

Oracle® Fusion Middleware
Metadata Repository Builder’s Guide for Oracle Business
Intelligence Enterprise Edition

11g Release 1 (11.1.1)

E10540-02

April 2011

Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise
Edition, 11g Release 1 (11.1.1)

E10540-02

Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Marla Azriel

Contributing Author: Bob Ertl

Contributors: Oracle Business Intelligence development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xxi

Audience... xxi
Documentation Accessibility ... xxi
Related Documents .. xxii
Conventions .. xxii

New Features for Oracle BI Metadata Repository Builders ... xxiii

New Features for Oracle BI EE 11g Release 1 (11.1.1.5) ... xxiii
New Features for Oracle BI EE 11g Release 1 (11.1.1.3) ... xxv

1 Introduction to Building Your Metadata Repository

About Oracle BI Server and Oracle BI Repository Architecture... 1-1
About Oracle BI Server Architecture... 1-1
About Layers in the Oracle BI Repository.. 1-3

Planning Your Business Model ... 1-4
Analyzing Your Business Model Requirements.. 1-4
Identifying the Content of the Business Model ... 1-5

Identifying Logical Fact Tables ... 1-5
Identifying Logical Dimension Tables... 1-6
Identifying Dimensions.. 1-7

About Dimensions with Multiple Hierarchies .. 1-8
Identifying Lookup Tables .. 1-8

Identifying the Data Source Content for the Physical Layer... 1-8
About Types of Physical Schemas in Relational Data Sources.. 1-9
About Cubes in Multidimensional Data Sources .. 1-9
Identifying the Data Source Table Structure... 1-10

Guidelines for Designing a Repository .. 1-10
General Tips for Working on the Repository ... 1-11
Design Tips for the Physical Layer ... 1-11
Design Tips for the Business Model and Mapping Layer... 1-12

Modeling Outer Joins .. 1-14
Design Tips for the Presentation Layer.. 1-14

Topics of Interest in Other Guides... 1-15
System Requirements and Certification... 1-16

iv

2 Before You Begin

About the Oracle BI Administration Tool ... 2-1
Opening the Administration Tool ... 2-2
About the Administration Tool Main Window... 2-2
Setting Preferences ... 2-3
About Administration Tool Menus ... 2-6

File Menu.. 2-6
Edit Menu... 2-8
View Menu... 2-8
Manage Menu.. 2-8
Tools Menu .. 2-9
Actions Menu ... 2-10
Window Menu.. 2-10
Help Menu .. 2-10

Using the Physical and Business Model Diagrams.. 2-10
Editing, Deleting, and Reordering Objects in the Repository .. 2-13
About Naming Requirements for Repository Objects... 2-13
Using the Browse Dialog to Browse for Objects ... 2-13
Changing Icons for Repository Objects.. 2-14
Sorting Objects in the Administration Tool .. 2-15
About Features and Options for Oracle Marketing Segmentation.. 2-15

About the Oracle BI Server Command-Line Utilities .. 2-15
Running bi-init to Launch a Shell Window Initialized to Your Oracle Instance 2-16

About Options in Fusion Middleware Control and NQSConfig.INI... 2-17
About the SampleApp.rpd Demonstration Repository... 2-17
Using Online and Offline Repository Modes ... 2-18

Opening a Repository in Offline Mode.. 2-18
Opening a Repository in Online Mode .. 2-19

Guidelines for Using Online Mode ... 2-19
Checking Out Objects ... 2-20
Checking In Changes.. 2-20
About Read-Only Mode... 2-21

Checking the Consistency of a Repository or a Business Model... 2-21
About the Consistency Check Manager... 2-21
Checking the Consistency of Repository Objects ... 2-22
Using the validaterpd Utility to Check Repository Consistency ... 2-23

3 Setting Up and Using the Multiuser Development Environment

About the Multiuser Development Environment ... 3-1
About the Multiuser Development Process ... 3-2

Setting Up Projects... 3-3
About Projects... 3-4

About the Project Dialog.. 3-4
Creating Projects... 3-5
About Converting Older Projects During Repository Upgrade ... 3-7

Setting Up the Multiuser Development Directory .. 3-7
Identifying the Multiuser Development Directory ... 3-7

v

Copying the Master Repository to the Multiuser Development Directory............................... 3-8
Setting Up a Pointer to the Multiuser Development Directory... 3-8

Making Changes in a Multiuser Development Environment... 3-8
Checking Out Repository Projects ... 3-9

About Repository Project Checkout... 3-9
Checking Out Projects ... 3-10
Using the extractprojects Utility to Extract Projects ... 3-11

About Changing and Testing Metadata .. 3-12
About Multiuser Development Menu Options .. 3-12

About Closing a Repository Before Publishing It to the Network 3-13
Checking In Multiuser Development Repository Projects... 3-13

About the Multiuser Development Merge Process.. 3-14
How are Multiuser Merges Different from Standard Repository Merges?..................... 3-15

Checking In Projects ... 3-15
Tracking Changes to the Master Repository ... 3-17

Branching in Multiuser Development .. 3-17
About Branching ... 3-17
Using the Multi-Team, Multi-Release Model in Oracle Business Intelligence....................... 3-19
Synchronizing RPD Branches.. 3-19

Viewing and Deleting History for Multiuser Development .. 3-19
Viewing Multiuser Development History... 3-20
Deleting Multiuser Development History... 3-21

Setting Multiuser Development Options... 3-21

4 Importing Metadata and Working with Data Sources

Creating New Oracle BI Repository Files.. 4-1
Performing Data Source Preconfiguration Tasks... 4-2

Setting Up ODBC Data Source Names (DSNs).. 4-3
Setting Up Oracle Database Data Sources .. 4-4
Setting Up Oracle OLAP Data Sources ... 4-4
Setting Up Oracle TimesTen In-Memory Database Data Sources .. 4-4

Avoiding Query Failures Due to Limited Connections with TimesTen Data Sources 4-5
Setting Up Essbase Data Sources ... 4-6

Updating Essbase Information in opmn.xml.. 4-6
Adding Essbase Information to bi-init.cmd.. 4-7

Setting Up Hyperion Financial Management Data Sources .. 4-7
Setting Up SAP/BW Data Sources ... 4-10
Setting Up Oracle RPAS Data Sources... 4-10

Importing Metadata from Relational Data Sources ... 4-10
About the Map to Logical Model and Publish to Warehouse Screens.................................... 4-13

Importing Metadata from Multidimensional Data Sources ... 4-14
About Importing Metadata from Oracle RPAS Data Sources .. 4-18

Importing Metadata from XML Data Sources ... 4-19
About Using XML as a Data Source ... 4-19
Importing Metadata from XML Data Sources Using the XML Gateway 4-20

Examples of XML Documents Generated by the Oracle BI Server XML Gateway........ 4-23
Accessing HTML Tables ... 4-28

vi

Importing Metadata from XML Data Sources Using XML ODBC .. 4-29
Example of an XML ODBC Data Source .. 4-30

Examples of XML Documents... 4-31
Using a Standby Database with Oracle Business Intelligence .. 4-34

About Using a Standby Database with Oracle Business Intelligence 4-34
Creating the Database Object for the Standby Database Configuration................................. 4-35
Creating Connection Pools for the Standby Database Configuration..................................... 4-36
Updating Write-Back Scripts in a Standby Database Configuration....................................... 4-38
Setting Up Usage Tracking in a Standby Database Configuration.. 4-38
Setting Up Event Polling in a Standby Database Configuration.. 4-39
Setting Up Oracle BI Scheduler in a Standby Database Configuration 4-39

5 Working with ADF Business Component Data Sources

What Are ADF Business Components? ... 5-1
About Operational Reporting with ADF Business Components.. 5-2

What Happens During Import? ... 5-2
About Specifying a SQL Bypass Database.. 5-3
Setting Up ADF Business Component Data Sources .. 5-3

Creating a WebLogic Domain .. 5-4
Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server................................ 5-4
Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper 5-5
Setting Up a JDBC Data Source in the WebLogic Server ... 5-8
Setting the Logging Level for the Deployed Application in Oracle WebLogic Server 5-8

Importing Metadata from ADF Business Component Data Sources ... 5-9
Enabling the Ability to Pass Custom Parameters to the ADF Application................................ 5-11
Propagating Labels and Tooltips from ADF Business Component Data Sources.................... 5-11

What are Labels and Tooltips? .. 5-12
About the Session Variable Naming Scheme for UI Hints ... 5-12
About Determining the Physical Column for a Presentation Column 5-13
Initializing Session Variables Automatically for Propagating UI Hints 5-14
Example of Using UI Hints From an Oracle ADF Data Source When Creating Analyses... 5-14
Using XML Code in Initialization Blocks to Query UI Hints ... 5-15

6 Setting Up Database Objects and Connection Pools

Setting Up Database Objects ... 6-1
About Database Types in the Physical Layer... 6-1
Creating a Database Object Manually in the Physical Layer... 6-2

When to Allow Direct Database Requests by Default ... 6-3
Specifying SQL Features Supported by a Data Source... 6-4

About Connection Pools ... 6-5
About Connection Pools for Initialization Blocks ... 6-6

Creating or Changing Connection Pools ... 6-6
Setting Connection Pool Properties in the General Tab ... 6-7

Common Connection Pool Properties in the General Tab.. 6-7
Multidimensional Connection Pool Properties in the General Tab.................................. 6-12

Setting Connection Pool Properties in the Connection Scripts Tab... 6-14
Setting Connection Pool Properties in the XML Tab ... 6-16

vii

Setting Connection Pool Properties in the Write Back Tab... 6-17
Setting Connection Pool Properties in the Miscellaneous Tab ... 6-19

Setting Up Persist Connection Pools ... 6-21
About Setting the Buffer Size and Transaction Boundary .. 6-22

7 Working with Physical Tables, Cubes, and Joins

Working with the Physical Diagram .. 7-2
Creating Physical Layer Folders .. 7-4

Creating Physical Layer Catalogs and Schemas.. 7-4
Creating Catalogs.. 7-4
Creating Schemas.. 7-5

Using a Variable to Specify the Name of a Catalog or Schema... 7-5
Setting Up Display Folders in the Physical Layer... 7-5

Working with Physical Tables ... 7-6
About Tables in the Physical Layer ... 7-6
About Physical Alias Tables ... 7-8
Creating and Managing Physical Tables and Physical Cube Tables 7-10

Creating or Editing Physical Tables .. 7-10
Creating Alias Tables... 7-12
Setting Physical Table Properties for XML Data Sources .. 7-12
About the Calc Scripts Tab for Essbase Data Sources .. 7-12

Creating and Managing Columns and Keys for Relational and Cube Tables 7-12
Creating and Editing a Column in a Physical Table... 7-13
Specifying a Primary Key for a Physical Table.. 7-14
Deleting Physical Columns for All Data Sources.. 7-14

Viewing Data in Physical Tables or Columns... 7-14
Working with Multidimensional Sources in the Physical Layer ... 7-15

About Physical Cube Tables.. 7-15
About Measures in Multidimensional Data Sources ... 7-15

About Externally Aggregated Measures .. 7-16
Working with Physical Dimensions and Physical Hierarchies .. 7-16

Working with Physical Dimension Objects ... 7-17
Working with Physical Hierarchy Objects ... 7-17

Adding or Removing Cube Columns in a Hierarchy.. 7-18
Working with Cube Variables for SAP/BW Data Sources ... 7-19
Viewing Members in Physical Cube Tables .. 7-20

Working with Essbase Data Sources ... 7-21
About Using Essbase Data Sources with Oracle Business Intelligence................................... 7-21

About Incremental Import.. 7-23
Working with Essbase Alias Tables.. 7-24

Determining the Value to Use for Display... 7-24
Explicitly Defining Columns for Each Alias .. 7-24

Modeling User-Defined Attributes... 7-25
Associating Member Attributes to Dimensions and Levels ... 7-25
Modeling Alternate Hierarchies ... 7-25
Modeling Measure Hierarchies... 7-27
Improving Performance by Using Unqualified Member Names .. 7-27

viii

Working with Hyperion Financial Management Data Sources ... 7-28
About Query Support for Hyperion Financial Management Data Sources 7-29

Working with Oracle OLAP Data Sources ... 7-30
About Importing Metadata from Oracle OLAP Data Sources ... 7-30
Working with Oracle OLAP Analytic Workspace (AW) Objects... 7-31
Working with Oracle OLAP Dimensions, Hierarchies, and Levels .. 7-31
Working with Oracle OLAP Cubes and Columns ... 7-33

Working with Physical Foreign Keys and Joins .. 7-33
About Physical Joins ... 7-34

About Primary Key and Foreign Key Relationships .. 7-34
About Complex Joins .. 7-34
About Multi-Database Joins ... 7-35
About Fragmented Data ... 7-35

Defining Physical Joins with the Physical Diagram... 7-36
Defining Physical Joins with the Joins Manager ... 7-37

Deploying Opaque Views ... 7-38
About Deploying Opaque Views.. 7-38
Deploying Opaque View Objects.. 7-38

Using the Create View SELECT Statement .. 7-39
Undeploying a Deployed View... 7-40
When to Delete Opaque Views or Deployed Views .. 7-41
When to Redeploy Opaque Views.. 7-41

Using Hints... 7-41
How to Use Oracle Hints ... 7-42

About the Index Hint .. 7-42
About the Leading Hint .. 7-42

About Performance Considerations for Hints .. 7-42
Creating Hints.. 7-42

Displaying and Updating Row Counts for Physical Tables and Columns................................ 7-43

8 Working with Logical Tables, Joins, and Columns

Creating the Business Model and Mapping Layer .. 8-1
Creating Business Models... 8-2
Automatically Creating Business Model Objects .. 8-2

Automatically Creating Business Model Objects for Multidimensional Data Sources 8-2
Duplicating a Business Model and Subject Area... 8-3

Working with the Business Model Diagram... 8-3
Creating and Managing Logical Tables ... 8-4

Creating Logical Tables ... 8-5
Creating and Managing Logical Table Sources .. 8-6

Specifying a Primary Key in a Logical Table ... 8-6
Reviewing Foreign Keys for a Logical Table.. 8-6

Defining Logical Joins... 8-6
Defining Logical Joins with the Business Model Diagram .. 8-7
Defining Logical Joins with the Joins Manager ... 8-8

Creating Logical Joins with the Joins Manager .. 8-8
Creating Logical Foreign Key Joins with the Joins Manager.. 8-9

ix

Specifying a Driving Table .. 8-10
Identifying Physical Tables That Map to Logical Objects ... 8-11

Creating and Managing Logical Columns.. 8-11
Creating Logical Columns ... 8-12
Basing the Sort for a Logical Column on a Different Column.. 8-12
Enabling Double Column Support by Assigning a Descriptor ID Column 8-13
Creating Derived Columns.. 8-13

Configuring Logical Columns for Multicurrency Support.. 8-14
Setting Default Levels of Aggregation for Measure Columns ... 8-15

Setting Up Dimension-Specific Aggregate Rules for Logical Columns........................... 8-16
Defining Aggregation Rules for Multidimensional Data Sources.................................... 8-18

Associating an Attribute with a Logical Level in Dimension Tables 8-19
Moving or Copying Logical Columns ... 8-20

Enabling Write Back On Columns ... 8-21
Setting Up Display Folders in the Business Model and Mapping Layer 8-22
Modeling Bridge Tables ... 8-23

Creating Joins in the Physical Layer for Bridge and Associated Dimension Tables............. 8-24
Modeling the Associated Dimension Tables in a Single Dimension 8-24
Modeling the Associated Dimension Tables in Separate Dimensions 8-25

9 Working with Logical Dimensions

Creating and Managing Dimensions with Level-Based Hierarchies... 9-2
About Level-Based Hierarchies ... 9-2

Using Dimension Hierarchy Levels in Level-Based Hierarchies... 9-4
Manually Creating Dimensions, Levels, and Keys with Level-Based Hierarchies 9-4

Creating Dimensions in Level-Based Hierarchies.. 9-5
Creating Logical Levels in a Dimension.. 9-5
Associating a Logical Column and Its Table with a Dimension Level 9-6
Identifying the Primary Key for a Dimension Level ... 9-9
Selecting and Sorting Chronological Keys in a Time Dimension 9-10
Adding a Dimension Level to the Preferred Drill Path.. 9-10

Automatically Creating Dimensions with Level-Based Hierarchies....................................... 9-10
Populating Logical Level Counts Automatically ... 9-12

Creating and Managing Dimensions with Parent-Child Hierarchies .. 9-13
About Parent-Child Hierarchies ... 9-13

About Levels and Distances in Parent-Child Hierarchies ... 9-14
About Parent-Child Relationship Tables.. 9-15
About Parent-Child Hierarchies Populated with Preaggregated Data 9-16

Creating Dimensions with Parent-Child Hierarchies.. 9-17
Defining Parent-Child Relationship Tables... 9-18

Adding the Parent-Child Relationship Table to the Model... 9-20
Maintaining Parent-Child Hierarchies Based on Relational Tables 9-21

Modeling Time Series Data... 9-21
About Time Series Functions... 9-21

About the AGO Function.. 9-22
About the TODATE Function .. 9-23
About the PERIODROLLING Function ... 9-24

x

Creating Logical Time Dimensions .. 9-25
Selecting the Time Option in the Logical Dimension Dialog .. 9-26
Setting Chronological Keys for Each Level .. 9-26

Creating AGO, TODATE, and PERIODROLLING Measures .. 9-27

10 Managing Logical Table Sources (Mappings)

Creating Logical Table Sources... 10-1
Setting Priority Group Numbers for Logical Table Sources ... 10-2

Defining Physical to Logical Table Source Mappings and Creating Calculated Items 10-4
Unmapping a Logical Column from Its Source.. 10-6

Defining Content of Logical Table Sources ... 10-6
Verifying that Joins Exist from Dimension Tables to Fact Table.. 10-7
About WHERE Clause Filters ... 10-10

Working with Parent-Child Settings in the Logical Table Source... 10-10
Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data 10-11
Setting Up Fragmentation Content for Aggregate Navigation .. 10-12

Specifying Fragmentation Content for Single Column, Value-Based Predicates................ 10-12
Specifying Fragmentation Content for Single Column, Range-Based Predicates 10-12

Specifying Multicolumn Content Descriptions ... 10-13
Specifying Parallel Content Descriptions... 10-13

Examples of Parallel Content Descriptions... 10-14
Specifying Unbalanced Parallel Content Descriptions... 10-15

Specifying Fragmentation Content for Aggregate Table Fragments..................................... 10-15
Specifying the Aggregate Table Content.. 10-16
Defining a Physical Layer Table with a Select Statement to Complete the Domain.... 10-17
Specifying the SQL Virtual Table Content ... 10-17
Creating Physical Joins for the Virtual Table... 10-17

11 Creating and Maintaining the Presentation Layer

Creating and Customizing the Presentation Layer... 11-1
Creating Subject Areas ... 11-2

Automatically Creating Subject Areas Based on Logical Stars and Snowflakes 11-2
Removing Unneeded or Unwanted Columns .. 11-3
Renaming Presentation Columns to User-Friendly Names.. 11-4
Exporting Logical Keys in the Subject Area .. 11-4
Setting an Implicit Fact Column in the Subject Area ... 11-4
Maintaining the Presentation Layer ... 11-4

Working with Subject Areas ... 11-5
Working with Presentation Tables and Columns ... 11-6

Creating and Managing Presentation Tables .. 11-6
Nesting Folders in Answers ... 11-7

Creating and Managing Presentation Columns ... 11-7
Working with Presentation Hierarchies and Levels ... 11-8

Creating and Managing Presentation Hierarchies ... 11-9
Modeling Dimensions with Multiple Hierarchies in the Presentation Layer 11-10
Editing Presentation Hierarchy Objects ... 11-11

Creating and Managing Presentation Levels .. 11-11

xi

Setting Permissions for Presentation Layer Objects .. 11-12
Generating a Permission Report for Presentation Layer Objects... 11-14
Sorting Columns in the Permissions Dialog ... 11-14

Creating Aliases (Synonyms) for Presentation Layer Objects ... 11-14

12 Creating and Persisting Aggregates for Oracle BI Server Queries

About Aggregate Persistence in Oracle Business Intelligence .. 12-1
Identifying Query Candidates for Aggregation.. 12-2
Using the Aggregate Persistence Wizard to Generate the Aggregate Specification 12-3
Writing the Create Aggregates Specification Manually .. 12-6

What Constraints Are Imposed During the Create Process?.. 12-7
How to Write the Create Aggregates Specification ... 12-8
Adding Surrogate Keys to Dimension Aggregate Tables ... 12-8

About the Create/Prepare Aggregates Syntax.. 12-9
About Surrogate Key Output from Create/Prepare Aggregates 12-9

Running the Aggregate Specification Against the Oracle BI Server .. 12-10
Troubleshooting Aggregate Persistence.. 12-10

13 Applying Data Access Security to Repository Objects

About Data Access Security .. 13-1
Where Do I Find Information About Security Tasks? ... 13-2

Setting Up Row-Level Security .. 13-3
Setting Up Row-Level Security (Data Filters) in the Repository.. 13-3
Setting Up Row-Level Security in the Database... 13-6

Setting Up Object Permissions ... 13-8
About Permission Inheritance for Users and Application Roles ... 13-10

Setting Query Limits .. 13-12
Accessing the Query Limits Functionality in the Administration Tool 13-12
Limiting Queries By the Number of Rows Received... 13-12
Limiting Queries By Maximum Run Time and Restricting to Particular Time Periods..... 13-13
Allowing or Disallowing Direct Database Requests.. 13-13
Allowing or Disallowing the Populate Privilege.. 13-14

About Applying Data Access Security in Offline Mode ... 13-14
Setting Up Placeholder Application Roles for Offline Repository Development 13-15

About the List of Users in the Administration Tool ... 13-16

14 Completing Oracle BI Repository Setup

Configuring the Repository for Oracle Scorecard and Strategy Management 14-1
Saving the Repository and Checking Consistency... 14-2
Testing and Refining the Repository... 14-3
Making the Repository Available for Queries .. 14-5
Creating Data Source Connections to the Oracle BI Server for Client Applications............... 14-5
Publishing to the User Community ... 14-5

xii

15 Setting Up Data Sources on Linux and UNIX

About Setting Up Data Sources on Linux and UNIX ... 15-1
Configuring Data Source Connections Using Native Gateways ... 15-2

Troubleshooting OCI Connections ... 15-4
About Updating Row Counts in Native Databases ... 15-5

Using DataDirect Connect ODBC Drivers on Linux and UNIX .. 15-6
Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server Database 15-6
Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database 15-8
Configuring the DataDirect Connect ODBC Driver for Informix Database 15-9

Configuring Database Connections Using Native ODBC Drivers ... 15-10
Configuring Oracle RPAS ODBC Data Sources on AIX UNIX .. 15-11
Configuring Essbase Data Sources on Linux and UNIX ... 15-12
Configuring DB2 Connect on IBM z/OS and s/390 Platforms.. 15-13

16 Managing Oracle BI Repository Files

Comparing Repositories .. 16-1
Turning Off Compare Mode.. 16-3

Equalizing Objects .. 16-3
About Equalizing Objects .. 16-3
Using the Equalize Objects Dialog ... 16-4
Using the equalizerpds Utility .. 16-5

About Values for TypeName ... 16-6
Merging Repositories ... 16-8

Performing Full Repository Merges ... 16-8
About Full Repository Merges... 16-8
Performing Full Repository Merges With a Common Parent... 16-10
Performing Full Repository Merges Without a Common Parent 16-15

Performing Patch Merges .. 16-16
About Patch Merges .. 16-16
Generating a Repository Patch... 16-18
Applying a Repository Patch ... 16-19

Using patchrpd to Apply a Patch... 16-20
Querying and Managing Repository Metadata... 16-21

Querying the Repository.. 16-21
Constructing a Filter for Query Results.. 16-23

Querying Related Objects .. 16-25
Changing the Repository Password... 16-26

17 Using Expression Builder and Other Utilities

Using Expression Builder .. 17-1
About the Expression Builder Dialogs... 17-1
About the Expression Builder Toolbar... 17-3
About the Categories in the Category Pane .. 17-4
Setting Up an Expression ... 17-5

Navigating Within Expression Builder... 17-6
Building an Expression ... 17-6

xiii

About the INDEXCOL Conversion Function .. 17-7
Using Administration Tool Utilities .. 17-7

Using the Replace Column or Table Wizard... 17-7
Using the Oracle BI Event Tables Utility ... 17-10
Using the Externalize Strings Utility.. 17-10
Using the Rename Wizard ... 17-11
Using the Update Physical Layer Wizard ... 17-12
Generating Documentation of Repository Mappings ... 17-13
Generating a Metadata Dictionary ... 17-14
Removing Unused Physical Objects... 17-15
Persisting Aggregates ... 17-15

Using the Calculation Wizard ... 17-15

18 Using Variables in the Oracle BI Repository

About Repository Variables .. 18-1
About Static Repository Variables.. 18-2
About Dynamic Repository Variables ... 18-2

Creating Repository Variables .. 18-3
Using Repository Variables in Expression Builder .. 18-3

About Session Variables .. 18-4
About System Session Variables ... 18-4
About Nonsystem Session Variables.. 18-6

Creating Session Variables .. 18-6
Working with Initialization Blocks ... 18-7

About Using Initialization Blocks with Variables .. 18-7
Initializing Dynamic Repository Variables .. 18-8
Initializing Session Variables ... 18-8
About Row-Wise Initialization .. 18-8

Initializing a Variable with a List of Values.. 18-9
Creating Initialization Blocks .. 18-10

Assigning a Name and Schedule to Initialization Blocks .. 18-10
Selecting and Testing the Data Source and Connection Pool.. 18-11

Examples of Initialization Strings... 18-13
Testing Initialization Blocks .. 18-14

Associating Variables with Initialization Blocks .. 18-15
Establishing Execution Precedence .. 18-16
When Execution of Session Variable Initialization Blocks Cannot Be Deferred.................. 18-17
Enabling and Disabling Initialization Blocks.. 18-17

A Managing the Repository Lifecycle in a Multiuser Development Environment

Planning Your Multiuser Development Deployment.. A-1
About Business Organization and Governance Process Best Practices A-2
About Technical Team Roles and Responsibilities .. A-2

Multiuser Development Architecture ... A-4
About Multiuser Development Concepts.. A-4
About Multiuser Development Styles.. A-6

xiv

Multiuser Development Sandbox Architecture.. A-9
Multiuser Development and Lifecycle Management Architecture ... A-11

Understanding the Multiuser Development Environment .. A-13
About Multiuser Development Environment Task Flow ... A-14
About Multiuser Development Projects .. A-14
How to Create Branches... A-16

How to Create a Main Branch.. A-16
How to Create a Side Branch.. A-16
How to Create a Delegated Administration Branch... A-18

Which Merge Utility Should I Use?.. A-18
MUD Tips and Best Practices.. A-19

Best Practices for Branching .. A-20
Best Practices for Setting Up Projects ... A-20
Best Practices for Three-Way Merges... A-21
Best Practices for MUD Merges .. A-21
Best Practices for Two-Way Merges ... A-22
Best Practices for Production Migration .. A-23
Best Practices for Application Roles and Users .. A-24

Troubleshooting Multiuser Development.. A-24

B MUD Case Study: Eden Corporation

About the Eden Corporation Fictional Case Study .. B-1
Phase I - Initiating Multiuser Development (MUD) .. B-3

Starting Initiative S.. B-4
Setting Up MUD Projects ... B-5
First Developer Checks Out... B-6
Second Developer Checks Out.. B-8
First Developer Checks In.. B-9
Second Developer Checks In ... B-10
MUD Administrator Test Migration Activities .. B-10
Phase I Testing... B-11
Phase I Migration to Production ... B-11
Phase I Summary... B-12

Phase II - Branching, Fixing, and Patching .. B-12
Setting Up the Second Branch ... B-13
Developers Check Out Projects... B-13
Patch Fix for the Main Branch ... B-13
Finishing and Merging Phase II Branch... B-16
Phase II Summary ... B-16

Phase III - Independent Semantic Model Development ... B-17
Security Considerations for Multiple Independent Semantic Models B-17
Sales Semantic Model Developers Check Out .. B-18
HR Semantic Model Developer Builds Content ... B-18
Phase III Summary.. B-19

C Logical SQL Reference

SQL Syntax and Semantics.. C-2

xv

Syntax and Usage Notes for the SELECT Statement ... C-2
Basic Syntax for the SELECT Statement ... C-3
Usage Notes .. C-3
Subquery Support .. C-3
SELECT List Syntax ... C-4
FROM Clause Syntax... C-4
WHERE Clause Syntax.. C-4
GROUP BY Clause Syntax.. C-5
ORDER BY Clause Syntax .. C-5

Syntax and Usage Notes for SELECT_PHYSICAL .. C-5
Syntax for the SELECT_PHYSICAL Statement ... C-6
Aggregate Functions Not Supported in SELECT_PHYSICAL Queries............................. C-6
Queries Supported by SELECT_PHYSICAL ... C-7
Using the NATURAL_JOIN Keyword ... C-8
Special Usages of SELECT_PHYSICAL.. C-9

Rules for Queries with Aggregate Functions.. C-9
Computing Aggregates of Baseline Columns.. C-9
Computing Aggregates of Measure Columns... C-11
Display Function Reset Behavior... C-12
Alternative Syntax ... C-13
Using FILTER to Compute a Conditional Aggregate... C-13

Operators.. C-14
SQL Logical Operators .. C-14
Mathematical Operators ... C-15

Conditional Expressions .. C-15
CASE (Switch) .. C-15
CASE (If).. C-16

Expressing Literals .. C-17
Character Literals... C-17
Datetime Literals .. C-18
Numeric Literals .. C-18

Integer Literals .. C-18
Decimal Literals .. C-18
Floating Point Literals .. C-19

Calculated Members ... C-19
CALCULATEDMEMBER Syntax .. C-19
Rules for the CALCULATEDMEMBER Expression ... C-20
Using Solve Order to Control Formula Evaluation Sequence... C-21
Examples of Calculated Members in Queries.. C-22

Variables ... C-23
Aggregate, Running Aggregate, and Time Series Functions .. C-24

Aggregate Functions... C-24
AGGREGATE AT... C-25
AVG ... C-25
AVGDISTINCT .. C-26
BOTTOMN.. C-26
COUNT.. C-26

xvi

COUNTDISTINCT... C-26
COUNT(*) ... C-26
FIRST.. C-27
GROUPBYCOLUMN .. C-27
GROUPBYLEVEL .. C-28
LAST .. C-28
MAX... C-28
MEDIAN ... C-29
MIN .. C-29
NTILE .. C-29
PERCENTILE.. C-29
RANK .. C-30
STDDEV .. C-30
STDDEV_POP .. C-30
SUM ... C-31
SUMDISTINCT... C-31
TOPN ... C-31

Running Aggregate Functions .. C-31
MAVG.. C-32
MSUM.. C-32
RSUM... C-33
RCOUNT... C-34
RMAX .. C-34
RMIN ... C-35

Time Series Functions... C-35
AGO ... C-36

Determining the Level Used by the AGO Function .. C-36
PERIODROLLING... C-37

Determining the Level Used by the PERIODROLLING Function C-38
TODATE.. C-38

String Functions... C-39
ASCII ... C-39
BIT_LENGTH .. C-40
CHAR.. C-40
CHAR_LENGTH... C-40
CONCAT.. C-40
INSERT ... C-41
LEFT .. C-41
LENGTH... C-42
LOCATE ... C-42
LOCATEN.. C-43
LOWER... C-43
OCTET_LENGTH ... C-43
POSITION .. C-44
REPEAT .. C-44
REPLACE ... C-44
RIGHT... C-45

xvii

SPACE... C-45
SUBSTRING ... C-46
TRIMBOTH .. C-46
TRIMLEADING... C-46
TRIMTRAILING.. C-46
UPPER... C-47

Math Functions .. C-47
ABS .. C-48
ACOS .. C-48
ASIN.. C-48
ATAN.. C-48
ATAN2.. C-48
CEILING... C-49
COS.. C-49
COT ... C-49
DEGREES ... C-49
EXP .. C-49
EXTRACTBIT... C-50
FLOOR .. C-50
LOG ... C-50
LOG10 ... C-50
MOD.. C-51
PI .. C-51
POWER ... C-51
RADIANs ... C-51
RAND ... C-51
RANDFROMSEED.. C-52
ROUND .. C-52
SIGN.. C-52
SIN... C-52
SQRT ... C-53
TAN... C-53
TRUNCATE ... C-53

Calendar Date/Time Functions ... C-53
CURRENT_DATE ... C-54
CURRENT_TIME .. C-54
CURRENT_TIMESTAMP .. C-54
DAY_OF_QUARTER.. C-55
DAYNAME .. C-55
DAYOFMONTH ... C-55
DAYOFWEEK.. C-55
DAYOFYEAR... C-56
HOUR ... C-56
MINUTE ... C-56
MONTH.. C-56
MONTH_OF_QUARTER... C-56
MONTHNAME... C-57

xviii

NOW ... C-57
QUARTER_OF_YEAR.. C-57
SECOND... C-57
TIMESTAMPADD .. C-57
TIMESTAMPDIFF... C-59
WEEK_OF_QUARTER... C-60
WEEK_OF_YEAR.. C-60
YEAR... C-61

Conversion Functions... C-61
CAST ... C-61
CHOOSE... C-62
IFNULL... C-62
INDEXCOL .. C-62

Example With Hierarchy Levels.. C-63
TO_DATETIME... C-64
VALUEOF .. C-65

Database Functions ... C-65
EVALUATE.. C-66
EVALUATE_ANALYTIC .. C-67
EVALUATE_AGGR.. C-67
EVALUATE_PREDICATE... C-68

Hierarchy Navigation Functions .. C-69
ISANCESTOR .. C-69
ISCHILD ... C-70
ISDESCENDANT .. C-71
ISLEAF.. C-72
ISPARENT.. C-73
ISROOT... C-74

System Functions... C-75
USER ... C-75
DATABASE.. C-76

D Merge Rules

General Merge Rules and Behavior... D-1
Special Merge Algorithms for Logical Table Sources and Other Objects D-4

Merging Objects that Use the Vector Merge Algorithm.. D-4
Merging Logical Table Sources ... D-6
Merging Security Filters ... D-6
Inferring the Use Logical Column Property for Presentation Columns D-6
Merging Aliases... D-7

E Deleting Unwanted Objects from the Repository

About the Object Pruning Utility .. E-1
Using the Object Pruning Utility ... E-1

Creating the Input File.. E-1
Running the Prune Utility.. E-2

Log File .. E-3

xix

Error Log File.. E-3
Deletion Rules for the Object Pruning Utility .. E-3

F Exchanging Metadata with Databases to Enhance Query Performance

About Exchanging Metadata with Databases.. F-1
Generating the Import File .. F-1

Running the Generator... F-2
About the Metadata Input File .. F-4
About the Output Files... F-5
Troubleshooting Errors from the Generator ... F-5
Metadata Conversion Rules and Error Messages... F-6

Conversion Rules for Oracle Databases.. F-6
Conversion Rules for IBM DB2 Databases ... F-7

Using Materialized Views in the Oracle Database with Oracle Business Intelligence F-10
About Using the SQL Access Advisor with Materialized Views... F-10
Deploying Metadata for Oracle Database ... F-11

Executing the SQL File for Oracle Database .. F-11
Defining Constraints for the Existence of Joins ... F-11
Creating the Query Workload.. F-12
Creating Materialized Views.. F-13

Using IBM DB2 Cube Views with Oracle Business Intelligence .. F-14
About Using IBM DB2 Cube Views with Oracle Business Intelligence.................................. F-14
Deploying Cube Metadata... F-15

Executing the Alias-SQL File for IBM Cube Views... F-15
Importing the XML File .. F-15

Guidelines for Importing the XML File Using the IBM OLAP Center F-15
Guidelines for Changing Cube Metadata After Importing the XML File F-16

Guidelines for Creating Materialized Query Tables (MQTs).. F-16

G Administration Tool Keyboard Shortcuts

Menu Keyboard Shortcuts... G-1
Dialog Keyboard Shortcuts ... G-2
Physical Diagram and Business Model Diagram Keyboard Shortcuts .. G-3

Glossary

Index

xx

xxi

Preface

The Oracle Business Intelligence Foundation Suite is a complete, open, and integrated
solution for all enterprise business intelligence needs, including reporting, ad hoc
queries, OLAP, dashboards, scorecards, and what-if analysis. The Oracle Business
Intelligence Foundation Suite includes Oracle Business Intelligence Enterprise Edition.

Oracle Business Intelligence Enterprise Edition (Oracle BI EE) is a comprehensive set
of enterprise business intelligence tools and infrastructure, including a scalable and
efficient query and analysis server, an ad-hoc query and analysis tool, interactive
dashboards, proactive intelligence and alerts, and an enterprise reporting engine.

The components of Oracle BI EE share a common service-oriented architecture, data
access services, analytic and calculation infrastructure, metadata management
services, semantic business model, security model and user preferences, and
administration tools. Oracle BI EE provides scalability and performance with
data-source specific optimized request generation, optimized data access, advanced
calculation, intelligent caching services, and clustering.

This guide contains information about building an Oracle Business Intelligence
metadata repository and includes topics on setting up and connecting to data sources,
building the Physical layer, Business Model and Mapping layer, and Presentation
layer, how to use the multiuser development environment, and a Logical SQL
reference.

Audience
This document is intended for anyone who intends to design and build a metadata
repository using the Oracle Business Intelligence Administration Tool, such as a
Business Intelligence strategist, metadata provider, or ETL developer.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

xxii

Related Documents
For more information, see the following documents in the Oracle Business Intelligence
Enterprise Edition 11g Release 1 (11.1.1) documentation set:

■ The Oracle Business Intelligence chapter in Oracle Fusion Middleware Release Notes
for your platform

■ Oracle Fusion Middleware Installation Guide for Oracle Business Intelligence

■ Oracle Fusion Middleware Upgrade Guide for Oracle Business Intelligence

■ Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition

■ Oracle Fusion Middleware Enterprise Deployment Guide for Oracle Business Intelligence

■ Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise
Edition

■ Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise
Edition

■ Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise
Edition

■ Oracle Fusion Middleware Developer's Guide for Oracle Business Intelligence Enterprise
Edition

■ Oracle Fusion Middleware Scheduling Jobs Guide for Oracle Business Intelligence
Enterprise Edition

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxiii

New Features for Oracle BI Metadata
Repository Builders

This preface describes changes to metadata repository features for Oracle Business
Intelligence Enterprise Edition 11g Release 1 (11.1.1). If you are upgrading to Oracle BI
EE from a previous release, read the following information carefully, because there are
significant differences in features, tools, and procedures.

This preface contains the following topics:

■ New Features for Oracle BI EE 11g Release 1 (11.1.1.5)

■ New Features for Oracle BI EE 11g Release 1 (11.1.1.3)

New Features for Oracle BI EE 11g Release 1 (11.1.1.5)
This section contains the following topics:

■ New Features

■ Upgrade Considerations

New Features
New metadata repository features in Oracle BI EE 11g Release 1 (11.1.1.5) include:

■ Access to Oracle OLAP Data Sources

■ Access to TimesTen Data Sources

■ Ability to Connect to SAP/BW Data Sources Using a Native Connection

■ New Diagramming Capability

■ Validation Utility to Validate Metadata Objects in a Repository

Access to Oracle OLAP Data Sources
Oracle BI EE now supports Oracle OLAP as a data source. See "Working with Oracle
OLAP Data Sources" for more information.

Access to TimesTen Data Sources
Oracle BI EE now supports Oracle TimesTen In-Memory Database as a data source.
See "Setting Up Oracle TimesTen In-Memory Database Data Sources" for more
information.

xxiv

Ability to Connect to SAP/BW Data Sources Using a Native Connection
You can now use the SAP BW Native connection option to connect to SAP/BW data
sources over BAPI. See "Setting Up SAP/BW Data Sources" for more information.

New Diagramming Capability
The Physical and Business Model Diagrams have enhanced capabilities in this release,
including an improved look-and-feel, the ability to display columns in table objects in
the diagram, and new diagram options like auto-layout, marquee zoom, and zoom to
fit. See "Using the Physical and Business Model Diagrams" for more information.

Validation Utility to Validate Metadata Objects in a Repository
Oracle BI EE now includes a validation utility to validate metadata objects. See "Using
the validaterpd Utility to Check Repository Consistency" for more information.

Upgrade Considerations
Be aware of the following upgrade considerations when upgrading to Oracle BI EE 11g
Release 1 (11.1.1.5):

■ Joins in the Physical and Business Model Diagrams are represented by a line with
an arrow at the "one" end of the join, rather than the line with crow’s feet at the
"many" end of the join that was used in previous releases.

For example, the following image shows a join in the diagram as it was
represented in previous releases:

This join is represented as follows in 11g Release 1 (11.1.1.5):

■ When creating joins in the Physical and Business Model Diagrams, you now select
the "many" end of the join first, and then select the "one" end of the join. In
previous releases, joins in the diagrams were created by selecting the "one" end of
the join first.

This new gesture direction (from many to one) matches the direction of the new
join arrow, described in the previous bullet.

■ The Consistency Check Manager now provides a warning when the same
connection pool is being used for both queries and for initialization blocks. This
configuration is not recommended. Instead, create a dedicated connection pool for
initialization blocks. Otherwise, query performance might suffer, or user logins
might hang if authorization initialization blocks cannot run. These warnings
appear similar to the following:

[39062] Initialization Block 'Authorization' uses Connection Pool '"My_DB".
"My_CP"' which is used for report queries. This may impact query performance.

For more information about upgrading to Oracle BI EE 11g, see Oracle Fusion
Middleware Upgrade Guide for Oracle Business Intelligence.

xxv

New Features for Oracle BI EE 11g Release 1 (11.1.1.3)
This section contains the following topics:

■ New Features

■ Upgrade Considerations

New Features
New metadata repository features in Oracle BI EE 11g Release 1 (11.1.1.3) include:

■ New SampleApp.rpd Demonstration Repository

■ Hierarchy Objects in the Presentation Layer

■ Support for Unbalanced (Ragged) and Skip-Level Hierarchies

■ Support for Parent-Child Hierarchies

■ Creating Subject Areas for Logical Stars and Snowflakes

■ Multicurrency Support

■ Generating and Applying XML Patch Files

■ Enhancements for Multiuser Development and Repository Lifecycle Management

■ Metadata Repository File Encryption

■ Metadata Repository File Compression

■ Embedded Database Functions

■ SQL Functions for Time Series Calculations and Level-Based Measures

■ Support for SELECT_PHYSICAL

■ Support for Calculated Members

■ Access to Essbase Data Sources

■ Access to Hyperion Financial Management Data Sources

■ Access to ADF Business Component Data Sources

■ Access to Oracle RPAS Data Store Through ODBC

■ Ability to Connect to Oracle Database Through OCI

■ Support for Dragging and Dropping XMLA Objects

■ Support for Using a Standby Database with Oracle Business Intelligence

■ Aggregate Persistence Auto-Indexing

■ Pruning Utility to Delete Unwanted Repository Objects

■ Ability to Defer Execution of Session Variable Initialization Blocks

■ Improved Usability in the Administration Tool

New SampleApp.rpd Demonstration Repository
A new demonstration repository called SampleApp.rpd is available for this release of
Oracle BI EE. This repository provides best practice information about modeling many
different types of objects.

A basic version of SampleApp.rpd, called SampleAppLite.rpd, is automatically
installed as the default repository when you choose the Simple Install option. The full
version of SampleApp.rpd, which contains many additional examples and features, is

xxvi

available on the Oracle Technology Network. See "About the SampleApp.rpd
Demonstration Repository" for more information.

Hierarchy Objects in the Presentation Layer
You can now define presentation hierarchies and presentation levels in the
Presentation layer. These objects provide an explicit way to expose the
multidimensional model in Oracle BI Answers and enables users to create
hierarchy-based queries. Presentation hierarchies expose analytic functionality such as
member selection, custom member groups, and asymmetric queries. See "Working
with Presentation Hierarchies and Levels" for more information.

Support for Unbalanced (Ragged) and Skip-Level Hierarchies
Oracle BI EE now supports unbalanced and skip-level hierarchies. An unbalanced (or
ragged) hierarchy is a hierarchy where the leaves (members with no children) do not
necessarily have the same depth. A skip-level hierarchy is a hierarchy where there are
members that do not have a value for a particular ancestor level. See "About
Level-Based Hierarchies" for more information.

Support for Parent-Child Hierarchies
Oracle BI EE now supports parent-child hierarchies. Parent-child hierarchies (also
called value hierarchies) contain members that all have the same type. For example, an
organizational chart has a distinct parent-child hierarchy, but all members are
employees. See "Creating and Managing Dimensions with Parent-Child Hierarchies"
for more information.

Creating Subject Areas for Logical Stars and Snowflakes
You can automatically create one subject area (formerly called presentation catalog)
for each logical star or logical snowflake in your business model. See "Automatically
Creating Subject Areas Based on Logical Stars and Snowflakes" for more information.

Multicurrency Support
You can configure logical columns so that Oracle BI EE users can select the currency in
which they prefer to view currency columns in analyses and dashboards. See
"Configuring Logical Columns for Multicurrency Support" for more information.

Generating and Applying XML Patch Files
You can now generate an XML patch file that contains only the changes made to a
repository. This patch can be then applied to the old (original) version of the
repository to create the new version. This is very useful for
development-to-production scenarios, and can also be used for Oracle BI Applications
customers to upgrade their repository. See "Performing Patch Merges" for more
information.

You can also use the Oracle BI Server XML utilities to create a generic, XML-based
representation of the Oracle BI repository metadata, on any supported Oracle BI
Server operating system. See "About the Oracle BI Server XML API" in Oracle Fusion
Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information.

Enhancements for Multiuser Development and Repository Lifecycle Management
The following list summarizes improvements and new features for multiuser
development and repository lifecycle management:

xxvii

■ MUD projects now explicitly include subject areas (formerly called presentation
catalogs). Object security permissions no longer affect which presentation objects
are included in a checked-out repository.

■ You can select options in the Merge Repository Wizard or set options in the MUD
options file to automatically check consistency and equalize during merges.

■ Improved Merge Repository Wizard integration enables a single step input for
repositories. You no longer have to select repositories one by one and wait for
them to load.

■ You can now extract objects on all platforms using the command-line utility
extractprojects.

■ The two-way merge feature (full merge without a common parent) enables easier
consolidation of separate repositories.

Metadata Repository File Encryption
Repositories now have a repository password that encrypts the repository contents
using a strong encryption algorithm. This feature ensures that repository metadata is
secure, including data source credentials in connection pool objects. See "Changing the
Repository Password" for more information.

Metadata Repository File Compression
To reduce storage needs, repositories are now stored in a compressed format. Because
of this, you may notice that the size of an RPD file opened and saved in this release is
significantly smaller than the size of RPD files from previous releases. See "About the
Multiuser Development Environment" for more information about using and storing
multiple repositories.

Embedded Database Functions
Users and administrators can create requests by directly calling database functions
from either Oracle BI Answers, or by using a Logical column (in the Logical Table
source) within the metadata repository. These functions provide the ability to access
custom written functions or procedures on the underlying database. Supported
functions include EVALUATE, EVALUATE_AGGR, and EVALUATE_PREDICATE. See
"Database Functions" for more information.

In addition, Evaluate functions can be leveraged significantly for Essbase users. See
"Examples Using EVALUATE_AGGREGATE and EVALUATE to Leverage Unique
Essbase Functions" for more information.

SQL Functions for Time Series Calculations and Level-Based Measures
The following new and revised SQL functions enable users to create time series
calculations and level-based measures:

■ PERIODROLLING is a new function that computes the aggregate of a measure over
the period starting x units of time and ending y units of time from the current
time.

■ AGGREGATE AT is a new function that aggregates columns based on the level or
levels specified.

■ AGO is a time series aggregation function that calculates the aggregated value from
the current time back to a specified time period. In this release, the time_level
argument is optional, and there are additional syntax changes. This function was
called PERIODAGO in a previous release.

xxviii

■ TODATE is a time series aggregation function that aggregates a measure attribute
from the beginning of a specified time period to the currently displayed time. The
syntax for this function has changed in this release. This function was called
PERIODTODATE in a previous release.

See "Aggregate Functions" for more information about these functions. See also
"Modeling Time Series Data" for information about using the time series functions
AGO, TODATE, and PERIODROLLING.

Support for SELECT_PHYSICAL
SELECT_PHYSICAL statements provide the functionality to directly query objects in
the Physical layer of the metadata repository, and to nest such a statement within a
query against the Business Model and Mapping layer or the Presentation layer. See
"Syntax and Usage Notes for SELECT_PHYSICAL" for more information.

Support for Calculated Members
Calculated members are user-defined dimension members whose measure values are
calculated at run time. You can define a calculated member within a dimension
through a formula that references other members of the same dimension. See
"Calculated Members" for more information.

Access to Essbase Data Sources
Oracle BI EE now supports Essbase as a data source. See "Working with Essbase Data
Sources" for more information.

Access to Hyperion Financial Management Data Sources
Oracle BI EE now supports Hyperion Financial Management as a data source. See
"Working with Hyperion Financial Management Data Sources" for more information.

Access to ADF Business Component Data Sources
Oracle BI EE now supports using ADF Business Components as data sources. With
this feature, users can integrate operational reporting with any application that is built
on top of the ADF Framework. See "Working with ADF Business Component Data
Sources" for more information.

Access to Oracle RPAS Data Store Through ODBC
The Oracle BI Server can now access Oracle Retail Predictive Application Server
(RPAS) data stores using the RPAS ODBC driver. See "Setting Up Oracle RPAS Data
Sources" for more information.

Ability to Connect to Oracle Database Through OCI
Administrators can now use the native Oracle Call Interface (OCI) when importing
physical objects from an Oracle Database. Because using OCI is faster than using an
ODBC connection, administrators should always use OCI when importing from or
setting up connections to an Oracle Database. See "Setting Up Oracle Database Data
Sources" for more information.

Support for Dragging and Dropping XMLA Objects
You can now drag and drop XMLA objects (whole XMLA database or cube tables, at
the same time or one by one) into the logical layer to automatically create a consistent
business model. See "Creating the Business Model and Mapping Layer" and
"Automatically Creating Business Model Objects for Multidimensional Data Sources"
for more information.

xxix

Support for Using a Standby Database with Oracle Business Intelligence
You can now use a standby database with Oracle BI EE. A standby database is used
mainly for its high availability and failover functions as a backup for the primary
database. See "Using a Standby Database with Oracle Business Intelligence" for more
information.

Aggregate Persistence Auto-Indexing
For greater performance, Oracle BI EE now creates indexes and statistics on relational
tables when aggregates are persisted. See Chapter 12 for more information about
aggregate persistence.

Pruning Utility to Delete Unwanted Repository Objects
Oracle BI EE now includes a pruning utility to remove unwanted objects from your
repository. This utility is especially useful for Oracle BI Applications customers who
only need to use a subset of the objects included in the shipped Oracle BI Applications
repository. See Appendix E, "Deleting Unwanted Objects from the Repository" for
more information.

Ability to Defer Execution of Session Variable Initialization Blocks
To improve session logon time and save resources, administrators can defer execution
of selected session variable initialization blocks until the associated session variables
are actually used within the session. See "Creating Initialization Blocks" for more
information.

Improved Usability in the Administration Tool
Many Administration Tool screens, wizards, and other parts of the user interface were
updated and streamlined for this release of Oracle BI EE. Updated wizards include the
Create New Repository Wizard, Aggregate Persistence Wizard, and Merge Wizard.
Expression Builder and the Consistency Checker also contain usability enhancements
in this release.

Additional changes include updated and improved icons, a simpler process flow to
create joins, improvements to the Query Repository feature, and a simplified way to
add some repository objects. Also, shortcuts were added to enable keyboard access to
menu options, dialog navigation, and navigation in the Physical and Business Model
Diagrams.

Upgrade Considerations
Be aware of the following upgrade considerations when upgrading to Oracle BI EE 11g
Release 1 (11.1.1.3):

■ You must upgrade your repository files from previous releases before they will
work in this release of Oracle BI EE. See Oracle Fusion Middleware Upgrade Guide for
Oracle Business Intelligence for full information about upgrading a repository from
a previous release.

■ Many configuration settings that affect repository development, including the
default published repository, are now centrally managed in Fusion Middleware
Control. You can no longer manually change these configuration settings in
NQSConfig.INI. See Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition for more information.

■ Be aware of the following security-related changes:

– Repositories now have repository-specific passwords that are used to encrypt
the repository contents. The repository password is stored in an external

xxx

credential store when you publish a repository in Fusion Middleware Control,
so that the Oracle BI Server can retrieve the password to load the repository.
See "Changing the Repository Password" for more information.

Note that a blank repository password is not allowed.

– Groups no longer exist in the repository as objects. Instead, you implement
data access security based on the application roles to which a user belongs.

Application roles are managed in an external policy store. Application role
objects exist in the repository, but these objects are pointers (references) to the
externally managed roles.

– Users are managed in an external authentication provider and are no longer
managed in the repository. User objects exist in the repository, but these
objects are pointers (references) to the externally managed users.

See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise
Edition for information about these and other security changes. See also
Chapter 13, "Applying Data Access Security to Repository Objects" for additional
information.

■ The connection parameters in the default ODBC DSN for the Oracle BI Server are
now centrally managed by Fusion Middleware Control and cannot be manually
changed.

In addition, Oracle BI EE is now deployed in a clustered configuration by default.
Because of this, the default ODBC DSN for the Oracle BI Server points to the
Cluster Controller by default, rather than to the Oracle BI Server.

See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion
Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for
more information about ODBC DSNs for the Oracle BI Server.

■ This release of Oracle BI EE has additional dependencies for a running system,
including:

– The relational database specified upon installation must be running. This
database must contain required Oracle BI EE schemas loaded using the
Repository Creation Utility (RCU).

– Oracle WebLogic Server must be running.

■ You can no longer restart the Oracle BI Server using the Administration Tool in
online mode. Instead, you can restart the Oracle BI Server and other system
processes using Fusion Middleware Control and the Oracle WebLogic Server
Administration Console.

You can also use the BI Systems Management API to programmatically start and
stop Oracle BI EE. This feature is especially helpful for automating rolling restart
of Oracle BI Servers in a cluster, to enable repository upgrade with zero end-user
downtime.

For more information, see "Starting and Stopping Oracle Business Intelligence"
and "Starting and Stopping Oracle Business Intelligence Using the Oracle BI
Systems Management API" in Oracle Fusion Middleware System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition.

■ Before you can run any of the Oracle BI Server command-line utilities, you must
now run bi-init.cmd (or bi-init.sh on UNIX) to launch a command prompt or shell
window that is initialized to your Oracle instance. See "Running bi-init to Launch
a Shell Window Initialized to Your Oracle Instance" for more information.

xxxi

■ If you want to use a net service name in a connection pool for an Oracle Database
data source, you must set up a tnsnames.ora file in the following location within
the Oracle BI EE environment, so that the Oracle BI Server can locate the entry:

ORACLE_HOME/network/admin

■ You can no longer open the Administration Tool by double-clicking a repository
file. The resulting Administration Tool window is not initialized to your Oracle
instance, and errors will result later in your session. Instead, always use the Start
menu to open the Administration Tool, or launch the Administration Tool from
the command line using bi-init.cmd. See "Opening the Administration Tool" for
more information.

■ Presentation catalogs in the Presentation layer are now called subject areas.

■ Static repository variables must now have default initializers that are constant
values. See "About Repository Variables" for more information.

■ If you configured write-back capability in a previous release of Oracle Business
Intelligence, you must now explicitly select the Writeable option for each logical
column for which you want to enable write-back. See "Enabling Write Back On
Columns" for more information.

■ Bridge tables are now identified using repository modeling techniques. They are
no longer identified using the Bridge table option in the Logical Table dialog that
existed in previous releases. Check your repository to ensure that your bridge
tables are modeled appropriately. See "Modeling Bridge Tables" for more
information.

■ You might notice that some queries that used to return one result now return a
different result. This behavior occurs because the determination of which logical
table source to use for a query is now very ordered, whereas in previous releases,
the determination was random. Examine and adjust the modeling to correct the
behavior.

■ In the previous release, if two logical table sources for the same logical table map
to the same physical table, and both logical table sources are used in a query, and
both logical table sources have a WHERE clause filter, then the filter from only one
of the logical table sources was applied. The other WHERE clause filter was
ignored.

In the current release, in this situation, the WHERE clause filters from both logical
table sources are applied to the query. Typically, this behavior produces the
desired results. If you encounter errors related to this issue, you can correct them
by using physical table aliases to ensure that the same physical table is not
mapped to the same logical table at different levels.

■ The Consistency Check Manager now enforces additional validation rules to help
ensure that your repository is consistent. In addition, some rules that existed in
previous releases might now be displayed during consistency checks. The
following table summarizes these rules:

Validation Rule Example Type Description

[14031] The content filter of a source
for logical table: FACT_TABLE_
NAME references multiple
dimensions.

Error The given logical table has a logical table source with a
WHERE clause filter that references multiple dimensions. A
WHERE clause with multiple dimensions is invalid.

xxxii

■ Invalid objects are now deleted during Consistency Checks. This behavior might
result in deleted expressions and filters on logical table sources and logical
columns. Invalid references can occur when objects were deleted in the Physical

[38126] 'Logical Table' '"Technology
- WFA"."Fact WFA WO "' has name
with leading or trailing space(s).

Error Identifies an object with leading or trailing spaces in the object
name.

Repository objects can no longer have leading or trailing spaces
in their names. Leading and trailing spaces in object names can
cause query and reporting issues.

[38012] Logical column DIM_Start_
Date.YEAR_QUARTER_NBR does
not have a physical data type
mapping, nor is it a derived
column.

[38001] Logical column DIM_Start_
Date.YEAR_QUARTER_NBR has
no physical data source mapping.

Error Logical columns that are mapped to logical table sources that
are disabled are reported as consistency errors, because the
logical table source mappings are invalid and would cause
queries to fail.

Both of the given validation rules are related to the same issue.

[39028] The features in Database
'MyDB' do not match the defaults.
This can cause query problems.

Warning Some database feature defaults were changed in this release of
Oracle BI EE. Unless you have specific customizations to your
feature set, it is recommended that you reset your database
features to the new defaults.

[39003] Missing functional
dependency association for column:
DIM_Offer_End_Date.CREATE_
DT.

Warning This warning indicates that the given column is not associated
to any level. When this situation occurs, the column will be
associated by default to the lowest level in the parent
dimension. The warning brings this issue to the repository
developer’s attention in case the default behavior is not
desired.

[39009] Logical fact table MY_FACT
has an aggregate source MY_
FACT.YRLY_SUM that does not
join to a Dimension: Hier - Time
source at the proper level of detail.

[39055] Fact table "HR"."FACT - HC
Budget" is not joined to tables in
logical dimension "HR"."DIM - HR
EmployeeDim". This will cause
problems when extracting
project(s).

[39059] Logical dimension table
MY_DIM has a source MY_DIM_
DAILY at level Daily that joins to a
higher level fact source MY_FACT_
SUM.MTHLY_SUM

Warning Even though this fact logical table source has an aggregate
grain set in this dimension, no valid physical join was found
that connects to any logical table source in this dimension.

This means that either no join exists at all, or it does exist but is
invalid because it connects a higher-level fact source to a
lower-level dimensional source. Such joins are invalid and
ignored by the Oracle BI Server because, if followed, they
would lead to double counting in query answers.

For example, consider Select year, yearlySales. Even if a join
exists between monthTable and yearlySales table on yearId, it
cannot be used because such a join would overstate the results
by a factor of 12 (the number of months in each year).

All three of the given validation rules are related to the same
issue.

[39054] Fact table "Sales -
STAR"."Fact - STAR Statistics" is not
joined to logical dimension table
"Sales - STAR"."Dim - Plan". This
will cause problems when
extracting project(s).

Warning This warning indicates that the aggregation content filter
"Group by Level" in the logical table source of a fact table
references logical dimension tables that are not joined to that
fact table. If that fact table is extracted in the extract/MUD
process, the dimensions that are not joined will not be
extracted. In this case, the aggregation content of the extracted
logical table source would not be the same as in the original
logical table source.

[39057] There are physical tables
mapped in Logical Table Source
""HR"."Dim - Schedule"."SCH_
DEFN"" that are not used in any
column mappings or expressions.

Warning This warning indicates that the given logical table source has
irrelevant tables added that are not used in any mapping. This
situation will not cause any errors.

Validation Rule Example Type Description

xxxiii

layer without properly accounting for the references in the Business Model and
Mapping layer objects.

■ See "About Converting Older Projects During Repository Upgrade" for
information about how projects are upgraded when you upgrade a repository
from Oracle BI EE versions before 10.1.3.2.

■ The environment variable OBIS_Essbase_CustomGroup_Generation, used in
previous releases to customize the use of custom group syntax with Essbase, has
been replaced by a new database feature called PERF_CUSTOM_GROUP_
GENERATION_MODE. This database feature impacts how custom group syntax
is generated on Essbase and other multidimensional sources. The set of valid
values is the same as for the environment variable (0-2).

■ The environment variable OBIS_Essbase_NonEmptyTuples_
Generation.Database.Catalog.CubeTable, used in previous releases to resolve issues
with large query sets, has been replaced by a new database feature called PERF_
PREFER_SUPPRESS_EMPTY_TUPLES. This database feature controls whether
empty tuples with empty cell values are eliminated. Note that this database
feature does not change the null suppression behavior on the final result set.

For more information about upgrading to Oracle BI EE 11g, see Oracle Fusion
Middleware Upgrade Guide for Oracle Business Intelligence.

xxxiv

1

Introduction to Building Your Metadata Repository 1-1

1Introduction to Building Your Metadata
Repository

This chapter explains how to plan and design your metadata repository, including
how to plan your business model, how to work with the physical content for your
business model, and general repository design guidelines.

To effectively plan and build your metadata repository, you need to have experience
with SQL queries and be familiar with reporting and analysis. You should also have
experience with industry-standard data warehouse modeling practices, and be
familiar with general relational entity-relationship modeling.

This chapter contains the following topics:

■ About Oracle BI Server and Oracle BI Repository Architecture

■ Planning Your Business Model

■ Identifying the Data Source Content for the Physical Layer

■ Guidelines for Designing a Repository

■ Topics of Interest in Other Guides

■ System Requirements and Certification

About Oracle BI Server and Oracle BI Repository Architecture
The architecture of the Oracle BI Server and the Oracle BI repository provides a layer
of abstraction that lets users send simple Logical SQL queries against complex
federated data sources.

This section contains the following topics:

■ About Oracle BI Server Architecture

■ About Layers in the Oracle BI Repository

About Oracle BI Server Architecture
The Oracle BI Server is an Oracle Business Intelligence component that processes user
requests and queries underlying data sources. The Oracle BI Server maintains the
logical data model and provides client access to this model through ODBC.

The Oracle BI Server uses the metadata in the Oracle BI repository to perform the
following two tasks:

■ Interpret Logical SQL queries and write corresponding physical queries against
the appropriate data sources

About Oracle BI Server and Oracle BI Repository Architecture

1-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Transform and combine the physical result sets and perform final calculations

The Oracle BI Server connects to the underlying data sources through either ODBC or
through native APIs, such as OCI for Oracle Database.

The Administration Tool client is a Windows application that you can use to create
and edit your Oracle BI repository. The Administration Tool can connect directly to
the repository in offline mode, or it can connect to the repository through the Oracle BI
Server. Some options are only available in online mode. See "Using Online and Offline
Repository Modes" for more information.

Figure 1–1 shows how the Oracle BI Server interacts with query clients, data sources,
the Oracle BI repository, and the Administration Tool.

Figure 1–1 Oracle BI Server Architecture

Example 1–1 shows how the Oracle BI Server interprets and converts Logical SQL
queries.

Example 1–1 Logical Requests Are Transformed Into Complex Physical Queries

Assume the Oracle BI Server receives the following simple client request:

SELECT
"D0 Time"."T02 Per Name Month" saw_0,
"D4 Product"."P01 Product" saw_1,
"F2 Units"."2-01 Billed Qty (Sum All)" saw_2
FROM "Sample Sales"
ORDER BY saw_0, saw_1

The Oracle BI Server can then convert the Logical SQL query into a sophisticated
physical query, as follows:

WITH SAWITH0 AS (
select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,

sum(T835.Units) as c3, T879.Prod_Key as c4
from

Product T879 /* A05 Product */ ,
Time_Mth T986 /* A08 Time Mth */ ,
FactsRev T835 /* A11 Revenue (Billed Time Join) */

where (T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid)

About Oracle BI Server and Oracle BI Repository Architecture

Introduction to Building Your Metadata Repository 1-3

group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month
)
select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3
from SAWITH0
order by c1, c2

About Layers in the Oracle BI Repository
An Oracle BI repository has the following layers:

■ Physical layer. This layer defines the objects and relationships that the Oracle BI
Server needs to write native queries against each physical data source. You create
this layer by importing tables, cubes, and flat files from your data sources.

Separating the logical behavior of the application from the physical model
provides the ability to federate multiple physical sources to the same logical
object, enabling aggregate navigation and partitioning, as well as dimension
conformance and isolation from changes in the physical sources. This separation
also enables the creation of portable BI Applications.

■ Business Model and Mapping layer. This layer defines the business or logical
model of the data and specifies the mapping between the business model and the
physical schemas. This layer determines the analytic behavior seen by users, and
defines the superset of objects and relationships available to users. It also hides the
complexity of the source data models.

Each column in the business model maps to one or more columns in the Physical
layer. At run time, the Oracle BI Server evaluates Logical SQL requests against the
business model, and then uses the mappings to determine the best set of physical
tables, files, and cubes for generating the necessary physical queries. The
mappings often contain calculations and transformations, and might combine
multiple physical tables.

■ Presentation layer. This layer provides a way to present customized, secure,
role-based views of a business model to users. It adds a level of abstraction over
the Business Model and Mapping layer and provides the view of the data seen by
users building requests in Presentation Services and other clients.

You can create multiple subject areas in the Presentation layer that map to a single
business model, effectively breaking up the business model into manageable
pieces.

Before you build any repository layers in the Administration Tool, it is important to
create a high-level design of the Business Model and Mapping layer based on the
analytic requirements of your users. After you have a conceptual design to work
toward, you can then build your metadata objects.

The typical order is to create the Physical layer objects first, the Business Model and
Mapping layer objects next, and the Presentation layer objects last. However, you can
work on each layer at any stage. After you complete all three layers, you can set up
security when you are ready to begin testing the repository.

