

Oracle® Fusion Middleware
Using the WebLogic JMS Client for Microsoft .NET for Oracle
WebLogic Server

11g Release 1 (10.3.4)

E13746-03

November 2010

This document is written for application developers who
want to develop JMS .NET client applications that access
WebLogic JMS resources.

Oracle Fusion Middleware Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server
11g Release 1 (10.3.4)

E13746-03

Copyright © 2007, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... v

Documentation Accessibility ... v
Conventions ... v

1 Overview of the WebLogic JMS .NET Client

1.1 What is the WebLogic JMS .NET Client?... 1-1
1.1.1 Supported JMS Features ... 1-1
1.1.1.1 Messaging Models.. 1-2
1.1.1.2 Message Types .. 1-2
1.2 How the WebLogic JMS .NET Client Works .. 1-2
1.3 Configuring WebLogic Server .. 1-4
1.3.1 Configuring the Listen Port.. 1-4
1.3.2 Configuring JMS Resources for the JMS .NET Client... 1-4
1.4 Interoperating with Previous WebLogic Server Releases... 1-4
1.5 Understanding the WebLogic JMS .NET API... 1-5

2 Installing and Copying the WebLogic JMS .NET Client Libraries

2.1 Installing the WebLogic JMS .NET Client ... 2-1
2.1.1 Location of Installed Components .. 2-1
2.2 Copying the Library to the Client Machine .. 2-2

3 Developing a Basic JMS Application Using the WebLogic JMS .NET API

3.1 Creating a JMS .NET Client Application .. 3-1
3.2 Example: Writing a Basic PTP JMS .NET Client Application... 3-2
3.2.1 Prerequisites ... 3-2
3.2.2 Basic Steps... 3-3
3.2.2.1 Step 1 .. 3-3
3.2.2.2 Step 2 .. 3-4
3.2.2.3 Step 3 .. 3-4
3.2.2.4 Step 4 ... 3-4
3.2.2.5 Step 5 .. 3-4
3.2.2.6 Step 6 .. 3-4
3.2.2.7 Step 7 .. 3-4
3.2.2.8 Step 8 .. 3-5
3.2.2.9 Step 9 .. 3-5

iv

3.2.2.10 Step 10 .. 3-5
3.3 Using Advanced Concepts in JMS .NET Client Applications.. 3-5

4 Programming Considerations

4.1 Using WebLogic JMS Extensions.. 4-1
4.1.1 Message Compression... 4-4
4.1.2 Unit-of-Order.. 4-4
4.1.3 Message Delivery Time... 4-4
4.1.4 One-Way Message Sends.. 4-5
4.1.5 Include user-id as JMSXUserId.. 4-5
4.1.6 Message Delivery Attempts ... 4-5
4.2 Limitations of Using the WebLogic JMS .NET Client ... 4-5
4.2.1 Unsupported JMS 1.1 Standard Features ... 4-5
4.2.2 Unsupported JMS 1.1 Optional Features.. 4-5
4.2.3 Unsupported WebLogic JMS Extensions ... 4-6
4.2.4 Transactions.. 4-6
4.3 Exchanging Messages Between Different Language Environments 4-6
4.4 Specifying the URL Format ... 4-7
4.4.1 Using DNS Alias Host Names ... 4-7
4.5 Implementing Security With the JMS .NET Client .. 4-8
4.6 Configuring Logging and Debugging ... 4-9
4.6.1 Server Side ... 4-9
4.6.2 Client Side ... 4-9
4.6.2.1 Message Output... 4-10
4.6.2.2 Log Categories and Levels ... 4-10
4.7 Understanding Socket and Threading Behavior ... 4-10
4.8 Data Conversion Between Java and .NET.. 4-11
4.8.1 Endian Conversions ... 4-11
4.8.2 Signed and Unsigned Byte Conversions ... 4-12
4.8.3 Byte Array Transfers .. 4-13
4.8.4 Time Conversions ... 4-13
4.9 Best Practices .. 4-14

A JMS .NET Client Sample Application

v

Preface

This preface describes the document accessibility features and conventions used in this
guide—Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

vi

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Overview of the WebLogic JMS .NET Client 1-1

1Overview of the WebLogic JMS .NET Client

These sections provide an overview of the WebLogic JMS .NET client, illustrate how a
JMS .NET client application accesses WebLogic JMS resources, and provide a brief
summary of the WebLogic JMS .NET API.

It is assumed that the reader is familiar with .NET programming and JMS 1.1 concepts
and features.

■ Section 1.1, "What is the WebLogic JMS .NET Client?"

■ Section 1.2, "How the WebLogic JMS .NET Client Works"

■ Section 1.3, "Configuring WebLogic Server"

■ Section 1.4, "Interoperating with Previous WebLogic Server Releases"

■ Section 1.5, "Understanding the WebLogic JMS .NET API"

1.1 What is the WebLogic JMS .NET Client?
The WebLogic JMS .NET client is a fully-managed .NET runtime library and
application programming interface (API). It enables programmers to create .NET C#
client applications that can access WebLogic Java Message Service (JMS) applications
and resources.

WebLogic JMS is an enterprise-level messaging system that fully supports the JMS 1.1
Specification (see http://java.sun.com/products/jms/docs.html) and also
provides numerous "WebLogic JMS Extensions" to the standard JMS APIs. For a
summary of the WebLogic Server value-added JMS features, see "WebLogic Server
Value-Added JMS Features" in Configuring and Managing JMS for Oracle WebLogic
Server.

For complete details about all the classes and interfaces in the JMS .NET API, see the
Microsoft .NET Messaging API for Oracle WebLogic Server documentation.

The WebLogic JMS .NET client, which is bundled with WebLogic Server 10g Release 3
and higher, is supported on Microsoft .NET Framework versions 2.0 through 3.5.
Installation details are provided in Chapter 2, "Installing and Copying the WebLogic
JMS .NET Client Libraries."

1.1.1 Supported JMS Features
For this release, the WebLogic JMS .NET client supports the major standard features of
the JMS Version 1.1 Specification (see
http://java.sun.com/products/jms/docs.html). For a list of the JMS 1.1
standard features that are not supported, see Section 4.2, "Limitations of Using the
WebLogic JMS .NET Client."

How the WebLogic JMS .NET Client Works

1-2 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

In addition to the standard JMS 1.1 Specification support, the WebLogic JMS .NET
client also supports several WebLogic JMS extensions. For more information about the
features supported and how they can be used with the JMS .NET client, see Section 4.1,
"Using WebLogic JMS Extensions."

1.1.1.1 Messaging Models
The WebLogic JMS .NET client supports the following messaging models:

■ The point-to-point (PTP) messaging model, which enables one application to send
a message to exactly one recipient.

■ The publish/subscribe (pub/sub) messaging model, which enables an application
to send a message to multiple recipients.

Messages can be specified as persistent or non-persistent:

■ Persistent messages are guaranteed to be delivered once-and-only-once. The
message will not be lost due to JMS server failure and it will not be redelivered
once it is acknowledged by an application. It is not considered sent until it has
been safely written to a file or database.

■ Non-persistent messages are not stored. They are guaranteed to be delivered
at-most-once. Messages may be lost when there is a JMS provider failure and will
not be redelivered.

For more information, see "Understanding the Messaging Models" in Programming
JMS for Oracle WebLogic Server.

1.1.1.2 Message Types
The WebLogic JMS .NET client supports the following message types, as defined in
the JMS 1.1 Specification (see
http://java.sun.com/products/jms/docs.html):

■ Message

■ BytesMessage

■ MapMessage

■ ObjectMessage (between producers and consumers written in the same language
only)

■ StreamMessage

■ TextMessage

The XMLMessage type extension provided by WebLogic JMS is not supported in this
release. Such messages are automatically converted to a TextMessage type when
received by a .NET client.

For more information about using the supported message types, see Section 4.3,
"Exchanging Messages Between Different Language Environments."

1.2 How the WebLogic JMS .NET Client Works
The following figure illustrates how a JMS .NET client application running in a .NET
Framework CLR can access JMS resources deployed on WebLogic Server.

How the WebLogic JMS .NET Client Works

Overview of the WebLogic JMS .NET Client 1-3

Figure 1–1 JMS .NET Client Architecture

The major components depicted in the illustration consist of the following:

■ A JMS .NET client written in C#, running in a .NET Framework CLR, that either
produces messages to destinations or consumes messages from destinations.

■ A JMS .NET client host running on WebLogic Server 10g Release 3 or later that
provides the interface between the JMS .NET client and WebLogic JMS.

■ A standard T3 protocol listen port configured on the .NET client host.

■ One or more connection hosts (i.e., connection factories).

■ One or more JMS servers that define a set of JMS destinations.

Traffic to the JMS servers is always routed from the .NET client through the JMS .NET
client host to the connection host to the JMS servers. Traffic to the JMS .NET client is
always routed from the JMS servers to the connection host and through the JMS .NET
client host to the .NET client.

A brief summary of the process used to exchange messages between the JMS .NET
client and a JMS server, as illustrated in Figure 1–1, is summarized in the following
steps:

1. The JMS .NET client establishes an initial T3 network connection with the JMS
.NET client host running on WebLogic Server 10g Release 3 or later.

2. The JMS .NET client obtains a connection factory from the JMS .NET client host.

3. The JMS .NET client host, in turn, obtains the connection factory from JNDI.

4. The JMS .NET client creates a connection using the connection factory, which will
establish a connection from the JMS .NET client host to one of the connection hosts
where the connection factory resides.

