
bytes.
[2008-09-11T07:42:47.921-07:00] [WLS_FORMS] [TRACE:16] [FRM-93700]
[oracle.forms.servlet.perf] [tid: 17] [ecid: 0000HlHqlS9D4i8nvgy0V118mFuv00000Y,0]
[SRC_CLASS: oracle.forms.servlet.ListenerServlet] [APP: formsapp] [SRC_METHOD:
doPost] [FORMS_SESSION_ID: ..10] [arg: 0.438] [arg: 272] [arg: 5022] [arg: null]
Request duration is 0.438 seconds. Request size is 272 bytes; response size is
5022 bytes.

12.6.5.5 /debug
[2009-02-11T14:39:03.016+00:00] [WLS_FORMS] [NOTIFICATION:16] [FRM-93250]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_lhDcD4i8nvgy0V119Xz350000HZ,0] [APP: formsapp#11.1.1] Forms session started.
[2009-02-11T14:39:03.017+00:00] [WLS_FORMS] [TRACE:32] [FRM-94200]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_lhDcD4i8nvgy0V119Xz350000HZ,0] [SRC_CLASS: oracle.forms.servlet.FormsServlet]
 [APP: formsapp#11.1.1] [SRC_METHOD: doRequest] [FORMS_SESSION_ID: ..43] [arg:
 GET] [arg:
cmd: frmservlet
config: null
requestCharset: null
QueryString: null
Content-Type: null
Accept-Charset: null
responseCharset: null] FormsServlet receiving GET request. Details:[[
 cmd: frmservlet
 config: null
 requestCharset: null
 QueryString: null
 Content-Type: null
 Accept-Charset: null
 responseCharset: null
]]
[2009-02-11T14:39:03.017+00:00] [WLS_FORMS] [TRACE:32] [FRM-94281]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_lhDcD4i8nvgy0V119Xz350000HZ,0] [SRC_CLASS: oracle.forms.servlet.ListenerServlet]
 [APP: formsapp#11.1.1] [SRC_METHOD: printSessionDetails] [FORMS_SESSION_ID: ..43]
 No current servlet session ID.
[2009-02-11T14:39:03.017+00:00] [WLS_FORMS] [TRACE:32] [FRM-94170]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_lhDcD4i8nvgy0V119Xz350000HZ,0] [SRC_CLASS: oracle.forms.servlet.FormsServlet]
 [APP: formsapp#11.1.1] [SRC_METHOD: findFile] [FORMS_SESSION_ID: ..43] [arg:
 basejpi.htm] [arg: <config folder>] File basejpi.htm is missing from the
 current directory, looking in <config folder>
[2009-02-11T14:39:21.460+00:00] [WLS_FORMS] [TRACE:32] [FRM-94200]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_llhoD4i8nvgy0V119Xz350000Hd,0] [SRC_CLASS: oracle.forms.servlet.FormsServlet]

Taking Advantage of Oracle Diagnostics and Logging Tools

12-16 Forms Services Deployment Guide

 [APP: formsapp#11.1.1] [SRC_METHOD: doRequest] [FORMS_SESSION_ID: ..43] [arg:
 GET] [arg:
cmd: startsession
config: null
requestCharset: null
QueryString:
ifsessid=..43&acceptLanguage=en-us&ifcmd=startsession&iflocale=en-US
 Content-Type: null
Accept-Charset: null
responseCharset: null]
FormsServlet receiving GET request. Details:[[
 cmd: startsession
 config: null
 requestCharset: null
 QueryString:
ifsessid=..43&acceptLanguage=en-us&ifcmd=startsession&iflocale=en-US
 Content-Type: null
 Accept-Charset: null
 responseCharset: null
]]

.
.
.
.

[2009-02-11T14:39:21.716+00:00] [WLS_FORMS] [TRACE:32] [FRM-94201]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_llloD4i8nvgy0V119Xz350000Hf,0] [SRC_CLASS: oracle.forms.servlet.ListenerServlet]
[APP: formsapp#11.1.1] [SRC_METHOD: doGet] [FORMS_SESSION_ID: ..43] [arg: GET]
 [arg:
cmd: getinfo
QueryString: ifcmd=getinfo&ifhost=supadhya-pc1&ifip=10.177.254.239]
 ListenerServlet receiving GET request. Details:[[
 cmd: getinfo
 QueryString: ifcmd=getinfo&ifhost=supadhya-pc1&ifip=10.177.254.239
]]

[2009-02-11T14:39:21.717+00:00] [WLS_FORMS] [TRACE:32] [FRM-94282]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_llloD4i8nvgy0V119Xz350000Hf,0] [SRC_CLASS: oracle.forms.servlet.ListenerServlet]
 [APP: formsapp#11.1.1] [SRC_METHOD: printSessionDetails] [FORMS_SESSION_ID: ..43]
 [arg:
 HyLhJSjZ85F5GWbZLDgwp1MY02FK5tC6yVDP1LylbCvgmv9y3CfK!126690176!1234363161461]
 Existing servlet session, ID =
 HyLhJSjZ85F5GWbZLDgwp1MY02FK5tC6yVDP1LylbCvgmv9y3CfK!126690176!1234363161461
[2009-02-11T14:39:21.717+00:00] [WLS_FORMS] [TRACE:32] [FRM-94286]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_llloD4i8nvgy0V119Xz350000Hf,0] [SRC_CLASS: oracle.forms.servlet.ListenerServlet]
 [APP: formsapp#11.1.1] [SRC_METHOD: printSessionDetails] [FORMS_SESSION_ID: ..43]
 Session ID is not from cookie.
[2009-02-11T14:39:21.717+00:00] [WLS_FORMS] [TRACE:32] [FRM-94430]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_llloD4i8nvgy0V119Xz350000Hf,0] [SRC_CLASS: oracle.forms.servlet.RunformSession]
 [APP: formsapp#11.1.1] [SRC_METHOD: <init>] [FORMS_SESSION_ID: ..43] Trying to

Taking Advantage of Oracle Diagnostics and Logging Tools

Tracing and Diagnostics 12-17

 get a prestarted process.
[2009-02-11T14:39:21.717+00:00] [WLS_FORMS] [TRACE:32] [FRM-94432]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_llloD4i8nvgy0V119Xz350000Hf,0] [SRC_CLASS: oracle.forms.servlet.RunformSession]
 [APP: formsapp#11.1.1] [SRC_METHOD: <init>] [FORMS_SESSION_ID: ..43] Prestarted
 process is not available.
[2009-02-11T14:39:21.718+00:00] [WLS_FORMS] [TRACE:32] [FRM-94522]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_llloD4i8nvgy0V119Xz350000Hf,0] [SRC_CLASS: oracle.forms.servlet.RunformSession]
 [APP: formsapp#11.1.1] [SRC_METHOD: <init>] [FORMS_SESSION_ID: ..43] [arg: null]
 Creating new runtime process using default executable.
[2009-02-11T14:39:21.718+00:00] [WLS_FORMS] [TRACE:32] [FRM-94532]
 [oracle.forms.servlet] [tid: [ACTIVE].ExecuteThread: '2' for queue:
 'weblogic.kernel.Default (self-tuning)'] [userId: <anonymous>] [ecid: 0000Hx
_llloD4i8nvgy0V119Xz350000Hf,0] [SRC_CLASS: oracle.forms.servlet.RunformProcess]
 [APP: formsapp#11.1.1] [SRC_METHOD: startProcess] [FORMS_SESSION_ID: ..43] [arg:
 frmweb webfile=HTTP-0,default] RunformProcess.startProcess(): executing frmweb
 webfile=HTTP-0,default

.
.
.
.

Taking Advantage of Oracle Diagnostics and Logging Tools

12-18 Forms Services Deployment Guide

13

Upgrading to Oracle Forms Services 11g 13-1

13 Upgrading to Oracle Forms Services 11g

This chapter describes the upgrade process from Forms 6i. For information about
changed or obsolete features, see the Oracle Forms Upgrading Oracle Forms 6i to Oracle
Forms 11g Guide.

This chapter contains the following sections:

■ Section 13.1, "Oracle Forms Services Upgrade Items"

■ Section 13.2, "Oracle Forms Services Upgrade Tasks"

■ Section 13.3, "Validating the Oracle Forms Services Upgrade"

For upgrading from Oracle Forms 10g and prior releases, you can use the Upgrade
Assistant. Refer to the following documents for more information.

■ Oracle Fusion Middleware Upgrade Planning Guide

■ Oracle Fusion Middleware Upgrade Guide for Oracle Portal, Forms, Reports, and
Discoverer

13.1 Oracle Forms Services Upgrade Items
Table 13–1 describes the items that are upgraded. These items include files,
executables, or settings that you must add, change, delete, or replace in the Oracle
Forms Services installation.

Oracle Forms Services Upgrade Tasks

13-2 Forms Services Deployment Guide

13.2 Oracle Forms Services Upgrade Tasks
This section explains how to perform the Oracle Forms Services upgrade. It is divided
into the following sub-sections:

■ Section 13.2.1, "Upgrade Recommendations and Troubleshooting Tips" on
page 13-3

■ Section 13.2.2, "Upgrading Oracle Forms Services Application Modules" on
page 13-3

■ Section 13.2.3, "Upgrading Common Gateway Interface (CGI) to the Oracle Forms
Servlet" on page 13-4

■ Section 13.2.4, "Upgrading Static HTML Start Files to Generic Application HTML
Start Files" on page 13-5

■ Section 13.2.5, "Upgrading the Forms 6i Listener to the Forms Listener Servlet" on
page 13-7

Table 13–1 Oracle Forms Services Upgrade Items

Upgrade Item
Location in 6i
Oracle home

Location in 11g (11.1.1)
Oracle home Description and Notes

Oracle HTTP
Server
configuration
file:
6iserver.co
nf
(upgrades
to
forms.conf)

6iserver/conf/ $ORACLE_
INSTANCE/config/OHS/
<OHS
Instance>/moduleconf
/forms.conf

Contains virtual path mappings.

Servlet
environment
file:
default.env

6iserver/forms6
0/server

$DOMAIN_
HOME/config/fmwconfi
g/servers/WLS_
FORMS/applications/f
ormsapp_
11.1.1/config/defaul
t.env

Contains environment variables settings for the
Forms servlet Runtime Process.

Configuration
files with
Forms servlet
alias:
jserv.prope
rties
(upgrades to
web.xml)

/Apache/jserv/c
onf

$DOMAIN_
HOME/servers/WLS_
FORMS/tmp/_WL_
user/formsapp_
11.1.1/<random_
string>/war/WEB-INF

Contains Forms servlet aliases.

Application
configuration
file:
formsweb.cf
g

6iserver/forms6
0/server

$DOMAIN_
HOME/config/fmwconfi
g/servers/WLS_
FORMS/applications/f
ormsapp_
11.1.1/config/formsw
eb.cfg

Contains Forms Services application configuration
information.

Forms servlet
template html
files: (*.htm,
*.html)

6iserver/forms6
0/server

$ORACLE_
INSTANCE/config/Form
sComponent/forms/ser
ver/

Default and user defined Forms servlet template
HTML files.

Forms
application
modules
(fmb/fmx
files)

Forms modules (fmb and fmx files) deployed to
Oracle 6i Forms Services must be upgraded to be
deployed to Oracle Forms Services. Note that when
you upgrade to 11g, you need to update the FORMS_
PATH variable with the location of the fmx file. For
more information on FORMS_PATH, see Section 4.3,
"Managing Environment Variables".

Oracle Forms Services Upgrade Tasks

Upgrading to Oracle Forms Services 11g 13-3

■ Section 13.2.6, "Upgrading the Forms Listener Servlet Architecture to Oracle Forms
Services" on page 13-8

■ Section 13.2.7, "Upgrading Load Balancing" on page 13-9

■ Section 13.2.8, "Usage Notes" on page 13-9

13.2.1 Upgrade Recommendations and Troubleshooting Tips
Consider the following recommendations and considerations while upgrading Forms
applications:

■ Keep the Oracle6i Forms Services installation available until applications are
successfully deployed and tested.

■ Back up and secure all files, then upgrade the source files.

■ Replace Run_Product calls to integrated Reports with Run_Report_Object
calls to Oracle Reports (or use the PL/SQL conversion utility, Forms Migration
Assistant in Oracle Forms).

■ Install Oracle Fusion Middleware and configure the formsweb.cfg file with the
information used by your applications.

■ Copy the environment files used by the applications to the same relative directory.

■ Copy the upgraded Oracle Forms application module files to the computer on
which Oracle WebLogic Server is installed, if it is not the same computer.

■ After starting Oracle WebLogic Server, access the Forms Services Listener Servlet
test page with this URL (default port 8888):

http://<hostname>:<port>/forms/frmservlet?form=test.fmx

■ Verify that any application settings are added to the formsweb.cfg file and that
the environment variable Forms_Path contains the directory of the application
modules.

■ Verify that you can connect to the database using SQL*Plus.

■ Use the following URL to invoke upgraded applications:

http://<hostname>:<port>/forms/frmservlet?config=<your
application name>

13.2.2 Upgrading Oracle Forms Services Application Modules
This section provides instructions for upgrading from Forms Application Modules
(fmb files) that were deployed in Oracle 6i Forms Services. Follow these steps to
upgrade Forms Application Modules (fmb files) deployed in Oracle 6i Forms Services
to an Oracle Forms Services installation.

1. Copy the Forms application files to a new directory.

2. Optionally, use the Forms Migration Assistant to upgrade the Forms Application
Modules (.fmb files), Forms menu modules (.mmb files), and the Library modules
(.pll files).

3. Use the Forms Compiler (frmcmp.sh on Unix or frmcmp.exe on Windows) to
regenerate the Forms Application executable files (fmx, mmx, and plx files).

For more information, see Oracle Forms Upgrading Oracle Forms 6i to Oracle Forms
11g at:

http://www.oracle.com/technology/documentation/

http://www.oracle.com/technology/documentation/

Oracle Forms Services Upgrade Tasks

13-4 Forms Services Deployment Guide

13.2.3 Upgrading Common Gateway Interface (CGI) to the Oracle Forms Servlet
This section provides instructions to upgrade Forms CGI to the Forms servlet
deployment. Follow these steps if you are using the Oracle 6i Forms Services Common
Gateway Interface to dynamically render the Forms Applet start HTML file for
applications.

CGI deployment for Forms applications was introduced in Oracle Forms Services
Release 6i to enable the Forms Applet Start HTML file to render dynamically. Forms
CGI uses the formsweb.cfg configuration file and an HTML template to create the
start HTML file for an application. The CGI interface is configured by an entry in the
Forms HTTP configuration file 6iserver.conf (it is referenced by an Include
directive in the Oracle HTTP Server oracle_apache.conf file), which contains a
ScriptAlias directive identifying dev60cgi for the directory structure containing
the ifcgi60.exe file.

The Forms servlet renders the HTML in the same manner as the CGI, but also
provides an automatic browser type detection. The Forms servlet is configured when
you install Oracle Forms Services, and is named frmservlet.

To access the Forms servlet, request the URL:

http://<hostname>:<port>/forms/frmservlet

This URL is similar to the URL used with the CGI Interface in Oracle 6i Forms
Services. To call an application configured as myapp in the custom configuration
section of the formsweb.cfg file, request the URL:

http://<hostname>:<port>/forms/frmservlet?config=myapp

The Forms servlet is automatically configured during installation. The installer creates
a virtual path /forms/ pointing to the Oracle Forms Services configuration,
formsapp and formsweb.

Follow these steps to upgrade an Oracle 6i Forms Services Release 6i CGI environment
to an Oracle Forms Services servlet environment:

1. Copy all of the application-specific configurations from <source_
OH>/Forms60/Server/formsweb.cfg and append them to <destination_
Domain_Dir>/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config/formsweb.cfg.

2. Configure Forms_Path in the default.env file to point to the upgraded Oracle
Forms Services application modules.

Note: Do not copy and replace the entire formsweb.cfg file in
<source_OH> to <destination_Domain_Dir>. The file in Release
6i is different from the Oracle Forms Services file. Copy only the
application configuration to <destination_Domain_
Dir>/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_
11.1.1/config/formsweb.cfg.

Note: You can create a new environment file by copying
default.env, modifying it for use with a particular application, and
adding envFile=<created environment file> to the custom
application section in the formsweb.cfg file.

Oracle Forms Services Upgrade Tasks

Upgrading to Oracle Forms Services 11g 13-5

3. If you changed the Oracle 6i Forms HTML template files, then make the same
changes to the Oracle Forms Services HTML template files.

13.2.4 Upgrading Static HTML Start Files to Generic Application HTML Start Files
Each application deployed to Oracle Forms Services has a custom application
definition, configured in the formsweb.cfg configuration file. It automatically
inherits the general system settings, such as the names and locations of the base HTML
template files.

The name of the custom application definition becomes part of the Forms application
URL. The following custom settings define two different applications:

[MyHR_app]
serverURL=/forms/lservlet
Form = hr_main.fmx
lookAndFeel=oracle
Otherparams=myParam1=12
Userid=scott/tiger@orcl

The following URL invokes this application:

http://<hostname>:<port>/forms/frmservlet?config=MyHR_app

Another custom application definition might look like this:

[booking_app]
ServerURL=/forms/lservlet
Form = book.fmx
lookAndFeel=oracle
Otherparams=
Userid=

The following URL invokes this application:

http://<hostname>:<port>/forms/frmservlet?config=booking_app

For each static HTML file, you must create a custom application definition. Part of the
static HTML file is the archive parameter directive, specifying at least the
frmall.jar file in Oracle Forms Services. If you added a custom archive file, then
the archive parameter directive would resemble the following:
Archive=frmall.jar,custom.jar. Using the Forms servlet and the
formsweb.cfg file, the archive settings are defined under the User Parameter section.
All custom application settings inherit these values, so you don’t have to explicitly set
this parameter, unless you add a custom.jar file as required by an application.

If custom.jar was added, then you can add the following lines to the custom
application definition. The example below assumes that you are using another VM.

[booking_app]
archive=frmall.jar, custom.jar
ServerURL=/forms/lservlet
Form = book.fmx
lookAndFeel=oracle
Otherparams=
Userid=

Note: You must make these changes in basejpi.htm rather than
basejini.htm because the servlet supports the Sun Java plug-in.

Oracle Forms Services Upgrade Tasks

13-6 Forms Services Deployment Guide

Follow these steps to upgrade applications:

1. Edit the default.env file, adding the location of the Oracle Forms Services
application modules to the Forms_Path.

2. Edit the formsweb.cfg file, appending a custom application section for each
static HTML application that you want to replace.

3. Name each custom application section, using a name that contains no spaces and
is enclosed in square brackets, for example: [booking_app], [MyHR_app].

4. Start the application using this URL:

http://<hostname>:<port>/forms/frmservlet?config=<name>

13.2.4.1 Using Static HTML Files with Oracle Forms Services
If you need to, you can continue to use static HTML files in Oracle Forms Services.
However, with static HTML files, some features (Single Sign-On) are not available for
use by Forms applications.

The Forms Listener servlet by default points to /forms/lservlet after installation.
To use static HTML files in Oracle Forms Services, you must modify each static start
HTML file to include a value for the serverURL parameter. The serverPort and
serverHost parameters are no longer used, and can be left undefined.

Follow these steps to use static HTML files with Oracle Forms Services:

1. Configure Forms_Path in the default.env file to point to the upgraded Oracle
Forms Services application modules.

2. Create virtual directories in the $ORACLE_INSTANCE/config/OHS/<OHS
Instance>/moduleconf/forms.conf file to point to the location of the static
HTML start files.

3. Modify the application start HTML files as follows:

a. Add the serverURL value /forms/lservlet.

4. Change the codebase parameter to forms/java.

5. Navigate to $DOMAIN_HOME/servers/WLS_FORMS/tmp/_WL_
user/formsapp_11.1.1/<random_string>/war/WEB-INF and edit the
web.xml file.

6. Set the envFile initialization parameter for the Listener Servlet to point to the
environment file (usually default.env).

After editing, the entry in the web.xml file for the Forms listener servlet should
resemble the following:

<!--Forms listener servlet-->
<servlet>
 <servlet-name>lservlet</servlet-name>
 <servlet-class>oracle.forms.servlet.ListenerServlet</servlet-class>
 <init-param>
 <param-name>envFile</param-name>
 <param-value>destination_Domain_Dir/forms/server/default.env</param-value>
 </init-param>
</servlet>

Oracle Forms Services Upgrade Tasks

Upgrading to Oracle Forms Services 11g 13-7

13.2.5 Upgrading the Forms 6i Listener to the Forms Listener Servlet
The Forms 6i Listener was a C program that starts a Forms runtime process on behalf
of an incoming Forms Web request. The Forms Web runtime process was then directly
accessed by the Forms client applet, using a direct socket or an HTTP socket
connection. The Forms Listener was then no longer involved in the application Web
client-server communication process, and was free to handle other incoming Web
requests.

The Forms Listener servlet, a Java program, also takes incoming Web requests for a
Forms application and starts the Forms Web runtime process. Unlike the Forms 6i
Listener, the Forms Listener servlet remains between the Forms application
applet-server communication.

While the Forms 6i Listener listened on a specific port (by default, 9000), the Forms
servlet does not need an extra port, and is accessed by the HTTP listener port. The
Forms Listener servlet was introduced in the Forms 6i patch 4, and is the only listener
supported in Forms Services.

The Forms Listener servlet is automatically configured during the installation. The
installer creates a virtual path /forms/ pointing to the Oracle Forms Services
configuration, formsapp and formsweb.

To access the Forms Listener servlet test form, request the following URL:

http://<hostname>:<port>/forms/frmservlet?form=test.fmx

Ability to access this page means that the Forms Listener servlet is configured and
ready to use. frmservlet is the access name configured for the Forms servlet during
installation. The name of the Listener Servlet is lservlet.

