

Oracle® Fusion Middleware
Programming JCOM for Oracle WebLogic Server

11g Release 1 (10.3.4)

E13725-03

November 2010

This document describes developing and configuring
applications that include WebLogic Server Java Component
Object (jCOM).

Oracle Fusion Middleware Programming JCOM for Oracle WebLogic Server, 11g Release 1 (10.3.4)

E13725-03

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... ix

Documentation Accessibility ... ix
Conventions ... ix

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-1
1.3 Related Documentation.. 1-2
1.4 New and Changed Features .. 1-2

2 Understanding WebLogic jCOM

2.1 What Is WebLogic jCOM? ... 2-1
2.1.1 An Important Note on Terminology... 2-2
2.1.2 jCOM Architecture .. 2-2
2.2 Why Use WebLogic jCOM?... 2-2
2.3 WebLogic jCOM Features.. 2-2
2.4 Planning Your WebLogic jCOM Application ... 2-3
2.4.1 Zero-Client Deployment... 2-3
2.4.1.1 Advantages and Disadvantages of Zero-Client Deployment................................ 2-3
2.4.2 Early Versus Late Binding.. 2-4
2.4.2.1 Advantages and Disadvantages of Each Binding Model 2-4
2.4.3 DCOM Versus Native Mode.. 2-5
2.4.3.1 Advantages and Disadvantages of Native Mode .. 2-5
2.5 jCOM Features and Changes in this Release .. 2-5

3 Calling into WebLogic Server from a COM Client Application

3.1 Special Requirement for Native Mode... 3-1
3.2 Calling WebLogic Server from a COM Client: Main Steps... 3-1
3.3 Preparing WebLogic Server... 3-2
3.3.1 Generate Java Wrappers and the IDL File—Early Binding Only 3-2
3.3.2 Configuring Access Control ... 3-3
3.3.2.1 Granting Access to java.util.Collection and java.util.Iterator 3-4
3.3.2.2 Granting Access to ejb20.basic.beanManaged.. 3-4
3.4 Preparing the COM Client... 3-4
3.4.1 Install Necessary Files ... 3-4

iv

3.4.1.1 jCOM Tools Files... 3-4
3.4.1.2 WebLogic Server Class Files—Native Mode Only .. 3-5
3.4.2 Obtain an Object Reference Moniker from the WebLogic Server Servlet—Zero

 Client Only... 3-5
3.4.3 Generate Java Wrappers and the IDL File—Early Binding Only 3-5
3.4.3.1 Some Notes about Wrapper Files... 3-6
3.4.4 Register the WebLogic Server JVM in the Client Machine Registry 3-6
3.4.4.1 Unregistering JVMs.. 3-7
3.4.4.2 Select Native Mode, If Applicable.. 3-7
3.4.5 Code the COM Client Application.. 3-8
3.4.5.1 Late Bound Applications... 3-8
3.4.5.1.1 Known Problem and Workaround for Late Bound Clients 3-8
3.4.5.2 Early Bound Applications ... 3-8
3.4.6 Start the COM Client ... 3-8
3.5 Running COM-to-WLS Applications in Native Mode .. 3-9
3.5.1 Native Mode with the JVM Running Out-of-Process... 3-9
3.5.2 Native Mode with the JVM Running In-Process.. 3-10

4 Calling into a COM Application from WebLogic Server

4.1 Special Requirements for Native Mode... 4-1
4.2 Calling a COM Application from WebLogic Server: Main Steps .. 4-1
4.3 Preparing the COM Application... 4-2
4.3.1 Code the COM Application.. 4-2
4.3.2 Generate Java Classes with the com2java GUI Tool... 4-2
4.3.3 Package the Java Classes for WebLogic Server ... 4-3
4.3.4 Start the COM Application... 4-3
4.4 Using Java Classes Generated by com2java.. 4-3
4.5 Using Java Interfaces Generated from COM interfaces by com2java 4-4

5 A Closer Look at the jCOM Tools

5.1 com2java... 5-1
5.1.1 Using com2java .. 5-1
5.1.1.1 Selecting the Type Library .. 5-2
5.1.1.2 Specifying the Java Package Name.. 5-2
5.1.1.3 Options... 5-2
5.1.1.4 Generate the Proxies .. 5-3
5.1.2 Files Generated by com2java.. 5-3
5.1.2.1 Enumerations .. 5-4
5.1.2.2 COM Interfaces ... 5-4
5.1.2.3 COM Classes ... 5-4
5.1.2.3.1 Special Case—Source Interfaces (Events) .. 5-4
5.2 java2com... 5-5
5.3 regjvm ... 5-7
5.3.1 JVM Modes ... 5-7
5.3.1.1 DCOM mode ... 5-7
5.3.1.2 Native Mode Out of Process ... 5-7
5.3.1.3 Native Mode in Process ... 5-8

v

5.3.2 The User Interface of the regjvm GUI Tool.. 5-8
5.3.2.1 DCOM Mode Options for the regjvm GUI Tool .. 5-9
5.3.2.2 Native Mode Options for the regjvm GUI Tool .. 5-10
5.3.2.3 Native Mode in Process Options for the regjvm GUI Tool 5-11
5.4 regjvmcmd .. 5-12
5.5 regtlb .. 5-13

vi

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming JCOM for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

viii

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

The following sections describe the contents and organization of this
guide—Programming JCOM for Oracle WebLogic Server:

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "New and Changed Features"

1.1 Document Scope and Audience
This document is a resource for software developers who want to develop and
configure applications that include WebLogic Server Java Component Object (jCOM).
It also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server or considering the use of WebLogic Server jCOM
for a particular application

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning jCOM topics. For links to WebLogic Server documentation and
resources for these topics, see Section 1.3, "Related Documentation."

It is assumed that the reader is familiar with Java EE and jCOM concepts. This
document emphasizes the value-added features provided by WebLogic Server jCOM
and key information about how to use WebLogic Server features and facilities to get a
jCOM application up and running.

1.2 Guide to This Document
■ This chapter, Chapter 1, "Introduction and Roadmap," describes the scope and

organization of this guide.

■ Chapter 2, "Understanding WebLogic jCOM," provides an overview of the Java to
COM Service. It also describes WebLogic jCOM components and features.

■ Chapter 3, "Calling into WebLogic Server from a COM Client Application,"
describes how to access WebLogic Server from a COM client application using
WebLogic Server jCOM.

Related Documentation

1-2 Programming JCOM for Oracle WebLogic Server

■ Chapter 4, "Calling into a COM Application from WebLogic Server," describes how
to access a COM client application from WebLogic Server using WebLogic Server
jCOM.

■ Chapter 5, "A Closer Look at the jCOM Tools," describes how to programatically
manage your jCOM applications using value-added WebLogic jCOM tools.

1.3 Related Documentation
This document contains information about configuring and managing jCOM
resources.

For jCOM information as it relates to WebLogic Server, see the following document:

■ Securing WebLogic Resources for information about COM resources.

1.4 New and Changed Features
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What’s New in Oracle WebLogic Server.

2

Understanding WebLogic jCOM 2-1

2Understanding WebLogic jCOM

The following sections provide an overview of WebLogic jCOM:

■ Section 2.1, "What Is WebLogic jCOM?"

■ Section 2.2, "Why Use WebLogic jCOM?"

■ Section 2.3, "WebLogic jCOM Features"

■ Section 2.4, "Planning Your WebLogic jCOM Application"

■ Section 2.5, "jCOM Features and Changes in this Release"

2.1 What Is WebLogic jCOM?
WebLogic jCOM is a software bridge that allows bidirectional access between
Java/Java EE objects deployed in WebLogic Server, and Microsoft ActiveX
components available within Microsoft Office family of products, Visual Basic and
C++ objects, and other Component Object Model/Distributed Component Object
Model (COM/DCOM) environments.

In general, Oracle believes that Web Services are the preferred way to communicate
with Microsoft applications. We suggest that customers plan to migrate legacy COM
applications to .NET in order to leverage this type of communication. jCOM is
provided as a migration path for interim solutions that require Java-to-COM
integration. It is suitable for small projects or bridge solutions.

Unlike other Java-to-COM bridges available on the market, jCOM is specifically
designed to work with WebLogic Server on the Java side. You cannot use jCOM to
make COM objects communicate with any arbitrary Java Virtual Machine (JVM). In
addition, jCOM makes direct use of WebLogic Server threads, providing a very robust
way to expose services to COM objects.