5. When the JMS .NET client sends (produces) a message, the JMS .NET client host
sends it to the connection host, which in turn routes it to the JMS server hosting
the destination. Alternatively, when the JMS .NET client receives (consumes) a

Note: All of the WebLogic components shown in Figure 1–1 are hosted on a
single instance of WebLogic Server 10g Release 3 or later. In a multi-server or
cluster configuration, each of the WebLogic Server components can run on a
separate instance of WebLogic Server. However, the JMS .NET client host must
run on WebLogic Server 10g Release 3 or later, and the connection host and the
JMS server must run in the same WebLogic Server 9.x or later cluster.

Configuring WebLogic Server

1-4 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

message, the connection host routes it from the JMS server hosting the destination
to the JMS .NET client host, which passes the message to the JMS .NET client.

Instructions and examples for creating a JMS .NET client application are provided in
Chapter 3, "Developing a Basic JMS Application Using the WebLogic JMS .NET API."

1.3 Configuring WebLogic Server
The following sections describe the configuration that must occur before a JMS .NET
client application can access JMS resources.

1.3.1 Configuring the Listen Port
The JMS .NET client requires that a listen port configured for T3 protocol is enabled on
the WebLogic Server instance hosting the JMS .NET client host. When you install
WebLogic Server, a default port is configured for use with T3 protocol. Because the
default port configuration can be changed or disabled, the system administrator needs
to ensure that the T3 protocol is enabled on the server's default port, or add a network
channel that supports the T3 protocol. For configuration information, see the following
topics:

■ "Configure default network connections" in the Oracle WebLogic Server
Administration Console Help

■ Understanding Network Channels in Configuring Server Environments for Oracle
WebLogic Server

1.3.2 Configuring JMS Resources for the JMS .NET Client
Before a JMS .NET client application can access JMS resources deployed on WebLogic
Server, the WebLogic Server system administrator must configure the required JMS
resources, including the connection factories, JMS servers, and destinations. For
instructions for configuring JMS resources, see:

■ Configuring and Managing JMS for Oracle WebLogic Server

■ "Configure Messaging" in the Oracle WebLogic Server Administration Console Help

1.4 Interoperating with Previous WebLogic Server Releases
The JMS .NET client can communicate directly only with WebLogic Server 10g Release
3 and later. As shown in Figure 1–2, the JMS .NET client host must run on WebLogic
Server 10g Release 3 or later, however, the connection host and the JMS server can run
on WebLogic Server 9.x or later. Both the connection host and the JMS server must be
in the same cluster.

Understanding the WebLogic JMS .NET API

Overview of the WebLogic JMS .NET Client 1-5

Figure 1–2 JMS .NET Client Interoperability

To access destinations on WebLogic Server 9.x or later that are not in the same cluster
as the .NET client host running on 10g Release 3 or later, you must configure the
remote instance of WebLogic Server as a Foreign Server. For more information, see
Configuring Foreign Server Resources to Access Third-Party JMS Providers in
Configuring and Managing JMS for Oracle WebLogic Server.

1.5 Understanding the WebLogic JMS .NET API
The following table lists the primary JMS .NET API classes and interfaces used to
create a JMS .NET client application. For complete details about all the classes and
interfaces in the JMS .NET API, see the documentation.

Note: Although you can also use Foreign Servers to connect to third-party
JMS providers using JMS Java clients, this feature is not supported in the
WebLogic JMS .NET client.

Table 1–1 WebLogic JMS .NET Classes and Interfaces

Interface/Class Description

Constants The Constants family of classes is used to define commonly used
constants/enumerations for the API.

ContextFactory A ContextFactory is used to create contexts, which are network connections from
the .NET client to the client host.

IContext An IContext object represents a network connection from the .NET client to the client
host. It is used to lookup destinations and connection factories, and to close the
network connection when it is no longer needed.

IConnectionFactory An IConnectionFactory object encapsulates JMS connection configuration
information. A JMS .NET client looks up a connection factory using an IContext
object, and then uses it to create an IConnection with a JMS server.

IConnection An IConnection object is the active connection between the JMS .NET client host and
the JMS connection host. Authentication optionally takes place during the creation of
the connection. A connection is used to create sessions.

ISession An ISession object is a single-threaded entity for producing and consuming
messages. A session can create and service multiple message producers and
consumers.

IDestination An IDestination object identifies a queue or topic. Queue and topic destinations
manage the messages delivered from the point-to-point and pub/sub messaging
models, respectively.

Understanding the WebLogic JMS .NET API

1-6 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

ITopic An ITopic object is pub/sub IDestination that encapsulates a provider-specific
topic name. It is the way a client specifies the identity of a topic to JMS API methods.
For those methods that use an IDestination as a parameter, an ITopic object may
be used as an argument. For example, an ITopic can be used to create an
IMessageConsumer and an IMessageProducer by calling:

ISession.CreateConsumer(IDestination destination)
ISession.CreateProducer(IDestination destination)

IQueue An IQueue object is a point-to-point IDestination that encapsulates a
provider-specific queue name. It is the way a client specifies the identity of a queue to
JMS API methods.

Since IQueue and ITopic both inherit from IDestination, for those methods that
use an IDestination as a parameter, an IQueue object can be used as the argument.
For example, an IQueue can be used to create an IMessageConsumer and an
IMessageProducer by calling:

ISession.CreateConsumer(IQueue queue)
ISession.CreateProducer(IQueue queue)

IMessageConsumer A JMS .NET client uses an IMessageConsumer object to receive messages from a
destination. An IMessageConsumer object is created by passing an IDestination
object to a message-consumer creation method supplied by a session.

IMessageProducer A JMS .NET client uses an IMessageProducer object to send messages to a
destination. An IMessageProducer object is created by passing an IDestination
object to a message-producer creation method supplied by a session.

IMessage The IMessage interface is the root interface of all JMS messages. It defines the
message header and the Acknowledge method used for all messages.

JMS messages are composed of the following parts:

Header - All messages support the same set of header fields. Header fields contain
values used by both clients and providers to identify and route messages.

Properties - Each message contains a built-in facility for supporting
application-defined property values. Properties provide an efficient mechanism for
supporting application-defined message filtering.

Body - The JMS API defines several types of message body, which cover the majority of
messaging styles currently in use.

IMapMessage An IMapMessage object is used to send a set of name-value pairs. The names are
String objects, and the values are primitive data types in the Java and C# programming
languages. The names must have a value that is not null, and not an empty string. The
entries can be accessed sequentially or randomly by name. The order of the entries is
undefined. IMapMessage inherits from the IMessage interface and adds a message
body that contains a map.

IObjectMessage An IObjectMessage object is used to send a message that contains a serializable
object in the Java and C# programming languages. It inherits from the IMessage
interface and adds a body containing a single reference to an object. C# objects cannot
be read by Java programs, and vice versa. For more information, see Section 4.3,
"Exchanging Messages Between Different Language Environments."

Table 1–1 (Cont.) WebLogic JMS .NET Classes and Interfaces

Interface/Class Description

Understanding the WebLogic JMS .NET API

Overview of the WebLogic JMS .NET Client 1-7

IStreamMessage An IStreamMessage object is used to send a stream of primitive types in the Java
programming language. It is filled and read sequentially. It inherits from the
IMessage interface and adds a stream message body. Its methods are based largely on
those found in java.io.DataInputStream and java.io.DataOutputStream.

ITextMessage An ITextMessage object is used to send a message containing a String. It inherits
from the IMessage interface and adds a text message body.

IBytesMessage An IBytesMessage object is used to send a message containing a stream of
uninterpreted bytes. It inherits from the IMessage interface and adds a bytes message
body. The receiver of the message supplies the interpretation of the bytes.

Table 1–1 (Cont.) WebLogic JMS .NET Classes and Interfaces

Interface/Class Description

Understanding the WebLogic JMS .NET API

1-8 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

2

Installing and Copying the WebLogic JMS .NET Client Libraries 2-1

2Installing and Copying the WebLogic JMS
.NET Client Libraries

These sections describe the JMS .NET client components installed on a WebLogic
Server platform, the location to which they are installed, and how to copy them to a
.NET Framework machine.

■ Section 2.1, "Installing the WebLogic JMS .NET Client"

■ Section 2.2, "Copying the Library to the Client Machine"

2.1 Installing the WebLogic JMS .NET Client
The WebLogic JMS .NET Client is bundled with WebLogic Server 10g Release 3 and
later. When you perform a Complete installation of WebLogic Server on a supported
platform, including non-Windows platforms, the WebLogic JMS .NET Client is
installed by default. If you choose the Custom installation option, ensure that the
WebLogic Server Clients component of WebLogic Server is selected. If you deselect
this component, the WebLogic JMS .NET Client is not installed.

For a list of supported platforms for WebLogic Server, see Supported Configurations.

For details about installing WebLogic Server, see the Installation Guide.

2.1.1 Location of Installed Components
The WebLogic JMS .NET client is installed in the following directory on the WebLogic
Server platform:

MW_HOME/modules/com.bea.weblogic.jms.dotnetclient_x.x.x.x

where MW_HOME is the top-level installation directory that you selected during the
installation process and x.x.x.x is the version number of the client. If there is more
than one .NET client module directory, its recommended to use the latest version in
order to obtain the most recent updates.