Figure 1–2 shows how a Logical SQL query traverses the layers of an Oracle BI
repository.

Planning Your Business Model

1-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 1–2 Logical SQL Query Traversing the Layers in an Oracle BI Repository

Note that a single Oracle BI repository can contain two or more independent semantic
models, rather than a single, integrated, enterprise-wide model. A semantic model
consists of one business model, its related objects in the Presentation and Physical
layers, and additional related objects like variables, initialization blocks, and
application roles. A semantic model is also known as a Common Enterprise
Information Model.

See also Figure A–4 for a visual representation of multiple semantic models.

Planning Your Business Model
Planning your business model is the first step in developing a usable data model for
decision support. After you have followed the planning guidelines in this section, you
can begin to create your repository.

Analyzing Your Business Model Requirements
Your first task is to thoroughly understand your business model requirements. You
must first understand what business model you want to build before you can
determine what the Physical layer needs to have in it.

In a decision support environment, the objective of data modeling is to design a model
that presents business information in a manner that parallels business analysts'
understanding of the business structure. A successful model allows the query process
to become a natural process by enabling analysts to structure queries in the same
intuitive fashion as they would ask business questions. This model must be one that
business analysts inherently understand and that answers meaningful questions
correctly.

Unlike visual SQL tools such as Oracle BI Publisher, the business model defines the
analytic behavior of your BI application. In contrast, the Physical layer only provides
the components used to assemble a physical query mapped from business model logic.

Planning Your Business Model

Introduction to Building Your Metadata Repository 1-5

This requires breaking down your business into several components to answer the
following questions:

■ What kinds of business questions are analysts trying to answer?

■ What are the measures required to understand business performance?

■ What are all the dimensions under which the business operates? Or, in other
words, what are the dimensions used to break down the measurements and
provide headers for the reports?

■ Are there hierarchical elements in each dimension, and what types of relationships
define each hierarchy?

After you have answered these questions, you can identify and define the elements of
your business model.

Identifying the Content of the Business Model
To determine what content to include in your business model, you must first identify
the logical columns on which users need to query. Then, to establish the role played by
each column, identify whether it is a measure column or a dimensional attribute.
Finally, arrange the logical columns in a dimensional model based on the relevant
roles, relationships between columns, and logic.

Businesses are analyzed by relevant dimensional criteria, and the business model is
developed from these relevant dimensions. These dimensional models form the basis
of the valid business models to use with the Oracle BI Server.

Although not all dimensional models are built around a star schema, it is a best
practice to use a simple star schema in the business model layer. In other words, the
dimensional model should represent some measurable facts that are viewed in terms
of various dimensional attributes.

After you analyze your business model requirements, you need to identify the specific
logical tables and hierarchies that you need to include in your business model.

This section contains the following topics:

■ Identifying Logical Fact Tables

■ Identifying Logical Dimension Tables

■ Identifying Dimensions

■ Identifying Lookup Tables

Identifying Logical Fact Tables
Logical fact tables in the Business Model and Mapping layer contain measures that
have aggregations built into their definitions. Logical fact tables are different from
physical fact tables in relational models, which instead define facts at the lowest grain
of the table.

Measures aggregated from facts must be defined in a logical fact table. Measures are
typically calculated data such as dollar value or quantity sold, and they can be
specified in terms of dimensions. For example, you might want to determine the sum
of dollars for a given product in a given market over a given time period.

Each measure has its own aggregation rule such as SUM, AVG, MIN, or MAX. A business
might want to compare values of a measure and need a calculation to express the
comparison. Also, aggregation rules can be specific to particular dimensions. The
Oracle BI Server lets you define complex, dimension-specific aggregation rules.

Planning Your Business Model

1-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

You do not explicitly label tables in the Business Model and Mapping layer as fact
tables or dimension tables. Rather, the Oracle BI Server treats tables at the "one" end of
a join as dimension tables, and tables at the "many" end of a join as fact tables.

Figure 1–3 illustrates the many-to-one joins to a fact table in a Business Model
Diagram. In the diagram, all joins have an arrow (indicating the one side) pointing
away from the Fact-Pipeline table; no joins are pointing to it. For an example of this in
a business model, open a repository in the Administration Tool, right-click a fact table,
and select Business Model Diagram > Whole Diagram.

Figure 1–3 Diagram of Fact Table Joins

Identifying Logical Dimension Tables
A business uses facts to measure performance by well-established dimensions, for
example, by time, product, and market. Every dimension has a set of descriptive
attributes. Dimension tables contain attributes that describe business entities (such as
Customer Name, Region, Address, Country and so on). Dimension tables also contain
primary keys that identify each member. Unlike logical fact tables, which are different
from physical fact tables in relational models, logical dimension tables behave very
much like relational dimension tables.

Dimension table attributes provide context to numeric data, such as being able to
categorize Service Requests. Attributes stored in this dimension might include Service
Request Owner, Area, Account, Priority, and so on.

Dimensions in the business model are conformed dimensions. In other words, even if
a particular data source has five different instances of a particular Customer table, the
business model should only have one table. To achieve this, all five physical source
instances of Customer are mapped to a single Customer logical table, with
transformations in the logical table source as necessary. Conformed dimensions hide
the complexity of the Physical layer from users and enable you to combine data from
multiple fact sources at different grains. They also enable you to federate multiple data
sources.

Also note that dimension and level keys in the business model should be business
keys rather than generated surrogate keys. In other words, use "Customer Name" with
values like "Oracle" instead of "Customer Key" with values like "1076823." Using
business keys in the business model ensures that all sources for that dimension can be

Planning Your Business Model

Introduction to Building Your Metadata Repository 1-7

conformed to the same logical dimension table with the same logical key and level
key.

Although generated surrogate keys can still exist in the Physical layer, where they are
useful for their query performance advantages on joins, you typically do not have
surrogate key columns in the Business Model and Mapping layer at all.

Identifying Dimensions
Dimensions are categories of attributes by which the business is defined. Common
dimensions are time periods, products, markets, customers, suppliers, promotion
conditions, raw materials, manufacturing plants, transportation methods, media types,
and time of day. Within a given dimension, there may be many attributes. For
example, the time period dimension can contain the attributes day, week, month,
quarter, and year. Exactly what attributes a dimension contains depends on the way
the business is analyzed.

Dimensions typically contain hierarchies, which are sets top-down relationships
between members within a dimension. There are two types of hierarchies: level-based
hierarchies (structure hierarchies), and parent-child hierarchies (value hierarchies).
Level-based hierarchies are those in which members of the same type occur only at a
single level, while members in parent-child hierarchies all have the same type. Oracle
Business Intelligence also supports a special type of level-based dimension, called a
time dimension, that provides special functionality for modeling time series data.

In level-based hierarchies, levels roll up from lower level to higher level; for example,
months can roll up into a year. These rollups occur over the hierarchy elements and
span natural business relationships.

In parent-child hierarchies, the business relationships occur between different
members of the same real-world type, such as the manager-employee relationship in
an organizational hierarchy tree. Parent-child hierarchies do not have explicitly named
levels. There is no limit to the number of implicit levels in a parent-child hierarchy.

To define your hierarchies, you define the "contains" relationships in your business
(geographical, product, time, and so on) to drive rollup aggregations in all
calculations, as well as drill-down navigation in reports and dashboards. For example,
if month rolls up into year and an aggregate table exists at the month level, that table
can be used to answer questions at the year level by adding up all of the month-level
data for a year.

It is important to use the right type of hierarchy for your needs. To determine which
type to use, consider the following:

■ Are all the members of the same type (such as employee, assembly, or account), or
are they of different types that naturally fall into levels (such as
year-quarter-month, continent-country-state/province, or brand-line-product)?

■ Do members have the same set of attributes? For example, in a parent-child
hierarchy like Employees, all members might have a Hire Date attribute. In a
level-based hierarchy like Time, however, the Day type might have a Holiday
attribute, while Month does not.

■ Are the levels fixed at design time (year-quarter-month), or can run-time business
transactions add or subtract levels? For example, a level could be added when the
current lowest-level employee hires a subordinate, who then becomes the new
lowest level.

■ Are there constraints in your primary data source that require a certain hierarchy
type? If your primary data source is modeled in one way or the other, you might

Identifying the Data Source Content for the Physical Layer

1-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

need to use the same hierarchy type in your business model, regardless of other
factors.

See Chapter 9, "Working with Logical Dimensions" for more information.

About Dimensions with Multiple Hierarchies Sometimes, dimensions can contain multiple
hierarchies. For example, time dimensions often have one hierarchy for the calendar
year, and another hierarchy for the fiscal year. Note that dimensions with multiple
hierarchies must always end with the same leaf table.

Figure 1–4 shows a dimension with multiple hierarchies in the Business Model and
Mapping layer of the Administration Tool.

Figure 1–4 Dimension with Multiple Hierarchies

Identifying Lookup Tables
When you need to display translated field information from multilingual schemas,
you create a logical lookup table that corresponds to a lookup table in the Physical
layer. A lookup table stores multilingual data corresponding to rows in the base tables.
Before you can use a particular logical lookup table, you must designate it as a lookup
table in the General tab of the Logical Table dialog. See "Localizing Oracle Business
Intelligence" in Oracle Fusion Middleware System Administrator's Guide for Oracle
Business Intelligence Enterprise Edition for more information about localization and
lookup tables.

In addition to localization, lookup tables can be used any time you need to display one
set of values to users, while using a different, corresponding set of values in the
physical query. If necessary, the human-readable value can be looked up in a
completely different data source.

Identifying the Data Source Content for the Physical Layer
After you have determined the requirements for your business model, you can look at
what data source content you need in the Physical layer. Unlike the Business Model
and Mapping layer, which is always dimensional, each physical model mirrors the
shape of the source (for example, normalized, cube, and so on).

This section contains the following topics:

Identifying the Data Source Content for the Physical Layer

Introduction to Building Your Metadata Repository 1-9

■ About Types of Physical Schemas in Relational Data Sources

■ About Cubes in Multidimensional Data Sources

■ Identifying the Data Source Table Structure

About Types of Physical Schemas in Relational Data Sources
You can successfully model any physical schema in the Oracle BI repository,
regardless of its type, because the model of any physical source can be broken down
into overlapping subsets that are dimensional.

There are four types of physical schemas (models):

■ Star Schemas. A star schema is a set of dimensional schemas (stars) that each have
a single fact table with foreign key join relationships to several dimension tables.
When you map a star to the business model, you first map the physical fact
columns to one or more logical fact tables. Then, for each physical dimension table
that joins to the physical fact table for that star, you map the physical dimension
columns to the appropriate conformed logical dimension tables.

■ Snowflake Schemas. A snowflake schema is similar to a star schema, except that
each dimension is made up of multiple tables joined together. Like star schemas,
you first map the physical fact columns to one or more logical tables. Then, for
each dimension, you map the snowflaked physical dimension tables to a single
logical table. You can achieve this by either having multiple logical table sources,
or by using a single logical table source with joins.

■ Normalized Schemas. Normalized schemas distribute data entities into multiple
tables to minimize data storage redundancy and optimize data updates. Before
mapping a normalized schema to the business model, you need to understand
how the distributed structure can be understood in terms of facts and dimensions.

After analyzing the structure, you pick a table that has fact columns and then map
the physical fact columns to one or more logical fact tables. Then, for each
dimension associated with that set of physical fact columns, you map the
distributed physical tables containing dimensional columns to a single logical
table. Like with snowflake schemas, you can achieve this by having multiple
logical table sources, or by using a single logical table source with joins. Mapping
normalized schemas is an iterative process because you first map a certain set of
facts, then the associated dimensions, and then you move on to the next set of
facts.

Note that when a single physical table has both fact and dimension columns, you
may need to create a physical alias table to handle the multiple roles played by
that table.

■ Fully Denormalized Schemas. This type of dimensional schema combines the
facts and dimensions as columns in one table (or flat file), and is mapped
differently than other types of schemas. When you map a fully denormalized
schema to the star-shaped business model, you map the physical fact columns
from the single physical fact table to multiple logical fact tables in the business
model. Then, you map the physical dimension columns to the appropriate
conformed logical dimension tables.

About Cubes in Multidimensional Data Sources
Cubes are made up of measures and organized by dimensions. Because they are
already dimensional, each cube maps easily to the logical fact and dimension tables in
the business model.

Guidelines for Designing a Repository

1-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Note the following about measures and dimensions:

■ Measures in multidimensional cubes and relational fact columns both map to
logical measures in the Business Model and Mapping layer. However, measures in
multidimensional cubes already include calculations and aggregations, unlike
relational fact columns, which require the calculations and aggregations to be
applied in the business model. Rather than treating cubes like relational sources,
the Oracle BI Server can take advantage of the pre-aggregated data and powerful
calculations in the cube.

■ Multidimensional physical objects and relational physical objects both map to
logical dimensions in the Business Model and Mapping layer. However,
dimensional and hierarchical semantics are already built into multidimensional
data sources, unlike relational sources. The Oracle BI Server can take advantage of
the more complete hierarchy and dimensional support in the cube, both during
import and at query time.

Identifying the Data Source Table Structure
The Administration Tool provides an interface to map logical tables to the underlying
physical tables in your data sources. Before you can map the tables, you need to
identify the contents of the physical data sources as it relates to your business model.
To do this correctly, you need to identify the following contents of the physical data
source:

■ Identify the contents of each table

■ Identify the detail level for each table

■ Identify the table definition for each aggregate table. This lets you set up aggregate
navigation. The following detail is required by the Oracle BI Server:

– The columns by which the table is grouped (the aggregation level)

– The type of aggregation (SUM, AVG, MIN, MAX, or COUNT)

For information on how to set up aggregate navigation in a repository, see
Chapter 10.

■ Identify the contents of each column

■ Identify how each measure is calculated

■ Identify the joins defined in the database

To acquire this information about the data, you could refer to any available
documentation that describes the data elements created when the data source was
implemented, or you might need to spend some time with the DBA for each data
source to get this information. To fully understand all the data elements, you might
also need to ask people in the organization who are users of the data, owners of the
data, or the application developers of applications that create the data.

Guidelines for Designing a Repository
After analyzing your business model needs and identifying the database content your
business needs, you can complete your repository design. This section contains some
design best practices that can help you implement a more efficient repository.

Typically, you should not make performance tuning changes until you have imported
and tested your databases. These tasks are performed during the final steps in

Guidelines for Designing a Repository

Introduction to Building Your Metadata Repository 1-11

completing the setup of your repository. For more information about these final steps,
see Chapter 14.

This section contains the following topics:

■ General Tips for Working on the Repository

■ Design Tips for the Physical Layer

■ Design Tips for the Business Model and Mapping Layer

■ Design Tips for the Presentation Layer

General Tips for Working on the Repository
Follow these recommended design strategies for structuring your Oracle BI repository:

■ If you work in online mode, save backups of the online repository before and after
every completed unit of work. If needed, use Copy As on the File menu to make
an offline copy containing the changes.

■ Use the Physical Diagrams in the Administration Tool to verify sources and joins.

■ Decide whether you want to set up row-level security controls in the database, or
in the repository. This decision determines whether you share connection pools
and cache, and may limit the number of separate source databases you want to
include in your deployment. See Chapter 13, "Applying Data Access Security to
Repository Objects" for more information.

Most dialogs in the Administration Tool have Help that provides information about
how to complete a task. To access a help topic, click the Help button in a dialog, or
select Help from some menus.

Design Tips for the Physical Layer
The Physical layer contains information about the physical data sources. The most
common way to create the schema in the Physical layer is by importing metadata from
databases and other data sources. If you import metadata, many of the properties are
configured automatically based on the information gathered during the import
process. You can also define other attributes of the physical data source, such as join
relationships, that might not exist in the data source metadata.

The Physical layer can contain data sources of many different types, including
multidimensional, relational, and XML sources. See "System Requirements and
Certification" for information about supported databases.

For each data source, there is at least one corresponding connection pool. The
connection pool contains data source name (DSN) information used to connect to a
data source, the number of connections allowed, timeout information, and other
connectivity-related administrative details. See "About Connection Pools" for more
information.

The following is a list of tips to use when designing the Physical layer:

■ It is recommended that you use table aliases frequently in the Physical layer to
eliminate extraneous joins, including the following:

– Eliminate all physical joins that cross dimensions (inter-dimensional circular
joins) by using aliases.

– Eliminate all circular joins (intra-dimensional circular joins) in a logical table
source in the Physical Model by creating physical table aliases.

Guidelines for Designing a Repository

1-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

For example, say you have a Customer table that can be used to look up
ship-to addresses, and using a different join, to look up bill-to addresses.
Avoid the circular joins by aliasing the table in the Physical layer so that there
is one instance for each purpose, with separate joins.

If you do not eliminate circular joins, you might get erroneous report results. In
addition, query performance might be negatively impacted.

■ You might import some tables into the Physical layer that you might not use right
away, but that you do not want to delete. To identify tables that you do want to
use right away in the Business Model and Mapping layer, you can assign aliases to
physical tables before mapping them to the business model layer.

■ An opaque view (a Physical layer table that consists of a SELECT statement)
should be used only if there is no other solution to your modeling problem.
Ideally, a physical table should be created, or alternatively a materialized view.
Opaque views prevent the Oracle BI Server from generating its own optimized
SQL, because they contain fixed SQL statements that are sent to the underlying
data source.

Design Tips for the Business Model and Mapping Layer
The Business Model and Mapping layer organizes information by business model. In
this layer, each business model is effectively a separate application.

The logical schema defined in each business model must contain at least two logical
tables. Relationships need to be defined between all the logical tables. See "About
Layers in the Oracle BI Repository" for more information about business model
schemas. See Chapter 8 for more information about setting up the Business Model and
Mapping layer.

The following is a list of tips to use when designing the Business Model and Mapping
layer:

■ Create the business model with one-to-many logical joins between logical
dimension tables and the fact tables wherever possible. The business model
should ideally resemble a simple star schema in which each fact table is joined
directly to its dimensions.

■ Every logical fact table must join to at least one logical dimension table. Note that
when the source is a fully denormalized table or flat file, you must map its
physical fact columns to one or more logical fact tables, and its physical dimension
columns to logical dimension tables.

■ Every logical dimension table should have a dimensional hierarchy associated
with it. This rule holds true even if the hierarchy has only one level, such as a
scenario dimension {actual, forecast, plan}.

■ When creating level-based measures, make sure that all appropriate fact sources
map to the appropriate level in the hierarchy using aggregation content. You set
up aggregation content in the Levels tab of the Logical Column dialog for the
measure. Note that this is different from the Content tab of the Logical Table
Source dialog, which is used to specify the grain of the source tables to which it
maps.

Note: To have the name of a table to which you assigned an alias
appear, select Display original name for alias in diagrams in Tools >
Options > General.

Guidelines for Designing a Repository

Introduction to Building Your Metadata Repository 1-13

You only need to set up aggregation content in the Levels tab of the Logical
Column dialog for level-based measures. For measures that are not level based,
leave the Logical Level field blank.

■ Typically, logical fact tables should not contain any keys. The only exception is
when you need to send Logical SQL queries against the Oracle BI Server from a
client that requires keys. In this case, you need to expose those keys in both the
logical fact tables, and in the Presentation layer.

■ Normally, all columns in logical fact tables are aggregated measures, except for
keys required by external clients, or dummy columns used as a divider. Other
non-aggregated columns should instead exist in a logical dimension table.

■ In some situations, you might want to have multiple logical fact tables in a single
business model. For Logical SQL queries, the multiple logical fact tables behave as
if they are one table.

Reasons to have multiple logical fact tables include:

– To assign projects. See "Setting Up Projects" for more information.

– To automatically create small subject areas in the Presentation layer. See
"Automatically Creating Subject Areas Based on Logical Stars and Snowflakes"
for more information.

– For organization and simplicity of understanding.

Unlike relational fact tables, logical fact tables can contain measures of different
grains. Because of this, grain is not a reason to split up logical fact tables.

■ You can define calculations in either of the following ways:

– Before the aggregation, in the logical table source. For example:

sum(col_A *(col_B))

– After the aggregation, in a logical column derived from two other logical
columns. For example:

sum(col A) * sum(col B)

You can also define post-aggregation calculations in Answers or in Logical SQL
queries.

■ If you plan to use Oracle Scorecard and Strategy Management, it is a best practice
to implement at least one time dimension in the Oracle BI repository you are using
for your KPIs. This action is necessary because you use KPIs in scorecards to
measure progress and performance over time. Note that an individual scorecard
automatically picks up any dimension used by KPIs in that scorecard.

■ Aggregate sources should be created as separate logical table sources. For fact
aggregates, use the Content tab of the Logical Table Source dialog to assign the
correct logical level to each dimension.

■ Each dimension level in a hierarchy must have a unique level key. Also, each
logical dimension table must have a unique primary key. Normally, this key is
also used as the level key for the lowest hierarchy level.

■ Renaming columns in the Business Model and Mapping layer automatically
creates aliases (synonyms) for Presentation layer columns that have the property
Use Logical Column Name selected.

■ To prevent problems with aggregate navigation, ensure that each logical level of a
dimension hierarchy contains the correct value in the field named Number of

Guidelines for Designing a Repository

1-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

elements at this level. Fact sources are selected on a combination of the fields
selected as well as the levels in the dimensions to which they map. By adjusting
these values, you can alter the fact source selected by the Oracle BI Server. See
"Creating Logical Levels in a Dimension" for more information about setting this
value.

Modeling Outer Joins
The following guidelines provide tips on how to model outer joins:

■ Due to the nature of outer joins, queries that use them are usually slower. Because
of this, define outer joins only when necessary. Where possible, use ETL
techniques to eliminate the need for outer joins in the reporting SQL.

■ Outer joins are always defined in the Business Model and Mapping layer. Physical
layer joins do not specify inner or outer.

■ You can define outer joins by using logical table joins, or in logical table sources.
Which type of outer join you use is determined by whether the physical join maps
to a business model join, or to a logical table source join.

■ Be aware that outer joins in logical table sources are always included in a query,
even if the none of the columns in one of the mapped physical tables are used.

For example, assume that a logical table source is mapped to physical tables A and
B. When no outer joins are defined, if physical table A is not required to satisfy a
request, it is not included in the physical query. However, if the logical table
source has an outer join defined to table A, table A is still included in the physical
query, even if only physical table B is required to satisfy the request.

■ If you must define an outer join, try to create two separate dimensions, one that
uses the outer join and one that does not. Make sure to name the dimension with
the outer join in a way that clearly identifies it, so that client users can use it as
little as possible.

Design Tips for the Presentation Layer
You set up the user view of a business model in the Presentation layer. The names of
folders and columns in the Presentation layer can appear in localized language
translations. The Presentation layer is the appropriate layer in which to set user
permissions. For complete information about working in the Presentation layer, see
Chapter 11.

In this layer, you can do the following:

■ You can show fewer columns than exist in the Business Model and Mapping layer.
For example, you can exclude the key columns because they have no business
meaning.

■ You can organize columns using a different structure from the table structure in
the Business Model and Mapping layer.

■ You can display column names that are different from the column names in the
Business Model and Mapping layer.

■ You can set permissions to grant or deny users access to individual subject areas,
tables, and columns.

■ You can export logical keys to ODBC-based query and reporting tools.

■ You can create multiple subject areas for a single business model.

Topics of Interest in Other Guides

Introduction to Building Your Metadata Repository 1-15

■ You can create a list of aliases (synonyms) for presentation objects that can be used
in Logical SQL queries. This feature lets you change presentation column names
without breaking existing reports.

The following is a list of tips to use when designing the Presentation layer:

■ Because there is no automatic way to synchronize all changes between the
Business Model and Mapping layer and the Presentation layer, it is best to wait
until the Business Model and Mapping layer is relatively stable before adding
customizations in the Presentation layer.

■ There are many ways to create subject areas, such as dragging and dropping the
entire business model, dragging and dropping incremental pieces of the model, or
automatically creating subject areas based on logical stars or snowflakes. See
"Creating Subject Areas" for information about each of these methods. Dragging
and dropping incrementally works well if certain parts of your business model are
still changing.

■ It is a best practice to rename objects in the Business Model and Mapping layer
rather than the Presentation layer, for better maintainability. Giving user-friendly
names to logical objects rather than presentation objects ensures that the names
can be reused in multiple subject areas. Also, it ensures that the names persist
even when you need to delete and re-create subject areas to incorporate changes to
your business model.

■ Be aware that members in a presentation hierarchy are not visible in the
Presentation layer. Instead, you can see hierarchy members in Answers.

■ You can use the Administration Tool to update Presentation layer metadata to
give the appearance of nested folders in Answers. See "Nesting Folders in
Answers" for more information.

■ When setting up data access security for a large number of objects, consider
setting object permissions by role rather than setting permissions for individual
columns. See Chapter 13, "Applying Data Access Security to Repository Objects"
for details.

■ When setting permissions on presentation objects, you can change the default
permission by setting the DEFAULT_PRIVILEGES configuration setting in the
NQSConfig.INI file. See Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition for more information.

Topics of Interest in Other Guides
Some topics that may be of interest to metadata repository builders are covered in
other guides. Table 1–1 lists these topics, and indicates where to go for more
information.

Table 1–1 Topics Covered in Other Guides

Topic Where to Go for More Information

Starting and stopping Oracle
Business Intelligence processes

Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition

Using the Oracle BI Server XML
API to work with your
repository

Oracle Fusion Middleware Integrator's Guide for Oracle
Business Intelligence Enterprise Edition

Using the Oracle BI Server Web
services

Oracle Fusion Middleware Integrator's Guide for Oracle
Business Intelligence Enterprise Edition

System Requirements and Certification

1-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

System Requirements and Certification
Refer to the system requirements and certification documentation for information
about hardware and software requirements, platforms, databases, and other
information. Both of these documents are available on Oracle Technology Network
(OTN).

The system requirements document covers information such as hardware and
software requirements, minimum disk space and memory requirements, and required
system libraries, packages, or patches:

http://www.oracle.com/technology/software/products/ias/files/fus
ion_requirements.htm

The certification document covers supported installation types, platforms, operating
systems, databases, JDKs, and third-party products:

http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.html

Setting up and managing query
caching

Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition

Managing configuration settings
that affect repository
development in Fusion
Middleware Control and
NQSConfig.INI

Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition

Managing users, groups, and
application roles

Oracle Fusion Middleware Security Guide for Oracle Business
Intelligence Enterprise Edition

Moving from test to production
environments

Oracle Fusion Middleware Administrator's Guide

Setting up DSNs for the Oracle
BI Server

Oracle Fusion Middleware Integrator's Guide for Oracle
Business Intelligence Enterprise Edition

Localizing Oracle Business
Intelligence deployments

Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition

Information about the SA System
subject area

Oracle Fusion Middleware Scheduling Jobs Guide for Oracle
Business Intelligence Enterprise Edition

Managing logging Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition

Managing usage tracking Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition

General information about
managing Oracle WebLogic
Server

Oracle Fusion Middleware Administrator's Guide

Table 1–1 (Cont.) Topics Covered in Other Guides

Topic Where to Go for More Information

2

Before You Begin 2-1

2Before You Begin

This chapter provides an overview of the Administration Tool, and explains other
concepts that you need to know before beginning to build your metadata repository.

This chapter contains the following topics:

■ About the Oracle BI Administration Tool

■ About the Oracle BI Server Command-Line Utilities

■ About Options in Fusion Middleware Control and NQSConfig.INI

■ About the SampleApp.rpd Demonstration Repository

■ Using Online and Offline Repository Modes

■ Checking the Consistency of a Repository or a Business Model

About the Oracle BI Administration Tool
The Oracle BI Administration Tool is a Windows application that you can use to create
and edit repositories.

This section describes the Administration Tool main window, how to set preferences,
Administration Tool menus, and other related information.

This section contains the following topics:

■ Opening the Administration Tool

■ About the Administration Tool Main Window

■ Setting Preferences

■ About Administration Tool Menus

■ Using the Physical and Business Model Diagrams

■ Editing, Deleting, and Reordering Objects in the Repository

■ About Naming Requirements for Repository Objects

■ Using the Browse Dialog to Browse for Objects

■ Changing Icons for Repository Objects

■ Sorting Objects in the Administration Tool

■ About Features and Options for Oracle Marketing Segmentation

About the Oracle BI Administration Tool

2-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Opening the Administration Tool
To open the Administration Tool, choose Start > Programs > Oracle Business
Intelligence > BI Administration.

You can also launch the Administration Tool from the command line, as follows:

1. In Windows Explorer, go to the following location:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

2. Double-click bi-init.cmd.

3. Type admintool and press Enter.

About the Administration Tool Main Window
The main window of the Administration Tool shows a graphical representation of the
three layers of a repository (the Physical layer, Business Model and Mapping layer,
and Presentation layer). See "About Layers in the Oracle BI Repository" for more
information.

The Administration Tool main window also contains the following:

■ Menus. See "About Administration Tool Menus" for more information.

■ Toolbar. Provides access to global functionality such as Open and Save, and also
includes functions for the Physical Diagram and Business Model Diagram.

■ Status bar. Provides contextual information about the current dialog or selected
object, as well as other useful information.

■ Title bar. In offline mode, displays the name of the open repository. In online
mode, displays the DSN for the Oracle BI Server to which you are connected.

Figure 2–1 shows the Administration Tool main window.

Note: Do not open the Administration Tool by double-clicking a
repository file. The resulting Administration Tool window is not
initialized to your Oracle instance, and errors will result.

About the Oracle BI Administration Tool

Before You Begin 2-3

Figure 2–1 Example Administration Tool Main Window

Setting Preferences
You can use the Options dialog to set preferences for the Administration Tool.

To set preferences:

1. In the Administration Tool, select Tools, then select Options to display the
Options dialog.

2. On the General tab, select the options you want to choose.

Table 2–1 describes the options on the General tab.

Table 2–1 Options on the General Tab

Option Action When Selected

Tile when resizing Automatically tiles the layer panes of the repository when you
resize the Administration Tool. When this option is selected, the
Cascade and Tile options are not available in the Windows
menu of the Administration Tool.

Display qualified names in
diagrams

Displays fully qualified names in the Physical Diagram and
Business Model Diagram. For example, selecting this option
displays "B - Sample Fcst Data"..."B02 Market" rather than B02
Market in the Physical Diagram.

Selecting this option can help identify objects by including the
name of the parent database or business model, but it can also
make the diagram harder to read because the fully qualified
names are longer.

Note: If you choose not to select this option, you can still see
fully qualified names by moving the cursor over an object in the
diagram, or by selecting an object in the diagram and then
viewing the text in the status bar.

Display original names for
alias in diagrams

Displays the names of original physical tables rather than the
names of alias tables in the Physical diagram. Select this option
when you want to identify the original table rather than the
alias table name.

About the Oracle BI Administration Tool

2-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Show Calculation Wizard
introduction page

Displays the Calculation Wizard introduction page. The
introduction page also contains an option to suppress its
display in the future.

Use the Calculation Wizard to create new calculation columns
that compare two existing columns and to create metrics in bulk
(aggregated), including existing error trapping for NULL and
divide by zero logic. See "Using the Calculation Wizard" for
more information.

Check out objects
automatically

Automatically checks out an object when you double-click it. If
you do not select this option, you are prompted to check out
objects before you can edit them.

This option only applies when the Administration Tool is open
in online mode. See "Opening a Repository in Online Mode" for
more information.

Show row count in physical
view

Displays row counts for physical tables and columns in the
Physical layer. Row counts are not initially displayed until they
are updated. To update the counts, select Tools > Update All
Row Counts. You can also right-click a table or column in the
Physical layer and select the option Update Row Count.

Note: Row counts are not shown for items that are stored
procedure calls (from the Table Type list in the General tab of
the Physical Table dialog). Row counts are not available for
XML, XML Server, or multidimensional data sources. When you
are working in online mode, you cannot update row counts on
any new objects until you check them in.

Show toolbar When selected, displays the Administration Tool toolbar.

Show statusbar When selected, displays the Administration Tool status bar.

Prompt when moving
logical columns

Lets you ignore, specify an existing, or create a new logical table
source for a moved column.

Remove unused physical
tables after Merge

Executes a utility to clean the repository of unused physical
objects. It might make the resulting repository smaller.

Allow import from
repository

When selected, the Import from Repository option on the File
menu becomes available.

Note: By default, the Import from Repository option on the File
menu is disabled and this option will not be supported in the
future. It is recommended that you create projects in the
repository that contain the objects that you want to import, and
then use repository merge to bring the projects into your current
repository. See "Merging Repositories" for more information.

Allow logical foreign key
join creation

When selected, provides the capability to create logical foreign
key joins with the Joins Manager. This option is provided for
compatibility with previous releases and is generally not
recommended.

Skip Gen 1 levels in Essbase
drag and drop actions

When selected, excludes Gen 1 levels when you drag and drop
Essbase cubes or dimensions from the Physical layer to the
Business Model and Mapping layer. Often, Gen 1 levels are not
needed for analysis, so they can be excluded from the business
model.

See "Working with Essbase Data Sources" for more information.

Table 2–1 (Cont.) Options on the General Tab

Option Action When Selected

About the Oracle BI Administration Tool

Before You Begin 2-5

3. On the Repository tab, you can set the following options:

■ Show tables and dimensions only under display folders. You can create
display folders to organize objects in the Physical and Business Model and
Mapping layers. They have no metadata meaning. After you create a display
folder, the selected objects appear in the folder as a shortcut and in the
database or business model tree as an object. You can hide the objects so that
only the shortcuts appear in the display folder.

See "Setting Up Display Folders in the Physical Layer" and "Setting Up
Display Folders in the Business Model and Mapping Layer" for more
information about creating display folders.

■ Hide level based measure. By default, each level of a dimension hierarchy in
the Business Model and Mapping layer shows both dimension columns that
are assigned to that level, and level-based measures that have been fixed at
that level. Level-based measures are objects that are not part of the dimension
table, but that have been explicitly defined as being at a particular level.

Hiding level-based measures in dimension hierarchies can reduce clutter.
Note that the measures are still visible in the logical fact tables.

See Example 9–1, "Level-Based Measure Calculations" for more information
about level-based measures.

■ Default logging level. This option determines the default query logging level
for the internal BISystem user. The BISystem user owns the Oracle BI Server
system processes and is not exposed in any user interface.

A query logging level of 0 (the default) means no logging. Set this logging
level to 2 to enable query logging for internal system processes like event
polling and initialization blocks.

Hide unusable logical table
sources in Replace wizard

By default, the Replace Wizard shows all logical table sources,
even ones that are not valid for replacement. When this option
is selected, unusable logical table sources are hidden in the
Replace Wizard screens. Click Info for details on why a logical
table source that maps to that column does not appear in the
list.

Selecting this option might result in the Wizard page loading
more quickly, especially for large repositories.

Allow first Connection Pool
for Init Blocks

By default, when you select a connection pool for an
initialization block, the first connection pool under the database
object in the Physical layer does not show up as available for
selection. This behavior ensures that you cannot use the same
connection pool for initialization blocks that you use for queries.
If the same connection pool is used for initialization blocks and
for queries, then queries might be blocked whenever
initialization blocks run. Alternatively, initialization blocks used
for authentication might be blocked by long-running queries,
causing delayed or hanging logins.

Select this option to change the default behavior and allow the
first connection pool to be selected for initialization blocks. Note
that selecting this option is not a best practice and might cause
performance issues.

See "About Connection Pools for Initialization Blocks" for more
information.

Table 2–1 (Cont.) Options on the General Tab

Option Action When Selected

About the Oracle BI Administration Tool

2-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

See "Managing the Query Log" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information about the query log and query logging levels.

■ LDAP. If you are using any alternative LDAP servers, the Oracle BI Server
maintains an authentication cache in memory for user identifiers and
properties, which improves performance when using LDAP to authenticate
large numbers of users. Disabling the authentication cache can slow
performance when hundreds of sessions are being authenticated. Note that the
authentication cache is not used for Oracle WebLogic Server’s embedded
directory server.

Properties for the authentication cache include:

– Cache refresh interval. The interval at which the authentication cache
entry for a logged on user is refreshed.

– Number of Cache Entries. The maximum number of entries in the
authentication cache, preallocated when the Oracle BI Server starts. If the
number of users exceeds this limit, cache entries are replaced using the
LRU algorithm. If this value is 0, then the authentication cache is disabled.

You need to specify some additional LDAP properties when you are using a
secure connection to your LDAP server. In other words, provide the following
information when you have selected SSL on the Advanced tab of the LDAP
Server dialog:

– Key file name. The name of the key file that holds the client certificate and
Certificate Authority (CA) certificate.

– Password and Confirm password. The password for the key file.

Note that the authentication cache properties and key file properties are
shared for all defined LDAP server objects.

4. On the Sort Objects tab, specify which repository objects appear in the
Administration Tool in alphabetical order. For example, if you want the database
objects that appear in the Physical layer to appear in alphabetical order, select the
Database option.

5. On the Cache Manager tab, select the columns you want to display in the Cache
Manager. To change the order of columns in the Cache Manager, select an item,
then use the Up and Down buttons to change its position.

6. On the Multiuser tab, specify the path to the multiuser development directory and
the name of the local developer for this Administration Tool. See "Setting Up a
Pointer to the Multiuser Development Directory" for more information.

7. On the More tab, you can set the scrolling speed for Administration Tool dialogs.
To set the scrolling speed, position the cursor on the slider.

8. Click OK when you are finished setting preferences.

About Administration Tool Menus
The Administration Tool includes menus for File, Edit, View, Manage, Tools, Actions,
Window, and Help. These menus are described in the following sections.

File Menu
The File menu provides options to work with repositories, like Open and Save, as well
as several server-related options like Check Out All that are only active when a

About the Oracle BI Administration Tool

Before You Begin 2-7

repository is open in online mode. The File menu also provides a list of recently
opened files.

Table 2–2 lists the options in the File menu.

Table 2–2 File Menu Options

Menu Option Description

New Repository Opens the Create New Repository Wizard and closes the
currently open repository, if any. If a repository is currently
open with unsaved changes, you are prompted to save them
before proceeding.

See "Creating New Oracle BI Repository Files" for more
information.

Open Provides options for opening a repository in either offline or
online mode.

See "Using Online and Offline Repository Modes" for more
information.

Multiuser Provides options to check out projects in a multiuser
development environment and view multiuser development
history.

See Chapter 3, "Setting Up and Using the Multiuser
Development Environment" for more information.

Close Closes the currently open repository. If you have unsaved
changes, you are prompted to save them.

Save Saves your latest changes.

Save As Opens the Save As dialog so that you can save the repository to
a different file. The new file remains open in the Administration
Tool.

Copy As Opens the Save Copy As dialog so that you can copy the
repository to a different file. The current file, not the new file,
remains open in the Administration Tool.

Change Password Lets you change the repository password for the currently open
repository.

See "Changing the Repository Password" for more information.

Import Metadata Opens the Import Metadata Wizard.

See the following sections for more information:

■ "Importing Metadata from Relational Data Sources"

■ "Importing Metadata from Multidimensional Data Sources"

■ "Working with ADF Business Component Data Sources"

■ "Importing Metadata from XML Data Sources"

Compare Prompts you to select the repository with which you want to
compare the currently open repository and opens the Compare
repositories dialog.

See "Comparing Repositories" for more information.

Turn off Compare Mode Turns off any highlighted changed objects. This option is only
available if you have turned on compare mode by choosing
Mark in the Compare repositories dialog.

Merge Opens the Merge Repository Wizard.

See "Merging Repositories" for more information.

About the Oracle BI Administration Tool

2-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Edit Menu
The Edit menu provides access to the following basic editing functions for repository
objects: Cut, Copy, Paste, Duplicate, and Delete. You can also choose Properties to
view and edit properties for a selected object.

View Menu
The View menu options let you hide or display the panes that show the three layers of
the repository (Presentation, Business Model and Mapping, and Physical). You can
also display the Business Model Diagram and Physical Diagram.

Choose Refresh to refresh the repository view. This feature can be useful in online
mode to reveal changes made by other clients. It can also be used in either online or
offline mode when the repository view has become out of sync and does not display a
recent change or addition. Refreshing the repository view collapses any expanded
objects in the tree panes and helps reduce clutter.

Manage Menu
The Manage menu enables you to access the management functions described in
Table 2–3.

Check Global Consistency Checks the repository for consistency and opens the
Consistency Check Manager.

See "Checking the Consistency of a Repository or a Business
Model" for more information.

Check Out All Checks out all repository objects. This option is only available in
online mode.

Check In Changes Checks in all repository objects. This option is only available in
online mode.

Undo All Changes Rolls back all changes made since the last check-in. This option
is only available in online mode.

Exit Closes the currently open repository and then closes the
Administration Tool. If you have unsaved changes, you are
prompted to save them.

Table 2–3 Manage Menu Options

Menu Option Description

Jobs Opens the Job Manager. The Job Manager is the management interface to
Oracle BI Scheduler. This option is available when a repository is open in
online mode.

See "Using Oracle BI Scheduler Job Manager" in Oracle Fusion Middleware
Scheduling Jobs Guide for Oracle Business Intelligence Enterprise Edition for
more information.

Sessions Opens the Session Manager. In the Session Manager, you can monitor
activity on the system, including the current values of repository and
session variables. This option is available when a repository is open in
online mode.

See "Managing Server Sessions" in Oracle Fusion Middleware Security Guide
for Oracle Business Intelligence Enterprise Edition for more information.

Table 2–2 (Cont.) File Menu Options

Menu Option Description

About the Oracle BI Administration Tool

Before You Begin 2-9

Tools Menu
The Tools menu options enable you to access the functions described in Table 2–4.

Cache Opens the Cache Manager. The Cache Manager enables you to monitor
and manage the cache. This option is available when a repository is open
in online mode and caching is enabled.

See "Using the Cache Manager" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for
more information about enabling the cache and using the Cache Manager.

Clusters Opens the Cluster Manager. The Cluster Manager monitors and manages
the operations and activities of the cluster. This option is available when
the Oracle BI Cluster Server is installed.

See "Using the Cluster Manager" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for
more information.

Identity Opens the Identity Manager. The Identity Manager provides access to
data access security functions and other identity-related options.

See Chapter 13, "Applying Data Access Security to Repository Objects"
for more information.

Joins Opens the Joins Manager. The Joins Manager enables you to work with
both physical and logical joins in a list format. The Joins Manager
provides an alternative to working with joins in the Physical and Business
Model Diagrams and shows all join types in one place.

See "Defining Physical Joins with the Joins Manager" and "Defining
Logical Joins with the Joins Manager" for more information.

Variables Opens the Variable Manager. The Variable Manager enables you to
create, edit, or delete variables and initialization blocks.

See Chapter 18, "Using Variables in the Oracle BI Repository" for more
information.

Projects Opens the Project Manager. The Project Manager enables you to create,
edit, or remove projects or project elements. Project elements include
subject areas (formerly called presentation catalogs), logical fact tables,
groups, users, variables, and initialization blocks. You use projects during
multiuser development.

See "Setting Up Projects" for more information.

Marketing Applies to the Oracle Marketing Segmentation product. For information
about using the Marketing options in Oracle Business Intelligence, see
Oracle Marketing Segmentation Guide.

Table 2–4 Tools Menu Options

Menu Option Description

Update All Row Counts Updates row counts in the Physical layer.

See "Displaying and Updating Row Counts for Physical Tables
and Columns" for more information.

Show Consistency Checker Opens the Consistency Check Manager.

See "Checking the Consistency of a Repository or a Business
Model" for more information.

Table 2–3 (Cont.) Manage Menu Options

Menu Option Description

About the Oracle BI Administration Tool

2-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Actions Menu
The Actions menu options are available when working with the Physical Diagram or
Business Model Diagram. The options enable you to select elements, create new joins,
create new tables, and perform other diagram operations. Every toolbar option for the
diagrams has an Actions menu equivalent.

Window Menu
The Window menu options enable you to cascade or tile open layer windows and
toggle among them.

Help Menu
The Help menu provides the following options:

■ Help Topics. Access the Help system for the Administration Tool.

■ Oracle BI on the Web. Access the Oracle Business Intelligence home page on the
Oracle Technology Network (OTN).

■ About Oracle BI Administration Tool. Obtain version information about the
Administration Tool.

Using the Physical and Business Model Diagrams
You can use the Physical and Business Model Diagrams in the Administration Tool to
see a graphical view of physical and logical tables and joins. You can choose to view
tables in expanded mode, with columns visible, or in collapsed mode, where only the
name of the table is displayed. This section describes the layout and navigation
capabilities for both diagrams.

After launching the Physical or Business Model Diagram, you can use toolbar options
to zoom, pan, and control the layout of the tables. Table 2–5 describes the available
toolbar options.

Query Repository Opens the Query Repository dialog.

See "Querying and Managing Repository Metadata" for more
information.

Utilities Opens the Utilities dialog, which lets you select from a list of
Administration Tool utilities.

See "Using Administration Tool Utilities" for more information.

Options Opens the Options dialog, which lets you customize
Administration Tool display preferences and other options.

See "Setting Preferences" for more information.

Table 2–5 Toolbar Options for the Physical and Business Model Diagrams

Option Name Description

Auto Layout Select this option to revert to an automatically assigned
symmetric table layout. Any customizations you have made to
the layout (by manually moving individual tables) will be lost.

Table 2–4 (Cont.) Tools Menu Options

Menu Option Description

About the Oracle BI Administration Tool

Before You Begin 2-11

Expand All Select this option to show all tables in expanded view, with
columns showing. Tables in expanded view appear like the
following:

Note the following additional features for expanded tables:

■ Use the scrollbar to scroll down the full list of columns.

■ Click a column heading to sort based on that column.

■ Double-click a table in expanded view to launch the
Properties dialog for that object.

■ Click the Collapse icon in the upper right corner to collapse
an individual table object.

■ To resize expanded tables, select a table, mouse over a
handle, and then click and drag the handle.

Collapse All Select this option to show all tables in collapsed view, with only
the table name showing. Tables in collapsed view appear like
the following:

You can double-click an individual table in collapsed view to
expand only that object.

Marquee Zoom Select this option to use the Marquee Zoom tool, which lets you
select a particular region to which you want to zoom. To use
Marquee Zoom, left-click, hold, and drag to define a rectangular
region where you want to zoom.

Zoom Out Select this option to cause the diagram view to zoom out one
level.

Zoom In Select this option to cause the diagram view to zoom in one
level.

Fit Select this option to cause the layout to dynamically adjust to
the current diagram window size so that all objects fit in the
window.

Pan Select this option to use the Pan tool, which lets you pan around
the current layout. Left-click, hold, and drag to move the view.

This option is especially useful when the diagram layout
exceeds the available space.

Table 2–5 (Cont.) Toolbar Options for the Physical and Business Model Diagrams

Option Name Description

About the Oracle BI Administration Tool

2-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Note the following additional features of the Physical and Business Model Diagrams:

■ All toolbar options for the diagram, such as Select, New Table, and New Join, are
also available from the Actions menu.

■ Moving the mouse over a table causes the fully-qualified name for that table to
appear in the status bar.

■ You can have both the Physical Diagram and Business Model Diagram windows
open at the same time.

■ Any customizations you have made to the layout (by manually moving individual
tables) are lost after you close the diagram or choose Auto Layout.

■ You can cause fully-qualified table names to appear in diagrams by setting a
preference in the Options dialog. See "Setting Preferences" for more information.

See also the following sections for more information about using the Physical and
Business Model Diagrams:

■ "Physical Diagram and Business Model Diagram Keyboard Shortcuts"

Select Select this option to enable the ability to select objects in the
diagram. You can double-click a join or expanded table object to
access the Properties dialog, or you can select a particular table
and drag it to a new location. Note that location information is
not saved after you close the diagram or choose Auto Layout.

You can select multiple objects using the SHIFT or CTRL keys.
Press SHIFT and select multiple objects, or click and drag to
define an area where you want all objects selected. Press CTRL
to individually add or remove particular objects to the selection
set.

New Table Select this option to create a new physical or logical table while
in the diagram view. Left-click the background to launch the
Properties dialog for the new object, and then provide details as
necessary. For physical tables, you first need to select the parent
object under which the new table will be created (such as a
schema, catalog, or database object).

See also the following sections:

■ "Creating and Managing Physical Tables and Physical Cube
Tables"

■ "Creating Logical Tables"

New Join Select this option to create a new join while in the diagram
view. First, left-click the first table in the join (the table
representing many in the one-to-many join). Then, move the
cursor to the table to which you want to join (the table
representing one in the one-to-many join), and then left-click the
second table to select it. Provide details in the Properties dialog
for the new object as necessary.

Joins in the Physical and Business Model Diagrams are
represented by a line with an arrow at the "one" end of the join.
Note that this display is different from the line with crow’s feet
at the "many" end of the join that was used in previous releases.

See also the following sections:

■ "Defining Physical Joins with the Physical Diagram"

■ "Defining Logical Joins with the Business Model Diagram"

Table 2–5 (Cont.) Toolbar Options for the Physical and Business Model Diagrams

Option Name Description

About the Oracle BI Administration Tool

Before You Begin 2-13

■ "Working with the Physical Diagram"

■ "Working with the Business Model Diagram"

Editing, Deleting, and Reordering Objects in the Repository
This section provides information about editing, deleting, and reordering objects.

■ To edit objects, double-click an object, or right-click an object and select
Properties. Then, complete the fields in the dialog that is displayed. In some
dialogs, you can click Edit to open the appropriate dialog.

■ To delete objects, select one or more objects and click Delete, or press the delete
key. You can also right-click an object and select Delete.

■ To reorder objects, drag and drop an object to a new location. Note the following:

– Reordering is only possible for certain objects and in certain dialogs.

– In some dialogs, you can use an up or down arrow to move objects to a new
location.

– In the Administration Tool main window, you can drag and drop an object
onto its parent to duplicate the object. For top-level objects like business
models and subject areas, drag and drop the object onto white space to
duplicate it.

About Naming Requirements for Repository Objects
All repository object names must follow these requirements:

■ Names cannot be longer than 128 characters

■ Names cannot contain leading or trailing spaces

■ Names cannot contain single quotes, question marks, or asterisks

Note that repository object names can include multibyte characters.

Using the Browse Dialog to Browse for Objects
The Browse dialog appears in many situations in the Administration Tool. You use it to
find and select an object.

The Browse dialog is accessible from several dialogs that let you make a selection from
among existing objects.

The left pane of the Browse dialog lets you browse the tree view for a particular object.
It contains the following parts:

■ A tree listing all of the objects in the Presentation layer, Business Model and
Mapping layer, or the Physical layer of a repository.

■ Tabs at the bottom of the left pane let you select a layer. Some tabs might not
appear if objects from those layers are not appropriate for the task you are
performing.

The right pane of the Browse dialog lets you search for the object you want. It contains
the following parts:

■ Query enables you to query objects in the repository by name and type. The Name
field accepts an asterisk (*) as the wildcard character, so you can query for partial
matches.

About the Oracle BI Administration Tool

2-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ The Show Qualified Names option lets you identify to which parents an object
belongs.

■ View lets you view properties of a selected object in read-only mode.

Note that in general, the left pane and the right pane of the Browse dialog are not
connected. Rather, the panes provide alternate methods to locate the object you want.

The exception to this is the Synchronize Contents feature, which lets you synchronize
an object from the query results list with the tree view. This feature is a helpful
contextual tool that locates a particular object in the tree view.

Table 2–6 lists and describes the tasks you can perform in the Browse dialog.

Changing Icons for Repository Objects
In the Administration Tool, you can change the icon that represents a particular object
in the repository. Changing the icon for a particular object does not have any
functional effect, and is not visible in Answers or other clients. This feature is intended
as a useful way to visually distinguish objects for the convenience of repository
developers.

For example:

■ You can use a special icon for objects that are in the Business Model and Mapping
layer, but not the Presentation layer, for easier maintenance of the repository.

■ You can mark objects that are logical calculations with a separate icon.

■ You can choose an icon to visually distinguish tables in the Presentation layer that
appear as nested folders in Answers.

Table 2–6 Tasks You Can Perform in the Browse Dialog

Task Description

Querying for an object Follow these steps to query for an object:

1. Select the object type from the Type list.

2. Type the name of the object, or a part of the name and the
wildcard character (*), in the Name field. For example:

- To search for logical tables that have names beginning
with the letter Q, select Logical Tables from the Type list,
and then type Q* in the Name field.

- To search for logical tables that have names ending with
the letters dim, type *dim in the name field.

3. Click Query.

Relevant objects appear in the query results list.

Selecting an object Use the tree view in the left pane or the filtered view in the right
pane to locate the object you want, then double-click the object.

The Browse dialog closes, and the object is displayed in the
previous dialog.

Synchronizing an object in
the query results list with
the tree view

Select an object in the Query list and then click the Synchronize
Contents button.

The object you selected is highlighted in the tree view in the left
pane.

Finding multiple
occurrences of an object in
the tree view

Select an object in the tree view, such as a logical column, then
click the down arrow button.

The next occurrence of that object is highlighted in the tree
view.

About the Oracle BI Server Command-Line Utilities

Before You Begin 2-15

■ You can use an icon to denote objects in a logical table that pertain to a specific
functional area, or that are sourced from a particular logical table source.

You can only change the icon for individual objects. You cannot globally change the
icon for all objects of a particular type.

To change the icon for a particular repository object:

1. In the Administration Tool, right-click an object in the Physical, Business Model
and Mapping, or Presentation layer (for example, a particular logical table).

2. Select Set Icon.

3. In the Select Icon dialog, select the icon you want to use for that object and click
OK.

Sorting Objects in the Administration Tool
Many dialogs in the Administration Tool show lists of objects, such as a list of physical
columns in the Physical Table dialog, a list of logical levels for Preferred Drill Path in
the Logical Level dialog, and a list of presentation hierarchies in the Presentation Table
dialog.

You can click the header to sort the objects in ascending or descending order. An up
arrow or down arrow icon is displayed next to the header name, indicating how the
list has been sorted.

Each list also has a default order that is persisted from session to session. The default
order appears when you view a list in a dialog for the first time each session. The
default order is displayed when there is no ascending or descending arrow icon in the
header. Click the header three times to toggle between ascending, descending, and
default order. In some cases, the default order is the ascending or descending order.

Some dialogs provide the capability to move items up or down in a list. In these
dialogs, if you click Up or Down while the list is sorted in ascending or descending
order, the selected item moves, and the resulting order becomes the new default order.
Note that clicking the header eliminates any manually determined order.

About Features and Options for Oracle Marketing Segmentation
Some features and options in the Administration Tool are for use by organizations that
have the Oracle Marketing Segmentation product. For information about these
features and options, see Oracle Marketing Segmentation Guide.

Note that additional information about Oracle Marketing Segmentation features is
provided in the Presentation Services Help.

About the Oracle BI Server Command-Line Utilities
You can use a variety of command-line utilities with the Oracle BI Server to make
programmatic changes to your repository file, run sample queries, delete unwanted
repository objects, and perform other tasks.

Table 2–7 describes the Oracle BI Server command-line utilities.

About the Oracle BI Server Command-Line Utilities

2-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Running bi-init to Launch a Shell Window Initialized to Your Oracle Instance
Before running any of the Oracle BI Server command-line utilities, you must first run
bi-init.cmd (or bi-init.sh on UNIX) to launch a command prompt or shell window that
is initialized to your Oracle instance. You can find this utility in:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

Then, run the appropriate command-line tool from the resulting shell window with
the desired options.

Table 2–7 Oracle BI Server Command-Line Utilities

Utility Name Description Where to Go for More Information

XML utilities
(biserverxmlgen,
biserverxmlexec,
biserverxmlcli)

Used to leverage the Oracle BI Server
XML API for metadata migration,
programmatic metadata generation and
manipulation, metadata patching, and
other functions.

The XML utilities include:

■ biserverxmlgen: generates XML from
an existing RPD

■ biserverxmlexec: executes the XML in
offline mode to create or modify a
repository file

■ biserverxmlcli: executes the XML
against the Oracle BI Server

"About the Oracle BI Server XML API"
in Oracle Fusion Middleware Integrator's
Guide for Oracle Business Intelligence
Enterprise Edition

nqcmd Used to run test queries against the
repository. Connects using an Oracle BI
Server ODBC DSN.

"Testing and Refining the Repository"

patchrpd Used to generate and apply an XML patch
file. This utility is especially useful for
patching repository files on Linux or
UNIX systems.

"Using patchrpd to Apply a Patch"

extractprojects Used to extract projects from a given
repository.

"Using the extractprojects Utility to
Extract Projects"

equalizerpds Used to equalize objects in two
repositories that have the same name, but
different upgrade IDs. Running this utility
before merging repositories prevents
unintended renaming during the merge.

"Equalizing Objects"

prunerpd Used to delete unwanted repository
objects from your repository file, such as
databases, tables, columns, initialization
blocks, and variables.

"Deleting Unwanted Objects from the
Repository"

validaterpd Used to check the consistency of a
repository.

"Using the validaterpd Utility to Check
Repository Consistency"

sametaexport Used to generate the information
necessary for the Oracle Database SQL
Access Advisor or IBM DB2 Cube Views
tool to preaggregate relational data and
improve query performance.

"Exchanging Metadata with Databases
to Enhance Query Performance"

About the SampleApp.rpd Demonstration Repository

Before You Begin 2-17

About Options in Fusion Middleware Control and NQSConfig.INI
Many configuration settings that affect the Administration Tool and repository
development are managed in either Fusion Middleware Control, or the
NQSConfig.INI configuration file. Repository developers must be familiar with Fusion
Middleware Control and NQSConfig.INI configuration settings to effectively work
with the Administration Tool and with their repositories.

Some of the most common configuration settings that affect repository development
include:

■ Repository File: This option is set in Fusion Middleware Control. It controls the
current published repository.

■ Disallow RPD Updates: This option is set in Fusion Middleware Control. It
controls whether the Administration Tool opens in read-only mode, in both offline
and online mode.

■ LOCALE: This option is set in NQSConfig.INI. It specifies the locale in which data
is returned from the server and determines the localized names of days and
months.

■ DATE_TIME_DISPLAY_FORMAT, DATE_DISPLAY_FORMAT, TIME_
DISPLAY_FORMAT: These options are set in NQSConfig.INI. They control the
display of date/time formats.

■ DEFAULT_PRIVILEGES: This option is set in NQSConfig.INI. It determines the
default privilege (NONE or READ) granted to users and application roles for
repository objects without explicit permissions set.

See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for full information about Fusion Middleware Control and
NQSConfig.INI configuration settings.

About the SampleApp.rpd Demonstration Repository
Oracle Business Intelligence provides a sample repository called SampleApp.rpd that
provides best practices for modeling many different types of objects described in this
guide.

A basic version of SampleApp.rpd, called SampleAppLite.rpd, is automatically
installed as the default repository when you choose the Simple Install option.
SampleAppLite.rpd is located in the following directory:

ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_
obisn\repository

The full version of SampleApp.rpd contains many additional examples and features.
This version can be found on the Oracle Technology Network at:

http://oracle.com/technetwork/middleware/bi-foundation/obiee-sam
ples-167534.html

The default password for SampleAppLite.rpd is Admin123. For security reasons, you
must immediately change this default password the first time you open
SampleAppLite.rpd in the Administration Tool. See "Changing the Repository
Password" for more information.

http://oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html
http://oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html

Using Online and Offline Repository Modes

2-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Using Online and Offline Repository Modes
You can open a repository for editing in either online or offline mode. The tasks you
can perform depend on the mode in which you opened the repository.

To open a repository, you must enter the repository password. This password is
specific to each repository and is used to encrypt the repository.

This section contains the following topics:

■ Opening a Repository in Offline Mode

■ Opening a Repository in Online Mode

■ Checking Out Objects

■ Checking In Changes

■ About Read-Only Mode

Opening a Repository in Offline Mode
Use offline mode to view and modify a repository while it is not loaded into the Oracle
BI Server. If you attempt to open a repository in offline mode while it is loaded into
the Oracle BI Server, the repository opens in read-only mode. Only one
Administration Tool session at a time can edit a repository in offline mode. See "About
Read-Only Mode" for more information.

You do not need to enter a user name and password to open a repository in offline
mode. You only need to enter the repository password.

To open a repository in offline mode:

1. In the Administration Tool, select File > Open > Offline.

2. Go to the repository you want to open, and then select Open.

3. In the Open Offline dialog, enter the repository password, and then click OK.

If the server is running and the repository you are trying to open is loaded, the
repository opens in read-only mode. If you want to edit the repository while it is
loaded, you must open it in online mode. Also, if you open a repository in offline

Note: The paint repository shipped with previous versions of Oracle
Business Intelligence is also available with this release in the following
directory:

ORACLE_
INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_
obisn\sample\paint

Paint.rpd is not automatically set up as the default repository. In
addition, paint.rpd is not optimized for this release of Oracle Business
Intelligence and should not be used as a basis for any repositories in
production environments.

Note: In offline editing, remember to save your repository from time
to time. You can save a repository in offline mode even though the
business models might be inconsistent.

Using Online and Offline Repository Modes

Before You Begin 2-19

mode and then start the server, the repository becomes available to users. Any
changes you make become available only when the server is restarted.

When you open a repository in the Administration Tool in offline mode, the titlebar
displays the name of the open repository.

Opening a Repository in Online Mode
Use online mode to view and modify a repository while it is loaded into the Oracle BI
Server. The Oracle BI Server must be running to open a repository in online mode.
There are certain things you can do in online mode that you cannot do in offline mode.
In online mode, you can perform the following tasks:

■ Manage scheduled jobs

■ Manage user sessions

■ Manage the query cache

■ Manage clustered servers

To open a repository in online mode:

1. In the Administration Tool, select File > Open > Online to display the Open
Online Repository dialog.

The Oracle BI Server DSNs that have been configured on your computer are
displayed in the dialog. If no additional DSNs have been configured for this
version of the Oracle BI Server, you might see only the default DSN that is
configured for you during installation.

See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion
Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for
information about how to create an ODBC DSN for the Oracle BI Server.

2. Enter the repository password for the repository currently loaded in the Oracle BI
Server.

You can use Repository tab of the Deployment page in Fusion Middleware
Control to view the name of the current repository.

3. Provide a valid user name and password.

The user you provide must have the ManageRepositories permission. See Oracle
Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for
more information.

4. If you expect to work extensively with the repository (for example, you plan to
check out many objects), select the Load all objects on startup option. This loads
all objects immediately, rather than as selected. The initial connect time might
increase slightly, but opening items in the tree and checking out items is faster.

5. Select the appropriate DSN and click OK.

When you open a repository in the Administration Tool in online mode, the titlebar
displays the DSN for the Oracle BI Server to which you are connected, not the name of
the current repository.

Guidelines for Using Online Mode
Use caution when making changes to your repository in online mode, and always
perform a consistency check to ensure the repository is consistent before checking in
objects.

Using Online and Offline Repository Modes

2-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

In addition, you should limit the number of concurrent online users. The best practice
is to have only one user working in online mode at a time. Even when users have
different objects checked out, there might be dependencies between the objects that
can cause conflicts when the changes are checked in. In general, only one user should
make online changes in a single business model at a time.

If you must have multiple concurrent users in online mode, do not have more than
five users. For situations where you need more than five users, use the multiuser
development environment. See Chapter 3, "Setting Up and Using the Multiuser
Development Environment" for more information.

Even with a single user making changes, be aware that online mode is riskier than
offline mode because you are working against a running server. If you check in
changes that are not consistent, it might cause the Oracle BI Server to shut down.
When you work in online mode, make sure to have a backup of the latest repository so
that you can revert to it if needed. You can also use File > Undo All Changes to roll
back all changes made since the last check-in.

Checking Out Objects
When you are working in a repository open in online mode, you are prompted to
check out objects when you attempt to perform various operations. Select the objects
you want to check out and click Yes to check out the objects.

If you are performing a task in a wizard, the Checkout screen displays a summary of
the objects that need to be checked out to complete the operation. Click Next to check
out the objects and complete the task.

Checking In Changes
When you are working in a repository open in online mode, you are prompted to
perform a consistency check before checking in the changes you make to a repository.

If you have made changes to a repository and then attempt to close the repository
without first checking in your changes, a dialog opens automatically asking you to
select an action to take. If you move an object from beneath its parent and then attempt
to delete the parent, you are prompted to check in changes before the delete is allowed
to proceed.

Use the Check in Changes dialog to make changes available immediately for use by
other applications. Applications that query the Oracle BI Server after you have
checked in the changes will recognize them immediately. Applications that are
currently querying the server will recognize the changes the next time they access any
items that have changed.

To make changes available and have them saved to disk immediately:

■ In the Administration Tool, select File, then select Check In Changes.

If the Administration Tool detects an invalid change, a message is displayed to alert
you to the nature of the problem. Correct the problem and perform the check-in again.
Note that you can select a message row and click Go To, or double-click a message
row, to go directly to the affected object.

You must save changes to persist the changes to disk. You must check in changes
before you can save, but you do not need to save to check in changes.

Checking the Consistency of a Repository or a Business Model

Before You Begin 2-21

About Read-Only Mode
Only one component (either the Oracle BI Server, or a single Administration Tool
client in offline mode) can have a repository open in read/write mode at a time. If a
second component opens a repository that is already in use, the repository is opened
in read-only mode.

For example, assume the Oracle BI Server loads a repository in read/write mode. Any
number of Administration Tool clients connecting to that repository in online mode
will also get read/write mode, because they are accessing the repository through the
Oracle BI Server. However, Administration Tool clients opening that repository in
offline mode will get read-only mode, because the repository is already open for
read/write through the Oracle BI Server.

Alternatively, assume an Administration Tool client opens a repository offline in
read/write mode. When the Oracle BI Server starts, it will get read-only mode, as will
any Administration Tool clients connecting to that repository in either offline or online
modes. To enable the server to load the repository in read/write mode in this
situation, you must first close the Administration Tool client that has the repository
locked, and then restart the Oracle BI Server.

The Administration Tool also opens a repository in read-only mode when Oracle
Business Intelligence has been clustered, and the Administration Tool is connected in
online mode to a slave server. This occurs because the Master BI Server holds a lock on
the repository. To avoid this situation when running in a clustered environment,
ensure that the Oracle BI Server ODBC DSN used by the Administration Tool has been
configured to point to the Cluster Controllers rather than to a particular Oracle BI
Server.

In addition, the Administration Tool opens repositories in read-only mode when the
configuration setting Disallow RPD Updates has been selected in Fusion Middleware
Control. See "Using Fusion Middleware Control to Disallow RPD Updates" in Oracle
Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition for more information about this configuration setting.