WebLogic jCOM makes the differences between the object types transparent: to a
COM client, WebLogic Server objects appear to be COM objects and to a WebLogic
Server application, COM components appear to be Java objects.

WebLogic jCOM is bidirectional because it allows:

■ Microsoft COM clients to access objects in WebLogic Server as though they were
COM components.

■ Applications within WebLogic Server to access COM components as though they
were Java objects.

Why Use WebLogic jCOM?

2-2 Programming JCOM for Oracle WebLogic Server

2.1.1 An Important Note on Terminology
Throughout the remainder of this programming guide, we refer to the two types of
applications by their directions of access. Thus:

■ An application in which a COM client accesses WebLogic Server objects is a
"COM-to-WLS" application.

■ An application in which WebLogic Server accesses COM objects is a
"WLS-to-COM" application.

2.1.2 jCOM Architecture
WebLogic jCOM provides a runtime component that implements both COM/DCOM
over Distributed Computing Environment Remote Procedure Call, and Remote
Method Invocation (RMI) over Java Remote Method protocol/Internet Inter-ORB
Protocol distributed components infrastructures. This makes the objects on the other
side look like native objects for each environment.

WebLogic jCOM also provides automated tools to convert between both types of
interfaces: it automatically builds COM/DCOM proxies and RMI stubs necessary for
each side to be able to communicate through the above mentioned protocols.

WebLogic jCOM does all the necessary translation between DCOM and RMI
technologies, and connects to WebLogic Server as an RMI client. It then communicates
requests to Enterprise Java Beans (EJBs) deployed in the WebLogic Server as if the
request comes from a regular EJB client.

In a similar manner, when a component deployed in WebLogic Server requests
services provided by a DCOM object, the request is translated by the jCOM
component from a regular RMI client request issued by the WebLogic Server into
DCOM compliant request, and communicated to the DCOM environment to the
appropriate object.

In addition to the runtime file, WebLogic jCOM also provides a number of tools and
components which are used for configuring the client and server environments.

2.2 Why Use WebLogic jCOM?
The major reasons for using WebLogic jCOM are:

■ To gain interoperability among distributed applications that span diverse
hardware and software platforms

■ To aid those with a significant investment in Microsoft development tools and
trained development staff who don't want to write Java client software in order for
their client applications to access business logic on WebLogic Server.

■ To address the needs of e-business application builders seeking to leverage the
skills available for both COM/DCOM, and Java environments to build fully
integrated applications and reuse existing components. The specifics of each
environment can be completely hidden for developers used to another
environment.

WebLogic jCOM follows a software industry trend of making heterogeneous
environments and applications interoperate transparently.

2.3 WebLogic jCOM Features
The key features of the WebLogic jCOM subsystem are:

Planning Your WebLogic jCOM Application

Understanding WebLogic jCOM 2-3

■ WebLogic jCOM hides the existence of the data types accessed by the client,
dynamically mapping between the most appropriate Java objects and COM
components.

■ WebLogic jCOM supports both late and early binding of object types.

■ No native code is required on the machine hosting the COM component.
Internally, WebLogic jCOM uses the Windows DCOM network protocol to
provide communication between both local and remote COM components and a
pure Java environment.

■ WebLogic jCOM supports an optional "native mode" which maximizes
performance when running on a Windows platform. See Section 2.4.3, "DCOM
Versus Native Mode."

■ WebLogic jCOM supports event handling. For example, Java events are accessible
from Visual Basic using the standard COM event mechanism and Java objects can
subscribe to COM component events.

2.4 Planning Your WebLogic jCOM Application
Before designing and building your jCOM application, you must make a few key
decisions. Specifically, you must decide:

■ Whether to employ a zero-client architecture for your application (COM-to-WLS
only)

■ Whether to employ an early or late binding model (COM-to-WLS only)

■ Whether to run your jCOM application in native or DCOM mode (both
COM-to-WLS and WLS-to-COM)

The following sections provide information to help you make these decisions.

2.4.1 Zero-Client Deployment
A jCOM zero client deployment is easy to implement. No WebLogic-jCOM-specific
software is required on the client machine.

The WebLogic Server location is coded into the COM client using an object reference
moniker (objref) moniker string. The objref moniker is generated by the user and
it encodes the IP address and port of the WebLogic Server. You can obtain the moniker
string for the COM client code programmatically—or by copying and pasting—from a
WebLogic Server servlet. Once the server connection is established, the COM client
can link a COM object to an interface in the Java component.

2.4.1.1 Advantages and Disadvantages of Zero-Client Deployment
The following table summarizes the advantages and disadvantages of a zero-client
implementation.

Advantages Disadvantages

No WebLogic-specific software need be loaded
into the client machine registry.

A few jCOM-specific tools must be copied from the WL_
HOME\bin directory on the WebLogic Server machine

Offers the benefits of the late binding model (see
Section 2.4.2, "Early Versus Late Binding") and
therefore provides the same flexibility in terms
of changes made to the Java component.

Requires that the WebLogic Server location and port number be
coded into the COM client, which means that if the server
location is changed, this reference has to be regenerated and
changed in the source code.

Planning Your WebLogic jCOM Application

2-4 Programming JCOM for Oracle WebLogic Server

The zero-client model programming model is probably a good choice if your
WebLogic jCOM deployment requires a large number of COM client machines.

2.4.2 Early Versus Late Binding
Binding substitutes the symbolic addresses of routines or modules with physical
addresses. Early binding and late binding both provide access to another application's
objects.

Early bound access gives you information about the object you are accessing while you
are compiling your program; all objects accessed are evaluated at compile time. This
requires that the server application provide a type library and that the client
application identify the library for loading onto the client system.

In late bound access, no information about the object being accessed is available at
compile time; the objects being accessed are dynamically evaluated at runtime. This
means that it is not until you run the program that you find out if the methods and
properties you are accessing actually exist.

2.4.2.1 Advantages and Disadvantages of Each Binding Model
The following table summarizes the pros and cons of the early binding model:

The following table summarizes the pros and cons of the late binding model:

Deprives your application of the advantages of early binding.
(See Section 2.4.2, "Early Versus Late Binding")

Early Binding Pros Early Binding Cons

■ More reliable than late bound implementation.

■ Compile-time type checking makes debugging
easy

■ The application's end user can browse the type
library.

■ Improved runtime transaction performance
relative to a late bound implementation.

■ Complex to implement, as it requires the generation of a
type library and wrappers.

■ The type library is required on the client side; the
wrappers are required on the server side. If the client
and server are on separate machines the type library
and wrappers have to be generated on the same
machine and then copied to the systems where they are
required.

■ Lacks the flexibility of late bound access, in that any
changes made to the Java component require
regeneration of the wrappers and the library.

■ Slower initialization at runtime than a late bound
implementation.

Late Binding Advantages Late Binding Disadvantages

■ Easy to implement

■ Flexible implementation, since objects referenced
are only evaluated at runtime

■ Faster runtime initialization than for an early
bound implementation

■ Error prone, as no type checking can be done at
compile time

■ It is not until you run the program that you find out if
the methods and properties you are accessing actually
exist.

■ Runtime transaction performance inferior to early
bound implementation

Advantages Disadvantages

jCOM Features and Changes in this Release

Understanding WebLogic jCOM 2-5

2.4.3 DCOM Versus Native Mode
The DCOM (Distributed Component Object Model) mode uses the Component Object
Model (COM) to support communication among objects on different computers. In a
WebLogic jCOM application running in DCOM mode, the COM client communicates
with WebLogic Server in DCOM protocol.

In native mode, COM clients make native calls to WebLogic Servers (COM-to-WLS)
and WebLogic Servers make native calls to COM applications.

For both COM-to-WLS and WLS-to-COM applications, because native mode uses
native code dynamically loaded libraries (DLLs)—which are compiled and optimized
specifically for the local operating system and CPU—using native mode results in
better performance.

Moreover, COM-to-WLS applications operating in native mode use WebLogic's
T3/Internet InterORB (IIOP) protocols for communication between the COM client
and WebLogic Server. This brings the advantages of:

■ Superior performance as compared to using DCOM calls because it results in
fewer network calls

For example, suppose your COM application creates a vector containing 100 data
elements whose values are returned by a call to WebLogic Server. In DCOM
mode, this would require 100 roundtrip network calls to the server. In native
mode, this would require one roundtrip call.