If the Forms Listener servlet is accessed with the Forms servlet, then only the custom
application settings from the Forms60/server/formsweb.cfg file need to be
appended to the formsweb.cfg file. All application configurations automatically
inherit the serverURL parameter value /forms/lservlet from the global system
parameter settings.

To change a Forms application deployment from the Forms Listener architecture to the
Listener Servlet architecture, you need only supply a value for the serverURL
parameter in the formsweb.cfg file. During installation, this parameter is set to
/forms/lservlet.

Follow these steps to upgrade to the Forms Listener servlet:

1. Copy the Forms application files to a new directory and upgrade them to Oracle
Forms Services modules as described in Section 13.2.2, "Upgrading Oracle Forms
Services Application Modules". on page 13-3.

2. Edit the forms/server/default.env file to add the location of the upgraded
Forms application modules to the Forms_Path variable.

3. Copy all of the custom application settings from <source_
OH>/Forms60/Server/formsweb.cfg and append them to <destination_
Domain_Dir>/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config/formsweb.cfg.

4. If an application requires its own environment file, then instead of defining a
separate servlet alias for the Listener Servlet, set the envFile parameter in the
custom application definition section in <destination_Domain_
Dir>/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config/formsweb.cfg to point
to the new environment file. For example:

Oracle Forms Services Upgrade Tasks

13-8 Forms Services Deployment Guide

envFile=myEnvFile.env

where myEnvFile.env is located in the forms/server directory.

5. If you changed the Oracle 6i Forms Services HTML template files, then make the
same changes to the Oracle Forms Services HTML template files.

6. Start the application with this URL:

http://<hostname>:<port>/forms/frmservlet?
config=<application>

13.2.6 Upgrading the Forms Listener Servlet Architecture to Oracle Forms Services
In Oracle9iAS Forms Services Release 6i, the Listener Servlet, if not aliased, is accessed
by the oracle.forms.servlet.ListenerServlet. The Listener Servlet
configuration exists in the jserv.properties file and the zone.properties file.

In Oracle Forms Services, the Forms Listener servlet is the same except for the servlet
names, which are frmservlet and lservlet, and the servlet container. The
configuration is performed during installation. The Listener Servlet configuration in
Oracle WebLogic Managed Server is stored in $DOMAIN_HOME/servers/WLS_
FORMS/tmp/_WL_user/formsapp_11.1.1/<random_
string>/war/WEB-INF/web.xml. Some initialization parameters, like the
envFile parameter, need no longer be configured with the servlet engine, because
they are moved to the formsweb.cfg file.

The Forms Listener servlet is automatically configured during the Oracle WebLogic
Server installation. The installer creates a virtual path /forms/ pointing to the Oracle
Forms Services configuration, formsapp and formsweb.

To access the Forms Listener servlet test form, request the following URL:

http://<hostname>:<port>/forms/frmservlet?form=test.fmx

Ability to access this page means that the Forms Listener servlet is configured and
ready to use. frmservlet is the access name configured for the Forms servlet during
installation. The name of the Listener Servlet is lservlet.

Follow these steps to upgrade the Listener Servlet architecture to Oracle Forms
Services:

1. Copy the Forms application files to a new directory and upgrade them to Oracle
Forms Services modules.

2. Edit the forms/server/default.env file, adding the location of the upgraded
Forms application modules to the Forms_Path variable.

Note: If you need to change the underlying HTML files, you should
make a copy of the provided template files before editing them. Save
the edited HTML files under a different name, and leave the default
templates provided with the installation unchanged. This prevents
overwriting of your customized HTML template files when patch sets
are applied to the application.

To use your own template files with applications, use these
parameters in the system section, or one of your custom application
definitions: baseHTML=<your base template>.htm

Oracle Forms Services Upgrade Tasks

Upgrading to Oracle Forms Services 11g 13-9

3. Copy all of the custom application settings from <source_
OH>/Forms60/Server/formsweb.cfg and append them to <destination_
Domain_Dir>/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config/formsweb.cfg.

4. If an application requires its own environment file, then instead of defining a
servlet alias for the Listener Servlet, set the envFile parameter in the custom
application definition section in <destination_Domain_
Dir>/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_11.1.1/config/formsweb.cfg to point
to the new environment file. For example:

envFile=myEnvFile.env

where myEnvFile.env is located in the forms/server directory.

5. If you changed the Forms Services Release 6i HTML template files, then make the
same changes to the Oracle Forms Services HTML template files.

6. Start the application with this URL:

http://<hostname>:<port>/forms/frmservlet?
config=<application>

13.2.7 Upgrading Load Balancing
The method of upgrading the load balancing in Forms Services 6i depends on the
deployment method used.

■ With the Forms 6i listener, the Metrics Server (a separate process) performs load
balancing.

■ With the Forms 6i servlet, load balancing is configured with the JServ servlet
engine, using round robin load balancing among JServ engines.

■ In Oracle Forms Services, load balancing is managed by Oracle WebLogic
Managed Server process. It binds Web requests to the servlet container processing
the Forms servlet and the Forms Listener servlet.

13.2.8 Usage Notes
This section contains hints and tips that may be useful in the upgrade.

Note: If you need to change the underlying HTML files, you should
make a copy of the provided template files before editing them. Save
the edited HTML files under a different name, and leave the default
templates provided with the installation unchanged. This prevents
overwriting of your customized HTML template files when patch sets
are applied to the application.

To use your own template files with applications, use these
parameters in the system section, or one of your custom application
definitions: baseHTML=<your base template>.htm

Oracle Forms Services Upgrade Tasks

13-10 Forms Services Deployment Guide

13.2.8.1 Deploying Icon Images with the Forms Servlet
Using static HTML start files in Forms Services Release 6i allowed storage of images in
a location relative to the start HTML file. The Forms servlet in Oracle Forms Services
does not support this.

The alternative is to use the imagebase parameter with the value of codebase as the
location for the icon images used by applications. The codebase value refers to the
forms/java directory, which contains all of the Forms client Java archive files. For
performance reasons, it is not a good idea to store images here.

Instead, you should bundle the icons into a separate archive file, which improves
performance because archives are cached permanently on the client. Follow these steps
to create this archive file.

1. Verify that the jar command succeeds. If it does not, then you need to ensure that
there is a JDK installed on your system with a correct PATH environment variable
entry (pointing to the JDK_HOME/bin directory).

2. Navigate to the directory containing the application images and issue the
command:

jar -cvf <application>_images.jar *.<extension>

where:

■ application is the name of the application

■ extension is the extension of the image file (for example,.gif)

A jar file, <application>_images.jar, is created in the current directory.

3. Copy <application>_images.jar to the forms/java directory.

4. Edit the formsweb.cfg file, adding the imageBase=codebase parameter to the
custom application section for the application.

5. Add the <application>_images.jar file to the archive path used by the
application by adding the following line to the custom application section:

archive=frmall.jar,<application>_images.jar
See Section 4.7, "Deploying Fonts, Icons, and Images Used by Forms Services" for more
information on deploying custom icon files with Oracle Forms Services.

13.2.8.2 Upgrading Integrated Calls to Oracle Forms to use Oracle Reports
Integrated calls to Oracle Reports in Forms are no longer handled by a client-side
background engine. Oracle Forms Services requires that applications use the RUN_
REPORT_OBJECT built-in, calling Oracle Reports to process integrated reports. Oracle
Reports is set up as part of the Business Intelligence and Forms installation.

Follow these steps to upgrade the call:

1. Change all occurrences of RUN_PRODUCT (Reports,...) to the equivalent call
using RUN_REPORT_OBJECT().

2. Add the location of the application’s Reports modules to use the Reports_Path
of Oracle Reports.

3. Change RUN_REPORT_OBJECT to reference Oracle Reports.

For more information, see Oracle Fusion Middleware Publishing Reports to the Web
with Oracle Reports Services.

Validating the Oracle Forms Services Upgrade

Upgrading to Oracle Forms Services 11g 13-11

13.2.8.3 Creating Forms Listener Servlet Alias Names
In Forms Services Release 6i, before patch 8, it was necessary to create alias names for
the Forms servlet in the $ORACLE_HOME/Apache/Apache/JServ/
conf/zone.properties file in order to use individual environment files for
different applications. The Forms servlet in Oracle Forms Services does not require
this. You can set the environment file name in the formsweb.cfg file using the
envFile parameter, shown below:

envFile=myApp.env

Alias names for the Forms servlet are no longer created in $ORACLE_
HOME/Apache/Apache/JServ/conf/zone.properties. Instead, they are created
in $DOMAIN_HOME/servers/WLS_FORMS/tmp/_WL_user/formsapp_
11.1.1/<random_string>/war/WEB-INF/web.xml.

To create the alias names, copy the content between the <servlet> and </servlet>
tags and change the servlet’s name. To create a URL mapping for the new servlet alias
name, add the following to the file:

<servlet-mapping>
<servlet-name>new servlet name</servlet-name>
<url-pattern>/new url name*</url-pattern>
</servlet-mapping>

13.2.8.4 Accessing the Listener Servlet Administration Page
You can display a test page for the Listener Servlet in Oracle9iAS Forms Services
Release 6i by accessing the following URL:

http://<hostname>:<port>/servlet/
oracle.forms.servlet.ListenerServlet

The information displayed depends on the value of the initialization parameter
TestMode. This parameter is set in the <source_
OH>/Apache/Apache/JServ/conf/zone.properties file.

You can display the test page for Oracle Forms Services with the following URL:

http://<hostname>:<port>/forms/frmservlet/admin

The information displayed depends on the value of the initialization parameter
TestMode. This parameter is set in the $DOMAIN_HOME/servers/WLS_
FORMS/tmp/_WL_user/formsapp_11.1.1/<random_
string>/war/WEB-INF/web.xml file. An example is shown below:

<init-param>
<!-- Display sensitive options on the /admin page ? -->
 <param-name>TestMode</param-name>
 <param-value>true</param-value>
</init-param>

13.3 Validating the Oracle Forms Services Upgrade
After you complete the upgrade tasks, ensure that the upgraded version of the Oracle
Forms Services is working as expected. You must devise and perform specific tests for
applications and configuration elements that are unique to your site. Compare the
performance and characteristics of each application in the source and destination
installations.

Validating the Oracle Forms Services Upgrade

13-12 Forms Services Deployment Guide

In Oracle9iAS Release 1 (1.0.2.2.x), the forms application URL is typically:

http://<hostname>:<port>/servlet/<forms servlet alias>?<forms
application name>

In Oracle Forms 11g, the forms application URL is typically:

http://<hostname>:<port>/forms/<forms servlet alias>?form=<forms
application name>

14

Performance Tuning Considerations 14-1

14 Performance Tuning Considerations

This chapter contains the following sections:

■ Section 14.1, "Built-in Optimization Features of Forms Services"

■ Section 14.2, "Tuning Oracle Forms Services Applications"

■ Section 14.3, "Web Cache and Forms Integration"

Tuning the connection between Oracle Forms Services and the Oracle Database Server
is beyond the scope of this chapter.

14.1 Built-in Optimization Features of Forms Services
The Oracle Forms Services and Java client include several optimizations that fit
broadly into the following categories:

■ Section 14.1.1, "Monitoring Forms Services"

■ Section 14.1.2, "Forms Services Web Runtime Pooling"

■ Section 14.1.3, "Minimizing Client Resource Requirements"

■ Section 14.1.4, "Minimizing Forms Services Resource Requirements"

■ Section 14.1.5, "Minimizing Network Usage"

■ Section 14.1.6, "Maximizing the Efficiency of Packets Sent Over the Network"

■ Section 14.1.7, "Rendering Application Displays Efficiently on the Client"

14.1.1 Monitoring Forms Services
Use Fusion Middleware Control to monitor Oracle Forms Services and review metrics
information, including:

■ Forms Services Instances

■ Events

■ User Sessions

■ Forms Trace

14.1.1.1 Monitoring Forms Services Instances
Use the Forms Home page to monitor metrics for a Forms Services instance.

1. Start Enterprise Manager Fusion Middleware Control.

Built-in Optimization Features of Forms Services

14-2 Forms Services Deployment Guide

2. From the Enterprise Manager Fusion Middleware Control main page, select the
link to the Forms Services instance that you want to monitor.

The Forms Home page for the Forms Services instance displays the following:

■ Status of Forms application instance (up, down, unknown)

■ URL of the Forms Services instance being monitored

■ Number of Forms sessions

Additionally, you can navigate to the following detail pages:

■ Performance Summary

■ Servlet Logs

■ Session Details

■ Web Configuration

■ Environment Configuration

■ Trace Configuration

■ User Sessions

■ JVM Configuration

■ JVM Controllers

In the Performance Summary page, you can add charts for other Forms
metrics to the page dynamically by using the Show Metric Palette. You can
also overlay metrics to compare them. For example, drag and drop Private
Memory consumed by two JVM Controllers into one chart to compare them.
For more information, see the Oracle Fusion Middleware Performance Guide.

14.1.1.2 Monitoring Forms Events
Use the Enterprise Manager Fusion Middleware Control to enable tracing for all
events or specific ones. See Table 14–1 for a list of tasks you can perform on this page.

14.1.2 Forms Services Web Runtime Pooling
Forms Runtime Pooling (or Forms Runtime prestart) enables the startup of a
configurable number of application runtime engines prior to their usage. Runtime
Pooling provides quick connections at server peak times, which shortens the
server-side application startup time. Runtime pooling is useful for situations where
server configurations have a small window in which many users connect to a Forms
application. All prestarted runtime engines run in the same environment serving the
same application.

Table 14–1 Monitoring Forms Events

Task See Section

Monitoring metrics for user
sessions

"To view Forms user sessions:"

Sorting metrics information "To sort the list of Forms user sessions:"

Searching for metrics
information

"To search for a Forms user sessions:"

Built-in Optimization Features of Forms Services

Performance Tuning Considerations 14-3

14.1.2.1 Configuring Prestart Parameters
Use Enterprise Manager Fusion Middleware Control to configure runtime pooling for
Forms Services with the following parameters as described in Table 14–2:

Note that prestartMin defines the minimum number of pre-started runtimes that
must exist at any time while runtime pooling is still active for a specific application.
The minimum value must be less than or equal to what's defined for the
prestartInit parameter. The prestartMin parameter can be modified at any time
and does not require the application server to be restarted. The new entries will be
picked up when a client requests a connection to a pre-started runtime process and the
prestarted runtime processes have not timed out. Once they have timed out, an
application uses default behavior and a minimum threshold is not maintained.

Each configuration section can specify values for these parameter. If the
prestartRuntimes = true entry is found, but there is no associating prestart
parameter, then default values are used.

Table 14–2 Forms Runtime Pooling Parameters

Parameter Name Data type Description Default Value

prestartRuntimes boolean Runtime pre
starting or
pooling is
enabled only if
true

false

prestartInit integer Number of the
runtime processes
that should be
spawned initially

1

prestartTimeout integer Time in minutes
after which all the
prestarted
processes of this
pool
(configuration
section) will be
stopped. A
runtime process
is removed from
the prestart pool
once client
connection is
made and thus
will not be
stopped.

0 (When set to
zero the timer
never starts)

prestartMin integer Minimum
number of
runtime processes
to exist in the
pool.

0

prestartIncrement integer The number of
runtime processes
to be created
when the number
of prestarted
runtime processes
is less than
minRuntimes.

0

Built-in Optimization Features of Forms Services

14-4 Forms Services Deployment Guide

In a load balanced system that has multiple instances of Oracle WebLogic Managed
Server, the various values provided for the above parameters are on a per JVM basis,
and not the total for the application.

14.1.2.2 Starting Runtime Pooling
An Administrator can configure specific application(s), from the Enterprise Manager
Fusion Middleware Control, to enable Runtime Pooling. On the startup of the
application server (Oracle WebLogic Managed Server), the configured number of
Forms Runtime processes are pre-started for each application.

In the initialization phase of the Forms servlet, the configuration file (formsweb.cfg)
is read and the server pre-starts the applications which have the prestartRuntimes
parameter enabled.

14.1.3 Minimizing Client Resource Requirements
The Java client is primarily responsible for rendering the application display. It has no
embedded application logic. Once loaded, a Java client can display multiple forms
simultaneously. Using a generic Java client for all Oracle Forms applications requires
fewer resources on the client when compared to having a customized Java client for
each application.

The Java client is structured around many Java classes. These classes are grouped into
functional subcomponents, such as displaying the splash screen, communicating with
the network, and changing the look-and-feel. Functional subcomponents allow the
Forms Developer and the Java Virtual Machine (JVM) to load functionality as it is
needed, rather than downloading all of the functionality classes at once.

14.1.4 Minimizing Forms Services Resource Requirements
When a form definition is loaded from an FMX file, the profile of the executing process
can be summarized as:

■ Encoded Program Units

■ Boilerplate Objects/Images

■ Data Segments

Of these, only the data segments section is unique to a given instance of an
application. The encoded program units and boilerplate objects/images are common
to all application users. Forms Services maps the shared components into physical
memory, and then shares them between all processes accessing the same FMX file.

The first user to load a given FMX file will use the full memory requirement for that
form. However, subsequent users will have a greatly reduced memory requirement,
which is dependent only on the extent of local data. This method of mapping shared
components reduces the average memory required per user for a given application.

14.1.5 Minimizing Network Usage
Bandwidth is a valuable resource, and the general growth of Internet computing puts
an ever increasing strain on the infrastructure. Therefore, it is critical that applications
use the network's capacity sparingly.

Oracle Forms Services communicates with the Java client using metadata messages.
Metadata messages are a collection of name-value pairs that tell the client which object
to act upon and how. By sending only parameters to generic objects on the Java client,

Built-in Optimization Features of Forms Services

Performance Tuning Considerations 14-5

there is approximately 90-percent less traffic (when compared to sending new code to
achieve the same effect).

Oracle Forms Services intelligently condenses the data stream in three ways:

■ When sets of similar messages (collections of name-value pairs) are sent, the
second and subsequent messages include only the differences from the previous
message. This results in significant reductions in network traffic. This process is
called message diff-ing.

■ When the same string is to be repeated on the client display (for example, when
displaying multiple rows of data with the same company name), Oracle Forms
Services sends the string only once, and then references the string in subsequent
messages. Passing strings by reference increases bandwidth efficiency.

■ Data types are transmitted in the lowest number of bytes required for their value.

14.1.6 Maximizing the Efficiency of Packets Sent Over the Network
The extensive use of triggers within the Forms Developer model is a strength, but they
can increase the effect of latency by requiring a network round trip for each trigger.
Latency can be the most significant factor that influences the responsiveness of an
application. Note that latency is not the same as network speed. Network speed
involves a measure of the bits that can be transported per time unit whereas latency is
the time taken for one bit to travel from one end-point to the other. One of the best
ways to reduce the effects of latency is to minimize the number of network packets
sent during a conversation between the Java client and the Forms Services.

Oracle Forms Services implements event bundling by grouping trigger events together
through Event Bundling. Event Bundling gathers all of the events triggered while
navigating between the two objects, and delivers them as a single packet to Oracle
Forms Services for processing.

For example, when a user navigates from item A to item B (such as when tabbing from
one entry field to another), a range of pre- and post-triggers may fire, each of which
requires processing on the Forms Services. When navigation involves traversing many
objects (such as when a mouse click is on a distant object), Event Bundling gathers all
events from all of the objects that were traversed, and delivers the group to Oracle
Forms Services as a single network message.

14.1.7 Rendering Application Displays Efficiently on the Client
All boilerplate objects in a given form are part of a Virtual Graphics System (VGS) tree.
VGS is the graphical subcomponent that is common to all Forms Developer products.
VGS tree objects are described using attributes such as coordinates, colors, line width,
and font. When sending a VGS tree for an object to the Java client, the only attributes
that are sent are those that differ from the defaults for the given object type.

Images are transmitted and stored as compressed JPEG images. This reduces both
network overhead and client memory requirements.

Minimizing resources includes minimizing the memory overhead of the client and
server processes. Optimal use of the network requires that bandwidth be kept to a
minimum and that the number of packets used to communicate between the client and
Oracle Forms Services be minimized in order to contain the latency effects of the
network.

Tuning Oracle Forms Services Applications

14-6 Forms Services Deployment Guide

14.2 Tuning Oracle Forms Services Applications
An application developer can take steps to ensure that maximum benefits are gained
from Forms Services’ built-in architectural optimizations. The remainder of this
chapter discusses key performance issues that affect many applications and how
developers can improve performance by tuning applications to exploit Forms Services
features.

14.2.1 Location of the Oracle Forms Services with Respect to the Data Server
The Forms Java client is only responsible to display the GUI objects. All of the Oracle
Forms logic runs in Oracle Forms Services, on the middle tier. This includes inserting
or updating the data to the database, querying data from the database, executing
stored procedures on the database, and so on. Therefore, it is important to have a
high-speed connection (high bandwidth and not low latency) between the application
server and the database server.

All of this interaction takes place without any communication to the Forms Java client.
Only when there is a change on the screen is there any traffic between the client and
Forms Services. This allows Oracle Forms applications to run across slower networks
(high latency networks), such as with modems or satellites.

The configuration in Figure 14–1, displays how Forms Services and the database
server are co-located in a data center.

Figure 14–1 Co-Locating the OracleAS Forms Services and Database Server

14.2.2 Minimizing the Application Startup Time
First impressions are important, and a key criterion for any user is the time it takes to
load an application. Startup time is regarded as overhead. It also sets an expectation of
future performance. When a business uses thin-client technologies, the required
additional overhead of loading client code may have a negative impact on users.
Therefore, it is important to minimize load time wherever possible.

Data Center

DatabaseForms Services

High Speed
LAN

Desktop Client

Client Connection
(internet, intranet,

modem, satellite, etc.)