The JMS .NET client installation consists of the following components:

■ WebLogic.Messaging.dll—The fully-managed JMS .NET client library used
by the client for the JMS client application.

■ WebLogic.Messaging.pdb—The debug version of the JMS .NET client library
that can be used by the client, together with the WebLogic.Messaging.dll, to
debug the JMS .NET client application.

■ jms.dotnet.api.zip—HTML and Windows help-style documentation for the
WebLogic JMS .NET API

Copying the Library to the Client Machine

2-2 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

2.2 Copying the Library to the Client Machine
After installing WebLogic Server on a supported platform, you need to copy the
WebLogic.Messaging.dll library from the installation directory specified in
Section 2.1.1, "Location of Installed Components" to your development directory on a
supported .NET client machine, and you need to ensure that your .NET application
references the library. The JMS .NET client is a fully-managed runtime library that is
supported on the following Windows platforms running version 2.0 through 3.5 of the
.NET Framework:

■ Windows 2003

■ Windows XP

■ Windows Vista

If you are using Visual Studio, you can add the WebLogic.Messaging.dll as a
reference assembly in your project as follows:

1. Select Project > References

2. Select Add Reference and specify the WebLogic.Messaging.dll from the
directory into which you copied it on the .NET machine

Optionally, you can also copy the debug version of the JMS .NET client library,
WebLogic.Messaging.pdb, and the API documentation to your client machine, but
it is not required.

Note: The WebLogic JMS .NET client API documentation is also available at
Microsoft .NET Messaging API for Oracle WebLogic Server.

3

Developing a Basic JMS Application Using the WebLogic JMS .NET API 3-1

3Developing a Basic JMS Application Using
the WebLogic JMS .NET API

The process for developing a JMS application using the WebLogic JMS .NET client is
very similar to the process used to develop a Java client. These sections provide
information on the steps required to develop a basic JMS application in C# using the
JMS .NET API.

■ Section 3.1, "Creating a JMS .NET Client Application"

■ Section 3.2, "Example: Writing a Basic PTP JMS .NET Client Application"

■ Section 3.3, "Using Advanced Concepts in JMS .NET Client Applications"

3.1 Creating a JMS .NET Client Application
The following flowchart illustrates the steps in a basic JMS .NET application.

Example: Writing a Basic PTP JMS .NET Client Application

3-2 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

Figure 3–1 Basic Steps in a JMS .NET Client Application

3.2 Example: Writing a Basic PTP JMS .NET Client Application
The following example shows how to create a basic PTP JMS .NET client application,
written in C#. It uses synchronous receive on a queue configured using auto
acknowledge mode. A complete copy of the example is provided in Appendix A, "JMS
.NET Client Sample Application."

For more information about the .NET API classes and methods used in this example,
see Section 1.5, "Understanding the WebLogic JMS .NET API," or the WebLogic
Messaging API Reference for .NET Clients documentation.

3.2.1 Prerequisites
Before proceeding, ensure that the system administrator responsible for configuring
WebLogic Server has configured the following:

Note: Creating and closing resources has relatively higher overhead in
comparison to sending and receiving messages. Oracle recommends that
contexts be shared between threads, and that other resources be cached for
reuse. For more information, see Section 4.9, "Best Practices."

Example: Writing a Basic PTP JMS .NET Client Application

Developing a Basic JMS Application Using the WebLogic JMS .NET API 3-3

■ Listen port configured for T3 protocol on the server hosting the JMS .NET client
host. For more information, see Section 1.3.1, "Configuring the Listen Port."

■ The required JMS resources, including the connection factories, JMS servers, and
destinations. For more information, see Section 1.3.2, "Configuring JMS Resources
for the JMS .NET Client."

3.2.2 Basic Steps
The following steps assume you have defined the required variables, including the
WebLogic Server host, the connection factory, and the queue and topic names at the
beginning of your program.

using System;
using System.Collections;
using System.Collections.Generic;
using System.Threading;

using WebLogic.Messaging;

public class MessagingSample
{
 private string host = "localhost";
 private int port = 7001;
 private string cfName = "weblogic.jms.ConnectionFactory";
 private string queueName = "jms.queue.TestQueue1";

3.2.2.1 Step 1
Create a context to establish a network connection to the WebLogic Server host and
optionally login.

IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

paramMap[Constants.Context.PROVIDER_URL] =
 "t3://" + this.host + ":" + this.port;

IContext context = ContextFactory.CreateContext(paramMap);

Note: The Provider_URL may contain multiple addresses, separated by
commas. For details about specifying multiple addresses, see Section 4.4,
"Specifying the URL Format."

When multiple addresses are specified, the context tries each address in turn
until one succeeds or they all fail, starting at a random location within the list of
addresses, and rotating through all addresses. Starting at a random location
facilitates load balancing of multiple clients, as different client contexts will
randomly load balance their network connection to different .NET client host
servers.

Example: Writing a Basic PTP JMS .NET Client Application

3-4 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

3.2.2.2 Step 2
Look up the JMS connection factory.

IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

3.2.2.3 Step 3
Look up JMS destination resources in the context using their configured JNDI names.

IQueue queue = (IQueue)context.LookupDestination(this.queueName);

3.2.2.4 Step 4
Create a connection using the connection factory. This establishes a JMS connection
from the .NET client host to the JMS connection host. The connection host will be one
of the servers that is in the configured target list for the connection factory, and which
can be the same as the .NET client host.

IConnection connection = cf.CreateConnection();

3.2.2.5 Step 5
Start the connection to allow consumers to get messages.

connection.Start();

3.2.2.6 Step 6
Create a session using the AUTO_ACKNOWLEDGE acknowledge mode.

ISession session = connection.CreateSession(
Constants.SessionMode.AUTO_ACKNOWLEDGE);

3.2.2.7 Step 7
Create a message producer and send a persistent message.

IMessageProducer producer = session.CreateProducer(queue);

producer.DeliveryMode = Constants.DeliveryMode.PERSISTENT;

ITextMessage sendMessage = session.CreateTextMessage("My q message");

Note: You also have the option of supplying a username and password with
the initial context, as follows:

paramMap[Constants.Context.SECURITY_PRINCIPAL] = username;
paramMap[Constants.Context.SECURITY_CREDENTIALS] = password;

Note: Sessions are not thread safe. Use multiple sessions if you need to run
producers and/or consumers concurrently. For an example using multiple
sessions, see the asynchronous example in Appendix A, "JMS .NET Client
Sample Application."

Using Advanced Concepts in JMS .NET Client Applications

Developing a Basic JMS Application Using the WebLogic JMS .NET API 3-5

producer.Send(sendMessage);

3.2.2.8 Step 8
Create a message consumer and receive a message. Note that the message is
automatically deleted from the server because the session was created in AUTO_
ACKNOWLEDGE mode, as shown in Step 6.

IMessageConsumer consumer = session.CreateConsumer(queue);

IMessage recvMessage = consumer.Receive(500);

3.2.2.9 Step 9
Close the connection. Note that closing a connection also closes its child sessions,
consumers, and producers.

connection.Close();

3.2.2.10 Step 10
Close the context.

context.CloseAll();

3.3 Using Advanced Concepts in JMS .NET Client Applications
Appendix A, "JMS .NET Client Sample Application," provides a complete example of a
JMS .NET client application, written in C#, that demonstrates some of the following
advanced concepts:

■ The use of local transactions instead of acknowledge modes.

■ Message persistence. For more information, see Persistent vs. Non-Persistent
Messages in Programming JMS for Oracle WebLogic Server.

■ Acknowledge modes. For more information, see Non-Transacted Session in
Programming JMS for Oracle WebLogic Server.

■ Exception listeners. For more information, see Section 4.9, "Best Practices."

■ Durable Subscriptions. For more information, see Setting Up Durable
Subscriptions in Programming JMS for Oracle WebLogic Server.

For guidelines in the use of other advanced concepts in the JMS .NET client such as
interoperability, security, and best practices, see Chapter 4, "Programming
Considerations."

Note: context.Close() does not terminate the network connection until
all the IConnections have been closed. context.CloseAll() closes the
network connection and all open IConnections.

Using Advanced Concepts in JMS .NET Client Applications

3-6 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

4

Programming Considerations 4-1

4Programming Considerations

These sections provide programming considerations and best practices to use when
creating a JMS .NET client application:

■ Section 4.1, "Using WebLogic JMS Extensions"

■ Section 4.2, "Limitations of Using the WebLogic JMS .NET Client"

■ Section 4.3, "Exchanging Messages Between Different Language Environments"

■ Section 4.4, "Specifying the URL Format"

■ Section 4.5, "Implementing Security With the JMS .NET Client"

■ Section 4.6, "Configuring Logging and Debugging"

■ Section 4.7, "Understanding Socket and Threading Behavior"

■ Section 4.8, "Data Conversion Between Java and .NET"

■ Section 4.9, "Best Practices"

4.1 Using WebLogic JMS Extensions
Table 4–1 lists the WebLogic JMS extensions that are supported in this release of the
JMS .NET client. There are several ways that messaging can be configured:

■ On the connection factory—This method often defines default configuration
settings.

■ Programmatically in the application using the API—Certain programming
constructs may override the connection factory configuration.

■ On the server—Certain settings may override both the connection factory and
programmatic constructs.