■ Access to WebLogic Server's failover and load balancing features

However, for both types of applications, because native libraries have only been
created for Windows, implementing native late bound access requires that the
WebLogic Server be installed all COM client machines.

Moreover, for WLS-to-COM applications, WebLogic Server must be running on a
Windows machine to run in native mode.

2.4.3.1 Advantages and Disadvantages of Native Mode
The following table summarizes the pros and cons of a native mode implementation.

2.5 jCOM Features and Changes in this Release
WebLogic jCOM now supports passing—from COM to Java—two dimensional arrays
of the following COM types:

Advantages Disadvantages

For COM-to-WLS applications, better performance
than DCOM mode because calls are not made over the
network.

For COM-to-WLS and WLS-to-COM applications, since
native libraries have only been created for Windows,
implementing native mode requires that the WebLogic
Server be installed on all COM machines.

For COM-to-WLS applications, access to WebLogic
Server's load balancing and failover features.

For WLS-to-COM applications, WebLogic Server must be
running on a Windows machine to run in native mode.

For WLS-to-COM applications, better performance
because calls are not made over the network.

jCOM Features and Changes in this Release

2-6 Programming JCOM for Oracle WebLogic Server

Table 2–1 Two Dimensional Array Support in jCOM

COM Type Visual Basic Type Java Type

I1, UI1 Byte Byte

BOOL Boolean Boolean

I2, UI2 Integer Short

CY, I8, UI8 Currency Long

R8 Double Double

DATE Date Date

I4, UI3, INT, UINT Long Int

3

Calling into WebLogic Server from a COM Client Application 3-1

3Calling into WebLogic Server from a COM
Client Application

This chapter describes how to use WebLogic jCOM to call methods on a WebLogic
Server object from a COM client.

■ Section 3.1, "Special Requirement for Native Mode"

■ Section 3.2, "Calling WebLogic Server from a COM Client: Main Steps"

■ Section 3.3, "Preparing WebLogic Server"

■ Section 3.4, "Preparing the COM Client"

■ Section 3.5, "Running COM-to-WLS Applications in Native Mode"

3.1 Special Requirement for Native Mode
Note that WebLogic Server must be installed on COM client machines in order for
your COM-to-WLS application to run in native mode.

For more information on native mode, see Section 3.5, "Running COM-to-WLS
Applications in Native Mode."

3.2 Calling WebLogic Server from a COM Client: Main Steps
This section summarizes the main steps to call into WebLogic Server from a COM
client. Most are described in detail in later sections.

On the WebLogic Server side:

1. If you are using early binding, run the java2com tool to generate Java wrapper
classes and an Interface Definition Language (IDL) file and compile the files. See
Section 3.3.1, "Generate Java Wrappers and the IDL File—Early Binding Only."

2. Enable COM calls on the server listen port. See Enable jCOM in the Oracle
WebLogic Server Administration Console Help.

3. Grant access to server classes to COM clients. See Section 3.3.2, "Configuring
Access Control."

4. Configure any other relevant console properties. See Servers: Protocols: jCOM in
the Oracle WebLogic Server Administration Console Help.

On the COM client side:

1. Install the jCOM tools files and, for native mode only, WebLogic Server class files.
See Section 3.4.1, "Install Necessary Files."

Preparing WebLogic Server

3-2 Programming JCOM for Oracle WebLogic Server

2. If this is a zero-client installation:

■ Obtain an object reference moniker (ORM) from the WebLogic Server ORM
servlet, either progammatically or by pasting into your application. See
Section 3.4.2, "Obtain an Object Reference Moniker from the WebLogic Server
Servlet—Zero Client Only."

3. If you are using early binding:

■ Obtain the IDL file generated on the WebLogic Server machine and compile it
into a type library.

■ Register the type library and the WebLogic Server instance serviced.

For both of these steps, see Section 3.4.3, "Generate Java Wrappers and the IDL
File—Early Binding Only."

4. Register the WebLogic Server JVM in the registry. If want to communicate with
the WebLogic Server in native mode, set that in this step. See Section 3.4.4,
"Register the WebLogic Server JVM in the Client Machine Registry."

5. Code the COM client application. See Section 3.4.5, "Code the COM Client
Application."

6. Start the COM client. See Section 3.4.6, "Start the COM Client."

3.3 Preparing WebLogic Server
The following sections discuss how to prepare WebLogic Server so that COM clients
can call methods on WebLogic Server objects:

3.3.1 Generate Java Wrappers and the IDL File—Early Binding Only
1. Add the path to JDK libraries and weblogic.jar to your CLASSPATH. For

example:

set CLASSPATH=%JAVA_HOME%\lib\tools.jar;
%WL_HOME%\server\lib\weblogic.jar;%CLASSPATH%

Where JAVA_HOME is the root folder where the JDK is installed
(c:\Oracle\Middleware\jdk160 or c:\Oracle\Middleware\jrockit_
160 by default) and WL_HOME is the root directory where WebLogic Platform
software is installed (c:\Oracle\Middleware\wlserver_10.3 by default).

2. Generate java wrappers and an IDL file with the java2com tool:

java com.bea.java2com.Main

The java2com GUI is displayed:

3. Input the following:

Java Classes & Interfaces: list of the wrapper classes to be converted

Preparing WebLogic Server

Calling into WebLogic Server from a COM Client Application 3-3

Name of generated IDL File: name of the IDL file

Output Directory: drive letter and root directory\TLB

where TLB signifies OLE Type Library.

The java2com tool looks at the class specified, and at all other classes that it uses
in the method parameters. It does this recursively. You can specify more than one
class or interface here, separated by spaces.

All Java classes that are public, not abstract, and have a no-parameter constructor
are rendered accessible as COM Classes. Other public classes, and all public
interfaces are rendered accessible as COM interfaces.

If you click the "Generate" button and produce wrappers and the IDL at this point,
errors are generated. This is because certain classes are omitted by default in the
java2com tool. By looking at the errors generated during compilation, you would
be able to determine which classes were causing problems.

To fix the problem, click the "Names" button in the java2com tool and remove
any references to the class files you require. In this example we must remove the
following references:

*.toString > ''''
class java.lang.Class > ''''

4. Once these references have been removed, you can generate your wrappers and
IDL. Click Generate in the java2com GUI.

The java2com tool generates Java classes containing DCOM marshalling code
used to access Java objects. These generated classes are used behind the scenes by
the WebLogic jCOM runtime. You simply need to compile them, and make sure
that they are in your CLASSPATH.

3.3.2 Configuring Access Control
Grant the COM client user access to the classes that the COM client application needs
to access. Your particular application dictates which classes to expose.

For example, assume that the COM client needs access to the following three classes:

■ java.util.Collection

Preparing the COM Client

3-4 Programming JCOM for Oracle WebLogic Server

■ java.util.Iterator

■ ejb20.basic.beanManaged

3.3.2.1 Granting Access to java.util.Collection and java.util.Iterator
1. In the left-hand pane of the WebLogic Server Administration Console, click the

Services node and then click the JCOM node underneath it.

2. In the right-hand pane, enter:

java.util.*

3. Click Define Security Policy.

4. In the Policy Condition box, double-click "Caller is a member of the group".

5. In the "Enter group name:" field, enter the name of the group of users to whom
you're granting access.

6. Click Add.

7. Click OK.

8. In the bottom right-hand corner of the window, click Apply.

3.3.2.2 Granting Access to ejb20.basic.beanManaged
To grant access to ejb20.basic.beanManaged, repeat the steps in Section 3.3.2.1,
"Granting Access to java.util.Collection and java.util.Iterator," replacing "java.util.*"
with "ejb20.basic.beanManaged" in step 3.

3.4 Preparing the COM Client
The following sections describe how to prepare a COM client to call methods on
WebLogic Server objects:

3.4.1 Install Necessary Files
There are a number of files that must be installed on your client machine in order to
call methods on WebLogic Server objects. As noted below, some of these are only
necessary if you are making method calls in native mode.

3.4.1.1 jCOM Tools Files
There are five files and three folders (including all subfolders and files) necessary for
running the jCOM tools. These tools are located in the WL_HOME\server\bin
directory on the machine where you installed WebLogic Server. They are:

■ JintMk.dll

■ ntvinv.dll

■ regjvm.exe

■ regjvmcmd.exe

■ regtlb.exe

■ regjvm (including all subfolders and files)

■ regjvmcmd (including all subfolders and files)

■ regtlb (including all subfolders and files)

Preparing the COM Client

Calling into WebLogic Server from a COM Client Application 3-5

For more information on the jCOM tools, see Chapter 5, "A Closer Look at the jCOM
Tools."