Checking the Consistency of a Repository or a Business Model
Repository metadata must pass a consistency check before you can make the
repository available for queries. The Consistency Check Manager lets you enable and
disable rules for consistency checks, find and fix inconsistent objects, and limit the
consistency check to specific objects. You can also use the validaterpd utility to check
the validity of all metadata objects.

This section contains the following topics:

■ About the Consistency Check Manager

■ Checking the Consistency of Repository Objects

■ Using the validaterpd Utility to Check Repository Consistency

About the Consistency Check Manager
The Consistency Check Manager checks the validity of your repository to ensure that
it can load at run time, and to identify any syntax or semantic errors that may cause
queries to fail.

Each time you save the repository, a dialog asks if you want to check global
consistency. You have the following options:

Checking the Consistency of a Repository or a Business Model

2-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Yes. Checks global consistency and then saves the repository file.

■ No. Does not check global consistency and then saves the repository file.

■ Cancel. Does not check global consistency and does not save the repository file.

The Consistency Check Manager does not check the validity of objects outside the
metadata using the connection. It only checks the consistency of the metadata and not
any mapping to the physical objects outside the metadata. If the connection is not
working or objects have been deleted in the database, the Consistency Check Manager
does not report these errors.

If you use lookup tables to store translated field names with multilingual schemas,
note that consistency checking rules are relaxed for the lookup tables. See "Localizing
Oracle Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide
for Oracle Business Intelligence Enterprise Edition for more information about localization
and lookup tables.

The consistency checker returns the following types of messages:

■ Errors. These messages describe errors that need to be fixed. Use the information
in the message to correct the inconsistency, then run the consistency checker again.
The following is an example of an error message:

[38082] Type of Hierarchy '"0RT_C41"..."0RT_C41/MDF_BW_Q02"."Product Hierarchy
for Material MARA"' in Cube Table '"0RT_C41"..."0RT_C41/MDF_BW_Q02"' needs to
be set.

If you disable an object and it is inconsistent, a message is displayed, asking if you
want to make the object unavailable for queries.

■ Warnings. These messages indicate conditions that may or may not be errors. For
example, you might receive a warning message about a disabled join that was
intentionally disabled to eliminate a circular join condition. Other messages may
warn of inconsistent values, or feature table changes that do not match the
defaults. The following is an example of a warning message:

[39024] Dimension '"Paint"."MarketDim"' has defined inconsistent values in its
levels' property 'Number of elements'.

■ Best Practices. These messages provide information about conditions, but do not
indicate an inconsistency. The message appears if a condition violates a best
practice recommendation.

In the Consistency Check Manager, you can sort the rows of messages by clicking the
column headings. Additionally, the status bar provides a summary of all the rows
displayed.

Checking the Consistency of Repository Objects
You can use the Administration Tool to check consistency in the following ways:

■ To check consistency for all objects in the repository, select File, then select Check
Global Consistency.

Note: After upgrading from a previous software version and
checking the consistency of your repository, you might notice
messages that you had not received in previous consistency checks.
This typically indicates inconsistencies that had been undetected
before the upgrade, not new errors.

Checking the Consistency of a Repository or a Business Model

Before You Begin 2-23

■ To check the consistency of a particular repository object, such as a physical
database, business model, or subject area, right-click the object and select Check
Consistency.

■ If you already have the Consistency Check Manager open, you can check global
consistency by clicking Check All Objects.

To view the Consistency Check Manager without performing a global consistency
check, select Tools, then select Show Consistency Checker. If you have checked
consistency in the current session, the messages from the last check appear in the
Messages pane.

To check the consistency of a repository:

1. In the Administration Tool, select File, then select Check Global Consistency. The
Consistency Check Manager is displayed, listing any messages relating to the
current repository.

2. To edit the repository to correct inconsistencies, double-click any cell in a row to
open the properties dialog for that object. Then, correct the inconsistency and click
OK.

3. To copy the messages so that you can paste them in another file such as a
spreadsheet, select one or more rows and click Copy. Note that clicking Copy
without any rows selected copies all messages.

4. To check consistency again, click Check All Objects to perform a global check. Or
click the Refresh button in the top right corner to check only the objects that were
listed as inconsistent in the last check.

5. When finished, click Close.

To check the consistency of a single object in a repository:

1. In the Administration Tool, right-click an object, then select Check Consistency.

If the object is not consistent, a list of messages appears.

2. To edit the repository to correct inconsistencies, double-click any cell in a row to
open the properties dialog for that object. Then, correct the inconsistency and click
OK.

3. To copy the messages so that you can paste them in another file such as a
spreadsheet, click Copy.

4. To check consistency of the object again, click the refresh button at the top right
corner of the dialog.

If you click Check All Objects, all objects in the repository are checked.

Using the validaterpd Utility to Check Repository Consistency
You can use the Oracle BI Server utility validaterpd to check the validity of all
metadata objects in a repository. You can run this utility on any platform supported by
the Oracle BI Server. Running this utility performs the same validation checks as the
Consistency Check Manager in the Administration Tool.

Note: If you disable an object and it is inconsistent, a dialog appears,
asking whether you want to make the object unavailable for queries.

Checking the Consistency of a Repository or a Business Model

2-24 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Before running validaterpd, you must first run bi-init.cmd (or bi-init.sh on UNIX
systems) to launch a command prompt that is initialized to your Oracle instance. You
can find this utility in:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

Then, run validaterpd from the resulting command prompt with the desired options.
You can run the utility from this directory with no arguments or parameters to see
usage information.

The utility takes the following parameters:

validaterpd -R repository_name -O output_file_name [-P repository_password] [-8]

Where:

repository_name is the name and path of the repository that you want to validate.

output_file_name is the name and path of a text file where the validation results
will be recorded.

repository_password is the password for the repository that you want to validate.

Note that the repository_password argument is optional. If you do not provide
the password argument, you are prompted to enter the password when you run the
command. To minimize the risk of security breaches, Oracle recommends that you do
not provide password arguments either on the command line or in scripts. Note that
the password argument is supported for backward compatibility only, and will be
removed in a future release.

-8 specifies UTF-8 encoding in the output file.

Example

The following example generates an output file called results.txt that contains
validation information for the repository called repository.rpd:

validaterpd -R repository.rpd -O results.txt
Give password: my_rpd_password

3

Setting Up and Using the Multiuser Development Environment 3-1

3Setting Up and Using the Multiuser
Development Environment

Multiuser development (MUD) provides a mechanism for concurrent development on
overlapping code bases. Oracle Business Intelligence provides a MUD environment
that manages subsets of metadata, in addition to multiple users, by providing a
built-in versioning system for repository development. This chapter explains how to
set up and use the multiuser development environment in Oracle Business
Intelligence, including defining projects, setting up the multiuser development
directory, checking out and checking in projects, and merging metadata.

See also "Managing the Repository Lifecycle in a Multiuser Development
Environment" for additional information about working in a multiuser development
environment.

This chapter contains the following topics:

■ About the Multiuser Development Environment

■ Setting Up Projects

■ Setting Up the Multiuser Development Directory

■ Making Changes in a Multiuser Development Environment

■ Checking In Multiuser Development Repository Projects

■ Branching in Multiuser Development

■ Viewing and Deleting History for Multiuser Development

■ Setting Multiuser Development Options

About the Multiuser Development Environment
In Oracle Business Intelligence, multiuser development facilitates the development of
application metadata in enterprise-scale deployments. Application metadata is stored
in a centralized metadata repository (RPD) file. The Administration Tool is used to
work with these repositories.

The following are examples of how you might use a multiuser development
environment:

■ Several developers work concurrently on subsets of the metadata and then merge
these subsets back into a master repository without their work conflicting with
other developers. For example, after completing an implementation of data
warehousing at a company, an administrator might want to deploy Oracle
Business Intelligence to other functional areas.

About the Multiuser Development Environment

3-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ A single developer manages all development. For simplicity and performance, this
developer might want to use the multiuser development environment to maintain
metadata code in smaller chunks instead of in a large repository.

In both examples, an administrator creates projects in the repository file in the
Administration Tool, then copies this repository file to a shared network directory
(called the multiuser development directory). Developers are able to check out
projects, make changes and then merge the changes into the master repository. When
developers check out projects using the Administration Tool, files are automatically
copied and overwritten in the background. Therefore, it is important for the
administrator to perform setup tasks and for the developers to perform check-out and
check-in procedures carefully, paying close attention to the Administration Tool
messages that appear.

When developers check out projects, repository files are not automatically copied or
overwritten. Instead, the Administration Tool creates two new files when projects are
checked out: one to hold the original project data, and one to hold the project changes.

For example, when a repository developer checks out project A from master.rpd in the
C:\multiuser development directory, the Administration Tool extracts all metadata
related to project A and prompts the developer for a new file name to save the data.
When the developer chooses a new file name, for example Mychanges.rpd, the
Administration Tool creates two new files:

■ A file called MyChanges.rpd that will contain the changes made by the developer

■ A file called originalMyChanges.rpd that contains the original project data

The originalMyChanges.rpd file helps determine what changes have been made by the
developer in Mychanges.rpd. This information is needed during the multiuser
development merge process.

About the Multiuser Development Process
Multiuser development presupposes a clear understanding of customer technical and
business objectives. It also requires that you follow clearly defined development
processes and adhere rigorously to those processes, including consistent merging and
reconciliation practices.

The following procedure shows the general steps to follow when deploying a
multiuser development environment. The first three steps are usually performed by an
administrator, and the remaining steps are usually performed by one or more
developers.

To deploy a multiuser development environment:

1. Define projects to organize voluminous metadata into manageable components.
See "Creating Projects" for more information. Consider these tips:

Note: In this chapter, "master repository" refers to the copy of a
repository in the multiuser development directory

Note: To reduce storage needs, repositories in Oracle Business
Intelligence Enterprise Edition 11g Release 1 (11.1.1) are stored in a
compressed format. Because of this, you may notice that the size of an
RPD file opened and saved in this release is significantly smaller than
the size of RPD files from previous releases.

Setting Up Projects

Setting Up and Using the Multiuser Development Environment 3-3

■ Use smaller RPDs to shorten and simplify development effort and unit testing.

■ Organize development resources by projects to spread workload and reduce
inconsistencies and overwrites.

2. Set up a shared network directory to use as the multiuser development directory.

3. Copy the master repository to the multiuser development directory.

4. Extract one or more projects for local development.

5. Merge repository objects and resolve conflicts.

■ Because metadata objects are often highly interrelated, several developers
could be working on the same objects.

■ When configuration conflicts occur during check in, developers are prompted
for the correct process.

■ The master repository is locked for check-ins when you merge your local
changes. However, other developers can still perform check-outs.

6. Publish changes to the network.

■ Many developers can simultaneously work on the same objects, but only one
can publish at a time. During the publish, no check-outs are allowed.

7. Use Logging and Backup features to identify points of erroneous or incorrect
configuration.

■ The log file tracks multi-development activity, along with comments.

■ The master repository and developer repositories are automatically backed up
for future reference and for use in manual rollback.

Setting Up Projects
Projects are the central enabler of metadata management. A project consists of a
discretely-defined subset of the repository metadata, in the form of groups of logical
stars with associated metadata. A project has the following characteristics:

■ Is largely defined by logical fact tables in the applicable business model

■ Automatically adds related logical dimension tables and other metadata during
extract

■ Can have one to many logical fact tables

For projects that are just beginning, the best practice is to begin with a repository
containing all the necessary physical table and join definitions. In this repository, you
create a logical fact table as a placeholder in the Business Model and Mapping layer
and a subject area as a placeholder in the Presentation layer. As you add business
model and subject area metadata, new projects based on individual subject areas and
logical facts can be created.

This section contains the following topics:

■ About Projects

■ Creating Projects

Note: Only one person at a time can create projects in a master
repository.

Setting Up Projects

3-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ About Converting Older Projects During Repository Upgrade

About Projects
Projects can consist of Presentation layer subject areas and their associated business
model logical facts, dimensions, groups, users, variables, and initialization blocks.
Administrators can create projects so that developers and groups of developers can
work on projects in their area of responsibility.

The primary reason to create projects is to support multiuser development. During the
development process, you can split up the work (metadata) between different teams
within your company by extracting the metadata into projects so that each project
group can access a different part of the metadata.

In addition to multiuser development, you may want to create projects for licensing
reasons. Before releasing a new software version, you may want to ensure that only
the metadata that is relevant to the licensed application is in a project and that
everything is consistent and complete. You can accomplish this by adding only the fact
tables that are relevant to the application.

Project extractions are fact table centric. This ensures that project extracts are consistent
and makes licensing much easier to manage.

About the Project Dialog
In the Project dialog, the left pane contains objects that you can use to create a project.
The objects in the right pane are all the objects you chose (directly or indirectly) that
reflect the complete set of data that makes each addition consistent. For example, if
you select a subject area from the top node of the left-hand tree to add to your project,
underlying fact tables of other subject areas are automatically added if needed to make
the extract consistent.

The following describes the left pane of the Project dialog:

■ You can choose to group fact tables by Business Model or Subject Area, to help
select the fact tables you want. Typically, grouping fact tables according to which
ones are used by a particular subject area is a more convenient way to choose fact
tables for your project. Note that a fact table can be associated with multiple
subject areas, but belongs to one and only one business model.

Although it appears that you can add a subject area from the top node when you
group facts by subject area, you are actually adding only the underlying fact
tables. The subject areas only appear as choices to help you to add the elements
you want in your project. Additionally, it adds any other objects that are necessary
to make the extract consistent. To add an actual subject area, use the Presentation
node at the bottom of the tree.

■ When grouped by business model, the left pane displays only facts that belong to
the business model.

■ The Presentation node contains presentation layer objects. You must explicitly
include these objects in your project if you want to work with them; they are not
added automatically.

If you add presentation objects that are not related to any fact tables in the project,
a warning appears when you click OK. The consistency checker also notes this
discrepancy.

The right pane of the Project dialog shows the objects you select to be extracted, such
as fact tables (under the Business Models folder), Presentation layer objects (under the

Setting Up Projects

Setting Up and Using the Multiuser Development Environment 3-5

Presentation folder), users, application roles, variables, and initialization blocks. These
objects are extracted when you click OK.

Figure 3–1 shows the Project dialog.

Figure 3–1 Project Dialog with Fact Tables Grouped by Business Model

Creating Projects
When creating a project, you typically select a subject area or a subset of logical fact
tables related to the selected subject area, and the Administration Tool automatically
adds any business model and Physical layer objects that are related. An object can be
part of multiple projects. Alternatively, if you choose to group facts by business model,
you can select a particular business model or a set of logical fact tables that are part of
a business model. You also need to explicitly add any Presentation layer objects if you
want them to be part of your project.

Note that although the project definition itself does not include Physical layer objects,
these objects are extracted and determined through the project definition.

After you create projects, they become part of the metadata and are available to
multiple developers who need to perform development tasks on the same master
repository. When defined this way, projects typically become a consistent repository
after a developer checks out the projects and saves them as a new repository file.

To create a project for a multiuser development environment:

1. In the Administration Tool, choose File > Open > Offline.

2. In the Open dialog, select the repository that you want to make available for
multiuser development, then click OK. Provide the repository password, then
click OK again.

3. Select Manage, then select Projects.

4. In the Project Manager dialog, in the right pane, right-click and then select New
Project.

The left pane contains the objects that are available to be placed in a project. The
right pane contains the objects that you select to be part of the project.

5. In the Project dialog, type a name for the project.

Setting Up Projects

3-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

6. Choose whether to group facts by business model, or subject area. It is typically
more convenient to group facts by subject area.

7. Perform one or more of the following steps to add fact tables to your project:

– In the left pane, select a subject area or business model and then click Add.
The Administration Tool automatically adds all the associated logical fact
tables.

– In the left pane, expand the subject areas or business models and select one or
more logical fact tables that are related to the subject area or that are within the
business model, then click Add.

The project is defined as explicitly containing the selected logical fact tables
and implicitly containing all logical dimension tables that are joined to the
selected logical fact tables (even though they do not appear in the right pane).

See "About the Project Dialog" for more information about the objects that appear
in the left and right panes.

8. To remove fact tables from the project, in the right pane, select a fact table and click
Remove. You can also remove all fact tables associated with a subject area or
business model by selecting a subject area or business model and clicking
Remove.

9. Optionally, add any application roles, users, variables, or initialization blocks
needed for the project. Although objects like variables and initialization blocks
that are directly referenced by other extracted objects are included automatically,
you might want to include objects in your project that are not referenced. For
example:

■ If you are using initialization blocks for authentication, include any necessary
initialization blocks.

■ Include repository variables or other objects that are not yet referenced by
other objects, but that you might want to use in future repository
development.

■ Include users and application roles that are currently being used, or will be
used in the future, as part of your data access security settings.

Tip: You may want to add the top node for each object type (for example,
Variables), then selectively remove individual objects from the right pane.

10. Select the Presentation layer objects that you want to include in your project from
the left pane and click Add. You must add these objects to see them in the project;
they are not added automatically.

You can also remove particular presentation tables or columns from the project
definition by double-clicking the object in the right pane, or selecting the object
and clicking Remove.

11. Click OK.

Note: If you do not see the set of subject areas you expect after the
project is created, edit the project to explicitly add the subject areas
you need.

Setting Up the Multiuser Development Directory

Setting Up and Using the Multiuser Development Environment 3-7

About Converting Older Projects During Repository Upgrade
When you upgrade a repository from Oracle Business Intelligence versions before
10.1.3.2, the project definition is upgraded. During the upgrade, the project definition,
subject areas, target levels, list catalogs, and existing fact tables are automatically
converted into simple fact tables in the following way:

■ Get presentation columns related to the target levels through the qualifying keys.

■ Get presentation columns related to the list catalogs through the qualifying keys.

■ Get presentation columns related to the subject areas.

■ Get all the logical columns from all the presentation columns.

■ Get all the logical columns from the fact tables in the project.

■ Get the fact tables from all the logical columns.

After the upgrade, projects contain only simple fact tables. All the security objects
remain unchanged.

In addition, projects in repositories from any version before 11g Release 1 (11.1.1) are
upgraded so that they explicitly contain Presentation layer objects. In previous
releases, Presentation layer objects were implicitly included based on the permissions
of the users included in the project.

Setting Up the Multiuser Development Directory
To prepare for multiuser development, an administrator performs the following tasks:

■ Identify or create a shared network directory that will be dedicated to multiuser
development.

■ After creating all projects, copy the repository file in which you created the
projects to the multiuser development directory where it will be used as your
master repository for multiuser development.

After the administrator has identified the multiuser development directory and copied
the repository file, developers must set up to the Administration Tool to point to the
multiuser development directory before they can check out projects.

This section contains the following topics:

■ Identifying the Multiuser Development Directory

■ Copying the Master Repository to the Multiuser Development Directory

■ Setting Up a Pointer to the Multiuser Development Directory

Identifying the Multiuser Development Directory
After defining all projects, the administrator must identify or create a shared network
directory (called the multiuser development directory) that all developers can access,
and then upload the new master repository to that location. This shared network
directory should be used only for multiuser development. This directory typically
contains copies of repositories that need to be maintained by multiple developers. The
multiuser development directory must be on a Windows system.

Developers create a pointer to the multiuser development directory when they set up
the Administration Tool on their computers.

Making Changes in a Multiuser Development Environment

3-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Copying the Master Repository to the Multiuser Development Directory
After the multiuser development directory is identified, the administrator must copy
the master repository file to the multiuser development directory. Projects from this
master repository will be extracted and downloaded by the developers who will make
changes and then merge these changes back into the master repository.

After you copy the repository to the multiuser development network directory, notify
developers that the multiuser development environment is ready.

Setting Up a Pointer to the Multiuser Development Directory
Before checking out projects, each developer must set up their Administration Tool to
point to the multiuser development directory on the network. The Administration Tool
stores this path in a hidden Windows registry setting on the workstation of the
developer and uses it when the developer checks out and checks in objects in the
multiuser development directory.

Initially, the network directory contains the master repositories. The repositories in this
location are shared with other developers. Later, the network directory contains
additional multiuser development history files, including historical subsets and
repository versions. Do not manually delete any files in the multiuser development
directory; these files are important and are used by the system.

When setting up the pointer, the developer can also complete the Full Name field.
Although the field is optional, it is recommended that the developer complete this
field to allow other developers to know who has locked the repository. The Full Name
value is stored in HKEY_CURRENT_USER in the registry, and is unique for each login.

To set up a pointer to the multiuser development directory:

1. From the Administration Tool menu, choose Tools > Options.

2. In the Options dialog, click the Multiuser tab.

3. In the Multiuser tab, for Multiuser development directory, enter the full path to
the network directory.

Alternatively, click Browse, select the multiuser development directory, and then
click OK.

4. In the Full Name field, type your complete name, then click OK.

Making Changes in a Multiuser Development Environment
During check-out and check-in, a copy of the master repository is temporarily copied
to the developer's local repository directory (typically, ORACLE_
INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_
obisn\repository by default). After checking out projects and making changes in a

Caution: The administrator must set up a separate, shared network
directory that is dedicated to multiuser development. If not set up and
used as specified, critical repository files can be unintentionally
overwritten and repository data can be lost.

Note: Until the pointer is set up, the multiuser options are not
available in the Administration Tool.

Making Changes in a Multiuser Development Environment

Setting Up and Using the Multiuser Development Environment 3-9

local repository file, each developer can check in (merge) changes into the master
repository or discard the changes.

To make changes in a multiuser development environment, perform the tasks
described in the following sections:

■ Checking Out Repository Projects

■ About Changing and Testing Metadata

■ About Multiuser Development Menu Options

Checking Out Repository Projects
After setting up a pointer to the multiuser development default directory, a developer
can check out projects, change metadata, and test the metadata. In the File > Multiuser
submenu, the Checkout option is only available when there is a multiuser
development directory defined in the Multiuser tab of the Options dialog.

If a developer checks out a local repository and attempts to exit the application before
publishing it to the network or discarding local changes, a message appears to allow
the developer to select an action. See "About Closing a Repository Before Publishing It
to the Network" for more information.

This section contains the following topics:

■ About Repository Project Checkout

■ Checking Out Projects

■ Using the extractprojects Utility to Extract Projects

About Repository Project Checkout
During checkout, the Administration Tool performs the following tasks:

■ In the developer's local repository directory, the Administration Tool makes a
temporary copy of the master repository.

■ In the developer's local repository directory, the Administration Tool saves a local
copy of the selected projects in a new repository, such as Metadata1.rpd. The
developer provides a name for the local copy. The developer makes metadata
changes in this file. The number is incremented for each checkout for that session.

■ In the developer's local repository directory, the Administration Tool saves a
second local copy of the new repository, adding 'original' as the prefix (for
example, originalMetadata1.rpd).

■ After the developer saves the new repository file, check out is complete. In the
developer's local repository directory, the temporary copy of the master repository
is automatically deleted.

Note: If a repository with that name exists in this location, the
developer is asked to confirm overwriting the existing repository. If
the developer clicks Yes, the existing local repository is immediately
overwritten in the background and after the new repository is saved,
the temporary master repository file is automatically deleted.

Making Changes in a Multiuser Development Environment

3-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Checking Out Projects
This section explains how to check out projects using the Administration Tool.

To check out projects:

1. From the Administration Tool menu, choose File > Multiuser > Checkout.

2. If there is more than one repository in the multiuser development directory, the
Multiuser Development Checkout dialog appears. Select the appropriate
repository, and then click OK.

This dialog does not appear if there is only one repository in the multiuser
development directory.

3. In the Extract from dialog, type the repository password, and then click OK.

If no projects exist in the repository, a message appears and the repository does not
open.

4. If there is more than one project in the master repository, the Browse dialog
appears. Select the projects that you want to be part of your project extract, and
then click OK.

Figure 3–2 shows the Browse dialog for selecting projects.

Figure 3–2 Browse Dialog for Selecting Projects

If only one project exists in the master repository, it is selected automatically and
the Browse dialog does not appear.

5. In the Create new subset repository dialog, type a name for the new repository (for
example, Metadata1.rpd) and then click Save.

A working project extract repository is saved on your local computer. The name is
exactly as you specified and is opened in offline mode. A log file is also created.

Caution: When the developer selects and saves the projects to a local
repository file, the Administration Tool does not place a lock on the
projects in the master repository on the shared network drive.
Therefore, nothing physically prevents others from working on the
same project. To determine if a project has been checked out, you need
to look in the log file in the multiuser development directory on the
shared network drive.

Making Changes in a Multiuser Development Environment

Setting Up and Using the Multiuser Development Environment 3-11

Using the extractprojects Utility to Extract Projects
You can use the Oracle BI Server utility extractprojects to extract projects from a given
repository without the overhead of the MUD environment. You can run this utility on
any platform supported by the Oracle BI Server.

The extractprojects utility generates an RPD file that includes the set of projects you
specify. The utility does not perform other tasks that are performed when you check
out projects using the Administration Tool, like saving an original repository file or
tracking the extract as a check-out in the MUD directory.

Before running extractprojects, you must first run bi-init.cmd (or bi-init.sh on UNIX
systems) to launch a command prompt that is initialized to your Oracle instance. You
can find this utility in:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

Then, run extractprojects from the resulting command prompt with the desired
options. You can run the utility from this directory with no arguments or parameters
to see usage information.

The utility takes the following parameters:

extractprojects -B base_repository_name -O output_repository_name {-I input_
project_name} [-P repository_password] [-L]

Where:

base_repository_name is the name and path of the repository from which you
want to extract projects.

output_repository_name is the name and path of the repository generated by the
utility.

input_project_name is the name of a project you want to extract. You can enter
multiple projects. Be sure to precede each project entry with -I (for example, -I project1
-I project2). If the project name contains spaces, enclose it in double quotes (for
example, "project 1").

repository_password is the password for the repository from which you want to
extract projects.

Note that the repository_password argument is optional. If you do not provide
the password argument, you are prompted to enter the password when you run the
command. To minimize the risk of security breaches, Oracle recommends that you do
not provide password arguments either on the command line or in scripts. Note that
the password argument is supported for backward compatibility only, and will be
removed in a future release.

- L enables logging. When logging is enabled, a log file in the format
ProjExtr.YYYYMMDD.HHMMSS.xml is created in the Oracle BI Server logging
directory. For example:

Caution: A second copy of the project extract repository is saved in
the same location. The name of this version contains the word
"original" added to the beginning of the name that you assigned to the
repository extract. Do not change the original project extract
repository. It is used during the multiuser development merge
process, and when you want to compare your changes to the original
projects.

Making Changes in a Multiuser Development Environment

3-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

ORACLE_INSTANCE/diagnostics/logs/OracleBIServerComponent/coreapplication_
obisn/ProjExtr.20100616.082904.xml

Example

The following example extracts project1 and project2 from my_repos.rpd and creates a
new repository called extract_repos.rpd:

extractprojects -B my_repos.rpd -O extract_repos.rpd -I project1 -I project2
Give password: my_rpd_password

About Changing and Testing Metadata
Most types of changes that can be made to standard repository files are also supported
for local repository files. Developers can add new logical columns, logical tables,
change table definitions, logical table sources, and so on. Developers may also work
simultaneously on the same project locally. It is important to note, however, that
Oracle Business Intelligence assumes the individual developer understands the
implications these changes might have on the master repository. For example, if a
developer deletes an object in a local repository, this change is propagated to the
master repository when local changes are merged without a warning prompt.

To ensure metadata integrity, you should not remove a physical column unless there
are no logical table source mappings to that physical column. Because of this, if you
are using a multiuser development environment, you cannot delete a logical column
and its associated physical column at the same time. Instead, you must first delete the
logical column and perform a merge. Then, you can delete the physical column and
perform another merge to safely remove the object.

You should not modify physical connection settings in a local repository. These are
intentionally not propagated, and developers should not test the master connection
pool settings in local environments. Instead, developers should apply settings for their
local test data sources to perform unit testing of their model changes.

Physical connection settings, security settings, and database feature table changes are
not retained in a multiuser development merge to prevent developers from
overwriting passwords and other important objects in the master repository.

After making changes to a local repository, the developer can edit the local
NQSConfig.INI file, enter the name of the repository as the default repository, and test
the edited metadata.

About Multiuser Development Menu Options
After the local developer makes changes, tests the changes, and saves the repository
locally, the local developer can perform the following tasks from the File > Multiuser
submenu:

■ Compare with Original. Compares the working extracted local repository to the
original extracted repository. When this option is selected, the Compare

Note: Be sure to provide the full pathnames to your repository files,
both the input file and the output file, if they are located in a different
directory.

Note: DSNs specified in the metadata must exist on the developer's
workstation.

Checking In Multiuser Development Repository Projects

Setting Up and Using the Multiuser Development Environment 3-13

repositories dialog opens and lists all the changes made to the working extracted
repository since you checked out the projects.

■ Merge Local Changes. Locks the master repository on the network multiuser
directory to allow you to check in your changes. See "Checking In Multiuser
Development Repository Projects" for more information.

■ Publish to Network. After you successfully merge your changes, the master
repository opens locally and the Publish to Network submenu item is available.
When you select this option, the lock is removed, the repository is published, and
the repository closes. See "Checking In Multiuser Development Repository
Projects" for more information.

■ Undo Merge Local Changes. Rolls back any previously merged local changes, and
leaves the repository checked out so that you can make additional changes and
then merge your local changes again. This option is only available after you have
already merged local changes.

■ Discard Local Changes. Any time after check out and before check in, you can
discard your changes. When you select this option, the working repository closes
without giving you an opportunity to save your work.

About Closing a Repository Before Publishing It to the Network
If you attempt to close an unpublished, locked repository without selecting an option
in the File > Multiuser submenu, the Closing MUD repository dialog opens with the
following options:

■ Publish repository. Publishes the merged repository to the network share as the
new master, releases the lock on the master, and the event is logged. This option is
available after a Merge Local Changes event occurs. This option is also available
on the File > Multiuser submenu.

■ Discard local changes. Releases the lock on the master repository and records the
event in the log. This option is available after a Checkout or Merge Local Changes
is performed and can be found on the File > Multiuser submenu.

■ Close repository and keep lock. This closes the repository, leaving the master
repository locked.

■ Undo merge local changes. Rolls back your previously merged local changes, and
leaves the repository checked out so that you can make additional changes and
then merge your local changes again.

Checking In Multiuser Development Repository Projects
After changing and testing the metadata on a local computer, the developer must
check the projects into the master repository in the multiuser development directory.
Only one developer at a time can merge metadata from a local repository into the
master repository. Therefore, the master repository is locked at the beginning of the
merge process.

The Oracle BI repository development process uses a three-way merge to manage
concurrent development. Metadata merges are done first on local environments and
then merged with the master repository. A three-way merge identifies local changes
based on the following repository characteristics:

Caution: If you select this option, there is no opportunity to change
your mind. For example, no confirmation dialog appears.

Checking In Multiuser Development Repository Projects

3-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ The Master RPD

■ The Baseline RPD or Master RPD snapshot at time of project extraction

■ The current locally developed and changed RPD

Changes are managed by merge and reconciliation. Most of the merging process is
automatic, and changes do not conflict. In case of any conflicting metadata sources,
developers can locate and resolve them.

An administrator can also merge the changes from multiple repositories manually, or
import objects from different repositories outside of a particular MUD environment.

Make sure to merge your changes frequently. The merge process is very complex and
can become difficult if there are too many changes. See Appendix D, "Merge Rules" for
more information about how objects are merged during the merge process.

This section contains the following topics:

■ About the Multiuser Development Merge Process

■ Checking In Projects

■ Tracking Changes to the Master Repository

About the Multiuser Development Merge Process
The merge process involves the following files:

■ Original of the local (subset) repository. Contains the state of the projects as
originally extracted. This repository name begins with "original." An example of
the file name for this copy might be originalDevelopment2.rpd. This version is
stored in the same location as the modified (or working) version of the local
repository.

■ Modified local (subset) repository. Contains the extracted projects after being
modified by the developer. This version is stored in the same location as the
original version of the local repository.

■ Latest master repository in the multiuser development directory. Note that this
file may have been modified by other developers before this merge.

During the merge, the Administration Tool checks for added objects and if found, a
warning message appears. The following list describes what happens during this step:

■ Warning about added objects. When a person checks out a project, they have the
ability to modify that project in any way and check it back in. Deletions and
modifications are ways in which the integrity of the project is maintained.
However, adding objects might introduce objects into the repository that do not
belong to any project. Therefore, all project related objects are checked and if a new
object is found, a warning message appears.

■ Aggregation of related objects. In the warning message, only the parent object is
reported. The Administration Tool aggregates all the objects to make the message

Caution: You must add newly created metadata to the project
definition in the master repository for it to be visible in future
extracted versions of the project. For example, if a developer checks
out a project, adds a new object, and then checks it in, the new object
is not visible in extracted versions of the project until it is explicitly
added to the project definition. See "Creating Projects" for instructions.

Checking In Multiuser Development Repository Projects

Setting Up and Using the Multiuser Development Environment 3-15

more usable. For example, if a developer added a new business model, only the
business model appears in the warning message to the user, not the tables,
columns, dimensions, and so on.

When a developer publishes changes to the network, the following actions occur:

■ The master repository in the multiuser development directory is overwritten with
the repository containing the developer's changes.

■ The master_repository.lck file is deleted. If another developer checks out the
changed project from the master repository, the changes made by the first
developer are exposed to the other developer.

How are Multiuser Merges Different from Standard Repository Merges?
The multiuser development check-in process uses the same technology as the standard
repository merge process with a few important differences. See "Performing Full
Repository Merges" for more information about the standard repository merge.

The following list describes the differences that occur during a multiuser development
merge:

■ Inserts (created objects) are applied automatically. Because a subset of the master
repository is being used as the original repository, most objects in the master
repository appear to be new. This would result in many unnecessary prompts that
the developer would have to manually approve. Therefore, new objects are created
without a prompt during a multiuser development merge.

■ Conflicts that are not inserts but are resolved because of the automatic inserts are
applied without a prompt during a multiuser development merge.

■ The database and connection pool properties in the master repository take
precedence over the same properties on the developer's computer. This precedence
are applied without a prompt during a multiuser development merge.

■ Changes to security settings are not retained when you perform a MUD merge to
prevent developers from overwriting passwords and other important objects in
the master repository.

To change security settings or database features in a multiuser development
environment, you must edit the master repository directly. To do this, remove the
master repository from the multiuser development directory, edit it in offline mode,
then move it back.

Checking In Projects
When the check-in process begins, the following actions occur:

■ The Administration Tool determines if the master repository is currently locked. If
not, it locks the master repository, preventing other developers from performing a
merge until the current merge is complete, and records the lock in the log file.

■ For other developers, the Merge Local Changes option on the File > Multiuser
menu is unavailable until the current check-in process has been successfully
completed.

■ The Administration Tool automatically copies the current version of the master
repository from the multiuser development directory to the local repository
directory on the developer's computer (typically ORACLE_BI_
HOME\orainst\bifoundation\OracleBIServerComponent\coreapplication\reposi
tory) and updates the log files in the local and multiuser development directories.

Checking In Multiuser Development Repository Projects

3-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

This is necessary because the master repository in the multiuser development
directory might have changed after the developer checked out the projects.

To check in projects to the master repository:

1. In the Administration Tool, select File > Multiuser > Merge Local Changes, then
click Yes if prompted to save changes.

2. In the Lock Information dialog, in the Comment field, type a description of the
changes that you made, then click OK.

Figure 3–3 shows the Lock Information dialog.

Figure 3–3 Lock Information Dialog

3. If there are any conflicts, the Merge Repository Wizard opens and displays the
Define Merge Strategy screen. Make merge decisions about whether to include or
exclude objects by choosing Current or Modified from the Decision list. When
you select an object in the decision table, the read-only text box below the decision
table describes what changes were made to that object in the current repository.
You can also click View Change Statistics to see a summary of changes. Click
Finish when you are finished making merge decisions.

See "Performing Full Repository Merges" for additional information about the
Define Merge Strategy screen.

A lack of conflicts does not mean that there are no differences between the
repositories. Instead, it means that there are no decisions that have to be explicitly
made by the developer to check in changes. See "How are Multiuser Merges
Different from Standard Repository Merges?" for information about conflicts that
are resolved automatically in a MUD merge.

In both cases, a CSV file is created in the local directory that contains details of the
merged changes.

4. After you confirm all the changes, click Save.

This saves the merged repository locally, and then uploads this repository to the
multiuser development directory with an incremented numeric file extension (for
example, Master_Sales.000, Master_Sales.001, and so on).

At this point, the changes made by the developer are still not saved to the master
repository in the multiuser development directory.

5. To commit these changes to the master repository in the multiuser development
directory, select File > Multiuser > Publish to Network, then click OK.

Branching in Multiuser Development

Setting Up and Using the Multiuser Development Environment 3-17

The master repository in the multiuser development directory is overwritten with
the copy of the repository containing the developer's changes.

Tracking Changes to the Master Repository
You can find a summary of the development activities on the master repository in
master_repository.log. This log contains a record of the following activities:

■ Projects that have been checked in and checked out and when these actions
occurred

■ The Windows login name and computer name initiating the transaction

■ When locks are created and removed

Branching in Multiuser Development
Branching is a further refinement of the merging development process. Branching can
provide higher efficiencies over large development teams that have overlapping
releases, but it requires significant administrative overhead.

This section contains the following topics:

■ About Branching

■ Using the Multi-Team, Multi-Release Model in Oracle Business Intelligence

■ Synchronizing RPD Branches

About Branching
In branching, developers work on private branches to isolate their code from other
developers and merge changes back to the main branch. Different strategies can be
followed, depending on the size of the development team.

In the Simple Development Model, all development occurs on a single main branch.
This strategy has the following characteristics:

■ Only for emergency fixes

■ Checkouts may not be most current code

■ Carries a stability risk for the mainline branch

Figure 3–4 shows the Simple Development Model.

Figure 3–4 Simple Development Model

In the Small Team Development Model, development occurs on a single Dev branch,
with a separate Main branch strictly for releases. This strategy has the following
characteristics:

Branching in Multiuser Development

3-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ The Mainline is the official release branch

■ Development occurs on a separate branch

■ Stable code is merged back to Main at key milestones

■ Branches are synchronized periodically

Figure 3–5 shows the Small Team Development Model.

Figure 3–5 Small Team Development Model

In the Multi-Team, Multi-Release Model, development occurs on multiple Dev
branches, again with a separate Main branch strictly for releases. This strategy has the
following characteristics:

■ Supports more efficiency over disparate teams

■ Development occurs on separate branches

■ Stable code is merged back to Main at key milestones

■ Branches are synchronized periodically

Figure 3–6 shows the Multi-Team, Multi-Release Model.

Figure 3–6 Multi-Team, Multi-Release Model

Viewing and Deleting History for Multiuser Development

Setting Up and Using the Multiuser Development Environment 3-19

Using the Multi-Team, Multi-Release Model in Oracle Business Intelligence
Using complex branching strategies in Oracle Business Intelligence requires attentive
organization of repository files, as well as altering the Multiuser setting in the
Administration Tool. The following procedure provides an overview of the required
steps.

To use the multi-team, multi-release model branching strategy:

1. Create a Main repository (Master Repository) and store it in the Master multiuser
development directory.

■ Projects must be explicitly defined.

■ Branch developers should not have access to the Master directory.

2. Create a subset of branch repositories by extracting from Main and storing them as
the Team1 and Team2 multiuser development directories. The Main and Team
RPDs must be stored and secured in separate directories on the network.

3. Developers must check out, develop, merge, and publish from their respective
Team RPDs. Developers A1 through A3 and B1 through B3 should manage their
metadata work and merge to their Team repository.

■ Teams 1 and 2 must maintain their own repositories and periodically
synchronize from Main to Team branches.

■ The Team repositories must be merged back into and published in the Main
repository.

4. One specific group (for example, release management) should manage all project
definitions, perform merges, publish, and synchronize the Team RPDs back to
Main.

Synchronizing RPD Branches
For large development teams, it is a good practice to perform periodic branch
synchronization as Main changes, in order to ease the ultimate Team check-in. Use the
Administration Tool to synchronize repositories in a three-way merge.

To synchronize repository branches:

1. Check in all changes from your Team development branch and open the RPD in
the Administration Tool. This the current repository.

2. Extract a fresh Branch subset from Main. This is the modified repository.

3. In the Administration Tool, select File, then select Merge and browse to the
backup of the previous Branch subset. This is the original repository.

4. Resolve all issues and perform the merge.

The RPD named in the Save merged repository as field becomes the new branch
development RPD and is called the Original in future synchronizations.

Viewing and Deleting History for Multiuser Development
You can view and delete the development history of a multiuser development
repository.

This section contains the following topics:

■ Viewing Multiuser Development History

Viewing and Deleting History for Multiuser Development

3-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Deleting Multiuser Development History

Viewing Multiuser Development History
You can view the development history of a multiuser development repository. In the
Administration Tool, multiuser development history is only available when no
repository is open and after the administrator sets up the shared network directory.
This prevents the confusion that could occur if a user opened a history log that did not
match an open, unrelated repository.

To view multiuser development history:

1. Open the Administration Tool.

2. Without opening a repository, select File > Multiuser > History.

3. In the Multiuser Development History dialog, select a repository.

A list of all master repositories in the multiuser development directory appears. If
directory contains only one master repository, it is selected by default, and no list
appears.

4. In the Open Offline dialog, type the password for the repository. The Multi User
History dialog appears.

Figure 3–7 shows the Multi User History dialog.

Figure 3–7 Multi User History Dialog

5. In the Multi User History dialog, right-click a row and select an option. Table 3–1
describes the options in the Multi User History dialog.

Tip: To see details for all revisions, right-click in the background with no rows
selected and select View > Details.

Table 3–1 Options in the Multi User History Dialog

Action Description

View > Repository Loads the selected master version of the repository in the
Administration Tool in read-only mode.

View > Prior to Merge >
Projects

Loads the selected version of a modified subset repository in the
Administration Tool in read-only mode.

View > Conflict Resolution Loads all necessary repositories of the selected version. Also
shows the Merge dialog in read-only mode with all selected
decisions as they were during the Merge Local Changes activity
at that time. Double-clicking a row for a version with conflict
resolutions has the same effect as selecting this menu item.

Note: This menu item is only enabled for versions that had
conflict resolutions.

Setting Multiuser Development Options

Setting Up and Using the Multiuser Development Environment 3-21

Deleting Multiuser Development History
Only multiuser development administrators can delete history. Administrators are
defined in a special hidden option file in the multiuser development directory. See
"Setting Multiuser Development Options" for more information.

An administrator can delete the entire MUD history, or the oldest 1 to n versions. It is
not possible to delete versions in the middle of the range. For example, an
administrator cannot delete version 3 if there are still versions 1 and 2. If an
administrator deletes the entire MUD history, newly assigned version numbers restart
at version 1.

Setting Multiuser Development Options
You can create a multiuser development option file to specify options for multiuser
development. The option file is a text file, in standard Windows INI format. It has the
following properties and characteristics:

■ The option file must be placed in the multiuser development directory. The file has
the same name as the corresponding master repository, but with an .opt extension.
For example, for \\network\MUD\sales.rpd, create an option file called
\\network\MUD\sales.opt.

■ The file should have the Hidden flag turned on.

■ In general, the option file should be managed only by multiuser development
administrators. To ensure this, you may want to change the sharing permissions
for the file.

The following example shows a multiuser development option file:

[Options]
BuildNumber = Yes
Admin = admin1;admin2
Mandatory Consistency Check = Yes
Equalize During Merge = Yes

Options that are not explicitly set are turned off by default. To turn an option on, set its
value to Yes. To turn an option off, either remove it from the option file, or set its value
to No.

Table 3–2 explains the options in the multiuser development option file.

View > Details Displays a log with details for the selected versions, or displays
details for all versions if no specific versions are selected.

View > Prior to Merge >
Changes

Compares modified subset repository of the selected version
with original subset repository and shows all changes made by
the user in the selected version.

Find and Find Again Lets you search the list.

Select All Selects all items displayed in the dialog.

Delete Available only to multiuser development administrators.

Table 3–1 (Cont.) Options in the Multi User History Dialog

Action Description

Setting Multiuser Development Options

3-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Table 3–2 Options in the Multiuser Development Option File

Option Description

BuildNumber When set to Yes, the build version of the Administration Tool is
displayed in the MUD history.

Admin Lists multiuser development administrators. Administrators
must be defined in the option file before they can delete MUD
history.

Administrators are defined by their computer/network login
names. When multiple administrators exist, administrator
names are separated by semicolons. For example:

Admin=jsmith;mramirez;plafleur

Mandatory Consistency
Check

When set to Yes, the publish step performs a consistency check.
Publishing cannot proceed unless there are no errors in the
given repository.

Equalize During Merge When set to Yes, the multiuser development merge process
performs mandatory equalization during MUD merges. Note
that setting this option to Yes affects the performance of the
merge process.

4

Importing Metadata and Working with Data Sources 4-1

4Importing Metadata and Working with Data
Sources

If you do not already have an Oracle BI repository file, you must create one. Then, you
can import metadata from your data sources into the Physical layer of your repository.
The Physical layer of the Administration Tool defines the data sources to which the
Oracle BI Server submits queries, and the relationships between physical databases
and other data sources that are used to process multiple data source queries.

Metadata imports to an Oracle BI repository must occur through an ODBC or native
database connection to the underlying data source. Metadata can also be imported
from software such as Microsoft Excel through an ODBC connection.

Importing metadata directly from each data source saves you time and effort by
importing the structure for the Physical layer. Data from these sources can be
displayed on Oracle BI Interactive Dashboards and other clients. You can only import
metadata from supported data sources.

After you import metadata, properties in the associated database object and
connection pool are typically set automatically. However, you may want to adjust
database or connection pool settings. See Chapter 6, "Setting Up Database Objects and
Connection Pools" for more information.

Although you can create the Physical layer manually rather than importing metadata,
it is a labor-intensive and error-prone activity. It is strongly recommended that you
import metadata.

This chapter contains the following topics:

■ Creating New Oracle BI Repository Files

■ Performing Data Source Preconfiguration Tasks

■ Importing Metadata from Relational Data Sources

■ Importing Metadata from Multidimensional Data Sources

■ Importing Metadata from XML Data Sources

■ Using a Standby Database with Oracle Business Intelligence

Creating New Oracle BI Repository Files
You can use the Create New Repository Wizard in the Administration Tool to create
new Oracle BI repository files (.rpds). You do not need to create a new repository file if
you already have an existing repository.

Performing Data Source Preconfiguration Tasks

4-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

If you have an existing repository file, you can use the existing data source settings in
that file as a template to connect to different data sources. To do this, use the existing
data source settings and just change the database type and connection pool
information. See "Setting Up Database Objects" and "Creating or Changing Connection
Pools" for details.

To create a new repository file:

1. In the Administration Tool, select File, then select New Repository. The Create
New Repository Wizard appears.

If an existing repository is open, you are prompted to save your changes, and the
existing repository is closed.

2. Type a name for the repository. Keep the name to 156 characters or less to avoid
problems with the metadata dictionary URL. An RPD file extension is
automatically added if you do not explicitly specify it.

3. Select a location for the new repository. By default, new repositories are stored in
the repository subdirectory, located at ORACLE_
INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_
obisn\repository.

4. If you want to import metadata into the repository now, select Yes (the default) for
Import Metadata. If you do not want to import metadata, select No.

5. Enter and confirm the password you want to use for this repository. The
repository password must be longer than five characters and cannot be empty.

You enter the repository password when you open the repository in online or
offline mode. It is used to encrypt the repository contents.

6. If you selected Yes for Import Metadata, click Next.

Refer to the following sections for information about the Import screens, according
to your data source type:

■ Importing Metadata from Relational Data Sources

■ Importing Metadata from Multidimensional Data Sources

■ Importing Metadata from XML Data Sources

■ Working with ADF Business Component Data Sources

Note that you many need to set up your data sources before you import
information into the repository. See "Performing Data Source Preconfiguration
Tasks" for more information.

7. If you selected No for Import Metadata, click Finish to create an empty
repository.

Performing Data Source Preconfiguration Tasks
Before you can import physical objects from your data sources into your repository
file, or set up connection pools to your data sources, you might need to perform
configuration steps so that the data sources can be accessed by Oracle Business
Intelligence.

For many data sources, you need to install client components. Client components are
typically installed on the computer hosting the Oracle BI Server for query access, and
on the computer hosting the Administration Tool (if different) for offline operations

Performing Data Source Preconfiguration Tasks

Importing Metadata and Working with Data Sources 4-3

such as import. In some cases, client components must be installed on the computer
where the JavaHost is located.

This section contains the following topics:

■ Setting Up ODBC Data Source Names (DSNs)

■ Setting Up Oracle Database Data Sources

■ Setting Up Oracle OLAP Data Sources

■ Setting Up Oracle TimesTen In-Memory Database Data Sources

■ Setting Up Essbase Data Sources

■ Setting Up Hyperion Financial Management Data Sources

■ Setting Up SAP/BW Data Sources

■ Setting Up Oracle RPAS Data Sources

Setting Up ODBC Data Source Names (DSNs)
Before you can import from a data source through an ODBC connection, or set up a
connection pool to an ODBC data source, you must first create an ODBC Data Source
Name (DSN) for that data source on the client computer. You reference this DSN in
the Import Metadata Wizard when you import metadata from the data source.

You can only use ODBC DSNs for import on Windows systems.

To set up an ODBC DSN on Windows:

1. Open the Windows Control Panel by selecting Start > Settings > Control Panel,
double-click Administrative Tools, and then double-click Data Sources (ODBC).

2. In the ODBC Data Source Administrator dialog, click the System DSN tab, and
then click Add.

3. From the Create New Data Source dialog, select the driver appropriate for your
data source, and then click Finish.

The remaining configuration steps are specific to the data source you want to
configure. Refer to the documentation for your data source for more information.

ODBC DSNs on Windows systems are used for both initial import, and for access to
the data source during query execution. On UNIX systems, ODBC DSNs are only used
for data access. For information about setting up ODBC data sources on UNIX, see
Chapter 15, "Setting Up Data Sources on Linux and UNIX."

Note: See also the following related topics:

■ If the Oracle BI Server is running on a non-Windows platform, see
Chapter 15, "Setting Up Data Sources on Linux and UNIX" for
additional instructions.

■ See Chapter 5, "Working with ADF Business Component Data
Sources" for information about setting up ADF Business
Component data sources.

■ See "System Requirements and Certification" for information
about the data source versions supported by Oracle Business
Intelligence.

Performing Data Source Preconfiguration Tasks

4-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Setting Up Oracle Database Data Sources
You should always use OCI when importing metadata from or connecting to an Oracle
Database. Before you can import schemas or set up a connection pool, you must add a
TNS names entry to your tnsnames.ora file. See the Oracle Database documentation
for more information.

When you import metadata from an Oracle Database data source or set up a
connection pool, you can include the entire connect string for Data Source Name, or
you can use the net service name defined in the tnsnames.ora file. If you choose to
enter only the net service name, you must set up a tnsnames.ora file in the following
location within the Oracle Business Intelligence environment, so that the Oracle BI
Server can locate the entry:

ORACLE_HOME\network\admin

Setting Up Oracle OLAP Data Sources
Before you import from an Oracle OLAP data source, ensure that the data source is a
standard form Analytic Workspace.

In addition, the JavaHost process must be running to import from Oracle OLAP data
sources, for both offline and online imports.

Setting Up Oracle TimesTen In-Memory Database Data Sources
Oracle TimesTen In-Memory Database is a high-performance, in-memory data
manager that supports both ODBC and JDBC interfaces. These preconfiguration
instructions assume that you have already installed TimesTen; see Oracle TimesTen
In-Memory Database Installation Guide for more information.

To set up TimesTen data sources:

1. On the computer where TimesTen has been installed, create a Data Manager DSN
(as a system DSN). See "Defining a Data Manager DSN" in Oracle TimesTen
In-Memory Database Operations Guide for more information.

2. Perform an initial connection to the data store to load the TimesTen database into
memory, and then create users and grant privileges, if you have not done so
already. See "Managing Access Control" in Oracle TimesTen In-Memory Database
Operations Guide for more information. Note that the default user of the data store
is the instance administrator, or in other words, the operating system user who
installed the database.

3. On the computer running the Oracle BI Server, install the TimesTen Client. See
Oracle TimesTen In-Memory Database Installation Guide for more information.

4. On the computer where the TimesTen Client has been installed, create a Client
DSN (as a system DSN). See "Creating Client DSNs" in Oracle TimesTen In-Memory
Database Operations Guide for more information.

Note: For Teradata data sources, after you have installed the latest
Teradata ODBC driver and set up an ODBC DSN, you must add the
lib directory for your Teradata data source to your Windows system
Path environment variable. For example:

D:\Program Files\NCR\Common Files\Shared ICU Libraries for
Teradata\lib

Performing Data Source Preconfiguration Tasks

Importing Metadata and Working with Data Sources 4-5

See "Configuring Database Connections Using Native ODBC Drivers" for
information about how to perform this step when the Oracle BI Server is running
on Linux or UNIX.

Note that if the TimesTen database is installed on the same computer as the TimesTen
client, you can specify either the Data Manager DSN or the Client DSN in the Import
Metadata Wizard.

Avoiding Query Failures Due to Limited Connections with TimesTen Data Sources
In some cases, queries to TimesTen data sources might fail with errors similar to the
following:

[10058][State: S1000] [NQODBC] [SQL_STATE: S1000] [nQSError: 10058] A general
error has occurred.
[nQSError: 43113] Message returned from OBIS.
[nQSError: 43119] Query Failed:
[nQSError: 16023] The ODBC function has returned an error. The database may not be
available, or the network may be down.
Statement execute failed

To avoid these failures, increase the maximum number of connections for the
TimesTen server, as follows:

1. In your TimesTen environment, open the ttendaemon.options file for editing. You
can find this file at:

install_dir/srv/info

2. Add the following line:

-MaxConnsPerServer number_of_connections

To determine number_of_connections, use the following formula: if there are M
connections for each connection pool in the RPD, N connection pools in the RPD,
and P Oracle BI Servers, then the total number of connections required is M * N *
P.

3. Save and close the file.

4. In the ODBC DSN you are using to connect to the TimesTen server, set the
Connections parameter to the same value you entered in Step 2:

■ On Windows, open the TimesTen ODBC Setup wizard from the Windows
ODBC Data Source Administrator. The Connections parameter is located in
the First Connection tab.

■ On UNIX, open the odbc.INI file and add the Connections attribute to the
TimesTen DSN entry, as follows:

Connections=number_of_connections

5. Stop all processes connecting to TimesTen, such as the ttisql process and the
Oracle BI Server.

6. Stop the TimesTen process.

7. After you have verified that the TimesTen process has been stopped, restart the
TimesTen process.

Performing Data Source Preconfiguration Tasks

4-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Setting Up Essbase Data Sources
The Oracle BI Server uses the Essbase client libraries to connect to Essbase data
sources. You must ensure that the Essbase client libraries are installed on the computer
running the Oracle BI Server before you can set up a connection to or import metadata
from Essbase data sources. You also need to ensure that the Essbase client libraries are
installed on any computer where you want to run the Administration Tool or the
nqcmd utility. See "System Requirements and Certification" for information about
supported versions of the Essbase Client for use with Oracle Business Intelligence.

After you verify that the Essbase client libraries are installed on the appropriate
computers, you must ensure that the PATH environment variable on each computer
includes the location of the Essbase client driver (for example, EPM_ORACLE_
HOME/products/Essbase/EssbaseClient). See "Configuring Essbase Data Sources on
Linux and UNIX" for information about setting the PATH variable on Linux.

You also need to ensure that an additional environment variable is set appropriately
for each computer (either ESSBASEPATH or ARBORPATH, depending on your client
version). For more information, see Oracle Hyperion Enterprise Performance Management
System Installation and Configuration Guide (or the equivalent title for your client
version).

Other system processes need the information contained in the environment variables
set for the Essbase client libraries. The following sections provide additional
information:

■ Updating Essbase Information in opmn.xml

■ Adding Essbase Information to bi-init.cmd

Updating Essbase Information in opmn.xml
To enable connectivity, on each computer running the Oracle BI Server, you need to
verify that information in opmn.xml is correct for your Essbase client version and
installed location.

To include the location of the Essbase client libraries in opmn.xml:

1. Open opmn.xml for editing. You can find opmn.xml at:

ORACLE_INSTANCE/config/OPMN/opmn/opmn.xml

2. Locate the ias-component tag for the Oracle BI Server process. For example:

<ias-component id="coreapplication_obis1" inherit-environment="true">

3. Under the Oracle BI Server ias-component tag, locate the line that identifies the
variable ESSBASEPATH. For example:

<variable id="ESSBASEPATH" value="$ORACLE_HOME/products/Essbase/EssbaseServer"
/>

4. If necessary, update the value to point to the appropriate location for your
installed client libraries. Change the variable name to ARBORPATH if necessary,
depending on your client version.

5. Locate the line that identifies the variable PATH. For example:

<variable id="PATH" value="$ORACLE_HOME/bifoundation/server/bin$:$ORACLE_
HOME/bifoundation/web/bin$:$ORACLE_HOME/bifoundation/odbc/lib$:$ORACLE_
INSTANCE$:$ORACLE_HOME/lib$:$ESSBASEPATH/bin$:$PATH$:$/bin" append="true"/>

Performing Data Source Preconfiguration Tasks

Importing Metadata and Working with Data Sources 4-7

6. Locate the portion of the entry that shows the location of the Essbase client
libraries (shown in bold in the preceding example), and update the location if
appropriate for your installation. Change the variable used in the path from
ESSBASEPATH to ARBORPATH if necessary, depending on your client version.

7. Save and close the file.

8. Restart OPMN.

9. Repeat these steps on each computer that runs the Oracle BI Server process. If you
are running multiple Oracle BI Server instances on the same computer, be sure to
update the ias-component tag appropriately for each instance in opmn.xml (for
example, ias-component id="coreapplication_obis1", ias-component
id="coreapplication_obis2", and so on).

Adding Essbase Information to bi-init.cmd
On Windows systems, to enable connectivity, you need to update bi-init.cmd on each
computer running the Administration Tool.

See "Configuring Essbase Data Sources on Linux and UNIX" for information about
setting up the environment on Linux systems.

To add Essbase environment variables to bi-init.cmd:

1. Open the bi-init.cmd file for editing. You can find bi-init.cmd at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

2. Add a line setting the ESSBASEPATH or ARBORPATH environment variable, as
appropriate for your version and installed location of the Essbase client libraries.
For example:

set ORACLE_INSTANCE=C:\mw_home\instances\instance1
set ORACLE_BI_APPLICATION=coreapplication
set ESSBASEPATH=C:\products\Essbase\EssbaseClient
call %ORACLE_INSTANCE%\bifoundation\OracleBIApplication\%ORACLE_BI_
APPLICATION%\setup\user.cmd

3. Locate the line that sets the PATH environment variable, and add the location of
the Essbase client binaries. For example:

set PATH=%ORACLE_HOME%\bifoundation\server\bin;%ORACLE_
HOME%\bifoundation\web\bin;%ORACLE_HOME%\bin;%ESSSBASEPATH%\bin;%PATH%

4. Save and close the file.

Setting Up Hyperion Financial Management Data Sources
Before you can import from or set up a connection to Hyperion Financial Management
data sources, you must ensure that the Hyperion Financial Management win32 client
is installed on the computer running the Oracle BI JavaHost process. If you are using
Hyperion Financial Management version 9.3.1, you must also install the HFM
Application Builder version 9.2.0.1 component on the JavaHost computer.

When you install the Hyperion Financial Management win32 client, make sure to
perform the following steps in the Server/Cluster Registration tab of the client
configuration utility:

■ Provide the IP address or host name of the Hyperion Financial Management
server.

■ Click Enable DCOM.

Performing Data Source Preconfiguration Tasks

4-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

In addition, you must edit the file opmn.xml on each computer running the Oracle BI
JavaHost process to include environment variables required by Hyperion Financial
Management. Note that the JavaHost process must be running to import from
Hyperion Financial Management data sources, for both offline and online imports.

For Hyperion Financial Management 9.3.1:

1. Open opmn.xml for editing. You can find opmn.xml at:

ORACLE_INSTANCE/config/OPMN/opmn/opmn.xml

2. Locate the ias-component tag for the JavaHost process. For example:

<ias-component id="coreapplication_obijh1">

3. Within the environment tag, add new variables required for Hyperion Financial
Management, using the following example as a guide. Update the actual values as
appropriate for your installation.

<variable id="HYPERION_HOME" value="C:/Hyperion"/>
<variable id="ADM_HOME" value="$HYPERION_HOME/common/ADM/9.3.1"/>
<variable id="HFM_HOME" value="$HYPERION_HOME/FinancialManagement/Client"/>
<variable id="ADM_ESS_NATIVE_HOME" value="$ADM_HOME/Essbase/9.3.1"/>

4. Update the PATH variable to include ADM_ESS_NATIVE_HOME/bin and HFM_
HOME. For example:

<variable id="PATH" value="$ADM_ESS_NATIVE_HOME/bin$:HFM_HOME:$ORACLE_
HOME/bifoundation/server/bin$:$ORACLE_HOME/bifoundation/web/bin$:$ORACLE_
HOME/bifoundation/odbc/lib$:$ORACLE_INSTANCE$:$ORACLE_HOME/lib" append="true"/>

5. Save and close the file.

6. Restart OPMN.

7. Repeat these steps on each computer that runs the Oracle BI JavaHost process. If
you are running multiple JavaHost instances on the same computer, be sure to
update the ias-component tag appropriately for each instance in opmn.xml (for
example, ias-component id="coreapplication_obijh1", ias-component
id="coreapplication_obijh2", and so on).

You should run more than one JavaHost process to ensure that the JavaHost is not
a single point of failure for HFM access. To do this, scale out the JavaHost process
using Fusion Middleware Control. See "Scaling Your Deployment" in Oracle Fusion
Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition for more information about scaling out processes.

For Hyperion Financial Management 11.1.2:

1. Open opmn.xml for editing. You can find opmn.xml at:

ORACLE_INSTANCE/config/OPMN/opmn/opmn.xml

2. Locate the ias-component tag for the JavaHost process. For example:

<ias-component id="coreapplication_obijh1">

Note: You can only use Hyperion Financial Management data
sources with Oracle BI EE when Oracle BI EE is running in a
Windows-only deployment.

Performing Data Source Preconfiguration Tasks

Importing Metadata and Working with Data Sources 4-9

3. Within the environment tag, add new variables required for Hyperion Financial
Management, using the following example as a guide. Update the actual values as
appropriate for your installation.

<variable id="HYPERION_HOME" value="C:/oracle/Middleware/EPMSystem11R1"/>
<variable id="EPM_HOME" value="C:/MW_Home/Oracle_BI1/common/jlib/11.1.2.0"/>
<variable id="ADM_HOME" value="C:/MW_Home/Oracle_BI1/common/ADM/11.1.2.0"/>
<variable id="HFM_HOME" value="$HYPERION_
HOME/products/FinancialManagement/Client"/>
<variable id="ADM_ESS_NATIVE_HOME" value="$ADM_HOME/"/>
<variable id="CSS_HOME" value="c:/MW_Home/Oracle_BI1/common/CSS/11.1.2.0"/>

4. Update the PATH variable to include ADM_HOME/bin and the client and
common subdirectories of HYPERION_HOME. For example:

<variable id="PATH" value="C:\oracle\product\10.2.0\db_1\BIN$:$ADM_
HOME/bin$:$HYPERION_HOME/products/FinancialManagement/Common$:$HYPERION_
HOME/products/FinancialManagement/Client$:$ORACLE_
HOME/common/ODBC/Merant/5.3/lib$:$ORACLE_HOME/bifoundation/server/bin$:$ORACLE_
HOME/bifoundation/web/bin$:$ORACLE_HOME/bifoundation/odbc/lib$:$ORACLE_
INSTANCE$:$ORACLE_HOME/lib" append="true"/>

5. Locate the data id="start-args" tag and update the classpath attribute to include
the location of required jar files. For example:

<data id="start-args" value="-Xmx1024M -Djava.security.manager=default -DXDO_
FONT_DIR=$ORACLE_HOME/common/fonts -Djava.security.policy=$ORACLE_
INSTANCE/config/$COMPONENT_TYPE/$COMPONENT_NAME/java.policy
-Djava.util.logging.config.class=oracle.core.ojdl.logging.LoggingConfiguration
-Doracle.core.ojdl.logging.config.file=$ORACLE_INSTANCE/config/$COMPONENT_
TYPE/$COMPONENT_NAME/logging-config.xml -Doracle.home=$ORACLE_HOME
-Doracle.instance=$ORACLE_INSTANCE -Doracle.component.type=$COMPONENT_TYPE
-Doracle.component.name=$COMPONENT_NAME -classpath $COMMON_COMPONENTS_
HOME/modules/oracle.odl_11.1.1/ojdl.jar$:$ORACLE_
HOME/bifoundation/javahost/lib/core/sautils.jar$:$ORACLE_
HOME/bifoundation/javahost/lib/core/mad.jar$:$ORACLE_
HOME/bifoundation/javahost/lib/core/sawconnect.jar$:$ORACLE_
HOME/bifoundation/javahost/lib/core/javahost.jar$:$COMMON_COMPONENTS_
HOME/modules/oracle.xdk_11.1.0/xmlparserv2.jar$:$ORACLE_
HOME/opmn/lib/ons.jar$:$COMMON_COMPONENTS_HOME/modules/oracle.jps_
11.1.1/jps-manifest.jar$:$COMMON_COMPONENTS_HOME/modules/oracle.jps_
11.1.1/jps-api.jar$:$COMMON_COMPONENTS_HOME/modules/oracle.jps_
11.1.1/jps-common.jar$:$COMMON_COMPONENTS_HOME/modules/oracle.jps_
11.1.1/jps-internal.jar$:$COMMON_COMPONENTS_HOME/modules/oracle.nlsrtl_
11.1.0/orai18n.jar$:$COMMON_COMPONENTS_HOME/modules/oracle.nlsrtl_
11.1.0/orai18n-collation.jar$:$COMMON_COMPONENTS_HOME/modules/oracle.nlsrtl_
11.1.0/orai18n-mapping.jar$:$COMMON_COMPONENTS_HOME/modules/oracle.dms_
11.1.1/dms.jar$:$EPM_HOME/epm.jar$:$ADM_HOME/lib/adm.jar$:$ADM_
HOME/lib/ap.jar$:$CSS_HOME/lib/css.jar$:$CSS_HOME/lib/common-model.jar$
com.siebel.analytics.javahost.standalone.Main"/>

6. Save and close the file.

7. Go to the directory ORACLE_
HOME/bifoundation/javahost/lib/obisintegration/adm and delete all jar files
except for admintegration.jar and admimport.jar.