In some cases, there are differences in the way that an extension is configured, or in
the behavior, between a JMS .NET client and a Java client. For example, some
extensions cannot be enabled programmatically using the JMS .NET API, and can only
be enabled via configuration. The following table summarizes the differences.
Additional details, if required, are provided in the subsequent sections.

Using WebLogic JMS Extensions

4-2 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

Table 4–1 WebLogic JMS Extensions Supported in the JMS .NET Client

Feature

Configurable
on
Connection
Factory

Configurable
on the
Server

Java
API

JMS
.NET

API Comments

Distributed Destinations (Uniform and
Weighted)

For more information, see:

■ Using Distributed Destinations in
Programming JMS for Oracle WebLogic
Server

■ Configuring Distributed Destination
Resources in Configuring and Managing
JMS for Oracle WebLogic Server

Yes Yes No No

Flow Control Producers

For more information, see: Controlling the
Flow of Messages on JMS Servers and
Destinations in Performance and Tuning for
Oracle WebLogic Server

Yes Yes No No

Blocking producers during quota conditions

For more information, see Defining a Send
Timeout on Connection Factories in
Performance and Tuning for Oracle WebLogic
Server

Yes Yes No No

Foreign destinations for remote instances of
WebLogic Server

For more information, see Configuring Foreign
Server Resources to Access Third-Party JMS
Providers in Configuring and Managing JMS for
Oracle WebLogic Server

No Yes No No See
Section 1.4,
"Interoperati
ng with
Previous
WebLogic
Server
Releases."

Imported store-and-forward (SAF) destinations

For more information, see Imported SAF
Destinations in Configuring and Managing
Store-and-Forward for Oracle WebLogic Server

No Yes No No

Redelivery limit

For more information, see Setting a Redelivery
Limit for Messages in Programming JMS for
Oracle WebLogic Server

No Yes Yes No

Redelivery delay

For more information, see Setting a Redelivery
Delay for Messages in Programming JMS for
Oracle WebLogic Server

Yes No Yes No

Error destinations

For more information, see Configuring an
Error Destination for Undelivered Messages in
Programming JMS for Oracle WebLogic Server

No Yes No No

"WLDestination.getCreateDestinationArgumen
t"

No No Yes Yes

Using WebLogic JMS Extensions

Programming Considerations 4-3

No Acknowledge Mode

For more information, see Using NO_
ACKNOWLEDGE in Programming JMS for
Oracle WebLogic Server

No No Yes Yes

Unit-of-Order

For more information, see:

■ Using Message Unit-of-Order in
Programming JMS for Oracle WebLogic
Server

■ Tuning Applicatinos Using Unit-of-Order
in Tuning WebLogic JMS in Performance
and Tuning for Oracle WebLogic Server

Yes Yes Yes Yes See
Section 4.1.2,
"Unit-of-Ord
er."

Scheduled message delivery

For more information, see Setting Message
Delivery Times in Programming JMS for Oracle
WebLogic Server

Yes Yes Yes Yes See
Section 4.1.3,
"Message
Delivery
Time."

Asynchronous consumer messages maximum
pipeline

■ For more information, see: Asynchronous
Message Pipeline in Programming JMS for
Oracle WebLogic Server

■ Tuning MessageMaximum in Performance
and Tuning for Oracle WebLogic Server

Yes No Yes No

Message Compression

For more information, see Message
Compression in Programming JMS for Oracle
WebLogic Server

Yes No Yes No See
Section 4.1.1,
"Message
Compression
."

Quotas

For more information, see Defining Quota in
Performance and Tuning for Oracle WebLogic
Server

No Yes No No

One-way message sends

For more information, see Using One-Way
Message Sends For Improved Non-Persistent
Messaging Performance in Performance and
Tuning for Oracle WebLogic Server

Yes No No No See
Section 4.1.4,
"One-Way
Message
Sends."

Table 4–1 (Cont.) WebLogic JMS Extensions Supported in the JMS .NET Client

Feature

Configurable
on
Connection
Factory

Configurable
on the
Server

Java
API

JMS
.NET

API Comments

Using WebLogic JMS Extensions

4-4 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

4.1.1 Message Compression
In this release, automatic message compression is not supported for client sends
between the JMS .NET client and the JMS .NET client host running on WebLogic
Server. However, if the compression settings are set on the connection factory,
message compression behavior between the .NET client host and the destination is the
same as that of the Java client. The behavior is as follows:

■ If the client host and destination run on different instances of WebLogic Server,
then a sent message is automatically compressed on the client host.

■ If the client host and destination run on the same instance of WebLogic Server,
then no sent message compression will occur.

Compressed messages are decompressed by the JMS .NET client host on the server
side when they are received by the .NET client.

For more information, see Message Compression in Programming JMS for Oracle
WebLogic Server

4.1.2 Unit-of-Order
The method used to specify Unit-of-Order (UOO) in the JMS .NET API differs from the
Java API. To set Unit-of-Order in the JMS .NET API, add a string property named
Constants.MessagePropertyNames.UNIT_OF_ORDER_PROPERTY_NAME to the
message with the desired UOO.

For more information, see Using Message Unit-of-Order in Programming JMS for Oracle
WebLogic Server

4.1.3 Message Delivery Time
The method used to specify message delivery times in the JMS .NET API differs from
the Java API. To set message delivery times in the JMS .NET API, add a property of
type long named Constants.MessagePropertyNames.DELIVERY_TIME_
PROPERTY_NAME to the message, where the value is the number of milliseconds in the
future in which the message will be delivered.

Acknowledge policy

For more information, see "JMS Connection
Factory: Configuration: Client" in the Oracle
WebLogic Server Administration Console Help

Yes No No No

Automatically include user-id as message
property JMSXUserID

Yes Yes No No See
Section 4.1.5,
"Include
user-id as
JMSXUserId.
"

Get number of delivery attempts as message
property JMSXDeliveryCount

No No No No See
Section 4.1.6,
"Message
Delivery
Attempts."

Table 4–1 (Cont.) WebLogic JMS Extensions Supported in the JMS .NET Client

Feature

Configurable
on
Connection
Factory

Configurable
on the
Server

Java
API

JMS
.NET

API Comments

Limitations of Using the WebLogic JMS .NET Client

Programming Considerations 4-5

4.1.4 One-Way Message Sends
Although you can configure one-way message sends on the connection factory, this
behavior is not fully supported in the JMS .NET client. Messages sent as one-way
sends will actually be two- way sends between the .NET client and the .NET client
host, and one-way sends between the .NET client host and the JMS connection host.

4.1.5 Include user-id as JMSXUserId
The optional JMSXUserId system-generated message property on received messages
specifies the credential of the original sender. To enable this property, configure the
Attach Sender Credential attribute on destinations, distributed destinations, or
templates, and configure the Attach JMSXUserId attribute on connection factories. To
retrieve, call
msg.GetStringProperty(Constants.MessagePropertyNames.USER_ID_
PROPERTY_NAME).

4.1.6 Message Delivery Attempts
The JMSXDeliveryCount system-generated message property on received messages
specifies the number of message delivery attempts. The first attempt is 1. To retrieve
the value, call
msg.GetIntProperty(Constants.MessagePropertyNames.DELIVERY_
COUNT_PROPERTY_NAME.

4.2 Limitations of Using the WebLogic JMS .NET Client
The following sections describe the JMS features that are not supported in the JMS
.NET client.

4.2.1 Unsupported JMS 1.1 Standard Features
In this release, the following JMS 1.1 standard features are not supported:

■ Creating and closing temporary destinations (javax.jms.TemporaryQueue
and javax.jms.TemporaryTopic). The JMS .NET client can still produce
messages to temporary destinations created by a Java client if the destination
objects are obtained from the JMSReplyTo header of received messages.

■ javax.jms.QueueRequester and javax.jms.TopicRequester. (These
helper classes are related to temporary destinations.)

■ Queue browsers: javax.jms.QueueBrowser.

■ Queue and Topic interfaces (QueueConnectionFactory,
TopicConnectionFactory, QueueConnection, TopicConnection,
QueueSession, TopicSession). These queue and topic interfaces are legacy
JMS 1.0.2 interfaces that have been superseded by the JMS 1.1 common interfaces.

4.2.2 Unsupported JMS 1.1 Optional Features
In this release, the following JMS 1.1 optional features are not supported:

■ XA interfaces (XAConnectionFactory, XAConnection, and XASession).

■ Participation in global XA transactions (See Section 4.2.4, "Transactions").

■ Connection Consumer and Server session pools
(javax.jms.ConnectionConsumer, ServerSessionPool, and

Exchanging Messages Between Different Language Environments

4-6 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

ServerSession). These are optional capabilities that have been superseded by
Java EE MDBs, and are not supported by the WebLogic Java JMS client.

■ MessageProducer.setDisableMessageTimestamp method. Note that the
WebLogic JMS Java client ignores this method.

4.2.3 Unsupported WebLogic JMS Extensions
In this release, the following WebLogic JMS extensions are not supported:

■ SSL

■ HTTP tunneling

■ SAF Client—See Reliably Sending Messages Using the JMS SAF Client in
Programming Stand-alone Clients for Oracle WebLogic Server

■ Multicast Subscribers—See Using Multicasting with WebLogic JMS in
Programming WebLogic JMS

■ Automatic Reconnect—See Automatic JMS Client Failoverin Programming JMS for
Oracle WebLogic Server

■ Unit-of-Work—If a .NET client attempts to set a UOW property on a message, a
Weblogic.Messaging.MessageException is generated. In addition, a .NET
consumer cannot receive UOW messages with deserializable content that are sent
by a Java client. In this case, the consumer gets a MessageFormatException if it
calls the ObjectMessage.getObject() method on the ObjectMessage. Note
that while Unit-of-Work is not supported, the more commonly used Unit-of-Order
extension is fully supported. For more information about Unit-of-Order, see
Section 4.1.2, "Unit-of-Order."