3.4.1.2 WebLogic Server Class Files—Native Mode Only
In order to run a COM-to-WLS application in native mode, a COM client machine
must have access to certain WebLogic Server class files. To obtain these files, install
WebLogic Server on each COM client machine.

3.4.2 Obtain an Object Reference Moniker from the WebLogic Server Servlet—Zero
Client Only

You can obtain an object reference moniker (ORM) from WebLogic Server. The
moniker can be used from the COM client application, obviating the need to run
regjvmcmd. The moniker remains valid for new incarnations of the server as long as
the host and port of the server remain the same.

There are two ways to obtain an ORM for your COM client code:

■ Obtain it through a servlet running on WebLogic Server. Open a Web browser on
WebLogic Server to http://[wlshost]:[wlsport]/bea_wls_
internal/com

where wlshost is the WebLogic Server machine and wlsport is the server's port
number.

■ Run the com.bea.jcom.GetJvmMoniker Java class, specifying as parameters
the full name or TCP/IP address of the WebLogic Server machine and port
number:

java com.bea.jcom.GetJvmMoniker [wlshost] [wlsport]

A long message is displayed which shows the objref moniker and explains how to
use it. The text displayed is also automatically copied to the clipboard, so it can be
pasted directly into your source. The objref moniker returned can access the
WebLogic Server instance on the machine and port you have specified.

3.4.3 Generate Java Wrappers and the IDL File—Early Binding Only
Perform the client-side portion of the wrapper and Interface Definition Language
(IDL) file generation:

1. Copy the IDL to the client machine:

If the java2com tool successfully executes on the WebLogic Server machine (see
Section 3.3, "Preparing WebLogic Server"), an IDL file is produced on the server
machine. Copy this IDL file to the client machine, and place it in this COM
application's \TLB subdirectory.

2. Compile the IDL file into a type library:

midl containerManagedTLB.idl

Note: If the client and the server are on the same machine, this step
is not necessary. The java2com tool outputs to the sample's \TLB
subdirectory.

Preparing the COM Client

3-6 Programming JCOM for Oracle WebLogic Server

This command calls the Microsoft IDL compiler MIDL.EXE to carry out the
compilation. The result of the compilation is a type library called
containerManagedTLB.tlb.

3. Register the type library and set the JVM it services:

regtlb /unregisterall
regtlb containerManagedTLB.tlb registered_jvm

The first line above calls the regtlb.exe in order to un-register any previously
registered type library versions. The second line then registers the newly compiled
type library.

The second parameter registered_jvm passed to regtlb is important. It
specifies the name of the JVM linked with the type library. The WebLogic jCOM
runtime requires this information for linking type library defined object calls to
the appropriate wrapper classes.

The WebLogic Server JVM is registered in the client machine registry through the
regjvm tool. For details, see Section 3.4.4, "Register the WebLogic Server JVM in the
Client Machine Registry."

3.4.3.1 Some Notes about Wrapper Files
■ In general, wrapper files must be placed on the server and compiled. The IDL file

must be placed on the client and compiled. If the server and client are on separate
machines, and you created the wrappers and IDL on the client side, you must
distribute the wrapper files you have just compiled to the server. If you created the
wrappers and IDL on the server side, then you must move the IDL file to the client,
where it can be compiled to a type library.

■ The wrapper files and IDL file must be created by a single execution of the
java2com tool. If you attempt to run the java2com tool separately on both the
server and the client, the wrappers and IDL file created would not be able to
communicate. The IDL and wrappers have unique stamps on them for
identification; wrappers can only communicate with IDL files created by a
common invocation of the java2com tool, and vice versa. As a result, the
java2com tool must be run once, and the files it creates distributed afterward. If
you make a mistake or a change in your Java source code and you need to run the
java2com tool again, you must delete all of your wrapper files, your IDL file, and
your TLB file, and redo all the steps.

■ When you use the java2com tool to create wrappers for classes that contain (or
reference) deprecated methods, you see deprecation warnings at compile time.
disregard these warnings; WebLogic jCOM renders the methods accessible from
COM.

■ The generated wrapper classes must be in your CLASSPATH. They cannot be just
located in your EJB jar.

3.4.4 Register the WebLogic Server JVM in the Client Machine Registry
Register with the local Java Virtual Machine by adding the server name to the
Windows registry and associating it with the TCP/IP address and client-to-server
communications port where the WebLogic Server instance listens for incoming COM
requests. By default, this is localhost:7001.

1. Invoke the regjvm GUI tool, which displays this screen.

Preparing the COM Client

Calling into WebLogic Server from a COM Client Application 3-7

2. If WebLogic Server is running on something other than localhost and listening on
a port other than 7001, then fill in the hostname (or IP address) and port number

If you prefer, use the command-line version of regjvm:

regjvmcmd servername localhost[7001]

3.4.4.1 Unregistering JVMs
The regjvm (or regjvmcmd) tool does not overwrite old entries when new entries
with identical names are entered. This means that if you ever need to change the
hostname or port of the machine with which you wish to communicate, unregister the
old entry, and then create a new one.

To unregister a JVM in the regjvm tool window, select the JVM you wish to
unregister and click Delete.

Alternatively, unregister the JVM with the command line tool regjvmcmd:

regjvmcmd /unregister servername

3.4.4.2 Select Native Mode, If Applicable
If your COM client is running in native mode, check the "Native Mode" or "Native
Mode Out-of-Process" radio button in the regjvm window or invoke regjvmcmd
with the /native parameter. For details on this step, see Section 3.5, "Running
COM-to-WLS Applications in Native Mode."

Preparing the COM Client

3-8 Programming JCOM for Oracle WebLogic Server

3.4.5 Code the COM Client Application
You can now invoke methods on the WebLogic Server objects. How you code this
naturally depends on whether you chose late binding or early binding.

3.4.5.1 Late Bound Applications
In the following sample Visual Basic Application, notice the declaration of the COM
version of the Account EJB's home interface mobjHome. This COM object is linked to
an instance of the AccountHome interface on the server side.

Dim mobjHome As Object
Private Sub Form_Load()
'Handle errors
On Error GoTo ErrOut '
Bind the EJB AccountHome object through JNDI
Set mobjHome =
CreateObject("examplesServer:jndi:ejb20-containerManaged-AccountHome")

3.4.5.1.1 Known Problem and Workaround for Late Bound Clients WebLogic jCOM has
problems handling methods that are overloaded but have the same number of
parameters. There is no such problem if the number of parameters in the overloaded
methods are different.

When they're the same, calls fail.

Unfortunately, the method InitialContext.lookup is overloaded:

public Object lookup(String)
public Object lookup(javax.naming.Name)

To perform a lookup, you must use the special JNDI moniker to create an object:

Set o = CreateObject("servername:jndi:objectname")

3.4.5.2 Early Bound Applications
The most obvious distinguishing feature of early bound code is that fewer variables
are declared As Object. Objects can now be declared by using the type library you
generated previously:

Declare objects using the type library generated in Section 3.4.3, "Generate Java
Wrappers and the IDL File—Early Binding Only." In this Visual Basic code fragment,
the IDL file is called containerManagedTLB and the EJB is called
ExamplesEjb20BasicContainerManagedAccountHome:

Dim objNarrow As New containerManagedTLB.JCOMHelper

Now, you can call a method on the object:

Set mobjHome = objNarrow.narrow(objTemp,
"examples.ejb20.basic.containerManaged.AccountHome")

3.4.6 Start the COM Client
Start up the COM client application.

Running COM-to-WLS Applications in Native Mode

Calling into WebLogic Server from a COM Client Application 3-9

3.5 Running COM-to-WLS Applications in Native Mode
For COM-to-WLS applications, there's a distinction in native mode between
"in-process" and "out-of-process":

■ Out-of-process: The JVM is created in its own process; inter-process
communication occurs between the COM process and the WebLogic Server JVM
process.

■ In-process: The entire WebLogic Server JVM is brought into the COM process; in
effect, it's loaded into the address space of the COM client. The WebLogic Server
client-side classes reside inside this JVM.

You determine which process your application uses by selecting the
native-mode-in-process or native mode radio button in the regjvm GUI tool interface.