8. Restart the JavaHost process.

9. Repeat these steps on each computer that runs the Oracle BI JavaHost process. If
you are running multiple JavaHost instances on the same computer, be sure to

Importing Metadata from Relational Data Sources

4-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

update the ias-component tag appropriately for each instance in opmn.xml (for
example, ias-component id="coreapplication_obijh1", ias-component
id="coreapplication_obijh2", and so on).

You should run more than one JavaHost process to ensure that the JavaHost is not
a single point of failure for HFM access. To do this, scale out the JavaHost process
using Fusion Middleware Control. See "Scaling Your Deployment" in Oracle Fusion
Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition for more information about scaling out processes.

Setting Up SAP/BW Data Sources
You can connect to SAP/BW data sources using either the XMLA connection type, or
the SAP BW Native connection type (BAPI). SAP BW Native connections might not be
available on certain platforms. See "System Requirements and Certification" for more
information.

To connect to SAP/BW data sources using the SAP BW Native connection type, you
must first download the BAPI Adapter for OBI Package from the Bristlecone Web site
at:

http://www.bristleconelabs.com/edel/OBIEE_BAPIAdaptor_
download.asp

Then, follow the configuration instructions in the Readme provided with the
download.

No preconfiguration steps are required to connect to SAP/BW over XMLA.

Setting Up Oracle RPAS Data Sources
Oracle BI Server can connect to Oracle RPAS (Retail Predictive Application Server)
data sources through ODBC DSNs. To set up Oracle RPAS data sources, you must first
install the Oracle RPAS ODBC driver. During set up of the ODBC DSN, you must
select the SQLExtendedFetch option, select DBMS from the Authentication Method
list, and select No from the Normalize Dimension Tables list. See "About Importing
Metadata from Oracle RPAS Data Sources" for more information.

On Windows systems, you can connect to Oracle RPAS data sources for both initial
import and for access to the data source during query execution. On UNIX systems,
you can only connect to Oracle RPAS data sources for data access.

See "Configuring Oracle RPAS ODBC Data Sources on AIX UNIX" for information
about how to enable ODBC access to Oracle RPAS data sources when the Oracle BI
Server is running on AIX UNIX.

Importing Metadata from Relational Data Sources
You can import metadata for supported relational data source types by selecting one of
the following import options and the appropriate connection type:

■ Local Machine. Available in both offline and online modes. Use this option when
you have all database connections set up on your computer. Note the following:

– Most metadata imports are performed using an ODBC connection type.

– Native database gateways for metadata import are supported for Oracle
Database (using OCI), DB2 (using DB2 CLI Unicode), and XML connection
types. See "Importing Metadata from XML Data Sources" for information
about importing XML data using the Oracle BI Server XML gateway.

Importing Metadata from Relational Data Sources

Importing Metadata and Working with Data Sources 4-11

– You can use the Find button in the Select Metadata Objects screen of the
Import Metadata Wizard to find a specific table you want to import.

■ Through the Oracle BI Server. Available in online mode. Use this option when
you want to use Oracle BI Server connections to import metadata. This option lets
you use the Data Source Name (DSN) of the Oracle BI Server computer to import
metadata, rather than duplicating the DSNs and connectivity information on your
local computer. Available connection types are ODBC, OCI, DB2 CLI (Unicode),
and XML.

You must create a DSN for the Oracle BI Server before you can import metadata
through the Oracle BI Server. In addition, the Oracle BI Server must be running.
For more information about the Oracle BI Server DSN, see "Integrating Other
Clients with Oracle Business Intelligence" in Oracle Fusion Middleware Integrator's
Guide for Oracle Business Intelligence Enterprise Edition.

See "Importing Metadata from Multidimensional Data Sources" and Chapter 5,
"Working with ADF Business Component Data Sources" for information about
importing from other data sources.

When you import physical tables, be careful to limit the import to only those tables
that contain data that are likely to be used in the business models you create. You can
use the Find feature to locate and select the tables that you want to import. Importing
large numbers of extraneous tables and other objects adds unnecessary complexity
and increases the size of the repository.

When you import metadata for most data sources, the default is to import tables,
primary keys, and foreign keys. It is recommended that you import primary and
foreign keys along with your tables so that the keys are automatically created in the
Physical layer. If you do not import keys, you must create them manually, which can
be a time-consuming process.

You can also import database views, aliases, synonyms, and system tables. Import
these objects only if you want the Oracle BI Server to generate queries against them.

To import metadata from a relational data source:

1. In the Administration Tool, select File, then select Import Metadata. The Import
Metadata Wizard appears.

Figure 4–1 shows the Import Metadata Wizard.

Note: When it is running on a UNIX platform, the Oracle BI Server
does not support importing metadata using an ODBC connection
type.

Note: If you have already defined an existing database and
connection pool, you can right-click the connection pool in the
Physical layer and select Import Metadata. The Import Metadata
Wizard appears with the information on the Select Data Source screen
pre-filled.

Importing Metadata from Relational Data Sources

4-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 4–1 Import Metadata Wizard: Relational Data Source

2. In the Select Data Source screen, in the Connection Type field, select the type of
connection appropriate for your data source, such as ODBC 3.5.

Make sure to choose OCI 10g/11g if your data source is an Oracle Database. Using
OCI as your connection protocol to an Oracle Database ensures better performance
and provides access to native database features that are not available through
ODBC.

The remaining fields and options on the Select Data Source screen vary according
to the connection type you selected:

– For ODBC 2.0 and ODBC 3.5 data sources, in the DSN list, select a data
source from which to import the schema. Then, provide a valid user name and
password for the data source.

Note that when you import through the Oracle BI Server, the DSN entries are
on the Oracle BI Server, not on the local computer.

– For OCI 10g/11g and DB2 CLI (Unicode) data sources, provide the name of
the data source in the Data Source Name field, then provide a valid user name
and password for the data source.

For Oracle Database data sources, the data source name is either a full connect
string or a net service name from the tnsnames.ora file. If you enter a net
service name, you must ensure that you have set up a tnsnames.ora file within
the Oracle Business Intelligence environment, in ORACLE_
HOME/network/admin.

Other data source types are described in other sections:

Note: For non-Oracle databases, it is recommended that you use
ODBC 3.5 or DB2 CLI (Unicode) for importing schemas with
International characters, such as Japanese table and column names.

Importing Metadata from Relational Data Sources

Importing Metadata and Working with Data Sources 4-13

■ See "Importing Metadata from Multidimensional Data Sources" for Essbase,
XMLA, Oracle OLAP, Hyperion ADM, and SAP BW Native. This section also
describes importing from Oracle RPAS data sources over ODBC 3.5.

■ See "Importing Metadata from XML Data Sources" for XML.

■ See Chapter 5, "Working with ADF Business Component Data Sources" for
OracleADF_HTTP.

When you have finished providing information in the Select Data Source screen,
click Next. The Select Metadata Types screen appears.

3. Select the options for the types of objects that you want to import (for example,
Tables, Keys, and Foreign Keys). Some options are automatically selected.
Different types of data sources have different default selections, based on what is
typical for that data source.

If you want to import joins, select both Keys and Foreign Keys. If you want to
import system tables, you must have the system privilege for your data source. To
import from Customer Relationship Management (CRM) tables, select Metadata
from CRM tables.

4. Click Next. The Select Metadata Objects screen appears.

5. Select the objects you want to import in the Available list and move them to the
Selected list, using the > (Import selected) or >> (Import all) buttons. You can also
move objects from the Selected list back to the Available list, using the < (Remove
selected) and << (Remove all) buttons.

To search for a particular item, enter a keyword in the Find box and then click
Find Down or Find Up.

Select Show complete structure to view all objects, including those that have
already been imported. Deselecting this option shows only the objects that are
available for import. When this option is selected, objects that have already been
imported appear grayed out.

6. Click Finish.

If some objects could not be imported, a list of warning messages appears. In the
dialog displaying the messages, you can perform the following actions:

– To search for specific terms, click Find and then Find Again.

– To copy the contents of the window so that you can paste the messages in
another file, click Copy.

After you import metadata, you should check to ensure that your database and
connection pool settings are correct. In rare cases, the Oracle BI Server cannot
determine the exact database type during import and instead assigns an approximate
type to the database object. See "Setting Up Database Objects" and "Creating or
Changing Connection Pools" for more information about working with these objects.

It is also a good practice to visually inspect the imported data in the Physical layer,
such as physical columns and tables, to ensure that the import completed successfully.

About the Map to Logical Model and Publish to Warehouse Screens
The Map to Logical Model and Publish to Warehouse screens in the Import Metadata
Wizard are reserved for a future release. Check the Oracle Business Intelligence
chapter in Oracle Fusion Middleware Release Notes for updates about the functionality in
these two screens.

Importing Metadata from Multidimensional Data Sources

4-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Importing Metadata from Multidimensional Data Sources
You can use the Administration Tool to import metadata from a multidimensional
data source to the Physical layer of the Oracle BI repository. The ability to use
multidimensional data sources enables the Oracle BI Server to connect to sources such
as Essbase, Oracle OLAP, Hyperion Financial Management, Microsoft Analysis
Services, and SAP/BW (SAP/Business Warehouse) to extract data. Data from these
sources can be displayed on dashboards.

The primary differences between setting up multidimensional data sources and
relational data sources are in the Physical layer. The setup in the Business Model and
Presentation layers for multidimensional data sources and relational data sources is
almost identical.

During the import process, each cube in a multidimensional data source is created as a
single physical cube table. The Oracle BI Server imports the cube metadata, including
its metrics, dimensions and hierarchies. After importing the cubes, you need to ensure
that the physical cube columns have the correct aggregation rule and that the
hierarchy type is correct. See "Working with Physical Hierarchy Objects" for more
information.

It is recommended that you remove hierarchies and columns from the Physical layer if
they will not be used in the business model. This eliminates maintaining unnecessary
objects in the Administration Tool and might result in better performance.

To import metadata from a multidimensional data source:

1. In the Administration Tool, select File, then select Import Metadata. The Import
Metadata Wizard appears.

Figure 4–2 shows the Import Metadata Wizard.

Caution: Manually creating a physical schema from a
multidimensional data source is labor-intensive and error prone.
Therefore, it is strongly recommended that you use the import
method.

Note: If you have already defined an existing database and
connection pool, you can right-click the connection pool in the
Physical layer and select Import Metadata. The Import Metadata
Wizard appears with the information on the Select Data Source screen
pre-filled. You can also use this method to perform incremental
imports.

Importing Metadata from Multidimensional Data Sources

Importing Metadata and Working with Data Sources 4-15

Figure 4–2 Import Metadata Wizard: Multidimensional Data Source

Note that the Map to Logical Model and Publish to Warehouse screens in the
Import Metadata Wizard are reserved for a future release. Check the Oracle
Business Intelligence chapter in Oracle Fusion Middleware Release Notes for updates
about the functionality in these two screens.

2. In the Select Data Source screen, in the Connection Type field, select the type of
connection appropriate for your data source.

The remaining fields and options on the Select Data Source screen vary according
to the connection type you selected. Table 4–1 describes the multidimensional
connection types.

Table 4–1 Multidimensional Connection Options

Connection Type Description

ODBC 3.5 The ODBC 3.5 connection type is used for Oracle RPAS data sources.
Select the DSN entry and provide the user name and password for
the selected data source. See "Setting Up ODBC Data Source Names
(DSNs)" for more information.

Essbase Provide the host name of the computer where the Essbase server is
running in the Essbase Server field, then provide a valid user name
and password for the data source. This information should be
obtained from your data source administrator.

See "Working with Essbase Data Sources" for information about how
data from Essbase data sources is modeled in the Physical layer.

Note: You must ensure that Essbase client libraries are installed on
the computer running the Oracle BI Server before you can import
metadata from Essbase data sources. See "Setting Up Essbase Data
Sources" for more information.

Importing Metadata from Multidimensional Data Sources

4-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

XMLA The XMLA connection type is used for Microsoft Analysis Services
and SAP/BW. Enter the URL of a data source from which to import
the schema. Then, enter the Provider Type (such as Analysis Services
2000 or SAP/BW 3.5/7.0) and a valid user name and password for
the data source.

For Target Database, do one of the following:

■ Select New and enter the name you want to use for the new
database object.

■ Select Existing and then click Browse to select an existing
database object.

Oracle OLAP Provide the name of the data source (net service name) in the Data
Source Name field, then provide a valid user name and password for
the data source. The data source name is the same as the entry you
created in the tnsnames.ora file. Make sure that the name you use is
from the tnsnames.ora file within the Oracle Business Intelligence
environment. You can also choose to enter a full connect string rather
than the net service name.

For Target Database, do one of the following:

■ Select New and enter the name you want to use for the new
database object.

■ Select Existing and then click Browse to select an existing
database object.

The JavaHost process must be running to import from Oracle OLAP
data sources, for both offline and online imports.

See "Working with Oracle OLAP Data Sources" for information about
how data from Oracle OLAP data sources is modeled in the Physical
layer.

Note: Oracle Database data sources with the OLAP option can
contain both relational tables and multidimensional tables. However,
you should avoid having both table types in the same database object
in the Administration Tool, because you may need to specify
different database feature sets for the different table types.

For example, Oracle OLAP queries fail if the database feature
GROUP_BY_GROUPING_SETS_SUPPORTED is enabled. However, you
may need this feature enabled for Oracle Database relational tables.

As a best practice, create two separate database objects for relational
and multidimensional tables.

Table 4–1 (Cont.) Multidimensional Connection Options

Connection Type Description

Importing Metadata from Multidimensional Data Sources

Importing Metadata and Working with Data Sources 4-17

Other data source types are described in other sections:

Hyperion ADM Provide the URL for the Hyperion Financial Management server,
including the driver and application name (cube name), in the
following format:

adm:native:HsvADMDriver:ip_or_host:application_name

For example:

adm:native:HsvADMDriver:130.35.40.80:UCFHFM

You also need to enter a valid user name and password for your data
source.

Note that the JavaHost process must be running to import from
Hyperion Financial Management data sources, for both offline and
online imports.

See "Working with Hyperion Financial Management Data Sources"
for information about how data from Hyperion Financial
Management data sources is modeled in the Physical layer.

Note: Be sure to complete the preconfiguration steps described in
"Setting Up Hyperion Financial Management Data Sources" before
import.

SAP BW Native Provide the following information:

■ System IP or Hostname: The host name or IP address of the SAP
data server. This field corresponds to the parameter ashost in
the SAP/BW connect string.

■ System Number: The SAP system number. This is a two-digit
number assigned to an SAP instance, also called Web
Application Server, or WAS. This field corresponds to the
parameter sysnr in the SAP/BW connect string.

■ Client Number: The SAP client number. This is a three-digit
number assigned to the self-contained unit called Client in SAP.
A Client can be a training, development, testing, or production
client, or it can represent different divisions in a large company.
This field corresponds to the parameter client in the SAP/BW
connect string.

■ Language: The SAP language code used when logging in to the
data source (for example, EN for English or DE for German).
This field corresponds to the parameter lang in the SAP/BW
connect string.

■ Additional Parameters: Additional connection string parameters
in the format param=value. Delimit multiple parameters with a
colon. This field is optional.

■ User Name: A valid user name for the data source.

■ Password: The corresponding user password. The password is
case-sensitive.

The first five fields constitute the elements of the SAP/BW connect
string, in the format:

ashost=value:sysnr=value:client=value:lang=value:additional
_param=value

For example:

ashost=10.30.0.19:sysnr=00:client=100:lang=EN

Note: Be sure to complete the preconfiguration steps described in
"Setting Up SAP/BW Data Sources" before import.

Table 4–1 (Cont.) Multidimensional Connection Options

Connection Type Description

Importing Metadata from Multidimensional Data Sources

4-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ See "Importing Metadata from XML Data Sources" for XML.

■ See "Importing Metadata from Relational Data Sources" for ODBC 2.0, OCI
10g/11g, and DB2 CLI (Unicode).

■ See Chapter 5, "Working with ADF Business Component Data Sources" for
OracleADF_HTTP.

When you have finished providing information in the Select Data Source screen,
click Next.

3. For Oracle RPAS data sources only, the Select Metadata Types screen is displayed.
For Oracle RPAS, select Tables, Keys, and Foreign Keys. Then, click Next.

See "About Importing Metadata from Oracle RPAS Data Sources" for more
information.

4. In the Select Metadata Objects screen, select the objects you want to import in the
Available list and move them to the Selected list, using the > (Import selected) or
>> (Import all) buttons. You can also move objects from the Selected list back to
the Available list, using the < (Remove selected) and << (Remove all) buttons.

To search for a particular item, enter a keyword in the Find box and then click
Find Down or Find Up.

Select Show complete structure to view all objects, including those that have
already been imported. Deselecting this option shows only the objects that are
available for import. When this option is selected, objects that have already been
imported appear grayed out

For Essbase data sources, select Import UDAs if you want to import UDAs
(user-defined attributes).

5. Click Finish.

If some objects could not be imported, a list of warning messages appears. In the
dialog displaying the messages, you can perform the following actions:

– To search for specific terms, click Find and then Find Again.

– To copy the contents of the window so that you can paste the messages in
another file, click Copy.

After you import metadata, you should check to ensure that your database and
connection pool settings are correct. In rare cases, the Oracle BI Server cannot
determine the exact database type during import and instead assigns an approximate
type to the database object. See "Setting Up Database Objects" and "Creating or
Changing Connection Pools" for more information about working with these objects.

It is also a good practice to visually inspect the imported data in the Physical layer,
such as physical columns and hierarchical levels, to ensure that the import completed
successfully.

For Essbase data sources, all hierarchies are imported as Unbalanced by default.
Review the Hierarchy Type property for each physical hierarchy and change the value
if necessary. Supported hierarchy types for Essbase are Unbalanced, Fully balanced,
and Value.

About Importing Metadata from Oracle RPAS Data Sources
This section provides important information about using the Administration Tool to
import metadata from Oracle RPAS, as follows:

■ Oracle RPAS schemas can only be imported on Windows.

Importing Metadata from XML Data Sources

Importing Metadata and Working with Data Sources 4-19

■ Before you import RPAS schemas, you must set the Normalize Dimension Tables
field value in the ODBC DSN Setup page to Yes for the following reasons:

– Setting this value to Yes uses an appropriate schema model (the snowflake
schema) that creates joins correctly and enables drill down in the data.

– Setting this value to No uses a less appropriate schema model (the star
schema) that creates joins between all of the tables, causing drill down to not
work correctly. Many of the joins created in this way are unwanted, and
would need to be removed manually.

 See "Setting Up ODBC Data Source Names (DSNs)" for more information.

■ When you import RPAS schemas in the Administration Tool, you must import the
data with joins. To do this, select the metadata types Keys and Foreign Keys in the
Import Metadata Wizard.

■ After you have imported RPAS schemas, you must change the Normalize
Dimension Tables field value in the ODBC DSN Setup page back to No. You need
to revert this setting back to No after import to enable the Oracle BI Server to
correctly generate optimized SQL against the RPAS driver.

Note: If you do not change the Normalize Dimension Tables setting value to No,
most queries will fail with an error message similar to the following:

[nQSError: 16001] ODBC error state: S0022 code: 0 message: [Oracle Retail][RPAS
ODBC]Column:YEAR_LABEL not found..[nQSError: 16014] SQL statement preparation
failed. Statement execute failed.

■ If Oracle RPAS is the only data source, you must set the value of NULL_VALUES_
SORT_FIRST to ON in the NQSConfig.INI file. See Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information about setting values in NQSConfig.INI.

Importing Metadata from XML Data Sources
This section describes the use of the Extensible Markup Language (XML) as a data
source. XML is the universal format for structured documents and data on the Web. It
can also be used as a database to store structured data.

The Oracle BI Server supports various XML access modes, including access through
the Oracle BI Server XML Gateway, as well as access through an XML ODBC driver.

This section contains the following topics:

■ About Using XML as a Data Source

■ Importing Metadata from XML Data Sources Using the XML Gateway

■ Importing Metadata from XML Data Sources Using XML ODBC

■ Examples of XML Documents

About Using XML as a Data Source
The Oracle BI Server supports the use of XML data as a data source for the Physical
layer in the repository. Depending on the method used to access XML data sources, a
data source may be represented by a URL pointing to one of the following sources:

■ A static XML file or HTML file that contains XML data islands on the Internet
(including intranet or extranet). For example:

tap://216.217.17.176/[DE0A48DE-1C3E-11D4-97C9-00105AA70303].XML

Importing Metadata from XML Data Sources

4-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Dynamic XML generated from a server site. For example:

tap://www.aspserver.com/example.asp

■ An XML file or HTML file that contains XML data islands on a local or network
drive. For example:

d:/xmldir/example.xml

d:/htmldir/island.htm

You can also specify a directory path for local or network XML files, or you can
use the asterisk (*) as a wildcard with the filenames. If you specify a directory
path without a filename specification (like d:/xmldir), all files with the XML suffix
are imported. For example:

d:/xmldir/

d:/xmldir/exam*.xml

d:/htmldir/exam*.htm

d:/htmldir/exam*.html

■ An HTML file that contains tables, defined by a pair of <table> and </table> tags.
The HTML file may reside on the Internet (including intranet or extranet), or on a
local or network drive. See "Accessing HTML Tables" for more information.

URLs can include repository or session variables, providing support for HTTP data
sources that accept user IDs and passwords embedded in the URL. For example:

http://somewebserver/cgi.pl?userid=valueof(session_variable1)&password=
valueof(session_variable2)

This functionality also lets you create an XML data source with a location that is
dynamically determined by some run-time parameters. For more information about
variables, see Chapter 18.

If the Oracle BI Server needs to access any nonlocal files (network files or files on the
Internet, for example), you must run the Oracle BI Server using a valid user ID and
password with sufficient network privileges to access these remote files.

Importing Metadata from XML Data Sources Using the XML Gateway
Using the Oracle BI Server XML Gateway, the metadata import process flattens the
XML document to a tabular form using the stem of the XML filename (that is, the
filename without the suffix) as the table name and the second level element in the
XML document as the row delimiter. All leaf nodes are imported as columns
belonging to the table. The hierarchical access path to leaf nodes is also imported.

The Oracle BI Server XML Gateway uses the metadata information contained in an
XML schema. The XML schema is contained within the XML document, or is
referenced within the root element of the XML document.

Where there is no schema available, all XML data is imported as text data. In building
the repository, you can alter the data types of the columns in the Physical layer,
overriding the data types for the corresponding columns defined in the schema. The
gateway converts the incoming data to the desired type as specified in the Physical
layer. You can also map the text data type to other data types in the Business Model
and Mapping layer of the Administration Tool, using the CAST operator.

The Oracle BI Server XML Gateway does not support:

Importing Metadata from XML Data Sources

Importing Metadata and Working with Data Sources 4-21

■ Resolution of external references contained in an XML document (other than a
reference to an external XML schema, as demonstrated in the example file in
"Examples of XML Documents Generated by the Oracle BI Server XML Gateway").

■ Element and attribute inheritance contained within the Microsoft XML schema.

■ Element types of a mixed content model (such as XML elements that contain a
mixture of elements and CDATA, such as <p> hello Joe, how are you
doing?</p>).

To import XML data using the Oracle BI Server XML Gateway:

1. In the Administration Tool, select File, then select Import Metadata. The Import
Metadata Wizard appears.

Figure 4–3 shows the Import Metadata Wizard.

Figure 4–3 Import Metadata Wizard: XML Data Source

Note that the Map to Logical Model and Publish to Warehouse screens in the
Import Metadata Wizard are reserved for a future release. Check the Oracle
Business Intelligence chapter in Oracle Fusion Middleware Release Notes for updates
about the functionality in these two screens.

2. In the Select Data Source screen, select XML for Connection Type. Then, provide
the following values:

■ For URL, specify the XML data source URL. The Oracle BI Server XML
Gateway supports all data sources described in the previous section.

Note: If you have already defined an existing database and
connection pool, you can right-click the connection pool in the
Physical layer and select Import Metadata. The Import Metadata
Wizard appears with the information on the Select Data Source screen
pre-filled.

Importing Metadata from XML Data Sources

4-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

URLs can include repository or session variables. For more information about
variables, see Chapter 18.

 If you click Browse, the Select XML File dialog appears, from which you can
select a single file. For XML documents, the file name in the URL that you
specify must have the suffix .xml. Otherwise, the documents are treated as
HTML documents.

■ Type an optional user name and password in the appropriate fields for
connections to HTTP sites that employ the HTTP Basic Authentication security
mode.

In addition to HTTP Basic Authentication security mode, the Oracle BI Server
XML Gateway also supports Secure HTTP protocol and Integrated Windows
Authentication (for Windows 2000), formerly called NTLM or Windows NT
Challenge/Response authentication.

When you have finished providing information in the Select Data Source screen,
click Next. The Select Metadata Types screen appears.

3. Select the options for the types of objects that you want to import (for example,
Tables, Keys, and Foreign Keys). The most typical options are automatically
selected.

If you want to import joins, select both Keys and Foreign Keys. If you want to
import system tables, you must have the system privilege for your data source.

4. Click Next. The Select Metadata Objects screen appears.

5. Select the objects you want to import in the Available list and move them to the
Selected list, using the > (Import selected) or >> (Import all) buttons. You can also
move objects from the Selected list back to the Available list, using the < (Remove
selected) and << (Remove all) buttons.

To search for a particular item, enter a keyword in the Find box and then click
Find Down or Find Up.

Select Show complete structure to view all objects, including those that have
already been imported. Deselecting this option shows only the objects that are
available for import. When this option is selected, objects that have already been
imported appear grayed out.

6. Click Finish.

After you import XML data, you must adjust connection pool settings. See "Creating
or Changing Connection Pools" for complete information. Minimally, you can do the
following:

■ In the Connection Pool dialog, type a name and optional description for the
connection on the General tab.

■ Click the XML tab to set additional connection properties, including the URL
refresh interval and the length of time to wait for a URL to load before timing out.

Because XML data sources are typically updated frequently and in real time, you
can specify a refresh interval for Oracle BI Server XML Gateway data sources. The
default timeout interval for queries (URL loading time-out) is 15 minutes. For
more information, see "About the Refresh Interval for XML Data Sources" in Oracle
Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition.

Importing Metadata from XML Data Sources

Importing Metadata and Working with Data Sources 4-23

Examples of XML Documents Generated by the Oracle BI Server XML Gateway
Example 4–1 and Example 4–2 show sample XML documents and the corresponding
columns that are generated by the Oracle BI Server XML Gateway.

Example 4–1 XML Schema Contained in an External File

The following sample XML data document (mytest.xml) references an XML schema
contained in an external file. The schema file is shown following the data document.
The generated XML schema information available for import to the repository is
shown at the end.

<?xml version="1.0"?>
<test xmlns="x-schema:mytest_sch.xml">

<row>
<p1>0</p1>
<p2 width="5">

<p3>hi</p3>
<p4>

<p6>xx0</p6>
<p7>yy0</p7>

</p4>
<p5>zz0</p5>

</p2>
</row>

<row>
<p1>1</p1>
<p2 width="6">

<p3>how are you</p3>
<p4>

<p6>xx1</p6>
<p7>yy1</p7>

</p4>
<p5>zz1</p5>

</p2>
</row>

<row>
<p1>a</p1>
<p2 width="7">

<p3>hi</p3>
<p4>

<p6>xx2</p6>
<p7>yy2</p7>

</p4>
<p5>zz2</p5>

</p2>
</row>

<row>
<p1>b</p1>
<p2 width="8">

<p3>how are they</p3>
<p4>

<p6>xx3</p6>
<p7>yy3</p7>

</p4>
<p5>zz2</p5>

</p2>

Importing Metadata from XML Data Sources

4-24 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

</row>
</test>

The corresponding schema file follows:

<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">
<ElementType name="test" content="eltOnly" order="many">

<element type="row"/>
</ElementType>
<ElementType name="row" content="eltOnly" order="many">
<element type="p1"/>

<element type="p2"/>
</ElementType>
<ElementType name="p2" content="eltOnly" order="many">

<AttributeType name="width" dt:type="int" />
<attribute type="width" />
<element type="p3"/>
<element type="p4"/>
<element type="p5"/>

</ElementType>
<ElementType name="p4" content="eltOnly" order="many">

<element type="p6"/>
<element type="p7"/>

</ElementType>
<ElementType name="p1" content="textOnly" dt:type="string"/>
<ElementType name="p3" content="textOnly" dt:type="string"/>
<ElementType name="p5" content="textOnly" dt:type="string"/>
<ElementType name="p6" content="textOnly" dt:type="string"/>
<ElementType name="p7" content="textOnly" dt:type="string"/>

</Schema>

The name of the table generated from the preceding XML data document (mytest.xml)
would be mytest and the column names would be p1, p3, p6, p7, p5, and width.

In addition, to preserve the context in which each column occurs in the document and
to distinguish between columns derived from XML elements with identical names but
appearing in different contexts, a list of fully qualified column names is generated,
based on the XPath proposal of the World Wide Web Consortium, as follows:

//test/row/p1
//test/row/p2/p3
//test/row/p2/p4/p6
//test/row/p2/p4/p7
//test/row/p2/p5
//test/row/p2@width

Example 4–2 Nested Table Structures in an XML Document

The following example is a more complex example that demonstrates the use of nested
table structures in an XML document. You can optionally omit references to an
external schema file, in which case all elements are treated as being of the Varchar
character type.

===Invoice.xml===
<INVOICE>

<CUSTOMER>
<CUST_ID>1</CUST_ID>
<FIRST_NAME>Nancy</FIRST_NAME>
<LAST_NAME>Fuller</LAST_NAME>
<ADDRESS>

Importing Metadata from XML Data Sources

Importing Metadata and Working with Data Sources 4-25

<ADD1>507 - 20th Ave. E.,</ADD1>
<ADD2>Apt. 2A</ADD2>
<CITY>Seattle</CITY>
<STATE>WA</STATE>
<ZIP>98122</ZIP>

</ADDRESS>
<PRODUCTS>

<CATEGORY>
<CATEGORY_ID>CAT1</CATEGORY_ID>
<CATEGORY_NAME>NAME1</CATEGORY_NAME>
<ITEMS>

<ITEM>
<ITEM_ID>1</ITEM_ID>
<NAME></NAME>
<PRICE>0.50</PRICE>
<QTY>2000</QTY>

</ITEM>
<ITEM>

<ITEM_ID>2</ITEM_ID>
<NAME>SPRITE</NAME>
<PRICE>0.30</PRICE>
<QTY></QTY>

</ITEM>
</ITEMS>

</CATEGORY>
<CATEGORY>

<CATEGORY_ID>CAT2</CATEGORY_ID>
<CATEGORY_NAME>NAME2</CATEGORY_NAME>
<ITEMS>

<ITEM>
<ITEM_ID>11</ITEM_ID>
<NAME>ACOKE</NAME>
<PRICE>1.50</PRICE>
<QTY>3000</QTY>

</ITEM>
<ITEM>

<ITEM_ID>12</ITEM_ID>
<NAME>SOME SPRITE</NAME>
<PRICE>3.30</PRICE>
<QTY>2000</QTY>

</ITEM>
</ITEMS>

</CATEGORY>
</PRODUCTS>

</CUSTOMER>
<CUSTOMER>

<CUST_ID>2</CUST_ID>
<FIRST_NAME>Andrew</FIRST_NAME>
<LAST_NAME>Carnegie</LAST_NAME>
<ADDRESS>

<ADD1>2955 Campus Dr.</ADD1>
<ADD2>Ste. 300</ADD2>
<CITY>San Mateo</CITY>
<STATE>CA</STATE>
<ZIP>94403</ZIP>

</ADDRESS>
<PRODUCTS>

<CATEGORY>
<CATEGORY_ID>CAT22</CATEGORY_ID>
<CATEGORY_NAME>NAMEA1</CATEGORY_NAME>

Importing Metadata from XML Data Sources

4-26 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

<ITEMS>
<ITEM>

<ITEM_ID>122</ITEM_ID>
<NAME>DDDCOKE</NAME>
<PRICE>11.50</PRICE>
<QTY>2</QTY>

</ITEM>
<ITEM>

<ITEM_ID>22</ITEM_ID>
<NAME>PSPRITE</NAME>
<PRICE>9.30</PRICE>
<QTY>1978</QTY>

</ITEM>
</ITEMS>

</CATEGORY>
<CATEGORY>

<CATEGORY_ID>CAT24</CATEGORY_ID>
<CATEGORY_NAME>NAMEA2</CATEGORY_NAME>
<ITEMS>

<ITEM>
<ITEM_ID>19</ITEM_ID>
<NAME>SOME COKE</NAME>
<PRICE>1.58</PRICE>
<QTY>3</QTY>

</ITEM>
<ITEM>

<ITEM_ID>15</ITEM_ID>
<NAME>DIET SPRITE</NAME>
<PRICE>9.30</PRICE>
<QTY>12000</QTY>

</ITEM>
</ITEMS>

</CATEGORY>
</PRODUCTS>

</CUSTOMER>
<CUSTOMER>

<CUST_ID>3</CUST_ID>
<FIRST_NAME>Margaret</FIRST_NAME>
<LAST_NAME>Leverling</LAST_NAME>
<ADDRESS>

<ADD1>722 Moss Bay Blvd.</ADD1>
<ADD2> </ADD2>
<CITY>Kirkland</CITY>
<STATE>WA</STATE>
<ZIP>98033</ZIP>

</ADDRESS>
<PRODUCTS>

<CATEGORY>
<CATEGORY_ID>CAT31</CATEGORY_ID>
<CATEGORY_NAME>NAMEA3</CATEGORY_NAME>
<ITEMS>

<ITEM>
<ITEM_ID>13</ITEM_ID>
<NAME>COKE33</NAME>
<PRICE>30.50</PRICE>
<QTY>20033</QTY>

</ITEM>
<ITEM>

<ITEM_ID>23</ITEM_ID>
<NAME>SPRITE33</NAME>

Importing Metadata from XML Data Sources

Importing Metadata and Working with Data Sources 4-27

<PRICE>0.38</PRICE>
<QTY>20099</QTY>

</ITEM>
</ITEMS>

</CATEGORY>
<CATEGORY>

<CATEGORY_ID>CAT288</CATEGORY_ID>
<CATEGORY_NAME>NAME H</CATEGORY_NAME>
<ITEMS>

<ITEM>
<ITEM_ID>19</ITEM_ID>
<NAME>COLA</NAME>
<PRICE>1.0</PRICE>
<QTY>3</QTY>

</ITEM>
<ITEM>

<ITEM_ID>18</ITEM_ID>
<NAME>MY SPRITE</NAME>
<PRICE>8.30</PRICE>
<QTY>123</QTY>

</ITEM>
</ITEMS>

</CATEGORY>
</PRODUCTS>

</CUSTOMER>
</INVOICE>

The generated XML schema consists of one table (INVOICE) with the following
column names and their corresponding fully qualified names.

Column Fully Qualified Name

ADD1 //INVOICE/CUSTOMER/ADDRESS/ADD1

ADD2 //INVOICE/CUSTOMER/ADDRESS/ADD2

CITY //INVOICE/CUSTOMER/ADDRESS/CITY

STATE //INVOICE/CUSTOMER/ADDRESS/STATE

ZIP //INVOICE/CUSTOMER/ADDRESS/ZIP

CUST_ID //INVOICE/CUSTOMER/CUST_ID

FIRST_NAME //INVOICE/CUSTOMER/FIRST_NAME

LAST_NAME //INVOICE/CUSTOMER/LAST_NAME

CATEGORY_ID //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/CATEGORY_
ID

CATEGORY_NAME //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/CATEGORY_
NAME

ITEM_ID //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM
/ITEM_ID

NAME //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM
/NAME

PRICE //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM
/PRICE

QTY //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM
/QTY

Importing Metadata from XML Data Sources

4-28 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Only tags with values are extracted as columns. An XML query generates fully
qualified tag names, to help ensure appropriate columns are retrieved.

The following shows the results of a sample query against the INVOICE table:

SELECT first_name, last_name, price, qty, name FROM invoice
--
FIRST_NAME LAST_NAME PRICE QTY NAME
--
Andrew Carnegie 1.58 3 SOME COKE
Andrew Carnegie 11.50 2 DDDCOKE
Andrew Carnegie 9.30 12000 DIET SPRITE
Andrew Carnegie 9.30 1978 PSPRITE
Margar Leverling 0.38 20099 SPRITE33
Margar Leverling 1.0 3 COLA
Margar Leverling 30.50 20033 COKE33
Margar Leverling 8.30 123 MY SPRITE
Nancy Fuller 0.30 SPRITE
Nancy Fuller 0.50 2000
Nancy Fuller 1.50 3000 ACOKE
Nancy Fuller 3.30 2000 SOME SPRITE
--
Row count: 12

Accessing HTML Tables
The Oracle BI Server XML Gateway also supports the use of tables in HTML files as a
data source. The HTML file can be identified as a URL pointing to a file on the internet
(including intranet or extranet) or as a file on a local or network drive.

Even though tables, defined by the <table> and </table> tag pair, are native
constructs of the HTML 4.0 specification, they are often used by Web designers as a
general formatting device to achieve specific visual effects rather than as a data
structure. The Oracle BI Server XML Gateway is currently the most effective in
extracting tables that include specific column headers, defined by <th> and </th> tag
pairs.

For tables that do not contain specific column headers, the Oracle BI Server XML
Gateway employs some simple heuristics to make a best effort to determine the
portions of an HTML file that appear to be genuine data tables.

The following is a sample HTML file with one table.

<html>
<body>

<table border=1 cellpadding=2 cellspacing=0>
<tr>

<th colspan=1>Transaction</th>
<th colspan=2>Measurements</th>

</tr>
<tr>

<th>Quality</th>
<th>Count</th>
<th>Percent</th>

</tr>
<tr>

<td>Failed</td>
<td>66,672</td>
<td>4.1%</td>

</tr>
<tr>

<td>Poor</td>

Importing Metadata from XML Data Sources

Importing Metadata and Working with Data Sources 4-29

<td>126,304</td>
<td>7.7%</td>

</tr>
<tr>

<td>Warning</td>
<td>355,728</td>
<td>21.6%</td>

</tr>
<tr>

<td>OK</td>
<td>1,095,056</td>
<td>66.6%</td>

</tr>
<tr>

<td colspan=1>Grand Total</td>
<td>1,643,760</td>
<td>100.0%</td>

</tr>
</table>

</body>
</html>

The table name is derived from the HTML filename, and the column names are
formed by concatenating the headings (defined by the <th> and </th> tag pairs) for
the corresponding columns, separated by an underscore.

Assuming that our sample file is named 18.htm, the table name would be 18_0
(because it is the first table in that HTML file), with the following column names and
their corresponding fully qualified names:

If the table column headings appear in more than one row, the column names are
formed by concatenating the corresponding field contents of those header rows.

For tables without any heading tag pairs, the Oracle BI Server XML Gateway assumes
the field values (as delimited by the <td> and </td> tag pairs) in the first row to be the
column names. The columns are named by the order in which they appear (c0, c1, and
so on).

See "Importing Metadata from XML Data Sources Using XML ODBC" and "Examples
of XML Documents" for additional XML examples.

Importing Metadata from XML Data Sources Using XML ODBC
Using the XML ODBC database type, you can access XML data sources through an
ODBC interface. The data types of the XML elements representing physical columns in
physical tables are derived from the data types of the XML elements as defined in the
XML schema. In the absence of a proper XML schema, the default data type of string is
used. Data Type settings in the Physical layer do not override those defined in the
XML data sources. When accessing XML data without XML schema, use the CAST
operator to perform data type conversions in the Business Model and Mapping layer
of the Administration Tool.

Column Fully Qualified Name

Transaction_Quality \\18_0\Transaction_Quality

Measurements_Count \\18_0\Measurements_Count

Measurements_Percent \\18_0\Measurements_Percent

Importing Metadata from XML Data Sources

4-30 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

To import XML data using ODBC:

1. To access XML data sources through ODBC, you first need to license and install an
XML ODBC driver.

2. Create ODBC DSNs that point to the XML data sources you want to access,
making sure you select the XML ODBC database type.

3. In the Administration Tool, select File, then select Import Metadata.

4. Follow the instructions in the dialogs to import the ODBC DSNs into the
repository. See "Importing Metadata from Relational Data Sources" for more
information.

Example of an XML ODBC Data Source
Example 4–3 shows an example of an XML ODBC data source in the Microsoft ADO
persisted file format. Both the data and the schema could be contained inside the same
document.

Example 4–3 XML ODBC Example

<xml xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'
xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'
xmlns:rs='urn:schemas-microsoft-com:rowset'
xmlns:z='#RowsetSchema'>

<s:Schema id='RowsetSchema'>
<s:ElementType name='row' content='eltOnly' rs:CommandTimeout='30'

rs:updatable='true'>
<s:AttributeType name='ShipperID' rs:number='1' rs:writeunknown='true'

rs:basecatalog='Paint' rs:basetable='Shippers'
rs:basecolumn='ShipperID'>
<s:datatype dt:type='i2' dt:maxLength='2' rs:precision='5'

rs:fixedlength='true' rs:benull='false'/>
</s:AttributeType>
<s:AttributeType name='CompanyName' rs:number='2' rs:writeunknown='true'

rs:basecatalog='Paint' rs:basetable='Shippers'
rs:basecolumn='CompanyName'>
<s:datatype dt:type='string' rs:dbtype='str' dt:maxLength='40'

rs:benull='false'/>
</s:AttributeType>
<s:AttributeType name='Phone' rs:number='3' rs:nullable='true'

rs:writeunknown='true' rs:basecatalog='Paint'
rs:basetable='Shippers' rs:basecolumn='Phone'>
<s:datatype dt:type='string' rs:dbtype='str' dt:maxLength='24'

rs:fixedlength='true'/>
</s:AttributeType>
<s:extends type='rs:rowbase'/>

</s:ElementType>
</s:Schema>
<rs:data>

<z:row ShipperID='1' CompanyName='Speedy Express' Phone='(503)
555-9831 '/>

<z:row ShipperID='2' CompanyName='United Package' Phone='(503)
555-3199 '/>

<z:row ShipperID='3' CompanyName='Federal Shipping' Phone='(503)

Caution: Due to XML ODBC limitations, you must select the
Synonyms option in the Select Metadata Types screen, or no tables are
imported.

Importing Metadata from XML Data Sources

Importing Metadata and Working with Data Sources 4-31

555-9931 '/>
</rs:data>
</xml>

Examples of XML Documents
The following XML documents provide examples of several different situations and
explain how the Oracle BI Server XML access method handles those situations.

■ The XML documents 83.xml and 8_sch.xml (shown in Example 4–4 and
Example 4–5) demonstrate the use of the same element declarations in different
scope. For example, <p3> could appear within <p2> as well as within <p4>.

Because the element <p3> in the preceding examples appears in two different
scopes, each element is given a distinct column name by appending an index
number to the second occurrence of the element during the import process. In this
case, the second occurrence becomes p3_1. If <p3> occurs in additional contexts,
they become p3_2, p3_3.

■ The XML documents 83.xml and 84.xml (shown in Example 4–4 and Example 4–6)
demonstrate that multiple XML files can share the same schema (8_sch.xml).

■ Internet Explorer version 5 and higher supports HTML documents containing
embedded XML fragments called XML islands. The XML document island2.htm
(shown in Example 4–7) demonstrates a simple situation where multiple XML
data islands, and therefore multiple tables, could be generated from one
document. One table is generated for each instance of an XML island. Tables are
distinguished by appending an appropriate index to the document name. For
island2.htm, the two XML tables generated would be island2_0 and island2_1.

Example 4–4 83.xml

===83.xml===
<?xml version="1.0"?>
<test xmlns="x-schema:8_sch.xml">|
<row>
<p1>0</p1>
<p2 width="5" height="2">

<p3>hi</p3>
<p4>

<p3>hi</p3>
<p6>xx0</p6>
<p7>yy0</p7>

</p4>
<p5>zz0</p5>

</p2>
</row>

<row>
<p1>1</p1>
<p2 width="6" height="3">

<p3>how are you</p3>
<p4>

<p3>hi</p3>
<p6>xx1</p6>
<p7>yy1</p7>

</p4>
<p5>zz1</p5>

</p2>
</row>

Importing Metadata from XML Data Sources

4-32 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

</test>

Example 4–5 8_sch.xml

===8_sch.xml===
<Schema xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<AttributeType name="height" dt:type="int" />
<ElementType name="test" content="eltOnly" order="many">

<AttributeType name="height" dt:type="int" />
<element type="row"/>

</ElementType>
<ElementType name="row" content="eltOnly" order="many">

<element type="p1"/>
<element type="p2"/>

</ElementType>
<ElementType name="p2" content="eltOnly" order="many">

<AttributeType name="width" dt:type="int" />
<AttributeType name="height" dt:type="int" />

<attribute type="width" />
<attribute type="height" />
<element type="p3"/>
<element type="p4"/>
<element type="p5"/>

</ElementType>
<ElementType name="p4" content="eltOnly" order="many">

<element type="p3"/>
<element type="p6"/>
<element type="p7"/>

</ElementType>
<ElementType name="test0" content="eltOnly" order="many">

<element type="row"/>
</ElementType>

<ElementType name="p1" content="textOnly" dt:type="string"/>
<ElementType name="p3" content="textOnly" dt:type="string"/>
<ElementType name="p5" content="textOnly" dt:type="string"/>
<ElementType name="p6" content="textOnly" dt:type="string"/>
<ElementType name="p7" content="textOnly" dt:type="string"/>

</Schema>

Example 4–6 84.xml

===84.xml===
<?xml version="1.0"?>
<test0 xmlns="x-schema:8_sch.xml">
<row>
<p1>0</p1>
<p2 width="5" height="2">

<p3>hi</p3>
<p4>

<p3>hi</p3>
<p6>xx0</p6>
<p7>yy0</p7>

</p4>
<p5>zz0</p5>

</p2>
</row>

<row>
<p1>1</p1>
<p2 width="6" height="3">

Importing Metadata from XML Data Sources

Importing Metadata and Working with Data Sources 4-33

<p3>how are you</p3>
<p4>

<p3>hi</p3>
<p6>xx1</p6>
<p7>yy1</p7>

</p4>
<p5>zz1</p5>

</p2>
</row>
</test0>

Example 4–7 Island2.htm

===island2.htm===
<HTML>

<HEAD>
<TITLE>HTML Document with Data Island</TITLE>
</HEAD>

<BODY>
<p>This is an example of an XML data island in I.E. 5</p>

<XML ID="12345">
test>

<row>
<field1>00</field1>
<field2>01</field2>

</row>
<row>

<field1>10</field1>
<field2>11</field2>

</row>
<row>

<field1>20</field1>
<field2>21</field2>

</row>
</test>

</XML>
<p>End of first example.</p>
<XML ID="12346">

<test>
<row>

<field11>00</field11>
<field12>01</field12>

</row>
<row>

<field11>10</field11>
<field12>11</field12>

</row>
<row>

<field11>20</field11>
<field12>21</field12>

</row>
</test>

</XML>
<p>End of second example.</p>
</BODY>
</HTML>

Using a Standby Database with Oracle Business Intelligence

4-34 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Using a Standby Database with Oracle Business Intelligence
A standby database is used mainly for its high availability and failover functions as a
backup for the primary database. In a standby database configuration, there is
regularly scheduled replication from the primary database to the secondary database.
The latency of this replication must be short enough that writing to the primary
database while reading from the secondary database does not cause any
synchronization or data integrity problems.

Because a standby database is essentially a read-only database, it can be used as a
business intelligence query server, relieving the workload of the primary database and
improving query performance.

The following sections explain how to use a standby database with Oracle Business
Intelligence:

■ About Using a Standby Database with Oracle Business Intelligence

■ Creating the Database Object for the Standby Database Configuration

■ Creating Connection Pools for the Standby Database Configuration

■ Updating Write-Back Scripts in a Standby Database Configuration

■ Setting Up Usage Tracking in a Standby Database Configuration

■ Setting Up Event Polling in a Standby Database Configuration

■ Setting Up Oracle BI Scheduler in a Standby Database Configuration

About Using a Standby Database with Oracle Business Intelligence
In a standby database configuration, you have two databases: a primary database that
handles all write operations and is the source of truth for data integrity, and a
secondary database that is exposed as a read-only source. When you use a standby
database configuration with Oracle Business Intelligence, all write operations are
offloaded to the primary database, and read operations are sent to the standby
database.

Write operations that need to be routed to the primary source may include the
following:

■ Oracle BI Scheduler job and instance data

■ Temporary tables for performance enhancements

■ Writeback scripts for aggregate persistence

■ Usage tracking data, if usage tracking has been enabled

■ Event polling table data, if event polling tables are being used

The following list provides an overview of how to configure the Oracle BI Server to
use a standby database:

1. Create a single database object for the standby database configuration, with
temporary table creation disabled.

2. Configure two connection pools for the database object:

■ A read-only connection pool that points to the standby database

■ A second connection pool that points to the primary database for write
operations

Using a Standby Database with Oracle Business Intelligence

Importing Metadata and Working with Data Sources 4-35

3. Update any connection scripts that write to the database so that they explicitly
specify the primary database connection pool.

4. If usage tracking has been enabled, update the usage tracking configuration to use
the primary connection.

5. If event polling tables are being used, update the event polling database
configuration to use the primary connection.

6. Ensure that Oracle BI Scheduler is not configured to use any standby sources.

Even though there are two separate physical data sources for the standby database
configuration, you create only one database object in the Physical layer. Figure 4–4
shows the database object and connection pools for the standby database
configuration in the Physical layer.

Figure 4–4 Standby Database Configuration in the Physical Layer

Creating the Database Object for the Standby Database Configuration
Use the Administration Tool to create a database object in the repository for the
standby database configuration. When you create the database object, make sure that
the persist connection pool is not assigned, to prevent the Oracle BI Server from
creating temporary tables in the standby database.

To create a database object for the standby database configuration:

1. In the Administration Tool, right-click the Physical layer and select New
Database.

2. Provide a name for the database, and then select the type of database in the
Database list.

3. Ensure that the Persist connection pool is "not assigned."

Figure 4–5 shows the Database dialog for a standby database configuration.

Using a Standby Database with Oracle Business Intelligence

4-36 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 4–5 Database Dialog for Standby Database Configuration

Creating Connection Pools for the Standby Database Configuration
After you have created a database object in the repository for the standby database
configuration, use the Administration Tool to create two connection pools: one that
points to the standby database, and another that points to the primary database.

Because the standby connection pool is used for the majority of connections, make
sure that the standby connection pool is listed first.

To create a standby connection pool for the standby database configuration:

1. In the Administration Tool, in the Physical layer, right-click the database object for
the standby database configuration and select New Object, then select
Connection Pool.

2. Provide a name for the connection pool, and ensure that the call interface is
appropriate for the standby database type.

3. Provide the Data source name for the standby database.

4. Enter a user name and password for the standby database.

5. Click OK.

Figure 4–6 shows the Connection Pool dialog for the standby connection pool.

Note: Connection pools are used in the order listed, until the
maximum number of connections is achieved. Ensure that the
maximum number of connections is set in accordance with the
standby database tuning.

See "Creating or Changing Connection Pools" for more information
about setting the maximum number of connections.

Using a Standby Database with Oracle Business Intelligence

Importing Metadata and Working with Data Sources 4-37

Figure 4–6 Connection Pool Dialog for Standby Connection Pool

To create the primary connection pool for the standby database configuration:

1. In the Administration Tool, in the Physical layer, right-click the database object for
the standby database configuration and select New Object, then select
Connection Pool.

2. Provide a name for the connection pool, and ensure that the call interface is
appropriate for the primary database type.

3. Provide the Data source name for the primary database.

4. Enter a user name and password for the primary database.

5. Click OK.

Figure 4–7 shows the Connection Pool dialog for the primary connection pool.

Using a Standby Database with Oracle Business Intelligence

4-38 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 4–7 Connection Pool Dialog for Primary Connection Pool

Updating Write-Back Scripts in a Standby Database Configuration
If you use scripts that write to the database, such as scripts for aggregate persistence,
you must update the scripts to explicitly refer to the primary connection pool.
Information written through the primary connection will be automatically transferred
to the standby database (through the regularly scheduled replication between the
primary and secondary databases), and will become available through the standby
connection pool.

The following example shows a writeback script for aggregate persistence that
explicitly specifies the primary connection pool:

create aggregates sc_rev_qty_yr_cat for "DimSnowflakeSales"."SalesFacts"
("Revenue", "QtySold") at levels ("DimSnowflakeSales"."Time"."Year",
"DimSnowflakeSales"."Product"."Category") using connection pool
"StandbyDemo"."Primary Connection" in "StandbyDemo"."My_Schema"

Setting Up Usage Tracking in a Standby Database Configuration
The Oracle BI Server supports the collection of usage tracking data. When usage
tracking is enabled, the Oracle BI Server collects usage tracking data for each query
and writes statistics to a usage tracking log file or inserts them directly to a database
table.

If you want to enable usage tracking on a standby database configuration using direct
insertion, you must create the table used to store the usage tracking data (typically S_
NQ_ACCT) on the primary database. Then, import the table into the physical layer of
the repository using the Administration Tool.

You must ensure that the database object for the usage tracking table is configured
with both the standby connection pool and the primary connection pool. Then, ensure
that the CONNECTION_POOL parameter for usage tracking points to the primary
database. For example, in NQSConfig.ini:

Using a Standby Database with Oracle Business Intelligence

Importing Metadata and Working with Data Sources 4-39

CONNECTION_POOL = "StandbyDatabaseConfiguration"."Primary
Connection";

See "Managing Usage Tracking" in Oracle Fusion Middleware System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition for full information about usage
tracking, including how to create tables for usage tracking data and how to set
parameters for usage tracking.

Setting Up Event Polling in a Standby Database Configuration
You can use an Oracle BI Server event polling table (event table) as a way to notify the
Oracle BI Server that one or more physical tables have been updated. The event table
is a physical table that resides on a database accessible to the Oracle BI Server. It is
normally exposed only in the Physical layer of the Administration Tool, where it is
identified in the Physical Table dialog as an Oracle BI Server event table.

The Oracle BI Server requires write access to the event polling table. Because of this, if
you are using event polling in a standby database configuration, you must ensure that
the database object for the event table only references the primary connection pool.

See "Cache Event Processing with an Event Polling Table" in Oracle Fusion Middleware
System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full
information about event polling, including how to set up, activate, and populate event
tables.

Setting Up Oracle BI Scheduler in a Standby Database Configuration
Oracle BI Scheduler is an extensible application and server that manages and
schedules jobs, both scripted and unscripted. To use Oracle BI Scheduler in a standby
database configuration, you must ensure that the database object for Oracle BI
Scheduler only references the primary connection pool.

See "Configuration Tasks for Oracle BI Scheduler" in Oracle Fusion Middleware
Scheduling Jobs Guide for Oracle Business Intelligence Enterprise Edition for full
information about setting up and using Oracle BI Scheduler.

Using a Standby Database with Oracle Business Intelligence

4-40 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

5

Working with ADF Business Component Data Sources 5-1

5Working with ADF Business Component
Data Sources

Oracle Business Intelligence supports connecting to ADF Business Components as
data sources. This enables Oracle Business Intelligence users to query data from any
application that is built using the ADF Framework. For example, because Oracle CRM
applications are developed using the ADF Framework, Oracle Business Intelligence
users can report on CRM data using an ADF Business Component data source that
implements the required ADF Application Programming Interface (API).

By using the ADF components as a data source to the Oracle BI Server, users can
quickly integrate operational reporting with any application that is built on top of the
ADF Framework.

This chapter contains the following topics:

■ What Are ADF Business Components?

■ What Happens During Import?

■ About Specifying a SQL Bypass Database

■ Setting Up ADF Business Component Data Sources

■ Importing Metadata from ADF Business Component Data Sources

■ Enabling the Ability to Pass Custom Parameters to the ADF Application

■ Propagating Labels and Tooltips from ADF Business Component Data Sources

What Are ADF Business Components?
Oracle Application Development Framework (Oracle ADF) is an object-relational
framework that can be used to create J2EE business services and expose underlying
database objects. This framework provides an abstraction layer that enables
application developers to build applications quickly and efficiently.

When you use Oracle ADF to build service-oriented Java EE applications, you
implement your core business logic as one or more business services. These back-end
services provide clients with a way to query, insert, update, and delete business data
as required, while enforcing appropriate business rules. ADF Business Components
are prebuilt application objects that provide a ready-to-use implementation of Java EE
design patterns and best practices.

The ADF model is represented through the ADF Business Component constructs
called Entity Objects and View Objects, usually constructed and defined during design
time:

What Happens During Import?

5-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Entity Objects: ADF framework components that represent a row in a database
table and simplify modifying its data. Importantly, it enables you to encapsulate
domain business logic for those rows to ensure your business policies and rules
are consistently validated.

■ View Objects: ADF framework components that encapsulate a SQL query and
simplify working with its results. In addition to read-only view objects, there are
entity-based view objects that support updatable rows. The view object queries just
the data needed for the client-facing task at hand, then cooperates with one or
more entity objects in your business domain layer to automatically validate and
save changes made to its view rows. Like the read-only view object, an
entity-based view object encapsulates a SQL query, can be linked into
master/detail hierarchies using view links, and can be used in the data model of
your application modules.

Applications built using ADF obtain their data by querying the defined View
Objects using the ADF APIs.

The ADF model also includes an application module, which is the transactional
component that UI clients use to work with application data. It defines an updatable
data model along with top-level procedures and functions (called service methods)
related to a logical unit of work related to an end-user task.

The application module serves as a container for multiple View Objects and Entity
Objects, and also contains configuration related to the JDBC data source.

About Operational Reporting with ADF Business Components
You can use Oracle Business Intelligence integration with ADF Business Components
to generate reports on data within your applications. For example, you can generate
reports based on expense report data entered into an Expense Application.

To do this, you would first import the Expense Application metadata into the Oracle
BI repository using the Administration Tool, then map the data from the Physical layer
to the Business Model and Mapping layer and Presentation layer. After you restart the
Oracle BI Server and reload the metadata into Oracle BI Presentation Services, you can
log in to Oracle BI Answers and drag and drop the columns to generate a report on the
Expense Application data. For example, you can select columns to view a report of
your expenses grouped by category.

What Happens During Import?
On import, the required physical tables and complex joins are automatically created.
The instances (ViewObject and ViewLink) are imported into Oracle Business
Intelligence. During query execution, the definitions retrieved from these instances are
used to create the CompositeVO in ADF.

These complex joins are 'dummy joins' and are not executed in Oracle Business
Intelligence. Instead, they denote ViewLink instances that connect pairs of View
Objects in the ADF model. The physical table and complex join names correspond to
the fully qualified ViewObject and ViewLink instance names, respectively. This
convention allows arbitrary nesting of ApplicationModules in the ADF model.

Note that the External Expression field in the Complex Join dialog for ADF data
sources shows an arbitrary expression that has no meaning. This field is reserved for a
future release.

The name of the automatically generated joins follow a naming convention similar to
ViewObjectName1_ViewObjectName2 (for example, AppModuleAM.AP_VO1_

Setting Up ADF Business Component Data Sources

Working with ADF Business Component Data Sources 5-3

AppModuleAM_BU_VO1). The ViewLink instance name appears in the ViewLink
Name field of the Complex Join dialog.

The complex joins are only created automatically if a ViewLink instance is available.
They are not created for ViewLink definitions. Joins using ViewLink definitions must
be created manually. To do this, specify the ViewLink definition name in the
ViewLink Name field of the Complex Join dialog.

Alternatively, Oracle Business Intelligence joins between VOs in different
ApplicationModules are created upon import from ADF if custom properties are
defined on the ApplicationModule. Note the following:

■ The property name format is BI_VIEW_LINK_property_name

■ The property value format is source_VO_instance_name, ViewLink_definition_name,
destination_VO_instance_name

Be sure to use the fully qualified VO instance names for the source and destination
VOs, as well as the fully qualified package name for the ViewLink definition.

About Specifying a SQL Bypass Database
The Oracle BI Server can automatically create composite View Objects at run time, so
that an ad-hoc BI query can reference multiple View Objects in the ADF layer. For
improved performance, a SQL bypass query is generated that incorporates the
projection columns, filters, and joins required by the BI query.

The SQL Bypass feature directly queries the database so that aggregations and other
transformations are pushed down where possible, reducing the amount of data
streamed and worked on in Oracle Business Intelligence. When using a SQL Bypass
database, the Oracle BI Server gets the VO query from the ADF Business Component
data source and then wraps it with the aggregations in the Logical SQL query. The
query, including the aggregations, is then executed in the database. Because the
database computes the aggregation and less rows are streamed back to Oracle
Business Intelligence, using a SQL Bypass database can result in significant
performance gains.

Multiple View Objects are modeled as separate BI physical tables and are connected
with dummy complex joins. These joins only represent the ViewLinks in the ADF
model and are not executed by the Oracle BI Server.

You can specify the name of the SQL Bypass database in the connection pool for the
ADF Business Component data source. The SQL Bypass database must be a physical
database in the Physical layer of the repository. The database object for the SQL
Bypass database must have a valid connection pool, with connection information that
points to the same database that is being used by the JDBC Data source defined in the
Oracle WebLogic Server that runs the ADF application.

The SQL Bypass database does not need to have any tables under it. After a valid
database name is supplied, the SQL Bypass feature is enabled for all queries against
that ADF database.

Setting Up ADF Business Component Data Sources
This section explains how to configure your ADF Business Components for use with
Oracle Business Intelligence.

See "System Requirements and Certification" for information about supported
versions.

Setting Up ADF Business Component Data Sources

5-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

This section contains the following topics:

■ Creating a WebLogic Domain

■ Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server

■ Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper

■ Setting Up a JDBC Data Source in the WebLogic Server

■ Setting the Logging Level for the Deployed Application in Oracle WebLogic Server

Creating a WebLogic Domain
Create a WebLogic Domain for your ADF Business Components that supports
WebLogic Server, Oracle Application Core (Webapp), and Oracle JRF.

To create a WebLogic domain that supports the required components:

1. Start the WebLogic Configuration Wizard. For example, on Windows, run MW_
HOME\wlserver_10.3\common\bin\config.cmd.

2. Select Create a new WebLogic domain and click Next.

3. On the Select Domain Source screen, ensure that Basic WebLogic Server Domain,
Oracle JRF, and Oracle Application Core (Webapp) are selected.

4. Follow the remaining steps in the wizard, providing values appropriate for your
environment.

5. Click Create on the Configuration Summary screen to create the domain.

You can start and stop the Oracle WebLogic Server for this domain using
command-line scripts in the domain directory. For example, on Windows, use the
following:

■ MW_HOME\user_projects\domains\domain_name\bin\startWebLogic.cmd

■ MW_HOME\user_projects\domains\domain_name\bin\stopWebLogic.cmd

Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server
The OBIEEBroker shared library is installed as part of your Oracle Business
Intelligence installation. You need to deploy the OBIEEBroker library as a shared
library in Oracle WebLogic Server by installing it (making its physical file or directory
known to Oracle WebLogic Server) and starting it. After the library has been installed
and started, other deployed modules can reference the library.

To deploy OBIEEBroker as a shared library in Oracle WebLogic Server:

1. Ensure that Oracle WebLogic Server is running. If it is not running, start it. For
example, on Windows, run MW_HOME\user_projects\domains\your_
domain\bin\startWebLogic.cmd.

2. Open the WebLogic Server Administration Console. For example, if your Oracle
WebLogic Server is running locally on port 7001, go to
http://localhost:7001/console.

3. Log in to the WebLogic Server Administration Console with the credentials you
created when you set up your WebLogic domain.

4. In the Change Center, click Lock & Edit.

5. On the Home Page, in the left pane, click Deployments.

6. In the right pane, click Install.

Setting Up ADF Business Component Data Sources

Working with ADF Business Component Data Sources 5-5

7. Using the Install Application Assistant, locate the OBIEEBroker EAR file. You can
find this file at:

ORACLE_HOME\bifoundation\javahost\lib\obisintegration\adf\
oracle.bi.integration.adf.ear

8. Click Next.

9. Select Install this deployment as a library and click Next.

10. Select the servers and/or clusters to which you want to deploy the OBIEEBroker
library. Make sure to select all servers and clusters to which modules or
applications that reference the library are deployed.

11. Click Next.

12. You can optionally update settings about the deployment. Typically, the default
values are adequate. Click Help for more information.

13. Click Next, then click Finish to complete the installation.

14. In the Change Center, click Activate Changes.

Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper
Follow the steps in this section to deploy the application EAR file to Oracle WebLogic
Server from JDeveloper. Before beginning this procedure, ensure that the following
conditions are true:

■ You have an ADF Model project that contains AMs and VOs that will be exposed
to Oracle Business Intelligence.

■ You have deployed OBIEEBroker as a shared library in Oracle WebLogic Server.
See "Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server" for
more information.

■ Oracle WebLogic Server is running.

To deploy the application EAR file to Oracle WebLogic Server from JDeveloper:

1. Start JDeveloper. For example, on Windows, run MW_
HOME\jdeveloper\jdev\bin\jdev.exe.

2. Select File, then select Open to open the project that contains your ADF Business
Components in JDeveloper. If prompted, allow JDeveloper to migrate the project
to the latest version.

3. Create a new Application Module configuration, as follows:

a. In the Model project, double click the application module, then click the
Configurations tab for that application module.

b. Create a new configuration with the following characteristics:

– Select JDBC DataSource for Connection Type.

– Keep the default DataSource Name (for example,
java:comp/env/jdbc/ApplicationDBDS).

When you set up the JDBC data source in Oracle WebLogic Server in a later
step, you use part of this DataSource Name as the JNDI name required by
Oracle WebLogic Server. The JNDI name is the DataSource Name without the
java:comp/env context prefix (for example, jdbc/ApplicationDBDS).

4. Create a Business Component Archive deployment provide, as follows:

Setting Up ADF Business Component Data Sources

5-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

a. In the Projects window, right-click the Model project and choose New.

b. Select Deployment Profiles under General in the left pane, then choose
Business Components Archive in the right pane and click OK.

c. Provide a name for the deployment profile (for example, MyApplication_
Archive) and click OK.

d. On the Deployment page, click OK.