4.2.4 Transactions
In this release, the JMS .NET client supports transacted sessions as defined in the JMS
Specification only. Transacted sessions provide a standard local transaction capability.
As with the Java client, one or more WebLogic JMS destinations from within the same
cluster may participate in a transacted session local transaction, but no other resources
may participate (such as JMS servers in other clusters, databases, or foreign JMS
providers).

Global XA transactions are not supported, therefore JMS cannot participate in a .NET
transaction. The XA setting of the connection factory is ignored by the .NET client. The
JMS NET client operations cannot participant in any .NET transactions.

4.3 Exchanging Messages Between Different Language Environments
The following Java JMS message types can be exchanged between a .NET producer
and a Java or C consumer, and vice versa:

■ Message

Note: The JMS .NET API does not provide extensions for programmatically
configuring JMS resources (for example, topics and queues). In Java,
programmatic configuration is accomplished using JMX MBeans or the
weblogic.jms.extensions.JMSModuleHelper helper class. Alternative
ways to configure JMS include WLST scripting and the WebLogic
Administration Console.

Specifying the URL Format

Programming Considerations 4-7

■ BytesMessage

■ StreamMessage

■ MapMessage

■ TextMessage

An ObjectMessage type, however, can be sent from one language and received by
another, but the message cannot be interpreted unless it is written in the same
language. The producer and consumer of an OBJECTMESSAGE type must be written in
the same language, either C# or Java. If a mismatch occurs; that is, if a .NET
ObjectMessage is received by a Java consumer, or a Java ObjectMessage is
received by a .NET consumer, then message.getObject() throws a
MessageFormatException.

4.4 Specifying the URL Format
The Provider_URL may contain multiple addresses, separated by commas, using the
following format:

t3://address [,address]...

where a particular address may specify multiple port ranges.

The syntax for specifying multiple addresses is as follows:

address = hostlist : portlist

where

hostlist = hostname [, hostname]...
portlist = portrange [+ portrange]...
portrange = port [- port]

Use port -port to indicate a port range, and + (plus sign) to separate multiple port
ranges.

Table 4–2 provides sample URL formats.

4.4.1 Using DNS Alias Host Names
You can also specify DNS alias host names, which are expanded into multiple hosts.
For example, if a DNS alias mycluster resolves to host1,host2, then the URL
t3://mycluster:7001 expands into the address list:
t3://host1:7001,host2:7001. Contexts that are created with the URL will
always retry with host2 if host1 is unreachable. DNS aliases are typically configured
by network administrators.

Table 4–2 URL Format Examples

This format . . . Can also be specified as . . .

t3://hostA:7001
t3://hostA,hostB:7001,hostC:7002

t3://hostA:7001,hostB:7001,hostC:7002

t3://hostA:7001+7005+7007,hostB:7001 t3://hostA:7001,hostA:7005,hostA:7007,
hostB:7001

t3://hostA:7001-7003+7005+7007,hostB:8001 t3://hostA:7001,hostA:7002,hostA:7003,
hostA:7005,hostA:7007,hostB:8001

Implementing Security With the JMS .NET Client

4-8 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

4.5 Implementing Security With the JMS .NET Client
You need to be aware of the following security considerations when creating a JMS
.NET client:

■ To access secure JNDI and JMS resources on the server, the JMS .NET client
application can supply a username and password as follows:

– When establishing the initial context to the server using
ContextFactory.CreateContext(). The credentials supplied when
creating the initial context are used for authentication to gain access to secure
JNDI and JMS resources on the server.

– When creating a connection using the
IConnectionFactory.createConnection() method. In this case, the
credentials supplied when creating a connection override the credentials
supplied during the initial context. That is, if user Fred is supplied during
initial context, and user Tony is supplied when the connection is created, the
user Tony credential is used for authentication to gain access to secure JMS
resources.

■ Authentication for the .NET client is associated with the JMS object that invokes
the secured resource. That is, the credential for a JMS object is inherited from the
parent JMS context, or from the connection override if credentials are supplied
when creating the connection. This differs from Java client security where
credentials are associated with the current thread.

■ SSL is not supported for the JMS .NET client in this release. Therefore, it is
important that you secure the networking services that the operating system
provides, as well as any networking connections. For more information, see
"Securing Network Connections" in Ensuring the Security of Your Production
Environment in Securing a Production Environment for Oracle WebLogic Server.

■ Similar to the Java client, the JMS.NET client does not support message level
encryption.

■ Due to the use of non-encrypted communication, sniffing of application traffic (see
http://www.owasp.org/index.php/Sniffing_application_traffic_
attack) is possible. You need to either accept these risks, or take remediation
such as using a firewall to protect against these attacks.

■ The administration port, if configured, accepts only SSL traffic, and all connections
via the port require administrator privileges. In addition, once an administration
port is configured, all other ports will refuse connections that have administrator
privileges. Because SSL is not supported for the JMS .NET client in this release, it
cannot support users with administrative privileges if an administration port is
configured.

Note: In both instances, the password is encrypted. If the resources are not
secured, a username and password is optional.

Warning: Although usernames and passwords are protected, and passwords
are encrypted, a sophisticated user or intruder might be able to defeat the
protection mechanisms. Be sure to secure any network connections when
usernames and passwords are provided.

http://www.owasp.org/index.php/Sniffing_application_traffic_attack
http://www.owasp.org/index.php/Sniffing_application_traffic_attack

Configuring Logging and Debugging

Programming Considerations 4-9

4.6 Configuring Logging and Debugging
Basic logging and debugging is available for the server-side transport and .NET client
host running on WebLogic Server.

4.6.1 Server Side
To enable debugging on the server side, use the following commands:

-Dweblogic.debug.DebugJMSDotNetT3Server=true
-Dweblogic.debug.Debug.JMSDotNetProxy=true

4.6.2 Client Side
Client-side logging and debugging are enabled and controlled by various
configuration settings in the application configuration file. For generated build files,
the application configuration file is named yourapplicationname.exe.config,
where yourapplicationname is the name of the application that runs the
messaging client.

Example 4–1 provides the XML content that needs to be added to your application
configuration file to configure logging and debugging. The subsequent sections
provide additional details about each of the different settings. If you have an existing
yourapplicationname.exe.config file, add the XML content shown in the
following listing to the file. Otherwise, you can create one and locate it in the same
directory that contains the yourapplicationname.exe file.

Example 4–1 XML File Content for yourapplicationname.exe.config File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <!-- To forward log output to a file, please uncomment the following line, and replace the file
name with the desired one -->
 <!--- <add key="weblogic.JMSDotNet.debugConfig.LogFileName" value="c:\test\MyLogFile.log" />
-->

 <!-- To prevent log messages from displaying to the console, use the value 'false' -->
 <!-- <add key="weblogic.debug.JMSDotNet.config.IsLogToConsole" value="false" /> -->
 </appSettings>
 <system.diagnostics>
 <switches>
 <!-- Please set the switch value as desired for logging to each Category -->
 <!-- value for Off=0, Error=1, Warning=2, Info=3, Verbose=4 -->

 <!-- if "AllLogger" is enabled (no zero for the value), every individual category is set to
the same level as the AllLogger,
 no matter how individual category's value is set -->
 <add name="weblogic.debug.JMSDotNet.All" value="0" />
 <add name="weblogic.debug.JMSDotNet.Socket" value="0" />
 <add name="weblogic.debug.JMSDotNet.T3" value="0" />

Note: If you are using Visual Studio, the logging and debugging settings
shown in Example 4–1 need to be added to the App.config file. Follow the
instructions on the Microsoft Web site
http://msdn.microsoft.com/en-us/library/ms184658.aspx to add
an App.config file to your C# project inside a Visual Studio environment.

Understanding Socket and Threading Behavior

4-10 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

 <add name="weblogic.debug.JMSDotNet.Transport" value="0" />
 <add name="weblogic.debug.JMSDotNet.PhysicalMsg" value="0" />
 <add name="weblogic.debug.JMSDotNet.LogicalMsg" value="0" />
 </switches>
 </system.diagnostics>
</configuration>

4.6.2.1 Message Output
Use the <appSettings> element to specify whether log messages are output to the
console or saved to a file as shown in Table 4–3.

4.6.2.2 Log Categories and Levels
Client-side logging is grouped into the following categories:

■ Socket

■ T3

■ Transport

■ PhysicalMsg

■ LogicalMsg

■ All (represents all individual categories listed above)

For each of the categories, you can specify any of these logging levels:

Off(0), Error(1), Warning(2), Info(3), Verbose(4)

Note that the severity level on the All category overrides the setting on each
individual category.

4.7 Understanding Socket and Threading Behavior
WebLogic JMS .NET clients share the same WebLogic Server T3 port as other types of
WebLogic clients. When an IContext initial context is created by a .NET client using
the ContextFactory class, the client specifies a URL that references a T3 capable
port on the server, and a socket pair is implicitly created to service the requested
network connection. The socket pair consists of one socket on the client and another
socket on the WebLogic Server JMS .NET client host. All JMS operations on JMS
objects obtained from the .NET context route through the implicit network connection
of the context.