3.5.1 Native Mode with the JVM Running Out-of-Process
If you want your JVM to run out of process (but allow COM client access to the Java
objects contained therein using native code), follow these steps:

1. Invoke the regjvm GUI tools to register your JVM as being native. The regjvm
sets up various registry entries to facilitate WebLogic jCOM's COM-to-WLS
mechanism. When you register the JVM you must provide the name of the server
in the JVM id field. For example, if you enabled JCOM native mode on
exampleServer then when you register with regjvm enter exampleServer in
the JVM id box.

2. If your JVM is not already running, click the Advanced radio button and type its
path in the "Launch Command" field.

For detailed information on the regjvm tool, see Chapter 5, "A Closer Look at the
jCOM Tools."

3. Insert the following code into the main section of your application code, to tell the
WebLogic jCOM runtime that the JVM is ready to receive calls:

com.bea.jcom.Jvm.register("MyJvm"):
public class MyJvm {
public static void main(String[] args) throws Exception {
// Register the JVM with the name "firstjvm"
com.bea.jcom.Jvm.register("firstjvm");
Thread.sleep(6000000); // Sleep for an hour
}

4. From Visual Basic you can now use late binding to instantiate instances of any
Java class that can be loaded in that JVM:

Set acctEJB = CreateObject("firstjvm.jndi.ejb20.beanManaged.AccountHome")

5. Having registered the JVM, use the standard WebLogic jCOM regtlb command
to allow early bound access to Java objects (regtlb takes as parameters the name
of a type library, and a JVM name, and registers all the COM objects defined in
that type library as being located in that JVM).

You can also control the instantiation of Java objects on behalf of COM clients by
associating your own instantiator with a JVM (additional parameter to
com.bea.jcom.Jvm.register(...))—a kind of object factory.

Running COM-to-WLS Applications in Native Mode

3-10 Programming JCOM for Oracle WebLogic Server

3.5.2 Native Mode with the JVM Running In-Process
Use this technique to actually load the JVM into the COM client's address space.

Again, use the regjvm command, but this time specify additional parameters.

The simplest example would be to use Visual Basic to perform late bound access to
Java objects. First register the JVM. If you are using Sun's JDK 1.3.1, which is installed
under c:\Oracle\Middleware\jdk160 by default, and WebLogic Server is
installed in c:\Oracle\Middleware\wlserver_
10.3\server\lib\weblogic.jar, and your Java classes are in c:\pure, you
would complete the regjvm tools screen as follows:

As you can see, you specify the JVM name, the CLASSPATH, and the JVM bin
directory path.

From Visual Basic, you should now be able to call the GetObject method:

MessageBox GetObject("MyJVM.jndi.ejb20.beanManaged.AccountHome")

For detailed information on the regjvm tool, see Chapter 5, "A Closer Look at the
jCOM Tools."

Note: When you register the JVM you must provide the name of the
server in the JVM id field. For example, if you enabled JCOM native
mode on exampleServer then when you register with regjvm enter
exampleServer in the JV id box.

4

Calling into a COM Application from WebLogic Server 4-1

4Calling into a COM Application from
WebLogic Server

The following sections describe how to prepare and deploy a WLS-to-COM
application: an application that uses WebLogic jCOM to call methods on a COM object
from WebLogic Server.

■ Section 4.1, "Special Requirements for Native Mode"

■ Section 4.2, "Calling a COM Application from WebLogic Server: Main Steps"

■ Section 4.3, "Preparing the COM Application"

■ Section 4.4, "Using Java Classes Generated by com2java"

■ Section 4.5, "Using Java Interfaces Generated from COM interfaces by com2java"

4.1 Special Requirements for Native Mode
Note these two special requirements for WLS-to-COM applications that use native
mode:

■ In order for a COM application to run in native mode, WebLogic Server must be
installed on the COM application machine.

■ In order to run in native mode, WebLogic Server must be running on a Windows
machine.

4.2 Calling a COM Application from WebLogic Server: Main Steps
This section summarizes the main steps to call into a COM application from a
WebLogic Server. Most are described in detail in later sections.

On the COM side:

1. Code the COM application. See Section 4.3.1, "Code the COM Application."

2. Generate Java classes from the COM objects with the com2java tool. See
Section 4.3.2, "Generate Java Classes with the com2java GUI Tool."

3. Package the classes for use by WebLogic Server. See Section 4.3.3, "Package the
Java Classes for WebLogic Server."

4. Start the COM application. See Section 4.3.4, "Start the COM Application."

On the WebLogic Server side:

1. Enable COM calls on the server listen port. See Enable jCOM in the Oracle
WebLogic Server Administration Console Help.

Preparing the COM Application

4-2 Programming JCOM for Oracle WebLogic Server

2. Configure any other relevant console properties. See Servers: Protocols: jCOM in
the Oracle WebLogic Server Administration Console Help.

If you have chosen to have WebLogic Server and the COM application
communicate in native mode, enable it in the Administration Console. See the
Chapter 2.4.3, "DCOM Versus Native Mode" for help deciding whether to use
native mode.

3. Use the COM objects as you would any other Java object.

4.3 Preparing the COM Application
The following sections describe how to prepare a COM client so that WebLogic Server
can call methods on its objects:

4.3.1 Code the COM Application
Code your COM application as desired.

4.3.2 Generate Java Classes with the com2java GUI Tool
Running the com2java GUI tool against a COM type library generates a collection of
Java class files corresponding to the classes and interfaces in the COM type library.

Here we demonstrate Java class generation with the GUI tool. To read more about the
WebLogic jCOM tools in general, see Chapter 5, "A Closer Look at the jCOM Tools."

1. To run the com2java GUI tool, perform the following steps:

a. Change to the WEBLOGIC_HOME/server/bin directory (or add this directory
to your CLASSPATH)

b. Open a command shell on the COM machine and invoke the com2java.exe
file:

> com2java

1. Select the appropriate type library in the top field, and fill in the Java package text
box with the name of the package to contain the generated files. The com2java
tool remembers the last package name you specified for a particular type library.

2. Click Generate Proxies to generate Java class files.

Using Java Classes Generated by com2java

Calling into a COM Application from WebLogic Server 4-3

4.3.3 Package the Java Classes for WebLogic Server
If you call a COM object from an EJB, you must package the class files generated by
com2java into your EJB .jar in order for WebLogic Server to find them. Place the
generated files in a specific package. For example you may want to put all the files for
the Excel type library in a Java package called excel.

For more information on packaging EJB .jar files, see "Implementing EJBs" in
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

4.3.4 Start the COM Application
Once you have generated the Java class files and packaged them appropriately, simply
start your COM application, so that the COM objects you want to expose to WebLogic
Server are instantiated and running.

4.4 Using Java Classes Generated by com2java
For each COM class that the com2java tool finds in a type library, it generates a Java
class which you use to access the COM class. These generated Java classes have several
constructors:

■ The default constructor, which creates an instance of the COM class on the local
host, with no authentication

■ A second constructor, which creates an instance of the COM class on a specific
host, with no authentication

■ A third constructor, which creates an instance of the COM class on the local host,
with specific authentication

■ A fourth constructor, which creates an instance of the COM class on a specified
host, with specific authentication

■ A final constructor, which can wrap a returned object reference which is known to
reference an instance of the COM class

Here are sample constructors generated from the DataLabelProxy class:

public DataLabelProxy() {}

public DataLabelProxy(Object obj) throws java.io.IOException {
super(obj, DataLabel.IID);
}
protected DataLabelProxy(Object obj, String iid) throws
java.io.IOException
{
super(obj, iid);
}
public DataLabelProxy(String CLSID, String host, boolean
deferred) throws java.net.UnknownHostException,
java.io.IOException{ super(CLSID, DataLabel.IID, host, null);
}
protected DataLabelProxy(String CLSID, String iid, String host,
AuthInfo authInfo) throws java.io.IOException { super(CLSID,
iid, host, authInfo);
}

Using Java Interfaces Generated from COM interfaces by com2java

4-4 Programming JCOM for Oracle WebLogic Server

4.5 Using Java Interfaces Generated from COM interfaces by com2java
A method in a COM interface may return a reference to an object through a specific
interface.