5. In the Projects window, right-click the Model project and select Deploy > your_
deployment_profile_name > Deploy, or use the deployment wizard by selecting
Deploy to File.

After the project has been deployed, two jar files are created in the deploy
directory for the Model project (for example, MyApplication_Archive_
Common.jar and MyApplication_Archive_MiddleTier.jar).

6. Create a new Web Project for the application, as follows:

a. Right-click the global application and select New Project.

b. Select Projects from the left pane, then select Web Project from the right pane.

c. Provide a project name (for example, OBIEEBroker).

d. Click Next until you reach the Web Project Profile page.

e. Modify the Java EE Context Root to a name that better represents your
application (for example, MyApplication).

This value determines the URL that you use to connect to the application from
Oracle Business Intelligence (for example,
http://localhost:7001/MyApplication/obieebroker).

7. Edit the Profile Dependencies of the WAR deployment, as follows:

a. Right-click the Web Project you just created (for example, OBIEEBroker) and
select Project Properties.

b. From the left pane, select Deployment. Then, open the WAR File deployment
profile on the right pane.

c. Select Profile Dependencies from the left pane. Then, on the right pane, select
the Common and MiddleTier deployment profiles of your Model project.

Following this step ensures that the Business Component Archives for the
Model project are included in the WAR file.

8. Expand the Web Project and open web.xml. Then, go to the source view of the file.

9. In the web.xml source, replace the content within the <web-app> element with the
following:

<filter>
<filter-name>ServletADFFilter</filter-name>
<filter-class>oracle.adf.share.http.ServletADFFilter</filter-class>

</filter>
<filter-mapping>
<filter-name>ServletADFFilter</filter-name>
<servlet-name>OBIEEBroker</servlet-name>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>

</filter-mapping>
<servlet>
<servlet-name>OBIEEBroker</servlet-name>

Setting Up ADF Business Component Data Sources

Working with ADF Business Component Data Sources 5-7

<servlet-class>oracle.bi.integration.adf.v11g.obieebroker.OBIEEBroker
</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name>OBIEEBroker</servlet-name>
<url-pattern>/obieebroker</url-pattern>

</servlet-mapping>

Following this step ensures that the OBIEEBroker servlet will be used to access
your application from Oracle Business Intelligence.

10. Create an EAR deployment profile for the application, as follows:

a. Right-click the global application and select Application Properties.

b. From the left pane, select Deployment, then click New on the right pane to
create a new deployment profile.

c. For Archive Type, select EAR File. Then, provide a name for the deployment
profile (for example, MyApplication).

The deployment profile name is used as the name displayed in the list of
deployments in Oracle WebLogic Server.

d. From the left pane, select Application Assembly. Then, on the right pane,
select the webapp deployment profile of your Web Project.

Following this step ensures that the WAR file from your Web Project is
included in the EAR file.

11. Under Application Resources, select Descriptors > META-INF >
weblogic-application.xml.

12. On the left, select the Libraries tab.

13. Create two new Shared Library References, as follows:

■ Create the first Shared Library Reference with the following characteristics:

– Library Name: oracle.bi.integration.adf

– Implementation Version: 11.1.1.2.0

■ Create the second Shared Library Reference with the following characteristics:

– Library Name: oracle.applcore.model

– Implementation Version: 11.1.1.0.0

These two Shared Library References create the following entries in the
weblogic-application.xml file for the application:

<library-ref>
<library-name>oracle.bi.integration.adf</library-name>
<implementation-version>11.1.1.2.0</implementation-version>

</library-ref>
<library-ref>
<library-name>oracle.applcore.model</library-name>
<implementation-version>11.1.1.0.0</implementation-version>

</library-ref>

14. Deploy the EAR file to Oracle WebLogic Server by right-clicking the global
application, then selecting Deploy > EAR_deployment_profile_name. From the
dialog that appears, select Deploy to Application Server and then follow the
instructions in the wizard.

Setting Up ADF Business Component Data Sources

5-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

15. To verify that the application has been deployed, log in to the WebLogic Server
Administration Console and click Deployments under Your Deployed Resources.
Verify that your application appears in the list (for example, obieebroker_app_
name).

Setting Up a JDBC Data Source in the WebLogic Server
You must set up a JDBC data source in Oracle WebLogic Server for your application.

To set up a JDBC data source in Oracle WebLogic Server:

1. Ensure that Oracle WebLogic Server is running. If it is not running, start it. For
example, on Windows, run MW_HOME\user_projects\domains\your_
domain\bin\startWebLogic.cmd.

2. Open the WebLogic Server Administration Console. For example, if your Oracle
WebLogic Server is running locally on port 7001, go to
http://localhost:7001/console.

3. Log in to the WebLogic Server Administration Console with the credentials you
created when you set up your WebLogic domain.

4. On the Home Page, select JDBC, then select Data Sources.

5. Click New.

6. Provide information for your data source. For Name and JNDI Name, provide the
DataSource Name you specified in the Application Module configuration for the
application, without the java:comp/env context prefix (for example,
jdbc/ApplicationDBDS). In addition, make sure to select the target on which you
want to deploy the data source before exiting the wizard.

7. Click Finish when you are done providing JDBC data source settings.

Setting the Logging Level for the Deployed Application in Oracle WebLogic Server
The log file for the server to which your application is deployed (server_
name-diagnostic.log) records information about your deployed application. You can
find this file in the server-specific directory within your domain. For example, on
Windows, the log file for the AdminServer is located in:

MW_HOME\user_projects\domains\your_domain\servers\AdminServer\logs

To set the logging level for your deployed application:

1. Open the Oracle WebLogic Server file logging.xml for editing. You can find this
file in:

MW_HOME\user_projects\domains\your_domain\config\fmwconfig\servers\server_name

2. Within the <loggers> element, add the following child elements:

<logger name="oracle.bi.integration.adf" level="LOG_LEVEL"/>
<logger name="oracle.bi.integration.adf.v11g.obieebroker" level="LOG_LEVEL"/>

Log levels include SEVERE, WARNING, INFO, CONFIG, FINE, FINER, and FINEST.
Refer to the Oracle WebLogic Server documentation for information about logger
levels.

3. Save and close the file.

4. Restart Oracle WebLogic Server.

Importing Metadata from ADF Business Component Data Sources

Working with ADF Business Component Data Sources 5-9

Importing Metadata from ADF Business Component Data Sources
You must complete the steps in "Setting Up ADF Business Component Data Sources"
before you can import metadata from ADF Business Component data sources.

To import metadata from an ADF Business Component data source:

1. In the Administration Tool, select File, then select Import Metadata. The Import
Metadata Wizard appears.

Figure 5–1 shows the Import Metadata Wizard.

Figure 5–1 Import Metadata Wizard: ADF Business Component Data Source

Note that the Map to Logical Model and Publish to Warehouse screens in the
Import Metadata Wizard are reserved for a future release. Check the Oracle
Business Intelligence chapter in Oracle Fusion Middleware Release Notes for updates
about the functionality in these two screens.

2. In the Select Data Source screen, select OracleADF_HTTP for Connection Type.
Then, provide the following values:

– Select New Connection, or select Existing Connection if you already have a
connection pool for this data source. Click Browse to locate and select an
existing connection pool. If you select Existing Connection, you do not
provide information for Data Source, AppModule Definition, AppModule
Config, or URL, and the User Name and Password fields are prefilled.

Note: If you have already defined an existing ADF Business
Component data source and connection pool, you can right-click the
connection pool in the Physical layer and select Import Metadata. The
Import Metadata Wizard appears with the information on the Select
Data Source screen pre-filled.

Importing Metadata from ADF Business Component Data Sources

5-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

– Keep the Data Source field blank to use the default JDBC data source
configured in the application module. You only need to provide data source
information (a JDBC data source name, such as jdbc/nWindORA05) if you
want to use a different data source than the one set up in the application
module.

– For AppModule Definition, provide the fully qualified Java package name of
the Root Application Module to which you want to connect, such as
oracle.apps.fii.receivables.model.RootAppModule, or
snowflakesales.SnowflakeSalesApp.

– For AppModule Config, provide the name of the configuration you want to
use in your connection, such as RootAppModuleShared or
SnowflakeSalesAppLocal. See step 3 of "Deploying the Application EAR
File to Oracle WebLogic Server from JDeveloper" for more information.

– For URL, provide the URL to the Oracle Business Intelligence broker servlet,
in the format:

http://host:port/APP_DEPLOYMENT_NAME/obieebroker

For example:

http://localhost:7001/MyApp/obieebroker

The URL is case-sensitive.

– For User Name and Password, provide a valid user name and password for
the Oracle ADF application. The user name and password must be set up and
authenticated in the Oracle WebLogic Server security realm.

When you have finished providing information in the Select Data Source screen,
click Next. The Select Metadata Objects screen appears.

3. Select the objects you want to import in the Available list and move them to the
Selected list, using the > (Import selected) or >> (Import all) buttons. You can also
move objects from the Selected list back to the Available list, using the < (Remove
selected) and << (Remove all) buttons.

To search for a particular item, enter a keyword in the Find box and then click
Find Down or Find Up.

Select Show complete structure to view all objects, including those that have
already been imported. Deselecting this option shows only the objects that are
available for import. When this option is selected, objects that have already been
imported appear grayed out.

When you move the items from the Available list to the Selected list, the
Connection Pool dialog opens, showing the values that you provided in the Select
Data Source screen of the Import Metadata Wizard. Optionally, click the
Miscellaneous tab and provide the name of a SQL Bypass database in the SQL
Bypass Database field. Then, click OK. If you do not want to specify a SQL Bypass
database, click Cancel.

See "About Specifying a SQL Bypass Database" for more information.

4. Click Finish.

5. To validate that your import was successful, expand the database object for the
ADF Business Component data source in the Physical layer. Then, right-click a
physical table and click View Data. If the appropriate data is displayed, the
import completed successfully.

Propagating Labels and Tooltips from ADF Business Component Data Sources

Working with ADF Business Component Data Sources 5-11

Enabling the Ability to Pass Custom Parameters to the ADF Application
Some ADF applications have custom properties defined on the ApplicationModule,
such as EFFECTIVE_DATE or TREE_VERSION. You can include these custom
properties in your application queries, and the Oracle BI Server will pass them to the
ADF application. To enable this feature, you must register the custom properties as a
static repository variable using the Administration Tool.

You cannot use this feature to pass any custom property to your ADF application.
Only certain custom properties, like EFFECTIVE_DATE and TREE_VERSION, are
supported.

To register custom properties:

1. Open your repository in the Administration Tool.

2. Select Manage, then select Variables.

3. Select Action > New > Repository > Variable.

4. For Name, enter ADF_PARAM_LIST. Do not enter the name of the custom
property as the name of the variable.

5. Ensure that the Type is Static.

6. For Default Initializer, enter the name or names of the custom properties as a
character string. If you have multiple custom properties, include them as a
comma-delimited list. For example:

'PARAM_EFFECTIVE_DATE'

'PARAM_EFFECTIVE_DATE, ApplicationIdBind, KeyFlexfieldCodeBind'

7. Click OK.

8. Save and close the repository.

After you register the custom properties as a repository variable, you can include these
variables in queries. For example:

set variable PARAM_EFFECTIVE_DATE=2001-01-01 : SELECT c1 FROM t1;

or

set variable ApplicationIdBind = '0', KeyFlexfieldCodeBind = 'KFF1' :
select_physical ApplicationID, KeyFlexfieldCode, DataSecurityObjectName,
SegmentLabelCode from adfdb..."AppModule.KFFHierFilterVO1";

Note that when you are including a custom property of type PARAM_EFFECTIVE_
DATE, the date format for the property value must be in the format yyyy-mm-dd.

Propagating Labels and Tooltips from ADF Business Component Data
Sources

You can propagate user interface hints, such as labels and tooltips, from ADF Business
Component data sources to display when users work with analyses. When translated
labels and tooltips (based on user locale) are maintained within an ADF Business
Component data source, you can query the data source to access this translated data.
You use the Administration Tool to configure presentation columns to use when
creating analyses.

This section contains the following topics:

■ What are Labels and Tooltips?

Propagating Labels and Tooltips from ADF Business Component Data Sources

5-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ About the Session Variable Naming Scheme for UI Hints

■ About Determining the Physical Column for a Presentation Column

■ Initializing Session Variables Automatically for Propagating UI Hints

■ Example of Using UI Hints From an Oracle ADF Data Source When Creating
Analyses

■ Using XML Code in Initialization Blocks to Query UI Hints

What are Labels and Tooltips?
A label is the text that is used in prompts or table headers that precedes the value of a
data item. A tooltip is the text that is displayed when a user hovers the mouse pointer
over the item. Each attribute of a view object (VO) has an associated label and tooltip.
A view object is the Oracle Application Development Framework component that
enables a developer to work easily with SQL query results. The propagation of UI
hints enables a presentation column in the Administration Tool to use a label and
tooltip as its Custom display name and Description respectively.

Figure 5–2 shows the Label Text and Tooltip Text options in the Edit Attribute dialog in
Oracle JDeveloper.

Figure 5–2 Edit Attribute Dialog in JDeveloper for Label and Tooltip Options

About the Session Variable Naming Scheme for UI Hints
Session variable names are generated by the Oracle BI Enterprise Edition broker
servlet in Oracle WebLogic Server in the following format:

ADF_UI Hint Type_Database Name_VO's Name_Attribute's Name

Where:

UI Hint Type is either LABEL or TOOLTIP, depending on the UI hint type that the
session variable represents.

Database Name is the value of the "database" attribute of the ADFQuery element in the
XML query. Special characters such single quotes ('), double quotes ("), and spaces are
replaced by the underscore character.

Propagating Labels and Tooltips from ADF Business Component Data Sources

Working with ADF Business Component Data Sources 5-13

VO's Name is the name of the View Object to which the attribute belongs. Oracle ADF
prohibits special characters and spaces in the name.

Attribute's Name is the name of the attribute that the session variable represents. Oracle
ADF prohibits special characters and spaces in the name.

Every character in the session variable name is uppercase. For example, the XML
query in Example 5–3 generates four session variables with the following names:

ADF_LABEL_MY_ORCLADF_EMPLOYEESVIEW_FIRSTNAME

ADF_TOOLTIP_MY_ORCLADF_EMPLOYEESVIEW_FIRSTNAME

ADF_LABEL_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME

ADF_TOOLTIP_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME

About Determining the Physical Column for a Presentation Column
As required by the naming scheme for session variables, each presentation column
must map to a physical column. When you select Externalize Display Names >
Generate ADF Label or Externalize Descriptions > Generate ADF Tooltip for a
presentation layer object, then the physical column is located using the following
rules:

1. Examine the presentation column and determine its logical column. If the logical
column is derived from an existing logical column, then the physical column
cannot be found.

2. If the default aggregation rule for the logical column is not None or Sum, then the
physical column cannot be found. It does not make sense semantically to use the
ADF UI hints for aggregation rules other than Sum.

3. A logical column can be mapped to physical columns by multiple logical table
sources. Only logical table sources that are not disabled are searched.

4. Do not search logical table sources that map the logical column using non-trivial
expressions (that is, anything more than a physical column name). If no logical
table sources are searched, then the physical column cannot be found.

5. From the remaining ordered list of logical table sources, examine the physical
column that is mapped by the first logical table source. The physical column must
be mapped to a VO attribute. In other words the physical column must be part of a
physical database of type OracleADF11g.

■ If this condition is satisfied, then the physical column for obtaining UI hints is
found.

■ If this condition is not satisfied, then continue to examine the physical column
that is mapped by the next logical table source until the physical column that
is mapped to a VO attribute is found.

If all logical table source are searched without satisfying the condition, then
the physical column cannot be found.

If the physical column for obtaining UI hints is found using these rules, then the
custom display name or description is populated with a session variable that has a
name based on a predetermined naming scheme. See "About the Session Variable
Naming Scheme for UI Hints" for more information.

If the physical column for obtaining UI hints is not found using these rules, then the
Generate ADF Label and Generate ADF Tooltip options are shown as disabled in the
right-click menu.

Propagating Labels and Tooltips from ADF Business Component Data Sources

5-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

As an alternative to using the physical column found using these rules, you can use
XML code in an initialization block to initialize your own session variables with ADF
UI hints. You must then enter these session variable names in the Custom display
name and Custom description fields manually. See "Using XML Code in Initialization
Blocks to Query UI Hints" for more information.

Initializing Session Variables Automatically for Propagating UI Hints
If the Externalize Display Names > Generate ADF Label and Externalize
Descriptions > Generate ADF Tooltip options were used to successfully generate the
session variable names for UI hints from Oracle ADF, then the session variables are
created and initialized when Oracle BI Presentation Services queries them during the
session. The variables are not created and initialized during the session logon stage for
performance reasons. Instead, the variables are created and initialized when they are
needed by a specific query within a session, using the Allow deferred execution
feature.

When Presentation Services queries the custom display names and custom
descriptions through ODBC, the Oracle BI Server checks if the associated session
variables have been created. If they have not been created, then the Oracle BI Server
dynamically generates the appropriate XML query (as described in "Using XML Code
in Initialization Blocks to Query UI Hints") to query the UI hints from the Oracle ADF
data source. The Oracle BI Server uses the UI hints to create and initialize the session
variables. As an optimization, the Oracle BI Server queries UI hints per VO; that is, if
the Oracle BI Server needs the UI hints of a VO's attributes, then the UI hints for all the
attributes under the VO are queried and propagated through session variables.

Example of Using UI Hints From an Oracle ADF Data Source When Creating Analyses
The following example shows how you can use UI hints from an Oracle ADF data
source when creating analyses.

The following prerequisites must be met:

■ UI hints must have been configured in the Oracle ADF data source.

■ A working repository must have been configured for the Oracle ADF data source
in the Administration Tool.

To use UI hints from an Oracle ADF data source when creating analyses:

1. Suppose that the repository contains a presentation column named "LastName."
On the General tab of the Presentation Column dialog, the Custom display name
and Custom description fields are not selected.

Right-click the column in the Presentation layer and select first Externalize
Display Names > Generate ADF Label, then Externalize Descriptions >
Generate ADF Tooltip to generate the strings that populate the Custom display
name and Custom description fields.

You can also use these options from the right-click menu of a presentation table to
generate the strings for all the columns in that table.

2. View the UI hints:

a. Sign in to Oracle Business Intelligence.

b. Create a new analysis using the subject area for which you obtained UI hints.

c. In the Subject Areas pane, expand the Employee folder to see the UI hints that
have been propagated from the Oracle ADF data source.

Propagating Labels and Tooltips from ADF Business Component Data Sources

Working with ADF Business Component Data Sources 5-15

The LastName column displays as "Last Name" (the label value from the
Oracle ADF data source). When you hover the mouse pointer over the
column, the tip displays as "This is the employee's last name" (the tooltip
value from the Oracle ADF data source).

For information about creating analyses, see Oracle Fusion Middleware User's Guide
for Oracle Business Intelligence Enterprise Edition.

Using XML Code in Initialization Blocks to Query UI Hints
As an alternative to using the automated system described in the previous section, you
can use specialized XML code in place of SQL statements in initialization blocks to
query the data source for UI hints, within a single repository and subject area. You use
the ADFQuery element, which has three attributes that are named mode, database,
and locale. The element requires zero or more child elements. The syntax of the
element is as follows:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="{Mode}" database="{Database Name}"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">

<ViewObject><![CDATA[{VO Name}]]></ViewObject>
<Attribute>
<ViewObject><![CDATA[{Attribute VO Name}]]></ViewObject>
<Name><![CDATA[{Attribute Name}]]></Name>
</Attribute>

</ADFQuery>

where

{Mode} specifies what you want to query:

■ label for querying attributes' label

■ tooltip for querying attributes' tooltip

■ ui_hints for querying attributes' label and tooltip

{Database Name}

Use the name of the physical database object in the Administration Tool, which
contains the physical columns that correspond to the attributes in the Oracle ADF data
source.

{VO Name}

Use the name of the View Object to obtain the UI hints of all attributes in it.

{Attribute VO Name}

Use the name of the View Object that contains the attribute.

{Attribute Name}

Use the name of the attribute that belongs to the associated View Object to obtain the
UI hints of this attribute.

Example 5–1 Querying Labels for All View Objects

No child elements must be included in the ADFQuery element, if the UI hints of all
attributes in all View Objects are queried. For example, to query the labels of all
attributes in all View Objects under the My_orclADF physical database object, use the
following XML code:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>

Propagating Labels and Tooltips from ADF Business Component Data Sources

5-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

<ADFQuery mode="label" database="My_orclADF"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">
</ADFQuery>

Example 5–2 Querying Tooltips for Specific View Objects

The ADFQuery element can contain zero or more child elements named ViewObject if
UI hints of all attributes in specific View Objects are queried. Each ViewObject element
has a text content that contains the View Object's name. The ViewObject element is
used to specify the View Objects from which the UI hints of all attributes are queried.
For example, to query the tooltips of all attributes in the View Object that is named
EmployeesView and CustomersView under the My_orclADF physical database object,
use the following XML code:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="tooltip" database="My_orclADF"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">

<ViewObject><![CDATA[EmployeesView]]></ViewObject>
<ViewObject><![CDATA[CustomersView]]></ViewObject>

</ADFQuery>

Example 5–3 Querying UI Hints for Specific Attributes

The ADFQuery element can contain zero or more child elements named Attribute.
Each Attribute element has two required child elements named ViewObject and
Name. The Attribute element is used to specify the attributes from which the UI hints
are queried. The ViewObject child element has a text content that contains the View
Object's name. This element specifies the View Object that the attribute belongs to. The
Name child element has a text content which contains the attribute's name. For
example, to query the labels and tooltips of the attributes named Firstname and
Lastname in the EmployeesView View Object under the My_orclADF physical
database object, use the following XML code:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="ui_hints" database="My_orclADF"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">

<Attribute>
<ViewObject><![CDATA[EmployeesView]]></ViewObject>
<Name><![CDATA[Firstname]]></Name>

</Attribute>
<Attribute>

<ViewObject><![CDATA[EmployeesView]]></ViewObject>
<Name><![CDATA[Lastname]]></Name>

</Attribute>
</ADFQuery>

After configuring the initialization blocks, you must manually enter the session
variable names in the Custom display name and Custom description text fields for
the appropriate presentation column.

Follow the procedure in the example in "Example of Using UI Hints From an Oracle
ADF Data Source When Creating Analyses", but replace the first step with the
following ones:

1. Create session initialization blocks in the Administration Tool.

a. In the Session Variable Initialization Block Data Source dialog, enter the
Initialization string.

In this example, the initialization block queries both the label and tooltip of all
attributes in a View Object named EmployeesView. Figure 5–3 shows the setup

Propagating Labels and Tooltips from ADF Business Component Data Sources

Working with ADF Business Component Data Sources 5-17

of a session variable initialization block with an appropriate Oracle ADF UI
hint query. "My_orclADF"."Connection Pool" is a connection pool for an
Oracle ADF data source.

Figure 5–3 Setting Up a Session Variable Initialization Block Data Source with an Oracle
ADF UI Hints Query

b. In the Session Variable Initialization Block dialog, select Row-wise
initialization as the Variable Target.

c. Click Test to test the query against the Oracle ADF data source.

In the results window, the first column contains the session variable names
that are generated using the naming scheme. The second column contains the
label and tooltip values from the Oracle ADF data source.

See "About the Session Variable Naming Scheme for UI Hints" for a
description of the naming scheme.

2. Configure a custom display name and a description in presentation columns.

To find the presentation tables that can use the UI hints from the EmployeesView
View Object, this example uses the Query Repository feature in the
Administration Tool.

a. Right-click a physical table (for example, EmployeesView), then select Query
Related Objects > Presentation > Presentation Table from the menu.

The Query Related Objects dialog displays all the related presentation tables.

This example sets up a custom display name and custom description for
columns in the Employee presentation table.

Propagating Labels and Tooltips from ADF Business Component Data Sources

5-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 5–4 Using the Query Related Objects Feature to Find the Related Presentation
Tables

b. Select the required presentation table and click Go To.

This displays the selected presentation table.

c. Expand the presentation table to view the presentation columns.

d. Double-click the LastName presentation column to display the Presentation
Column dialog.

e. Select Custom display name and enter a value such as the following one:

VALUEOF(NQ_SESSION.ADF_LABEL_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME)

f. Select Custom description and enter a value such as the following one:

VALUEOF(NQ_SESSION.ADF_TOOLTIP_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME)

g. Click OK.

h. Save the changes in the repository and restart the Oracle BI Server.

6

Setting Up Database Objects and Connection Pools 6-1

6Setting Up Database Objects and
Connection Pools

Properties for database objects and connection pools are typically set automatically
when you import metadata from your data sources. However, in some cases you may
want to adjust database or connection pool settings, or create a database object or
connection pool manually. This chapter describes the properties of the database and
connection pool objects in the Physical layer.

This chapter contains the following sections:

■ Setting Up Database Objects

■ About Connection Pools

■ Creating or Changing Connection Pools

■ Setting Up Persist Connection Pools

Setting Up Database Objects
Importing metadata from a data source automatically creates a database object for the
schema, but you may need to adjust the database properties.

 See "System Requirements and Certification" for information about supported data
sources.

The following sections provide information about how to create or edit database
objects in the Physical layer:

■ About Database Types in the Physical Layer

■ Creating a Database Object Manually in the Physical Layer

■ Specifying SQL Features Supported by a Data Source

About Database Types in the Physical Layer
If you import the physical schema into the Physical layer, the database type is usually
assigned automatically. The following list contains additional information about
automatic assignment of database types:

■ Relational data sources. During the import process, some ODBC drivers provide
the Oracle BI Server with the database type. However, if the server cannot
determine the database type, an approximate ODBC type is assigned to the
database object. Replace the ODBC type with the closest matching entry from the
Database list.

Setting Up Database Objects

6-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Multidimensional data sources. Microsoft Analysis Services and SAP/BW are the
only supported XMLA-compliant data sources currently available. After you
import metadata from a multidimensional data source, check the database object
and update the appropriate database type and version if necessary.

Creating a Database Object Manually in the Physical Layer
If you create a database object manually, you need to manually set up all database
elements such as the connection pool, tables, and columns.

For multidimensional data sources, if you create the physical schema in the Physical
layer of the repository, you need to create one database in the physical layer for each
cube, or set of cubes, that belong to the same catalog (database) in the data source. A
physical database can have more than one cube. However, all of these cubes must be
in the same catalog in the data source.

To create a database object:

1. In the Administration Tool, in the Physical layer, right-click and select New
Database.

Make sure that no object is selected when you right-click.

2. In the Database dialog, in the General tab, complete the fields using Table 6–1 as a
guide.

Caution: It is strongly recommended that you import your physical
schema.

Table 6–1 Options in the General Tab of the Database Dialog

Option Description

Data source definition:
Database

The database type for your database.

See "Specifying SQL Features Supported by a Data Source" for
more information about using the Features tab to examine the
SQL features supported by the specified database type.

Data source definition:
CRM metadata tables

This property is only available for relational data sources and is
for legacy Siebel Systems sources only.

When selected, indicates that the definition of physical tables
and columns for Siebel CRM tables was derived from the Siebel
metadata dictionary.

Data source definition:
Virtual Private Database

Identifies the physical database source as a virtual private
database (VPD). When a VPD is used, returned data results are
contingent on the user's authorization credentials. Therefore, it
is important to identify these sources. These data results affect
the validity of the query result set that is used with caching. See
"Managing Performance Tuning and Query Caching" in Oracle
Fusion Middleware System Administrator's Guide for Oracle
Business Intelligence Enterprise Edition.

Note: If you select this option, you also should select the
Security Sensitive option in the Session Variable dialog. See
"Creating Session Variables" for more information.

Persist connection pool To use a persistent connection pool, you must set up a
temporary table first. See "Setting Up Persist Connection Pools"
for more information.

Setting Up Database Objects

Setting Up Database Objects and Connection Pools 6-3

When to Allow Direct Database Requests by Default
The property Allow direct database requests by default lets all users execute physical
queries. If configured incorrectly, it can expose sensitive data to an unintended
audience. Use the following recommended guidelines when setting this database
property:

■ The Oracle BI Server should be configured to accept connection requests only from
a computer on which the Oracle BI Server, Oracle BI Presentation Services, or
Oracle BI Scheduler are running. This restriction should be established at the
TCP/IP level using the Oracle BI Presentation Services IP address. This allows
only a TCP/IP connection from the IP address of Oracle BI Presentation Services.

■ To prevent users from running nqcmd (a utility that executes SQL scripts) by
logging in remotely to this computer, you should disallow access by the following
to the computer on which you installed Oracle BI Presentation Services:

– TELNET

– Remote shells

– Remote desktops

– Teleconferencing software (such as Windows NetMeeting)

If necessary, you might want to make an exception for users with administrator
permissions.

■ Only users with administrator permissions should be allowed to perform the
following tasks:

– TELNET into the Oracle BI Server and Oracle BI Presentation Services
computers to perform tasks such as running nqcmd for cache seeding.

Allow populate queries by
default

When selected, allows everyone to execute POPULATE SQL. If
you want most, but not all, users to be able to execute
POPULATE SQL, select this option and then limit queries for
specific users or groups. See "Setting Query Limits" for more
information.

Allow direct database
requests by default

When selected, allows all users to execute physical queries. The
Oracle BI Server sends unprocessed, user-entered, physical SQL
directly to an underlying database. The returned results set can
be rendered in Oracle BI Presentation Services, and then
charted, rendered in a dashboard, and treated as an Oracle BI
request.

If you want most, but not all, users to be able to execute
physical queries, select this option and then limit queries for
specific users or groups. See "Setting Query Limits" for more
information.

Caution: If configured incorrectly, this option can expose
sensitive data to an unintended audience. See "When to Allow
Direct Database Requests by Default" for more information.

For more information about executing physical SQL, see
"Working with Direct Database Requests" in Oracle Fusion
Middleware User's Guide for Oracle Business Intelligence Enterprise
Edition.

Table 6–1 (Cont.) Options in the General Tab of the Database Dialog

Option Description

Setting Up Database Objects

6-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

– Access the advanced SQL page of Answers to create requests. For more
information, see Oracle Fusion Middleware User's Guide for Oracle Business
Intelligence Enterprise Edition.

■ Set up group/user-based permissions on Oracle BI Presentation Services to control
access to editing (preconfigured to allow access by Oracle BI Presentation Services
administrators) and executing (preconfigured to not allow access by anyone)
direct database requests. For more information, see Oracle Fusion Middleware
Security Guide for Oracle Business Intelligence Enterprise Edition.

Specifying SQL Features Supported by a Data Source
When you import metadata or specify a database type in the General tab of the
Database dialog, the set of features for that database object is automatically populated
with default values appropriate for the database type. These are the SQL features that
the Oracle BI Server uses with this data source.

When a feature is marked as supported (checked) in the Features tab of the Database
dialog, the Oracle BI Server typically pushes the function or calculation down to the
data source for improved performance. When a function or feature is not supported in
the data source, the calculation or processing is performed in the Oracle BI Server.

The supported features list in the Features tab uses the feature defaults defined in the
DBFeatures.INI file, located in ORACLE_
INSTANCE\config\OracleBIServerComponent\coreapplication_obisn. Although you
should not modify this file directly, it can be useful to look at this file to compare the
features supported by different data source types.

You can tailor the query features for a data source. For example, a new version of a
data source may be released with updated feature support that is not reflected in the
Oracle BI Server defaults. In this case, you can update the settings in the Features tab
to reflect the actual features supported by the new version of the data source. Or, if a
data source supports a particular feature (such as left outer join queries) but you want
to prohibit the Oracle BI Server from sending such queries to a particular data source,
you can change this default setting in the Features tab. A third situation is when you
have federated data sources that execute functions differently. To ensure query results
are consistent, you can disable the appropriate functions so that the calculations are
performed in a consistent manner in the Oracle BI Server.

To specify SQL features supported by a data source:

1. In the Administration Tool, in the Physical layer, double-click the database for
which you want to specify SQL features.

2. In the Database dialog, click the Features tab.

3. In the Features tab, use the information in Table 6–2 to help you specify properties
for each SQL feature.

Caution: Be very careful when modifying the set of supported
features in the Features tab. If you enable SQL features that the data
source does not support, your query may return errors and
unexpected results. If you disable supported SQL features, the server
could issue less efficient SQL to the data source.

In most cases, you should keep the default values. If you do change
the defaults to mark a feature as supported in the Features tab, make
sure that the feature is actually supported by the data source.

About Connection Pools

Setting Up Database Objects and Connection Pools 6-5

About Connection Pools
The connection pool is an object in the Physical layer that describes access to the data
source. It contains information about the connection between the Oracle BI Server and
that data source.

The Physical layer in the Administration Tool contains at least one connection pool for
each database. When you create the Physical layer by importing a schema for a data
source, the connection pool is created automatically. You can configure multiple
connection pools for a database. Connection pools allow multiple concurrent data
source requests (queries) to share a single database connection, reducing the overhead
of connecting to a database.

Table 6–2 Options in the Features Tab of the Database Dialog

Option Description

Feature The name of the database feature, such as COUNT_DISTINCT_
SUPPORTED.

Value Shows the current value for the given feature. Selected indicates
that the feature is supported in the data source, and that the
function or feature should be performed in the data source
rather than in the Oracle BI Server.

Some features show a default value in the Value column rather
than selected/not selected, such as 10 for MAX_ENTRIES_PER_
IN_LIST.

It is strongly recommended that you keep the default selections
and default values.

Default Shows the default value for the given feature. The defaults
listed in this column are specified in the file DBFeatures.INI.

Find Lets you type a string to help you locate a feature in the list.

Find Again This option becomes available after you click Find. It lets you
perform multiple searches for the same string.

Query DBMS This button is only used if you are installing and querying a
data source that has no set of feature defaults in the Oracle BI
Server. It lets you query this type of data source for Feature
table entries so that you can find out which SQL features it
supports. You can then change the entries that appear in the
Features tab based on your query results.

This button is not available if you are using an XML or a
multidimensional data source.

Caution: Be very careful when using the Query DBMS feature.
The results of the features query are not always an accurate
reflection of the SQL features actually supported by the data
source. When using this feature, you should verify that the list
of supported features in the Features tab matches the actual
features supported by your data source. Refer to the
documentation for your data source for details.

Reset to defaults This button restores the default values for this data source type
from the file DBFeatures.INI.

Note: Do not change the OPTIMIZE_MDX_FILTER_
QUALIFICATION feature. This parameter is reserved for a future
release.

Creating or Changing Connection Pools

6-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

For each connection pool, you must specify the maximum number of concurrent
connections allowed. After this limit is reached, the connection request waits until a
connection becomes available.

Increasing the allowed number of concurrent connections can potentially increase the
load on the underlying database accessed by the connection pool. Test and consult
with your DBA to make sure the data source can handle the number of connections
specified in the connection pool. Also, if the data sources have a charge back system
based on the number of connections, you might want to limit the number of
concurrent connections to keep the charge-back costs down.

In addition to the potential load and costs associated with the database resources, the
Oracle BI Server allocates shared memory for each connection upon server startup.
This raises the number of connections and increases Oracle BI Server memory usage.

About Connection Pools for Initialization Blocks
It is recommended that you create a dedicated connection pool for initialization
blocks. This connection pool should not be used for queries.

Additionally, it is recommended that you isolate the connections pools for different
types of initialization blocks. This also makes sure that authentication and
login-specific initialization blocks do not slow down the login process. The following
types should have separate connection pools:

■ All authentication and login-specific initialization blocks such as language,
externalized strings, and group assignments.

■ All initialization blocks that set session variables.

■ All initialization blocks that set repository variables. These initialization blocks
should always be run using credentials with administrator privileges.

Be aware of the number of these initialization blocks, their scheduled refresh rate,
and when they are scheduled to run. Typically, it would take an extreme case for
this scenario to affect resources. For example, refresh rates set in minutes, greater
than 15 initialization blocks that refresh concurrently, and a situation in which
either of these scenarios could occur during prime user access time frames.

Initialization blocks should be designed so that the maximum number of Oracle BI
Server variables may be assigned by each block. For example, if you have five
variables, it is more efficient and less resource intensive to construct a single
initialization block containing all five variables. When using one initialization block,
the values are resolved with one call to the back end tables using the initialization
string. Constructing five initialization blocks, one for each variable, would result in
five calls to the back end tables for assignment.

See "Working with Initialization Blocks" for more information about these objects.

Creating or Changing Connection Pools
Typically, database objects and connection pools are created automatically when you
import physical schemas, for both relational and multidimensional data sources. If you
did not import physical schemas, you must create a database object before you create a

Note: It is recommended that you create a dedicated connection pool
for initialization blocks. See "About Connection Pools for Initialization
Blocks" for more information.

Creating or Changing Connection Pools

Setting Up Database Objects and Connection Pools 6-7

connection pool. You create or change a connection pool in the Physical layer of the
Administration Tool.

If you have already defined an existing database and connection pool, you can
right-click the connection pool in the Physical layer and select Import Metadata to
import metadata for this data source. The Import Metadata Wizard appears with the
information on the Select Data Source screen pre-filled. See Chapter 4, "Importing
Metadata and Working with Data Sources" for information about the Import Wizard.

To automate connection pool changes for use in a process such as production
migration, consider using the Oracle BI Server XML API. See "About the Oracle BI
Server XML API" in Oracle Fusion Middleware Integrator's Guide for Oracle Business
Intelligence Enterprise Edition for more information.

To create or change a connection pool:

1. In the Physical layer of the Administration Tool, right-click a database and select
New Object, then select Connection Pool. Or, double-click an existing connection
pool.

2. Specify or adjust the properties as needed, then click OK.

The following sections describe how to set properties in the various tabs of the
Connection Pool dialog:

■ Setting Connection Pool Properties in the General Tab

■ Setting Connection Pool Properties in the Connection Scripts Tab

■ Setting Connection Pool Properties in the XML Tab

■ Setting Connection Pool Properties in the Write Back Tab

■ Setting Connection Pool Properties in the Miscellaneous Tab

Setting Connection Pool Properties in the General Tab
This section describes the properties in the General tab of the Connection Pool dialog.
The General tab is available for all data sources.

To set general properties for connection pools:

■ In the Connection Pool dialog, click the General tab, and then complete the fields
using the information in Table 6–3 and Table 6–4.

The properties listed in the General tab vary according to the data source type. For
example, XMLA data sources have a connection pool property for URL, while
relational and XML data sources have the option Require fully qualified table names.

This section contains the following topics:

■ Common Connection Pool Properties in the General Tab

■ Multidimensional Connection Pool Properties in the General Tab

Common Connection Pool Properties in the General Tab
This section describes connection pool properties in the General tab that are common
among most data source types.

Figure 6–1 shows the General tab of the Connection Pool dialog, for an OCI data
source.

Creating or Changing Connection Pools

6-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 6–1 General Tab of the Connection Pool Dialog: OCI Data Source

Table 6–3 describes the properties in the General tab of the Connection Pool dialog that
are common for different data source types.

Table 6–3 Connection Pool Properties in the General Tab: Common Properties

Property Description

Name The name for the connection pool. A name is assigned
automatically for connection pools created upon import.

Permissions Use this option to assign permissions for individual users or
application roles to access the connection pool. For example,
you can set up a privileged group of users to have its own
connection pool.

This feature is not intended to be used for data access security.
For example, connection pool permissions do not protect cache
entries.

Refer to Chapter 13 for complete information on data access
security in Oracle Business Intelligence.

Call interface Identifies the application programming interface (API) with
which to access the data source. Some databases can be accessed
using native APIs, some use ODBC, and some work both ways.
If the call interface is XML, the XML tab is available but options
that do not apply to XML data sources are not available.

Creating or Changing Connection Pools

Setting Up Database Objects and Connection Pools 6-9

Maximum connections The maximum number of connections allowed for this
connection pool. The default is 10. This value should be
determined by the database make and model and the
configuration of the hardware for the computer on which the
database runs, as well as the number of concurrent users who
require access.

For Microsoft Analysis Services data sources, you might
encounter 503 Service Not Available errors if the Max
Connections setting in the connection pool (default 10) is greater
than the XMLA MaxThreadsPerClient setting configured in
Analysis Services (default 4). To avoid these errors, increase the
MaxThreadsPerClient setting in the msmdpump.ini file, or
reduce the Max Connections setting in the repository
connection pool.

See also "Avoiding Query Failures Due to Limited Connections
with TimesTen Data Sources" for related information.

Note: For deployments with Oracle BI Interactive Dashboards
pages, consider estimating this value at 10% to 20% of the
number of simultaneous users multiplied by the number of
requests on a dashboard. This number can be adjusted based on
usage. The total number of all connections in the repository
should be less than 800. To estimate the maximum connections
needed for a connection pool dedicated to an initialization
block, you might use the number of users concurrently logged
on during initialization block execution.

Table 6–3 (Cont.) Connection Pool Properties in the General Tab: Common Properties

Property Description

Creating or Changing Connection Pools

6-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Require fully qualified table
names

Select this option if the database or database configuration
requires fully qualified table names. This option is not available
for some data source types.

When this option is selected, all requests sent from the
connection pool use fully qualified names to query the
underlying database. The fully qualified names are based on the
physical object names in the repository. If you are querying the
same tables from which the Physical layer metadata was
imported, you can safely select this option. If you have migrated
your repository from one physical database to another physical
database that has different database and schema names, the
fully qualified names would be invalid in the newly migrated
database. In this case, if you do not select this option, the
queries will succeed against the new database objects.

For some data sources, fully qualified names might be safer
because they guarantee that the queries are directed to the
desired tables in the desired database. For example, if the
RDBMS supports a master database concept, a query against a
table named Customer first looks for that table in the master
database, and then looks for it in the specified database. If the
table named Customer exists in the master database, that table
is queried, not the table named Customer in the specified
database.

It is sometimes necessary to select this option when you are
using an Oracle Database, and you are accessing the database
with a user that is not the owner of the schema containing the
tables. When the Oracle Database interprets table names in SQL,
it assumes that the user that made the query is the owner if the
table name is not fully qualified in the query. This can result in
an incorrect qualified name.

For example, if the user SAMPLE creates a table called
CUSTOMER, the fully qualified table name is
SAMPLE.CUSTOMER. When the SAMPLE user references the
CUSTOMER table in a query, the Oracle Database assumes the
fully qualified table name is SAMPLE.CUSTOMER, and the
access is successful. However, if the JANEDOE user references
the CUSTOMER table in a query, the Oracle Database assumes
the fully qualified table name is JANEDOE.CUSTOMER, and a
"Table or view not found" error can result. To enable access for
JANEDOE, you must select Require fully qualified table
names in the connection pool so that the Oracle BI Server
specifies SAMPLE.CUSTOMER in all queries.

Data source name The name of the data source to which you want this connection
pool to connect and send physical queries. The value you enter
in this field depends on the selected call interface:

■ If the call interface is OCI, enter a full connect string or a
net service name from the tnsnames.ora file you set up
within the Oracle Business Intelligence environment, in
ORACLE_HOME/network/admin.

■ If you are using a native interface for a different database,
enter the name of the database for that system.

■ If the call interface is ODBC, the data source name field
displays a list containing all the User and System DSNs
defined for ODBC on the local computer. Select the correct
one for the data source to which you want connect.

Table 6–3 (Cont.) Connection Pool Properties in the General Tab: Common Properties

Property Description

Creating or Changing Connection Pools

Setting Up Database Objects and Connection Pools 6-11

Shared logon Select this option if you want all users whose queries use the
connection pool to access the underlying database using the
same user name and password.

If this option is selected, then all connections to the database
that use the connection pool use the user name and password
specified in the connection pool, even if the user has specified a
database user name and password in the DSN (or in user
configuration).

If this option is not selected, connections through the connection
pool use the database user ID and password specified in the
DSN or in the user profile.

Enable connection pooling When selected, allows a single database connection to remain
open for the specified time for use by future query requests.
Connection pooling saves the overhead of opening and closing
a new connection for every query. If you do not select this
option, each query sent to the database opens a new connection.

Timeout Specify the amount of time and in what increment (such as
minutes) that a connection to the data source remains open after
a request completes. During this time, new requests use this
connection rather than open a new one (up to the number
specified for the maximum connections). The time is reset after
each completed connection request.

Use multithreaded
connections

When this option is selected, the Oracle BI Server terminates
idle physical queries (threads). When not selected, one thread is
tied to one database connection (number of threads = maximum
connections). Even if threads are idle, they consume memory.

The parameter DB_GATEWAY_THREAD_RANGE in the Server
section of NQSConfig.ini establishes when the Oracle BI Server
terminates idle threads. The lower number in the range is the
number of threads that are kept open before the Oracle BI
Server takes action. If the number of open threads exceeds the
low point in the range, the Oracle BI Server terminates idle
threads. For example, if DB_GATEWAY_THREAD_RANGE is set to
40-200 and 75 threads are open, the Oracle BI Server terminates
any idle threads.

Parameters supported If this option is not selected, and the database features table
supports parameters, special code executes that allows the
Oracle BI Server to push filters (or calculations) with parameters
to the database. The Oracle BI Server does this by simulating
parameter support within the gateway/adapter layer by
sending extra SQLPrepare calls to the database.

Table 6–3 (Cont.) Connection Pool Properties in the General Tab: Common Properties

Property Description

Creating or Changing Connection Pools

6-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Multidimensional Connection Pool Properties in the General Tab
This section describes connection pool properties in the General tab that are specific to
multidimensional data sources.

Figure 6–2 shows the General tab of the Connection Pool dialog, for an Essbase data
source.

Isolation level For ODBC and DB2 gateways only. The value sets the
transaction isolation level on each connection to the back-end
database. The isolation level setting controls the default
transaction locking behavior for all statements issued by a
connection. Only one option can be set at a time. It remains set
for that connection until it is explicitly changed.

The following options are available:

Dirty read. Implements dirty read (isolation level 0 locking).
This is the least restrictive isolation level. When this option is
set, it is possible to read uncommitted or dirty data, change
values in the data, and have rows appear or disappear in the
data set before the end of the transaction.

Dirty data is data that needs to be cleaned before being queried
to obtain correct results (for example, duplicate records, records
with inconsistent naming conventions, or records with
incompatible data types).

Committed read. Specifies that shared locks are held while the
data is read to avoid dirty reads. However, the data can be
changed before the end of the transaction, resulting in non
repeatable reads or phantom data.

Repeatable read. Places locks on all data that is used in a query,
preventing other users from updating the data. However, new
phantom rows can be inserted into the data set by another user
and are included in later reads in the current transaction.

Serializable. Places a range lock on the data set, preventing
other users from updating or inserting rows into the data set
until the transaction is complete. This is the most restrictive of
the four isolation levels. Because concurrency is lower, use this
option only if necessary.

Table 6–3 (Cont.) Connection Pool Properties in the General Tab: Common Properties

Property Description

Creating or Changing Connection Pools

Setting Up Database Objects and Connection Pools 6-13

Figure 6–2 General Tab of the Connection Pool Dialog: Essbase Data Source

Table 6–4 describes the properties in the General tab of the Connection Pool dialog that
are specific to multidimensional data sources. Note that some properties only appear
for certain types of multidimensional data sources.

Table 6–4 Connection Pool Properties in the General Tab: Multidimensional Data Source
Properties

Property Description

URL This property is only displayed for XMLA data sources. Specify
the URL to connect to the XMLA provider. This URL points to
the XMLA virtual directory of the computer hosting the cube.
This virtual directory must be associated with msxisapi.dll (part
of the Microsoft XML for Analysis SDK installation). For
example, the URL might look like the following:

http://SDCDL360i101/xmla/msxisap.dll

Essbase Server This property is only displayed for Essbase data sources.
Specify the name of the Essbase server.

SSO using CSS Token This property is only displayed for Essbase and Hyperion
Financial Management data sources.

Select this option if you want to authenticate against Essbase or
Hyperion Financial Management using a shared token, rather
than using a set of shared credentials in the connection pool.

Make sure to select either the SSO using CSS Token or Shared
logon options when creating a connection pool for Essbase or
Hyperion Financial Management. Do not leave both options
blank.

Creating or Changing Connection Pools

6-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Setting Connection Pool Properties in the Connection Scripts Tab
This section describes the properties in the Connection Scripts tab of the Connection
Pool dialog. The Connection Scripts tab is available for ODBC, OCI, Oracle OLAP,
ADF, and DB2 data sources.

You can create connection scripts and set them to be run before the connection is
established, before a query is run, after a query is run, or after the connection is
disconnected. For example, you can create a connection script that, on connect, inserts
the name of the user and the connection time into a table.

Connection scripts can contain any commands accepted by the database, such as a
command to turn on quoted identifiers. In a mainframe environment, a script could be
used to set the secondary authorization ID when connecting to DB2 to force a security

Data Source Information:
Data Source

Specify the vendor-specific information used to connect to the
multidimensional data source. Consult your multidimensional
data source administrator for setup instructions because
specifications can change. For example, if you use v1.0 of the
XML for Analysis SDK, then the value should be
Provider-MSOLAP;Data Source-local. If you use v1.1,
then it should be Local Analysis Server.

Data Source Information:
Catalog

Specify the list of catalogs available, if you imported data from
your data source. The cube tables correspond to the catalog you
use in the connection pool.

System IP or Hostname This property is only displayed for SAP/BW data sources.
Provide the host name or IP address of the SAP data server.
This field corresponds to the parameter ashost in the SAP/BW
connect string.

System Number This property is only displayed for SAP/BW data sources.
Provide the SAP system number. This is a two-digit number
assigned to an SAP instance, also called Web Application
Server, or WAS. This field corresponds to the parameter sysnr
in the SAP/BW connect string.

Client Number This property is only displayed for SAP/BW data sources.
Provide the SAP client number. This is a three-digit number
assigned to the self-contained unit called Client in SAP. A Client
can be a training, development, testing, or production client, or
it can represent different divisions in a large company. This
field corresponds to the parameter client in the SAP/BW
connect string.

Language This property is only displayed for SAP/BW data sources.
Provide the SAP language code used when logging in to the
data source (for example, EN for English or DE for German).
This field corresponds to the parameter lang in the SAP/BW
connect string.

Additional Parameters This property is only displayed for SAP/BW data sources.
Optionally, provide additional connection string parameters in
the format param=value. Delimit multiple parameters with a
colon.

Use session An option that controls whether queries go through a common
session. Consult your multidimensional data source
administrator to determine whether this option should be
enabled. Default is Off (not selected).

Table 6–4 (Cont.) Connection Pool Properties in the General Tab: Multidimensional Data
Source Properties

Property Description

Creating or Changing Connection Pools

Setting Up Database Objects and Connection Pools 6-15

exit to a mainframe security package such as RACF. This enables mainframe
environments to maintain security in one central location.

Because the connection script is sent directly to the data source, the script should use
native SQL or another language understood by the data source, not Oracle BI Server
Logical SQL.

To create connection scripts for data sources:

■ In the Connection Pool dialog, click the Connection Scripts tab, and then complete
the fields using the information in Table 6–5.

To enter a new connection script, click New next to the appropriate script type.
Then, enter or paste the SQL statements for the script and click OK.

You can edit existing scripts by clicking the ellipsis button to launch the Physical
SQL window. Use the Up Arrow and Down Arrow buttons to reorder existing
scripts.

Click Delete to remove a script.

Figure 6–3 shows the Connection Scripts tab of the Connection Pool dialog.

Figure 6–3 Connection Scripts Tab of the Connection Pool Dialog

Table 6–5 describes the properties in the Connection Scripts tab of the Connection Pool
dialog.

Table 6–5 Connection Pool Properties in the Connection Scripts Tab

Property Description

Execute on connect Contains SQL queries that are executed before the connection is
established.

Execute before query Contains SQL queries that are executed before the query is run.

Creating or Changing Connection Pools

6-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Setting Connection Pool Properties in the XML Tab
This section describes the properties in the XML tab of the Connection Pool dialog. See
Table 6–6 for details. The XML tab is only available for XML and XML Server data
sources.

To set connection pool properties for XML data sources:

■ In the Connection Pool dialog, click the XML tab, and then complete the fields
using the information in Table 6–6.

Figure 6–4 shows the XML tab of the Connection Pool dialog.

Figure 6–4 XML Tab of the Connection Pool Dialog

Table 6–6 describes the properties in the XML tab of the Connection Pool dialog.

Execute after query Contains SQL queries that are executed after the query is run.

Execute on disconnect Contains SQL queries that are executed after the connection is
closed.

Caution: The XML tab of the Connection Pool dialog provides the
same functionality as the XML tab of the Physical Table dialog.
However, the properties in the XML tab of the Physical Table dialog
override the corresponding settings in the Connection Pool dialog.

Table 6–5 (Cont.) Connection Pool Properties in the Connection Scripts Tab

Property Description

Creating or Changing Connection Pools

Setting Up Database Objects and Connection Pools 6-17

Setting Connection Pool Properties in the Write Back Tab
This section describes the properties in the Write Back tab of the Connection Pool
dialog. The Write Back tab is available for ODBC, OCI, Oracle OLAP, ADF Business
Component, and DB2 data sources.

To set write-back properties for data sources:

■ In the Connection Pool dialog, click the Write Back tab, and then complete the
fields using the information in Table 6–7.

Figure 6–3 shows the Write Back tab of the Connection Pool dialog.

Table 6–6 Connection Pool Properties in the XML Tab

Property Description

Connection method:

Search script

This property is only displayed for XML Server data sources.
Click Browse to locate the appropriate search script.

Connection properties:

URL refresh interval

This property is used for XML data sources and is not available
for XML Server data sources. The refresh interval is analogous
to setting cache persistence for database tables. The URL refresh
interval is the time interval after which the XML data source is
queried again directly rather than using results in cache. The
default setting is infinite, meaning the XML data source is never
refreshed.

If you specified a URL to access the data source, set the URL
refresh interval.

■ Select a value from the list (Infinite, Days, Hours, Minutes
or Seconds).

■ Specify a whole number as the numeric portion of the
interval.

Connection properties:

URL loading time-out

The timeout interval for queries. The default is 15 minutes.

If you specified a URL to access the data source, set the URL
loading time-out as follows:

■ Select a value from the list (Infinite, Days, Hours, Minutes
or Seconds).

■ Specify a whole number as the numeric portion of the
interval.

Connection properties:

Maximum connections

The maximum number of connections. The default is 10.

Query input supplements:

Header file/Trailer file

This property is only displayed for XML Server data sources.
Click Browse to locate the header and trailer files.

Query output format For XML data sources, choose only XML.

Other output formats are available for XML Server data sources.

Creating or Changing Connection Pools

6-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 6–5 Write Back Tab of the Connection Pool Dialog

Table 6–7 describes the properties in the Write Back tab of the Connection Pool dialog.

Table 6–7 Connection Pool Properties in the Write Back Tab

Property Description

Temporary table:

Prefix

When the Oracle BI Server creates a temporary table, these are
the first two characters in the temporary table name. The default
value is TT.

Temporary table:

Owner

Table owner name used to qualify a temporary table name in a
SQL statement, for example to create the table
owner.tablename. If left blank, the user name specified in the
writeable connection pool is used to qualify the table name and
the Shared logon field on the General tab should also be set.

Temporary table:

Database name

Database where the temporary table will be created. This
property applies only to IBM OS/390 because IBM OS/390
requires database name qualifier to be part of the CREATE
TABLE statement. If left blank, OS/390 defaults the target
database to a system database for which the users may not have
Create Table privileges.

Temporary table:

Tablespace name

Tablespace where the temporary table will be created. This
property applies to OS/390 only as OS/390 requires tablespace
name qualifier to be part of the CREATE TABLE statement. If
left blank, OS/390 defaults the target database to a system
database for which the users may not have Create Table
privileges.

Bulk insert:

Buffer size (KB)

Used for limiting the number of bytes each time data is inserted
in a database table. For optimum performance, consider setting
this parameter to 128.

See "About Setting the Buffer Size and Transaction Boundary"
for additional information.

Creating or Changing Connection Pools

Setting Up Database Objects and Connection Pools 6-19

Setting Connection Pool Properties in the Miscellaneous Tab
This section describes the properties in the Miscellaneous tab of the Connection Pool
dialog. The Miscellaneous tab is only available for ADF Business Component data
sources.

To set application properties for ADF Business Component data sources:

■ In the Connection Pool dialog, click the Miscellaneous tab, and then complete the
fields using the information in Table 6–8.

Figure 6–6 shows the Miscellaneous tab of the Connection Pool dialog.

Bulk insert:

Transaction boundary

Controls the batch size for an insert in a database table. For
optimum performance, consider setting this parameter to 1000.

See "About Setting the Buffer Size and Transaction Boundary"
for additional information.

Unicode database type Select this option when working with columns of an explicit
Unicode data type, such as NCHAR, in a Unicode database. This
makes sure that the binding is correct and that data is inserted
correctly. Different database vendors provide different
character data types and different levels of Unicode support.
Use the following general guidelines to determine when to set
this option:

■ On a database where CHAR data type supports Unicode and
there is no separate NCHAR data type, do not select this
option.

■ On a database where NCHAR data type is available, it is
recommended to select this option.

■ On a database where CHAR and NCHAR data type are
configured to support Unicode, selecting this option is
optional.

Note: Unicode and non-Unicode data types cannot coexist in a
single non-Unicode database. For example, mixing the CHAR
and NCHAR data types in a single non-Unicode database
environment is not supported.

Table 6–7 (Cont.) Connection Pool Properties in the Write Back Tab

Property Description

Creating or Changing Connection Pools

6-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 6–6 Miscellaneous Tab of the Connection Pool Dialog

Table 6–8 describes the properties in the Miscellaneous tab of the Connection Pool
dialog.

Table 6–8 Connection Pool Properties in the Miscellaneous Tab

Property Description

AppModule Definition The fully qualified Java package name of the Root Application
Module to which you want to connect, such as
oracle.apps.fii.receivables.model.RootAppModule.

AppModule Config Determines which application configuration is used in the
connection, such as RootAppModuleShared.

URL The URL to the Oracle Business Intelligence broker servlet, in
the format:

http://host:port/APP_DEPLOYMENT_NAME/obieebroker

For example:

http://localhost:7001/SnowflakeSalesApp/obieebroker

The URL is case-sensitive.

Setting Up Persist Connection Pools

Setting Up Database Objects and Connection Pools 6-21

Setting Up Persist Connection Pools
A persist connection pool is a database property that is used for specific types of
queries (typically used to support Marketing queries). In some queries, all of the
logical query cannot be sent to the transactional database because that database might
not support all of the functions in the query. This issue might be solved by temporarily
constructing a physical table in the database and rewriting the Oracle BI Server query
to reference the new temporary physical table.

You can use the persist connection pool in the following situations:

■ Populate stored procedures. Use to rewrite the Logical SQL result set to a
managed table. Typically used by Oracle's Siebel Marketing Server to write
segmentation cache result sets.

■ Perform a generalized subquery. Stores a nonfunction subquery in a temporary
table, and then rewrites the original subquery result against this table. Reduces
data movement between the Oracle BI Server and the database, supports
unlimited IN list values, and might result in improved performance.

In these situations, the user issuing the Logical SQL query must have been granted
the Populate privilege on the target database.

The persist connection pool functionality designates a connection pool with write-back
capabilities for processing this type of query. You can assign one connection pool in a
single database as a persist connection pool. If this functionality is enabled, the user
name specified in the connection pool must have the privileges to create DDL (Data
Definition Language) and DML (Data Manipulation Language) in the database.

To assign a persist connection pool:

1. In the Physical layer of the Administration Tool, double-click the database object
for which you want to assign a persist connection pool.

2. In the Database dialog, click the General tab.

3. In the Persist connection pool area, click Set.

If there is only one connection pool, it appears in the Persist connection pool field.

4. If there are multiple connection pools, in the Browse dialog, select the appropriate
connection pool, and then click OK.

The selected connection pool name appears in the Persist connection pool field.

SQL Bypass Database (Optional) The name of the SQL Bypass database. The SQL
Bypass database must be a physical database in the Physical
layer of the repository. The database object for the SQL Bypass
database must have a valid connection pool, with connection
information that points to the same database that is being used
by the JDBC Data source defined in the WebLogic Server.

The SQL Bypass database does not need to have any tables
under it. After a valid database name is supplied, the SQL
Bypass feature is enabled for all queries.

The SQL Bypass feature directly queries the database so that
aggregations and other transformations are pushed down
where possible, reducing the amount of data streamed and
worked on in Oracle Business Intelligence. See "About
Specifying a SQL Bypass Database" for more information.

Table 6–8 (Cont.) Connection Pool Properties in the Miscellaneous Tab

Property Description

Setting Up Persist Connection Pools

6-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

5. (Optional) To set write-back properties, click the Connection Pools tab.

6. In the connection pool list, double-click the connection pool.

7. In the Connection Pool dialog, click the Write Back tab.

8. Complete the fields using Table 6–7 as a guide. See also "About Setting the Buffer
Size and Transaction Boundary" for additional information.

9. Click OK, then click OK again to save the persist connection pool.

To remove a persist connection pool:

1. In the Physical layer of the Administration Tool, double-click the database object
that contains the persist connection pool you want to remove.

2. In the Database dialog, click the General tab.

3. In the Persist connection pool area, click Clear.

The database name is replaced by not assigned in the Persist connection pool
field.

4. Click OK.

About Setting the Buffer Size and Transaction Boundary
If each row size in a result set is 1 KB and the buffer size is 20 KB, then the maximum
array size is 20 KB. If there are 120 rows, there are 6 batches with each batch size
limited to 20 rows.

If you set Transaction boundary to 3, the server commits twice. The first time, the
server commits after row 60 (3 * 20). The second time, the server commits after row
120. If there is a failure when the server commits, the server only rolls back the current
transaction. For example, if there are two commits and the first commit succeeds but
the second commit fails, the server only rolls back the second commit.

For optimum performance, consider setting the buffer size to 128 and the transaction
boundary to 1000.

7

Working with Physical Tables, Cubes, and Joins 7-1

7Working with Physical Tables, Cubes, and
Joins

The Physical layer of the Oracle BI repository contains objects that represent physical
data constructs from back-end data sources. The Physical layer defines the objects and
relationships available to the Oracle BI Server for writing physical queries. This layer
encapsulates data source dependencies to enable portability and federation.

Each data source of the repository model typically has its own discrete physical model
in the Physical layer. The top-level object in the Physical layer is a "database," and the
type of database determines which features and rules apply to that physical model.
For example, a relational database such as "Oracle 11g" has relational objects such as
physical tables and joins. In contrast, a multidimensional source such as "Essbase 9"
has cube tables and physical hierarchies. Therefore, some sections of this chapter
apply to only certain database types.

Physical tables, cubes, joins, and other objects in the Physical layer are typically
created automatically when you import metadata from your data sources. After these
objects have been imported, you can perform tasks like creating additional join paths
that are not in the data source, create alias tables for physical tables that need to serve
in different roles, and adjust properties of physical hierarchies from multidimensional
data sources.

This chapter contains the following topics:

■ Working with the Physical Diagram

■ Creating Physical Layer Folders

■ Working with Physical Tables

■ Working with Multidimensional Sources in the Physical Layer

■ Working with Essbase Data Sources

■ Working with Hyperion Financial Management Data Sources

■ Working with Oracle OLAP Data Sources

■ Working with Physical Foreign Keys and Joins

■ Deploying Opaque Views

■ Using Hints

■ Displaying and Updating Row Counts for Physical Tables and Columns

Working with the Physical Diagram

7-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Working with the Physical Diagram
In addition to working with Physical layer objects in the right pane of the
Administration Tool, you can open the Physical Diagram view to see a graphical
model of tables and joins.

To access the Physical Diagram, right-click an object in the Physical layer tree view
(such as a physical database or table) and select Physical Diagram. Then, select one of
the following options:

■ Selected Object(s) Only. Displays only the selected objects. Joins appear only if
they exist between the objects that you select.

■ Object(s) and Direct Joins. Displays the selected objects and any tables that join to
the objects that you select.

■ Object(s) and All Joins. Displays the selected objects, as well as each object that is
related directly or indirectly to the selected object through some join path. If all the
objects in a schema are related, then using this option diagrams every table, even if
you only select one table.

Note that the Physical Diagram displays only physical tables and joins. It does not
display other Physical layer objects, such as connection pools, physical hierarchies, or
levels.

Figure 7–1 shows the Physical Diagram.

Note: The Physical Diagram is typically used with relational and
XML sources rather than multidimensional sources. Although the
Physical Diagram view for a multidimensional source does display a
denormalized table representation of a cube table, the primary means
of working with a multidimensional physical model is by working in
the physical tree using dimensions, hierarchies and columns.

Working with the Physical Diagram

Working with Physical Tables, Cubes, and Joins 7-3

Figure 7–1 Physical Diagram

You can also open the Physical Diagram by selecting one or more objects in the tree
view and then clicking the Physical Diagram button on the toolbar:

Only the objects you selected appear. Joins appear only if they exist between the
selected objects. Joins are represented by a line with an arrow at the "one" end of the
join.

To help you better understand the logical-to-physical mappings in your model, you
can view the physical objects that are associated with a particular logical object by
selecting one or more business models, logical tables, or logical table sources in the
Business Model and Mapping layer tree view and then clicking the Physical Diagram
button on the toolbar. Only physical objects that are related to the objects you selected
appear. You can view the same information by right-clicking a logical object and
selecting Objects and Direct Join(s) within Business Model from the Physical
Diagram submenu. You can also choose one of the other Physical Diagram display
options.

Creating Physical Layer Folders

7-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

To add additional tables to the Physical Diagram, leave the Physical Diagram window
open and then right-click the table or tables you want to add. Then, select Physical
Diagram and choose one of the display options.

Additional options are available in the right-click menu for the graphical tables and
joins displayed in the Physical Diagram. For example, you can delete objects or view
their properties, or you can add additional related objects using the right-click options
Add Direct Joins, Add Tables Joined to Whole Selection, and Add All Joins. You can
also select Find in Tree View to locate a particular object in the Physical layer tree
view in the right pane, or check out objects in online mode.

You can also right-click an object in the Physical Diagram view and select Hide to hide
particular objects in the diagram. Note that this effect is temporary and does not
persist.

See also the following sections:

■ "Using the Physical and Business Model Diagrams" for information about
zooming, panning, and controlling the layout of the tables

■ "Defining Physical Joins with the Physical Diagram" for information about
defining physical joins

Creating Physical Layer Folders
This section contains the following topics:

■ Creating Physical Layer Catalogs and Schemas

■ Using a Variable to Specify the Name of a Catalog or Schema

■ Setting Up Display Folders in the Physical Layer

Creating Physical Layer Catalogs and Schemas
Catalogs are optional ways to group different schemas. A catalog contains all the
schemas (metadata) for a physical database object. A schema contains only the
metadata information for a particular user or application. Model the Physical layer
after the way your data source is structured.