Table 4–3 appSettings Values

Key Value Setting

weblogic.JMSDotNet.debugConfig.
LogFileName

String Full path and file name for the log file, for example
c:\test\MyLogFile.log.

NOTE: The default log file size limit is 500KB. Each time the log
file reaches this size, the server renames the log file and creates a
new MyLogFile.log to store new messages. By default, the
rotated log files are numbered in order of creation, for example
MyLogFile.log.0, MyLogFile.log.1, MyLogFile.log.2,
..., with MyLogFile.log.0 containing the latest log messages.

weblogic.JMSDotNet.debugConfig.
IsLogToConsole

Boolean ■ True — Displays log messages to the console

■ False — Does not display log messages to the console

Data Conversion Between Java and .NET

Programming Considerations 4-11

If two concurrent IContext initial context instances on the same .NET CLR connect
to the same WebLogic Server JMS .NET client host, then two network connections are
created. Each network connection has its own pair of sockets: a server-side socket and
a client-side socket. Therefore, when two network connections are created, two sockets
are created on the CLR client and two sockets are created on the WebLogic Server
acting as the JMS .NET client host. This contrasts with WebLogic Java clients, which
automatically detect and close duplicate network connections to a remote JVM and,
instead, implicitly multiplex all traffic to and from a particular remote JVM over a
single network connection.

A server-side socket for a JMS .NET client is serviced by the same WebLogic Server
socket-reader muxer thread pool as other types of WebLogic clients. When working on
behalf of JMS .NET client requests, the socket-reader muxer thread pool reads the
incoming requests from the socket and dispatches work into the WebLogic Server
default thread pool which, in turn, processes the requests and sends the responses
back to the client.

On a JMS .NET client, a new internal thread is automatically created for each network
connection (that is, per IContext initial context instance). This dedicated thread
reads all incoming data on the client socket and dispatches the related work into the
CLR thread pool. This means that asynchronous message event handlers in the .NET
client application run in the CLR thread pool.

For JMS .NET applications that create many concurrent initial contexts that all connect
to the same WebLogic Server .NET client host, you may obtain performance
improvements by modifying the application so that it uses a single, shared initial
context. A shared context ensures that the client only creates a single network
connection.

4.8 Data Conversion Between Java and .NET
■ Section 4.8.1, "Endian Conversions"

■ Section 4.8.2, "Signed and Unsigned Byte Conversions"

■ Section 4.8.3, "Byte Array Transfers"

■ Section 4.8.4, "Time Conversions"

4.8.1 Endian Conversions
Java and .NET use different byte order formats for storing primitive types:

■ Microsoft Windows .NET uses the Little-Endian (low-order) format

■ Java uses the Big-Endian (high-order) format

To support interoperability between Java and .NET, data is transferred over the
network using the Big-Endian format. When a .NET application uses the JMS .NET

Note: The CLR thread pool is supplied by the .NET Framework
System.Threading.ThreadPool class. There is one thread pool per process. The
thread pool has a default size of 25 threads per available processor, however,
you can change the number of threads in the thread pool using the
ThreadPool.SetMaxThreads method. Each thread in the thread pool uses the
default stack size and runs at the default priority. For more information, refer
to the Microsoft .NET Framework documentation for the
System.Threading.ThreadPool class.

Data Conversion Between Java and .NET

4-12 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

API to read and write primitives, data is automatically converted between Big-Endian
and Little-Endian, as needed. For example, if you use BytesMessage.WriteInt in
the JMS .NET API, the data is always stored as Big Endian and can be read using both
the Java API and the JMS .NET API bytes message read integer methods.

For specialized applications that do not use the JMS .NET API to pass primitives, but
instead transfer primitive data using raw byte arrays, you need to manually convert
the byte format to Big Endian when communicating with Java. If you need to perform
a manual Endian conversion in your application, you can use the following helper
methods from the utility class
WebLogic.Messaging.Transport.Util.EndianConvertor provided in the
JMS .NET client library:

public static char SwitchEndian(char x)
public static short SwitchEndian(short x)
public static int SwitchEndian(int x)
public static long SwitchEndian(long x)
public static ushort SwitchEndian(ushort x)
public static uint SwitchEndian(uint x)
public static ulong SwitchEndian(ulong x)
public static double SwitchEndian(double x)
public static float SwitchEndian(float x)
public static byte[] SwitchEndian(byte[] x)

For example, the standard .NET classes System.IO.BinaryReader and
System.IO.BinaryWriter for reading and writing primitives to raw byte arrays
use Little Endian. The following code snippet illustrates how to store and retrieve an
integer to/from a .NET byte array:

binaryWriter.WriteInt(EndianConverter.SwitchEndian(i))
i=EndianConverter.SwitchEndian(binaryReader.ReadInt())

4.8.2 Signed and Unsigned Byte Conversions
With the exception of the byte data type, there is an equivalent C# data type, with the
same name and definition, for every Java primitive data type. The following table lists
the different names used for signed and unsigned bytes in C# and Java.

As shown in Table 4–4, Microsoft .NET supports both byte (unsigned byte) and
sbyte (signed byte) as primitive data types, but Java supports only byte (signed
byte) as a direct primitive type. The standard convention in both languages is to use
the byte data type; however, in .NET this represents an unsigned byte and in Java this
represents a signed byte.

For interoperability between .NET and Java, the JMS .NET client allows only the use of
the signed byte for reading and writing bytes. There is no difference between signed
bytes and unsigned bytes when the byte value is 127 or less. An unsigned byte with a
value of 127 or less is stored as an sbyte. However, if a .NET client needs to store an
unsigned byte with a value greater than 127 in a signed byte, it needs to be converted
from a signed byte to an unsigned byte. The following samples illustrate conversion
methods that you can use to read and write an unsigned byte as a signed byte:

Table 4–4 Byte Primitive Data Type in C# and Java

C# Java Description

byte N/A Unsigned byte

sbyte byte Signed byte

Data Conversion Between Java and .NET

Programming Considerations 4-13

■ Byte Conversion in C#

An unsigned byte value of 255 can be passed as a signed byte as follows:

– byte unsignedByteValue = 255;

– sbyte signedByteValue = unchecked (
(sbyte)unsignedByteValue); // converted signed value=-1

Similarly, you can use the following method to convert a signed byte value to an
unsigned byte value:

– sbyte signedByteValue = -1;

– byte unsignedByteValue = unchecked ((byte)signedByteValue
); // converted unsigned value=255

■ Byte Conversion in Java

The unsigned value can be read as a signed byte and converted to an unsigned
byte value as follows:

– byte signedByteValue = -1;

– int unsignedByteValue = 0xFF & signedByteValue;
//converted signed value = 255

An unsigned value can be written as follows:

– Int unsignedByteValue = 255;

– byte signedByteValue = 0xFF & unsignedByteValue; //
converted signed value=-1

The JMS .NET API only allows for storing single bytes as signed bytes. When the JMS
.NET API is used to retrieve sbyte values as short, int, long, or string, the value
is treated as an sbyte, not an unsigned byte. For example, if the unsigned byte value
255 is stored using message.SetByteProperty("myvalue", unchecked(
(sbyte)((byte)255))), a call to message.GetByteProperty("myvalue")or
message.GetShortProperty("myvalue") returns "-1".

4.8.3 Byte Array Transfers
When transferring byte arrays from the JMS .NET client to WebLogic JMS, all byte
arrays (byte[]) are passed as is (that is, there is no conversion from unsigned to
signed.) Therefore, no data is lost in the translation.

4.8.4 Time Conversions
The WebLogic JMS .NET API represents dates and times using Java rather than .NET
conventions. The JMSTimestamp and JMSExpiration attributes of the
WebLogic.Messaging.IMessage message interface are type long and contain a
millisecond absolute time value as specified in the Java programming language. The
Java millisecond absolute time value is the difference, measured in milliseconds,
between a given time and midnight, January 1, 1970 UTC.

The following examples demonstrate how to convert between .NET times and Java
millisecond absolute time values.

Example 4–2 Example C# Code for Converting the Current .NET Time to Java Millisecond Time

// Example: C# code for converting the current .NET time to Java millisecond time
DateTime baseTime = new DateTime(1970, 1, 1, 0, 0, 0);

Best Practices

4-14 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

DateTime utcNow = DateTime.UtcNow;
long timeInMillis = (utcNow.Ticks - baseTime.Ticks)/10000;
Console.WriteLine(timeInMillis);

Example 4–3 Example C# Code for Converting Java Millisecond Time to .NET Time

// Example: C# code for converting Java millisecond time to .NET time
DateTime baseTime = new DateTime(1970, 1, 1, 0, 0, 0);
long utcTimeTicks = (timeInMillis * 10000) + baseTime.Ticks;
DateTime utcTime = new DateTime(utcTimeTicks, DateTimeKind.Utc);
Console.WriteLine(utcTime);
Console.WriteLine(utcTime.ToLocalTime());

4.9 Best Practices
The following list identifies best practices to use when creating a JMS .NET client
application:

■ Always register a connection exception listener using an IConnection if the
application needs to take action when an idle connection fails. The connection
exception listener is asynchronously notified when there is a communications
failure between the .NET client and the .NET client WebLogic host, or between the
WebLogic host and the JMS connection host. Applications may choose to
implement the connection exceptions listener callback to close all open resources
and then periodically attempt a reconnect.