Tuning Oracle Forms Services Applications

Performance Tuning Considerations 14-7

After requesting an Oracle Forms application, several steps must be completed before
the application is ready for use:

1. Invoke Java Virtual Machine (JVM).

2. Load all initial Java client classes, and authenticate security of classes.

3. Display splash screen.

4. Initialize form:

a. Load additional Java classes, as required.

b. Authenticate security of classes.

c. Render boilerplate objects and images.

d. Render all elements on the initial screen.

5. Remove splash screen.

6. Form is ready for use.

An application developer has little influence on the time it takes to launch the JVM.
However, the Java deployment model and the structure of the Oracle Forms
Developer Java client allow the developer to decide which Java classes to load and
how. This, in turn, minimizes the load time required for Java classes.

The Java client requires a core set of classes for basic functionality (such as opening a
window) and additional classes for specific display objects (such as LOV items). These
classes must initially reside on the server, but the following techniques can be used to
improve the time it takes to load these classes into the client's JVM:

■ Using Java Files

■ Using Caching

14.2.2.1 Using Java Files
Java provides the Java Archive (Jar) mechanism to create files that allow classes to be
grouped together and then compressed (zipped) for efficient delivery across the
network to the client. Once used on the client, the files are cached for future use.

It is also possible to double jar a file. This saves about 700k when done with
frmall.jar. For Oracle's plugin, the resulting file must have a suffix of jarjar.

The following sections describe the pre-configured Jar files that Oracle Forms Services
provides to support typical deployment scenarios.

14.2.2.2 Using Oracle's Java Plug-in
frmall.jar includes all required classes for running with the Java Plug-in.

To specify one or more Jar files, use the archive setting in the named configuration
section of the Forms Configuration file (formsweb.cfg). For example,

[MyApp]
archive=frmall.jar

14.2.2.3 Using Caching
Oracle’s Java Plug-in supports the caching of Jar files for Oracle Forms Services. When
the JVM references a class, it first checks the local client cache to see if the class exists
in a pre-cached Jar file. If the class exists in cache, JVM checks the server to see if there

Tuning Oracle Forms Services Applications

14-8 Forms Services Deployment Guide

is a more current version of the Jar file. If there isn't, the class is loaded from the local
cache rather than from across the network.

Be sure that the cache is of proper size to maximize its effectiveness. Too small a cache
size may cause valid Jar files to be overwritten, thereby requiring that another Jar file
be downloaded when the application is run again. The default cache size is 20MB. This
size should be compared with the size of the cache contents after successfully running
the application.

Jar files are cached relative to the host from which they were loaded. This has
implications in a load-balancing architecture where identical Jar files from different
servers can fill the cache. By having Jar files in a central location and by having them
referenced for each server in the load-balancing configuration, the developer can
ensure that only one copy of each Jar file is maintained in the client's cache. A
consequence of this technique is that certain classes within the Jar file must be signed
to enable connections back to servers other than the one from which they were loaded.
The Oracle-supplied Jar files already pre-sign the classes.

14.2.3 Reducing the Required Network Bandwidth
The developer can design the application to maximize the data stream compression,
called message-diffing, that Forms automatically performs. This means that forms
sends along data stream compression by using message diff-ing, which sends along
only the information that differs from one message to another. The following steps can
be taken to reduce the differences between messages:

■ Promote similarities between objects. Using similar objects improves message
diff-ing effectiveness (in addition to being more visually appealing to the user). The
following steps encourage consistency between objects:

■ Accept default values for properties, and change only those attributes needed
for the object.

■ Use Smart Classes to describe groups of objects.

■ Lock the look-and-feel into a small number of visual attributes.

■ Reduce the use of boilerplate text. As a developer, you should use the PROMPT
item property rather than boilerplate text wherever applicable. Forms Developer
6.0 and higher includes the Associate Prompt feature, which allows boilerplate text
to be re-designated as the prompt for a given item.

■ Reduce the use of boilerplate items (such as arcs, circles, and polygons). All
boilerplate items for a given Form are loaded at Form initialization. Boilerplate
items take time to load and use resources on the client whether they are displayed
or not. Common boilerplate items, namely rectangles and lines, are optimized.
Therefore, restricting the application to these basic boilerplate items reduces
network bandwidth and client resources while improving startup times.

■ Keep navigation to a minimum. An Event Bundle is sent each time a navigation
event finishes, whether the navigation extends over two objects or many more.
Design Forms that do not require the user to navigate through fields when default
values are being accepted. A Form should encourage the user to quickly exit once
the Form is complete, which causes all additional navigation events to fire as one
Event Bundle.

■ Reduce the time to draw the initial screen. Once the Java client has loaded the
required classes, it must load and initialize all of the objects to be displayed before
it can display the initial screen. By keeping the number of items to a minimum, the

Tuning Oracle Forms Services Applications

Performance Tuning Considerations 14-9

initial screen is populated and displayed to the user more promptly. Techniques
that reduce the time to draw the initial screen include:

■ Providing a login screen for the application with a restricted set of objects
(such as a title, small logo, username, and password).

■ On the Form's initial display, hiding elements not immediately required. Use
the canvas properties:

RAISE ON ENTRY = YES (Canvas only)

VISIBLE = NO

Pay attention to TAB canvases that consist of several sheets where only one
will ever be displayed. For responsive switching between tabs, all items for all
sheets on the canvas are loaded, including those that are hidden behind the
initial tab. Consequently, the time taken to load and initialize a TAB canvas is
related to all objects on the canvas and not just to those initially visible.

■ Disable MENU_BUFFERING. By default, MENU_BUFFERING is set to True.
This means that changes to a menu are buffered for a future "synchronize" event
when the altered menu is re-transmitted in full. (Most applications make either
many simultaneous changes to a menu or none at all. Therefore, sending the entire
menu at once is the most efficient method of updating the menu on the client.)
However, a given application may make only minimal changes to a menu. In this
case, it may be more efficient to send each change as it happens. You can achieve
this using the statement:

Set_Application_Property (MENU_BUFFERING, 'false');

Menu buffering applies only to the menu properties of LABEL, ICON, VISIBLE,
and CHECKED. An ENABLE/DISABLE event is always sent and does not entail
the retransmission of an entire menu.

14.2.4 Other Techniques to Improve Performance
The following techniques may further reduce the resources required to execute an
application:

■ Examine timers and replace with JavaBeans. When a timer fires, an asynchronous
event is generated. There may not be other events in the queue to bundle with this
event. Although a timer is only a few bytes in size, a timer firing every second
generates 60 network trips a minute and almost 30,000 packets in a typical
working day. Many timers are used to provide clocks or animation. Replace these
components with self-contained JavaBeans that achieve the same effect without
requiring the intervention of Forms Services and the network.

■ Consider localizing the validation of input items. It is common practice to
process input to an item using a When-Validate-Item trigger. The trigger itself is
processed on the Forms Services. You should consider using pluggable Java
components to replace the default functionality of standard client items, such as
text boxes. Then, validation of items, such as date or max/min values, are
contained within the item. This technique opens up opportunities for more

Tip: When using Tab canvases, use stacked canvases and display the
right canvas in the when-tab-page-changed trigger. Remember to set
the properties RAISE ON ENTRY = YES and VISIBLE = NO for
all the canvases not displayed in the first screen.

Web Cache and Forms Integration

14-10 Forms Services Deployment Guide

complex, application-specific validation like automatic formatting of input, such
as telephone numbers with the format (XXX) XXX-XXXX.

■ Reduce the application to many smaller forms, rather than one large form. By
providing a fine-grained application, the user's navigation defines which objects
are loaded and initialized from the Forms Services. With large Forms, the danger
is that the application is delayed while objects are initialized, many of which may
never be referenced. When chaining Forms together, consider using the built-ins
OPEN_FORM and NEW_FORM:

■ With OPEN_FORM, the calling Form is left open on the client and the server,
so that the additional Form on both the client and the server consumes more
memory. However, if the Form is already in use by another user, then the
increase in server memory is limited to just the data segments. When the user
returns to the initial Form, it already resides in local memory and requires no
additional network traffic to redisplay.

■ With NEW_FORM, the calling Form is closed on the client and the server, and
all object properties are destroyed. Consequently, it consumes less memory on
the server and client. Returning to the initial Form requires that it be
downloaded again to the client, which requires network resources and startup
time delays. Use OPEN_FORM to display the next Form in an application
unless it is unlikely that the initial form will be called again (such as a login
form).

■ Avoid unnecessary graphics and images. Wherever possible, reduce the number
of image items and background images displayed in your applications. Each time
an image is displayed to application users, the image must be downloaded from
the application server to the user's Web browser. To display a company logo with
your Web application, include the image in the HTML file that downloads at
application startup. Do this instead of including it as a background image in the
application. As a background image, it must be retrieved from the database or file
system and downloaded repeatedly to users' computers.

14.3 Web Cache and Forms Integration
Oracle Web Cache can be used as a load balancer with Oracle Forms applications.

The following setup instructions assume the following:

1. Oracle Web Cache instance running on Host A

2. Oracle HTTP Server instance and Oracle WebLogic Managed Server on Host B
running Oracle Forms application D

3. Oracle HTTP Server instance and Oracle WebLogic Managed Server on Host C
running Oracle Forms application D

Note that there could be more Oracle HTTP Server/Oracle WebLogic Managed Server,
but only two instance pairs will be described here for purposes of simplification. The
Oracle HTTP Server/Oracle WebLogic Managed Server are not configured for
clustering/active failover because Oracle Forms applications cannot take advantage of
Oracle WebLogic Server active failover.

Also note that a Web Cache 9.0.2.x cluster cannot be used. An Oracle Web Cache
cluster can be used to load balance Oracle Forms starting with Oracle WebLogic
Server.

Web Cache and Forms Integration

Performance Tuning Considerations 14-11

A Forms client needs to be able to communicate with the same instance of the server
process for the duration of a session. Since Forms applications are stateful, Web Cache
must be configured for stateful load balancing using its session binding feature.

Configure Web Cache on Host A with the appropriate Site information for the Forms
application, as well as Origin Server and Site-to-Server Mapping information for the
Oracle HTTP Server instances running on Hosts B and C. When configuring Origin
Server information for Hosts B and C, be sure to configure a ping URL that will detect
whether Forms application D is running, for example,
/forms/frmservlet?ifcmd=status.

To Configure Session Binding in Web Cache:

1. Add the following code to the weblogic.xml file located in $DOMAIN_
HOME/servers/WLS_FORMS/tmp/_WL_user/formsapp_11.1.1/<random_
string>/war/WEB-INF:

<session-tracking
 cookies="enabled">
</session-tracking>

2. Restart WLS_Forms Managed Server with:

startserver

3. Log on to the Web Cache Manager.

4. In the navigator pane, select Origin Servers, Sites, and Load Balancing |Session
Binding.

5. In the Session Binding screen, select Default Session Binding, then select Edit
Selected.

6. The Edit Session Binding dialog box appears.

7. From the Please select a session: pull-down list, select JSESSIONID.

8. Select Cookie-based as the session binding mechanism from the dropdown list for
Oracle Forms application D.

9. Click Submit.

10. Apply changes and restart Oracle Web Cache.

To test the setup:

1. Using a browser, point it to the Web Cache host and access Oracle Forms
application D. Ensure that the application works as expected. Keep the browser
window open.

2. Identify the Oracle HTTP Server/Oracle WebLogic Managed Server that handled
the requests. For example, assume this is Host B and shut down the Oracle HTTP
Server/WebLogic Managed Server on that host. Now only the Oracle HTTP
Server/WebLogic Managed Server running on Host C will be accessible.

Note: Refer to the Oracle Fusion Middleware Installation Planning
Guide for information on load balancing. Refer to the Oracle Fusion
Middleware Enterprise Deployment Guide for Java EE and Oracle
Fusion Middleware High Availability Guide for information on
enterprise deployment architectures and high availability.

Web Cache and Forms Integration

14-12 Forms Services Deployment Guide

3. Using the same browser that is running the Oracle Forms client, access Oracle
Forms application D again. The request will fail, and the Forms client will lose its
session. Remember that Oracle Forms session state is not replicated among Oracle
WebLogic Managed Server.

4. Next, use the browser to start a new Forms session. Web Cache will direct the
requests to the remaining Oracle HTTP Server/WebLogic Managed Server
running on Host C. Ensure that the application works as expected.

5. Restart the Oracle HTTP Server/WebLogic Managed Server on Host B. Using a
browser, log on to the Web Cache Manager. In the navigator pane, select
Monitoring | Health Monitor.

6. On the Health Monitor screen, make sure that Host B is marked UP.

For additional information about Web Cache, see Oracle Fusion Middleware Web Cache
Administrator's Guide.

A

Troubleshooting Oracle Forms Services A-1

A Troubleshooting Oracle Forms Services

This chapter contains the following:

■ Section A.1, "Verifying The Installation"

■ Section A.2, "Diagnosing FRM-XXXXX Errors"

■ Section A.3, "Diagnosing Server Crashes with Stack Traces"

■ Section A.4, "Diagnosing Client Crashes"

■ Section A.5, "Forms Trace and Servlet Logging Tools"

■ Section A.6, "Resolving Memory Problems"

■ Section A.7, "Troubleshooting Tips"

■ Section A.8, "Need More Help?"

This chapter provides information to help you resolve problems that might occur
when you run an application over the Web using Oracle Forms. It contains an outline
of common causes for errors, the method you can use to verify your installation, and
the tools and techniques provided to diagnose problems.

This chapter is also a subset of the whitepaper Oracle Forms Diagnostic Techniques that
can be found at http://www.oracle.com/technology/products/forms/.

A.1 Verifying The Installation
If there is something wrong with the installation, then it will result in faulty
configuration and Oracle Forms will not run correctly. After the Oracle Universal
Installer indicates that Fusion Middleware Control was successfully installed, you can
verify whether Oracle Forms Services is correctly configured or not. You can use these
tools:

Section A.1.1, "Use The Web Form Tester"

Section A.1.2, "Find Port Information"

A.1.1 Use The Web Form Tester
The Web Form Tester is available with your Oracle Fusion Middleware installation. To
verify whether the Oracle installation and configuration of Forms Services is correct,
run the Web Form Tester on the middle tier. The following is an example of how this
can be done on a Windows computer.

1. Start the Admin server for the WebLogic Server domain by selecting Start |
Program Files |Oracle WebLogic Server | User Projects | Domain | Start
Admin Server for WLS Domain, if it is not already started.

http://www.oracle.com/technology/products/forms/

Diagnosing FRM-XXXXX Errors

A-2 Forms Services Deployment Guide

2. If the managed server is not up, perform the following steps:

1. Start the node manager by selecting Start | Program Files |Oracle WebLogic
| WebLogic Server 11gR1 | Tools | Node Manager, if it is not already
started.

2. Start Forms Services from the WebLogic Administrator Console.

3. Open an instance of the browser by typing <ORACLE_
HOME>/tools/web/html/runform.htm for the URL and press ENTER.
Replace ORACLE_HOME with your actual Oracle home for Oracle Fusion
Middleware.

4. Alternatively, you can run the Web Form Tester by selecting Start | Program Files
| <Oracle_Home> | Forms Services | Run a Form on the Web from the
Windows Start menu for Oracle Fusion Middleware.

5. Enter the Web port and click the Run Form button. See Section A.1.2, "Find Port
Information" to learn how to find out the Web port.

6. If the installation of Oracle Fusion Middleware is correct, you will see a success
message in the Web browser. Also, it can be tested from a client computer whether
the basic Forms setup in Oracle Fusion Middleware on the middle tier is installed
correctly or not by the installer. You can run the test form from any client
computer by running it from the browser with the URL
http://example.com:NNNN/forms/frmservlet?form=test.fmx.

A.1.2 Find Port Information
When in doubt or you need to know what port numbers to use to run Forms after
installation, you can look at port information in the file <ORACLE_
HOME>/install/portlist.ini. Use the appropriate port numbers for your
installation.

A.2 Diagnosing FRM-XXXXX Errors
Use these tools to diagnose and resolve FRM-XXXXX errors:

■ Section A.2.1, "The Oracle Forms Applet"

A.2.1 The Oracle Forms Applet
The brief message about the FRM error should help in identifying the basic cause of
the problem. Often, everything required to identify the cause an FRM error is
contained in the error reported by the Forms applet. When a FRM error is raised, the
error dialog will have a Details button. Pressing the 'Details' button will show the
current Java stack. The exact stack is tied to the root cause and the version of Oracle
Forms. This is due to the differing package structure used for the applet class files in
the different releases.

A.3 Diagnosing Server Crashes with Stack Traces
This section contains the following:

■ Section A.3.1, "About Stack Traces"

■ Section A.3.2, "Configuring and Using Stack Traces"

If the Forms web runtime terminates unexpectedly, then it writes a stack trace to the
directory $ORACLE_INSTANCE/FormsComponent/forms/trace. The filename will

Diagnosing Server Crashes with Stack Traces

Troubleshooting Oracle Forms Services A-3

have the format <forms_runtime_process>_dump_<process id>.The dump file
contains a stack trace of the running process, and shows the last successful operation
performed by Forms. This core file can be used to assemble a stack trace with symbol
names using GNU Debugger, dbx or similar debugging tool on the machine where the
dump occurred.

A.3.1 About Stack Traces
A stack trace is useful for two reasons:

■ The information in the stack can be used to identify a known issue. It is not 100%
reliable, but an identical stack trace is a good indicator of a matching problem.
Even if it is not the same, there may be a workaround or patch for an existing bug
that can be tested.

■ If the problem is not a known bug, then the stack may provide valuable
information to assist development efforts to pinpoint the cause.

A.3.2 Configuring and Using Stack Traces
This section contains the following:

■ Section A.3.2.1, "Verifying the Environment"

■ Section A.3.2.2, "Understanding UNIX Stack Traces"

■ Section A.3.2.3, "Understanding Windows Stack Traces"

A.3.2.1 Verifying the Environment
In order to test stack tracing on UNIX or Windows you can set the environment
variable FORMS_DELIBERATECRASH. As the name suggests, setting this will cause the
forms runtime process to crash. Oracle Forms currently recognizes two settings: 1 and
2. If FORMS_DELIBERATECRASH is set to 1 then forms will crash at runtime whenever
the BELL Built-in is executed. If it is set to 2 then forms will crash at runtime whenever
a when-button-pressed trigger is fired. This environment variable can be set in the
environment (for example, default.env) file.

A.3.2.2 Understanding UNIX Stack Traces
In a UNIX stack trace, the top two functions siehjmpterm() and
sigacthandler() are the signal handling code - these functions will often be
present in the stack trace. To see the function the program was in when the error
occurred you need to read further down the stack.

If you set FORMS_CATCHTERM=0 the two functions do not show up in the dump file.
The stack trace is displayed without the crash handling symbols.

A.3.2.3 Understanding Windows Stack Traces
Stack tracing works differently on UNIX and on Windows. The symbol information is
contained inside the executable files and shared libraries on Unix. On Windows this
information is stripped out at link time and is in the form of binary .sym files. There
should be one .sym file for every Oracle Forms executable or DLL. The .sym files are
installed by default. On Windows the files are located in the ORACLE_HOME\bin
directory. The mechanism on Windows platforms is such that in the event of a crash
the Forms runtime process reads all the .sym files that correspond to the forms
executable files loaded into memory. It then uses the information in the .sym files to
lookup the symbol name.

Diagnosing Client Crashes

A-4 Forms Services Deployment Guide

A.4 Diagnosing Client Crashes
This section contains the following:

■ Section A.4.1, "About Diagnosing Client Crashes"

■ Section A.4.2, "Diagnosing Hanging Applications"

A.4.1 About Diagnosing Client Crashes
If the Forms applet disappears unexpectedly, accompanied by a dialog indicating a
fatal error, then the Forms applet has crashed. On Windows, a crash will result in the
operating system raising an 'illegal operation' dialog, or may cause the "Not
responding" flag in Task Manager.To verify the crash, check for a stack trace file on the
client. If the client has crashed then a file with the .rpt extension will be created in the
same directory as the executable. The root of the filename will be the name of the
executable.

Sometimes the applet may appear to have crashed, but no corresponding .rpt file can
be found. In this case it is likely that the Oracle Forms has unexpectedly disconnected
from the client. The applet will still be running, but it has shutdown all the Forms
windows, giving the appearance of a client crash.

A.4.2 Diagnosing Hanging Applications
If the client appears to hang then it is important to verify that the server process is still
alive. If the server process has not crashed, but the client no longer appears to respond
to user interaction then the application is said to be hanging.

In such cases a thread dump can point to the deadlock. A thread dump can be
obtained by pressing t in the Java console. This displays a list of all the threads
running in the client JVM.

The information contained in the dump file is extremely useful to Oracle development,
and should be included in any bug filed to report the problem.

A.4.2.1 Causes of Hanging Applications
One cause could be a mismatch between the Java class files and the Oracle Forms
version. Communication between the applet and the Forms runtime process is based
on message ID. If these message ID's are out of sync, then the applet may not
understand an instruction from the server, and vice versa. If you are using Jar files,
then try with the <ARCHIVE> tag removed. If the problem persists then pull the
correct class files off the installation/patch CD by hand.

Another cause is that the Forms Runtime process may have died. Check if the Forms
Runtime process on the server is still alive. Check that the FORMS_TIMEOUT parameter
is set. It defines how long the server should wait for a ping from the Oracle Forms
client, only cleaning up the runtime process when there has been no activity from the
Forms client for the specified time. The client sends out a HEARTBEAT every two
minutes by default. If FORMS_TIMEOUT is set to two minutes or longer, the server
will stay up as long as it hears a HEARTBEAT from the client. Set to shorter than the
HEARTBEAT interval, it will shut down after the interval specified in FORMS_
TIMEOUT. You can set the interval by setting the HEARTBEAT applet parameter in
formsweb.cfg. For more information, see Section 8.6.3, "Configuring Asynchronous
Communication." Although this is primarily intended to prevent orphaned server
processes, it can also prevent the unwanted premature cleanup of server processes.