Note the following:

■ You must create a physical database object before you can create a physical catalog
object or a physical schema object.

■ After you implement a certain type of grouping, you cannot change it later. For
example, if you decide to implement database > schema > table, you cannot add a
catalog afterward.

Creating Catalogs
In the Physical layer of a large repository, administrators can create physical catalogs
that contain one or more physical schemas.

To create a catalog:

1. In the Physical layer of the Administration Tool, right-click a physical database
and select New Object, then select Physical Catalog.

2. In the Physical Catalog dialog, type a name for the catalog.

3. Type a description for the catalog, and then click OK.

Creating Physical Layer Folders

Working with Physical Tables, Cubes, and Joins 7-5

Creating Schemas
The schema object contains tables and columns for a physical schema. Schema objects
are optional in the Physical layer of the Administration Tool.

To create a schema:

1. In the Physical layer of the Administration Tool, right-click a physical database or
physical catalog and select New Object, then select Physical Schema.

2. In the Physical Schema dialog, type a name.

3. Type a description for the schema, and then click OK.

Using a Variable to Specify the Name of a Catalog or Schema
You can use a variable to specify the names of catalog and schema objects. For
example, you have data for multiple clients and you structured the data source so that
data for each client was in a separate catalog. You would initialize a session variable
named Client, for example, that could be used to set the name for the catalog object
dynamically when a user signs on to the Oracle BI Server.

You specify the session variable to use in the Dynamic Name tab of the Physical
Catalog or Physical Schema dialog.

To specify the session variable to use in the Dynamic Name tab:

1. In the Name column of the Dynamic Name tab, click the name of the session
variable that you want to use. The initial value for the variable (if any) is shown in
the Default Initializer column.

2. To select the highlighted variable, click Select.

The name of the variable is displayed in the dynamic name field, and the Select
button toggles to the Clear button.

To remove assignment for a session variable in the Dynamic Name tab:

■ Click Clear to remove the assignment for the variable as the dynamic name.

The value not assigned is displayed in the dynamic name field, and the Clear
button toggles to the Select button.

To sort column entries in the Dynamic Name tab:

■ You can sort the entries in a column by clicking the Name or Default Initializer
column heading. Clicking a column heading toggles the order of the entries in that
column between ascending and descending order, according to the column type.

Setting Up Display Folders in the Physical Layer
You can create display folders to organize table objects in the Physical layer. They have
no effect on query processing. After you create a display folder, the selected tables
appear in the folder as a shortcut and in the Physical layer tree as an object. You can
hide the objects so that you only view the shortcuts in the display folder. See the
information about the Repository tab of the Options dialog in "Setting Preferences" for
more information about hiding these objects.

Note: The Dynamic Name tab is not active unless at least one session
variable is defined.

Working with Physical Tables

7-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

To set up a physical display folder:

1. In the Physical layer of the Administration Tool, right-click a physical database
and select New Object, then select Physical Display Folder.

2. In the Physical Display Folder dialog, type a name for the folder.

3. To add tables to the display folder, click Add. Then, in the Browse dialog, select
the fact or physical tables you want to add to the folder and click Select.

Alternatively, you can drag one or more physical tables to the display folder after
you close the dialog.

4. Click OK.

Working with Physical Tables
This section explains how to work with physical table objects in the Physical layer of
the Oracle BI repository.

Note that both physical tables from relational data sources and physical cube tables
from multidimensional data sources both use the Physical Table table type. Many of
the tasks described in this section apply to both relational and multidimensional data
sources. See also "Working with Multidimensional Sources in the Physical Layer" for
additional information specific to multidimensional data sources.

This section contains the following topics:

■ About Tables in the Physical Layer

■ About Physical Alias Tables

■ Creating and Managing Physical Tables and Physical Cube Tables

■ Creating and Managing Columns and Keys for Relational and Cube Tables

■ Viewing Data in Physical Tables or Columns

About Tables in the Physical Layer
A physical table is an object in the Physical layer of the Oracle BI repository that
corresponds to a table in a data source. Metadata for physical tables is usually
imported from the data source. This metadata enables the Oracle BI Server to access
the data source tables with SQL requests.

When you delete a physical table, all dependent objects are deleted (for example,
columns, keys, and foreign keys). When you delete a physical cube table, hierarchies
are also deleted. The deletion fails if an alias exists on the physical table.

In addition to importing data source tables into the Physical layer, you can create
virtual physical tables in the Physical layer, using values in the Table Type field in the
Physical Table dialog. Creating virtual tables can provide the Oracle BI Server and the
underlying data sources with the proper metadata to perform some advanced query
requests.

A virtual physical table can be a stored procedure, or a SELECT statement. A virtual
physical table created from a SELECT statement is also called an opaque view. You can

Note: Deleting a table in a display folder deletes only the shortcut to
that object. When you delete a column in a display folder, however,
the column is actually deleted.

Working with Physical Tables

Working with Physical Tables, Cubes, and Joins 7-7

define an opaque view, and then deploy it in your data source to create a deployed
view. See "Deploying Opaque Views" for more information.

Use the Table Type list in the General tab of the Physical Table dialog to specify the
physical table object type. Table 7–1 describes the available object types.

Table 7–1 Table Types for Physical Tables

Table Type Description

Physical Table Specifies that the physical table object represents a data source
table. This table type is used for both relational physical tables
and multidimensional cube tables.

Stored Proc Specifies that the physical table object is a stored procedure.
When you select this option, you type the stored procedure in
the text box. Requests for this table will call the stored
procedure.

For stored procedures that are data source-specific, select Use
database specific SQL. When you select this option, the
Database column displays supported data sources by brand,
with Default as the root. You can enter data source-specific
initialization strings by selecting the database type on the left
and entering the corresponding string on the right. The
initialization string for the Default option is run when the
queried database type does not have a corresponding
database-specific string defined.

Stored procedures within an Oracle Database do not typically
return result sets. Therefore, they cannot be initiated from
within Oracle Business Intelligence. You need to rewrite the
procedure as an Oracle function, use it in a SELECT statement in
the Administration Tool initialization block, and then associate
it with the appropriate Oracle BI Server session variables in the
Session Variables dialog.

The following example shows a SQL initialization string using
the GET_ROLES function that is associated with the USER,
GROUP, and DISPLAYNAME variables. The function takes a user
Id as a parameter and returns a semicolon-delimited list of
group names:

SELECT user_id, get_roles(user_id), first_name || ' '
|| last_name
FROM csx_security_table
WHERE user_id = ':USER' and password = ':PASSWORD'

Select Specifies that the physical table object is a SELECT statement.
When you select this option, you type the SELECT statement in
the text field, and you also need to manually create the table
columns. The column names must match the ones specified in
the SELECT statement. Column aliases are required for
advanced SQL functions, such as aggregates and CASE
statements.

Requests for this table will execute the SELECT statement.

For SELECT statements that are data source-specific, select Use
database specific SQL. When you select this option, the
Database column displays supported data sources by brand,
with Default as the root. You can enter data source-specific
initialization strings by selecting the database type on the left
and entering the corresponding string on the right. The
initialization string for the Default option is run when the
queried database type does not have a corresponding
database-specific string defined.

This type of table is also called an opaque view. See "Deploying
Opaque Views" for more information.

Working with Physical Tables

7-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

About Physical Alias Tables
An alias table (alias) is a physical table that references a different physical table as its
source (called the original table). Alias tables can be an important part of designing a
Physical layer because they enable you to reuse an existing table more than once,
without having to import it several times.

There are two main reasons to create an alias table:

■ To set up multiple tables, each with different keys, names, or joins, when a single
data source table needs to serve in different semantic roles. Setting up alias tables
in this case is a way to avoid triangular or circular joins.

For example, an order date and a shipping date in a fact table may both point to
the same column in the time dimension data source table, but you should alias the
dimension table so that each role is presented as a separately labeled alias table
with a single join. These separate roles carry over into the business model, so that
"Order Date" and "Ship Date" are part of two different logical dimensions. If a
single logical query contains both columns, the physical query uses aliases in the
SQL statement so that it can include both of them.

You can also use aliases to enable a data source table to play the role of both a fact
table, and a dimension table that joins to another fact table (often called a "fan
trap").

■ To include best practice naming conventions for physical table names. For
example, you can prefix the alias table name with the table type (such as fact,
dimension, or bridge), and leave the original physical table names as-is. Some
organizations alias all physical tables to enforce best practice naming conventions.
In this case, all mappings and joins are based on the alias tables rather than the
original tables.

Alias table names appear in physical SQL queries. Using alias tables to provide
meaningful table names can make SQL queries referencing those tables easier to read.
For example:

WITH
SAWITH0 AS (select sum(T835.Dollars) as c1
from

FactsRevT835/*AllRevenue(Billed Time Join)*/)
select distinct 0 as c1,

D1.c1 as c2
from

SAWITH0 D1
order by c1

In this query, the meaningful alias table name "A11 Revenue (Billed Time Join)" has
been applied to the terse original physical table name "FACTSREV." In this case, the
alias table name provides information about which role the table was playing each
time it appears in SQL queries.

Alias tables can have cache properties that differ from their original tables. To set
different cache properties for an alias table, select the option Override Source Table
Caching Properties in the Physical Table dialog for the alias table. In alias tables,
columns cannot be added, deleted, or modified. Because columns are automatically
synchronized, no manual intervention is required.

Synchronization ensures that the original tables and their related alias tables have the
same column definitions. For example, if you delete a column in the original table, the
column is automatically removed from the alias table.

Working with Physical Tables

Working with Physical Tables, Cubes, and Joins 7-9

You cannot delete an original table unless you delete all its alias tables first.
Alternatively, you can select the original table and all its alias tables and delete them at
the same time.

You can change the original table of an alias table, if the new original table is a
superset of the current original table. However, this could result in an inconsistent
repository if changing the original table deletes columns that are being used. If you
attempt to do this, a warning message appears to let you know that this could cause a
problem and lets you cancel the action. Running a consistency check identifies
orphaned aliases.

When you edit a physical table or column in online mode, all alias tables and columns
must be checked out. The behavior of online checkout uses the following conventions:

■ If an original table or column is checked out, all its alias tables and columns are
checked out.

■ If an alias table or column is checked out, its original table and column are
checked out.

■ The checkout option is available for online repositories (if not read-only) and for
all original and alias tables and columns.

Alias tables inherit some properties from their original tables. A property that is
proxied is a value that is always the same as the original table, and cannot be changed.
(In other words, the proxied properties are the ones that are dimmed in the alias table
dialog.) If the original table changes its value for that particular property, the same
change is applied on the alias table.

The following is a list of the properties that are proxied:

■ Cacheable (the inherited property can be overridden)

■ Cache never expires and Cache persistence time (the inherited properties can be
overridden)

■ Row Count

■ Last Updated

■ Table Type

■ External Db Specifications

The following is list of the properties that are not proxied:

■ Name

■ Description

■ Display Folder Containers

■ Foreign Keys

■ Columns

■ Table Keys

■ Complex Joins

Note: Alias tables and original tables never share columns. Aliases
and original tables have distinctly different columns that alias each
other.

Working with Physical Tables

7-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Source Connection Pool

■ Polling Frequency

■ All XML attributes

Creating and Managing Physical Tables and Physical Cube Tables
Use the General tab of the Physical Table dialog to create or edit physical tables and
physical cube tables in the Physical layer of the Administration Tool.

This section contains the following topics:

■ Creating or Editing Physical Tables

■ Creating Alias Tables

■ Setting Physical Table Properties for XML Data Sources

Creating or Editing Physical Tables
This section describes how to create or edit the general properties for a table, including
both relational physical tables and physical cube tables.

To create a physical table or edit general properties for tables:

1. In the Physical layer of the Administration Tool, perform one of the following
steps:

– To create a physical table, right-click the physical database or physical catalog
and select New Object, then select Physical Table.

If your database object has physical schemas defined, right-click the physical
schema and select New Physical Table.

– To create a physical cube table for a multidimensional data source, right-click
the physical database and select New Object, then select Cube Table.

– To edit an existing physical table, double-click the physical table object in the
Physical layer.

2. In the Physical Table dialog, complete the fields using Table 7–2 as a guide.

Caution: It is strongly recommended that you import cube tables,
not create them manually.

Table 7–2 General Properties for Physical Tables

Property Description

Name The name of the physical table.

Table Type Physical Table values: Physical Table, Stored Proc (stored
procedure), or Select.

Physical Cube Table values: Physical Table or Select.

See Table 7–1 for more information.

Working with Physical Tables

Working with Physical Tables, Cubes, and Joins 7-11

Use Dynamic Name Select this option to use a session variable to specify the
physical table name, similar to catalog and schema objects. This
option is available for non-multidimensional data source tables
when you select a table type of Physical Table.

You might want to choose this option if you have a
multi-tenancy implementation and you want to define a
separate physical table name for each customer. Another
example would be to select between primary and shadow tables
that are valid at different times in your ETL cycle. In both cases,
you can assign session variables to dynamically select the
appropriate table.

Default Initialization String
/ Use database specific SQL

For non-multidimensional data source tables (not alias tables),
this option appears if you choose a Table Type of Stored Proc or
Select. For multidimensional data source tables, this appears if
you choose a Table Type of Select.

When you select this option, you can specify the data source
and type the SQL statements.

See Table 7–1 for more information.

Cacheable Select this option to include the table in the Oracle BI Server
query cache. Typically, you should select this option for tables
that do not need to be accessed in real time.

When you select this option, the Cache persistence time settings
become active.

Note that there are additional configuration settings that affect
the behavior of the query cache. See "Configuring Query
Caching" in Oracle Fusion Middleware System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition for full
information.

Cache never expires When you select this option, cache entries do not automatically
expire. This could be useful when a table is important to a large
number of queries users might run. For example, if most of your
queries have a reference to an account object, keeping it cached
indefinitely could actually improve performance rather than
compromise it.

Note that selecting this option does not mean that an entry
always remains in the cache. Other invalidation techniques,
such as manual purging, LRU (Least Recently Used)
replacement, metadata changes, or use of the cache polling table
can result in entries being removed from the cache.

Cache persistence time How long table entries should persist in the query cache, or in
other words, the cache expiration time.

Setting a cache persistence time is useful for OLTP data sources
and other data sources that are updated frequently. For
example, you could set this option refresh the underlying
physical tables daily for a particular dashboard.

If a query references multiple physical tables with different
persistence times, the cache entry for the query exists for the
shortest persistence time set for any of the tables referenced in
the query. This makes sure that no subsequent query gets a
cache hit from an expired cache entry.

For more information, see "Troubleshooting Problems with
Event Polling Tables" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise
Edition.

Table 7–2 (Cont.) General Properties for Physical Tables

Property Description

Working with Physical Tables

7-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Creating Alias Tables
To create an alias table, right-click an existing physical table and select New Object,
then select Alias. You can also create aliases on opaque views and stored procedures.

Table 7–3 describes properties that are specific to alias tables. Refer to Table 7–2 for
information about other table properties that are shared between physical tables and
alias tables.

Setting Physical Table Properties for XML Data Sources
Use the XML tab to set or edit properties for an XML data source. The XML tab of the
Physical Table dialog provides the same functionality as the XML tab of the
Connection Pool dialog. However, setting properties in the Physical Table dialog
overrides the corresponding settings in the Connection Pool dialog. See "Setting
Connection Pool Properties in the XML Tab" for more information.

About the Calc Scripts Tab for Essbase Data Sources
The Calc Scripts tab for Essbase data sources is reserved for a future release.

Creating and Managing Columns and Keys for Relational and Cube Tables
Each physical table and physical cube table in the Physical layer of the Administration
Tool has one or more physical columns. You can use the Columns, Keys, and Foreign
Keys tabs in the Physical Table dialog to view, create new, and edit existing columns,
keys, and foreign keys that are associated with the table.

The following list describes the buttons that appear in the tabs:

■ New. Lets you create a new object by opening the dialog that corresponds to the
tab.

■ Edit. When you select an object and then click Edit, the dialog that corresponds to
the tab appears. You can then edit the properties of the object.

■ Delete. Deletes the selected object.

This section contains the following topics:

External name Applies to physical cube tables from multidimensional data
sources. The external name is the physical name that is used
when referencing the cube table in physical SQL queries. This
value must reflect the external name defined in the data source.

Display Column For Essbase data sources only. See "Working with Essbase Data
Sources" for more information.

Hint Available only for some data sources. See "Using Hints" for
more information.

Table 7–3 Properties Specific to Physical Alias Tables

Property Description

Source Table Applies to alias tables. Click Select to choose the original
physical table from which to create an alias table.

Override Source Table
Caching Properties

Option available for alias tables. When selected, the cacheable
properties become available and you can clear or select the
appropriate options.

Table 7–2 (Cont.) General Properties for Physical Tables

Property Description

Working with Physical Tables

Working with Physical Tables, Cubes, and Joins 7-13

■ Creating and Editing a Column in a Physical Table

■ Specifying a Primary Key for a Physical Table

■ Deleting Physical Columns for All Data Sources

Creating and Editing a Column in a Physical Table
If the column is imported, the properties of the column are set automatically. The
following list contains information about nullable and data type values for columns
imported into the Physical layer.

■ Nullable. Indicates whether null values are allowed for the column. If null values
can exist in the underlying table, you need to select this option. This allows null
values to be returned to the user, which is expected with certain functions and
with outer joins. It is generally safe to change a non-nullable value to a nullable
value in a physical column.

■ Type. Indicates the data type of the column. Use caution when changing the data
type. Setting the values to ones that are incorrect in the underlying data source
might cause unexpected results. If there are any data type mismatches, correct
them in the repository or reimport the columns that have mismatched data types.

If you reimport columns, you also need to remap any logical column sources that
reference the remapped columns. The data type of a logical column in the business
model must match the data type of its physical column source. The Oracle BI
Server passes these logical column data types to client applications.

Longvarchar and longvarbinary data types are supported for writing complete
Logical SQL statements into usage tracking tables for debugging purposes. They
are not supported for general-purpose queries, and cannot be displayed in
Presentation Services. Use direct SQL utilities to access columns with these data
types.

Except when stated otherwise, the characteristics and behavior of a physical cube
column are the same as for other physical columns.

To create or edit a physical column:

1. In the Physical layer of the Administration Tool, perform one of the following
steps:

– To create a physical column, right-click a physical table and select New
Object, then select Physical Column.

– To create a physical cube column for a multidimensional data source,
right-click a physical cube table and select New Object, then select Physical
Cube Column.

– To edit an existing physical column, double-click the physical column object in
the Physical layer.

2. In the Physical Column dialog, type a name for the physical column.

For XML data sources, this field stores and displays the unqualified name of a
column (attribute) in an XML document.

Note: Creating, modifying, or deleting a column in an original
physical table also creates, modifies, or deletes the same column on all
its alias tables.

Working with Physical Tables

7-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

3. In the Type field, select a data type for the physical column.

4. If applicable, specify the length of the data type.

For multidimensional data sources, if you select VARCHAR, you need to type a
value in the Length field.

5. Select the Nullable option if the column is allowed to have null values.

6. In the External Name field, type an external name.

– Required if the same name (such as STATE) is used in multiple hierarchies.

– Optional for XML documents. The External Name field stores and displays
the fully qualified name of a column (attribute).

7. (Multidimensional data sources) When the physical cube column is a measure, in
the Aggregation role list, select the appropriate value.

A new physical cube column is created as a measure by default. See "Working with
Multidimensional Sources in the Physical Layer" for information about changing
this behavior.

8. Click OK.

Specifying a Primary Key for a Physical Table
Use the Physical Key dialog to specify the column or columns that define the primary
key of the physical table.

To specify a primary key for a physical table:

1. In the Physical layer of the Administration Tool, right-click a physical table and
select Properties.

2. In the Physical Table dialog, click the Keys tab.

3. In the Keys tab, click New.

4. In the Physical Key dialog, type a name for the key.

5. Select the column that defines the primary key of the physical table.

6. (Optional) Type a description for the key.

7. Click OK.

Deleting Physical Columns for All Data Sources
When you delete a physical column, the following occurs:

■ Multidimensional data sources. If you delete property or key columns from a
level, the association is deleted and the column changes to a measure under the
parent cube table.

■ Alias tables. Deleting a column in an original physical table deletes the same
column on all its alias tables.

Viewing Data in Physical Tables or Columns
You can view the data in a physical table or an individual physical column by
right-clicking the object and choosing View Data. In online editing mode, you must
check in changes before you can use this option.

View Data is not available for physical cube tables or columns. See "Viewing Members
in Physical Cube Tables" for more information.

Working with Multidimensional Sources in the Physical Layer

Working with Physical Tables, Cubes, and Joins 7-15

Because the View Data feature issues a row count, it is not available for data sources
that do not support row counts. See "Displaying and Updating Row Counts for
Physical Tables and Columns" for more information.

Working with Multidimensional Sources in the Physical Layer
This section provides information about physical cube tables, dimensions, and
hierarchies from multidimensional data sources.

■ About Physical Cube Tables

■ About Measures in Multidimensional Data Sources

■ Working with Physical Dimensions and Physical Hierarchies

■ Working with Cube Variables for SAP/BW Data Sources

■ Viewing Members in Physical Cube Tables

About Physical Cube Tables
Each cube from a multidimensional data source is set up as a physical cube table, a
type of physical table. It has all the capabilities of a table, such as physical cube
columns and keys (optional) and foreign keys (optional). It also has cube-specific
metadata such as hierarchies and levels.

When you import the physical schema, the Oracle BI Server imports the metadata for
the cube, including its metrics, hierarchies, and levels. Expanding the hierarchy object
in the Physical layer reveals the levels in the hierarchy. In the Physical Cube Table
dialog, the Hierarchies tab lists the dimensional hierarchies in the cube.

Each multidimensional catalog in the data source can contain multiple physical cubes.
You can import the metadata for one or more of these cubes into your Oracle BI
repository. Although it is possible to create a cube table manually, it is recommended
that you import metadata for cube tables and their components.

If you do create cubes manually, be sure to build each cube one hierarchy at a time
and test each one before building another. For example, create the time hierarchy and
a measure, and then test it. When it is correct, create the geography hierarchy and test
it. This helps ensure that you have set up each cube correctly, and makes it easier to
identify any setup errors.

About Measures in Multidimensional Data Sources
You need to select the aggregation rule for a physical cube column carefully to make
sure your measures are correct. Setting it correctly might improve performance.

Always verify aggregation rules after importing cube metadata. Typically, aggregation
rules are assigned correctly when you import cube metadata. However, if a measure is
a calculated measure, the aggregation rule is reported as None. Therefore, you should
examine the aggregation rule for all measures after importing a cube to verify that the
aggregation rule has been assigned correctly.

Caution: View Data does not work in online mode if you set the user
name and password for connection pools to :USER and :PASSWORD.
In offline mode, the Set values for variables dialog appears so that you
can populate :USER and :PASSWORD as part of the viewing process.

Working with Multidimensional Sources in the Physical Layer

7-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

For all measures assigned an aggregation rule value of None, contact the
multidimensional data source administrator to verify that the value of the aggregation
rule is accurate. If you need to change the aggregation rule, you can change it in the
Physical Cube Column dialog.

Use the following guidelines to assign the correct aggregation rule:

■ If the generated physical queries to the database should send an aggregation
function, such as SUM(revenue), then set that function as the aggregation rule.
With this setting, the Oracle BI Server typically pushes the aggregation to the
database in the query, but might also perform aggregations itself in certain
situations.

■ If the data for this measure should not be aggregated in the query or by the Oracle
BI Server, use the External Aggregation rule. It is important to choose this setting
when the measure uses a more complex calculation inside the data source than the
Oracle BI Server can replicate with a simple aggregation rule (such as calculations
for ratios, consolidations and allocations). This option is also useful when the cube
persists a full set of pre-aggregated results.

About Externally Aggregated Measures
In a multidimensional data source, some cubes contain very complex, multi-level
based measures. If you assign an aggregation rule of External Aggregation, the Oracle
BI Server bypasses its internal aggregation mechanisms and uses the pre-aggregated
measures. When imported, these measures are assigned an aggregate value of None.

The following are some guidelines for working with pre-aggregated measures:

■ External aggregation only applies to multidimensional data sources (such as
Essbase, Hyperion Financial Management, MS Analysis Services, and SAP/BW)
that support these complex calculations.

■ You cannot assign external aggregation to measures from non-multidimensional
data sources. If the required aggregation rule is supported by the Oracle BI Server
and can be mapped to a relational data source, then it is not complex and does not
require external aggregation.

■ There is only one aggregation rule for a logical measure. Therefore, a single logical
column cannot federate a noncomplex aggregation rule for a mapping to a
non-multidimensional source, with a complex aggregation rule for a mapping to a
multidimensional source. Instead, you need to create one logical measure for each
source, and then create a third logical measure that derives from the first two.

■ You can mix noncomplex measures from non-multidimensional data sources with
noncomplex measures from multidimensional data sources if they are aggregated
through the Oracle BI Server.

Working with Physical Dimensions and Physical Hierarchies
Most dimensions and hierarchies are imported into the Physical layer from
multidimensional data sources, rather than created manually. If a particular hierarchy
is not imported, any columns associated with that hierarchy are also not imported. If
users need access to columns that are not imported, first add these columns to the
Physical layer by manually creating them, and then associate them with a level in a
hierarchy.

Each level in a hierarchy has a level key. The first cube column associated with (added
to) the level of a hierarchy is the level key. This must match with the data source

Working with Multidimensional Sources in the Physical Layer

Working with Physical Tables, Cubes, and Joins 7-17

definition of the cube. The icon for the column that you select first changes to the key
icon after it is associated with the level of a hierarchy.

Oracle Business Intelligence supports unbalanced hierarchies for all multidimensional
data sources. In general, you can configure unbalanced hierarchies in the Physical
layer by changing the hierarchy type.

You can view and edit properties for physical dimensions and hierarchies by
double-clicking physical dimension and physical hierarchy objects in the Physical
layer of the Administration Tool. You can also view and edit these objects from the
Dimensions and Hierarchies tabs of the Cube Table dialog.

This section contains the following topics:

■ Working with Physical Dimension Objects

■ Working with Physical Hierarchy Objects

Working with Physical Dimension Objects
In the Physical Dimension dialog, you can view and edit the name and description of
the dimension. You can also add, remove, or edit hierarchies for that dimension, as
well as add, remove, or edit columns that represent dimension properties.

Working with Physical Hierarchy Objects
When you select columns to add to a hierarchy, it is recommended that you select
them in hierarchical order, starting with the highest level. If you select multiple
columns and bring them into the hierarchy at the same time, the order of the selected
group of columns remains the same. After adding columns to the hierarchy, you can
change the order of the columns in the Browse dialog.

In the Physical Hierarchy dialog, you can view and edit the name and description of
the hierarchy, along with the properties described in Table 7–4. For level-based
hierarchies, you can add, remove, edit, or reorder levels. For value-based hierarchies,
click the Column tab to add, remove, or edit columns. To specify a key column,
double-click a column name.

In the Physical Level dialog, you can view and edit the name, external name, and
description of the level. You can also add, remove, or edit columns for that level. To
designate a column as a level key, double-click a column name.

You should always review the hierarchy type after import to ensure that it is set
appropriately. The way this parameter is set upon import depends on the data source.
For example, all Essbase hierarchies are initially set to Unbalanced. Review the
hierarchy type for each hierarchy and change it as appropriate.

Typically, you always need to manually set the hierarchy type for parent-child (value)
hierarchies, except for Hyperion Financial Management hierarchies, which are always
set to Value by default upon import. Review the hierarchy type and change the type to
Value as appropriate. Parent-child (value) hierarchies are those in which a business
transaction, or a cube refresh, can change the number of levels.

For parent-child hierarchies, you must manually set the physical hierarchy type to
Value before dragging metadata to the Business Model and Mapping layer. The
hierarchy type in the Business Model and Mapping layer is set automatically based on
the physical hierarchy setting. For all other types, you can determine the hierarchy
type later, without needing to rebuild the logical model.

You must also ensure that the corresponding logical dimension properties are correct
for queries to work. See Chapter 9, "Working with Logical Dimensions" for more
information.

Working with Multidimensional Sources in the Physical Layer

7-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

For SAP/BW data sources, all hierarchies default to fully balanced hierarchies on
import. The hierarchy type for two-level hierarchies (which typically correspond to
characteristic primary hierarchies) should not be changed. Review all SAP/BW
multi-level (external) hierarchies to determine whether any are parent-child
hierarchies, and set them to Value as needed.

Adding or Removing Cube Columns in a Hierarchy After importing a hierarchy, you may
need to add or remove a column. If you remove a cube column from a hierarchy, it is
deleted from the hierarchy but remains in the cube table and is available for selection
to add to other levels.

To add or remove a cube column in an existing hierarchy:

1. In the Physical layer of the Administration Tool, double-click the physical
hierarchy that you want to change. The Physical Hierarchy dialog appears.

Table 7–4 Options in the Physical Hierarchy Dialog

Property Description

External Name The physical name that is used when referencing the hierarchy
in physical MDX queries. This value must reflect the external
name defined in the data source.

Dimension Name (Dimension Unique Name) Dimension to which the hierarchy
belongs.

Dimension Type Identifies whether this hierarchy belongs to a time dimension,
measure dimension, or other type of dimension.

Hierarchy Type Identifies the type of hierarchy, as follows:

■ Fully balanced: A level-based hierarchy with no
unbalanced or skip characteristics. Corresponds to a
level-based hierarchy in the Business Model and Mapping
layer.

■ Unbalanced: Also called ragged. A hierarchy where the
leaves (members with no children) do not necessarily have
the same depth. Corresponds to a level-based hierarchy
with the Ragged option selected in the Business Model and
Mapping layer.

■ Ragged balanced: Also called skip. A hierarchy where
there are members that do not have a value for a particular
ancestor level. Corresponds to a level-based hierarchy with
the Skipped Levels option selected in the Business Model
and Mapping layer.

■ Network: This hierarchy type is not used.

■ Value: Also called parent-child. A hierarchy of members
that all have the same type. This contrasts with level-based
hierarchies, where members of the same type occur only at
a single level of the hierarchy. Corresponds to a
parent-child hierarchy in the Business Model and Mapping
layer.

Note: For level-based hierarchies with both unbalanced and
skip-level characteristics, choose either Unbalanced or Ragged
balanced as the physical hierarchy type. Then, ensure that both
Ragged and Skipped Levels are selected for the corresponding
logical dimension in the Business Model and Mapping layer.

Default member type ALL This option is not used.

Use unqualified member
name for better
performance

Select this option when member names (including aliases) are
unique in a given hierarchy so that the Oracle BI Server can take
advantage of specific MDX syntax to optimize performance.

Working with Multidimensional Sources in the Physical Layer

Working with Physical Tables, Cubes, and Joins 7-19

2. For level-based hierarchies, double-click the level for which you want to add or
remove columns. Then, in the Physical Level dialog, you can add, remove, or edit
columns. When you are finished, click OK in the Physical Level dialog.

3. For value-based hierarchies, click the Columns tab. You can add, remove, or edit
columns, as well as designate member key and parent key columns.

4. Click OK in the Hierarchy dialog.

Working with Cube Variables for SAP/BW Data Sources
In SAP/BW data sources, cube variables are used as a means of parameterizing
queries. Cube variable objects are imported into the Physical layer when metadata is
imported from Querycubes/Bex Queries in SAP/BW data sources. Typically, you do
not edit these objects directly except to keep them synchronized with the Bex queries
in the data source, and except to specify overrides for key characteristics values.

The Cube Variables tab of the Cube Table dialog lists the cube variables for the given
cube table, along with the cube variable caption. Double-click a cube variable to see
more detailed information, or click the Add button to define a new cube variable.

Table 7–5 describes the properties of cube variables for SAP/BW data sources. See
your SAP/BW documentation for additional information.

Table 7–5 Cube Variable Properties

Property Description

Name Name of the cube variable.

Caption A description (label or caption) associated with the cube
variable, mainly used for display purposes.

Variable Type The type of cube variable. Variable types include:

■ SAP_VAR_TYPE_MEMBER: A placeholder for a selection
for MEMBER_UNIQUE_NAMES.

■ SAP_VAR_TYPE_HIERARCHY: A placeholder for a
HIERARCHY_UNIQUE_NAME.

■ SAP_VAR_TYPE_NUMERIC: A placeholder for a numeric
value in formulas.

Selection Type The selection type of the cube variable, for cube variables of
type SAP_VAR_TYPE_MEMBER.

Selection types include:

■ SAP_VAR_SEL_TYPE_VALUE: The variable is replaced by
a single value. Cube variables of type NUMERIC must
have this selection type.

■ SAP_VAR_SEL_TYPE_INTERVAL: A placeholder for an
interval.

■ SAP_VAR_SEL_TYPE_COMPLEX: A placeholder for a
complex selection.

Working with Multidimensional Sources in the Physical Layer

7-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Viewing Members in Physical Cube Tables
You can view members of hierarchies or levels in the Physical layer of repositories. To
view members, the repository must be open in online mode. The list of members by
level in the hierarchy can help you determine if the connection pool is set up properly.
You might want to reduce the time it takes to return data or the size of the returned
data by specifying a starting point (Starting from option) and the number of rows you
want returned (Show option).

To view members:

1. Open the Administration Tool in online mode.

2. In the Physical layer, right-click a hierarchy or level.

3. Select View Members.

A window opens showing the number of members in the hierarchy and a list of
the levels. You might need to enlarge the window and the columns to view all the
returned data.

4. Click Query to display results.

5. When finished, click Close.

Entry Type Indicates whether replacing variables is optional or mandatory.
Entry types include:

■ SAP_VAR_INPUT_TYPE_OPTIONAL: Specifying a value
is optional for this variable.

■ SAP_VAR_INPUT_TYPE_MANDATORY: You must
specify a value for this variable.

■ SAP_VAR_INPUT_TYPE_MANDATORY_NOT_INITIAL:
You must specify a value for this variable. An initial field is
not a valid entry.

Reference Dimension This column contains a DIMENSION_UNIQUE_NAME for the
parameter type SAP_VAR_TYPE_HIERARCHY.

Reference Hierarchy This column contains a HIERARCHY_UNIQUE_NAME for the
variable type SAP_VAR_TYPE_MEMBER.

Default Low This property contains a default value for the variable or is zero.

Default High This property contains a default value for the variable or is zero.
This property is only important for variables with the selection
type SAP_VAR_SEL_TYPE_INTERVAL and SAP_VAR_SEL_
TYPE_SELECTION.

Override Default Low Provide a default value for the cube variable in this field if the
Default Low is zero.

You must specify a value for this property for mandatory
variables that do not specify a default value.

Override Default High Provide a default value for the cube variable in this field if the
Default High is zero.

You must specify a value for this property for mandatory
variables that do not specify a default value.

Table 7–5 (Cont.) Cube Variable Properties

Property Description

Working with Essbase Data Sources

Working with Physical Tables, Cubes, and Joins 7-21

Working with Essbase Data Sources
This section describes how Essbase data is modeled by default in the Physical layer of
the Oracle BI repository, and describes the tasks you can perform to model the data in
different ways.

This section contains the following topics:

■ About Using Essbase Data Sources with Oracle Business Intelligence

■ Working with Essbase Alias Tables

■ Associating Member Attributes to Dimensions and Levels

■ Modeling Alternate Hierarchies

■ Modeling Measure Hierarchies

■ Improving Performance by Using Unqualified Member Names

About Using Essbase Data Sources with Oracle Business Intelligence
When you import metadata from Essbase data sources, the cube metadata is mapped
to the Physical layer in a way that supports the Oracle Business Intelligence logical
model. Metadata that applies to all members of the dimension, such as aliases, are
modeled as dimension properties by default. Level-based properties, such as outline
sort/memnor information, are mapped as separate physical cube columns in the
dimension.

The following physical column types are used for Essbase metadata:

■ Member Alias: Indicates an Alias column.

■ UDA: Indicates the column is a User Defined Attribute (UDA).

■ Outline Sort: Indicates the column is of memnor type, used for outline sorts in the
logical layer. Imported at the lowest level of each dimension.

■ Attribute: Indicates the column is of attribute type, for attribute dimensions.

■ Other: The type is different than those listed, or unknown.

■ Ancestor Reference: References the ancestor of a dimension.

■ Member Key: Indicates the column is a member key.

■ Leaf: Indicates that the column is the lowest member of the hierarchy.

■ Root: Indicates that the column is the root member of the hierarchy.

■ Parent Reference: References the parent of a dimension.

The column types Outline Sort, Ancestor Reference, Member Key, Leaf, Root, and
Parent Reference are used internally by the system and should not be changed.

Figure 7–2 shows Essbase data that has been imported into the Physical layer.

Working with Essbase Data Sources

7-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 7–2 Essbase Data Modeled in the Physical Layer

There are different options in the Physical layer that let you control how you want to
model certain types of metadata. Choose the option that best meets the needs of your
user base. For example, many types of Essbase metadata are modeled as dimension
properties by default in the Physical layer. This multidimensional structure works best
with the new hierarchical reporting style introduced in the current release.

Alternatively, you can choose to flatten the Essbase metadata in the Physical layer for
ease of use with the attribute-style reporting supported in previous releases of Oracle
Business Intelligence.

The following list summarizes some of these modeling options:

■ Aliases. Aliases are modeled as dimension properties by default, but you can also
choose to flatten them using the Create Columns for Alias Table feature. See
"Working with Essbase Alias Tables" for more information.

■ UDAs. UDAs are modeled as dimension properties by default, but you can also
choose to flatten them using the Create Columns for UDA feature. See "Modeling
User-Defined Attributes" for more information.

■ Alternate Hierarchies. Alternate hierarchies are modeled as separate hierarchies
by default, but you can choose to view them in as a single hierarchy using the
Convert to single hierarchy view feature. See "Modeling Alternate Hierarchies"
for more information.

■ Measure Hierarchies. By default, measures are imported as a single measure
column that represents all the measures, but you can also choose to view each
measure as an individual column using the Convert measure dimension to flat
measures feature. See "Modeling Measure Hierarchies" for more information.

Note the following additional information about using Essbase data sources with
Oracle Business Intelligence:

■ Substitution variables. Essbase substitution variables are automatically retrieved
and populated into corresponding Oracle BI Server session variables. Depending

Working with Essbase Data Sources

Working with Physical Tables, Cubes, and Joins 7-23

on the scope of the Essbase variable, the naming convention for the Oracle BI
Server variable is as follows:

Server instance scope: server_name:var_name

Application scope: server_name:app_name:var_name

Cube scope: server_name:app_name:cube_name:var_name

A single initialization block is also created in the repository for the Essbase
variables. Set the appropriate refresh interval in the initialization block to reflect
anticipated update cycles for Essbase variables.

■ Essbase Generations. Essbase Generations are mapped to physical level objects.

■ Time series functions. The Oracle BI Server time series functions AGO, TODATE,
and PERIODROLLING are pushed down to Essbase to take advantage of the native
capabilities of the Essbase server.

■ Database functions. You can use the database SQL functions EVALUATE and
EVALUATE_AGGREGATE to leverage functions specific to Essbase data sources. See
"Examples Using EVALUATE_AGGREGATE and EVALUATE to Leverage Unique
Essbase Functions" for more information.

Note that EVALUATE_PREDICATE is not supported for use with Essbase data
sources.

■ Gen 1 levels. By default, Gen 1 levels are included when you drag and drop an
Essbase cube or dimension from the Physical layer to the Business Model and
Mapping layer. However, because Gen 1 levels are not usually needed for
analysis, you can choose to exclude Gen 1 levels when you drag and drop Essbase
objects to your business model. To do this, select Skip Gen 1 levels in Essbase
drag and drop actions in the General tab of the Options dialog. See "Setting
Preferences" for more information.

■ Hierarchy types. For Essbase data sources, all hierarchies are imported as
Unbalanced by default. Review the Hierarchy Type property for each physical
hierarchy and change the value if necessary. Supported hierarchy types for
Essbase are Unbalanced, Fully balanced, and Value.

About Incremental Import
You can choose to incrementally import Essbase metadata. In other words, you can
perform an initial import, and then import again. You might want to import
incrementally when information in the data source has changed, or when your first
import only included a subset of the metadata. Note the following about incremental
import:

■ When you re-import metadata that already exists in the Physical layer, a message
appears, warning you that your Physical objects will be overwritten.

■ If you delete data in the source, re-importing the metadata does not automatically
perform the deletion in the Physical layer. Instead, you must manually delete the
corresponding Physical objects.

■ If you rename an object in the source, the renamed object is imported as a new
object. In this case, both the old object and the new (renamed) object are displayed
in the Physical layer.

■ In general, customizations that you have performed on the Physical layer data,
such as determining the alias column to use for display, are retained after an
incremental import. If you want to revert to the default imported view, you must
delete the existing Physical layer objects and then re-import the metadata.

Working with Essbase Data Sources

7-24 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Working with Essbase Alias Tables
Essbase cubes support the concept of aliases, which are alternate names for members
or shared members. For example, the member name might be a product code (100),
with a default alias for the product name (Cola) and an additional alias for the long
name (Cherry Cola). Often, members have separate aliases for each user language to
enable users to view member names in their own language.

In the Essbase cube, aliases are stored in alias tables that map a specific set of alias
names to member names. Typically, a Default alias table exists for each cube.

This section contains the following topics:

■ Determining the Value to Use for Display

■ Explicitly Defining Columns for Each Alias

Determining the Value to Use for Display
When you import metadata from Essbase into the Oracle BI repository, the Essbase
cube table object in the Physical layer has a property that determines which value to
display for members: the member name, the default alias name, or some other alias
name. By default, the columns display the default alias name.

To change the value to display for members:

1. In the Physical layer of the Administration Tool, double-click an Essbase cube
table.

2. In the General tab of the Cube Table dialog, choose the appropriate value for
Display Column. You can select Member Name, or you can select Alias and then
choose an alias table name from the list.

3. Click OK.

Explicitly Defining Columns for Each Alias
Aliases are modeled as dimension properties in the Physical layer after import. If you
want to work with more than one alias, such as when you want to flatten attributes for
reporting purposes or externalize strings for translation, you can explicitly define
columns for each alias. You can define alias columns at the cube, dimension, or
hierarchy level.

To explicitly define columns for each alias:

1. In the Administration Tool, in the Physical layer, right-click the cube table,
physical dimension, or physical hierarchy for which you want to define alias
columns.

2. Select Create Columns for Alias Table. Then, from the sub-list, select the alias
table for which you want to create columns.

Note that the Fetch button is not used.

3. Click Create.

4. Drag the new alias columns to the appropriate location in the Business Model and
Mapping layer.

If you want to externalize strings for translation based on the alias columns, see
"Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information.

Working with Essbase Data Sources

Working with Physical Tables, Cubes, and Joins 7-25

Modeling User-Defined Attributes
Essbase supports the concept of user-defined attributes (UDAs). A UDA is essentially
any arbitrary textual string that can be associated with any member from a dimension.
A member can have multiple strings associated to it.

You can choose whether to import UDAs in the Import Metadata Wizard. If you
choose to import UDAs, then by default, each UDA is modeled as a dimension
property in the Physical layer of the repository.

You can also choose to model each UDA as a separate physical column. To do this,
perform one of the following tasks:

■ To model all UDAs in a cube as separate physical columns, right-click the cube
table and select Create columns for UDA. All UDAs in the cube are modeled as
separate physical columns.

■ To model all UDAs in a dimension as separate physical columns, right-click the
dimension object and select Create columns for UDA, then select All UDAs. All
UDAs in the dimension are modeled as separate physical columns.

■ To model a particular UDA in a dimension as a separate physical column in each
level, right-click the dimension object and select Create columns for UDA, then
select the specific UDA you want to model. The selected UDA is modeled as a
separate physical column for each level.

Associating Member Attributes to Dimensions and Levels
Member attributes are not automatically associated to corresponding dimensions and
levels during the import process. To manually create the association, map the member
attribute to the appropriate logical table. In other words, drag and drop the columns
from the attribute dimension in the Physical layer to the appropriate logical tables in
the Business Model and Mapping layer.

Modeling Alternate Hierarchies
By default, alternate hierarchies are modeled as separate hierarchies in the Physical
layer. You can choose to view them as separate hierarchies (called the multi-hierarchy
view), or as a single hierarchy.

To view alternate hierarchies as a single hierarchy, right-click the dimension object
containing the alternate hierarchies and select Convert to single hierarchy view. To
return to the multi-hierarchy view, right-click the dimension object again and select
Convert to multi-hierarchy view.

For example, Figure 7–3 shows the multi-hierarchy view for an alternate hierarchy.

Working with Essbase Data Sources

7-26 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 7–3 Essbase Alternate Hierarchy Displayed in Multi-Hierarchy View

Figure 7–4 shows the single-hierarchy view for the same alternate hierarchy.

Working with Essbase Data Sources

Working with Physical Tables, Cubes, and Joins 7-27

Figure 7–4 Essbase Alternate Hierarchy Displayed in Single-Hierarchy View

Modeling Measure Hierarchies
By default, measures are imported as measure hierarchies. In other words, the cube
contains a single measure column that represents all the measures.

Alternatively, you can choose to flatten the measure hierarchy to view each measure
as an individual column. To do this, right-click the cube object and select Convert
measure dimension to flat measures.

Improving Performance by Using Unqualified Member Names
When member names (including aliases) are unique in a given hierarchy, the Oracle BI
Server can take advantage of specific MDX syntax to optimize performance. To enable
this capability, select Use unqualified member name for better performance in the
Hierarchy dialog.

The import process cannot identify that member names are unique for a given
hierarchy, so it is the responsibility of the administrator to confirm uniqueness. Note
that query errors may result if a hierarchy is specified as having unique members
when it does not.

Working with Hyperion Financial Management Data Sources

7-28 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Working with Hyperion Financial Management Data Sources
When you import data from Hyperion Financial Management data sources, both
measures and dimensions are imported into the Physical layer. The Hyperion
Financial Management hypercube model is exposed in the Physical layer in the
following ways:

■ There is only one measure in Hyperion Financial Management, called Value. This
measure is modeled as a single fact column in the Physical layer, also called Value.

■ The Value measure has three base properties: CellText, CurrencyType, and
Attribute. These properties are all represented as additional fact columns.

■ The Attribute property has additional sub-properties, such as IsReadOnly. These
properties are also exposed as additional columns.

Figure 7–5 shows how Hyperion Financial Management data is modeled in the
Physical layer.

Note: If you find that the Oracle BI Server is generating incorrect
queries for Essbase, check to see whether there are duplicate member
names in a given hierarchy. If there are, ensure that the option Use
unqualified member name for better performance is not selected for
that hierarchy, or perform the following steps:

1. From the Essbase outline, update each offending member variable by
adding a prefix or suffix to make the member name unique.

2. Update SQL queries as necessary, if references are made to data within
SQL.

3. Reload the data and members in the Essbase outline.

Working with Hyperion Financial Management Data Sources

Working with Physical Tables, Cubes, and Joins 7-29

Figure 7–5 Hyperion Financial Management Metadata in the Physical Layer

All Hyperion Financial Management dimensions are modeled as parent-child
hierarchies in the Physical layer. Shared members, alternate hierarchies, and
unbalanced hierarchies are supported.

Dimension member properties are exposed as columns (such as Name, Description,
ShortName, and so on). An additional column called Sort Order is also displayed for
each dimension. This column contains custom sort information retrieved from the
Hyperion Financial Management data source.

Each Hyperion Financial Management dimension has a corresponding Point of View
(POV) value that provides customized information for different users. This POV value
is exposed as the Default Member in the Hierarchies tab of the Dimension dialog.
Although the Default Member field is populated upon import, note that the default
values may need to be updated according to the needs of the user base.

About Query Support for Hyperion Financial Management Data Sources
Both member queries (dimensional browsing) and data queries (measure analysis) are
supported for Hyperion Financial Management data sources.

Note: Do not select the Default member type ALL option for
Hyperion Financial Management hierarchies.

Working with Oracle OLAP Data Sources

7-30 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Most Logical SQL functions are performed in the Oracle BI Server. However, you
should use EVALUATE_PREDICATE to access the following functions specific to
Hyperion Financial Management:

■ PeriodOffset (used to access prior or future periods through an offset)

■ NA Suppression functions specific to Hyperion Financial Management
(SuppressDerived, SuppressInvalidIntersection, SuppressMissing,
SuppressNoAccess, SuppressZero, SuppressError)

■ Base function (returns the leaf members below a given ancestor member)

■ CommonChildren

■ User-defined functions

See "EVALUATE_PREDICATE" for detailed information about syntax and usage.

Note that there is no native support for time series functions. Time series functions are
only supported through data modeling.

Working with Oracle OLAP Data Sources
Oracle Database has an OLAP Option that provides an embedded, full-featured online
analytical processing server. The OLAP Option is used in the following roles:

■ A summary management solution to SQL-based business intelligence tools and
applications.

■ A calculation engine that provides SQL-based business intelligence tools with rich
analytic content.

■ A full-featured multidimensional server, servicing dimensionally oriented
business intelligence tools and applications.

Oracle Business Intelligence supports Oracle OLAP as a data source. When you import
metadata from an Oracle OLAP source, the Oracle OLAP objects appear in the
Physical layer of the Administration Tool. This section provides information about the
Physical layer Oracle OLAP objects.

See Oracle OLAP User's Guide for more information about Oracle OLAP.

This section contains the following topics:

■ About Importing Metadata from Oracle OLAP Data Sources

■ Working with Oracle OLAP Analytic Workspace (AW) Objects

■ Working with Oracle OLAP Dimensions, Hierarchies, and Levels

■ Working with Oracle OLAP Cubes and Columns

About Importing Metadata from Oracle OLAP Data Sources
This section provides important information about using the Administration Tool to
import metadata from Oracle OLAP, as follows:

■ For Oracle OLAP cubes with multi-language metadata, only the default language
is imported.

■ Only dimensions that contain at least one hierarchy are imported.

■ Multiple hierarchies in a single query are not supported. If a query includes
columns from multiple hierarchies in a given dimension, the Oracle BI Server
returns an error.

Working with Oracle OLAP Data Sources

Working with Physical Tables, Cubes, and Joins 7-31

■ The default aggregation rule in the Business Model and Mapping layer for Oracle
OLAP measures is External Aggregation. The External Aggregation rule means
that the Oracle BI Server is not aware of the underlying aggregation rule for the
specific measure and will not compute it internally. Instead, the Oracle BI Server
will always ship the query to the underlying multidimensional data source for
aggregation.

In some cases, you may want to set the aggregation rule for a measure to
something other than External Aggregation. For example, you may have federated
multiple data sources, or you may want to perform higher-level aggregation along
dimension attributes that are not represented by a level in Oracle OLAP. In both of
these cases, you can change the default aggregation rule to match the rule in the
underlying data source or sources. Note that the aggregation is still performed in
the Oracle OLAP data source where possible.

See "System Requirements and Certification" for the latest information about the
versions of Oracle OLAP supported by Oracle Business Intelligence.

Working with Oracle OLAP Analytic Workspace (AW) Objects
You can view Oracle OLAP Analytic Workspace (AW) objects in the Physical layer of
the Administration Tool. These objects correspond to the analytic workspace object in
the Oracle OLAP metadata, and are similar to physical catalog and physical schema
objects. Analytic workspaces are containers for storing related cubes. You create
dimensions, cubes, and other dimensional objects within the context of an analytic
workspace.

Oracle OLAP Analytic Workspace objects have properties for Name, Description, and
Dynamic Name. You can use the Dynamic Name tab to provide a variable that
specifies the name of the Analytic Workspace object. Note that the Dynamic Name tab
is not active unless at least one session variable is defined. See "Using a Variable to
Specify the Name of a Catalog or Schema" for more information.

Working with Oracle OLAP Dimensions, Hierarchies, and Levels
Oracle OLAP dimensions are lists of unique values that identify and categorize data.
They form the edges of a cube, and thus of the measures within the cube. In a report,
the dimension values (or their descriptive attributes) provide labels for the rows and
columns. There are three types of Oracle OLAP dimensions:

■ Level-based dimensions. Members of level-based dimensions naturally group
into levels based on their type, such as 'month' and 'year.' Most dimensions are
level-based.

■ Value-based dimensions. These dimensions have parent-child relationships
among their members, but the members are all the same type (like 'Employee' or
'Account'), so these relationships do not form meaningful levels.

■ List or flat dimensions. These dimensions have no levels or hierarchies.

Note: Oracle Business Intelligence does not support dimensions that
have no hierarchies (flat dimensions). Importing flat dimensions from
an Oracle OLAP data source will result in an error. If you have flat
dimensions, replace them with single-level hierarchies in the data
source before importing them into Oracle Business Intelligence.

Working with Oracle OLAP Data Sources

7-32 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

On the General tab of the Oracle OLAP Dimension dialog, you can view and edit the
name and description of the dimension, along with the following dimension
properties:

■ Time. Indicates that this dimension is a time dimension.

■ Ragged. Indicates that this dimension contains a hierarchy that has at least one
member with a different base, creating a "ragged" base level for the hierarchy.

■ Skipped levels. Indicates that this dimension contains a hierarchy that has at least
one member whose parents are more than one level above it, creating a hole in the
hierarchy. An example of a skip-level hierarchy is City-State-Country, where at
least one city has a country as its parent (for example, Washington D.C. in the
United States).

■ External Name. The physical name that is used when referencing the dimension in
physical SQL queries. This value must reflect the external name defined in the
data source.

■ Cache properties. Select Cacheable to include this dimension in the Oracle BI
Server query cache. To specify that cache entries do not expire, select Cache never
expires. Alternatively, you can select Cache persistence time and enter a value to
specify how long entries should persist in the query cache. Note that if a query
references multiple physical objects with different persistence times, the cache
entry for the query exists for the shortest persistence time set for any of the tables
referenced in the query. This makes sure that no subsequent query gets a cache hit
from an expired cache entry.

The Columns and Hierarchies tabs of the Oracle OLAP Dimension dialog list the
dimension members and hierarchies that belong to the dimension. In the Columns tab,
you can add or remove columns, as well as edit particular columns. In the Hierarchies
tab, you can add, remove, or edit hierarchies. You can also use the type (key) button to
select the default hierarchy for the dimension.

Dimensions can contain one or more hierarchies. Most hierarchies are level-based and
consist of one or more levels of aggregation. Members roll up into the next higher level
in a many-to-one relationship, and these members roll up into the next higher level,
and so forth to the top level. Ragged and skip-level hierarchies are also supported.

Dimensions can also contain value-based hierarchies, which are parent-child
hierarchies that do not support levels. For example, an employee dimension might
have a parent-child relationship that identifies each employee's supervisor. However,
levels that group together first-, second-, and third-level supervisors and so forth may
not be meaningful for analysis.

Multiple hierarchies for a dimension typically share the base-level dimension
members and then branch into separate hierarchies. They can share the top level if
they use all the same base members and use the same aggregation operators.
Otherwise, they need different top levels to store different aggregate values.

In the Oracle OLAP Hierarchy dialog, you can view and edit the name, external name,
and description of the hierarchy. For level-based hierarchies, you can add, remove,
edit, or reorder levels. For value-based hierarchies, you can add, remove, or edit
columns. To specify a key column, double-click a column name.

In the Oracle OLAP Level dialog, you can view and edit the name, external name, and
description of the level. You can also add, remove, or edit columns for that level. To
designate a column as a level key, double-click a column name.

Working with Physical Foreign Keys and Joins

Working with Physical Tables, Cubes, and Joins 7-33

Working with Oracle OLAP Cubes and Columns
Oracle OLAP cubes are informational objects that identify measures with the exact
same dimensions and thus are candidates for being processed together at all stages:
data loading, aggregation, storage, and querying. Cubes define the shape of your
business measures. They are defined by a set of ordered dimensions. The dimensions
form the edges of a cube, and the measures are the cells in the body of the cube.

Oracle OLAP cubes have properties similar to other cubes. On the General tab of the
Oracle OLAP Cube dialog, you can view and edit the name and description of the
cube, along with the following cube properties:

■ External Name. The physical name that is used when referencing the cube in
physical SQL queries. This value must reflect the external name defined in the
data source.

■ Density and Materialization. For Oracle OLAP 10g cubes that are sparse and fully
materialized, you should specify values for these properties to optimize queries. If
you set the Density option to Sparse and the Materialization option to Fully
Materialized, the Oracle BI Server generates a loop clause to skip empty cells.
Note that if you leave the Density option blank, the Oracle BI Server assumes the
data is sparse.

If you set these options, make sure that you set them to reflect the actual
properties of the data source. Do not specify that the data is sparse and fully
materialized unless this is true for your data source.

You do not need to set these values for Oracle OLAP 11g cubes. For these objects,
optimization happens automatically.

■ Cache properties. Select Cacheable to include this cube in the Oracle BI Server
query cache. To specify that cache entries do not expire, select Cache never
expires. Alternatively, you can select Cache persistence time and enter a value to
specify how long entries should persist in the query cache. Note that if a query
references multiple physical objects with different persistence times, the cache
entry for the query exists for the shortest persistence time set for any of the tables
referenced in the query. This makes sure that no subsequent query gets a cache hit
from an expired cache entry.

The Columns tab of the Oracle OLAP Cube dialog lists the columns that belong to the
cube. You can add or remove columns, as well as edit particular columns.

Oracle OLAP columns can be measures, calculated measures, attributes, or level keys.
Oracle OLAP columns have the same properties as other physical columns. See
"Creating and Editing a Column in a Physical Table" for more information about
physical column properties like Type, Length, and Nullable.

Working with Physical Foreign Keys and Joins
You can create physical foreign keys and complex joins using either the Physical
Diagram, or the Joins Manager. Note that you do not create joins for multidimensional
data sources.

This section contains the following topics:

■ About Physical Joins

■ Defining Physical Joins with the Physical Diagram

■ Defining Physical Joins with the Joins Manager

Working with Physical Foreign Keys and Joins

7-34 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

About Physical Joins
All valid physical joins need to be configured in the Physical layer of the
Administration Tool.

When you import keys in a physical schema, the primary key-foreign key joins are
automatically defined. Any other joins within each data source or between data
sources have to be explicitly defined to express relationships between tables in the
Physical layer.

Imported key and foreign key joins do not have to be used in metadata. Joins that are
defined to enforce referential integrity constraints can result in incorrect joins being
specified in queries. For example, joins between a multipurpose lookup table and
several other tables can result in unnecessary or invalid circular joins in the SQL
queries issued by the Oracle BI Server.

This section contains the following topics:

■ About Primary Key and Foreign Key Relationships

■ About Complex Joins

■ About Multi-Database Joins

■ About Fragmented Data

About Primary Key and Foreign Key Relationships
A primary key and foreign key relationship defines a one-to-many relationship
between two tables. A foreign key is a column or a set of columns in one table that
references the primary key columns in another table. The primary key is defined as a
column or set of columns where each value is unique and identifies a single row of the
table.

Note that there are two cases where multiple foreign key columns in a table point to
the same table:

■ When the primary key of the foreign table is "concatenated," meaning that it
consists of a set of columns. This is a single join between two tables that happens
to use multiple columns.

■ When you have created an alias to the foreign table, because the foreign table
needs to serve in different roles. In this case, each foreign key joins to a primary
key in one role-playing alias or the other. See"About Physical Alias Tables" for
more information.

You can specify primary key and foreign keys in the Physical Diagram, or by using the
Keys and Foreign Keys tabs of the Physical Table dialog. Also refer to "Defining
Physical Joins with the Physical Diagram" and "Creating and Managing Columns and
Keys for Relational and Cube Tables" for more information.

About Complex Joins
In the Physical layer of the repository, complex joins are joins over nonforeign key and
primary key columns. In other words, physical complex joins are joins that use an
expression rather than key column relationships. When you create a complex join in
the Physical layer, you specify the expression for the join.

For most data sources, foreign key joins are preferred for performance reasons.
Complex joins are usually not as performant because they do not use key column
relationships to form the join. The exception is ADF business component data sources,
which use physical complex joins exclusively to denote ViewLink instances that
connect pairs of View Objects in the ADF model.

Working with Physical Foreign Keys and Joins

Working with Physical Tables, Cubes, and Joins 7-35

About Multi-Database Joins
A multi-database join is defined as a table under one metadata database object that
joins to a table under a different metadata database object. You need to specify
multi-database joins to combine the data from different databases. Use the Physical
Diagram to specify multi-database joins. See "Defining Physical Joins with the Physical
Diagram" for more information.

Multi-database joins can be created between tables in most types of databases and are
performed within the Oracle BI Server. Note that you cannot create multi-database
joins to tables in Oracle OLAP data sources.

While the Oracle BI Server has several strategies for optimizing the performance of
multi-database joins, these joins are significantly slower than joins between tables
within the same database. For this reason, you should avoid them whenever possible.

About Fragmented Data
Fragmented data is data from a single domain that is split between multiple tables. For
example, a data source might store sales data for customers with last names beginning
with the letter A through M in one table and last names from N through Z in another
table. With fragmented tables, you need to define all of the join conditions between
each fragment and all the tables to which it relates. Figure 7–6 shows the physical joins
with a fragmented sales table and a fragmented customer table where they are
fragmented the same way (A through M and N through Z).

Figure 7–6 Fragmented Tables Example

In some cases, you might have a fragmented fact table and a fragmented dimension
table, but the fragments might be across different values. In this case, in addition to the
joins created in Figure 7–6, you need to define a one-to-many join from Customer A to
F and from Customer G to Z to Sales A to M, as shown in Figure 7–7.

Working with Physical Foreign Keys and Joins

7-36 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 7–7 Joins for Fragmented Tables Example

Defining Physical Joins with the Physical Diagram
You can define foreign keys and complex joins between tables, whether or not the
tables are in the same data source. When you use the Physical Diagram to create joins,
the Administration Tool determines what type of join to create based on the selected
object types and the join expression.

If you do not want the Administration Tool to automatically determine what type of
join to create, use the Joins manager to explicitly create the join. See "Defining Physical
Joins with the Joins Manager" for more information.

To define a physical foreign key join or a complex join with the Physical Diagram:

1. In the Physical layer of the Administration Tool, select one or more tables and
choose one of the Physical Diagram commands from the right-click menu.

2. Click the New Join button on the Administration Tool toolbar:

3. In the Physical Diagram, left-click the first table in the join (the table representing
many in the one-to-many join) to select it.

4. Move the cursor to the table to which you want to join (the table representing one
in the one-to-many join), and then left-click the second table to select it.

The Physical Foreign Key dialog appears. Although physical foreign key joins are
the default join type, the object type might change to a complex join after you
define the join and click OK, depending on the join information.

5. Select the joining columns from the left and the right tables.

The SQL join conditions appear in the expression pane.

The driving table option is shown in this dialog, but it is not available for selection
because the Oracle BI Server implements driving tables only in the Business Model
and Mapping layer. See "Specifying a Driving Table" for more information about
driving tables.

6. For complex joins, you can optionally set the cardinality for each side of the join
(for example, N, 0,1, 1, or Unknown).

Note: Avoid adding join conditions where they are not necessary (for
example, between Sales A to M and Customer N to Z in Figure 7–6).
Extra join conditions can cause performance degradations.

Working with Physical Foreign Keys and Joins

Working with Physical Tables, Cubes, and Joins 7-37

To set the cardinality to unknown, you only need to select Unknown for one side
of the join. For example, choosing unknown-to-1 is equivalent to
unknown-to-unknown and appears as such the next time you open the dialog for
this join.

7. If appropriate, specify a database hint. See "Using Hints" for more information.

8. If you are creating a complex join for ADF Business Component ViewObject or
ViewLink instances, specify the ViewLink instance name or the ViewLink
definition name in the ViewLink Name field.

9. To open Expression Builder, click the button to the right of the Expression pane.
The expression displays in the Expression pane.

The default join expression for ViewObject or ViewLink instances is arbitrary and
has no meaning.

10. Click OK to apply the selections.

In the Physical Diagram, the join is represented by a line between the two selected
tables, with an arrow at the "one" end of the join. Figure 7–8 shows a join in the
Physical Diagram.

Figure 7–8 Join in the Physical Diagram

Defining Physical Joins with the Joins Manager
You can use the Joins Manager to view join relationships and to create physical foreign
key joins and complex joins.

To define a physical foreign key join or complex join with the Joins Manager:

1. In the Administration Tool toolbar, select Manage, then select Joins.

2. In the Joins Manager dialog, perform one of the following tasks:

– Select Action > New > Complex Join.

The Complex Join dialog appears.

– Select Action > New > Physical Foreign Key. Then, in the Browse dialog,
double-click a table.

3. In the Complex Join or Physical Foreign Key dialog, type a name for the join.

4. Click the Browse button for the Table field on the left side of the dialog, and then
locate the table that the foreign key references.

5. Select the columns in the left table that the key references.

6. Select the columns in the right table that make up the foreign key columns.

7. For complex joins, you can optionally set the cardinality for each side of the join
(for example, N, 0,1, 1, or Unknown).

To set the cardinality to unknown, you only need to select Unknown for one side
of the join. For example, choosing unknown-to-1 is equivalent to
unknown-to-unknown and appears as such the next time you open the dialog for
this join.

8. If appropriate, specify a database hint. See "Using Hints" for more information.

Deploying Opaque Views

7-38 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

9. If you are creating a complex join for ADF Business Component ViewObject or
ViewLink instances, specify the ViewLink instance name or the ViewLink
definition name in the ViewLink Name field.

10. To open Expression Builder, click the button to the right of the Expression pane.
The expression displays in the Expression pane.

The default join expression for ViewObject or ViewLink instances is arbitrary and
has no meaning.

11. Click OK to save your work.

Deploying Opaque Views
An opaque view is a Physical layer table that consists of a SELECT statement. When
you need a new table, you should create a physical table or a materialized view. An
opaque view should be used only if there is no other solution. See Appendix F,
"Exchanging Metadata with Databases to Enhance Query Performance" for more
information about materialized views.

This section contains the following topics:

■ About Deploying Opaque Views

■ Deploying Opaque View Objects

■ Undeploying a Deployed View

■ When to Delete Opaque Views or Deployed Views

■ When to Redeploy Opaque Views

About Deploying Opaque Views
In the repository, opaque views appear as view tables in the data source, but the view
does not actually exist until you deploy it. You deploy an opaque view in the data
source using the Deploy Views utility. After deploying an opaque view, it is called a
deployed view. Opaque views can be used without deploying them, but the Oracle BI
Server has to generate a more complex query when an opaque view is encountered.