■ To obtain performance improvements, have multiple .NET client threads share a
single context to ensure that they use a single socket. For more information, see
Section 4.7, "Understanding Socket and Threading Behavior." It is important to
note that a context creates a socket and that closing the context closes the socket.

■ Cache and reuse frequently accessed JMS resources, such as contexts, connections,
sessions, producers, destinations, and connection factories. Creating and closing
these resources consumes significant CPU and network bandwidth.

■ With the exception of close() methods, JMS sessions and their child resources
are not thread safe. For example, do not call a producer send() in one thread, and
a consumer receive() in parallel in another thread, if the producer and
consumer were created using the same session. As another example, do not call
any method other than close() in an arbitrary thread for sessions that have
asynchronous consumers because a message may arrive and invoke the callback at
the same time.

■ Use DNS aliases or comma separated addresses for load balancing JMS .NET
clients across multiple JMS .NET client host servers in a cluster. In this release, the
JMS .NET client does not support automatic cluster load balancing as is implicitly
supplied with the Java client.

A

JMS .NET Client Sample Application A-1

AJMS .NET Client Sample Application

The following .NET client sample program, written in C#, provides an overview of the
basic features of the WebLogic JMS .NET API. For details about the API, see the
"WebLogic Messaging API Reference for .NET Clients" documentation.

Example A–1 MessagingSample.cs

using System;
using System.Collections;
using System.Collections.Generic;
using System.Threading;

using WebLogic.Messaging;

/// <summary> Demonstrate the WebLogic JMS .NET API.
/// <para>
/// This command line program connects to WebLogic JMS and performs
/// queue and topic messaging operations. It is supported with
/// versions 10g Release 3 and later. To compile the program,
/// link it with "WebLogic.Messaging.dll". For usage information,
/// run the program with "-help" as a parameter.
/// </para>
/// <para>
/// Copyright 1996,2008, Oracle and/or its affiliates. All rights reserved.
/// </para>
/// </summary>

public class MessagingSample
{
 private static string NL = Environment.NewLine;

 private string host = "localhost";
 private int port = 7001;

 private string cfName = "weblogic.jms.ConnectionFactory";
 private string queueName = "jms.queue.TestQueue1";
 private string topicName = "jms.topic.TestTopic1";

 private static string USAGE =
 "Usage: " + Environment.GetCommandLineArgs()[0] + NL +
 " [-host <hostname>] [-port <portnum>] " + NL +
 " [-cf <connection factory JNDI name>] " + NL +
 " [-queue <queue JNDI name>] [-topic <topic JNDI name>]";

A-2 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

 public static void Main(string[] args)
 {
 try {
 MessagingSample ms = new MessagingSample();

 // override defaults with command line arguments
 if (!ms.ParseCommandLine(args)) return;

 ms.DemoSyncQueueReceiveWithAutoAcknowledge();

 ms.DemoAsyncNondurableTopicConsumerAutoAcknowledge();

 ms.DemoSyncTopicDurableSubscriberClientAcknowledge();

 } catch (Exception e) {
 Console.WriteLine(e);
 }
 }

 private void DemoSyncQueueReceiveWithAutoAcknowledge()
 {
 Console.WriteLine(
 NL + "-- DemoSyncQueueReceiveWithAutoAcknowledge -- " + NL);

 // --
 // Make a network connection to WebLogic and login:
 // --

 IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

 paramMap[Constants.Context.PROVIDER_URL] =
 "t3://" + this.host + ":" + this.port;

 IContext context = ContextFactory.CreateContext(paramMap);

 try {
 // -------------------------------------
 // Look up our resources in the context:
 // -------------------------------------

 IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

 IQueue queue = (IQueue)context.LookupDestination(this.queueName);

 // ---
 // Create a connection using the connection factory:
 // ---

 IConnection connection = cf.CreateConnection();

 // ---
 // Start the connection in order to allow receivers to get messages:
 // ---

 connection.Start();

 // -----------------
 // Create a session:
 // -----------------

JMS .NET Client Sample Application A-3

 // IMPORTANT: Sessions are not thread-safe. Use multiple sessions
 // if you need to run producers and/or consumers concurrently. For
 // more information, see the asynchronous consumer example below.
 //

 ISession session = connection.CreateSession(
 Constants.SessionMode.AUTO_ACKNOWLEDGE);

 // --
 // Create a producer and send a persistent message:
 // --

 IMessageProducer producer = session.CreateProducer(queue);

 producer.DeliveryMode = Constants.DeliveryMode.PERSISTENT;

 ITextMessage sendMessage = session.CreateTextMessage("My q message");

 producer.Send(sendMessage);

 PrintMessage("Sent Message:", sendMessage);

 // --
 // Create a consumer and receive a message:
 // --
 // The message will automatically be deleted from the server as the
 // consumer's session was created in AUTO_ACKNOWLEDGE mode.
 //

 IMessageConsumer consumer = session.CreateConsumer(queue);

 IMessage recvMessage = consumer.Receive(500);

 PrintMessage("Received Message:", recvMessage);

 // --
 // Close the connection. Note that closing a connection also closes
 // its child sessions, consumers, and producers.
 // --

 connection.Close();

 } finally {

 // --
 // Close the context. The CloseAll method closes the network
 // connection and all related open connections, sessions, producers,
 // and consumers.
 // --

 context.CloseAll();
 }
 }

 // Implement a MessageEventHandler delegate. It will receive
 // asynchronously delivered messages.

 public void OnMessage(IMessageConsumer consumer, MessageEventArgs args) {
 PrintMessage("Received Message Asynchronously:", args.Message);

A-4 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

 // ---
 // If the consumer's session is CLIENT_ACKNOWLEDGE, remember to
 // call args.Message.Acknowledge() to prevent the message from
 // getting redelivered, or consumer.Session.Recover() to force redelivery.
 // Similarly, if the consumer's session is TRANSACTED, remember to
 // call consumer.Session.Commit() to prevent the message from
 // getting redeliverd, or consumer.Session.Rollback() to force redeivery.
 }

 private void DemoAsyncNondurableTopicConsumerAutoAcknowledge()
 {
 Console.WriteLine(
 NL + "-- DemoAsyncNondurableTopicConsumerAutoAcknowledge -- " + NL);

 // --
 // Make a network connection to WebLogic and login:
 // --

 IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

 paramMap[Constants.Context.PROVIDER_URL] =
 "t3://" + this.host + ":" + this.port;

 IContext context = ContextFactory.CreateContext(paramMap);

 try {
 // -------------------------------------
 // Look up our resources in the context:
 // -------------------------------------

 IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

 ITopic topic = (ITopic)context.LookupDestination(this.topicName);

 // --
 // Create a connection using the connection factory and start it:
 // --

 IConnection connection = cf.CreateConnection();

 // ---
 // Start the connection in order to allow receivers to get messages:
 // ---

 connection.Start();

 // --
 // Create the asynchronous consumer delegate.
 // --
 // Create a session and a consumer; also designate a delegate
 // that listens for messages that arrive asynchronously.
 //
 // Unlike queue consumers, topic consumers must be created
 // *before* a message is sent in order to receive the message!
 //
 // IMPORTANT: Sessions are not thread-safe. We use multiple sessions
 // in order to run the producer and async consumer concurrently. The
 // consumer session and any of its producers and consumers
 // can no longer be used outside of the OnMessage
 // callback once OnMessage is designated as its event handler, as

JMS .NET Client Sample Application A-5

 // messages for the event handler may arrive in another thread.
 //

 ISession consumerSession = connection.CreateSession(
 Constants.SessionMode.AUTO_ACKNOWLEDGE);

 IMessageConsumer consumer = consumerSession.CreateConsumer(topic);

 consumer.Message += new MessageEventHandler(this.OnMessage);

 // -------------
 // Send Message:
 // -------------
 // Create a producer and send a non-persistent message. Note
 // that even if the message were sent as persistent, it would be
 // automatically downgraded to non-persistent, as there are only
 // non-durable consumers subscribing to the topic.
 //

 ISession producerSession = connection.CreateSession(
 Constants.SessionMode.AUTO_ACKNOWLEDGE);

 IMessageProducer producer = producerSession.CreateProducer(topic);

 producer.DeliveryMode = Constants.DeliveryMode.NON_PERSISTENT;

 ITextMessage sendMessage = producerSession.CreateTextMessage(
 "My topic message");

 producer.Send(sendMessage);

 PrintMessage("Sent Message:", sendMessage);

 // -----------------
 // Wait for Message:
 // -----------------
 // Sleep for one second to allow the delegate time to receive and
 // automatically acknowledge the message. The delegate will print
 // to the console when it receives the message.
 //

 Thread.Sleep(1000);

 // ---------
 // Clean Up:
 // ---------
 // We could just call connection.Close(), which would close
 // the connection's sessions, etc, or we could even just
 // call context.CloseAll(), but we want to demonstrate closing each
 // individual resource.
 //

 producer.Close();
 consumer.Close();
 producerSession.Close();
 consumerSession.Close();
 connection.Close();

 } finally {

A-6 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

 // ---
 // Close the context. The CloseAll method closes the network
 // connection and any open JMS connections, sessions, producers,
 // or consumers.
 // ---

 context.CloseAll();
 }
 }

 private void DemoSyncTopicDurableSubscriberClientAcknowledge() {

 Console.WriteLine(
 NL + "-- DemoSyncTopicDurableSubscriberClientAcknowledge -- " + NL);