Resolving Memory Problems

Troubleshooting Oracle Forms Services A-5

A.5 Forms Trace and Servlet Logging Tools
Forms Trace and Servlet Logging are two more tools to use in troubleshooting your
Oracle Forms Environment. For more information on configuring and using Forms
Trace, see Chapter 12.1, "About Forms Trace" and Chapter 12.6, "Taking Advantage of
Oracle Diagnostics and Logging Tools".

A.6 Resolving Memory Problems
This section contains the following:

■ Section A.6.1, "How Java Uses Memory"

■ Section A.6.2, "Setting the Initial Java Heap"

■ Section A.6.3, "About Memory Leaks"

■ Section A.6.4, "Improving Performance with Caching"

A.6.1 How Java Uses Memory
Like all software programs, a Java applet uses memory. For Java, the language
specification requires a 'garbage collector', which is in an internal memory manager for
the Java Virtual Machine (JVM). When a Java program needs memory, it requests this
memory from the JVM. If there is no memory left, then the JVM will attempt to free
some memory by using the garbage collector. The garbage collector will try to release
memory that is no longer required to run the program back to the JVM. If there is still
insufficient memory to perform the required task then the JVM will attempt to get
more memory from the operating system. If that memory allocation fails, then the Java
program will be unable to continue.

A.6.2 Setting the Initial Java Heap
You can specify the initial Java Heap (the memory used by the JVM) for your
application through Fusion Middleware Control. For the client, you can change the
setting in the Java control panel after you've installed the Oracle Java Plug-in.

A.6.3 About Memory Leaks
A memory leak is an error in a program's dynamic-store allocation logic that causes it to
fail to reclaim discarded memory, leading to eventual collapse due to memory
exhaustion.

For example, when a program runs it may need to allocate some memory to perform a
particular task. If the program has finished with that memory and no longer has any
use for it, but fails to make that memory available to other programs running on the
computer, then it is said to have leaked the memory.

A typical method used to spot memory leaks is to repeat a series of steps, and observe
the memory in use by the application - if the memory usage continues to rise with each
iteration, then the assumption is often that the program has a memory leak.

However, some complex applications may choose to retain control of memory it has
previously allocated so that it can reuse it at a later point - memory allocation can be

Note: The JVM will only use the memory it is told it is allowed to
use. Even if you have memory available with the operating system,
the JVM will not use it if told not to.

Resolving Memory Problems

A-6 Forms Services Deployment Guide

an expensive operation, and if the program expects that it will need more memory
later it may be more efficient to keep the unused memory available for reuse.

A.6.3.1 Memory Leaks in Java
The Java language specification demands that the JVM has a garbage collector. In Java,
the programmer allocates memory by creating a new object. There is no way to
de-allocate that memory. Periodically the garbage collector sweeps through the
memory allocated to the program, and determines which objects it can safely destroy,
therefore releasing the memory. To determine which objects it can safely destroy, the
garbage collector uses a 'mark and sweep' algorithm. The garbage collector scans the
dynamically allocated memory for objects, marking those which still have active
references to them.

After all possible paths to objects have been investigated, unmarked objects that are
known to be no longer needed can be garbage collected. A common myth with Java
programming is that the presence of a garbage collector means that there can be no
memory leaks. This is not true because the garbage collector simply marks those
objects, which have active references, and destroys those that do not. It is possible to
have an active reference to an object that is no longer needed. This is a memory leak in
Java. The solution to the leak is to destroy the references to the object once it is no
longer needed so that the garbage collector can identify it as safe to destroy. If a
memory leak exists in a Java program, then calling the garbage collector more
frequently will not help.

To complicate matters further, the JVM may choose not to release unused memory
back to the operating system. In the real world this seldom matters, as most programs
will typically require more memory at some point in the near future and can reuse the
free memory in the JVM. However, it is worth bearing in mind that not all the memory
allocated to the JVM will be in use by the program running in the JVM.

A.6.3.2 Identifying Memory Leaks
Typically, if a growth in memory usage is observed each time a particular series of
operations is performed, then it is a memory leak. The ideal proof is to:

1. Get the form into an initial base state, and record the memory usage,

2. Perform a series of steps to illustrate the problem,

3. Return to the initial base state, and record the memory usage.

By repeating steps 2 and 3, it is possible to determine whether there is a steady
memory leak or not. If the growth in memory is small over a large number of
iterations, then it may not be a leak at all; it could be that the JVM is retaining unused
memory, or the garbage collector is not activating as frequently as expected.

A.6.4 Improving Performance with Caching
When any Java program runs, the Java Virtual Machine needs to load class files. When
running over the Internet, the time taken to download a class file each time the
program runs can lead to performance problems. In order to solve this download
problem, the JDK supports Java Archive (Jar) files. A Jar file is simply a collection of
class files bundled into one compressed file. Typically, the size of the Jar file will be
much smaller than the combined size of the class files it contains.

When the JVM first references a class, it checks the local computer to see if any of the
previously cached Jar files contain this class. If the class does exist in one of the
pre-cached Jar files, then the JVM checks to see if there is a newer version of this Jar
file on the application server. If there is a newer Jar file available then the new copy of

Troubleshooting Tips

Troubleshooting Oracle Forms Services A-7

the Jar file is downloaded to the client cache. If the cached Jar file is up to date, then
the class file is loaded from the cached Jar file rather than from over the network.

Caching is important because if the application Jar files do not change, then after the
application has run once, and all the Jar files required have been cached on the client,
then subsequent invocations of the application will always load the classes from the
local cached copies. This can lead to significant performance improvements in the
startup time for the application. If new classes are needed to run a specific part of the
application, these will be downloaded as required.

A.7 Troubleshooting Tips
The following troubleshooting list will help you deal with complex issues, but it is not
a definitive guide to problem solving or a guaranteed set of solutions to your Oracle
Forms environment.

Be methodical
Do not immediately leap to the area you believe to be the cause based on a hunch, or a
guess - make sure you eliminate the other possibilities first. An easy trap to fall into is
that of spending long periods of time trying to find evidence to support your theory,
rather than concentrating on what the evidence shows. Do not overlook the trivial or
the obvious.

Divide the problem into sections
■ Chop the problem into manageable sections - this helps eliminate whole areas

from investigation. As you investigate an area and satisfy yourself that the
problem does not lie there, you can proceed to the next section. An approach to
diagnosing a problem that is often successful is to reduce it to its essential parts.
This will be important if you need to discuss the problem with Oracle Support
Services to obtain a solution.

■ Define what happens, when it happens, how often it happens. Of equal
importance is, understanding what does not happen, when it does not happen etc.
For example, if a group of users in the same building all get the problem, and it
always happens between 9 and 10am, it is just as important to know that it never
reproduces in another building, or after 10pm. Perhaps the users only use a
particular Form between 9 and 10, or the load on the system is highest between 9
and 10am.

Read the error messages.
It sounds obvious, but often the solution information is within the error text. This
document will help you understand the error messages, and help identify what action
to take.

Make sure you can reproduce the problem, if possible
If you can reproduce the problem yourself, you may notice some behavior that the end
user never spotted - perhaps it had always happened, so they simply assumed it was
meant to happen. If you can reproduce the problem then you have already started the
first step to resolve it.

Make sure you understand the tools you are trying to use
If you decide to use a diagnostic tool, make sure you know how to use it, and how to
interpret the data it produces. Time spent in investigating the usage of a tool before
the problem happens is time well invested. Make time to learn the tool as well.

Need More Help?

A-8 Forms Services Deployment Guide

A.8 Need More Help?
In case the information in the previous sections was not sufficient, you can find more
solutions on My Oracle Support (formerly OracleMetaLink),
http://support.oracle.com. If you do not find a solution for your problem, log
a service request.

See Also:

■ Oracle Fusion Middleware Release Notes, available on the Oracle
Technology Network:
http://www.oracle.com/technology/products/forms/i
ndex.html

http://metalink.oracle.com/
http://www.oracle.com/technology/products/forms/index.html
http://www.oracle.com/technology/products/forms/index.html

B

Configuring Java Plug-ins B-1

B Configuring Java Plug-ins

This section describes the use of Oracle’s Java Plug-in as a Web browser plug-in.
Oracle Java Plug-in enables users to run Oracle Forms applications using Mozilla
Firefox or Internet Explorer. It provides the ability to specify the use of a specific Java
Virtual Machine (JVM) on the client. For more information, see the white paper "Using
Sun's Java Plug-in" at
http://www.oracle.com/technology/products/forms/index.html.

B.1 Supported Configurations
Oracle supports the Java Plug-in. For more information, see the Java Plug-in
Documentation at
http://java.sun.com/products/plugin/reference/docs/index.html.

B.2 Legacy Lifecycle Behavior And Configuration Requirements
In JDK 1.4.1 and later, the Java Plug-in supports the LEGACY_LIFECYCLE applet
parameter. When this parameter is set to true, a running applet is not destroyed when
the user navigates away from a page. Furthermore, when the user navigates back to
the page, the running applet is resumed unless:

■ The browser must re-issue the request for the applet definition, and

■ The response to that request produces an applet definition that differs from the
applet definition that was returned by the original request.

B.2.1 Configuration Requirements
To use the LEGACY_LIFECYCLE feature for certain configurations, add LEGACY_
LIFECYCLE=true parameter to the relevant configuration sections, such as in
formsweb.cfg.

Alternatively, legacy_lifecycle=true can be specified on the URL that is used to
launch a Forms application. This technique is useful primarily during application
development.

In addition, JavaScript must be enabled in the browser from which the Forms
application (that specifies legacy_lifecycle=true) is launched.

The HTML files must also adhere to certain guidelines. The base HTML files that are
shipped with the product already adhere to the required guidelines. However, users
who write their own base HTML files must ensure that such files adhere to the
following guidelines:

Legacy Lifecycle Behavior And Configuration Requirements

B-2 Forms Services Deployment Guide

1. The base HTML file must define the serverURL attribute to the value of the
serverURL variable (serverURL="%serverURL%"), in the COMMENT node
that has the ID forms_plugin_info.

2. The base HTML file must define the serverURL applet parameter, and its value
must be the value of the appletServerURL variable. (Prior to Forms 11g, it was
set to the value of the serverURL variable). This can be accomplished by
including

 <PARAM NAME="serverURL" VALUE="%appletServerURL%">

and

 serverURL="%appletServerURL%"

in the OBJECT definition and the EMBED comment in user-written base HTML
files. Note that the appletServerURL variable should not be set in a
configuration file. (If it is, the value is ignored.) Instead, Forms computes its value
automatically: if legacy_lifecycle=true (in the configuration file or in the
initial URL), then the appletServerURL variable evaluates to "?", which causes
Forms to look for the serverURL attribute of the COMMENT node (see above).
Otherwise, the appletServerURL evaluates to the value of the serverURL
variable.

3. The base HTML file must define the legacy_lifecycle applet parameter, and
the value must not be hard-coded: it must match the value of the legacy_
lifecycle variable. That is because in Forms 11g, the variable also affects the
value of the appletServerURL variable (as explained above). This can be
accomplished by including

 <PARAM NAME="legacy_lifecycle" VALUE="%legacy_lifecycle%">

and

 legacy_lifecycle="%legacy_lifecycle%"

in the OBJECT definition and the EMBED comment in user-written base HTML
files.

C

Locations and Samples of Configuration Files C-1

C Locations and Samples of Configuration
Files

This section includes a list of configuration files and their default locations. This
section also includes samples of the default configuration files that are installed on the
system. Some default values such as locations and paths may vary.

■ Section C.1, "Locations of Forms Configuration Files"

■ Section C.2, "Default formsweb.cfg"

■ Section C.3, "Platform Specific default.env Files"

■ Section C.4, "base.htm and basejpi.htm Files"

■ Section C.5, "web.xml"

■ Section C.6, "weblogic.xml"

■ Section C.7, "forms.conf"

■ Section C.8, "Registry.dat"

■ Section C.9, "Default jvmcontroller.cfg"

■ Section C.10, "Default webutil.cfg"

■ Section C.11, "Default webutilbase.htm"

■ Section C.12, "Default webutiljpi.htm"

C.1 Locations of Forms Configuration Files
Table C–1 lists the default locations of Forms configuration files on UNIX. The location
of these files in Windows is similar.

Table C–1 List of Files and their Locations in Release 11.1.1.1.0 and 11.1.1.2.0

File Name Location in Release 11.1.1.1.0
Location in Release 11.1.1.2.0
and later

formsweb.cfg $DOMAIN_HOME/servers/WLS_
FORMS/stage/formsapp/11.1
.1/formsapp/config

$DOMAIN_
HOME/config/fmwconfig/ser
vers/WLS_
FORMS/applications/formsa
pp_11.1.1/config

default.env $DOMAIN_HOME/servers/WLS_
FORMS/stage/formsapp/11.1
.1/formsapp/config

$DOMAIN_
HOME/config/fmwconfig/ser
vers/WLS_
FORMS/applications/formsa
pp_11.1.1/config

Default formsweb.cfg

C-2 Forms Services Deployment Guide

C.2 Default formsweb.cfg
A sample of the default formsweb.cfg file contains the following:

#formsweb.cfg defines parameter values used by the FormsServlet
formsweb.cfg defines parameter values used by the FormsServlet (frmservlet)
This section defines the Default settings. Any of them may be overridden in the
following Named Configuration sections. If they are not overridden, then the
values here will be used.
The default settings comprise two types of parameters: System parameters,
which cannot be overridden in the URL, and User Parameters, which can.

base.htm $DOMAIN_HOME/servers/WLS_
FORMS/stage/formsapp/11.1
.1/formsapp/config

$ORACLE_
INSTANCE/config/FormsComp
onent/forms/server

basejpi.htm $DOMAIN_HOME/servers/WLS_
FORMS/stage/formsapp/11.1
.1/formsapp/config

$ORACLE_
INSTANCE/config/FormsComp
onent/forms/server

webutilbase.htm $DOMAIN_HOME/servers/WLS_
FORMS/stage/formsapp/11.1
.1/formsapp/config

$ORACLE_
INSTANCE/config/FormsComp
onent/forms/server

webutiljpi.htm $DOMAIN_HOME/servers/WLS_
FORMS/stage/formsapp/11.1
.1/formsapp/config

$ORACLE_
INSTANCE/config/FormsComp
onent/forms/server

ftrace.cfg $ORACLE_
INSTANCE/config/FormsComp
onent/forms/server

$ORACLE_
INSTANCE/config/FormsComp
onent/forms/server

web.xml $DOMAIN_HOME/servers/WLS_
FORMS/stage/formsapp/11.1
.1/formsapp/formsweb.war/
WEB-INF/

$DOMAIN_HOME/servers/WLS_
FORMS/tmp/_WL_
user/formsapp_
11.1.1/<random_
string>/war/WEB-INF

weblogic.xml $DOMAIN_HOME/servers/WLS_
FORMS/stage/formsapp/11.1
.1/formsapp/formsweb.war/
WEB-INF/

$DOMAIN_HOME/servers/WLS_
FORMS/tmp/_WL_
user/formsapp_
11.1.1/<random_
string>/war/WEB-INF

forms.conf $ORACLE_
INSTANCE/config/OHS/<OHS
INSTANCE NAME>/moduleconf

$ORACLE_
INSTANCE/config/OHS/<OHS
INSTANCE NAME>/moduleconf

jvmcontroller.c
fg

$ORACLE_
INSTANCE/config/FRCompone
nt/frcommon/tools/jvm/

$ORACLE_
INSTANCE/config/FRCompone
nt/frcommon/tools/jvm/

webutil.cfg $ORACLE_
INSTANCE/config/FormsComp
onent/forms/server/

$ORACLE_
INSTANCE/config/FormsComp
onent/forms/server/

Registry.dat $ORACLE_
INSTANCE/config/FormsComp
onent/forms/registry/orac
le/forms/registry/

$DOMAIN_
HOME/config/fmwconfig/ser
vers/WLS_
FORMS/applications/formsa
pp_
11.1.1/config/forms/regis
try/oracle/forms/registry

Table C–1 (Cont.) List of Files and their Locations in Release 11.1.1.1.0 and 11.1.1.2.0

File Name Location in Release 11.1.1.1.0
Location in Release 11.1.1.2.0
and later

Default formsweb.cfg

Locations and Samples of Configuration Files C-3

Parameters which are not marked as System parameters are User parameters.
SYSTEM PARAMETERS

These have fixed names and give information required by the Forms
Servlet in order to function. They cannot be specified in the URL query
string. But they can be overridden in a named configuration (see below).
Some parameters specify file names: if the full path is not given,
they are assumed to be in the same directory as this file. If a path
is given, then it should be a physical path, not a URL.
USER PARAMETERS

These match variables (e.g. %form%) in the baseHTML file. Their values
may be overridden by specifying them in the URL query string
(e.g. "http://myhost.example.com/forms/frmservlet?form=myform&width=700")
or by overriding them in a specific, named configuration (see below)
[default]
System parameter: default base HTML file
baseHTML=base.htm
System parameter: base HTML file for use with Sun's Java Plug-In
baseHTMLjpi=basejpi.htm
System parameter: delimiter for parameters in the base HTML files
HTMLdelimiter=%
System parameter: file setting environment variables for the Forms runtime
processes
envFile=default.env

Forms runtime argument: whether to escape certain special characters
in values extracted from the URL for other runtime arguments
escapeparams=true
Forms runtime argument: which form module to run
form=test.fmx
Forms runtime argument: database connection details
userid=
Forms runtime argument: whether to run in debug mode
debug=no
Forms runtime argument: host for debugging
host=
Forms runtime argument: port for debugging
port=
Forms runtime argument: BIDI digitSubstitution
digitSubstitution=context
Other Forms runtime arguments: grouped together as one parameter.
These settings support running and debugging a form from the Builder:
otherparams=obr=%obr% record=%record% tracegroup=%tracegroup% log=%log%
term=%term% ssoProxyConnect=%ssoProxyConnect%
Sub argument for otherparams
obr=no
Sub argument for otherparams
record=
Sub argument for otherparams
tracegroup=
Sub argument for otherparams
log=
Sub argument for otherparams
term=

HTML page title
pageTitle=Oracle Fusion Middleware Forms Services
HTML attributes for the BODY tag
HTMLbodyAttrs=

Default formsweb.cfg

C-4 Forms Services Deployment Guide

HTML to add before the form
HTMLbeforeForm=
HTML to add after the form
HTMLafterForm=

Forms applet parameter: URL path to Forms ListenerServlet
serverURL=/forms/lservlet
Forms applet parameter
codebase=/forms/java
Forms applet parameter
imageBase=codebase
Forms applet parameter
width=750
Forms applet parameter
height=600
Forms applet parameter
separateFrame=false
Forms applet parameter
splashScreen=
Forms applet parameter
allowAlertClipboard=true
Forms applet parameter
disableValidateClipboard=false
Forms applet parameter
highContrast=false
Forms applet parameter
background=
Forms applet parameter
lookAndFeel=Oracle
Forms applet parameter
colorScheme=teal
Forms applet parameter
logo=
Forms applet parameter
restrictedURLparams=pageTitle,HTMLbodyAttrs,HTMLbeforeForm,HTMLafterForm,log
Forms applet parameter
formsMessageListener=
Forms applet parameter
recordFileName=
Forms applet parameter
serverApp=default
Forms applet archive setting for other clients (Sun Java Plugin, Appletviewer,
 etc)
archive=frmall.jar
Number of times client should retry if a network failure occurs. You should
only change this after reading the documentation.
networkRetries=0
Page displayed to users to allow them to download Sun's Java Plugin.
Sun's Java Plugin is typically used for non-Windows clients.
(NOTE: you should check this page and possibly change the settings)
jpi_download_page=http://java.sun.com/products/archive/j2se/6u12/index.html
Parameter related to the version of the Java Plugin
jpi_classid=clsid:CAFEEFAC-0016-0000-0012-ABCDEFFEDCBA
Parameter related to the version of the Java Plugin
jpi_
codebase=http://java.sun.com/update/1.6.0/jinstall-6-windows-i586.cab#Version=1,6,
0,12
Parameter related to the version of the Java Plugin
jpi_mimetype=application/x-java-applet;jpi-version=1.6.0_12
Applet parameter for Sun's Java Plugin

Default formsweb.cfg

Locations and Samples of Configuration Files C-5

legacy_lifecycle=false
Single Sign-On OID configuration parameter: indicates whether we allow
dynamic resource creation if the resource is not yet created in the OID.
ssoDynamicResourceCreate=true
Single Sign-On parameter: URL to redirect to if ssoDynamicResourceCreate=false
ssoErrorUrl=
Single Sign-On parameter: Cancel URL for the dynamic resource creation DAS page.
ssoCancelUrl=
Single Sign-On parameter: indicates whether the url is protected in which
case mod_osso will be given control for authentication or continue in
the FormsServlet if not. It is false by default. Set it to true in an
application-specific section to enable Single Sign-On for that application.
ssoMode=false
Single Sign-On parameter: indicates whether session should operate in proxy
user support or not. Specify ssoProxyConnect=yes to enable for particular
 application.
ssoProxyConnect=no
The parameter allow_debug determines whether debugging is permitted.
Administrators should set allow_debug to "true" if servlet
debugging is required, or to provide access to the Forms Trace Xlate utility.
Otherwise these activities will not be allowed (for security reasons).
allow_debug=false
Parameter which determines whether new Forms sessions are allowed.
This is also read by the Forms EM Overview page to show the
current Forms status.
allowNewConnections=true
EndUserMonitoring
EndUserMonitoringEnabled parameter
Indicates whether EUM/Chronos integration is enabled
EndUserMonitoringEnabled=false
EndUserMonitoringURL
indicates where to record EUM/Chronos data
EndUserMonitoringURL=
Config for javascript integration
applet_name=
enableJavascriptEvent=true
Config variable that will indicate if heartbeat will
be blocked when a javascript call is a blocking call.
The default value if false, i.e heart beat will not be
blocked for any javascript calls.
JavaScriptBlocksHeartBeat=false
Example Named Configuration Section
Example 1: configuration to run forms in a separate browser window with
"generic" look and feel (include "config=sepwin" in the URL)
You may define your own specific, named configurations (sets of parameters)
by adding special sections as illustrated in the following examples.
Note that you need only specify the parameters you want to change. The
default values (defined above) will be used for all other parameters.
Use of a specific configuration can be requested by including the text
"config=<your_config_name>" in the query string of the URL used to run
a form. For example, to use the sepwin configuration, your could issue
a URL like "http://myhost.example.com/forms/frmservlet?config=sepwin".
[sepwin]
separateFrame=True
lookandfeel=Generic
Example Named Configuration Section
Example 2: configuration running the Forms ListenerServlet in debug mode
(debug messages will be written to the servlet engine's log file).
[debug]
serverURL=/forms/lservlet/debug

Platform Specific default.env Files

C-6 Forms Services Deployment Guide

Sample configuration for deployingWebUtil. Note that WebUtil is
only installed with the Forms Builder and is also available for download
from OTN.
[webutil]
WebUtilArchive=frmwebutil.jar,jacob.jar
WebUtilLogging=off
WebUtilLoggingDetail=normal
WebUtilErrorMode=Alert
WebUtilDispatchMonitorInterval=5
WebUtilTrustInternal=true
WebUtilMaxTransferSize=16384
baseHTML=webutilbase.htm
baseHTMLjpi=webutiljpi.htm
archive=frmall.jar
lookAndFeel=oracle

C.3 Platform Specific default.env Files
There are two platform specific versions of default.env:

■ Default default.env File for Windows

■ Default default.env File for UNIX and Linux

C.3.1 Default default.env File for Windows
default.env - default Forms environment file, Windows version
#
This file is used to set the Forms runtime environment parameters.
If a parameter is not defined here, the value used will be that defined
in the environment in which the WLS Managed Server was started.
#
NOTES
Configuration assistant will replace all the macro's with
the actual values.
#
 ORACLE_HOME=D:\Oracle2\Middleware\as_2
 ORACLE_INSTANCE=D:\Oracle2\Middleware\asinst_2

 #
 # TNS Entry to locate the database
 #
 TNS_ADMIN=D:\Oracle2\Middleware\asinst_2\config

 #
 # Search path for Forms applications (.fmx files, PL/SQL libraries)
 # If you need to include more than one directory, they should be semi-colon
 # separated (e.g. c:\test\dir1;c:\test\dir2)
 #
 FORMS_PATH=D:\Oracle2\Middleware\as_2\forms;D:\Oracle2\Middleware\asinst
_2\FormsComponent\forms

 # webutil config file path
 WEBUTIL_CONFIG=D:\Oracle2\Middleware\asinst
_2\config\FormsComponent\forms\server\webutil.cfg

 # Disable/remove this variable if end-users need access to the query-where
 # functionality which potentially allows them to enter arbitrary SQL
 # statements when in enter-query mode.