For example the Excel type library (Excel8.olb) defines the _Application COM
Interface, with the method Add which is defined like this in COM IDL:

[id(0x0000023c), propget, helpcontext(0x0001023c)]
HRESULT Workbooks([out, retval] Workbooks** RHS);

The method returns a reference to an object that implements the Workbooks COM
interface. Because the Workbooks interface is defined in the same type library as the _
Application interface, the com2java tool generates the following method in the _
Application Java interface it creates:

/** * getWorkbooks.
*
* @return return value. An reference to a Workbooks
* @exception java.io.IOException If there are communications problems.
* @exception com.bea.jcom.AutomationException If the remote server throws an exception. */
public Workbooks getWorkbooks () throws java.io.IOException, com.bea.jcom.AutomationException;
It is revealing to look at the implementation of the method in the generated _ApplicationProxy Java
class:
/**
* getWorkbooks.
*
* @return return value. An reference to a Workbooks
* @exception java.io.IOException If there are communications
problems.
* @exception com.bea.jcom.AutomationException If the remote
server throws an exception.
*/
public Workbooks getWorkbooks () throws java.io.IOException,
com.bea.jcom.AutomationException{ com.bea.jcom.MarshalStream
marshalStream = newMarshalStream("getWorkbooks");
marshalStream = invoke("getWorkbooks", 52, marshalStream);
Object res = marshalStream.readDISPATCH("return value");
Workbooks returnValue = res == null ? null : new
WorkbooksProxy(res);
checkException(marshalStream,
marshalStream.readERROR("HRESULT"));
return returnValue;
}

As you can see, the getWorkbooks method internally uses the generated
WorkbooksProxy Java class. As mentioned above, the com2java tool generates the
method with the Workbooks return type because the Workbooks interface is defined
in the same type library as _Application.

If the Workbooks interface were defined in a different type library, WebLogic jCOM
would have generated the following code:

/**
* getWorkbooks.
*
* @return return value. An reference to a Workbooks
* @exception java.io.IOException If there are communications
problems.
* @exception com.bea.jcom.AutomationException If the remote server
throws an exception.

Using Java Interfaces Generated from COM interfaces by com2java

Calling into a COM Application from WebLogic Server 4-5

*/
public Object getWorkbooks () throws java.io.IOException,
com.bea.jcom.AutomationException;
In this case, you would have to explicitly use the generated proxy class to access the returned
Workbooks:
Object wbksObj = app.getWorkbooks();
Workbooks workbooks = new WorkbooksProxy(wbObj);

Using Java Interfaces Generated from COM interfaces by com2java

4-6 Programming JCOM for Oracle WebLogic Server

5

A Closer Look at the jCOM Tools 5-1

5A Closer Look at the jCOM Tools

The following sections examines in detail the tools used by jCOM applications:

■ Section 5.1, "com2java"

■ Section 5.2, "java2com"

■ Section 5.3, "regjvm"

■ Section 5.4, "regjvmcmd"

■ Section 5.5, "regtlb"

5.1 com2java
WebLogic jCOM's com2java tool reads information from a type library, and
generates Java files that you use to access the COM classes and interfaces defined in
that type library.

Type libraries contain information on COM classes, interfaces, and other constructs.
They are typically generated by development tools such as Visual C++ and Visual
BASIC.

Some type libraries are readily identifiable as such. Files that end with the extension
olb or tlb are definitely type libraries. What can be a little confusing is that type
libraries can also be stored inside other files, such as executables. Visual BASIC puts a
type library in the executable that it generates.

5.1.1 Using com2java
Start com2java by typing it in a command shell or double clicking its icon.

When you start com2java, this is the dialog that is displayed:

com2java

5-2 Programming JCOM for Oracle WebLogic Server

5.1.1.1 Selecting the Type Library
Click the Select button to select the type library that the tool should process.

Remember that type libraries can sometimes be hidden inside executable files, such as
the executable or dynamic link library (DLL) containing your COM component.

The com2java tool remembers a list of the last type libraries you successfully opened
and generated proxies for.

5.1.1.2 Specifying the Java Package Name
The com2java tool generates a set of Java source files corresponding to the COM
classes and interfaces in the type library. Place the generated files in a specific package.
For example you may want to put all the files for the Excel type library in a Java
package called excel.

In the Java package text box, specify the name of the package to which the generated
files to belong.

The com2java tool remembers the last package name you specified for a particular
type library.

5.1.1.3 Options
Click the Options button to display a dialog box with com2java options described
below. Note that these options are saved automatically between sessions of
com2java. If you only require an option for one particular generation of proxies, then
reset the option after generating the proxies.

Option Description

Clash Prefix If methods in the COM interfaces defined in the type library clash with methods that are
already used by Java (for example the getClass() method), com2java prefixes the
generated method name with a string, which is zz_ by default.

Lower case method
names

The convention for Java method names is that they start with a lower-case letter. By
default the com2java tool enforces this convention, changing method names
accordingly. To have com2java ignore the convention, deselect the Lowercase method
names check box in the Options dialog box.

Only generate
IDispatch

WebLogic jCOM supports calling COM objects using IDispatch and vtable access.
Selecting this option ensures that all calls are made using the IDispatch interface.

Generate retry code on
'0x80010001 - Call was
rejected by callee'

If a COM server is busy, you may receive an error code. Selecting this option ensures
that the generated code retries each time this error code is received.

com2java

A Closer Look at the jCOM Tools 5-3

5.1.1.4 Generate the Proxies
Click the Generate Proxies button to select the directory in which the com2java
tool should generate the Java files.

Once you select the directory, com2java analyzes.the type library and output the
corresponding files in the directory you specify. If the directory already contains Java
source files, WebLogic jCOM issues a warning and allows you to cancel the operation.

5.1.2 Files Generated by com2java
The com2java tool processes three kinds of constructs in a type library:

■ "Enumerations"

■ "COM Interfaces"

■ "COM Classes"

These are explored in this section.

Refer to documentation about the COM objects that you are accessing to understand
how to use generated Java files to manipulate the COM objects.

For example when you run com2java on the Excel type library the generated Java
files you are seeing correspond to the Microsoft Excel COM API, and you should refer
to the Microsoft Excel programming documentation for more information, such as the
Excel 2000 COM API:

Generate Arrays as
Objects

Parameters that are SAFEARRAYS have a corresponding Java parameter of type
java.lang.Object generated. This is required if you are passing two dimensional arrays
outside of Variants to/from COM objects from Java.

This option doesn't change what is actually passed over the wire —it is still arrays—it is
just that in the generated Java interface, rather than having the generated method
prototype specify the type of the array, it specifies "Object". This is useful in situations
where you want to pass a 2D array —in the COM IDL the number of dimensions is not
specified for SAFEARRAYS, and if you don't check the "generate arrays as objects"
option, WebLogic jCOM assumes you are passing a single element array and generate a
corresponding prototype.

By setting the option, and having com2java generate "Object" instead of "String[]", for
example, you are free to actually pass a 2D string array.

Prompt for names for
imported tlbs

Sometimes a type library imports another type library. If you are also generating proxies
for imported type libraries, using this option prompts you for the package name of the
those proxies.

Don't generate
dispinterfaces

Selecting this option disables the generation of proxies for interfaces defined as
dispinterfaces.

Generate deprecated
constructors

Generated proxies contain some constructors which are now deprecated. If you do wish
to generate these deprecated constructors select this option.

Don't rename methods
with same names

If a name conflict is detected in a COM class, com2java automatically renames one of
the methods. Selecting this option overrides this automatic renaming.

Ignore conflicting
interfaces

If a COM class implements multiple interfaces which define methods with the same
names, selecting this option prevents the corresponding generated Java classes from
implementing the additional interfaces. You can still access the interfaces using the
getAsXXX method that is generated. See the generated comments.

Generate Java Abstract
Window Toolkit (AWT)
classes

Generates Java Classes as GUI classes. To be used for embedding ActiveX controls in
Java Frames.

Option Description

com2java

5-4 Programming JCOM for Oracle WebLogic Server

http://msdn.microsoft.com/library/default.asp?URL=/library/offic
edev/off2000/xltocobjectmodelapplication.htm

5.1.2.1 Enumerations
An enumeration is a list; in Java it is represented by java.util.Enumeration. If a
type library contains an enumeration, WebLogic jCOM generates a Java interface
containing constant definitions for each element in the enumeration.

5.1.2.2 COM Interfaces
WebLogic jCOM handles two types of interfaces. It handles Dispatch interfaces, whose
methods can only be accessed using the COM IDispatch mechanism, and dual
interfaces, whose methods can be invoked directly (vtbl access).

For each COM interface defined in a type library, the com2java tool generates two
Java files: a Java interface, and a Java class.