 // --
 // Make a network connection to WebLogic and login:
 // --

 IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

 paramMap[Constants.Context.PROVIDER_URL] =
 "t3://" + this.host + ":" + this.port;

 IContext context = ContextFactory.CreateContext(paramMap);

 try {
 // -------------------------------------
 // Look up our resources in the context:
 // -------------------------------------

 IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

 ITopic topic = (ITopic)context.LookupDestination(this.topicName);

 // ---
 // Create a connection using the connection factory:
 // ---

 IConnection connection = cf.CreateConnection();

 // --
 // Assign a unique client-id to the connection:
 // --
 // Durable subscribers must use a connection with an assigned
 // client-id. Only one connection with a given client-id
 // can exist in a cluster at the same time. An alternative
 // to using the API is to configure a client-id via connection
 // factory configuration.

 connection.ClientID = "MyConnectionID";

 // ---
 // Start the connection in order to allow consumers to get messages:
 // ---

 connection.Start();

 // -----------------

JMS .NET Client Sample Application A-7

 // Create a session:
 // -----------------
 // IMPORTANT: Sessions are not thread-safe. Use multiple sessions
 // if you need to run producers and/or consumers concurrently. For
 // more information, see the asynchronous consumer example above.
 //

 ISession session = connection.CreateSession(
 Constants.SessionMode.CLIENT_ACKNOWLEDGE);

 // ---
 // Create a durable subscription and its consumer.
 // ---
 // Only one consumer at a time can attach to the durable
 // subscription for connection ID "MyConnectionID" and
 // subscription ID "MySubscriberID.
 //
 // Unlike queue consumers, topic consumers must be created
 // *before* a message is sent in order to receive the message!
 //

 IMessageConsumer consumer = session.CreateDurableSubscriber(
 topic, "MySubscriberID");

 // --
 // Create a producer and send a persistent message:
 // --

 IMessageProducer producer = session.CreateProducer(topic);

 producer.DeliveryMode = Constants.DeliveryMode.PERSISTENT;

 ITextMessage sendMessage = session.CreateTextMessage("My durable message");

 producer.Send(sendMessage);

 PrintMessage("Sent Message To Durable Subscriber:", sendMessage);

 // --
 // Demonstrate closing and re-creating the consumer.
 //
 // The new consumer will implicitly connect to the durable
 // subscription created above, as we specify the same
 // connection id and subscription id.
 //
 // A durable subscription continues to exist and accumulate
 // new messages when it has no consumer, and even keeps
 // its persistent messages in the event of a client or server
 // crash and restart.
 //
 // Non-durable subscriptions and their messages cease to
 // exist when they are closed, or when their host server
 // shuts down or crashes.
 // --

 consumer.Close();

 consumer = session.CreateDurableSubscriber(
 topic, "MySubscriberID");

A-8 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

 // ---
 // Demonstrate client acknowledge. Get the message, force
 // it to redeliver, get it again, and then finally delete the message.
 // ---
 // In client ack mode "recover()" forces message redelivery, while
 // "acknowledge()" deletes the message. If the client application
 // crashes or closes without acknowledging a message, it will be
 // redelivered.

 ITextMessage recvMessage = (ITextMessage)consumer.Receive(500);

 PrintMessage("Durable Subscriber Received Message:", recvMessage);

 session.Recover();

 recvMessage = (ITextMessage)consumer.Receive(500);

 PrintMessage("Durable Subscriber Received Message Again:", recvMessage);

 recvMessage.Acknowledge();

 // --
 // Delete the durable subscription, otherwise it would continue
 // to exist after the demo exits.
 // --
 //

 consumer.Close(); // closes consumer, but doesn't delete subscription

 session.Unsubscribe("MySubscriberID"); // deletes subscription

 // --
 // Close the connection. Note that closing a connection also closes
 // its child sessions, consumers, and producers.
 // --

 connection.Close();

 } finally {

 // --
 // Close the context. The CloseAll method closes the network
 // connection and all related open connections, sessions, producers,
 // and consumers.
 // --

 context.CloseAll();
 }
 }

 private void PrintMessage(String header, IMessage msg) {
 string msgtext;

 if (msg is ITextMessage)
 msgtext = " Text=" + ((ITextMessage)msg).Text + NL;
 else
 msgtext = " The message is not an ITextMessage";

 string dcProp =
 Constants.MessagePropertyNames.DELIVERY_COUNT_PROPERTY_NAME;

JMS .NET Client Sample Application A-9

 System.Console.WriteLine(
 header + NL +
 " JMSMessageID=" + msg.JMSMessageID + NL +
 " JMSRedelivered=" + msg.JMSRedelivered + NL +
 " " + dcProp + "=" + msg.GetObjectProperty(dcProp) + NL +
 msgtext);
 }

 private bool ParseCommandLine(string[] args)
 {
 int i = 0;
 try {
 for(i = 0; i < args.Length; i++) {
 if (args[i].Equals("-host")) {
 host = args[++i];
 continue;
 }
 if (args[i].Equals("-port")) {
 port = Convert.ToInt32(args[++i]);
 continue;
 }
 if (args[i].Equals("-cf")) {
 cfName = args[++i];
 continue;
 }
 if (args[i].Equals("-queue")) {
 queueName = args[++i];
 continue;
 }
 if (args[i].Equals("-topic")) {
 topicName = args[++i];
 continue;
 }
 if (args[i].Equals("-help") || args[i].Equals("-?")) {
 Console.WriteLine(USAGE);
 return false;
 }
 Console.WriteLine("Unrecognized parameter '" + args[i] + "'.");
 Console.WriteLine(USAGE);
 return false;
 }
 } catch (System.IndexOutOfRangeException) {
 Console.WriteLine(
 "Missing argument for " + args[i - 1] + "."
);
 Console.WriteLine(USAGE);
 return false;
 } catch (FormatException) {
 Console.WriteLine(
 "Invalid argument '" + args[i] + "' for " + args[i - 1] + "."
);
 Console.WriteLine(USAGE);
 return false;
 }
 Console.WriteLine(
 "WebLogic JMS .NET Client Demo " + NL +
 NL +
 "Settings: " + NL +
 " host = " + host + NL +

A-10 Using the WebLogic JMS Client for Microsoft .NET for Oracle WebLogic Server

 " port = " + port + NL +
 " cf = " + cfName + NL +
 " queue = " + queueName + NL +
 " topic = " + topicName + NL
);
 return true;
 }
}

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Overview of the WebLogic JMS .NET Client
	1.1 What is the WebLogic JMS .NET Client?
	1.1.1 Supported JMS Features
	1.1.1.1 Messaging Models
	1.1.1.2 Message Types

	1.2 How the WebLogic JMS .NET Client Works
	1.3 Configuring WebLogic Server
	1.3.1 Configuring the Listen Port
	1.3.2 Configuring JMS Resources for the JMS .NET Client

	1.4 Interoperating with Previous WebLogic Server Releases
	1.5 Understanding the WebLogic JMS .NET API

	2 Installing and Copying the WebLogic JMS .NET Client Libraries
	2.1 Installing the WebLogic JMS .NET Client
	2.1.1 Location of Installed Components

	2.2 Copying the Library to the Client Machine

	3 Developing a Basic JMS Application Using the WebLogic JMS .NET API
	3.1 Creating a JMS .NET Client Application
	3.2 Example: Writing a Basic PTP JMS .NET Client Application
	3.2.1 Prerequisites
	3.2.2 Basic Steps
	3.2.2.1 Step 1
	3.2.2.2 Step 2
	3.2.2.3 Step 3
	3.2.2.4 Step 4
	3.2.2.5 Step 5
	3.2.2.6 Step 6
	3.2.2.7 Step 7
	3.2.2.8 Step 8
	3.2.2.9 Step 9
	3.2.2.10 Step 10

	3.3 Using Advanced Concepts in JMS .NET Client Applications

	4 Programming Considerations
	4.1 Using WebLogic JMS Extensions
	4.1.1 Message Compression
	4.1.2 Unit-of-Order
	4.1.3 Message Delivery Time
	4.1.4 One-Way Message Sends
	4.1.5 Include user-id as JMSXUserId
	4.1.6 Message Delivery Attempts

	4.2 Limitations of Using the WebLogic JMS .NET Client
	4.2.1 Unsupported JMS 1.1 Standard Features
	4.2.2 Unsupported JMS 1.1 Optional Features
	4.2.3 Unsupported WebLogic JMS Extensions
	4.2.4 Transactions

	4.3 Exchanging Messages Between Different Language Environments
	4.4 Specifying the URL Format
	4.4.1 Using DNS Alias Host Names

	4.5 Implementing Security With the JMS .NET Client
	4.6 Configuring Logging and Debugging
	4.6.1 Server Side
	4.6.2 Client Side
	4.6.2.1 Message Output
	4.6.2.2 Log Categories and Levels

	4.7 Understanding Socket and Threading Behavior
	4.8 Data Conversion Between Java and .NET
	4.8.1 Endian Conversions
	4.8.2 Signed and Unsigned Byte Conversions
	4.8.3 Byte Array Transfers
	4.8.4 Time Conversions

	4.9 Best Practices

	A JMS .NET Client Sample Application