Platform Specific default.env Files

Locations and Samples of Configuration Files C-7

 FORMS_RESTRICT_ENTER_QUERY=TRUE

 #
 # The PATH setting is required in order to pick up the JVM (jvm.dll and
 # java.exe). Since PATH is being set, it needs to also include
 # D:\Oracle2\Middleware\as_2\bin so relevant files are correctly found.
 #
 PATH=D:\Oracle2\Middleware\as_2\bin;D:\Oracle2\Middleware\as
2\jdk\jre\bin\client;D:\Oracle2\Middleware\as_2\jdk\bin

 #
 # Settings for Forms tracing and logging
 # ---
 # Note: By default tracing and logging directory is
 # %ORACLE_INSTANCE%\FormsComponent\forms\trace
 # To change the trace directory this entry has to be uncommented and set to
 # desired directory for tracing and logging

 #FORMS_TRACE_DIR=%ORACLE_INSTANCE%\FormsComponent\forms\trace

 #
 # Settings for Javascript events
 # ---
 # Note: If this variable is set to false then the triggers and
 # built-ins associated with javascript events are disabled

 #FORMS_ALLOW_JAVASCRIPT_EVENTS=

 #
 # System settings
 # ---------------
 # You should not normally need to modify these settings
 #
 FORMS=D:\Oracle2\Middleware\as_2\forms

 #
 # Java class path
 # This is required for the Forms debugger
 # You can append your own Java code here)
 # frmsrv.jar and ldapjclnt11.jar are required for
 # the password expiry feature to work(#2213140).
 #
 CLASSPATH=D:\Oracle2\Middleware\as
_2\forms\j2ee\frmsrv.jar;D:\Oracle2\Middleware\as
_2\jlib\ldapjclnt11.jar;D:\Oracle2\Middleware\as
_2\jlib\debugger.jar;D:\Oracle2\Middleware\as
_2\jlib\ewt3.jar;D:\Oracle2\Middleware\as
_2\jlib\share.jar;D:\Oracle2\Middleware\as
_2\jlib\utj.jar;D:\Oracle2\Middleware\as
_2\jlib\zrclient.jar;D:\Oracle2\Middleware\as
_2\reports\jlib\rwrun.jar;D:\Oracle2\Middleware\as
_2\forms\java\frmwebutil.jar;D:\Oracle2\Middleware\as_2/jlib/start
_dejvm.jar;D:\Oracle2\Middleware\as_2\opmn\lib\optic.jar

C.3.2 Default default.env File for UNIX and Linux
default.env - default Forms environment file, Linux version
#
This file is used to set the Forms runtime environment parameters.
If a parameter is not defined here, the value used will be that defined

Platform Specific default.env Files

C-8 Forms Services Deployment Guide

in the environment in which the WLS Managed Server was started.
#
NOTES
Configuration assitant will replace all the macro's with
the actual values.
#
#
#
 ORACLE_HOME=/as_1
 ORACLE_INSTANCE=/asinst_1

 #
 # TNS Entry to locate the database
 #
 TNS_ADMIN=/asinst_1/config

 #
 # Search path for Forms applications (.fmx files, PL/SQL libraries)
 #
 FORMS_PATH=/as_1/forms:/asinst_1/FormsComponent/forms

 #
 # WebUtil config file path. WebUtil is available for download from OTN.
 #
 WEBUTIL_CONFIG=/asinst_1/config/FormsComponent/forms/server/webutil.cfg

 # Disable/remove this variable if end-users need access to the query-where
 # functionality which potentially allows them to enter arbitrary SQL
 # statements when in enter-query mode.
 FORMS_RESTRICT_ENTER_QUERY=TRUE

 # Java class path
 # This is required for the Forms debugger
 # You can append your own Java code here)
 # frmsrv.jar and ldapjclnt11.jar are required for
 # the password expiry feature to work(#2213140).
 #
 CLASSPATH=/as
_1/forms/j2ee/frmsrv.jar:/as
_1/jlib/ldapjclnt11.jar:/as
_1/jlib/debugger.jar:/as
_1/jlib/ewt3.jar:/as_1/jlib/share.jar:/as
_1/jlib/utj.jar:/as
_1/jlib/zrclient.jar:/as
_1/reports/jlib/rwrun.jar:/as
_1/forms/java/frmwebutil.jar:/as_1/jlib/start
_dejvm.jar:/as_1/opmn/lib/optic.jar
#

 # The PATH setting is not required for frmweb if the Forms executables are
 # in <ORACLE_HOME>/bin. JDK/bin is also required for dejvm to be
 # auto-started by frmweb.
 #
 PATH=/scratch/cls0223/bea/as_1/bin:/scratch/cls0223/bea/as_1/jdk/bin

 #
 # Settings for Reports
 # -------------------------------
 # NOTE: This setting is only needed if Reports applications
 # are called from Forms applications

Platform Specific default.env Files

Locations and Samples of Configuration Files C-9

 # However, because of bug 2336698 where a report is started from
 # a forms debugger session with an already running JVM, then
 # the report's class path should also be included in the forms
 # class path.
 # We no longer need to set REPORTS_CLASSPATH as forms will
 # always start the JVM before calling reports.

 #
 # Settings for Forms tracing and logging
 # ---
 # Note: By default tracing and logging directory is
 # $ORACLE_INSTANCE/FormsComponent/forms/trace
 # To change the trace directory this entry has to be uncommented and set to
 # desired directory for tracing and logging

 #FORMS_TRACE_DIR=/scratch/cls0223/asinst_1/FormsComponent/forms/trace

 #
 # Settings for Javascript events
 # ---
 # Note: If this variable is set to false then the triggers and
 # built-ins associated with javascript events are disabled

 #FORMS_ALLOW_JAVASCRIPT_EVENTS=

 #
 # System settings
 # ---------------
 # You should not normally need to modify these settings
 #
 #
 # Path for shared library objects
 # This is highly platform (if not machine) specific ! At install time
 # <percent>LD_LIBRARY_PATH<percent> should be replaced with the
 # actual value of the LD_LIBRARY_PATH environment variable (at install
 # time). That should ensure we have the paths for such necessities as
 # the motif and X11 libraries.
 # Explanations:
 # - Reports needs the path for libjava.so
 # (.../jre/lib/sparc)
 # - Forms needs two paths to the jre, for libjvm.so and libhpi.so
 # - In JDK 1.4.1 the location of libjvm.so is lib/sparc (there is no
 # classic directory) so we do not include the .../classic directory
 # below. There are other versions of libjvm.so (in directories server,
 # client and hotspot) but we will use the version in lib/sparc for now.
 #
 LD_LIBRARY_PATH=/bea/as_1/lib:/bea/as
_1/jdk/jre/lib/i386:/bea/as
_1/jdk/jre/lib/i386/server:/bea/as_1/jdk/jre/lib/i386/native
_threads
 #
 # Setting to take care of signal-chaining facility offered by JVM 1.5
 # Without this Forms/Reports integration could have issues on Unix/Linux
 #
 LD_PRELOAD=/as_1/jdk/jre/lib/i386/libjsig.so

base.htm and basejpi.htm Files

C-10 Forms Services Deployment Guide

C.4 base.htm and basejpi.htm Files
Two baseHTML files are created for your system by the Oracle Universal Installer
during Forms installation and configuration. In most cases, you will not need to
modify these files. If you do need to modify these files, you should create your own
versions and reference them from the formsweb.cfg file. The default files may be
overridden by a patch installation.

When a user first starts an Oracle Forms application (by clicking a link to the
application’s URL), a baseHTML file is read by Forms servlet.

Any variables (%variablename%) in the baseHTML file are replaced with the
appropriate parameter values specified in the formsweb.cfg file described in
Section 4.2, "Configuring Forms Services", and from query parameters in the URL
request (if any). Query parameter values override the values in the formsweb.cfg
file.

Then, the baseHTML file is downloaded to the user’s Web browser.

The following baseHTML starter files are available in the $ORACLE_
INSTANCE/config/FormsComponent/forms/server/ directory:

■ basejpi.htm: This is the baseHTML file for Java Plug-in. The Forms servlet uses
this default file if the client browser is on Windows.

■ base.htm: This is a baseHTML file containing the APPLET tags required to run the
Forms applet in the AppletViewer, or in any Web browser certified by Oracle with
a native JVM that is certified with Oracle Forms. See Default base.htm File for an
example.

To create a new baseHTML file:
1. Copy the basejpi.htm, or base.htm starter file, which is located in the $ORACLE_

INSTANCE/config/FormsComponent/forms/server/ directory.

2. Rename the file (for example, order.htm).

3. Add or modify any text that is visible to the user (for example, text contained
within <TITLE> and <BODY> tags).

4. Modify the parameters as needed. It is recommended that you use variables in the
baseHTML file, and specify the actual values in the formsweb.cfg file, as
described in formsweb.cfg.

The baseHTML tags can also be set in the specific named configuration section,
overwriting the system default value. This is recommended if an individual
custom baseHTML template needs to be used. However, if a custom template is
used for all applications, then it is recommended you change the default
configuration section in the formsweb.cfg file.

5. Place the new baseHTML file in the $ORACLE_
INSTANCE/config/FormsComponent/forms/server/ directory, update the
baseHTML, baseHTMLjpi parameter in the formsweb.cfg file to point to the
new baseHTML files.

C.4.1 Parameters and variables in the baseHTML file
If you do not want to use a parameter tag that is provided in the base.htm or
basejpi.htm file, delete it from the file.

Oracle recommends that you specify the rest of the parameter values as variables
(%variablename%) in the baseHTML file. For example:

base.htm and basejpi.htm Files

Locations and Samples of Configuration Files C-11

<PARAM NAME="logo" VALUE="%logo%">

Then, specify the actual parameter values in the formsweb.cfg file. All variables are
replaced with the appropriate parameter values at runtime.

C.4.1.1 Usage Notes
■ You can use a variable value anywhere in the baseHTML file. Variables are

specified as a name enclosed in a special delimiter (the default delimiter is %). For
example, you could have the following line in your HTML file:

ARCHIVE="%Archive%"

You must then assign a value to %Archive% either in the formsweb.cfg file or in
the URL query string.

■ All variables must receive values at runtime. If a variable does not receive a value,
Forms Services cannot build a proper HTML file to pass back to the user's Web
browser, resulting in an error.

■ To streamline performance, use only one Web server as a source for Jar file
downloads. This will prevent multiple downloads of the same files from different
servers.

C.4.2 Default base.htm File
<HTML>
<!-- FILE: base.htm (Oracle Forms) -->
<!-- -->
<!-- This is the default base HTML file for running a form on
<!--the web using a generic APPLET tag to include -->
<!-- Forms applet.-->
<!-- -->
<!-- IMPORTANT NOTES: -->
<!-- Default values for all the variables which appear
<!-- below (enclosed in percent characters) are defined-->
<!-- in the servlet configuration file (formsweb.cfg). -->
<!-- It is preferable to make changes in that file where -->
<!-- possible, rather than this one. -->

<!-- This file will be REPLACED if you reinstall
<!--Oracle Forms, so you are advised to make your own -->
<!-- version if you want to make want to make any -->
<!-- modifications. You should then set the -->
<!-- baseHTML parameter in the Forms Servlet
<!--configuration file (formsweb.cfg) to point to -->
<!-- your new file instead of this one. -->
<HEAD><TITLE>%pageTitle%</TITLE></HEAD>
<BODY %HTMLbodyAttrs%>
%HTMLbeforeForm%
<COMMENT id="forms_plugin_info"
 serverURL="%serverURL%"
 appcodebase="%codebase%"
 apparchive="%archive%"
 appheight="%Height%"
 appwidth="%Width%"
 appname="%applet_name%">
</COMMENT>
<!-- Forms applet definition (start) -->
<NOSCRIPT>

base.htm and basejpi.htm Files

C-12 Forms Services Deployment Guide

<APPLET CODEBASE="%codebase%"
 CODE="oracle.forms.engine.Main"
 ARCHIVE="%archive%"
 WIDTH="%Width%"
 HEIGHT="%Height%"
 NAME="%applet_name%" MAYSCRIPT>
</NOSCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="/forms/frmjscript/forms_base_ie.js">
</SCRIPT>
<PARAM NAME="serverURL" VALUE="%appletServerURL%">
<PARAM NAME="networkRetries" VALUE="%networkRetries%">
<PARAM NAME="serverArgs"
VALUE="%escapeParams% module=%form% userid=%userid% debug=%debug% host=%host%
port=%port% %otherParams%">
<PARAM NAME="separateFrame" VALUE="%separateFrame%">
<PARAM NAME="splashScreen" VALUE="%splashScreen%">
<PARAM NAME="background" VALUE="%background%">
<PARAM NAME="lookAndFeel" VALUE="%lookAndFeel%">
<PARAM NAME="colorScheme" VALUE="%colorScheme%">
<PARAM NAME="serverApp" VALUE="%serverApp%">
<PARAM NAME="logo" VALUE="%logo%">
<PARAM NAME="imageBase" VALUE="%imageBase%">
<PARAM NAME="formsMessageListener" VALUE="%formsMessageListener%">
<PARAM NAME="recordFileName" VALUE="%recordFileName%">
<PARAM NAME="EndUserMonitoringEnabled" VALUE="%EndUserMonitoringEnabled%">
<PARAM NAME="EndUserMonitoringURL" VALUE="%EndUserMonitoringURL%">
<PARAM NAME="heartbeat" VALUE="%heartbeat%">
<PARAM NAME="MaxEventWait" VALUE="%MaxEventWait%">
<PARAM NAME="allowAlertClipboard" VALUE="%allowAlertClipboard%">
<PARAM NAME="disableValidateClipboard" VALUE="%disableValidateClipboard%">
<PARAM NAME="enableJavascriptEvent" VALUE="%enableJavascriptEvent%">
<PARAM NAME="digitSubstitution" VALUE="%digitSubstitution%">
<PARAM NAME="legacy_lifecycle" VALUE="%legacy_lifecycle%">
<PARAM NAME="JavaScriptBlocksHeartBeat" VALUE="%JavaScriptBlocksHeartBeat%">
<PARAM NAME="highContrast" VALUE="%highContrast%">
</Applet>
<!--Forms applet deinition (end) -->
&HTMLafterForm%
</BODY>
</HTML>

C.4.3 Default basejpi.htm File
<HTML>
<!-- FILE: basejpi.htm (Oracle Forms) -->
<!-- -->
<!-- This is the default base HTML file for running
<!--a form on the web using the JDK Java Plugin. -->
<!-- This is used for example when -->
<!-- running with Netscape on Unix. -->
<!-- IMPORTANT NOTES: -->
<!-- Default values for all the variables which -->
<!--appear below (enclosed in percent characters)-->
<!-- are defined in the servlet configuration file -->
<!-- (formsweb.cfg). It is preferable to make -->
<!-- changes in that file where possible, rather than
<!--this one. -->
<!-- -->
<!-- This file will be REPLACED if you reinstall
<!--Oracle Forms, so -->

base.htm and basejpi.htm Files

Locations and Samples of Configuration Files C-13

<!-- you are advised to create your own version if
<!--you want to make -->
<!-- any modifications. You should then set the
<!--baseHTMLjpi -->
<!-- parameter in the Forms Servlet configuration file
<!--(formsweb.cfg) -->
<!-- to point to your new file instead of this one. -->
<HEAD>
<TITLE>%pageTitle%</TITLE>
</HEAD>
<BODY %HTMLbodyAttrs%>
%HTMLbeforeForm%
<COMMENT id="forms_plugin_info"
 serverURL="%serverURL%"
 plug_ver="%jpi_classid%"
 appheight="%Height%"
 appwidth="%Width%"
 appcodebase="%jpi_codebase%"
 appname="%applet_name%">
</COMMENT>
<!-- Forms applet definition (start) -->
<NOSCRIPT>
<OBJECT classid="%jpi_classid%"
 codebase="%jpi_codebase%"
 WIDTH="%Width%"
 HEIGHT="%Height%"
 HSPACE="0"
 VSPACE="0"
 ID="%applet_name%">
</NOSCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="/forms/frmjscript/forms_ie.js">
</SCRIPT>
<PARAM NAME="TYPE" VALUE="%jpi_mimetype%">
<PARAM NAME="CODEBASE" VALUE="%codebase%">
<PARAM NAME="CODE" VALUE="oracle.forms.engine.Main" >
<PARAM NAME="ARCHIVE" VALUE="%archive%" >
<PARAM NAME="serverURL" VALUE="%appletServerURL%">
<PARAM NAME="networkRetries" VALUE="%networkRetries%">
<PARAM NAME="serverArgs"
 VALUE="%escapeParams% module=%form% userid=%userid% debug=%debug%
host=%host% port=%port% %otherParams%">
<PARAM NAME="separateFrame" VALUE="%separateFrame%">
<PARAM NAME="splashScreen" VALUE="%splashScreen%">
<PARAM NAME="background" VALUE="%background%">
<PARAM NAME="lookAndFeel" VALUE="%lookAndFeel%">
<PARAM NAME="colorScheme" VALUE="%colorScheme%">
<PARAM NAME="serverApp" VALUE="%serverApp%">
<PARAM NAME="logo" VALUE="%logo%">
<PARAM NAME="imageBase" VALUE="%imageBase%">
<PARAM NAME="formsMessageListener" VALUE="%formsMessageListener%">
<PARAM NAME="recordFileName" VALUE="%recordFileName%">
<PARAM NAME="EndUserMonitoringEnabled" VALUE="%EndUserMonitoringEnabled%">
<PARAM NAME="EndUserMonitoringURL" VALUE="%EndUserMonitoringURL%">
<PARAM NAME="heartBeat" VALUE="%heartBeat%">
<PARAM NAME="MaxEventWait" VALUE="%MaxEventWait%">
<PARAM NAME="allowAlertClipboard" VALUE="%allowAlertClipboard%">
<PARAM NAME="disableValidateClipboard" VALUE="%disableValidateClipboard%">
<PARAM NAME="enableJavascriptEvent" VALUE="%enableJavascriptEvent%">
<PARAM NAME="MAYSCRIPT" VALUE="%enableJavascriptEvent%">
<PARAM NAME="digitSubstitution" VALUE="%digitSubstitution%">

web.xml

C-14 Forms Services Deployment Guide

<PARAM NAME="legacy_lifecycle" VALUE="%legacy_lifecycle%">
<PARAM NAME="JavaScriptBlocksHeartBeat" VALUE="%JavaScriptBlocksHeartBeat%">
<PARAM NAME="highContrast" VALUE="%highContrast%">
<COMMENT>
<EMBED SRC="" PLUGINSPAGE="%jpi_download_page%"
 TYPE="%jpi_mimetype%"
 java_codebase="%codebase%"
 java_code="oracle.forms.engine.Main"
 java_archive="%archive%"
 WIDTH="%Width%"
 HEIGHT="%Height%"
 HSPACE="0
 VSPACE="0"
 NAME="%applet_name%"
serverURL="%appletServerURL%"
 networkRetries="%networkRetries%"
 serverArgs="%escapeParams% module=%form% userid=%userid% debug=%debug%
host=%host% port=%port% %otherparams%"
 separateFrame="%separateFrame%"
 splashScreen="%splashScreen%"
 background="%background%"
 lookAndFeel="%lookAndFeel%"
 colorScheme="%colorScheme%"
 serverApp="%serverApp%"
 logo="%logo%"
 imageBase="%imageBase%"
 recordFileName="%recordFileName%"
 EndUserMonitoringEnabled="%EndUserMonitoringEnabled%"
 EndUserMonitoringURL="%EndUserMonitoringURL%"
 heartBeat="%heartBeat%"
 MaxEventWait="%MaxEventWait%"
 disableValidateClipboard="%disableValidateClipboard%"
allowAlertClipboard="%allowAlertClipboard%"
 enableJavascriptEvent="%enableJavascriptEvent%"
 MAYSCRIPT="%enableJavascriptEvent%"
 digitSubstitution="%digitSubstitution%"
 legacy_lifecycle="%legacy_lifecycle%"
 JavaScriptBlocksHeartBeat="%JavaScriptBlocksHeartBeat%"
 highContrast="%highContrast%"
<NOEMBED>
</COMMENT>
</NOEMBED>
</EMBED>
</OBJECT>
<!-- Forms applet definition (end) -->
%HTMLafterForm%
</BODY>
</HTML>

C.5 web.xml
The web.xml file is the web application deployment descriptor file for forms Java EE
application. This file is located at $DOMAIN_HOME/servers/WLS_FORMS/tmp/_WL_
user/formsapp_11.1.1/<random_string>/war/WEB-INF/. Advanced users
might want to edit the web.xml file to:

■ Enable extra testing options.