The name of the generated Java interface is the same as the name of the COM
interface. For example if the COM interface is called IMyInterface, the com2java
tool generates a Java interface called IMyInterface in the file
IMyInterface.java.

The second file that com2java generates is a Java class, which contains code used to
access COM objects that implement the interface, and also code to allow COM objects
to invoke methods in Java classes that implement the interface. The name of the
generated Java class is the name of the interface with 'Proxy' appended to it. Using the
example from the previous paragraph, WebLogic jCOM would generate a Java class
called IMyInterfaceProxy in the file IMyInterfaceProxy.java.

For each method in the COM interface, WebLogic jCOM generates a corresponding
method in the Java interface. In addition it generates some constants in the interface
which, as the generated comments indicate, you can safely ignore.

Once again, WebLogic jCOM picks up comments from the type library describing the
interface and its methods, and uses them in the generated javadoc comments.

5.1.2.3 COM Classes
A COM class implements one or more COM interfaces, in the same way that a Java
class can implement one or more Java interfaces.

For each COM class in a type library, the com2java tool generates a corresponding
Java class, with the same name as the COM class. WebLogic jCOM also supports a
class implementing multiple interfaces.

The Java class which WebLogic jCOM generates can access the corresponding COM
class.

5.1.2.3.1 Special Case—Source Interfaces (Events) A COM class can specify that an
interface is a source interface. This means that it allows instances of COM classes that
implement the interface to subscribe to the events defined in the interface. It invokes
the methods defined in the interface on the objects that have subscribed.

Note: In order for the com2java tool to treat an interface in a type library as
an Event interface, there must be at least one COM class in the type library that
uses the interface as a source interface.

java2com

A Closer Look at the jCOM Tools 5-5

Although COM events work using connection points, and source interfaces, Java has a
different event mechanism. The com2java tool hides the COM mechanism from the
Java programmer, and presents the events using the standard Java techniques.

What this means in real terms is that com2java adds two methods to the Java class
that it generates for accessing the COM Class.

When the com2java tool detects that a class uses an interface as a source interface, it
generates special code for that interface. It derives the interface from the
java.util.EventListener Java interface, as is the convention for Java events.

Another Java event convention is that each of the methods in the interface should have
a single parameter, which is an instance of a class derived from
java.util.EventObject Java class.

One final Java event related convention is the use of an Adapter class, which
implements the event interface, and provides empty default implementations for the
methods in the interface. That way, developers that wish to create a class subscribed to
the event need not implement all of the methods in the interface, which can be
especially painful with large interfaces.

For each event interface, WebLogic jCOM generates an adapter class.

5.2 java2com
You can run java2com on any platform. Make sure that the WebLogic jCOM runtime
weblogic.jar is in your CLASSPATH environment variable.

The java2com tool analyzes Java classes (using the Java reflection mechanism), and
outputs:

■ A COM Interface Definition Language (IDL) file

■ Pure Java DCOM marshalling code (wrappers) used by the WebLogic jCOM
runtime to facilitate access to the Java objects from COM using vtable (late
binding) access.

After you generate these files, compile the IDL file using Microsoft's MIDL tool.

To generate the IDL file and the wrappers, first start the java2com tool using the
command:

java com.bea.java2com.Main

The java2com tool displays the following dialog box:

The dialog box has the following fields (any changes to the configuration are
automatically saved when you exit the dialog box).

java2com

5-6 Programming JCOM for Oracle WebLogic Server

Field Description

Java Classes and
Interfaces

These are the 'root' Java classes and interfaces for java2com to analyze. They must be
accessible in your CLASSPATH. WebLogic jCOM analyzes these classes, and generates
COM IDL definitions and Java DCOM marshalling code which can access the Java class
from COM. It then performs the same analysis on any classes or interfaces used in
parameters or fields in that class, recursively, until all Java classes and interfaces
accessible in this manner have been analyzed.

Separate the names with spaces. Click the ... button to display a dialog that lists the
classes and lets you add/remove from the list.

Name of Generated IDL
File

This is the name of the COM Interface Definition Language (IDL) file generated. If you
specify myjvm, then myjvm.idl is generated. This name is also used for the name of the
type library generated when you compile myjvm.idl using Microsoft's MIDL compiler.

Output Directory The directory to which java2com should output the files it generates. The default is the
current directory (".").

Dump Analysis Displays the classes that the java2com discovers, as it discovers them.

Save Settings/Load
Settings

Click the Save Settings button to save the current java2com settings. Do this before
you click Generate.

When java2com starts, it checks to see if there is a java2com.ser setting file in the
current directory. If present, it loads the settings from that file automatically.

Names Clicking the Names button displays the following dialog box:

When '*' is selected from the class/interfaces names drop-down list, a text box is
displayed into which you can type the name of a member (field or class) name. You
may specify a corresponding COM name to be used whenever that member name is
encountered in any class or interface being generated. If you leave the name blank then
that Java member will not have a corresponding member generated in any COM
interface.

When a specific COM class name or interface is selected from the class/interfaces
names drop-down list, the set of members in that class or interface is listed below it.
You may specify a COM name to be used, and by clicking on Add this Class Name map
you map the selected class/interface to the specified COM name. By clicking on Add this
Member Name map you may map the selected member to the specified COM name.

Generate button Click this button to generate the wrappers and IDL file.

For each public Java interface that java2com discovers, it creates a corresponding
COM interface definition. If the Java interface name were:
com.bea.finance.Bankable, then the generated COM interface would be named
ComBeaFinanceBankable, unless you specify a different name using the "Names"
dialog.

For each public Java class that java2com discovers, it creates a corresponding COM
interface definition. If the Java class name were: com.bea.finance.Account, then
the generated COM interface would be named IComBeaFinanceAccount, unless you
specify a different name using the "Names" dialog. In addition if the Java class has a
public default constructor, then java2com generates a COM class
ComBeaFinanceAccount, unless you specify a different name using the "Names"
dialog.

If a Java class generates Java events, then the generated COM class has source interfaces
(COM events) corresponding to the events supported by the Java class.

Compile the generated IDL file using Microsoft's MIDL tool. This ships with Visual
C++, and can be downloaded from the Microsoft Web site. The command

midl procdServ.idl

produces a type library called prodServ.tlb, which you must register, as described
in Section 5.5, "regtlb."

regjvm

A Closer Look at the jCOM Tools 5-7

5.3 regjvm
In order for WebLogic jCOM to allow languages supporting COM to access Java
objects as though they were COM objects, you must register (on the COM client
machine) a reference to the JVM in which the Java objects run. The regjvm tool
enables you to create and manage all the JVM references on a machine.

5.3.1 JVM Modes
You can access a JVM from COM clients in one of three different modes:

■ DCOM mode

■ Native mode (out of process)

■ Native mode in process

5.3.1.1 DCOM mode
DCOM mode does not require any native code on the Java server side, which means
your Java code may be located on a Unix machine or any machine with a Java Virtual
Machine installed. When you register the JVM on the Windows client machine you
define the name of the server host machine (it may be localhost for local components)
and a port number.

The Java code in the JVM must call com.bea.jcom.Jvm.register(<jvm id>),
where <jvm id> is the id of the JVM as defined in regjvm.

5.3.1.2 Native Mode Out of Process
Native mode currently only works on the local machine. Other than the JVM name no
additional parameters are necessary.

Note: The regjvm tool does not overwrite old entries when new entries with
identical names are entered. This means that if you ever need to change the
hostname or port of the machine with which you wish to communicate,
unregister the old entry and then reregister the entry. You can do this using the
command line tool regjvmcmd.exe, or by using the GUI tool regjvm.exe
(both can be found in the WL_HOME\server\bin directory).

regjvm

5-8 Programming JCOM for Oracle WebLogic Server

The JVM must call com.bea.jcom.Jvm.register(<jvm id>), where <jvm id> is
the id of the JVM as defined in regjvm.

5.3.1.3 Native Mode in Process
Using native mode in process allows the user to actually load the Java object into the
same process as the COM client. Both objects must of course be located on the same
machine.

The JVM need not call com.bea.jcom.Jvm.register() or be started as an extra process to
the client.

5.3.2 The User Interface of the regjvm GUI Tool
Run the regjvm tool to display the following dialog box.

regjvm

A Closer Look at the jCOM Tools 5-9

■ The top part is for selection and management of all JVMs on the current machine.
You can change, add or delete JVMs. Before switching to a different JVM, you
must save changes made to the currently selected JVM. The JVM mode you select
dictates the information required in the lower half of the screen.