To verify that opaque views are supported by a data source, check whether the
CREATE_VIEW_SUPPORTED SQL feature is selected in the Database dialog, in the
Features tab. See "Specifying SQL Features Supported by a Data Source" for
instructions.

Deploying Opaque View Objects
In offline mode, the Deploy Views utility is available when importing from data
sources with ODBC and DB2 CLI data sources. Oracle Native (client) drivers are also
supported in the offline mode for deploying views. In online mode, view deployment
is available for supported data sources using Import through server (the settings on
the client are ignored).

Note: Data sources such as XLS and nonrelational data sources do
not support opaque views and cannot run the view deployment
utility.

Deploying Opaque Views

Working with Physical Tables, Cubes, and Joins 7-39

Using the Create View SELECT Statement
The SQL statement for deploying opaque views in the Physical layer of the repository
is available for supported data sources. To determine which of your data sources
support opaque views, contact your system administrator or consult your data source
documentation.

Only repository variables can be used in the definition. An error is generated if a
session variable is used in the view definition.

Syntax
CREATE VIEW view_name AS select_statement,

Where:

■ select_statement is the user-entered SQL in the opaque view object. If SQL is
invalid, the create view statement fails during view deployment.

■ view_name is one of the two following formats: schema.viewname, or
viewname. The connection pool settings determine if the schema name is added.

For opaque view objects, the right-click menu contains the Deploy View(s) option.
When you select Deploy View(s), the Create View SQL statement executes and
attempts to create the deployed view objects. The following list describes the ways you
can initiate view deployment and the results of each method:

■ Right-click a single opaque view object. When you select Deploy View(s), the
Create View SQL statement executes and attempts to create a deployed view for
the object.

■ Right-click several objects. If at least one of the selected objects is an opaque view
object, the right-click menu contains the Deploy View(s) option. When you select
Deploy View(s), the Create View SQL statement executes and attempts to create
the deployed views for any qualifying objects.

■ Right-click a physical schema or physical catalog. If any opaque view object exists
in the schema or catalog, the right-click menu contains the Deploy View(s) option.
When you select Deploy View(s), the Create View SQL statements for all
qualifying objects execute and attempt to create deployed views for the qualifying
objects contained in the selected schema or catalog.

During deployment, names are assigned to the views. If you change the preassigned
name, the new name must be alphanumeric and no more than 18 characters. If these
guidelines are not followed, the object name is automatically transformed to a valid
name using the following Name Transform algorithm:

1. All non-alphanumeric characters are removed.

2. If there are 16 or more characters after Step 1, the first 16 characters are kept.

3. Two digits starting from 00 to 99 are appended to the name to make the name
unique in the corresponding context.

After the deployment process completes, the following occurs:

■ Views that have been successfully and unsuccessfully deployed appear in a list.

■ For unsuccessful deployments, a brief reason appears in the list.

■ If deployment is successful, the object type of the opaque view changes from
Select to None and the deployed view is treated as a regular table.

Deploying Opaque Views

7-40 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

If you change the type back to Select, the associated opaque views are dropped
from the data source, or an error message appears. See "When to Delete Opaque
Views or Deployed Views" for information about deleting deployed views.

■ In the Administration Tool, the view icon changes to the deployed view icon for
successfully deployed views.

To deploy an opaque view:

1. In the Physical layer of the Administration Tool, right-click the opaque view that
you want to deploy.

2. In the right-click menu, select Deploy View(s).

3. In the View Deployment - Deploy View(s) dialog, perform the following steps:

a. In the New Table Name column, you can optionally change the new deployed
view names.

If the change does not conform to the naming rules, a new name is assigned
and the dialog appears again so that you can accept or change it. This action
repeats until all names pass validation.

b. If you do not want to deploy one or more of the views, clear the appropriate
rows.

4. If there are multiple connection pools defined for the physical database, in the
Select Connection Pool dialog, choose a connection pool and click Select.

The SQL statement (CREATE VIEW) executes, and the View Deployment Messages
dialog appears.

5. In the View Deployment Messages dialog, you can search for views using Find
and Find Again, or copy the contents.

6. When you are finished, click OK.

Undeploying a Deployed View
Running the Undeploy Views utility against a deployed view deletes the views and
converts the table back to an opaque view with its original SELECT statement.

To undeploy a deployed view:

1. In the Physical layer of the Administration Tool, right-click a physical database,
catalog, schema, or table.

If a deployed view exists that is related to the selected object, the right-click menu
contains the Undeploy View(s) option.

2. Select Undeploy View(s).

A list of views to be undeployed appears.

3. If you do not want to undeploy one or more of the views, clear the appropriate
rows.

4. In the View Deployment - Undeploy View(s) dialog, click OK to remove the
views.

A message appears if the undeployment was successful.

5. In the View Deployment Messages dialog, you can search for undeployed views
using Find and Find Again, or you can copy the contents.

6. When you are finished, click OK.

Using Hints

Working with Physical Tables, Cubes, and Joins 7-41

When to Delete Opaque Views or Deployed Views
Use the following guidelines to remove opaque or deployed view objects in the
repository:

■ Removing an undeployed opaque view in the repository. If the opaque view has
not been deployed, you can delete it from the repository.

■ Removing a deployed view. When you deploy an opaque view, a view table is
created physically in both the data source and the repository. Therefore, you must
undeploy the view before deleting it. You use the Undeploy Views utility in the
Administration Tool. This removes the opaque view from the back-end data
source, changes the Table Type from None to Select, and restores the SELECT
statement of the object in the Physical layer of repository.

When to Redeploy Opaque Views
After removing an opaque view, you can choose to redeploy it. The Administration
Tool does not distinguish between a first-time deployment and a redeployment. Make
sure that you remove a deployed view before deploying the opaque view again.
Failure to do this causes the deploy operation to fail, and an error message is returned
from the data source.

Using Hints
Hints are instructions placed within a SQL statement that tell the data source query
optimizer the most efficient way to execute the statement. Hints override the
optimizer's execution plan, so you can use hints to improve performance by forcing
the optimizer to use a more efficient plan. Hints are only supported for Oracle
Database data sources.

Using the Administration Tool, you can add hints to a repository, in both online and
offline modes, to optimize the performance of queries. When you add a hint to the
repository, you associate it with Physical layer objects. When the object associated
with the hint is queried, the Oracle BI Server inserts the hint into the SQL statement.

Table 7–6 shows the physical objects with which you can associate hints. It also shows
the Administration Tool dialog that corresponds to the physical object. Each of these
dialogs contains a Hint field, into which you can type a hint to add it to the repository.

Hints are only supported when the Table Type is set to Physical Table. For other
table types, the hint text is ignored. For physical tables with a table type of Select, you
can provide the hint text as part of the SQL statement entered in the Default
Initialization String field.

Caution: Do not manually delete the view table in the data source. If
deleted, the Oracle BI Server cannot query the view object. When you
undeploy the view, it is removed automatically from the data source.

Table 7–6 Physical Layer Objects That Accept Hints

Database Object Dialog

Complex join Complex Join

Physical foreign key Physical Foreign Key

Physical table Physical Table - General tab

Using Hints

7-42 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

How to Use Oracle Hints
This section provides a few examples of how to use Oracle hints with the Oracle BI
Server. For more information about Oracle hints, see Oracle Database SQL Language
Reference for the version of the Oracle Database that you use.

About the Index Hint
The Index hint instructs the optimizer to scan a specified index rather than a table.
Example 7–1 explains how you would use the Index hint.

Example 7–1 Index Hint

You find queries against the ORDER_ITEMS table to be slow. You review the execution
plan of the query optimizer and find the FAST_INDEX index is not being used. You
create an Index hint to force the optimizer to scan the FAST_INDEX index rather than
the ORDER_ITEMS table. The syntax for the Index hint is index(table_name,
index_name). To add this hint to the repository, go to the Physical Table dialog in
the Administration Tool and type the following text in the Hint field:

index(ORDER_ITEMS, FAST_INDEX)

About the Leading Hint
The Leading hint forces the optimizer to build the join order of a query with a
specified table. The syntax for the Leading hint is leading(table_name). If you
were creating a foreign key join between the Products table and the Sales Fact table
and wanted to force the optimizer to begin the join with the Products table, you would
go to the Physical Foreign Key dialog in the Administration Tool and type the
following text in the Hint field:

leading(Products)

About Performance Considerations for Hints
Hints that are well researched and planned can result in significantly better query
performance. However, hints can also negatively affect performance if they result in a
suboptimal execution plan. Follow these guidelines to create hints to optimize query
performance:

■ You should only add hints to a repository after you have tried to improve
performance in the following ways:

– Added physical indexes (or other physical changes) to the Oracle Database.

– Made modeling changes within the server.

■ Avoid creating hints for physical table and join objects that are queried often. If
you drop or rename a physical object that is associated with a hint, you must also
alter the hints accordingly.

Creating Hints
The following procedure explains how to add hints to the repository using the
Administration Tool.

To create a hint:

1. In the Administration Tool, go to one of the following dialogs:

– Physical Table—General tab

Displaying and Updating Row Counts for Physical Tables and Columns

Working with Physical Tables, Cubes, and Joins 7-43

– Physical Foreign Key

– Complex Join

2. Type the text of the hint in the Hint field and click OK.

For a description of available Oracle hints and hint syntax, see Oracle Database SQL
Language Reference for the version of the Oracle Database that you use.

Displaying and Updating Row Counts for Physical Tables and Columns
When you request row counts, the Administration Tool retrieves the number of rows
from the data source for all or selected tables and columns (distinct values are
retrieved for columns) and stores those values in the repository. The time this process
takes depends upon the number of row counts retrieved.

When updating all row counts, the Updating Row Counts window appears while row
counts are retrieved and stored. If you click Cancel, the retrieve process stops after the
in-process table (and its columns) have been retrieved. Row counts include all tables
and columns for which values were retrieved before the cancel operation.

Updating all row counts for a large repository might take a long time to complete.
Therefore, you sometimes might want to update only selected table and column
counts.

Row counts are not available for the following:

■ Stored Procedure object types

■ XML data sources and XML Server data sources

■ Multidimensional data sources

■ Data sources that do not support the COUNTDISTINCT function, such as Microsoft
Access and Microsoft Excel, or data sources for which COUNT_STAR_SUPPORTED
has been disabled in the database features table

■ In online mode, Update Row Count does not work with connection pools in which
the session variables :USER and :PASSWORD are set as the user name and
password.

In offline mode, the Set values for variables dialog appears so that you can
populate the session variables :USER and :PASSWORD.

■ In online mode, after importing or manually creating a physical table or column,
the Oracle BI Server does not recognize the new objects until you check them in.
Therefore, Update Row Count is not available in the menu until you check in
these objects.

To display row counts in the Physical layer:

1. In the Administration Tool, select Tools, then select Options.

2. In the General tab of the Options dialog, select Show row count in physical view,
and then click OK.

To update selected row counts in the Physical layer:

Note: Although hints are identified using SQL comment markers (/*
or --), do not type SQL comment markers when you type the text of
the hint. The Oracle BI Server inserts the comment markers when the
hint is executed.

Displaying and Updating Row Counts for Physical Tables and Columns

7-44 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

1. In the Physical layer of the Administration Tool, right-click a single table or
column. You can select multiple objects and then right-click.

2. In the shortcut menu, select Update Row Count.

To update all row counts in the Physical layer:

1. In the Administration Tool, select Tools, then select Update All Row Counts. If
the repository is open in online mode, the Check Out Objects window might open.

2. Click Yes to check out the objects.

Any row counts that have changed since the last update are refreshed.

8

Working with Logical Tables, Joins, and Columns 8-1

8Working with Logical Tables, Joins, and
Columns

The Business Model and Mapping layer of the Oracle BI repository defines the
business, or logical, model of the data and specifies the mapping between the business
model and the Physical layer schemas. Business models are always dimensional,
unlike objects in the Physical layer, which reflect the organization of the data sources.
The Business Model and Mapping layer can contain one or more business models.
Each business model contains logical tables, columns, and joins.

Even though similar terminology is used for logical table and physical table objects,
such as the concept of keys, logical tables and joins in the Business Model and
Mapping layer have their own set of rules that differ from those of relational models.
For example, logical fact tables are not required to have keys, and logical joins can
represent many possible physical joins.

Logical tables, joins, mappings, and other objects in the Business Model and Mapping
layer are typically created automatically when you drag and drop objects from the
Physical layer to a particular business model. After these objects have been created,
you can perform tasks like creating additional logical joins, performing calculations
and transformations on columns, and adding and removing keys from dimension and
fact tables.

This chapter contains the following sections:

■ Creating the Business Model and Mapping Layer

■ Working with the Business Model Diagram

■ Creating and Managing Logical Tables

■ Defining Logical Joins

■ Creating and Managing Logical Columns

■ Enabling Write Back On Columns

■ Setting Up Display Folders in the Business Model and Mapping Layer

■ Modeling Bridge Tables

Creating the Business Model and Mapping Layer
After creating all of the elements of the Physical layer, you can drag tables or columns
from the Physical layer to a business model in the Business Model and Mapping layer
to create logical objects in the metadata.

This section contains the following topics:

Creating the Business Model and Mapping Layer

8-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Creating Business Models

■ Automatically Creating Business Model Objects

■ Duplicating a Business Model and Subject Area

Creating Business Models
The Business Model and Mapping layer of the Administration Tool can contain one or
more business models. A business model contains the business model definitions and
the mappings from logical to physical tables for the business model.

When you work in a repository in offline mode, remember to save your repository
from time to time. You can save a repository in offline mode even though the business
models may be inconsistent.

To create a business model:

1. In the Administration Tool, right-click in the Business Model and Mapping layer
below any existing objects.

2. Select the option New Business Model from the shortcut menu.

3. Specify a name for the business model.

4. New business models are disabled by default. If you want to make the
corresponding Presentation layer available for queries, deselect Disabled.

5. Optionally, type a description of the business model.

6. Click OK.

After you create a business model, you can create business model objects by dragging
and dropping objects from the Physical layer. See the next section for more
information.

Automatically Creating Business Model Objects
To automatically map objects in the Business Model and Mapping layer to sources in
the Physical layer, you can drag and drop Physical layer objects to a particular
business model in the logical layer. When you drag a physical table to the Business
Model and Mapping layer, a corresponding logical table is created. For each physical
column in the table, a corresponding logical column is created. If you drag multiple
tables at once, a logical join is created for each physical join, but only the first time the
tables are dragged onto a new business model.

Automatically Creating Business Model Objects for Multidimensional Data Sources
Setting up objects in the Business Model and Mapping layer for multidimensional data
sources is similar to setting up logical layer objects for a relational data source. To
create the business model layer, you can drag and drop the Physical layer cube to the
logical layer. Oracle Business Intelligence automatically creates a fully configured and
consistent business model that retains metrics, attributes and dimensions.

Note: The business model should be consistent before you deselect
this option.

Working with the Business Model Diagram

Working with Logical Tables, Joins, and Columns 8-3

Duplicating a Business Model and Subject Area
This feature lets you select a business model and its corresponding subject area (or a
subject area and its corresponding business model), make a copy, and assign new
names to the duplicates. Note that aliases are not copied.

To copy a business model and subject area:

1. Perform one of the following steps:

■ In the Business Model and Mapping layer of the Administration Tool,
right-click a business model and select Duplicate with Subject Area.

■ In the Presentation layer of the Administration Tool, right-click a subject area
and select Duplicate with Business Model.

2. In the Copy Business Model and Subject Area dialog, select the business model
and corresponding subject area you want to copy.

3. Specify new names for the business model and subject area in the appropriate
name fields, and then click OK.

The copied business model appears in the Business Model and Mapping layer,
and the copied subject area appears in the Presentation layer.

Working with the Business Model Diagram
In addition to working with Business Model and Mapping layer objects in the middle
pane of the Administration Tool, you can open the Business Model Diagram to see a
graphical model of logical tables and joins.

To access the Business Model Diagram, right-click an object in the Business Model and
Mapping layer (such as a dimension or fact table) and select Business Model
Diagram. Then, select one of the following options:

■ Whole Diagram. Displays all logical tables and joins in the business model.

■ Selected Tables Only. Displays only the selected logical tables. Logical joins
appear only if they exist between the objects that you selected. This option is only
available when you select one or more logical tables.

■ Selected Tables and Direct Joins. Displays the selected logical tables and any
logical tables that join to the tables that you selected. This option is only available
when you select one or more logical tables.

■ Selected Fact Tables and Dimensions. Displays the selected logical tables and
their associated logical dimensions. This option is only available when your
selection includes at least one fact table.

Note that the Business Model Diagram displays only logical tables and joins. It does
not display other Business Model and Mapping layer objects, such as business models,
dimensions, or hierarchies. Joins are represented by a line with an arrow at the "one"
end of the join.

Note: For Essbase data sources, it is recommended that you create a
separate business model for each Essbase cube. To do this, drag each
cube individually to the Business Model and Mapping layer.

Creating and Managing Logical Tables

8-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 8–1 Business Model Diagram

To add additional tables to the Business Model Diagram, leave the Business Model
Diagram window open and then right-click the table or tables you want to add. Then,
select Business Model Diagram and choose one of the display options.

Additional options are available in the right-click menu for the graphical tables and
joins displayed in the Business Model Diagram. For example, you can delete objects or
view their properties, or you can add additional related objects using the right-click
options Add Direct Joins, Add Tables Joined to Whole Selection, and Add All Joins.
You can also select Find in Tree View to locate a particular object in the Business
Model and Mapping layer view in the middle pane, or check out objects in online
mode.

You can also right-click an object in the Business Model Diagram view and select Hide
to hide particular objects in the diagram. Note that this effect is temporary and does
not persist.

See also the following sections:

■ "Using the Physical and Business Model Diagrams" for information about
zooming, panning, and controlling the layout of the tables

■ "Defining Logical Joins with the Business Model Diagram" for information about
defining logical joins

Creating and Managing Logical Tables
Logical tables exist in the Business Model and Mapping layer. The logical schema
defined in each business model must contain at least two logical tables, and you must
define relationships between them.

Creating and Managing Logical Tables

Working with Logical Tables, Joins, and Columns 8-5

Each logical table has one or more logical columns and one or more logical table
sources associated with it. You can change the logical table name, reorder the logical
table sources, and configure the logical keys, both primary and foreign.

This section contains the following topics:

■ Creating Logical Tables

■ Specifying a Primary Key in a Logical Table

■ Reviewing Foreign Keys for a Logical Table

Creating Logical Tables
Typically, you create logical tables by dragging and dropping a physical table from the
Physical layer to a business model in the Business Model and Mapping layer. If a table
does not exist in your physical schema, you need to create the logical table manually.

Drag and drop operations are usually the fastest method for creating objects in the
Business Model and Mapping layer. If you drag and drop physical tables from the
Physical layer to the Business Model and Mapping layer, the columns belonging to the
table are also copied. After you drag and drop objects into the Business Model and
Mapping layer, you can modify them in any way necessary without affecting the
objects in the Physical layer.

When you drag physical tables (with key and foreign key relationships defined) to a
business model, logical keys and joins are created that mirror the keys and joins in the
Physical layer. This occurs only if the tables that you drag include the table with the
foreign keys. Additionally, if you create new tables or subsequently drag additional
tables from the Physical layer to the Business Model and Mapping layer, the logical
mappings between the new or newly dragged tables and the previously dragged
tables must be created manually.

See "Defining Logical Joins with the Joins Manager" and "Defining Logical Joins with
the Business Model Diagram" for more information about joins.

To create a logical table by dragging and dropping:

1. In the Administration Tool, select one or more table objects in the Physical layer.

You must include the table with the foreign keys if you want to preserve the keys
and joins from the Physical layer.

2. Drag and drop the table objects to a business model in the Business Model and
Mapping layer.

When you drop them, the table objects, including the physical source mappings,
are created automatically in the Business Model and Mapping layer.

To create a logical table manually:

1. In the Business Model and Mapping layer of the Administration Tool, right-click
the business model in which you want to create the table and select New Object >
Logical Table.

The Logical Table dialog appears.

2. In the General tab, type a name for the logical table.

3. If this is a lookup table, select the option Lookup table. A lookup table stores
multilingual data corresponding to rows in the base tables. See "Localizing Oracle
Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition for more information about
localization and lookup tables.

Defining Logical Joins

8-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

4. Optionally, type a description of the table.

5. Click OK.

After creating a logical table manually, you must create all keys and joins manually.

Creating and Managing Logical Table Sources
You can add a new logical table source, edit or delete an existing table source, create or
change mappings to the table source, and define when to use logical tables sources
and how content is aggregated. See Chapter 10, "Managing Logical Table Sources
(Mappings)" for instructions about how to perform these tasks.

Specifying a Primary Key in a Logical Table
After creating tables in the Business Model and Mapping layer, you specify a primary
key for each dimension table. Logical dimension tables must have a logical primary
key. Logical keys can be composed of one or more logical columns.

To specify a primary key in a logical table:

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a table.

2. In the Logical Table dialog, select the Keys tab and then click New.

3. In the Logical Key dialog, type a name for the key and select the column that
defines the key of the logical table.

4. Click OK.

Reviewing Foreign Keys for a Logical Table
It is recommended that you do not use foreign key joins in logical tables. If you must
create these joins, you must first enable the option Allow logical foreign key join
creation in the Options dialog. See "Creating Logical Foreign Key Joins with the Joins
Manager" for more information.

The Foreign Keys tab of the Logical Table dialog exists so that you can view logical
foreign keys you might have had in a previous release of Oracle Business Intelligence.

Defining Logical Joins
Relationships between logical tables are expressed by logical joins. Logical joins are
conceptual, rather than physical, joins. In other words, they do not join to particular
keys or columns. A single logical join can correspond to many possible physical joins.

A key property of a logical join is cardinality. Cardinality expresses how rows in one
table are related to rows in the table to which it is joined. A one-to-many cardinality
means that for every row in the first logical dimension table, there are 0, 1, or many
rows in the second logical table. The Administration Tool considers a table to be a
logical fact table if it is at the Many end of all logical joins that connect it to other
logical tables.

Specifying the logical table joins is required so that the Oracle BI Server can have the
necessary metadata to translate a logical request against the business model to SQL

Note: It is recommended that you do not specify logical keys for
logical fact tables.

Defining Logical Joins

Working with Logical Tables, Joins, and Columns 8-7

queries against the physical data sources. The logical join information provides the
Oracle BI Server with the many-to-one relationships between the logical tables. This
logical join information is used when the Oracle BI Server generates queries against
the underlying databases.

You do not need to create logical joins in the Business Model and Mapping layer if
both of the following statements are true:

■ You create the logical tables by simultaneously dragging and dropping all
required physical tables to the Business Model and Mapping layer.

■ The logical joins are the same as the joins in the Physical layer.

However, you will probably have to create some logical joins in the Business Model
and Mapping layer, because you will rarely drag and drop all physical tables
simultaneously except in very simple models.

You can create logical joins using either the Joins Manager or the Business Model
Diagram. When you create a complex join in the Physical layer, you can specify
expressions and the specific columns on which to create the join. When you create a
logical join in the Business Model and Mapping layer, you cannot specify expressions
or columns on which to create the join. The existence of a join in the Physical layer
does not require a matching join in the Business Model and Mapping layer.

This section contains the following topics:

■ Defining Logical Joins with the Business Model Diagram

■ Defining Logical Joins with the Joins Manager

■ Specifying a Driving Table

■ Identifying Physical Tables That Map to Logical Objects

Defining Logical Joins with the Business Model Diagram
The Business Model Diagram shows logical tables and any defined joins between
them. You can use the Business Model Diagram to define logical joins between tables.

To define a logical join with the Business Model Diagram:

1. In the Administration Tool, right-click a business model and select Business
Model Diagram, then select Whole Diagram.

2. Click the New Join button on the Administration Tool toolbar:

3. In the Business Model Diagram, left-click the first table in the join (the table
representing many in the one-to-many join) to select it.

Note: It is recommended that you do not have foreign keys for
logical tables. However, for backward compatibility, you can create
logical foreign key joins using the Joins Manager if you select Allow
logical foreign key join creation in the Options dialog.

A logical key for a fact table must be made up of the key columns that
join to the attribute tables. Logical foreign key joins may be needed if
the Oracle BI Server is to be used as an ODBC data source for certain
third-party query and reporting tools.

Defining Logical Joins

8-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

4. Move the cursor to the table to which you want to join (the table representing one
in the one-to-many join), and then left-click the second table to select it.

The Logical Join dialog appears.

5. (Optional) To specify a driving table for the key, select a table from the Driving
table list, and an applicable cardinality.

This option is useful for optimizing the manner in which the Oracle BI Server
processes multi-database inner joins when one table is very small and the other
table is very large. Do not select a driving table unless multi-database joins are
going to occur. See "Specifying a Driving Table" for more information about
driving tables.

6. Select the join type from the Type list, or keep the default value.

7. Set the Cardinality for each side of the join, or keep the default values.

8. Click OK to save your work.

In the Business Model Diagram, the join is represented by a line between the two
selected tables, with an arrow at the "one" end of the join. Figure 8–2 shows a join
in the Business Model Diagram.

Figure 8–2 Join in the Business Model Diagram

Defining Logical Joins with the Joins Manager
You can use the Joins Manager to view logical join relationships and to create logical
joins. You can also use the Joins Manager to create logical foreign key joins if you select
Allow logical foreign key join creation in the Options dialog, although this is not
recommended.

This section contains the following topics:

■ Creating Logical Joins with the Joins Manager

■ Creating Logical Foreign Key Joins with the Joins Manager

Creating Logical Joins with the Joins Manager
Logical joins are recommended over logical foreign key joins in the Business Model
and Mapping layer.

To create a logical join with the Joins Manager:

1. In the Administration Tool, select Manage, then select Joins.

The Joins Manager dialog appears.

2. Select Action > New > Logical Join.

Caution: Use extreme caution in deciding whether to specify a
driving table. Driving tables are used for query optimization only
under rare circumstances and when the driving table is extremely
small (fewer than 1000 rows). Choosing a driving table incorrectly can
lead to severe performance degradation.

Defining Logical Joins

Working with Logical Tables, Joins, and Columns 8-9

The Logical Join dialog appears.

3. Type a name for the logical join.

4. In the Table lists on the left and right side of the dialog, select the tables that the
logical join references.

5. (Optional) To specify a driving table for the key, select a table from the Driving
list, and an applicable cardinality.

This option is useful for optimizing the manner in which the Oracle BI Server
processes multi-database inner joins when one table is very small and the other
table is very large. Do not select a driving table unless multi-database joins are
going to occur. See "Specifying a Driving Table" for more information about
driving tables.

6. Select the join type from the Type list, or keep the default value.

7. Set the Cardinality for each side of the join, or keep the default values.

8. Click OK.

Creating Logical Foreign Key Joins with the Joins Manager
Logical foreign key joins might be needed if the Oracle BI Server is to be used as an
ODBC data source for certain third-party query and reporting tools. Typically, you
should not create logical foreign keys. This capability is in the Administration Tool to
provide compatibility with previous releases.

To create a logical foreign key join with the Joins Manager:

1. In the Administration Tool, select Tools, then select Options.

2. In the General tab of the Options dialog, select Allow logical foreign key join
creation.

3. Click OK.

4. Select Manage, then select Joins to display the Joins Manager.

5. Select Action > New > Logical Foreign Key.

6. In the Browse dialog, double-click a table to display the Logical Foreign Key
dialog.

7. Type a name for the foreign key.

8. In the Table list on the left side of the dialog, select the table that the foreign key
references.

9. Select the columns in the left table that the foreign key references.

10. Select the columns in the right table that make up the foreign key columns.

11. (Optional) To specify a driving table for the key, select a table from the Driving
list, and an applicable cardinality.

Caution: Use extreme caution in deciding whether to specify a
driving table. Driving tables are used for query optimization only
under rare circumstances and when the driving table is extremely
small, that is, less than 1000 rows. Choosing a driving table incorrectly
can lead to severe performance degradation.

Defining Logical Joins

8-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

This option is useful for optimizing the manner in which the Oracle BI Server
processes multi-database inner joins when one table is very small and the other
table is very large. Do not select a driving table unless multi-database joins are
going to occur. See "Specifying a Driving Table" for more information about
driving tables.

12. Select the join type from the Type list, or keep the default value.

13. Set the Cardinality for each side of the join, or keep the default values.

14. Enter an expression for the join, or click the Expression Builder button to define
the expression in Expression Builder.

15. Click OK to save your work.

Specifying a Driving Table
You can specify a driving table for logical joins from the Logical Joins window.
Driving tables are useful for optimizing the manner in which the Oracle BI Server
processes cross-database joins when one table is very small and the other table is very
large. Specifying driving tables leads to query optimization only when the number of
rows being selected from the driving table is much smaller than the number of rows in
the table to which it is being joined.

When you specify a driving table, the Oracle BI Server uses it if the query plan
determines that its use will optimize query processing. The small table (the driving
table) is scanned, and parameterized queries are issued to the large table to select
matching rows. The other tables, including other driving tables, are then joined
together.

In general, driving tables can be used with inner joins, and for outer joins when the
driving table is the left table for a left outer join, or the right table for a right outer join.
Driving tables are not used for full outer joins. See "Defining Logical Joins" for
instructions on specifying a driving table.

There are two entries in the database features table that control and tune driving table
performance.

■ MAX_PARAMETERS_PER_DRIVE_JOIN

Caution: Use extreme caution in deciding whether to specify a
driving table. Driving tables are used for query optimization only
under rare circumstances and when the driving table is extremely
small, that is, less than 1000 rows. Choosing a driving table incorrectly
can lead to severe performance degradation.

Caution: To avoid problems, only specify driving tables when the
driving table is extremely small - less than 1000 rows.

Caution: If large numbers of rows are being selected from the
driving table, specifying a driving table could lead to significant
performance degradation or, if the MAX_QUERIES_PER_DRIVE_JOIN
limit is exceeded, the query terminates.

Creating and Managing Logical Columns

Working with Logical Tables, Joins, and Columns 8-11

This is a performance tuning parameter. In general, the larger its value, the fewer
parameterized queries need to be generated. Values that are too large can result in
parameterized queries that fail due to back-end database limitations. Setting the
value to 0 (zero) turns off drive table joins.

■ MAX_QUERIES_PER_DRIVE_JOIN

This is used to prevent runaway drive table joins. If the number of parameterized
queries exceeds its value, the query is terminated and an error message is returned
to the user.

Identifying Physical Tables That Map to Logical Objects
The Physical Diagram shows the physical tables that map to the selected logical object
and the physical joins between each table.

One of the joins options, Object(s) and Direct Joins within Business Model, is unique
to the logical layer. It creates a physical diagram of the tables that meet both of the
following conditions:

■ Tables in the selected objects and tables that join directly

■ Tables that are mapped (exist in logical table sources in the business model) in the
business model

To open the Physical Diagram for a logical object:

1. In the Business Model and Mapping layer of the Administration Tool, right-click a
business model, logical table, or logical table source.

2. Select Physical Diagram and then one of the joins options.

3. Click and drag any object to more clearly view the relationship lines, such as
one-to-many.

Creating and Managing Logical Columns
Many logical columns are automatically created by dragging tables from the Physical
layer to the Business Model and Mapping layer. Other logical columns, especially ones
that involve calculations based on other logical columns, can be created later.

Logical columns are displayed in a tree structure expanded out from the logical table
to which they belong. If the column is a primary key column or participates in a
primary key, the column is displayed with a key icon. If the column has an
aggregation rule, it is displayed with a ruler icon. You can also reorder logical columns
in the Business Model and Mapping layer.

This section contains the following topics:

■ Creating Logical Columns

■ Basing the Sort for a Logical Column on a Different Column

■ Enabling Double Column Support by Assigning a Descriptor ID Column

■ Creating Derived Columns

■ Setting Default Levels of Aggregation for Measure Columns

■ Associating an Attribute with a Logical Level in Dimension Tables

■ Moving or Copying Logical Columns

Creating and Managing Logical Columns

8-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Creating Logical Columns
The following procedure explains how to create logical columns in the Business Model
and Mapping layer.

To create a logical column:

1. In the Business Model and Mapping layer, right-click a logical table.

2. From the shortcut menu, select New Object, then select Logical Column.

3. In the General tab, type a name for the logical column.

The name of the business model and the associated logical table appear in the
Belongs to Table field.

4. Select Writeable to enable write back for this column. See "Enabling Write Back On
Columns" for more information.

5. Optionally, you can assign a different column on which to base the sort order for a
column. See "Basing the Sort for a Logical Column on a Different Column" for
details.

6. Optionally, you can assign a descriptor ID column for this column. See "Enabling
Double Column Support by Assigning a Descriptor ID Column" for details.

7. Optionally, on the Column Source tab, you can specify that this logical column is
derived from other logical columns. See "Creating Derived Columns" for details.

8. Optionally, on the Aggregation tab, you can set column aggregation. See "Setting
Default Levels of Aggregation for Measure Columns" for details.

9. Optionally, on the Levels tab, you can associate attributes with a logical level.
Measures can be associated with levels from multiple dimensions and always
aggregate to the levels specified. See "Associating an Attribute with a Logical
Level in Dimension Tables" for details.

10. Click OK.

Basing the Sort for a Logical Column on a Different Column
For a logical column, you can specify a different column on which to base the sort.
This changes the sort order of a column when you do not want to order the values
lexicographically. Lexicographical sort arranges the results in alphabetic order such as
in a dictionary. In this type of sort, numbers are ordered by their alphabetic spelling
and not divided into a separate group.

For example, if you sorted on month (using a column such as MONTH_NAME), the
results would be returned as February, January, March, and so on, in lexicographical
sort order. However, you might want months to be sorted in chronological order.
Therefore, your table should have a month key (such as MONTH_KEY) with values of 1
(January), 2 (February), 3 (March), and so on. To achieve the desired sort, you set the
Sort order column field for the MONTH_NAME column to be MONTH_KEY. Then, a
request to order by MONTH_NAME would return January, February, March, and so on.

To assign a different column on which to base the sort order for a column:

1. In the Logical Column dialog, in the General tab, click Set next to the Sort order
column field.

2. In the Browse dialog, select a column.

3. To view the column details, click View to open the Logical Column dialog for that
column, and then click Cancel.

Creating and Managing Logical Columns

Working with Logical Tables, Joins, and Columns 8-13

You can make some changes in this dialog. If you make changes, click OK to
accept the changes instead of Cancel.

4. In the Browse dialog, click OK.

Enabling Double Column Support by Assigning a Descriptor ID Column
When multilingual columns are based on a lookup function, it is common to specify
the non-translated lookup key column as the descriptor ID column of the translated
column. Assigning a descriptor ID column enables Double Column Support, a feature
which helps in defining language-independent filters. For example, in Answers, users
see the display column, but the query filters on the hidden descriptor ID column.

For more information, see "Supporting Multilingual Data" in Oracle Fusion Middleware
System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

Note that double columns are also used for other purposes, like modeling spatial
columns.

To assign a Descriptor ID column to a display column:

1. In the Logical Column dialog, in the General tab, click Set next to the Descriptor
ID column field.

2. In the Browse dialog, select a key column.

3. To view the column details, click View to open the Logical Column dialog for that
column, and then click Cancel.

You can make some changes in this dialog. If you make changes, click OK to
accept the changes instead of Cancel.

4. In the Browse dialog, click OK.

Creating Derived Columns
Some columns are derived from other logical columns as a way to apply
post-aggregation calculations to measures. To do this, you specify the derived column
expression in the Column Source tab of the Logical Column dialog.

You can also create a set of derived columns using the Calculation Wizard. See "Using
the Calculation Wizard" for more information.

Note that if the parameter PREVENT_DIVIDE_BY_ZERO is set to YES in
NQSConfig.INI, the Oracle BI Server prevents errors in divide-by-zero situations, even
for Answers column calculations. The Oracle BI Server creates a divide-by-zero
prevention expression using nullif() or a similar function when it writes the
physical SQL. Because of this, you do not have to use CASE statements to avoid
divide-by-zero errors, as long as PREVENT_DIVIDE_BY_ZERO is set to YES (the
default value).

See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for more information about NQSConfig.INI settings.

You can also apply calculations pre-aggregation. See "Defining Physical to Logical
Table Source Mappings and Creating Calculated Items" for more information.

To specify a derived column:

1. In the Logical Column dialog, select the Column Source tab.

2. Select the option Derived from existing columns using an expression.

3. Click the Expression Builder button to open Expression Builder.

Creating and Managing Logical Columns

8-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

4. In the Expression Builder - Derived logical column dialog, specify the expression
from which the logical column should be derived.

5. Click OK.

Note that you can display data from multilingual database schemas by using
Expression Builder to create a lookup function. For more information, see "Supporting
Multilingual Data" in Oracle Fusion Middleware System Administrator's Guide for Oracle
Business Intelligence Enterprise Edition.

Configuring Logical Columns for Multicurrency Support
You can configure logical columns so that Oracle Business Intelligence users can select
the currency in which they prefer to view currency columns in analyses and
dashboards. You can set up this feature so that all users see the same static list of
currency options, or you can provide a dynamic list of currency options that changes
based on a Logical SQL statement you specify.

To configure logical columns for multicurrency support:

1. Create a session variable named PREFERRED_CURRENCY, along with an
initialization block to use in the variable. Make sure to select Enable any user to
set the value when you create the session variable. Note that when you use
session variables in an expression for Oracle BI Presentation Services, you must
preface their names with NQ_SESSION.

See "Creating Session Variables" and "Creating Initialization Blocks" for detailed
information about setting up session variables and initialization blocks.

2. Edit any logical columns that display currency values to use the appropriate
conversion factor using the PREFERRED_CURRENCY session variable. To do this,
double-click the appropriate logical column in the Business Model and Mapping
layer, select the Column Source tab, and create a derived expression that uses the
PREFERRED_CURRENCY variable.

For example, the following logical column expression uses the value of the NQ_
SESSION.PREFERRED_CURRENCY variable to switch between different currency
columns. Note that the currency columns are expected to have the appropriate
converted values.

INDEXCOL(CASE VALUEOF(NQ_SESSION.PREFERRED_CURRENCY) WHEN 'gc1' THEN 0
WHEN 'gc2' THEN 1 WHEN 'orgc' THEN 2 WHEN 'lc1' THEN 3 ELSE 4 END,
"Paint"."Sales Facts"."USDCurrency",
"Paint"."Sales Facts"."DEMCurrency" ,
"Paint"."Sales Facts"."EuroCurrency" ,
"Paint"."Sales Facts"."JapCurrency" ,
"Paint"."Sales Facts"."USDCurrency")

3. If you want to provide a dynamic list of currency options, create a table in your
data source that provides the entries you want to display for the user-preferred
currency. This table must include the following columns:

Note: To optimize performance, do not define aggregations in
Expression Builder. Instead, use the Aggregation tab of the Logical
Column dialog. See "Setting Default Levels of Aggregation for
Measure Columns" for more information.

Creating and Managing Logical Columns

Working with Logical Tables, Joins, and Columns 8-15

■ The first column contains the values used to set the session variable
PREFERRED_CURRENCY. Each value in this column is a string that uniquely
identifies the currency (for example, gc2).

■ The second column contains currency tags from the file currencies.xml. The
displayMessage values for each tag are used to populate the Currency box and
currency prompts (for example, int:euro-1). The currencies.xml file is located
in ORACLE_HOME\bifoundation\web\display.

■ You can optionally provide a third column that contains the values used to set
the presentation variable currency.userPreference. Each value in this
column is a string that identifies the currency (for example, Global Currency
2). If you omit this column, then the values for the displayMessage attributes
for the corresponding currency tags in the currencies.xml file are used.

Table 8–1 shows a sample table with user-preferred currency entries.

Additional configuration is required in Oracle BI Presentation Services to enable this
feature. For full information about the Oracle BI Presentation Services configuration,
see "Defining User-Preferred Currency Options" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

Setting Default Levels of Aggregation for Measure Columns
You need to specify aggregation rules for mapped logical columns that are measures.
Aggregation should only be performed on measure columns, with the possible
exception of the aggregation COUNT and COUNTDISTINCT. Measure columns should
exist only in logical fact tables.

You can optionally select different aggregation rules for different dimensions that are
associated with this logical column. For example, if someone queries the aggregate
column along with one dimension, you may want to use one type of aggregation rule,
whereas with another dimension, you may want to use a different aggregation rule.

When the default aggregation rule is Count Distinct, you can optionally specify an
override aggregation expression for specific logical table sources. For example, you
may want to specify override aggregation expressions when you are querying
different aggregate table sources that already contain some level of aggregation. If you
do not specify any override, then the default rule prevails.

You can choose the aggregation rule Evaluate_Aggr to enable queries to call custom
functions in the data source. For information about this function and other aggregation
rules, see Appendix C. See also "Defining Aggregation Rules for Multidimensional
Data Sources" for additional information about setting aggregation for
multidimensional sources.

By default, data is considered sparse. However, on rare occasions you might have a
logical table source with dense data. A logical table source is considered to have dense

Table 8–1 Sample Table for Dynamically Displaying the Preferred Currency

UserPreference CurrencyTag UserPreferenceName

char char char

orgc1 loc:en-BZ Org currency

gc2 int:euro-1 Global currency 2

lc1 int:DEM Ledger currency

gc1 int:USD Global Currency 1

Creating and Managing Logical Columns

8-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

data if it has a row for every combination of its associated dimension levels. When
setting up aggregate rules for a measure column, you can specify that data is dense
only if all the logical table sources to which it is mapped are dense.

To specify a default aggregation rule for a measure column:

1. In the Business Model and Mapping layer, double-click a logical column.

2. In the Logical Column dialog, click the Aggregation tab.

3. In the Aggregation tab, choose one of the following options:

■ For measures in which the additivity is the same in all dimensions (in other
words, for fully-additive or non-additive measures), select one of the
aggregate functions from the Default Aggregation Rule list.

The function you select is always applied when a user or an application
requests the column in a query, unless an override aggregation expression has
been specified.

When you select Count Distinct as the default aggregation rule, you can
specify an override aggregation expression for specific logical table sources.
Choose this option when you have more than one logical table source mapped
to a logical column and you want to apply a different aggregation rule to each
source.

Click the Add button to select logical table sources for which you want to
specify individual aggregation rules. In the Browse dialog, select the logical
table source you want to add, and click OK. Then, in the Formula list for that
logical table source, select the aggregation rule you want to use.

■ Select Based on dimensions if your measure has different additivity for
different dimensions (in other words, for semi-additive measures). For
example, select this option for inventory units that sum in all dimensions
except time. See "Setting Up Dimension-Specific Aggregate Rules for Logical
Columns" for more information about this feature.

Click the Add button to select additional dimensions for which you want to
specify aggregation rules. In the Browse dialog, select the dimension you want
to add, and then click OK. Then, in the Formula list for that dimension, select
the aggregation rule you want to use, or click the Expression Builder button
to build the aggregation rule using Expression Builder.

The Data is dense option appears when you select Based on dimensions.
Select this option only if all the logical table sources to which this column is
mapped are dense.

4. Click OK.

Setting Up Dimension-Specific Aggregate Rules for Logical Columns
The majority of measures have the same aggregation rule for each dimension.
However, some measures can have different aggregation rules for different
dimensions. For example, bank balances might be averaged over time but summed

Caution: Selecting Data is dense indicates that all sources to which
this column is mapped have a row for every combination of
dimension levels that they represent. Selecting this option when any
table source that is used by this column does not contain dense data
will return incorrect results.

Creating and Managing Logical Columns

Working with Logical Tables, Joins, and Columns 8-17

over the individual accounts. The Oracle BI Server lets you configure
dimension-specific aggregation rules. You can specify one aggregation rule for a given
dimension and specify other rules to apply to other dimensions.

You need to configure dimensions in the Business Model and Mapping layer to set up
dimension-specific aggregation. For more information about setting up aggregate
navigation, see Chapter 10.

To specify dimension-specific aggregation rules for a single logical column:

1. In the Business Model and Mapping layer, double-click a logical column.

2. In the Logical Column dialog, click the Aggregation tab.

3. In the Aggregation tab, select Based on dimensions.

4. In the Browse dialog, select a dimension over which you want to aggregate, and
then click OK.

5. In the Aggregation tab, from the Formula list, select a rule.

After selecting rules for specified dimensions, set the aggregation rule for any
remaining dimensions by using the dimension labeled Other.

6. If you need to create more complex formulas, click the Expression Builder button
to the right of the Formula column to open Expression Builder.

7. If you have multiple dimensions, you can click Up or Down to change the order in
which the dimension-specific rules are performed.

When calculating the measure, aggregation rules are applied in the order (top to
bottom) established in the dialog.

8. Click OK.

To specify dimension-specific aggregation rules for multiple logical fact columns:

1. In the Business Model and Mapping layer, select multiple logical fact columns.

2. Right-click and select Set Aggregation.

You must select more than one column to see the Set Aggregation menu item.
Also note that Set Aggregation does not appear if one or more of the columns you
select is a derived column.

3. In the Aggregation dialog, select or clear All columns the same.

This option is selected by default. When selected, you can set aggregation rules
that apply to all selected columns. If you clear this option, you can set aggregation
rules separately for each selected column.

4. In the Aggregation tab, select Based on dimensions.

5. In the Browse dialog, select a dimension over which you want to perform
aggregation, and then click OK.

After setting up the rule for a dimension, specify aggregation rules for any other
dimensions in the entry labeled Other.

6. Click the Expression Builder button to the right of the Formula column.

7. In the Expression Builder - Aggregate dialog, from the Formula list, select the
aggregation to perform over the dimension.

8. To change the order in which the dimension-specific rules are performed, click Up
or Down, and then click OK.

Creating and Managing Logical Columns

8-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

When calculating the measure, aggregation rules are applied in the order (top to
bottom) established in the dialog.

Defining Aggregation Rules for Multidimensional Data Sources
This section describes best practices for defining aggregation rules for logical measures
sourced from Essbase, Oracle OLAP, and other multidimensional data sources, like
Microsoft Analysis Services and SAP/BW.

By default, when you import Essbase and some other multidimensional cubes into the
Physical layer, Oracle Business Intelligence cannot read the aggregation rules set
within the data source. Because of this, the measures are imported automatically with
the default aggregation rule of External Aggregation. Note that this rule is only
available for multidimensional data sources.

External Aggregation means that the Oracle BI Server is not aware of the underlying
aggregation rule for the specific measure and will not compute it internally. Instead,
the Oracle BI Server will always ship the query to the underlying multidimensional
data source for aggregation.

Because the underlying data sources are extremely efficient, pushing the aggregation
rules down to the data source ensures that the Oracle BI Server returns the results
without adding any additional overhead in processing. However, it is recommended
that you update the aggregation rule for each measure in Oracle Business Intelligence
with the corresponding aggregation rule defined in the data source. Doing so ensures
that the Oracle BI Server can do additional computations when needed. There is no
query performance impact, since the Oracle BI Server still pushes down optimized
queries wherever possible.

You must ensure that the aggregation rule defined in Oracle Business Intelligence
matches the rule in the underlying data source. Also, you must set the appropriate
aggregation rule in both the Physical layer and Business Model and Mapping layer, as
shown in Figure 8–3.

Note: If the Oracle BI Server needs to do additional aggregation for a
particular query, and the aggregation rule is set to the default of
External Aggregation, the server returns the following error:

An external aggregate is found in an outer query block.

This error occurs because the Oracle BI Server cannot read the
aggregation rule in the underlying data source. To ensure that correct
results are returned for these queries, you should change the
aggregation rules set in the Oracle BI repository to match the
aggregation rules set in the underlying data source.

Creating and Managing Logical Columns

Working with Logical Tables, Joins, and Columns 8-19

Figure 8–3 Setting Aggregation Rules in the Physical and Business Model and Mapping
Layers for Multidimensional Sources

For custom aggregations or aggregations which do not have a corresponding function
within the Oracle BI Server, it is recommended to leave the aggregation as External
Aggregation for both the physical measure column and its corresponding logical
measure column.

Associating an Attribute with a Logical Level in Dimension Tables
Attributes can be associated with a logical level by selecting the dimensional level on
the Levels tab. Measures can be associated with levels from multiple dimensions and
always aggregate to the levels specified.

Note: For Oracle OLAP data sources, you do not explicitly set
Physical layer aggregation rules for Oracle OLAP columns. Because of
this, you only need to set the aggregation rule for Oracle OLAP
columns in the Business Model and Mapping layer.

In addition, if a query requests an aggregate that does not exist in the
Oracle OLAP data source, and the aggregation rule is set to External
Aggregation, then the Oracle BI Server returns an error. To avoid this
error, make sure to explicitly set the aggregation rule for the Oracle
OLAP column in the Business Model and Mapping layer.

If you do not explicitly set the aggregation rule for Oracle OLAP
columns to something other than External Aggregation, requests from
Oracle BI Presentation Services custom groups will fail, because
custom groups always request aggregates that do not exist in the data
source.

Creating and Managing Logical Columns

8-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Dimensions appear in the Dimensions list. If this attribute is associated with a logical
level, the level appears in the Levels list.

Another way to associate a measure with a level in a dimension is to expand the
dimension tree in the Business Model and Mapping layer, and then use drag-and-drop
to drop the column on the target level. For more information about level-based
measures, see Example 9–1.

To associate a measure with a logical level in a dimension:

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a logical column.

2. In the Logical Column dialog, click the Levels tab.

3. In the Levels tab, click the Logical Level field for the dimension from which you
want to select a logical level.

In the Levels tab, in the levels list, you can sort the rows (toggle between
ascending order and descending order) by clicking a column heading.

4. In the Logical Level list, select the level.

5. Repeat this process to associate this measure with other logical levels in other
dimensions.

To remove the association between a dimension and a measure:

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a logical column.

2. In the Logical Column dialog, click the Levels tab.

3. In the Levels tab, select the row for the association you want to remove and click
Delete.

4. Click OK.

Moving or Copying Logical Columns
By default, dragging and dropping a logical column from one table to another moves
the logical column. If a column with the same name already exists, the new column is
renamed (for example, mycolumn#1).

You can also choose the option Prompt when moving logical columns in the Options
dialog to cause the Sources for moved columns dialog to be displayed when you drag
and drop a logical column. This dialog gives you options about the drag and drop
behavior.

See "Setting Preferences" for more information about selecting the Prompt when
moving logical columns option.

To move or copy logical columns using the Sources for moved columns dialog:

1. In the Business Model and Mapping layer, drag and drop a logical column to a
different logical table. You can select multiple columns to move.

2. In the Sources for moved columns dialog, in the Action area, select an action.

3. If you select Ignore, no logical source is added in the Sources folder of the
destination table.

4. If you select Create new, a copy of the logical source associated with the logical
column is created in the Sources folder of the destination table.

Enabling Write Back On Columns

Working with Logical Tables, Joins, and Columns 8-21

5. If you select Use existing, in the Use existing list, you must select a logical source
from the Sources folder of the destination table.

The column that you moved or copied is associated with this logical source.

Enabling Write Back On Columns
You can configure individual logical columns so that users in Oracle BI Presentation
Services can update column data and write the changes back to the data source. To
enable write back on a particular column, you must select the Writeable option for the
logical column, and enable the Read/Write permission for the corresponding
presentation column. You must also disable caching on the corresponding physical
table.

Additional tasks to enable write back need to be performed in Oracle BI Presentation
Services. See "Configuring for Write Back in Analyses and Dashboards" in Oracle
Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition for full information.

To enable write back for a particular column:

1. In the Administration Tool, in the Physical layer, double-click the physical table
that contains the column for which you want to enable write back.

2. On the General tab of the Physical Table dialog, ensure that Cacheable is not
selected. Deselecting this option ensures that Oracle BI Presentation Services users
can see updates immediately.

3. In the Business Model and Mapping layer, double-click the corresponding logical
column. The Logical Column dialog opens.

Figure 8–4 shows the Logical Column dialog.

Figure 8–4 Logical Column Dialog with Writeable Option Selected

4. Select Writeable, then click OK.

Setting Up Display Folders in the Business Model and Mapping Layer

8-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

5. In the Presentation layer, double-click the column that corresponds to the logical
column for which you enabled write back. The Presentation Column dialog opens.

6. Click Permissions.

7. Select the Read/Write permission for the appropriate users and application roles.

Figure 8–5 shows the Permissions dialog.

Figure 8–5 Permissions Dialog for Presentation Layer Column with Read/Write Option
Selected

8. Click OK in the Permissions dialog.

9. Click OK in the Presentation Column dialog.

Setting Up Display Folders in the Business Model and Mapping Layer
You can create display folders to organize objects in the Business Model and Mapping
layer. They have no effect on query processing. After you create a display folder, the
selected tables and dimensions appear in the folder as a shortcut and in the business
model tree as the object. You can hide the objects so that you only view the shortcuts in
the display folder. See the information about the Repository tab of the Options dialog
in "Setting Preferences" for more information about hiding these objects.

To set up a logical display folder:

1. In the Business Model and Mapping layer of the Administration Tool, right-click a
business model and select New Object, then select Logical Display Folder.

2. In the Logical Display Folder dialog, in the Tables tab, type a name for the folder.

3. To add tables to the display folder, click Add. In the Browse dialog, select the fact
or dimension tables you want to add to the folder and click Select.

Alternatively, you can drag one or more logical tables to the display folder after
you close the dialog.

4. To add dimensions to the display folder, click the Dimensions tab and click Add.
In the Browse dialog, select the dimensions that you want to add to the folder and
click Select.

Note: Deleting a table in a display folder deletes only the shortcut to
that object. When you delete a column in a display folder, however,
the column is actually deleted.

Modeling Bridge Tables

Working with Logical Tables, Joins, and Columns 8-23

Alternatively, you can drag one or more dimensions to the display folder after you
close the dialog.

5. Click OK.

Modeling Bridge Tables
A bridge table enables you to resolve many-to-many relationships between tables. For
example, you might hold information about employees in an Employees table, and
information about the jobs they do in a Jobs table. However, an organization's
employees can have multiple jobs, and the same job can be performed by multiple
employees. This situation would result in a many-to-many relationship between the
Employees table and the Jobs table.

To resolve the many-to-many relationship, you can create a bridge table (or
intermediate table) called Assignments. Each row in the Assignments table is unique,
representing one employee doing one job. If an employee has several jobs, there are
several rows in the Assignments table for that employee. If a job is done by several
employees, there are several rows in the Assignments table for that job. The primary
key of the Assignments table is a composite key, made up of a column containing the
employee ID and a column containing the job ID.

By acting as a bridge table between the Job and Employee tables, the Assignments
table enables you to resolve the many-to-many relationship between Employees and
Jobs into:

■ A one-to-many relationship between Employees and Assignments

■ A one-to-many relationship between Assignments and Jobs

Figure 8–6 shows a Physical layer view of the example bridge and associated
dimension tables described in the preceding paragraphs.

Figure 8–6 Example Bridge and Associated Tables in the Physical Layer

Note that "Weight Factor" should be included as an additional column in the bridge
table and calculated during ETL for efficient query processing.

The following sections explain how to model bridge tables in the Physical and
Business Model and Mapping layers:

■ Creating Joins in the Physical Layer for Bridge and Associated Dimension Tables

■ Modeling the Associated Dimension Tables in a Single Dimension

■ Modeling the Associated Dimension Tables in Separate Dimensions

Modeling Bridge Tables

8-24 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Creating Joins in the Physical Layer for Bridge and Associated Dimension Tables
To model bridge tables in the Physical layer, create joins between the bridge table and
the associated dimension tables.

To create physical joins for a bridge table and its associated tables:

1. In the Administration Tool, in the Physical layer, select the fact, bridge, and
associated dimension tables. Then, right-click the objects and select Physical
Diagram, and then choose Selected Object(s) Only.

2. With the Physical Diagram displayed, click New Join on the toolbar. Then, select
the bridge table, and then select one of the dimension tables.

3. Click OK in the Physical Foreign Key dialog.

4. Repeat steps 2 and 3 for the other associated dimension table.

5. Ensure that one of the associated dimension tables is joined to the fact table.

Figure 8–7 shows joins between the example Physical tables in the Physical
Diagram.

Figure 8–7 Joins Between the Example Tables in the Physical Diagram

Modeling the Associated Dimension Tables in a Single Dimension
In the Business Model and Mapping layer, you can choose to model the two
dimension tables associated with a bridge table in a single dimension, or in two
separate dimensions. To model the associated dimension tables in one dimension,
create a second logical table source that maps to the bridge table and the other
dimension table, and then add columns from the other dimension table.

Providing two separate logical table sources makes queries more efficient, because it
ensures that queries against a single dimension table do not involve the bridge table.

To model the dimension tables associated with a bridge table in a single dimension:

1. Drag objects from the Physical layer to the Business Model and Mapping layer,
except the bridge table and the associated dimension table that is not joined to the
fact table. For the example described in the previous sections, you would drag all
objects except for the Assignment and Employee tables.

2. In the Business Model and Mapping layer, right-click the dimension table that is
joined to the fact table (Jobs in our example) and select New Object, then select
Logical Table Source.

3. In the Logical Table Source dialog, provide a name for the new bridge table
source. It is a good practice to use the bridge table name as the name of the source
(for example, Assignment).

Modeling Bridge Tables

Working with Logical Tables, Joins, and Columns 8-25

4. Click the Add button in the upper right corner of the Logical Table Source dialog.
Then, select the bridge table from the Name list (Assignment in our example) and
then click Select.

5. Click the Add button again and select the associated dimension table that is not
joined to the fact table (Employee in our example) and then click Select.

6. Click OK in the Logical Table Source diaog.

Figure 8–8 shows the Logical Table Source dialog for the bridge table source.

Figure 8–8 Logical Table Source Dialog for Bridge Table Source

7. Drag columns from the dimension table that is not joined to the fact table
(Employees in our example) from the Physical layer to the logical table source that
you just created.

You can now create dimensions based on your logical tables, including the logical
table with the bridge table source.

Modeling the Associated Dimension Tables in Separate Dimensions
As an alternative to modeling the two dimension tables associated with a bridge table
in a single dimension, you can choose to model them in separate dimensions. To do
this, create a logical join between the fact table and the dimension table that is not
physically joined to the fact table, and then modify the logical table source for that
same dimension table to add the other table mappings.

To model the dimension tables associated with a bridge table in separate
dimensions:

1. Drag objects from the Physical layer to the Business Model and Mapping layer.
Because you want to model the dimension tables in separate dimensions, drag
both of the dimension tables associated with the bridge table. You do not need to
drag and drop the bridge table object.

Modeling Bridge Tables

8-26 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

2. In the Business Model and Mapping layer, select the fact table and the two
dimension tables that are associated with the bridge table (Facts, Employee, and
Jobs in our example). Then, right-click the objects and select Business Model
Diagram, and then choose Selected Tables Only.

3. With the Business Model Diagram displayed, click New Join on the toolbar. Then,
select the fact table, and then select the dimension table not currently joined to the
fact table.

4. Click OK in the Logical Join dialog.

Figure 8–9 shows joins between the example logical tables in the Business Model
Diagram.

Figure 8–9 Joins Between the Example Tables in the Business Model Diagram

5. Double-click the logical table source for the logical table for which you created the
logical join (Employee in our example).

6. Click the Add button in the upper right corner of the Logical Table Source dialog.
Then, select the bridge table from the Name list (Assignment in our example) and
then click Select.

7. Click the Add button again and select the other associated dimension table (Jobs
in our example) and then click Select.

8. Click OK in the Logical Table Source diaog.

Figure 8–10 shows the Logical Table Source dialog for the modified dimension
table source.

Modeling Bridge Tables

Working with Logical Tables, Joins, and Columns 8-27

Figure 8–10 Logical Table Source Dialog for Dimension Table Source

You can now create dimensions based on your logical tables, including both logical
tables associated with the bridge table.

Modeling Bridge Tables

8-28 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

9

Working with Logical Dimensions 9-1

9Working with Logical Dimensions

In the Business Model and Mapping layer, a dimension object represents a hierarchical
organization of logical columns (attributes). One or more logical dimension tables can
be associated with at most one dimension object. Common dimensions might be time
periods, products, markets, customers, suppliers, promotion conditions, raw materials,
manufacturing plants, transportation methods, media types, and time of day. Note
that dimensions exist in the Business Model and Mapping (logical) layer and in the
Presentation layer.

In each dimension, you organize logical columns into the structure of the hierarchy.
This structure represents the organization rules and reporting needs required by your
business. It also provide the metadata that the Oracle BI Server uses to drill into and
across dimensions to get more detailed views of the data.

There are two types of logical dimensions: dimensions with level-based hierarchies
(structure hierarchies), and dimensions with parent-child hierarchies (value
hierarchies). Level-based hierarchies are those in which members are of several types,
and members of the same type occur only at a single level. In parent-child hierarchies,
members all have the same type. Oracle Business Intelligence also supports a special
type of level-based dimension, called a time dimension, that provides special
functionality for modeling time series data.

Because dimensions for multidimensional data sources are defined in the source, they
do not require as much work compared with dimensions in other data sources. For
example, you do not create dimension level keys. A dimension is specific to a
particular multidimensional data source (it cannot be used by more than one) and
cannot be created and manipulated individually. Additionally, each cube in the data
source should have at least one dimension and one measure in the Business Model and
Mapping layer.

You can expose logical dimensions to Oracle BI Answers users by creating
presentation hierarchy objects that are based on particular logical dimensions.
Creating hierarchies in the Presentation layer enables users to create hierarchy-based
queries. See "Working with Presentation Hierarchies and Levels" for more information.

Note that you can also expose dimension hierarchies by adding one or more columns
from each hierarchy level to a subject area in the Presentation layer. Oracle BI Answers
supports drill-down on these hierarchical columns.

This chapter contains the following topics:

■ Creating and Managing Dimensions with Level-Based Hierarchies

■ Creating and Managing Dimensions with Parent-Child Hierarchies

■ Modeling Time Series Data

Creating and Managing Dimensions with Level-Based Hierarchies

9-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Creating and Managing Dimensions with Level-Based Hierarchies
Each business model can have one or more dimensions, each dimension can have one
or more logical levels, and each logical level has one or more attributes (columns)
associated with it.

The following sections explain how to create dimensions:

■ About Level-Based Hierarchies

■ Manually Creating Dimensions, Levels, and Keys with Level-Based Hierarchies

■ Automatically Creating Dimensions with Level-Based Hierarchies

■ Populating Logical Level Counts Automatically

About Level-Based Hierarchies
A dimension contains two or more logical levels. The recommended sequence for
creating logical levels is to create a Grand Total level and then create child levels,
working down to the lowest level. The following are the parts of a dimension:

■ Grand Total level. A special level representing the grand total for a dimension.
Each dimension can have just one Grand Total level. A Grand Total level does not
contain dimensional attributes and does not have a level key. However, you can
associate measures with a Grand Total level. The aggregation level for those
measures will always be the grand total for the dimension.

■ Level. All levels, except the Grand Total level, need to have at least one column.
However, it is not necessary to explicitly associate all of the columns from a table
with logical levels. Any column that you do not associate with a logical level is
automatically associated with the lowest level in the dimension that corresponds
to that dimension table. All logical columns in the same dimension table have to
be associated with the same dimension.

■ Hierarchy. Each dimension contains one or more hierarchies. All hierarchies must
have a common leaf level and a common root (all) level.

 For example, a time dimension might contain a fiscal hierarchy and a calendar
hierarchy, with a common leaf level of Day. Day has two named parent levels
called Fiscal Year and Calendar Year, which are both children of the All root level.

In the Business Model and Mapping layer, logical hierarchies are not defined as
independent metadata objects, unlike hierarchies in the Presentation layer. Rather,
logical hierarchies exist implicitly through the relationships between levels.

■ Level keys. Each logical level (except the topmost level defined as a Grand Total
level) must have one or more attributes that compose a level key. The level key
defines the unique elements in each logical level. The dimension table logical key
has to be associated with the lowest level of a dimension and has to be the level
key for that level.

A logical level can have multiple level keys. When that is the case, specify the key
that is the primary key of that level. All dimension sources which have an
aggregate content at a specified level need to contain the column that is the
primary key of that level. Each logical level should have one level key that is
displayed when an Oracle BI Presentation Services user clicks to drill down. This
may or may not be the primary key of the level. To set the level key to display,
select the Use for display option in the Level Key dialog.

Be careful using level keys such as Month whose domain includes the values
January, February, and so on (or in other words, values that are not unique to a

Creating and Managing Dimensions with Level-Based Hierarchies

Working with Logical Dimensions 9-3

particular month, repeating every year). To define Month as a level key, you also
need to include an attribute from a higher level (for example, Year). To add Year,
click Add in this dialog and select the logical column from the dialog that is
presented.

Level keys should be meaningful business keys (like Month_name='2010 July')
rather than generated surrogate keys (like time_key='1023793'), because surrogate
keys are physical artifacts that only apply to a single instance of a source table. The
business name, in contrast, can map to any physical instance for that logical
column. For example, month_name might map to a detailed table, an aggregate
table from an aggregate star, and a column in a federated spreadsheet. Note that
the Physical layer still uses the surrogate keys in the joins, so there is no
performance or flexibility penalty for using business keys in the business model.

■ Time dimensions and chronological keys. You can identify a dimension as a time
dimension. At least one level of a time dimension must have a chronological key.
The following is a list of some guidelines you should use when setting up and
using time dimensions:

– At least one level of a time dimension must have a chronological key. See
"Selecting and Sorting Chronological Keys in a Time Dimension" for more
information.

– All time series measures using the AGO, TODATE, and PERIODROLLING
functions must be on time levels. AGO, TODATE, and PERIODROLLING
aggregates are created as derived logical columns. See "About Time Series
Functions" for more information.

– AGO, TODATE, and PERIODROLLING functionality is not supported either on
fragmented dimensional logical table sources, or on fact sources fragmented
on the same time dimension. Fact sources may be fragmented on other
dimensions.See "About Time Series Functions" for more information.

■ Unbalanced (or ragged) hierarchy. An unbalanced (or ragged) hierarchy is a
hierarchy where the leaves (members with no children) do not necessarily have
the same depth. For example, a site can choose to have data for the current month
at the day level, previous months data at the month level, and the previous 5 years
data at the quarter level.

User applications can use the ISLEAF function to determine whether to allow
drilldown from any particular member. See "ISLEAF" for more information.

A missing member is implemented in the data source with a null value for the
member value. All computations treat the null value as a unique child within its
parent. Level-based measures and aggregate-by calculations group all missing
nodes together.