If you are having difficulty running Oracle Forms in your Oracle Fusion
Middleware installation, it can be useful to enable certain test options which are

web.xml

Locations and Samples of Configuration Files C-15

not usually enabled for security reasons. To use these options, edit the web.xml file
to set the testMode frmservlet parameter to true. Then restart the Web server (or
Oracle WebLogic Managed Server). The additional options are then visible on the
Forms servlet administration page (which can be accessed at a URL like
http://<your_web_server_hostname>:<port>/forms/frmservlet/admin).

■ Run Oracle Forms using static HTML pages (rather than the Forms servlet).

When Oracle Forms applications are run using a method other than the Forms
servlet (for example, static HTML pages, or JSPs), parameter settings in the
formsweb.cfg file are not used. You may therefore need to define servlet
parameters for the Listener Servlet, such as workingDirectory and envFile
(specifying the current working directory for the Forms runtime processes, and the
file containing environment settings to be used).

Servlet mappings are defined in web.xml. Table C–2 describes some of the servlet
mappings.

C.5.1 Default web.xml File
<?xml version='1.0' encoding='UTF-8'?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee">
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <servlet>
 <servlet-name>frmservlet</servlet-name>
 <servlet-class>oracle.forms.servlet.FormsServlet</servlet-class>
 <init-param>
 <!-- Turn on or off sensitive options on the frmservlet/admin page.
 For security reasons this should be set to false for
 production sites.
 -->
 <param-name>testMode</param-name>
 <param-value>false</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet>
 <servlet-name>lservlet</servlet-name>
 <servlet-class>oracle.forms.servlet.ListenerServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>frmservlet</servlet-name>
 <url-pattern>/frmservlet/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>lservlet</servlet-name>
 <url-pattern>/lservlet/*</url-pattern>
 </servlet-mapping>
 <!-- add mime mapping for the java scripts -->
 <mime-mapping>

Table C–2 web.xml Servlet Mappings

URL Path Type Maps to Purpose

/forms/frmservlet Servlet
mount
point

Forms servlet Generate HTML page to run a form

/forms/lservlet Servlet
mount
point

Forms Listener
servlet

Handles message traffic from the Forms applet

weblogic.xml

C-16 Forms Services Deployment Guide

 <extension>js</extension>
 <mime-type>application/x-javascript</mime-type>
 </mime-mapping>
 <welcome-file-list>
 <welcome-file>lservlet</welcome-file>
 <welcome-file>frmservlet</welcome-file>
 </welcome-file-list>
 <listener>

<listener-class>oracle.forms.config.mbeans.FormsappLifeCycleCallBack</listener-cla
ss>
 </listener>
 <!-- Define security constraints to limit access to the defined url to a
 particular role. Logical roles are defined in web.xml and these roles are
mapped
 to actual roles(principal roles) in weblogic.xml
 -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>TraceLog</web-resource-name>
 <url-pattern>/frmservlet/trace/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <description>Admin users only</description>
 <role-name>formsadmin</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>WebApp</realm-name>
 </login-config>
 <security-role>
 <description>admin role</description>
 <role-name>formsadmin</role-name>
 </security-role>

</web-app>

C.6 weblogic.xml
The weblogic.xml is the web application deployment descriptor file. This file is
located at $DOMAIN_HOME/servers/WLS_FORMS/tmp/_WL_user/formsapp_
11.1.1/<random_string>/war/WEB-INF.

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<session-descriptor>
 <timeout-secs>7200</timeout-secs>
 <invalidation-interval-secs>120</invalidation-interval-secs>
 <debug-enabled>false</debug-enabled>
 <id-length>52</id-length>
 <tracking-enabled>true</tracking-enabled>
 <cache-size>1024</cache-size>
 <max-in-memory-sessions>-1</max-in-memory-sessions>
 <cookies-enabled>false</cookies-enabled>
</session-descriptor>

forms.conf

Locations and Samples of Configuration Files C-17

<!--logical roles defined in web.xml are mapped to the real users below -->
<security-role-assignment>
 <role-name>formsadmin</role-name>
 <principal-name>Administrators</principal-name>
</security-role-assignment>
</weblogic-web-app>

C.7 forms.conf
Prior to 11g, virtual path mappings were defined in forms.conf. In 11g, forms.conf
defines WebLogic handler mappings for the Managed Server where the Forms
Services applications are deployed. For more information, see the Section 3.2.3,
"Oracle HTTP Listener Configuration File." The location of the file is $ORACLE_
INSTANCE/config/OHS/<OHS INSTANCE NAME>/moduleconf.

C.7.1 Default forms.conf
Name
forms.conf - Forms component Apache directives configuration file.

Purpose
It should include the weblogic managed server (routing) directives for
the servers where Forms applications are deployed and other miscellaneous
Forms component OHS directives.
#
#
Remarks
This file is included with the OHS configuration under
$OI/config/OHS/<OHS Node Name>/moduleconf sub-directory.
#
#
<IfModule !mod_osso.c>
 LoadModule osso_module ${ORACLE_HOME}/ohs/modules/mod_osso.so
</IfModule>
<IfModule mod_osso.c>
 OssoHTTPOnly off
</IfModule>
<Location /forms>
 SetHandler weblogic-handler
 WebLogicCluster dadvma0190.us.oracle.com:9001
 DynamicServerList OFF
</Location>

virtual mapping for the /forms/html mapping.

RewriteEngine on

Note: When including any user-defined aliasMatch with the
prefix /forms/ in forms.conf, add the directive
WLExcludePathOrMimeType. For example, in Linux, when defining
the aliasMatch for /forms/usericons in forms.conf, the
directive WLExcludePathOrMimeType is defined as following:

AliasMatch /forms/usericons/(..*) "/home/userx/myicons/$1"
WLExcludePathOrMimeType /forms/usericons/

Registry.dat

C-18 Forms Services Deployment Guide

RewriteRule ^/forms/html/(..*) /workaroundhtml/$1 [PT]
AliasMatch ^/workaroundhtml/(..*)
"/scratch/fmw/ps1/rc3/asinst_2/config/FormsComponent/forms/html/$1"

C.8 Registry.dat
Location: $DOMAIN_HOME/config/fmwconfig/servers/WLS_
FORMS/applications/formsapp_
11.1.1/config/forms/registry/oracle/forms/registry

This file enables you to change the default font, font mappings, and icons that Forms
Services uses.

C.8.1 Registry.dat
This is the Registry file.

This file contains the logical [Java] Class name and an associated
[numerical] identifier that will be used to refer to objects of the
class in order to reduce the amount of information that needs to be
repeatedly transmitted to the client.

This file is of the Form understood by java.util.Properties (for now)

The System Level sound file is relative to the CODEBASE

The oracle classes which used to be defined here have now been moved to
within the code.

Defaults for the Font details, all names are Java Font names. Each of
these parameters represents the default property to use when none is
specified.
defaultFontname represents the default Java fontName.
defaultSize represents the default fontSize. Note that the size is
multiplied by 100 (e.g. a 10pt font has a size of 1000).
defaultStyle represents the default fontStyle, PLAIN or ITALIC.
defaultWeight represents the default fontWeight, PLAIN or BOLD.

default.fontMap.defaultFontname=Dialog
default.fontMap.defaultSize=900
default.fontMap.defaultStyle=PLAIN
default.fontMap.defaultWeight=PLAIN

Default Font Face mapping.

appFontname represents a comma delimited list of Application Font Names.
javaFontname represents a comma delimited list of Java Font Names.

The number of entries in the appFontname list should match the number in
the javaFontname list. The elements of the list are comma separated and
all characters are taken literally, leading and trailing spaces are
stripped from Face names.
#
Note that this file uses the Java 1.1 Font names in order to be able to
handle the NLS Plane (BUG #431051)
#
default.fontMap.appFontnames=Courier

Default webutil.cfg

Locations and Samples of Configuration Files C-19

New,Courier,courier,System,Terminal,Fixed,Fixedsys,Times,Times New Roman,MS Sans
Serif,Arial
default.fontMap.javaFontnames=MonoSpaced,MonoSpaced,MonoSpaced,Dialog,MonoSpaced,D
ialog,Dialog,Serif,Serif,Dialog,SansSerif
The Application Level icon files are relative to the DOCUMENTBASE
example: icons/
or an absolute URL.
example: http://www.example.net/~luser/d2k_project/
#
default.icons.iconpath=
default.icons.iconextension=gif

#
Application level settings to control UI features
#
app.ui.lovButtons=false
app.ui.requiredFieldVA=false
The background color is specified as an RGB triple.
app.ui.requiredFieldVABGColor=255,0,0

C.9 Default jvmcontroller.cfg
A Forms application can be configured to use a specific JVM controller using the
jvmcontroller parameter. This parameter is specified in formsweb.cfg. The
parameters that are used by the JVM controller are specified in the JVM controller’s
configuration file, jvmcontrollers.cfg. This file is located at $ORACLE_
INSTANCE/config/FRComponent/frcommon/tools/jvm/.

jvmcontrollers.cfg defines parameter values used by the JVM Controller(dejvm)

Default JVM Controller
This section defines the default settings. Any of them may be overridden
in the following Named JVM Controller sections. If they are not overridden,
then the values here will be used.
[default]

Example: Named JVM Controller
This section shows example values for a jvm controller. These
values overrides any values defined for the default controller.
[example]
jvmoptions=-Xms512m -Xmx1024m

Classpath settings given here is an example only. This should be
modified to include the required jar files and should be set in
platform specific manner.
classpath=/myapps/common/jars/common.jar:/myapps/anapp/jars/anapp.jar
maxsessions=50
logdir=/myapps/anapp/log
logging=off

C.10 Default webutil.cfg
The webutil.cfg file is one of the files used to configure WebUtil at run time. For
more information on the file, see Section 3.2.6, "WebUtil Configuration Files." For
information about using WebUtil at design time, see the Oracle Forms Developer Help.
This file is located at $ORACLE_
INSTANCE/config/FormsComponent/forms/server/.

Default webutil.cfg

C-20 Forms Services Deployment Guide

webutil.cfg - WebUtil default configuration file

This file provides all of the configuration settings for webutil. These are
divided into the following sections:
1. Logging Options
2. Installation Options
3. File Upload and Download Options
1. Server Side Logging Options for logging errors and log messages
You must set logging.enabled to true to allow mid-tier logging. Without this
mid-tier logging will not take place no matter what PL/SQL or URL options
are supplied to switch it on. Once logging is enabled the other settings come
into play.
#
Details

logging.file : Defines the file name and location of the log file.
Note that WebUtil does no log file management. You may
need to manually clean this file up from time to time.
logging.enabled : Can be TRUE or FALSE
logging.errorsonly : Can be TRUE or FALSE. Setting to true will ensure that
 # only errors and not normal informational log messages
are written to the log file. For product use this would
normally be set to TRUE
logging.connections: Can be TRUE or FALSE. Setting to true will cause each
connection from a client using WebUtil to write into
the log as it sets up.
logging.file=
logging.enabled=FALSE
logging.errorsonly=FALSE
logging.connections=FALSE
2. Installation Options
WebUtil needs to download some files to the client in order to perform
certain integration operations such as OLE or Registry Access. These files
are downloaded the first time that you access one of the functions that need
them. You have to define the location of these files on the server and the
location on the client.
#
Details

install.syslib.location : The virtual path to the directory holding the
webutil library files on the server side. This
must either be an absolute URL or a URL that is
relative to the documentbase
#
install.syslib.location.client.<os> :
The path to the directory on the client machine
where webutil library files will be downloaded.
This must either be an absolute path or a path
that is relative to client user profile or HOME.
Directory will be created if necessary along with
other required parent directories.
If the path is not set, it will be treated as
a special case where libraries will be downloaded
to client JRE\bin (windows) or JRE/lib (unix).
If this directory is changed, all the libraries
will be redownloaded again.
#
install.syslib.<os>.<package>.<n> :

Default webutil.cfg

Locations and Samples of Configuration Files C-21

The name(s) of the libraries required for
particular webutil beans. The format of this is
name|size|version|showDownloadDialog. Multiple
libraries can be downloaded per package. But
ensure that the <n> values are consecutive and
start at 1
install.syslib.location=/webutil
Uncomment and change the following if you want to specify a client location
where the syslib libraries can be downloaded.
#install.syslib.location.client.0=webutil\syslib
#install.syslib.location.client.1=webutil/syslib
Change size and version if necessary, like when upgrading the library.
Normally this would not be required since most of these libraries come with
install itself.
install.syslib.0.7.1=jacob.dll|106496|1.10|true
install.syslib.0.9.1=JNIsharedstubs.dll|65582|1.0|true
install.syslib.0.9.2=d2kwut60.dll|192512|1.0|true
3. Upload / Download Options
You can also add your own libraries in here, e.g.
#install.syslib.0.user.1=testwebutil.dll|204872|1.0|true
For the file upload and download options you can define the default locations
on the server that webutil can use as a work area. Optionally you can switch
upload and download off
Details

transfer.database.enabled : Can be TRUE or FALSE - allows you to enable or
disable upload and download from the database
server.
transfer.appsrv.enabled : Can be TRUE or FALSE - allows you to enable or
disable upload and download from the
application server.
transfer.appsrv.workAreaRoot: The root of the location in which WebUtil can
store temporary files uploaded from the client.
If no location is specified, application server
user_home/temp will be assumed.
This location is always readable and writable
no matter what the settings in
transfer.appsrv.* are. This setting is
required if you need the Client side
READ/WRITE_IMAGE_FILE procedures.
transfer.appsrv.accessControl:Can be TRUE or FALSE - allows you to indicate
that uploads and downloads can only occur from
the directories named in the
transfer.appsrv.read.n and
transfer.appsrv.write.n entries and their
subdirectories. If this setting is FALSE,
transfers can happen anywhere.
transfer.appsrv.read.<n>: List of directory names that downloads can read
from.
transfer.appsrv.write.<n>: List of directory names that uploads can write
to.
#NOTE: By default the file transfer is disabled as a security measure
transfer.database.enabled=FALSE
transfer.appsrv.enabled=FALSE
transfer.appsrv.workAreaRoot=
transfer.appsrv.accessControl=TRUE
#List transfer.appsrv.read.<n> directories
transfer.appsrv.read.1=c:\temp
#List transfer.appsrv.write.<n> directories
transfer.appsrv.write.1=c:\temp

Default webutilbase.htm

C-22 Forms Services Deployment Guide

4. Others
Details

BlockAllowHeartBeat : To continue the heart beat communication with the
server when set to TRUE. By default the value is
set to False. When False there would not be heart
beat communication in blocking mode.
BlockAllowHeartBeat=False

C.11 Default webutilbase.htm
This file is located at $ORACLE_
INSTANCE/config/FormsComponent/forms/server/

This template .htm file is used in the WebUtil application section.

<HTML>
<!-- FILE: webutilbase.htm (Oracle Forms) -->
<!-- -->
<!-- This is the default base HTML file for running a form on the -->
<!-- web using a generic APPLET tag to include Forms applet. -->
<!-- and a certificate regsitration applet for the WebUtil utility -->
<!-- -->
<!-- IMPORTANT NOTES: -->
<!-- Default values for all the variables which appear below -->
<!-- (enclosed in percent characters) are defined in the servlet -->
<!-- configuration file (formsweb.cfg). It is preferable to make -->
<!-- changes in that file where possible, rather than this one. -->
<!-- -->
<!-- This file uses several extra tags that are not present in the -->
<!-- default template files. You should ensure that these are -->
<!-- present in the configuration that uses this template -->
<!-- The extra substitution Tags are: -->
<!-- %webUtilArchive% = jar file containing the WebUtil code -->
<!-- (by default this should be frmwebutil.jar) -->
<!-- %WebUtilLogging% = Defines the current logging mode. -->
<!-- Valid values: off|on|console|server|all -->
<!-- (on == console) -->
<!-- %WebUtilLoggingDetail% = Specifies the level of error logging.-->
<!-- Valid values: normal|detailed -->
<!-- %WebUtilErrorMode% = Should errors be displayed in an alert -->
<!-- as well as the programmer defined -->
<!-- locations -->
<!-- Valid values: console|server|alert|all -->
<!-- %WebUtilDispatchMonitorInterval% = Counts in second to -->
<!-- indicate how often the monitor thread -->
<!-- checks to see if the Forms session is still-->
<!-- alive. Used with the WebUtil_Session -->
<!-- package. -->
<!-- %WebUtilTrustInternal% = Should intranet without domain suffix-->
<!-- be trusted. -->
<!-- Valid values: true|yes|false|no -->
<!-- %WebUtilMaxTransferSize% = Size in bytes of file transfer -->
<!-- segments. Default and maximum allowed is -->
<!-- 16384, i.e. 16K. -->

<HEAD><TITLE>%pageTitle% - WebUtil</TITLE></HEAD>

<BODY %HTMLbodyAttrs%>
%HTMLbeforeForm%

Default webutilbase.htm

Locations and Samples of Configuration Files C-23

<!-- Registration applet definition (start) -->
<APPLET CODEBASE="%codebase%"
 CODE="oracle.forms.webutil.common.RegisterWebUtil"
 ARCHIVE="%webUtilArchive%"
 WIDTH="0"
 HEIGHT="0"
 HSPACE="0"
 VSPACE="0">

</APPLET>
<!-- Registration applet definition (end) -->

<COMMENT id="forms_plugin_info"
 serverURL="%serverURL%"
 appcodebase="%codebase%"
 apparchive="%archive%,%webUtilArchive%"
 appheight="%Height%"
 appwidth="%Width%"
 appname="%applet_name%">
</COMMENT>

<!-- Forms applet definition (start) -->
<NOSCRIPT>
<APPLET CODEBASE="%codebase%"
 CODE="oracle.forms.engine.Main"
 ARCHIVE="%archive%,%webUtilArchive%"
 WIDTH="%Width%"
 HEIGHT="%Height%"
 NAME="%applet_name%" MAYSCRIPT>
</NOSCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="/forms/frmjscript/forms_base_ie.js"></SCRIPT>
<PARAM NAME="serverURL" VALUE="%appletServerURL%">
<PARAM NAME="networkRetries" VALUE="%networkRetries%">
<PARAM NAME="serverArgs"
 VALUE="%escapeParams% module=%form% userid=%userid% debug=%debug%
host=%host% port=%port% %otherParams%">
<PARAM NAME="separateFrame" VALUE="%separateFrame%">
<PARAM NAME="splashScreen" VALUE="%splashScreen%">
<PARAM NAME="background" VALUE="%background%">
<PARAM NAME="lookAndFeel" VALUE="%lookAndFeel%">
<PARAM NAME="colorScheme" VALUE="%colorScheme%">
<PARAM NAME="serverApp" VALUE="%serverApp%">
<PARAM NAME="logo" VALUE="%logo%">
<PARAM NAME="imageBase" VALUE="%imageBase%">
<PARAM NAME="formsMessageListener" VALUE="%formsMessageListener%">
<PARAM NAME="recordFileName" VALUE="%recordFileName%">
<PARAM NAME="EndUserMonitoringEnabled" VALUE="%EndUserMonitoringEnabled%">
<PARAM NAME="EndUserMonitoringURL" VALUE="%EndUserMonitoringURL%">
<PARAM NAME="heartbeat" VALUE="%heartbeat%">
<PARAM NAME="heartBeat" VALUE="%heartBeat%">
<PARAM NAME="MaxEventWait" VALUE="%MaxEventWait%">
<PARAM NAME="allowAlertClipboard" VALUE="%allowAlertClipboard%">
<PARAM NAME="disableValidateClipboard" VALUE="%disableValidateClipboard%">
<PARAM NAME="enableJavascriptEvent" VALUE="%enableJavascriptEvent%">
<PARAM NAME="digitSubstitution" VALUE="%digitSubstitution%">
<PARAM NAME="legacy_lifecycle" VALUE="%legacy_lifecycle%">
<PARAM NAME="JavaScriptBlocksHeartBeat" VALUE="%JavaScriptBlocksHeartBeat%">
<PARAM NAME="highContrast" VALUE="%highContrast%">
<PARAM NAME="disableMDIScrollbars" VALUE="%disableMDIScrollbars%">

Default webutiljpi.htm

C-24 Forms Services Deployment Guide

<PARAM NAME="clientDPI" VALUE="%clientDPI%">
<!-- Params specific to webutil -->
<PARAM NAME="WebUtilLogging" VALUE="%WebUtilLogging%">
<PARAM NAME="WebUtilLoggingDetail" VALUE="%WebUtilLoggingDetail%">
<PARAM NAME="WebUtilErrormode" VALUE="%WebUtilErrorMode%">
<PARAM NAME="WebUtilDispatchMonitorInterval"
VALUE="%WebUtilDispatchMonitorInterval%">
<PARAM NAME="WebUtilTrustInternal" VALUE="%WebUtilTrustInternal%">
<PARAM NAME="WebUtilMaxTransferSize" VALUE="%WebUtilMaxTransferSize%">
</APPLET>
<!-- Forms applet definition (end) -->
%HTMLafterForm%
</BODY>
</HTML>

C.12 Default webutiljpi.htm
This file is located at $ORACLE_
INSTANCE/config/FormsComponent/forms/server/

This template .htm file is used in the WebUtil application section.