■ The lower half of the windows contains the details required for each JVM,
according to the mode of the JVM. In addition to the JVM details there is an
advanced check box which when selected displays advanced options for each JVM
mode.

These options are discussed in the following sections.

5.3.2.1 DCOM Mode Options for the regjvm GUI Tool

Standard Options

■ JVM id (required)—The JVM must be specified. Clicking the browse button allows
you to select your own JVM, clicking the Scan button scans your local machine for
JVMs (this may take a few minutes) and inserts them in the listbox for your
selection.

■ Hostname—The hostname or IP address where the JVM is located.

■ Port—The port number used to initiate contact with the JVM.

regjvm

5-10 Programming JCOM for Oracle WebLogic Server

Advanced Options

■ Launch command (required)—The command to be used if the JVM is to be
automatically launched. Typically this would be something like:

c:\Oracle\Middleware\jdk160\bin\java -classpath c:\Oracle\Middleware\wlserver_
10.3\server\lib\weblogic.jar;c:\pure MyMainClass

The important thing is that weblogic.jar and the appropriate jdk files be in
your CLASSPATH.

■ Generate Script (optional) —Allows the user to generate a registry script selecting
the settings of the JVM.

5.3.2.2 Native Mode Options for the regjvm GUI Tool

Standard Options

■ JVM id (required)—The JVM must be specified. Clicking the browse button allows
you to select your own JVM, clicking the Scan button scans your local machine for
JVMs (this may take a few minutes) and inserts them in the listbox for your
selection.

regjvm

A Closer Look at the jCOM Tools 5-11

Advanced Options

The advanced options are identical to those of DCOM mode. See Section 5.3.2.1,
"DCOM Mode Options for the regjvm GUI Tool."

5.3.2.3 Native Mode in Process Options for the regjvm GUI Tool

Standard Options

■ JVM id (required)—The JVM must be specified. Clicking the browse button allows
you to select your own JVM, clicking the Scan button scans your local machine for
JVMs (this may take a few minutes) and inserts them in the listbox for your
selection.

regjvmcmd

5-12 Programming JCOM for Oracle WebLogic Server

Advanced Options

■ Classpath (optional) - The CLASSPATH for the JVM. If this is left blank the
CLASSPATH environment variable at runtime is used. Otherwise the contents are
added to the CLASSPATH environment variable.

■ Main class (optional)—The name of the class containing a Main method which you
wish to be called.

■ Properties (optional)—Any properties which you require to be set. Must have the
following syntax: prop1=value1 prop2=value2...

■ Java 2 (optional)—When setting properties this must be set when using Java 2
(JDK 1.2.x, 1.3.x) and cleared when using 1.1.x.

■ Generate Script (optional)—Identical to that of DCOM mode. See Section 5.3.2.1,
"DCOM Mode Options for the regjvm GUI Tool."

5.4 regjvmcmd
regjvmcmd is the command line version of the GUI tool, regjvm, discussed in
Section 5.3, "regjvm." To get a summary of its parameters, run it without parameters:

 regjvmcmd

In regjvmcmd's simplest form, you specify the following:

■ A jvm ID (corresponding to the name used in
com.bea.jcom.Jvm.register("JvmId")),

■ The binding can access the JVM, in the form hostname[port], where hostname is the
name of the machine running the JVM, and port is the TCP/IP port specified when
starting WebLogic Server.

If you no longer need to have the JVM registered, or if you wish to change its
registration, you must first un-register it with this command:

 regjvmcmd /unregister JvmId

regtlb

A Closer Look at the jCOM Tools 5-13

5.5 regtlb
WebLogic jCOM's regtlb tool registers a type library on a COM Windows client that
needs to access Java objects using COM's early binding mechanism. regtlb takes two
parameters. The first is the name of the type library file to be registered. The second is
the ID of the JVM in which the COM classes described in the type library are to be
found.

If the type library was generated from an IDL file that was in turn generated by the
WebLogic jCOM java2com tool, then the regtlb command can automatically
determine the Java class name corresponding to each COM class in the type library
(the COM class descriptions in the type library are of the form:

 Java class java.util.Observable (through jCOM))

If the type library was not generated from a java2com generated IDL file, you are
prompted to give the name of the Java class which is to be instantiated for each COM
class:

This means that when someone attempts to create an instance of Atldll.Apple,
WebLogic jCOM instantiates the class in the JVM MyJvm. The MyAppleClass class
should implement the Java interfaces generated by WebLogic jCOM's java2com tool
from atldll.tlb that are implemented by the COM class Atldll.Apple.

regtlb

5-14 Programming JCOM for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features

	2 Understanding WebLogic jCOM
	2.1 What Is WebLogic jCOM?
	2.1.1 An Important Note on Terminology
	2.1.2 jCOM Architecture

	2.2 Why Use WebLogic jCOM?
	2.3 WebLogic jCOM Features
	2.4 Planning Your WebLogic jCOM Application
	2.4.1 Zero-Client Deployment
	2.4.1.1 Advantages and Disadvantages of Zero-Client Deployment

	2.4.2 Early Versus Late Binding
	2.4.2.1 Advantages and Disadvantages of Each Binding Model

	2.4.3 DCOM Versus Native Mode
	2.4.3.1 Advantages and Disadvantages of Native Mode

	2.5 jCOM Features and Changes in this Release

	3 Calling into WebLogic Server from a COM Client Application
	3.1 Special Requirement for Native Mode
	3.2 Calling WebLogic Server from a COM Client: Main Steps
	3.3 Preparing WebLogic Server
	3.3.1 Generate Java Wrappers and the IDL File-Early Binding Only
	3.3.2 Configuring Access Control
	3.3.2.1 Granting Access to java.util.Collection and java.util.Iterator
	3.3.2.2 Granting Access to ejb20.basic.beanManaged

	3.4 Preparing the COM Client
	3.4.1 Install Necessary Files
	3.4.1.1 jCOM Tools Files
	3.4.1.2 WebLogic Server Class Files-Native Mode Only

	3.4.2 Obtain an Object Reference Moniker from the WebLogic Server Servlet-Zero Client Only
	3.4.3 Generate Java Wrappers and the IDL File-Early Binding Only
	3.4.3.1 Some Notes about Wrapper Files

	3.4.4 Register the WebLogic Server JVM in the Client Machine Registry
	3.4.4.1 Unregistering JVMs
	3.4.4.2 Select Native Mode, If Applicable

	3.4.5 Code the COM Client Application
	3.4.5.1 Late Bound Applications
	3.4.5.1.1 Known Problem and Workaround for Late Bound Clients

	3.4.5.2 Early Bound Applications

	3.4.6 Start the COM Client

	3.5 Running COM-to-WLS Applications in Native Mode
	3.5.1 Native Mode with the JVM Running Out-of-Process
	3.5.2 Native Mode with the JVM Running In-Process

	4 Calling into a COM Application from WebLogic Server
	4.1 Special Requirements for Native Mode
	4.2 Calling a COM Application from WebLogic Server: Main Steps
	4.3 Preparing the COM Application
	4.3.1 Code the COM Application
	4.3.2 Generate Java Classes with the com2java GUI Tool
	4.3.3 Package the Java Classes for WebLogic Server
	4.3.4 Start the COM Application

	4.4 Using Java Classes Generated by com2java
	4.5 Using Java Interfaces Generated from COM interfaces by com2java

	5 A Closer Look at the jCOM Tools
	5.1 com2java
	5.1.1 Using com2java
	5.1.1.1 Selecting the Type Library
	5.1.1.2 Specifying the Java Package Name
	5.1.1.3 Options
	5.1.1.4 Generate the Proxies

	5.1.2 Files Generated by com2java
	5.1.2.1 Enumerations
	5.1.2.2 COM Interfaces
	5.1.2.3 COM Classes
	5.1.2.3.1 Special Case-Source Interfaces (Events)

	5.2 java2com
	5.3 regjvm
	5.3.1 JVM Modes
	5.3.1.1 DCOM mode
	5.3.1.2 Native Mode Out of Process
	5.3.1.3 Native Mode in Process

	5.3.2 The User Interface of the regjvm GUI Tool
	5.3.2.1 DCOM Mode Options for the regjvm GUI Tool
	5.3.2.2 Native Mode Options for the regjvm GUI Tool
	5.3.2.3 Native Mode in Process Options for the regjvm GUI Tool

	5.4 regjvmcmd
	5.5 regtlb