<HTML>
<!-- FILE: webutiljpi.htm (Oracle Forms) -->
<!-- -->
<!-- This is the default base HTML file for running a form on the -->
<!-- web using the JDK Java Plugin. This is used for example when -->
<!-- running with Netscape on Unix. -->
<!-- and a certificate regsitration applet for the WebUtil utility -->
<!-- -->
<!-- IMPORTANT NOTES: -->
<!-- Default values for all the variables which appear below -->
<!-- (enclosed in percent characters) are defined in the servlet -->
<!-- configuration file (formsweb.cfg). It is preferable to make -->
<!-- changes in that file where possible, rather than this one. -->
<!-- -->
<!-- This file uses several extra tags that are not present in the -->
<!-- default template files. You should ensure that these are -->
<!-- present in the configuration that uses this template -->
<!-- The extra substitution Tags are: -->
<!-- %webUtilArchive% = jar file containing the WebUtil code -->
<!-- (by default this should be frmwebutil.jar) -->
<!-- %WebUtilLogging% = Defines the current logging mode. -->
<!-- Valid values: off|on|console|server|all -->
<!-- (on == console) -->
<!-- %WebUtilLoggingDetail% = Specifies the level of error logging.-->
<!-- Valid values: normal|detailed -->
<!-- %WebUtilErrorMode% = Should errors be displayed in an alert -->
<!-- as well as the programmer defined -->
<!-- locations -->
<!-- Valid values: console|server|alert|all -->
<!-- %WebUtilDispatchMonitorInterval% = Counts in second to -->
<!-- indicate how often the monitor thread -->
<!-- checks to see if the Forms session is still-->
<!-- alive. Used with the WebUtil_Session -->
<!-- package. -->
<!-- %WebUtilTrustInternal% = Should intranet without domain suffix-->
<!-- be trusted. -->
<!-- Valid values: true|yes|false|no -->
<!-- %WebUtilMaxTransferSize% = Size in bytes of file transfer -->

Default webutiljpi.htm

Locations and Samples of Configuration Files C-25

<!-- segments. Default and maximum allowed is -->
<!-- 16384, i.e. 16K. -->

<HEAD><TITLE>%pageTitle% - WebUtil</TITLE></HEAD>

<BODY %HTMLbodyAttrs%>
%HTMLbeforeForm%

<!-- Registration applet definition (start) -->
<OBJECT classid="%jpi_classid%"
 codebase="%jpi_codebase%"
 WIDTH="0"
 HEIGHT="0"
 HSPACE="0"
 VSPACE="0">
<PARAM NAME="TYPE" VALUE="%jpi_mimetype%">
<PARAM NAME="CODEBASE" VALUE="%codebase%">
<PARAM NAME="CODE" VALUE="oracle.forms.webutil.common.RegisterWebUtil" >
<PARAM NAME="ARCHIVE" VALUE="%webUtilArchive%" >
<COMMENT>
<EMBED SRC="" PLUGINSPAGE="%jpi_download_page%"
 TYPE="%jpi_mimetype%"
 java_codebase="%codebase%"
 java_code="oracle.forms.webutil.common.RegisterWebUtil"
 java_archive="%webUtilArchive%"
 WIDTH="1"
 HEIGHT="1"
 HSPACE="0"
 VSPACE="0"
>
<NOEMBED>
</COMMENT>
</NOEMBED></EMBED>
</OBJECT>
<!-- Registration applet definition (end) -->

<COMMENT id="forms_plugin_info"
 serverURL="%serverURL%"
 plug_ver="%jpi_classid%"
 appheight="%Height%"
 appwidth="%Width%"
 appcodebase="%jpi_codebase%"
 appname="%applet_name%">
</COMMENT>

<!-- Forms applet definition (start) -->
<NOSCRIPT>
<OBJECT classid="%jpi_classid%"
 codebase="%jpi_codebase%"
 WIDTH="%Width%"
 HEIGHT="%Height%"
 HSPACE="0"
 VSPACE="0"
 ID="%applet_name%">
</NOSCRIPT>
<SCRIPT LANGUAGE="JavaScript" SRC="/forms/frmjscript/forms_ie.js"></SCRIPT>
<PARAM NAME="TYPE" VALUE="%jpi_mimetype%">
<PARAM NAME="CODEBASE" VALUE="%codebase%">
<PARAM NAME="CODE" VALUE="oracle.forms.engine.Main" >
<PARAM NAME="ARCHIVE" VALUE="%archive%,%webUtilArchive%" >

Default webutiljpi.htm

C-26 Forms Services Deployment Guide

<PARAM NAME="serverURL" VALUE="%appletServerURL%">
<PARAM NAME="networkRetries" VALUE="%networkRetries%">
<PARAM NAME="serverArgs"
 VALUE="%escapeParams% module=%form% userid=%userid% debug=%debug%
 host=%host% port=%port% %otherParams%">
<PARAM NAME="separateFrame" VALUE="%separateFrame%">
<PARAM NAME="splashScreen" VALUE="%splashScreen%">
<PARAM NAME="background" VALUE="%background%">
<PARAM NAME="lookAndFeel" VALUE="%lookAndFeel%">
<PARAM NAME="colorScheme" VALUE="%colorScheme%">
<PARAM NAME="serverApp" VALUE="%serverApp%">
<PARAM NAME="logo" VALUE="%logo%">
<PARAM NAME="imageBase" VALUE="%imageBase%">
<PARAM NAME="formsMessageListener" VALUE="%formsMessageListener%">
<PARAM NAME="recordFileName" VALUE="%recordFileName%">
<PARAM NAME="EndUserMonitoringEnabled" VALUE="%EndUserMonitoringEnabled%">
<PARAM NAME="EndUserMonitoringURL" VALUE="%EndUserMonitoringURL%">
<PARAM NAME="heartBeat" VALUE="%heartBeat%">
<PARAM NAME="MaxEventWait" VALUE="%MaxEventWait%">
<PARAM NAME="allowAlertClipboard" VALUE="%allowAlertClipboard%">
<PARAM NAME="disableValidateClipboard" VALUE="%disableValidateClipboard%">
<PARAM NAME="enableJavascriptEvent" VALUE="%enableJavascriptEvent%">
<PARAM NAME="MAYSCRIPT" VALUE="%enableJavascriptEvent%">
<PARAM NAME="digitSubstitution" VALUE="%digitSubstitution%">
<PARAM NAME="legacy_lifecycle" VALUE="%legacy_lifecycle%">
<PARAM NAME="JavaScriptBlocksHeartBeat" VALUE="%JavaScriptBlocksHeartBeat%">
<PARAM NAME="highContrast" VALUE="%highContrast%">
<PARAM NAME="disableMDIScrollbars" VALUE="%disableMDIScrollbars%">
<PARAM NAME="clientDPI" VALUE="%clientDPI%">
<!-- Params specific to webutil -->
<PARAM NAME="WebUtilLogging" VALUE="%WebUtilLogging%">
<PARAM NAME="WebUtilLoggingDetail" VALUE="%WebUtilLoggingDetail%">
<PARAM NAME="WebUtilErrorMode" VALUE="%WebUtilErrorMode%">
<PARAM NAME="WebUtilDispatchMonitorInterval"
 VALUE="%WebUtilDispatchMonitorInterval%">
<PARAM NAME="WebUtilTrustInternal" VALUE="%WebUtilTrustInternal%">
<PARAM NAME="WebUtilMaxTransferSize" VALUE="%WebUtilMaxTransferSize%">
<COMMENT>
<EMBED SRC="" PLUGINSPAGE="%jpi_download_page%"
 TYPE="%jpi_mimetype%"
 java_codebase="%codebase%"
 java_code="oracle.forms.engine.Main"
 java_archive="%archive%,%webUtilArchive%"
 WIDTH="%Width%"
 HEIGHT="%Height%"
 HSPACE="0"
 VSPACE="0"
 NAME="%applet_name%"
 serverURL="%appletServerURL%"
 networkRetries="%networkRetries%"
 serverArgs="%escapeParams% module=%form% userid=%userid% debug=%debug%
 host=%host% port=%port% %otherparams%"
 separateFrame="%separateFrame%"
 splashScreen="%splashScreen%"
 background="%background%"
 lookAndFeel="%lookAndFeel%"
 colorScheme="%colorScheme%"
 serverApp="%serverApp%"
 logo="%logo%"

Default webutiljpi.htm

Locations and Samples of Configuration Files C-27

 imageBase="%imageBase%"
 recordFileName="%recordFileName%"
 EndUserMonitoringEnabled="%EndUserMonitoringEnabled%"
 EndUserMonitoringURL="%EndUserMonitoringURL%"
 heartBeat="%heartBeat%"
 MaxEventWait="%MaxEventWait%"
 allowAlertClipboard" VALUE="%allowAlertClipboard%"
 disableValidateClipboard="%disableValidateClipboard%"
 enableJavascriptEvent="%enableJavascriptEvent%"
 MAYSCRIPT="%enableJavascriptEvent%"
 digitSubstitution="%digitSubstitution%"
 legacy_lifecycle="%legacy_lifecycle%"
 JavaScriptBlocksHeartBeat="%JavaScriptBlocksHeartBeat%"
 highContrast="%highContrast%"
 disableMDIScrollbars="%disableMDIScrollbars%"
 clientDPI="%clientDPI%"
 WebUtilLogging="%WebUtilLogging%"
 WebUtilLoggingDetail="%WebUtilLoggingDetail%"
 WebUtilErrormode="%WebUtilErrorMode%"
 WebUtilDispatchMonitorInterval="%WebUtilDispatchMonitorInterval%"
 WebUtilTrustInternal="%WebUtilTrustInternal%"
 WebUtilMaxTransferSize="%WebUtilMaxTransferSize%"
>
<NOEMBED>
</COMMENT>
</NOEMBED></EMBED>
</OBJECT>
<!-- Forms applet definition (end) -->
%HTMLafterForm%
</BODY>
</HTML>

Default webutiljpi.htm

C-28 Forms Services Deployment Guide

Index-1

Index

A
alias, Forms servlet and, 13-11
aliases, Forms servlet, web.xml file and, 13-2
applet

parameters, 4-14
application

environment file, Oracle Forms Services, 13-4
server, 2-4

application deployment
overview, 3-7
steps, 3-8

Authorization and Access Enforcement, 11-3

B
Background, 4-38
background parameter, 4-14
base HTML file

creating, C-10
base.htm, C-10

description, C-10
example, C-11

baseHTML files
creating, C-10
list of, 3-6
parameters and variables, C-10
selecting, 3-14

basejpi.htm
description, C-10

basejpi.htm File
sample default, C-12

basejpi.htm file, Oracle Forms and, 13-5
boilerplate objects/images, 14-4
built-in event, 12-7

C
CGI, Forms upgrade and, 13-4
client browser support

about, 3-13
client resource requirements, 14-4
client tier, 2-4
CodeBase, 4-40
codebase parameter, 4-13
codebase parameter, Oracle Forms and, 13-10

colorScheme parameter, 4-14
configuration files, 3-3

6iserver.conf, 13-2
configuration parameters

BaseHTML files and client browsers, 3-14
customized HTML template files, Oracle

Forms, 13-8
customized HTML template files, Oracle Forms

Services, 13-9

D
data segments, 14-4
data stream compression, 14-8
database tier

description, 2-4
default behavior, 3-10
default configuration parameters

allowAlertClipboard, 4-15
allowNewConnections, 4-15
applet_name, 4-15
archive, 4-13
array, 4-15
baseHTML, 4-13
baseHTMLjpi, 4-14
buffer_records, 4-15
clientDPI, 4-15
connectionDisallowedURL, 4-15
debug, 4-12
debug_messages, 4-16
defaultcharset, 4-16
digitSubstitution, 4-16
disableMDIScrollbars, 4-17
disableValidateClipboard, 4-17
enableJavascriptEvent, 4-17
EndUserMonitoringEnabled, 4-12
EndUserMonitoringURL, 4-12
envFile, 4-11
escapeparams, 4-17
form, 4-11
formsMessageListener, 4-17
heartBeat, 4-17
highContrast, 4-17
host, 4-12
HTMLafterForm, 4-14
HTMLbeforeForm, 4-14

Index-2

HTMLbodyAttrs, 4-14
HTMLdelimiter, 4-17
JavaScriptBlocksHeartBeat, 4-17
jpi_mimetype, 4-13
legacy_lifecycle, 4-18
log, 4-12
maxRuntimeProcesses, 4-18
networkRetries, 4-18
obr, 4-18
otherparams, 4-18
pageTitle, 4-14
port, 4-12
prestartIncrement, 4-18
prestartInit, 4-18
prestartMin, 4-19
prestartRuntimes, 4-19
prestartTimeout, 4-19
query_only, 4-19
quiet, 4-19
record, 4-12
recordFileName, 4-19
restrictedURLchars, 4-19
restrictedURLparams, 4-19
serverApp, 4-19
ssoCancelUrl, 4-11
ssoDynamicResourceCreate, 4-11
ssoErrorUrl, 4-11
ssoMode, 4-11
ssoProxyConnect, 4-11
term, 4-19
tracegroup, 4-12
USERID, 4-11

default environment variable
CLASSPATH, 4-23
FORM_PATH, 4-23
FORMS_MESSAGE_ENCRYPTION, 4-24
FORMS_RESTRICT_ENTER_QUERY, 4-23
LD_LIBRARY_PATH, 4-23
LD_PRELOAD, 4-24
ORACLE_HOME, 4-23
ORACLE_INSTANCE, 4-23
PATH, 4-23
TNS_ADMIN, 4-23
WEBUTIL_CONFIG, 4-23

Default formsweb.cfg File
sample, C-2

Default jvmcontroller.cfg
sample file, C-19

Default webutilbase.htm
sample file, C-22

default webutilbase.htm
description, 3-7

Default webutil.cfg
sample file, C-19

default webutil.cfg
description, 3-7

Default webutiljpi.htm
sample file, C-24

default webutiljpi.htm
description, 3-7

default.env
Solaris sample, C-7
Windows sample default, C-6

default.env file, Oracle Forms Services, 13-2, 13-4
Deploying Icons and Images Used by Forms

Services, 4-33
deployment

Forms to the Web, 3-1
disable MENU_BUFFERING, 14-9
duration event, 12-6

E
encoded program units, 14-4
Enterprise Manager

Fusion Middleware Control, 4-1
Environment Configuration page

accessing, 4-21
default environment variables, 4-22
deleting an environment configuration file, 4-21
duplicating an environment configuration

file, 4-21
managing environment variables, 4-22
viewing an environment configuration file, 4-22

environment file, Oracle Forms Services
application, 13-4

event bundling, 14-5
event details, tracing, 12-8
events, tracing, 12-6

F
Feature Restrictions for Forms Applications on the

Web, 4-40
file

basejpi.htm, 13-5
default.env, 13-4
default.env, Oracle Forms Services, 13-2
forms.conf, 13-2
formsweb.cfg, 13-4
ifcgi60.exe, Oracle9iAS Forms, 13-4
jserv.properties

Oracle Forms Services and, 13-2
Forms, 12-1
Forms CGI

description, 13-4
upgrading, 13-4

Forms Home Page
accessing, 4-2
Forms Menu Options, 4-3

Forms Integration
Web Cache, 14-10

Forms Java EE Application Deployment
Descriptors, 3-4

Forms Listener, 2-5
Forms Listener Servlet, 2-5

HTTPS, 5-9
server requirements, 5-9

Forms Runtime Diagnostics, 12-1
Forms Runtime Engine, 2-5, 2-6

Index-3

Forms Services
monitoring events, 14-2
monitoring instances, 14-1
Web Runtime Pooling, 14-2

Forms Services resource requirements, 14-4
Forms Servlet, 5-1
Forms servlet aliases, web.xml file and, 13-2
Forms Trace, 3-4
forms.conf, C-17

default sample, C-17
forms.conf file, 13-2
FormsServlet.initArgs, 4-6
formsweb.cfg, 3-4

example, C-2
formsweb.cfg file

Forms CGI and, 13-4
FRD, 12-1
frmservlet, Oracle Forms and, 13-8
ftrace.cfg, 3-4

H
height parameter, 4-11
HTML-based Enterprise Manager, 4-1
HTTP Listener, 5-1

Configuration Files, 3-5
HTTPD, 5-6
HTTPS

Forms Listener Servlet, 5-9

I
Icons

deploying, 4-35
icons

creating Jar files for, 4-38
search path, 4-39

ifcgi60.exe file, 13-4
imageBase, 4-13
Images, 4-33

Background, 4-38
SplashScreen, 4-38

images
creating Jar files for, 4-38
search paths, 4-39

images, deploying, Oracle Forms and, 13-10
Inline IME Support, 4-41
in-process JVM, definition, 10-5
integrated calls, Oracle Forms to Reports, 13-10
integration

Forms and Reports information, 9-9

J
JAR files, caching, 14-8
Java client resource requirements, 14-4
Java plug-in, 14-7, B-1
Java plug-ins, Oracle Forms and, 13-5
JavaScript Integration, Oracle Forms and, 6-1

applet parameter, 6-4
JavaScript calls, 6-2

jpi_classid, 4-13
jpi_codebase, 4-13
jpi_download_page, 4-13
jserv.properties file

Oracle Forms and, 13-2
Oracle Forms Listener Servlet and, 13-8

JVM controllers
about multiple, 10-4
accessing log files, 10-18
default logging properties, 10-17
deleting a log file for a JVM controller, 10-18
JVM pooling error messages, 10-19
logging management, 10-17
specifying log file directory location, 10-18

JVM Pooling
configuration file settings, 10-15
design-time considerations, 10-6
examples, 10-5
managing JVM controller, 10-9
managing JVM Controller with EM

Starting and Stopping JVM Controllers, 10-14
managing JVM Controllers from the command

line, 10-7
overview, 10-1
re-importing Java Code, 10-6
sharing static variables, 10-6
thread handling, 10-1

K
key mapping

enabling, 4-42
fmrweb.res, 4-42

L
Language Detection, 4-40
language detection

multi-level inheritance, 4-42
overview, 4-41

launching, 4-1
leveraging, 11-3
listener servlet, Oracle Forms entry in web.xml, 13-6
Listener, Forms6i, description, 13-7
load balancing

Oracle Forms and, 13-9
Load Balancing WebLogic Server, 5-1
log parameter for tracing, 12-4
logging capabilities, 12-11
logo, 4-14
lookAndFeel parameter, 4-14
lservlet, Oracle Forms and, 13-8

M
metrics logging

enabling, 12-11
middle tier, 2-4

Index-4

N
network

reducing bandwidth, 14-8
network latency, 14-5
network packets, 14-5
network usage, 14-4

O
ODL, 12-10
optimizing Forms Services, 14-1
Oracle Forms Services, Components, 2-5
Oracle Forms Services, image, 2-4
Oracle Forms Services,Architecture, 2-4
Oracle Fusion Middleware, 2-3
Oracle HTTP Listener Configuration Files, 3-5
Oracle Identity Management Infrastructure, 11-3
Oracle Internet Directory, 9-1, 11-1

dynamic resource creation, 11-2
options for configuring, 11-3

Oracle Portal, Forms, Reports and Discoverer
11g, 2-3

Oracle Real Application Clusters, 2-2
Oracle Single Sign On

accessing from Forms, 9-8
Oracle Single Sign-On

authentication flow, 9-2
database password expiration, 9-5, 11-3
dynamic directives, 9-4
enabling for an application, 9-5

Oracle Single Sign-On Server, 9-1
oracle.forms.servlet.ListenerServlet, Oracle9iAS

Forms and, 13-8

P
parameter options

specifying in URL, 12-4
parameters, 3-9
Performance Event Collection Services (PECS), 12-1
performance tools, 12-1
Performance/Scalability Tuning, 5-1
point event, 12-6
privileges

for classes of users, 11-1
protected, 11-2

R
RAD entries, 11-1
Registry.dat

adding a parameter value, 4-34
changing parameter value, 4-33
deleting a parameter value, 4-34

registry.dat, C-18
sample default, C-18

Registry.dat, managing, 4-33
resources, 11-2

dynamic directives, 11-2
resources, minimizing

boilerplate objects, 14-4
data segments, 14-4
encoded program units, 14-4
network usage, 14-4
rendering displays, 14-5
sending packets, 14-5

RUN_REPORT_OBJECT Built-in, Oracle Forms
Services and, 13-10

runform parameters, 3-10, 3-11
default behavior, 3-10
default behavior, prior releases, 3-12
definition, 3-10
special character values, 3-10

Runtime Pooling
configuring prestart parameters, 14-3

S
sample file

base.htm, C-11
sample values, 3-9
ScriptAlias directive, Oracle9iAS Forms and, 13-4
separateFrame parameter, 4-14
serverHost parameter, Oracle Forms Services

and, 13-6
serverPort parameter, Oracle Forms Services

and, 13-6
serverURL, 4-19
serverURL parameter

application deployment in Oracle Forms
Services, 13-7

static HTML files in Oracle Forms Services, 13-6
servlet aliases, Forms, web.xml file and, 13-2
servlet log file

location, 12-12
sample output, 12-13

servlet log file location, 12-13
single sign-on, 9-1
Special Key Mappings, 4-43
specifying, 3-9
SplashScreen, 4-38
splashScreen parameter, 4-15
SSL

configuring Forms Services, 5-10
configuring with a load balancing router, 5-10

ssoCancelUrl, 9-8
ssoDynamicResourceCreate

about, 9-7
ssoErrorURL, 9-8
ssoMode

about, 9-6, 9-7
ssoMode parameter

example for enabling a particular application, 9-7
startup time, 14-6
Sun Java Plug-In

supported configurations, B-1
Sun's Java Plug-in, 14-7

Index-5

T
template HTML

considerations for static, 3-12
template HTML files

considerations, 3-12
creating, 4-32

Test Form
securing, 4-30

thread handling
Forms Runtime Process and JVM, 10-1

timers, tuning, 14-9
trace data

converting to XML, 12-6
trace event details, 12-8
traceable events, 12-6
tracegroup parameter for tracing, 12-4
translate utility for tracing, 12-6
tuning

application size, 14-10
boilerplate items, 14-8
disable MENU_BUFFERING, 14-9
MENU_BUFFERING, 14-9
promote similarities, 14-8
reduce boilerplate objects, 14-8
reduce navigation, 14-8
reducing network bandwidth, 14-8
screen draws, 14-8
timers, 14-9
using Jar files, 14-7

U
upgrading

application modules, 13-3
CGI to Forms Servlet, 13-4
Forms 6i Listener to Forms Listener Servlet, 13-7
items, 13-1
load balancing, 13-9
recommendations, 13-3
static HTML start files, 13-5
tasks, 13-2
validating Forms Services, 13-11

Upload/Translate Utility
starting, 12-6

URL escape sequences, 3-11
URL parameter option for tracing, 12-4
User Sessions page

accessing, 4-24
customizing your view, 4-27
disabling new Forms user sessions, 4-26
disabling tracing, 4-26
enabling new Forms user sessions, 4-25
enabling tracing, 4-26
field descriptions, 4-25
searching for user sessions, 4-27
sorting list of sessions, 4-27
terminating Forms user sessions, 4-26
viewing database sessions, 4-27
viewing trace logs, 4-27

V
Virtual Graphics System (VGS) tree, 14-5

W
Web Cache

configuring session binding, 14-10, 14-11
Forms integration, 14-10
testing setup, 14-11

Web Configuration Page
accessing, 4-4
common tasks, 4-4
creating a configuration section, 4-6
deleting a configuration section, 4-8
duplicating a named configuration, 4-7
editing a configuration description, 4-7
managing parameters, 4-8
parameter descriptions, 4-9

WebLogic Managed Server Process, 5-1
WebUtil Configuration Files, 3-7
web.xml, C-14

Oracle Forms Services and, 13-2
web.xml File

default sample, C-15
width parameter, 4-11

Z
zone.properties

file, Oracle Forms Listener Servlet and, 13-8

Index-6

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 What's New in Oracle Forms Services
	1.1 JavaScript Integration
	1.2 Enhanced Java Support
	1.3 Support for Server-Side Events
	1.4 Proxy User Support
	1.5 PL/SQL Tracing
	1.6 Integration with Oracle Diagnostics and Logging (ODL)

	2 Introduction to Oracle Forms Services
	2.1 Oracle Forms
	2.1.1 Oracle Forms Developer
	2.1.2 Oracle Forms Services
	2.1.3 How Oracle Forms Services Launches a Forms Application

	2.2 Oracle Database
	2.3 Oracle WebLogic Server
	2.4 Oracle Fusion Middleware
	2.5 About Installing or Upgrading Oracle Forms
	2.6 Oracle Forms Services Architecture
	2.6.1 Oracle Forms Services Components
	2.6.1.1 Forms Listener Servlet
	2.6.1.2 Forms Runtime Process

	3 Basics of Deploying Oracle Forms Applications
	3.1 Oracle Forms Services in Action
	3.2 Configuration Files
	3.2.1 Oracle Forms Configuration Files
	3.2.1.1 default.env
	3.2.1.2 formsweb.cfg
	3.2.1.3 ftrace.cfg

	3.2.2 Forms Java EE Application Deployment Descriptors
	3.2.3 Oracle HTTP Listener Configuration File
	3.2.3.1 About Editing forms.conf
	3.2.3.2 Configuring OHS on a Separate Host

	3.2.4 Standard Fonts and Icons File
	3.2.5 baseHTML Files
	3.2.6 WebUtil Configuration Files
	3.2.6.1 Default webutil.cfg
	3.2.6.2 Default webutilbase.htm
	3.2.6.3 Default webutiljpi.htm

	3.3 Application Deployment
	3.3.1 Deploying Your Application
	3.3.2 Specifying Parameters
	3.3.3 Creating Configuration Sections in Fusion Middleware Control
	3.3.3.1 Editing the URL to Access Oracle Forms Services Applications

	3.3.4 Specifying Special Characters in Values of Runform Parameters
	3.3.4.1 Default Behavior in the Current Release
	3.3.4.2 Behavior in Previous Releases
	3.3.4.3 Obtaining the Behavior of Prior Releases in the Current Release
	3.3.4.4 Considerations for Template HTML Files
	3.3.4.5 Considerations for Static HTML Pages

	3.3.5 Accessing the Listener Servlet Administration Page

	3.4 Client Browser Support
	3.4.1 How Configuration Parameters and BaseHTML Files are Tied to Client Browsers
	3.4.2 Forms Single Sign-On on Mozilla 3.x

	4 Configuring and Managing Forms Services
	4.1 Fusion Middleware Control and Oracle Forms
	4.1.1 Accessing Forms Services with Fusion Middleware Control

	4.2 Configuring Forms Services
	4.2.1 Common Tasks in the Web Configuration Page
	4.2.2 Configuring Parameters with Fusion Middleware Control
	4.2.2.1 Parameters that Specify Files

	4.2.3 Managing Configuration Sections
	4.2.3.1 Creating a Configuration Section
	4.2.3.2 Editing a Named Configuration Description
	4.2.3.3 Duplicating a Named Configuration
	4.2.3.4 Deleting a Named Configuration

	4.2.4 Managing Parameters
	4.2.5 Forms Configuration Parameters
	4.2.5.1 Basic Configuration Parameters
	4.2.5.2 Single Sign-On Configuration Parameters
	4.2.5.3 Trace Configuration Parameters
	4.2.5.4 Plug-in Configuration Parameters
	4.2.5.5 HTML Page Configuration Parameters
	4.2.5.6 Applet Configuration Parameters
	4.2.5.7 Advanced Configuration Parameters
	4.2.5.8 List of Parameters that Cannot be Specified in the URL

	4.3 Managing Environment Variables
	4.3.1 Managing Environment Configuration Files
	4.3.2 Configuring Environment Variables
	4.3.3 Default Environment Variables

	4.4 Managing User Sessions
	4.5 Managing URL Security for Applications
	4.5.1 Securing the Oracle Forms Test Form

	4.6 Creating Your Own Template HTML Files
	4.6.1 Variable References in Template HTML Files

	4.7 Deploying Fonts, Icons, and Images Used by Forms Services
	4.7.1 Managing Registry.dat with Fusion Middleware Control
	4.7.2 Managing Application Fonts
	4.7.3 Deploying Application Icons
	4.7.3.1 Storing Icons in a Java Archive File
	4.7.3.2 Adding, Modifying, and Deleting Icon Mappings

	4.7.4 Splash screen and Background Images
	4.7.5 Custom Jar Files Containing Icons and Images
	4.7.5.1 Creating a Jar File for Images
	4.7.5.2 Using Files Within the Jar File

	4.7.6 Search Path for Icons and Images
	4.7.6.1 DocumentBase
	4.7.6.2 codebase

	4.8 Enabling Language Detection
	4.8.1 Specifying Language Detection
	4.8.2 Inline IME Support
	4.8.3 How Language Detection Works
	4.8.3.1 Multi-Level Inheritance

	4.9 Enabling Key Mappings
	4.9.1 Customizing fmrweb.res
	4.9.1.1 Example change: Swapping Enter and Execute Mappings
	4.9.1.2 Exceptions/ Special Key Mappings
	4.9.1.2.1 Mapping F2
	4.9.1.2.2 Mapping for ENTER to Fire KEY-ENTER-TRIGGER
	4.9.1.2.3 Mapping Number Keys
	4.9.1.2.4 Mapping for ESC Key to exit out of a Web Form

	5 Using Oracle Forms Services with the HTTP Listener and Oracle WebLogic Server
	5.1 About the Oracle WebLogic Managed Server
	5.2 Working with Forms Managed Server
	5.2.1 Custom Deployment of Forms Java EE Application
	5.2.1.1 Prerequisite Steps
	5.2.1.2 Override the Default Servlet Alias and the Context Root
	5.2.1.3 Create the Deployment Plan
	5.2.1.4 Deploy the Custom EAR file
	5.2.1.5 Post-Patching Tasks
	5.2.1.6 Test the Custom Deployment

	5.2.2 Expanding Forms Managed Server Clusters
	5.2.3 Registering Forms Java EE Applications
	5.2.4 Modification of Forms J2EE Application Deployment Descriptors

	5.3 Performance/Scalability Tuning
	5.3.1 Limit the number of HTTPD processes
	5.3.2 Set the MaxClients Directive to a High value

	5.4 Load Balancing Oracle WebLogic Server
	5.5 Using HTTPS with the Forms Listener Servlet
	5.6 Using an Authenticating Proxy to Run Oracle Forms Applications
	5.7 Oracle Forms Services and SSL
	5.8 Enabling SSL with a Load Balancing Router

	6 Oracle Forms and JavaScript Integration
	6.1 About Oracle Forms Calling External Events
	6.1.1 Why Call Events Outside of Oracle Forms?

	6.2 About JavaScript Events Calling into Oracle Forms
	6.2.1 Why Let Events Call into Oracle Forms?

	6.3 Integrating JavaScript and Oracle Forms
	6.4 Configuration of formsweb.cfg
	6.5 Configuration of Environment Variables

	7 Enhanced Java Support
	7.1 Overview
	7.1.1 Dispatching Events from Forms Developer
	7.1.2 Dispatching Events to Forms Services

	7.2 About Custom Item Event Triggers
	7.2.1 Adding the When-Custom-Item-Event Trigger at Design Time
	7.2.2 About the Custom Item Event Trigger at Runtime
	7.2.3 Example: A Java class for a Push Button

	8 Working with Server Events
	8.1 About Oracle Forms and Server Events
	8.2 Creating Events
	8.3 Subscribing to Events
	8.4 Event Propagation
	8.4.1 About the When-Event-Raised Trigger
	8.4.2 About Trigger Definition Level and Scope

	8.5 Publishing Database Events
	8.6 About Application Integration Between Forms
	8.6.1 About Synchronous Communication
	8.6.2 About Asynchronous Communication
	8.6.3 Configuring Asynchronous Communication

	9 Using Forms Services with Oracle Single Sign-On
	9.1 Overview
	9.1.1 Authentication Flow

	9.2 Available Features with OracleAS Single Sign-On, Oracle Internet Directory and Forms
	9.2.1 Dynamic Resource Creation When A Resource Is Not Found In Oracle Internet Directory
	9.2.2 Support for Dynamic Directives With Forms and OracleAS Single Sign-On
	9.2.3 Support for Database Password Expiration for Forms Running with OracleAS Single Sign-On

	9.3 OracleAS Single Sign-On Components Used By Oracle Forms
	9.4 Enabling OracleAS Single Sign-On for an Application
	9.4.1 ssoMode
	9.4.2 ssoProxyConnect
	9.4.3 ssoDynamicResourceCreate
	9.4.4 ssoErrorURL
	9.4.5 ssoCancelUrl
	9.4.6 Accessing Single Sign-on Information From Forms
	9.4.7 Registering Oracle HTTP Server with OracleAS Single Sign-On Server

	9.5 Integrating Oracle Forms and Reports
	9.5.1 Forms and Reports Integration in non-SSO mode
	9.5.2 Using Multiple Reports Server Clusters in Oracle Forms Services
	9.5.3 Integrating Forms and Reports Installed in Different Instances

	9.6 Enabling and Configuring Proxy Users
	9.6.1 Proxy User Overview
	9.6.2 Enabling Proxy User Connections
	9.6.3 Enabling SSO in formsweb.cfg
	9.6.4 Accessing the Forms Application
	9.6.5 Changes in Forms Built-ins
	9.6.6 Reports Integration with Proxy Users

	9.7 Configuring Oracle Internet Directory

	10 Configuring and Managing Java Virtual Machines
	10.1 Why Use Java Virtual Machine Pooling?
	10.1.1 JVM Pooling in Forms and Reports Integration

	10.2 About Child Java Virtual Machine Processes
	10.2.1 Child JVM Example

	10.3 About Multiple JVM Controllers
	10.4 JVM Pooling Usage Examples
	10.5 Design-time Considerations
	10.5.1 Re-importing Your Java Code
	10.5.2 About Sharing Static Variables Across Multiple JVMs

	10.6 Overview of JVM Configuration
	10.7 Managing JVM Controllers from the Command Line
	10.7.1 JVM Controller Command Examples
	10.7.2 Command Restrictions
	10.7.3 Start Command Parameters

	10.8 Managing JVM Pooling from Fusion Middleware Control
	10.8.1 Common Tasks in the JVM Configuration Page
	10.8.2 Managing JVM Configuration Sections
	10.8.2.1 Accessing the JVM Configuration Page
	10.8.2.2 Creating a New Configuration Section
	10.8.2.3 Editing a Named Configuration Description
	10.8.2.4 Duplicating a Named Configuration
	10.8.2.5 Deleting a Named Configuration

	10.8.3 Managing Parameters
	10.8.4 JVM Configuration Parameters and Default Values
	10.8.5 Starting and Stopping JVM Controllers with Fusion Middleware Control
	10.8.6 Forms Configuration File Settings
	10.8.7 Startup Example

	10.9 JVM Controller Logging
	10.9.1 Specifying JVM Default Logging Properties
	10.9.2 Specifying the JVM Log Directory Location
	10.9.3 Accessing Log Files
	10.9.4 Deleting a Log File for a JVM Controller

	10.10 Integrating Forms and Reports
	10.11 JVM Pooling Error Messages

	11 Forms Services Security Overview
	11.1 Forms Services Single Sign-On
	11.1.1 Classes of Users and Their Privileges
	11.1.1.1 Default Single Sign-On Behavior for User Accounts
	11.1.1.2 Users Using Database Proxy Functionality

	11.1.2 Resources That Are Protected
	11.1.2.1 Dynamic Directives
	11.1.2.2 Dynamic Resource Creation in Oracle Internet Directory
	11.1.2.3 Database Password Expiration when Using Single Sign-On

	11.1.3 Authentication and Access Enforcement
	11.1.4 Leveraging Oracle Identity Management Infrastructure

	11.2 Configuring Oracle Forms Services Security
	11.2.1 Configuring Oracle Identity Management Options for Oracle Forms
	11.2.2 Configuring Oracle Forms Options for Oracle Fusion Middleware Security Framework
	11.2.3 Securing RADs

	12 Tracing and Diagnostics
	12.1 About Forms Trace
	12.1.1 What Is the Difference between Tracing and Debugging?

	12.2 Enabling and Configuring Forms Trace
	12.2.1 Configuring Forms Trace
	12.2.2 Specifying URL Parameter Options

	12.3 Starting and Stopping Forms Trace
	12.4 Viewing Forms Trace Output
	12.4.1 Running the Translate Utility

	12.5 List of Traceable Events
	12.5.1 List of Event Details
	12.5.1.1 User Action Events
	12.5.1.2 Forms Services Events
	12.5.1.3 Detailed Events
	12.5.1.4 Three-Tier Events
	12.5.1.5 Miscellaneous Events

	12.6 Taking Advantage of Oracle Diagnostics and Logging Tools
	12.6.1 Enabling Oracle Diagnostics and Logging
	12.6.1.1 Specifying Logging
	12.6.1.2 Specifying Logging Levels Using Fusion Middleware Control
	12.6.1.3 Specifying Full Diagnostics in the URL that Invokes the Forms Servlet

	12.6.2 Viewing Diagnostics Logs
	12.6.3 Using the Servlet Page
	12.6.4 Location of Log Files
	12.6.5 Example Output for Each Level of Servlet Logging
	12.6.5.1 (none)
	12.6.5.2 /session
	12.6.5.3 /sessionperf
	12.6.5.4 /perf
	12.6.5.5 /debug

	13 Upgrading to Oracle Forms Services 11g
	13.1 Oracle Forms Services Upgrade Items
	13.2 Oracle Forms Services Upgrade Tasks
	13.2.1 Upgrade Recommendations and Troubleshooting Tips
	13.2.2 Upgrading Oracle Forms Services Application Modules
	13.2.3 Upgrading Common Gateway Interface (CGI) to the Oracle Forms Servlet
	13.2.4 Upgrading Static HTML Start Files to Generic Application HTML Start Files
	13.2.4.1 Using Static HTML Files with Oracle Forms Services

	13.2.5 Upgrading the Forms 6i Listener to the Forms Listener Servlet
	13.2.6 Upgrading the Forms Listener Servlet Architecture to Oracle Forms Services
	13.2.7 Upgrading Load Balancing
	13.2.8 Usage Notes
	13.2.8.1 Deploying Icon Images with the Forms Servlet
	13.2.8.2 Upgrading Integrated Calls to Oracle Forms to use Oracle Reports
	13.2.8.3 Creating Forms Listener Servlet Alias Names
	13.2.8.4 Accessing the Listener Servlet Administration Page

	13.3 Validating the Oracle Forms Services Upgrade

	14 Performance Tuning Considerations
	14.1 Built-in Optimization Features of Forms Services
	14.1.1 Monitoring Forms Services
	14.1.1.1 Monitoring Forms Services Instances
	14.1.1.2 Monitoring Forms Events

	14.1.2 Forms Services Web Runtime Pooling
	14.1.2.1 Configuring Prestart Parameters
	14.1.2.2 Starting Runtime Pooling

	14.1.3 Minimizing Client Resource Requirements
	14.1.4 Minimizing Forms Services Resource Requirements
	14.1.5 Minimizing Network Usage
	14.1.6 Maximizing the Efficiency of Packets Sent Over the Network
	14.1.7 Rendering Application Displays Efficiently on the Client

	14.2 Tuning Oracle Forms Services Applications
	14.2.1 Location of the Oracle Forms Services with Respect to the Data Server
	14.2.2 Minimizing the Application Startup Time
	14.2.2.1 Using Java Files
	14.2.2.2 Using Oracle's Java Plug-in
	14.2.2.3 Using Caching

	14.2.3 Reducing the Required Network Bandwidth
	14.2.4 Other Techniques to Improve Performance

	14.3 Web Cache and Forms Integration

	A Troubleshooting Oracle Forms Services
	A.1 Verifying The Installation
	A.1.1 Use The Web Form Tester
	A.1.2 Find Port Information

	A.2 Diagnosing FRM-XXXXX Errors
	A.2.1 The Oracle Forms Applet

	A.3 Diagnosing Server Crashes with Stack Traces
	A.3.1 About Stack Traces
	A.3.2 Configuring and Using Stack Traces
	A.3.2.1 Verifying the Environment
	A.3.2.2 Understanding UNIX Stack Traces
	A.3.2.3 Understanding Windows Stack Traces

	A.4 Diagnosing Client Crashes
	A.4.1 About Diagnosing Client Crashes
	A.4.2 Diagnosing Hanging Applications
	A.4.2.1 Causes of Hanging Applications

	A.5 Forms Trace and Servlet Logging Tools
	A.6 Resolving Memory Problems
	A.6.1 How Java Uses Memory
	A.6.2 Setting the Initial Java Heap
	A.6.3 About Memory Leaks
	A.6.3.1 Memory Leaks in Java
	A.6.3.2 Identifying Memory Leaks

	A.6.4 Improving Performance with Caching

	A.7 Troubleshooting Tips
	A.8 Need More Help?

	B Configuring Java Plug-ins
	B.1 Supported Configurations
	B.2 Legacy Lifecycle Behavior And Configuration Requirements
	B.2.1 Configuration Requirements

	C Locations and Samples of Configuration Files
	C.1 Locations of Forms Configuration Files
	C.2 Default formsweb.cfg
	C.3 Platform Specific default.env Files
	C.3.1 Default default.env File for Windows
	C.3.2 Default default.env File for UNIX and Linux

	C.4 base.htm and basejpi.htm Files
	C.4.1 Parameters and variables in the baseHTML file
	C.4.1.1 Usage Notes

	C.4.2 Default base.htm File
	C.4.3 Default basejpi.htm File

	C.5 web.xml
	C.5.1 Default web.xml File

	C.6 weblogic.xml
	C.7 forms.conf
	C.7.1 Default forms.conf

	C.8 Registry.dat
	C.8.1 Registry.dat

	C.9 Default jvmcontroller.cfg
	C.10 Default webutil.cfg
	C.11 Default webutilbase.htm
	C.12 Default webutiljpi.htm

	Index