Note that unbalanced hierarchies are not necessarily the same as parent-child
hierarchies. Parent-child hierarchies are unbalanced by nature, but level-based
hierarchies can be unbalanced also.

■ Skip-level hierarchy. A skip-level hierarchy is a hierarchy where there are
members that do not have a value for a particular ancestor level. For example, in a
Country-State-City-District hierarchy, the city 'Washington, D.C.' does not belong
to a State. In this case, you can drill down from the Country level (USA) to the City
level (Washington, D.C.) and below.

In a query, skipped levels are not displayed, and do not affect computations. When
sorted hierarchically, members appear under their nearest ancestors.

Creating and Managing Dimensions with Level-Based Hierarchies

9-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

A missing member at a particular level is implemented in the data source with a
null value for the member value. All computations treat the null value as a unique
child within its parent. Level-based measures and aggregate-by calculations group
all skip-level nodes together.

Figure 9–1 shows a hierarchy with both unbalanced and skip-level characteristics. For
example, A-Brand 4, B-LOB 3, and Type 5 are unbalanced branches, while skips are
present between A-Brand 2 and Type 3, B-LOB 2 and Product 6, and others.

Figure 9–1 Hierarchy with Unbalanced and Skip-Level Characteristics

Using Dimension Hierarchy Levels in Level-Based Hierarchies
Dimension hierarchical levels can be used to perform the following actions:

■ Set up aggregate navigation

■ Configure level-based measure calculations (refer to Example 9–1).

■ Determine what attributes appear when Oracle BI Presentation Services users drill
down in their data requests

Manually Creating Dimensions, Levels, and Keys with Level-Based Hierarchies
To create and manage dimension hierarchy levels in level-based hierarchies, perform
the tasks described in the following sections:

■ Creating Dimensions in Level-Based Hierarchies

Creating and Managing Dimensions with Level-Based Hierarchies

Working with Logical Dimensions 9-5

■ Creating Logical Levels in a Dimension

■ Associating a Logical Column and Its Table with a Dimension Level

■ Identifying the Primary Key for a Dimension Level

■ Selecting and Sorting Chronological Keys in a Time Dimension

■ Adding a Dimension Level to the Preferred Drill Path

Creating Dimensions in Level-Based Hierarchies
After creating a dimension, each dimension can be associated with attributes
(columns) from one or more logical dimension tables and level-based measures from
logical fact tables. After you associate logical columns with a dimension level, the
tables in which these columns exist appear in the Tables tab of the Dimension dialog.

To create a dimension with a level-based hierarchy:

1. In the Business Model and Mapping layer of the Administration Tool, right-click a
business model and select New Object > Logical Dimension > Dimension with
Level-Based Hierarchy.

Note that this option is only available when there is at least one dimension table
that has no dimension associated with it.

2. In the Logical Dimension dialog, in the General tab, type a name for the
dimension.

The Default root level field is automatically populated after you associate logical
columns with a dimension level.

3. If the dimension is a time dimension, select Time.

4. If the dimension is an unbalanced dimension, select Ragged.

5. If the dimension is a skip-level dimension, select Skipped Levels.

6. (Optional) Type a description of the dimension.

7. Click OK.

Creating Logical Levels in a Dimension
When creating logical levels in a dimension, you also create the hierarchy by
identifying the type of level and defining child levels. See "Automatically Creating
Business Model Objects for Multidimensional Data Sources" for more information
about creating hierarchies for a multidimensional data source.

To define general properties for a logical level in a dimension:

1. In the Business Model and Mapping layer of the Administration Tool, right-click a
dimension and select New Object, then select Logical Level.

2. In the Logical Level dialog, in the General tab, specify a name for the logical level.

Note: It is a best practice to ensure that the physical hierarchy type
set in the Physical layer matches the dimension properties you select
in the Business Model and Mapping layer. See "Working with Physical
Hierarchy Objects" for more information.

In addition, you must ensure that the Ragged and Skipped Levels
dimension properties are set correctly for queries to work.

Creating and Managing Dimensions with Level-Based Hierarchies

9-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

3. For Number of elements at this level, specify the number of elements that exist at
this logical level. If this level will be the Grand Total level, leave this field blank.
The system will set to a value of 1 by default.

The number does not have to be exact, but ratios of numbers from one logical level
to another should be accurate. For relational sources, you can retrieve the row
count for the level key and use that number as the number of elements. For
multidimensional sources, you can use the number of members at that level.

The Oracle BI Server uses this number when selecting which aggregate source to
use. For example, when aggregate navigation is used, multiple fact sources exist at
different grains. The Oracle BI Server multiplies the number of elements at each
level for each qualified source as a way to estimate the total number of rows for
that source. Then, the Oracle BI Server compares the result for each source and
selects the source with the lowest number of total elements to answer the query.
The source with the lowest number of total elements is assumed to be the fastest.

4. Choose one of the following options, if appropriate:

– If the logical level is the Grand Total level, select Grand total level. There
should be only one Grand Total level for a dimension.

– If measure values at a particular level fully constitute aggregated measures at
its parent level, select Supports rollup to higher level of aggregation.

5. To define child logical levels, click Add.

6. In the Browse dialog, select the child logical levels and click OK.

The child levels appear in the Child Levels pane.

7. To remove a previously defined child level, select the level in the Child Levels
pane and click Remove.

The child level and all of its child levels are deleted from the Child Levels pane.

8. (Optional) Type a description of the logical level.

9. Click OK.

Associating a Logical Column and Its Table with a Dimension Level
After you create all logical levels within a dimension, you need to drag and drop one
or more columns from the dimension table to each logical level except the Grand Total
level. The first time you drag a column to a dimension it associates the logical table to
the dimension. It also associates the logical column with that level of the dimension. To
change the logical level to be associated with that logical column, you can drag a
column from one logical level to another.

The logical column or columns that comprise the logical key of a dimension table must
be associated with the lowest level of the dimension.

After you associate a logical column with a dimension level, the tables in which these
columns exist appear in the Tables tab of the Dimensions dialog.

For time dimensions, ensure that all time-related logical columns in the source table
are defined in the time dimension. For example, if a time-related logical table contains
the columns Month Name and Month Code, you must ensure that both columns are
dragged to the appropriate level within the dimension. Figure 9–2 shows how to
associate logical columns with a logical level.

Creating and Managing Dimensions with Level-Based Hierarchies

Working with Logical Dimensions 9-7

Figure 9–2 Associating Logical Columns with a Logical Level

To verify tables that are associated with a dimension:

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a dimension.

2. In the Dimensions dialog, click the Tables tab.

The tables list contains tables that you associated with that dimension. This list of
tables includes only one logical dimension table and one or more logical fact tables
(if you created level-based measures).

3. Click OK or Cancel to close the Dimensions dialog.

Example 9–1 and Example 9–2 show how to associate measures to different levels of
level-based dimension hierarchies.

Example 9–1 Level-Based Measure Calculations

A level-based measure is a column whose values are always calculated to a specific
level of aggregation. For example, a company might want to measure its revenue
based on the country, based on the region, and based on the city. You can set up
columns to measure CountryRevenue, RegionRevenue, and CityRevenue.

When a query includes a level-based measure column, and the query grain is higher
than the level of aggregation specific to the column, the query results return null. Note
that in previous releases, results were returned for this situation, but they were not
deterministic.

The measure AllProductRevenue is an example of a level-based measure at the Grand
Total level. Level-based measures allow a single query to return data at multiple levels
of aggregation. They are also useful in creating share measures, that are calculated by
taking some measure and dividing it by a level-based measure to calculate a
percentage. For example, you can divide salesperson revenue by regional revenue to
calculate the share of the regional revenue each salesperson generates.

Creating and Managing Dimensions with Level-Based Hierarchies

9-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

To set up these calculations, you need to build a dimensional hierarchy in your
repository that contains the levels Grandtotal, Country, Region, and City. This
hierarchy contains the metadata that defines a one-to-many relationship between
Country and Region and a one-to-many relationship between Region and City. For
each country, there are many regions, but each region is in only one country. Similarly,
for each region, there are many cities, but each city is in only one region.

Next, you need to create three logical columns (CountryRevenue, RegionRevenue, and
CityRevenue). Each of these columns uses the logical column Revenue as its source.
The Revenue column has a default aggregation rule of SUM and has sources in the
underlying databases.

You then drag the CountryRevenue, RegionRevenue, and CityRevenue columns into
the Country, Region, and City levels, respectively. Each query that requests one of
these columns returns the revenue aggregated to its associated level.

Figure 9–3 shows what the business model in the Business Model and Mapping layer
looks like for this example.

Figure 9–3 Example of Business Model in the Business Model and Mapping Layer

In the Geography Dimension, the CountryRevenue and RegionRevenue columns are
attributes of the Country and Region levels. In the Sales Facts table, the Revenue
column has a default aggregation rule of SUM and is mapped to physical detail data or
physical aggregate data. CountryRevenue and RegionRevenue columns use the
Revenue column as their source.

Example 9–2 Grand Total Dimension Hierarchy

You might have a product dimensional hierarchy with levels TotalProducts (Grand
Total level), Brands, and Products. Additionally, there might be a column called
Revenue that is defined with a default aggregation rule of Sum. You can then create a
logical column, AllProductRevenue, that uses Revenue as its source (as specified in the
General tab of the Logical Column dialog). Now, drag AllProductRevenue to the
Grand Total level. Each query that includes this column returns the total revenue for
all products. The value is returned regardless of any constraints on Brands or
Products. If you have constraints on columns in other tables, the grand total is limited

Creating and Managing Dimensions with Level-Based Hierarchies

Working with Logical Dimensions 9-9

to the scope of the query. For example, if the scope of the query asks for data from 1999
and 2000, the grand total product revenue is for all products sold in 1999 and 2000.

If you have three products, A, B, and C with total revenues of 100, 200, and 300
respectively, then the grand total product revenue is 600 (the sum of each product's
revenue). If you have set up a repository as described in this example, the following
query produces the results listed:

SELECT product, productrevenue, allproductrevenue
FROM sales_subject_area
WHERE product IN 'A' or 'B'

The results are as follows:

PRODUCT PRODUCTREVENUE ALLPRODUCTREVENUE
A 100 600
B 200 600

In this example, the AllProductRevenue column always returns a value of 600,
regardless of the products on which the query constrains.

Identifying the Primary Key for a Dimension Level
Use the Keys tab in the Logical Level dialog to identify the primary key for a level.

To specify a primary key for a dimension level:

1. In the Business Model and Mapping layer of the Administration Tool, expand a
dimension and then expand the highest level (Grand Total level) of the dimension.

2. Double-click a logical level below the Grand Total level.

3. In the Logical Level dialog, click the Keys tab.

4. In the Keys tab, from the Primary key list, select a level key.

If only one level key exists, it is the primary key by default.

5. To add a column to the list, perform the following steps:

a. In the Logical Level dialog, click New.

b. In the Logical Level Key dialog, type a name for the key.

c. In the Logical Level Key dialog, select a column or click Add.

d. If you click Add, in the Browse dialog, select the column, and then click OK.

The column you selected appears in the Columns list of the Logical Level Key
dialog and is automatically selected.

6. If the level is in a time dimension, you can select chronological keys and sort the
keys by name.

Note: You cannot use a derived logical column that is the result of a
LOOKUP function as part of a primary logical level key. This limitation
exists because the LOOKUP operation is applied after aggregates are
computed, but level key columns must be available before the
aggregates are computed because they define the granularity at which
the aggregates are calculated.

You can use a derived logical column that is the result of a LOOKUP
function as a secondary logical level key.

Creating and Managing Dimensions with Level-Based Hierarchies

9-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

7. (Optional) Type a description for the key and then click OK.

8. Repeat Step 2 through Step 7 to add primary keys to other logical levels.

9. In the Logical Level dialog, click OK.

Selecting and Sorting Chronological Keys in a Time Dimension
At least one level of a time dimension must have a chronological key. Although you
can select one or more chronological keys for any level and then sort keys in the level,
only the first chronological key is used.

To select and sort chronological keys for a time dimension:

1. In the Business Model and Mapping layer of the Administration Tool, expand a
time dimension and then expand the highest level (Grand Total level) of the
dimension.

2. Double-click a logical level below the Grand Total level.

3. In the Logical Level dialog, click the Keys tab.

4. To select a chronological key, in the Keys tab, select the Chronological Key option.
You may need to scroll to the right to see this option.

5. To sort chronological keys, in the Keys tab, double-click a chronological key.

6. In the Chronological Key dialog, select a chronological key column, click Up or
Down to reorder the column, and then click OK.

Adding a Dimension Level to the Preferred Drill Path
You can use the Preferred Drill Path tab to identify the drill path to use when Oracle BI
Presentation Services users drill down in their data requests. You should use this only
to specify a drill path that is outside the normal drill path defined by the dimensional
level hierarchy. It is most commonly used to drill from one dimension to another. You
can delete a logical level from a drill path or reorder a logical level in the drill path.

To add a dimension level to the preferred drill path:

1. Click Add to open the Browse dialog, then select the logical levels to include in the
drill path. You can select logical levels from the current dimension, or from other
dimensions.

2. Click OK to return to the Level dialog.

The names of the levels are added to the Names pane.

Automatically Creating Dimensions with Level-Based Hierarchies
You can set up a dimension automatically from a logical dimension table if a
dimension for that table does not exist. To create a dimension automatically, the
Administration Tool examines the logical table sources and the column mappings in
those sources and uses the joins between physical tables in the logical table sources to
determine logical levels and level keys. Therefore, it is best to create a dimension in
this way after all the logical table sources have been defined for a dimension table.

The following rules apply:

Note: For a dimension to be recognized as a time dimension, you
must select Time on the General tab of the Dimension dialog.

Creating and Managing Dimensions with Level-Based Hierarchies

Working with Logical Dimensions 9-11

■ Create Dimensions is only available if the selected logical table is a dimension
table (defined by 1:N logical joins) and no dimension has been associated with this
table.

■ An automatically created dimension uses the same name as the logical table,
adding Dim as a suffix. For example, if a table is named Periods, the dimension is
named Periods Dim.

■ A Grand Total level is automatically named logical_table_name Total. For example,
the Grand Total level of the Periods Dim table is Periods Total.

■ When there are multiple tables in a source, the join relationships between tables in
the source determine the physical table containing the lowest-level attributes. The
lowest level in the hierarchy is named logical_table_name Detail. For example, the
lowest level of the periods table is Periods Detail.

■ The logical key of the dimension table is mapped to the lowest level of the
hierarchy and specified as the level key. This logical column should map to the key
column of the lowest level table in the dimension source.

– If there are two or more physical tables in a source, the columns that map to
the keys of those tables become additional logical levels. These additional
level names use the logical column names of these key columns.

– The order of joins determines the hierarchical arrangement of the logical
levels. The level keys of these new logical levels are set to the logical columns
that map to the keys of the tables in the source.

■ If there are multiple logical table sources, the tool uses attribute mappings and
physical joins to determine the hierarchical order of the tables in the physical
sources. For example, you might have three sources (A, B, C) each containing a
single physical table and attribute mappings for 10, 15, and 3 attributes,
respectively (not counting columns that are constructed from other logical
columns). The following is a list of the results of creating a dimension for this table
automatically:

– The Administration Tool creates a dimension containing four logical levels,
counting the Grand Total and detail levels.

– The key of the table in source B (that has the greatest number of columns
mapped and contains the column mapping for the logical table key) should be
the level key for the detail level.

– The parent of the detail level should be the logical level named for the logical
column that maps to the key of the physical table in source A.

– Any attributes that are mapped to both A and B should be associated with
level A.

– The parent of level A should be the logical level named for the logical column
that maps to the key of the physical table in source C.

– Any columns that are mapped to both A and C should be associated with level
C.

■ Table joins in a physical source might represent a pattern that results in a split
hierarchy. For example, the Product table can join to the Flavor table and a
Subtype table. This would result in two parents of the product detail level, one
flavor level and one subtype level.

■ You cannot create a dimension automatically in the following situations:

Creating and Managing Dimensions with Level-Based Hierarchies

9-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

– If a dimension with joins and levels has already been created, Create
Dimension does not appear on the right-click menu.

– If the table is not yet joined to any other table, the option is not available
because it is considered a fact table.

■ In a snowflake schema, if you use a table with only one source and create the
dimension automatically, the child tables are automatically incorporated into a
hierarchy. The child tables form intermediate levels between the Grand Total level
and detail level. If more then one child table exists for a dimension table, the
hierarchy is a split hierarchy.

To create a dimension automatically:

1. In the Administration Tool, open a repository.

2. In the Business Model and Mapping layer, right-click a logical dimension table
that is not associated with any dimension .

3. From the right-click menu, select Create Logical Dimension, then select either
Dimension with Level-Based Hierarchy or Dimension with Parent-Child
Hierarchy.

The new dimension is displayed in the Business Model and Mapping layer.

Populating Logical Level Counts Automatically
Estimate Levels enables administrators to automatically populate level counts for one
or more dimension hierarchies. Level counts are utilized by the query engine to
determine the most optimal query plan and optimizes overall system performance.

The repository must be opened in online mode and the business model must be
available for queries. Then, in the Business Model and Mapping layer, you can select
any of the following logical layer elements, and then execute the Estimate Levels
command:

■ Business model. Must be available for queries. If you select this object, the
Administration Tool attempts to check out all objects in the business model.

■ Dimension. You should run a consistency check on dimensions to ensure that the
dimension is logically sound.

■ A combination of business models and dimensions. You can select multiple
dimensions and multiple business models individually.

When run, the Estimate Levels command also launches a consistency check on the
level counts as described in the following list:

■ Checks that a level key is valid. Columns in levels have referential integrity.

■ Checks the parent-child relationship. If the parent level count is greater that the
child level count, an error is returned.

■ Generates a run report that lists all the counts that were estimated and any errors
or consistency warnings.

■ The queries and errors are logged to nqquery.log on the Oracle BI Server.

Set the log level at 4 or higher to write this information to the log file. For more
information about logging, see "Diagnosing and Resolving Issues in Oracle
Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition.

To populate logical level counts automatically:

Creating and Managing Dimensions with Parent-Child Hierarchies

Working with Logical Dimensions 9-13

1. In the Administration Tool, open a repository in online mode.

2. Right-click one or more business models and dimension objects, and select
Estimate Levels.

3. In the Check Out Objects dialog, click Yes to check out the objects that appear in
the list.

If you click No, the action terminates because you must check out items to run
Estimate Levels.

In the Administration Tool dialog, a list of the dimension level counts and any
errors or warning messages appear.

When you check in the objects, you can check the global consistency of your
repository.

Creating and Managing Dimensions with Parent-Child Hierarchies
A parent-child hierarchy is a hierarchy of members that all have the same type. This
contrasts with level-based hierarchies, where members of the same type occur only at
a single level of the hierarchy.

This section contains the following topics:

■ About Parent-Child Hierarchies

■ Creating Dimensions with Parent-Child Hierarchies

■ Defining Parent-Child Relationship Tables

About Parent-Child Hierarchies
The most common real-life occurrence of a parent-child hierarchy is an organizational
reporting hierarchy chart, where the following all apply:

■ Each individual in the organization is an employee.

■ Each employee, apart from the top-level managers, reports to a single manager.

■ The reporting hierarchy has many levels.

These conditions illustrate the basic features that define a parent-child hierarchy,
namely:

■ A parent-child hierarchy is based on a single logical table (for example, the
"Employees" table)

■ Each row in the table contains two identifying keys, one to identify the member
itself, the other to identify the "parent" of the member (for example, Emp_ID and
Mgr_ID)

Figure 9–4 shows an example of a multi-level parent-child hierarchy.

Creating and Managing Dimensions with Parent-Child Hierarchies

9-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 9–4 Multi-Level Parent-Child Hierarchy

The following table shows how this parent-child hierarchy could be represented by the
rows and key values in an Employees table.

You can expose logical dimensions with parent-child hierarchies to Oracle BI Answers
users by creating presentation hierarchies that are based on particular logical
dimensions. Creating hierarchies in the Presentation layer enables users to create
hierarchy-based queries. See "Working with Presentation Hierarchies and Levels" for
more information.

This section contains the following topics:

■ About Levels and Distances in Parent-Child Hierarchies

■ About Parent-Child Relationship Tables

■ About Parent-Child Hierarchies Populated with Preaggregated Data

About Levels and Distances in Parent-Child Hierarchies
Unlike the situation with level-based hierarchies, all the dimension members of a
parent-child hierarchy occur in a single logical column. In a parent-child hierarchy, the
parent of a member is in another row in the same logical column, pointed to by the
parent key. This is unlike a level-based hierarchy, where the parent of a member is in a
different logical column in the same row. In other words, navigation in a parent-child
hierarchy follows data values, while navigation in a level-based hierarchy follows the
metadata structure.

In level-based hierarchies, each level is named, and occupies a position in the
hierarchy that corresponds to a real-word attribute or category that is deemed useful
for analysis. Unlike level-based hierarchies, where the number of levels is fixed at
design time, there is no limit to the depth of a parent-child hierarchy, and the depth
can change at run time due to new data."

Every Oracle BI Server parent-child hierarchy has two system-generated entities,
"Total" and "Detail," that are automatically defined for each parent-child hierarchy

Emp_ID Mgr_ID

Andrew null

Barbara Andrew

Carlos Andrew

Dawn Barbara

Emre Barbara

Creating and Managing Dimensions with Parent-Child Hierarchies

Working with Logical Dimensions 9-15

when the logical dimension is created. The "Detail" entity contains all the hierarchy
members.

These two system-generated entities are different from the implicit, inter-member
levels between ancestors and descendants in a parent-child hierarchy. These implicit
levels are referred to as parent-child hierarchical levels in this section.

Closely associated with levels is the concept of distance in parent-child hierarchies.
The distance of one member from another is the number of parent-child hierarchical
levels from the member to an ancestor or to a descendant. For example, the distance
from a member to its parent is always 1, and the distance from Andrew to Emre in
Figure 9–4 is 2.

About Parent-Child Relationship Tables
In relational tables, the relationships between different members in a parent-child
hierarchy are implicitly defined by the identifier key values in the associated base
table.

However, for each Oracle BI Server parent-child hierarchy defined on a relational
table, you must also explicitly define the inter-member relationships in a separate
parent-child relationship table.

The parent-child relationship table must include four columns, as follows:

■ A column that identifies the member

■ A column that identifies an ancestor of the member

■ A "distance" column that specifies the number of parent-child hierarchical levels
from the member to the ancestor

■ A "leaf" column that indicates if the member is a leaf member (1=Yes, 0=No)

The column names can be user defined. The data types of the columns must satisfy the
following conditions:

■ The member and ancestor identifier columns have the same data type as the
associated columns in the logical table that contains the hierarchy members.

Note that the example shown in Table 9–1 uses text strings for readability, but you
normally use integer surrogate keys for member_key and ancestor_key, if they
exist in the source dimension table.

■ The "distance" and "leaf" columns are INTEGER columns.

Note the following about the rows in a parent-child relationship table:

■ Each member must have a row pointing at itself, with distance zero.

■ Each member must have a row pointing at each of its ancestors. For a root
member, this is a termination row with null for the parent and distance values.

Table 9–1 shows an example of a parent-child relationship table with rows that
represent the inter-member relationships for the employees shown in Figure 9–4.

Note: The ancestor may be the parent of the member, or a
higher-level ancestor.

Creating and Managing Dimensions with Parent-Child Hierarchies

9-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Typically, you generate scripts to create and populate the parent-child relationship
table through a wizard that you can invoke when you define the parent-child
hierarchy. Note the following about the create and load scripts:

■ You run the create script only once, to create the parent-child relationship table in
the data source.

■ You must run the load script after each time the data changes in the dimension
table. Because of this, you typically call the load script in your ETL processing. The
load script reloads the entire parent-child relationship table; it is not incremental.

If you do not choose to use the wizard, then you must create the parent-child
relationship table manually and then import it into the Physical layer before
associating it with the parent-child hierarchy. In this latter case, it is also your
responsibility to populate the table with the data required to describe the
inter-member relationships in the parent-child hierarchy.

About Parent-Child Hierarchies Populated with Preaggregated Data
Some parent-child hierarchies contain preaggregated data that is populated for all
nodes of the hierarchy. For example, a root node might be populated with the
aggregation of the data for all of its descendent nodes. It is important to ensure that
queries do not aggregate the members from this dimension to avoid erroneous results.

To correctly model this type of parent-child hierarchy, you must still create a
parent-child relationship table to support hierarchical filter functions like IsAncestor
and IsDescendant. However, you can join the parent-child dimension table directly
with the fact table rather than joining through the parent-child relationship table.
Doing so ensures that the preaggregated member value is returned, rather than rolling
up all the descendants.

Table 9–1 Example Parent-Child Relationship Table

Member_Key Ancestor_Key Distance Isleaf

Andrew Andrew 0 0

Barbara Barbara 0 0

Carlos Carlos 0 0

Dawn Dawn 0 0

Emre Emre 0 0

Andrew null null 0

Barbara Andrew 1 0

Carlos Andrew 1 1

Dawn Barbara 1 1

Dawn Andrew 2 1

Emre Barbara 1 1

Emre Andrew 2 1

Note: Do not modify the parent-child relationship table script to only
include the "self" rows, because doing so would break the IsAncestor
and IsDescendant functions.

Creating and Managing Dimensions with Parent-Child Hierarchies

Working with Logical Dimensions 9-17

To achieve the correct aggregation for dimensions of this type, you must first
determine what you want to see as a grand total when the parent-child hierarchy is
aggregated. For example, assume that your hierarchy contains a single root member,
and you want to display the preaggregated value for this root member. In this case,
you first create an additional fact logical table source mapped at the Total level of the
parent-child hierarchy. Then, in the logical table source, create a WHERE clause filter
that selects only the root member.

With this model in place, for queries that are at the Total level of the parent-child
hierarchy, the Oracle BI Server selects the aggregate logical table source and applies
the root member WHERE clause filter. For queries that are at the Detail level, the
Oracle BI Server selects the detailed logical table source and returns the preaggregated
member values. In either case, it does not matter how the aggregation rule is set,
because there is a preaggregated source at each level.

Note that this approach only works if the queries are either at the Total or Detail level
of the parent-child dimension. However, for queries that group by some non-unique
attribute of the parent-child dimension, the aggregation might not be correct. For
example, if an Employee dimension has a Location attribute, and a query groups by
Employee.Location, then there will likely be some double counting because an
employee often reports to other employees at the same location. Because of this, when
fact tables contain preaggregated member values, you should avoid grouping by
non-unique attributes of the parent-child dimension. If grouping by those attributes is
unavoidable, then you should model them as separate dimensions.

Creating Dimensions with Parent-Child Hierarchies
The key elements that you must define for a parent-child hierarchy are the identifier
columns for the member and the parent of the member. This basic principle applies to
all parent-child hierarchies, regardless of the data source from which the hierarchy is
derived.

Parent-child hierarchies that are based on relational tables must have an
accompanying parent-child relationship table. See "About Parent-Child Relationship
Tables" for more information.

To create dimensions with a parent-child hierarchy:

1. In the Business Model and Mapping layer of the Administration Tool, perform one
of the following steps:

■ Right-click a business model and select New Object > Logical Dimension >
Dimension with Parent-Child Hierarchy. Note that this option is only
available if there is at least one logical dimension table in the business model
that has no dimension associated with it.

■ Right-click a dimension table that is not associated with any dimension and
select Create Logical Dimension, then select Dimension with Parent-Child
Hierarchy.

2. In the Logical Dimension dialog, in the General tab, type a name for the
dimension.

3. Click Browse beside the Member Key field.

The Browse window shows the logical dimension tables in the business model,
each with their primary keys.

4. Select a Member Key for the parent-child hierarchy and click OK.

5. Click Browse beside the Parent Key field.

Creating and Managing Dimensions with Parent-Child Hierarchies

9-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

The Browse window shows the columns, other than the primary key, in the logical
table that you selected in step 4.

6. Select a column that will be the Parent Key for the parent-child hierarchy and click
OK.

7. If the logical table that you selected in step 4 is not from a relational table source,
click OK to finish the process of creating the dimension.

If the logical table you selected in step 4 is from a relational table source, you must
continue the dimension definition process by setting up the parent-child
relationship table for the hierarchy. See "Defining Parent-Child Relationship
Tables" for details.

Defining Parent-Child Relationship Tables
For parent-child hierarchies based on relational tables, you must define a parent-child
relationship table. See "About Parent-Child Relationship Tables" for more information.

When you create the parent-child relationship table, you must choose one of the
following options:

■ Select a previously-created parent-child relationship table

■ Use a wizard that will generate scripts to create and populate the parent-child
relationship table

To define parent-child relationship tables:

1. In the Logical Dimension dialog, click Parent-Child Settings.

The Parent-Child Relationship Table Settings windows appears, with the Logical
Table and Logical Table Source values filled in.

Figure 9–5 shows the Parent-Child Relationship Table Settings dialog.

Figure 9–5 Parent-Child Relationship Table Settings Dialog

2. You can either manually define the parent-child relationship table for the
hierarchy, or you can start a wizard that will perform the definition for you
(recommended).

■ To start the manual process, continue at step 3.

Creating and Managing Dimensions with Parent-Child Hierarchies

Working with Logical Dimensions 9-19

■ To start the wizard, continue at step 7.

3. Click the Select Parent-Child Relationship Table button to start the manual
process of defining the parent-child relationship table for the parent-child
hierarchy.

4. Select the physical table that acts as the parent-child relationship table for your
parent-child hierarchy. The table must already exist in the Physical layer.

The parent-child relationship table must have at least four columns that describe
how the inter-member relationships are derived in the logical table selected for the
hierarchy. See "About Parent-Child Relationship Tables" for more information.

5. Map the four columns from the physical parent-child relationship table to the
fields in the Parent-Child Table Column Details area, as follows:

■ Select the Member Key column

■ Select the Parent Key column

■ Select the Relationship Distance column

■ Select the Leaf Node Identifier column

6. Click OK, then click OK again to finish the manual process of defining the
parent-child relationship table.

7. Click the Create Parent-Child Relationship Table button to start the wizard.

The Generate Parent-Child Relationship Table Wizard generates SQL scripts for
creating and populating the parent-child relationship table. At the end of the
wizard, the Oracle BI Server stores the scripts into directories chosen during the
wizard session. The scripts, when executed, will make the parent-child
relationship table available to the metadata repository.

The wizard contains the following three main windows:

■ Script Location

■ Parent-Child Relationship Table Details

■ Preview Script

8. In the Generate Parent-Child Relationship Table - Script Location screen, enter the
Name for the DDL Script to Generate the Parent-Child Table, and select the
Location where the Generate script will be placed.

9. Enter the Name for the DDL Script to Populate the Parent-Child Table, and select
the Location where the Populate script will be placed.

10. Click Next.

11. In the Parent-Child Relationship Table Details screen, enter the Name for the
parent-child relationship table.

12. Click Browse beside the Catalog/Schema field to select the catalog or schema for
the parent-child relationship table.

13. Click Next.

14. In the Preview Script window, you can view either or both of the scripts.

15. Click Finish.

16. In the Parent-Child Relationship Table Settings window, click OK.

17. In the Logical Dimension window, click OK.

Creating and Managing Dimensions with Parent-Child Hierarchies

9-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

18. If you used the Generate Parent-Child Relationship Table Wizard to generate
create and load scripts, run the scripts to create and load the parent-child
relationship table in your data source.

Adding the Parent-Child Relationship Table to the Model
After you have created a parent-child relationship table and imported it into the
Physical layer (either manually or using the Generate Parent-Child Relationship Table
Wizard), you must edit Physical layer joins to include the parent-child relationship
table. You also need to add the parent-child relationship table to the appropriate
logical table source.

To add the parent-child relationship table to the model:

1. In the Administration Tool, in the Physical layer of the repository, open the
Physical Diagram so that it shows the parent-child relationship table and
associated dimension table and fact tables. To do this, right-click the appropriate
physical tables and select Physical Diagram > Selected Object(s) Only.

2. Delete the direct joins from the dimension table to each of the fact tables.

3. Create joins from each the fact tables to the dimension table through the
parent-child closure table, as follows:

a. Create a join from the parent-child relationship table to the dimension table
using the ancestor key.

b. Create joins from the fact tables to the parent-child relationship table using the
member key.

Figure 9–6 shows joins from a dimension table to fact tables that go through a
parent-child relationship table.

Figure 9–6 Physical Layer Joins Through a Parent-Child Relationship Table

4. In the Business Model and Mapping layer, double-click the logical table source for
the logical dimension table that is used in your parent-child hierarchy.

5. In the General tab of the Logical Table Source dialog, click the Add button.

Modeling Time Series Data

Working with Logical Dimensions 9-21

6. Browse to locate the parent-child relationship table in the Physical layer and click
Select.

7. Click OK in the Logical Table Source dialog.

Maintaining Parent-Child Hierarchies Based on Relational Tables
For parent-child hierarchies based on relational tables, you must ensure that the data
in the parent-child relationship table accurately reflects the inter-member relationships
in the dimension.

You may have created scripts manually to create and populate the parent-child
relationship table, or you may have used the Generate Parent-Child Relationship Table
Wizard to create the scripts. You must run these scripts, adapting them if necessary, as
often as required to guarantee the integrity of the parent-child relationships in the
hierarchy. You typically want to add the Populate script to your ETL process so that it
runs after the dimension table is updated.

Modeling Time Series Data
Time series functions provide the ability to compare business performance with
previous time periods, allowing you to analyze data that spans multiple time periods.
For example, time series functions enable comparisons between current sales and sales
a year ago, a month ago, and so on.

Because SQL does not provide a direct way to make time comparisons, you must
model time series data in the Oracle BI repository. First, set up time dimensions based
on the period table in your data warehouse. Then, you can define measures that take
advantage of this time dimension to use the AGO, TODATE, and PERIODROLLING
functions. At query time, the Oracle BI Server then generates highly optimized SQL
that pushes the time offset processing down to the database whenever possible,
resulting in the best performance and functionality.

This section contains the following topics:

■ About Time Series Functions

■ Creating Logical Time Dimensions

■ Creating AGO, TODATE, and PERIODROLLING Measures

About Time Series Functions
Time series functions operate on time-oriented dimensions. To use these functions on a
particular dimension, you must designate the dimension as a Time dimension and set
one or more keys at one or more levels as chronological keys. These keys identify the
chronological order of the members within a dimension level.

Time series functions include AGO, TODATE, and PERIODROLLING. These functions let
you use Expression Builder to call a logical function to perform time series calculations
instead of aliasing physical tables and modeling logically. The time series functions
calculate AGO, TODATE, and PERIODROLLING functions based on the calendar tables
in your data warehouse, not on standard SQL date manipulation functions.

Figure 9–7 shows a sample report that includes several measures derived using time
series functions.

Modeling Time Series Data

9-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 9–7 Example Measures Derived Using Time Series Functions

Several different grains may be used in the time query, such as:

■ Query grain. The lowest time grain of the request. In the report example shown in
Figure 9–7, the query grain is Month.

■ Time Series grain. The grain at which the aggregation or offset is requested, for
both AGO and TODATE functions. In the report example shown in Figure 9–7, the
time series grain is Quarter. Time series queries are valid only if the time series
grain is at the query grain or longer. Note that the PERIODROLLING function does
not have a time series grain; instead, you specify a start and end period in the
function.

■ Storage grain. The report example shown in Figure 9–7 can be computed from
daily sales or monthly sales. The grain of the source is called the storage grain. A
chronological key must be defined at this level for the query to work, but
performance is generally much better if a chronological key is also defined at the
query grain.

Note that queries against time series data must be an exact match to hit the query
cache. See Oracle Fusion Middleware System Administrator's Guide for Oracle Business
Intelligence Enterprise Edition for more information about the Oracle BI Server query
cache.

The following sections describe the time series conversion functions:

■ About the AGO Function

■ About the TODATE Function

■ About the PERIODROLLING Function

About the AGO Function
The AGO function offsets the time dimension to display data from a past period. This
function is useful for comparisons, such as Dollars compared to Dollars a Quarter Ago.
Note that the value of "Dollars Qago" for month 2008/08 equals the value of "Dollars"
for month 2008/05.

Figure 9–8 shows example values for the Dollars and Dollars Qago measures.

Figure 9–8 Example Dollars and Dollars Qago Measures

In the example shown in Figure 9–8, the Dollars Qago measure is derived from the
Dollars measure.

In Expression Builder, the AGO function has the following template:

Modeling Time Series Data

Working with Logical Dimensions 9-23

Ago(<<Measure>>, <<Level>>, <<Number of Periods>>)

<<Measure>> represents the logical measure column from which you want to derive.
In this example, you would select the measure "Dollars" from your existing logical fact
tables.

<<Level>> is the optional time series grain you want to use. In this example, you
would select "Quarter" from your time dimension.

<<Number of Periods>> is the size of the offset, measured in the grain you
provided in the <<Level>> argument. For example, if the <<Level>> is Quarter and
the <<Number of Periods>> is 2, the function displays dollars from two quarters
ago.

Using this function template, you can create an expression for a One Quarter Ago
measure, as follows:

Ago("Sales"."Base Measures"."Dollars" , "Sales"."Time MonthDim"."Quarter" , 1)

The <<Level>> parameter is optional. If you do not want to specify a time series
grain in the AGO function, the function uses the query grain as the time series grain.

For example, you could define Dollars_Ago as Ago(Dollars, 1). Then, you could
perform the following logical query:

SELECT Month, Dollars, Dollars_Ago

The result is the same as if you defined Dollars_Ago as Ago(Dollars, Month, 1).
Alternatively, you could perform the following logical query:

SELECT Quarter, Dollars, Dollars_Ago

The result is the same as if you defined Dollars_Ago as Ago(Dollars, Quarter,
1).

See "AGO" for additional information about the AGO function syntax.

About the TODATE Function
The TODATE function accumulates the measure from the beginning of the time series
grain period to the current displayed query grain period. For example, Figure 9–9
shows a report with the measure "Dollars QTD," which is the Quarter To Date version
of the "Dollars" measure.

Figure 9–9 Example Dollars and Dollars QTD Measures

In the example shown in Figure 9–9, Dollars QTD for Month 2008/05 is the sum of
Dollars for 2008/04 and 2008/05. In other words, Dollars QTD is the sum of the values
for all the query grain periods (month) for the current time series grain period
(quarter). The accumulation starts over for the next quarter.

In the example shown in Figure 9–9, the Dollars QTD measure is derived from the
Dollars measure.

In Expression Builder, the TODATE function has the following template:

ToDate(<<Measure>>, <<Level>>)

Modeling Time Series Data

9-24 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

<<Measure>> represents the logical measure column from which you want to derive.
In this example, you would select the measure "Dollars" from your existing logical fact
tables.

<<Level>> is the time series grain you want to use. In this example, you would select
"Quarter" from your time dimension.

Using this function template, you can create the following expression for the measure:

ToDate("Sales"."Base Measures"."Dollars" , "Sales"."Time MonthDim"."Quarter")

Note that the query grain is specified in the query itself at run time. For example, this
measure can display Quarter To Date at the Day grain, but still accumulates up to the
end of the Quarter.

See "TODATE" for additional information about TODATE function syntax.

About the PERIODROLLING Function
The PERIODROLLING function lets you perform an aggregation across a specified set
of query grain periods, rather than within a fixed time series grain. The most common
use is to create rolling averages, such as "13-week Rolling Average."

Note that because this function has no time series grain, the length of the rolling
sequence is determined by the query grain. For example, "Dollars 3-Period Rolling
Average" averages the last 3 months if the query grain is Month, but averages the last 3
years if the query grain is Year.

This section describes how to build two measures using the PERIODROLLING
function: "Dollars 3-Period Rolling Sum," and "Dollars 3-Period Rolling Average."
Figure 9–10 shows a report with these two measures.

Figure 9–10 Example Dollars, Dollars 3-Period Rolling Sum, and Dollars 3-Period Rolling
Avg Measures

In the example shown in Figure 9–10, the Dollars 3-Period Rolling Sum and Dollars
3-Period Rolling Avg measures are derived from the Dollars measure.

In Expression Builder, the PERIODROLLING function has the following template:

PeriodRolling(<<Measure>>, <<Starting Period Offset>>, <<Ending Period Offset>>)

<<Measure>> represents the logical measure column from which you want to derive.
To create the measure Dollars 3-Period Rolling Sum, you would select the measure
"Dollars" from your existing logical fact tables.

<<Starting Period Offset>> and <<Ending Period Offset>> identify the
first period and last period used in the rolling aggregation, respectively. The integer is
the relative number of periods from the displayed period. In the example shown in
Figure 9–10, the query grain is month, and the 3-month rolling sum starts 2 periods in
the past and includes the current period. That is, for month 2008/07, the rolling sum
includes 2008/05, 2008/06 and 2008/07. Therefore, to create the measure Dollars
3-Period Rolling Sum, the integers to indicate these offsets are -2 and 0.

Modeling Time Series Data

Working with Logical Dimensions 9-25

Using this function template, you can create the following expression for the measure:

PeriodRolling("Sales"."Base Measures"."Dollars" , -2, 0)

The example shown in Figure 9–10 also shows a 3-month rolling average. To compute
this measure, you can divide the rolling sum that you previously created by 3 to get a
3-period rolling average. We know to divide the rolling sum by 3 because the
<<Starting Period Offset>> and <<Ending Period Offset>> fields for the
rolling sum are -2 and 0.

The expression for the 3-month rolling average is:

PeriodRolling("Sales"."Base Measures"."Dollars" , -2, 0) /3

It is usually a mistake to use the AVG function to create a rolling average. AVG
computes the average of the database rows accessed at the storage grain, but you need
an average where the denominator is the number of rolling periods at the query grain.

Note that the PERIODROLLING function includes a fourth optional hierarchy
argument that lets you specify the name of a hierarchy in a time dimension, such as
yr, mon, day, that you want to use to compute the time window. This option is
useful when there are multiple hierarchies in a time dimension, or when you want to
distinguish between multiple time dimensions. See "PERIODROLLING" for more
information about the hierarchy argument and for details on the function syntax.

Creating Logical Time Dimensions
Compared to modeling an ordinary dimension, the time dimension requires just two
additional steps: selecting the Time option in the Logical Dimension dialog, and
designating a chronological key for every level of every dimension hierarchy.

Follow these additional guidelines when modeling time series data:

■ It only makes sense to use a time series function when the data source contains
history. Usually, a relational database that contains history uses a star or snowflake
schema with an explicit time dimension table. A normalized, historical database is
much rarer, but would still include a time hierarchy with levels in a schema
similar to a snowflake. A simple date field is not adequate.

■ Oracle Business Intelligence requires the time dimension physical table (or set of
normalized tables) to be separate from the physical fact table to which it is related.

However, a somewhat common source schema pattern is a fully denormalized
relational table or flat file, where the time dimension columns are in the same table
as the facts and other dimensions. This cannot qualify as a time dimension,
because the time dimension table is combined with the fact table.

In this case, if you cannot change the model in the source, the best practice is to
create an Opaque View of the physical table containing the time columns, which
acts as the distinct physical time dimension table. This Opaque View time
dimension must then be joined to the physical table that contains the facts.

■ In the Physical layer, the time dimension table (or lowest-level table in the
normalized/snowflake case) must join directly to the fact table without
intervening tables. This join must be a foreign key join.

■ The tables in the physical model containing the time dimension cannot join to
other data sources, except at the most detailed level.

■ A member value (for example, a row in relational sources) must be physically
present for every period at every hierarchy level. There cannot be any skips in the

Modeling Time Series Data

9-26 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

sequence. Note that it does not matter whether there is fact data for every period;
only the dimension data must be complete.

■ Each unit of distance between members, such as "month," "half," or "year," must be
modeled in a separate hierarchy level.

Selecting the Time Option in the Logical Dimension Dialog
Select the Time option in the General tab of the Logical Dimension dialog to enable
time series functions on this dimension. Only logical dimensions with the Time option
selected can be used as the time dimension for the time series functions AGO, TODATE,
and PERIODROLLING.

Figure 9–11 shows the Time option in the Logical Dimension dialog.

Figure 9–11 Time Option in Logical Dimension Dialog

Setting Chronological Keys for Each Level
Designate a chronological key for every level of each dimension hierarchy. This key
must meet the requirements of being sequential (the members have a natural order),
cardinal (all members are spaced the same distance apart at a given level, such as day
or month), and complete (no members missing).

The Oracle BI Server uses the chronological key to create mathematically correct time
series predictions, such as Jan + 2 months = Mar. You should set a chronological key
for every level (except for the Grand Total level) so that you can perform time series
operations on all levels with good performance. This enables you to use an AGO,
TODATE, or PERIODROLLING function for any level of any time dimension hierarchy,
such as fiscal month ago, calendar year ago, and day ago.

Theoretically, time series functions operate correctly if only the bottom level key in the
Logical Dimension is chronological. In practice, however, this causes performance
problems because it forces the physical query to use the lowest grain, causing joins of
orders of magnitude more rows (for example, 365 times more rows for a "year ago"
joining at the "day" grain). It also means higher-level aggregate tables are never
selected by the query planner when using the time series functions, which again
significantly slows the query.

Modeling Time Series Data

Working with Logical Dimensions 9-27

As with any level key, be sure the key is unique at its level. For example, a column
containing simple month names such as "January" is not unique unless it is
concatenated to a column containing year names.

Figure 9–12 shows how to designate a chronological key in the Logical Level dialog.

Figure 9–12 Designating a Chronological Key in the Logical Level Dialog

Creating AGO, TODATE, and PERIODROLLING Measures
You can build time series measures by creating derived expressions from base
measures. To do this, create a new logical column and select Derived from existing
columns using an expression, then open Expression Builder to build the appropriate
time series function.

Follow these guidelines when modeling time series functions:

■ Time series functions cannot be derived from measures that use the fragmentation
form of federation. This rule prevents some complex boundary conditions and
cross-source assumptions in the query generation and result merging, such as the
need to join some time dimension rows from one source to some of the fact rows in
a different source.

■ To reduce maintenance and increase accuracy, it is best to create a single base
measure, and then derive a family of time series measures from it. For example,
start with a base measure, then define variations for month-ago, year-ago,
month-to-date, and so on. To do this, select Derived from existing columns using
an expression and refer to the base measure in the expression.

Example 9–3 shows how to build the AGO measure. See Appendix C, "Logical SQL
Reference" for detailed syntax for the other time series functions, TODATE and
PERIODROLLING.

Example 9–3 Creating the AGO Measure

This example explains how to create one of the derived AGO measures in the
Sampleapp demonstration repository.

1. In the Business Model and Mapping layer, create a new logical column. Name the
column 2-04 Billed Qty (Mago).

2. In the Column Source tab, select Derived from existing columns using an
expression and click the Expression Builder button.

3. In Expression Builder, select the Ago function to create a template for the
arguments. To do this, select Functions in the Category pane, Time Series
Functions in the Functions pane, and Ago in the Time Series Functions pane.

Figure 9–13 shows the AGO function in Expression Builder.

Modeling Time Series Data

9-28 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 9–13 AGO Function in Expression Builder

4. Select the first argument, Measure, then use the selection panes to select the base
measure from which to derive this column. In this example, select "Sample
Sales"."F0 Rev Base Measures"."2-01 Billed Qty (Sum All)."

5. Select the second argument, Level, then use the selection panes to select the unit of
the ago offset. It must be defined as a level of the time dimension, so that it can
take advantage of the chronological keys built in the time dimension. In this
example, select Time Dimensions in the Category pane, HO Time in the Time
Dimensions pane, and Month in the HO Time pane.

Figure 9–14 shows the Month level in Expression Builder.

Figure 9–14 Selecting the Level Argument in Expression Builder

6. Select the third argument, Number of Periods, and enter the size of the offset you
want to use for this measure. In this example, type 1.

Modeling Time Series Data

Working with Logical Dimensions 9-29

7. Click OK in the Expression Builder dialog, then click OK in the Logical Column
dialog.

Modeling Time Series Data

9-30 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

10

Managing Logical Table Sources (Mappings) 10-1

10Managing Logical Table Sources (Mappings)

Logical table sources define the mappings from a single logical table to one or more
physical tables. The physical to logical mapping can also be used to specify
transformations that occur between the Physical layer and the Business Model and
Mapping layer, as well as to enable aggregate navigation and fragmentation.

One logical table source folder exists for each logical table. The folder contains one or
more logical table sources. You can also view logical table sources from the Sources
tab of the Logical Table dialog.

Logical tables can have many physical table sources. A single logical column might
map to many physical columns from multiple physical tables, including aggregate
tables that map to the column if a query asks for the appropriate level of aggregation
on that column.

This chapter contains the following topics:

■ Creating Logical Table Sources

■ Defining Physical to Logical Table Source Mappings and Creating Calculated
Items

■ Defining Content of Logical Table Sources

■ Working with Parent-Child Settings in the Logical Table Source

■ Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data

■ Setting Up Fragmentation Content for Aggregate Navigation

Creating Logical Table Sources
When you create logical tables and columns by dragging and dropping from the
Physical layer, the logical table sources are generated automatically. If you create the
logical tables manually, you need to also create the sources manually.

You also add new logical table sources when multiple physical tables can be the source
of information. For example, many tables could hold information for revenue. You
might have three different business units (each with its own order system) where you
get revenue information. In another example, you might periodically summarize
revenue from an orders system or a financial system and use this table for high-level
reporting.

Use the General tab of the Logical Table Source dialog to define general properties for
the logical table source.

To create a logical table source:

Creating Logical Table Sources

10-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

1. In the Business Model and Mapping layer of the Administration Tool, right-click a
logical table and select New Object, then select Logical Table Source.

2. In the Logical Table Source dialog, in the General tab, type a name for the logical
table source.

3. Click the Add button. In the Browse dialog, you can view joins and select tables
for the logical table source. When there are two or more tables in a logical table
source, all of the participating tables must have joins defined between them.

4. To view the joins, in the Browse dialog, select a table and click View. After
reviewing the joins in the Physical Table dialog, click Cancel.

5. To add tables to the table source, select the desired tables in the Name list and
click Select.

6. Optionally, in the Priority Group field, enter a priority group number for this
logical table source. See "Setting Priority Group Numbers for Logical Table
Sources" for more information.

7. In the Logical Table Source dialog, click the Column Mapping tab and complete
the fields. See "Defining Physical to Logical Table Source Mappings and Creating
Calculated Items" for instructions.

8. In the Logical Table dialog, click the Content tab and complete the fields. See
"Defining Content of Logical Table Sources" for instructions.

9. Click OK.

Setting Priority Group Numbers for Logical Table Sources
You can set priority group numbers to determine which logical table source should be
used for queries for which there is more than one logical table source that can satisfy
the requested set of columns.

For example, you might have user queries that can be fulfilled by both a data
warehouse and an OLTP source. Often, access to an operational system is "expensive,"
while access to a data warehouse is "cheap." In this situation, you can assign a higher
priority to the data warehouse to ensure that all queries are fulfilled by the data
warehouse if possible.

Note that the priority group of a given logical table source does not always ensure that
a particular query will be fulfilled by that source. Priority group assignments are only
one of many factors used by the Oracle BI Server to determine which logical table
source to select for a given query. However, the logical table source priority is the
most significant metric and is considered before any other cost metric.

To assign priority group numbers, rank your logical table sources in numeric order,
with 0 being the highest-priority source. You can assign the same number to multiple
sources. For example, you can have two logical table sources in priority group 0, two
logical table sources in priority group 1, and so on. Often, only two priority groups are
necessary (0 and 1).

Assigning priority groups is optional. All logical table sources are set to priority 0 by
default.

In some situations, you might want to allow users to reverse the normal logical table
source priority ranking at query time. To accomplish this, you can use a combination
of session variables and request variables with logical table source priority groups.
This feature provides a way to dynamically select a source at run time, depending on
user preference.

Creating Logical Table Sources

Managing Logical Table Sources (Mappings) 10-3

To enable this dynamic selection, you must first create the REVERSIBLE_LTS_
PRIORITY_SA_VEC session variable in the repository. Create this variable as a string
vector session variable that uses a row-wise session initialization block. REVERSIBLE_
LTS_PRIORITY_SA_VEC should list the subject areas for which you want to allow
users to reverse the logical table source priority ranking. You must define this variable
to enable priority ranking reversal.

After you have defined the set of subject areas for which you want to allow priority
ranking reversal, users can include the request variable REVERSE_LTS_PRIORITY
with their queries to reverse the logical table source priority ranking. This request
variable can be set to 1 to reverse the logical table source priority, or 0 to keep the
normal logical table source priority.

As an alternative to using a request variable at query time, you can also define a
predetermined set of subject areas for which the logical table source priority should be
permanently reversed. To do this, create the session variable REVERSED_LTS_
PRIORITY_SA_VEC in the repository. Create this variable as a string vector session
variable that uses a row-wise session initialization block. REVERSED_LTS_
PRIORITY_SA_VEC should list the subject areas for which you want the logical table
source priority to be permanently reversed.

See "Creating Session Variables" for more information about how to define session
variables in the Administration Tool.

Example of REVERSIBLE_LTS_PRIORITY_SA_VEC
You could create a table called SA_TABLE that contains two columns: SUBJECT_
AREA_NAME and REVERSIBLE. This table could contain rows mapping subject area
names to their reversible values (1 or 0), as follows:

Then, you would create a string vector session variable called REVERSIBLE_LTS_
PRIORITY_SA_VEC with a row-wise session initialization block. The initialization
string for this initialization block could be similar to the following:

SELECT 'REVERSIBLE_LTS_PRIORITY_SA_VEC', SUBJECT_AREA_NAME FROM SA_TABLE
WHERE REVERSIBLE=1

Figure 10–1 shows the Session Variable Initialization Block dialog for this example.

SUBJECT_AREA_NAME REVERSIBLE

my_sa_1 1

my_sa_2 0

Defining Physical to Logical Table Source Mappings and Creating Calculated Items

10-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 10–1 Session Variable Initialization Block Dialog for REVERSIBLE_LTS_
PRIORITY_SA_VEC Example

Defining Physical to Logical Table Source Mappings and Creating
Calculated Items

Use the Column Mapping tab of the Logical Table Source dialog to map logical
columns to physical columns. The physical to logical mapping can also be used to
specify transformations that occur between the Physical layer and the Business Model
and Mapping layer. The transformations can be simple, such as changing an integer
data type to a character, or more complex, such as applying a formula to find a
percentage of sales per unit of population. Applying these transformations is typically
referred to as creating calculated items.

The data type of a logical column is determined by its logical table source mappings.
For example, if a logical column has one physical source with a data type of
VARCHAR(50) not-nullable, and another physical source with a data type of
VARCHAR(20), nullable, then the data type of the logical column is VARCHAR(50)
nullable. This final type is called a promoted type. Because of the rules governing
logical table source mappings, you cannot map physical sources with data types that
cannot be promoted (such as an INT with a VARCHAR).

Defining Physical to Logical Table Source Mappings and Creating Calculated Items

Managing Logical Table Sources (Mappings) 10-5

To map logical columns to physical columns:

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a logical table source.

2. In the Logical Table Source dialog, click the Column Mapping tab.

3. In the Column Mapping tab, maximize or enlarge the dialog to show all the
contents, as shown in Figure 10–2.

In the Column Mapping tab, in the Logical column to physical column mapping
area, you can sort the rows (toggle among ascending order, descending order, and
then restore original order) by clicking a column heading.

Figure 10–2 Column Mapping Tab of Logical Table Source Dialog

4. In the Physical Table column, select the table that contains the column you want
to map.

When you select a cell in the Physical Table column, a list appears. It contains a list
of tables currently included in this logical table source.

5. In the Expression column, select the physical column corresponding to each
logical column.

When you select a cell in the Expression column, a list appears. It contains a list of
physical columns currently included in this logical table source.

6. To open Expression Builder, click the Expression Builder button.

All columns used in creating physical expressions must be in tables included in
the logical table source. You cannot create expressions involving columns in tables
outside the source.

You can use Expression Builder to create calculated items, in which formulas are
applied pre-aggregation. For example, to create the measure "tons sold" using the
columns units_sold and unit_weight, you apply a pre-aggregation formula
(fact.units_sold*product.unit_weight), and then apply the aggregation rule SUM in

Defining Content of Logical Table Sources

10-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

the measure object. Another example is using CAST to transform a column of type
TIMESTAMP to type DATE for faster display in Answers and other clients (for
example, CAST("DB"."."TABLE"."COL" AS DATE)).

You can also conform sources by creating expressions that perform
transformations on physical data. For example, you can use the CAST function to
transform a column with a character data type to an integer data type, to match
data coming from a second logical table source. Other examples include using
CONCATENATE or math functions to make similar transformations on physical
data.

See "Creating Derived Columns" for calculations that need to occur
post-aggregation.

7. To remove a column mapping, click the Delete button. You might need to scroll to
the right to locate the Delete button.

8. After you map the appropriate columns, click OK.

Unmapping a Logical Column from Its Source
In the Logical Column dialog, the Column Source tab contains information about the
logical column. You can edit the logical table sources from which the column derives
its data, or unmap it from its sources.

To unmap a logical column from its source:

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a logical column.

2. In the Logical Column dialog, click the Column Source tab.

3. In the Logical Table Source list, select a source and click Unmap.

4. Click OK.

Defining Content of Logical Table Sources
To use a source correctly, the Oracle BI Server has to know what each source contains
in terms of the business model. Therefore, you need to define aggregation content for
each logical table source of a fact table. The aggregation content rule defines at what
level of granularity the data is stored in this fact table. For each dimension that relates
to this fact logical table, define the level of granularity, making sure that every related
dimension is defined. See "Setting Up Aggregate Navigation by Creating Sources for
Aggregated Fact Data" for more information.

If a logical table is sourced from a set of fragments, it is not required that every
individual fragment maps the same set of columns. However, the server returns
different answers depending on how columns are mapped.

■ If all the fragments of a logical table map the same set of columns, than the set of
fragmented sources is considered to be the whole universe of logical table sources
for the logical table. This means that measure aggregations can be calculated based
on the set of fragments.

■ If the set of mapped columns differ across the fragments, than the Oracle BI Server
assumes that it does not have the whole universe of fragments, and therefore it
would be incorrect to calculate aggregate rollups (since some fragments are
missing). In this case, the server returns NULL as measure aggregates.

Defining Content of Logical Table Sources

Managing Logical Table Sources (Mappings) 10-7

Use the Content tab of the Logical Table Source dialog to define any aggregate table
content definitions, fragmented table definitions for the source, and WHERE clauses (if
you want to limit the number of rows returned). See "Setting Up Fragmentation
Content for Aggregate Navigation" for additional information.

Verifying that Joins Exist from Dimension Tables to Fact Table
This source content information tells the Oracle BI Server what it needs to know to
send queries to the appropriate physical aggregate fact tables, joined to and
constrained by values in the appropriate physical aggregate dimension tables. Be sure
that joins exist between the aggregate fact tables and the aggregate dimension tables in
the Physical layer.

One recommended way to verify joins is to select a fact logical table and open a
Business Model Diagram (Selected Tables and Direct Joins). Only the dimension
logical tables that are directly joined to this fact logical table appear in the diagram. It
does not show dimension tables if the same physical table is used in logical fact and
dimension sources.

Figure 10–3 shows an example of how the Fact - Assess fact logical table appears in a
Business Model Diagram (Selected Tables and Direct Joins) view.

Figure 10–3 Business Model Diagram of Direct Joins for a Fact Table

Table 10–1 contains a list of the logical level for each dimension table that is directly
joined the Fact - Assess fact table shown in Figure 10–3.

Note: It is recommended that all the fragments map the same set of
columns.

Table 10–1 Dimension and Logical Level as Shown in Content Tab

Dimension Logical Level

Account Geography Postal Code Detail

Person Geography Postal Code Detail

Defining Content of Logical Table Sources

10-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

To create logical table source content definitions:

1. In the Business Model and Mapping layer of the Administration Tool, double-click
a logical table source.

2. In the Logical Table Source dialog, click the Content tab and perform the following
steps using Table 10–2 as a guide.

3. If a logical source is an aggregate table and you have defined logical dimensions,
select Logical Level from the Aggregation content, group-by list. Then, in the
Logical Level list, select the appropriate level for each logical dimension table to
which the logical fact table is joined.

You should specify a logical level for each dimension, unless you are specifying
the Grand Total level. Dimensions with no level specified are interpreted as being
at the most detailed level.

4. To specify fragmented table definitions for the source, use the Fragmentation
content box to describe the range of values included in the source when a source
represents a portion of the data at a given level of aggregation.

Time Day Detail

Account Organization Account Detail

Opportunity Opty Detail

Primary Visibility
Organization

Detail

Employee Detail

Assessment Detail

Contact (W_PERSON_D) Detail

FINS Time Day

Positions Details

Caution: Although you have the option to specify aggregate content
by logical level or column, it is recommended that you use logical
levels exclusively. If you must define content by columns, do the
following:

1. Select Column from the Aggregation content, group-by list.

2. In the Table pane, select each logical dimension table that defines the
aggregation level of the source.

3. In the Column pane, select the logical column for each dimension that
defines how the aggregations were grouped.

When there are multiple logical columns that could be used, select
the one that maps to the key of the source physical table. For
example, if data has been aggregated to the Region logical level,
pick the logical column that maps to the key of the Region table.

Do not mix aggregation by logical level and column in the same
business model.

Table 10–1 (Cont.) Dimension and Logical Level as Shown in Content Tab

Dimension Logical Level

Defining Content of Logical Table Sources

Managing Logical Table Sources (Mappings) 10-9

You can type the formula directly into the box, or click the Expression Builder
button to the right of the box. In the Expression Builder for Fragmentation
Content, you can specify content in terms of existing logical columns. See "Setting
Up Fragmentation Content for Aggregate Navigation" for additional information.

5. Select This source should be combined with other sources at this level.

This option is only for multiple sources that are at the same level of aggregation.
For example, one logical table source might point to records for people with last
names A-M, while a second logical table source might point to records for people
with last names N-Z.

6. (Optional) To limit the number of rows the source uses in the resultant table,
specify WHERE clause filters in the box labeled Use this "WHERE clause" filter to
limit rows returned (exclude the "WHERE"). You can enter the WHERE clause
directly, or you can click the Expression Builder button to open the Expression
Builder, create the WHERE clause, and click OK.

See "About WHERE Clause Filters" for more information.

7. If the values for the source are unique, select the option Select distinct values.

Table 10–2 Content Tab Options for Logical Table Source

Options Description

Aggregation content, group
by

How the content is aggregated.

More button When you click More, the following options appear:

■ Copy. (Available only for fact tables) Copies aggregation
content to the Windows clipboard. You can paste the
Dimension.Level info into a text editor and use it for
searching or for adding to documentation.

Note that Copy is not available if the expression is empty.

■ Copy from. (Available for fact tables and dimension tables)
Copies aggregation content from another logical table
source in the same business model. You need to specify the
source from which to copy the aggregation content.
(Multiple business models appear but only the logical table
sources from the current business model are selectable.)

■ Get Levels. (Available only for fact tables) Changes
aggregation content. If joins do not exist between fact table
sources and dimension table sources (for example, if the
same physical table is in both sources), the aggregation
content determined by the Administration Tool does not
include the aggregation content of this dimension.

■ Check Levels. (Available only for fact tables) Checks the
aggregation content of logical fact table sources (not
dimension table sources). The information returned
depends on the existence of dimensions and hierarchies
with logical levels and level keys, and physical joins
between tables in dimension table sources and the tables in
the fact table source. (If the same tables exist in the fact and
dimension sources and there are no physical joins between
tables in the sources, Check Levels does not include the
aggregation content of this dimension.)

Working with Parent-Child Settings in the Logical Table Source

10-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

About WHERE Clause Filters
The WHERE clause filter is used to constrain the physical tables referenced in the logical
table source. If there are no constraints on the aggregate source, leave the WHERE
clause filter blank.

Each logical table source should contain data at a single intersection of aggregation
levels. You would not want to create a source, for example, that had sales data at both
the Brand and Manufacturer levels. If the physical tables include data at multiple
levels, add an appropriate WHERE clause constraint to filter values to a single level.

Any constraints in the WHERE clause filter are made on the physical tables in the
source.

Working with Parent-Child Settings in the Logical Table Source
Sometimes, a logical table is part of a dimension with a parent-child hierarchy that is
based on relational tables. When this is the case, the logical table includes both a
physical source and a source for the parent-child relationship table required for the
parent-child hierarchy. Parent-child relationship tables explicitly define the
inter-member relationships for parent-child hierarchies.

Typically, logical table sources for parent-child relationship tables are created
automatically when you run the scripts created by the Generate Parent-Child Table
Wizard. You access this wizard from the Parent-Child Table Settings dialog, available
in the dimension object.

You can view details for the parent-child relationship table source in the Parent-Child
Settings tab of the Logical Table Source dialog. The following information appears in
the tab:

■ Parent-Child Table: Shows the name of the parent-child relationship table on
which this source is based.

■ Member Key: The name of the column in the parent-child relationship table that
identifies the member.

Fragmentation content A description of the contents of a data source in business model
terms. Data is fragmented when information at the same level of
aggregation is split into multiple tables depending on the values
of the data. A common situation would be to have data
fragmented by time period. See "Setting Up Fragmentation
Content for Aggregate Navigation" for additional information.

This source should be
combined with other
sources at this level

Select this option when data sources at the same level of
aggregation do not contain overlapping information. In this
situation, all sources must be combined to get a complete
picture of information at this level of aggregation.

Select distinct values Used if the values for the source are unique.

Note: The Generate Parent-Child Table Wizard feature is not
available from the Logical Table Source dialog. You must go to the
dimension object to create scripts to generate the parent-child
relationship table.

Table 10–2 (Cont.) Content Tab Options for Logical Table Source

Options Description

Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data

Managing Logical Table Sources (Mappings) 10-11

■ Parent Key: The name of the column in the parent-child relationship table that
identifies an ancestor of the member.

■ Relationship Distance: The name of the column in the parent-child relationship
table that specifies the number of parent-child hierarchical levels from the member
to the ancestor.

■ Leaf Node Identifier: The name of the column in the parent-child relationship
table that indicates if the member is a leaf member (1=Yes, 0=No).

See "Creating Dimensions with Parent-Child Hierarchies" for more information about
parent-child relationship tables.

Setting Up Aggregate Navigation by Creating Sources for Aggregated
Fact Data

Aggregate tables store precomputed results from measures that have been aggregated
over a set of dimensional attributes. Each aggregate table column contains data at a
given set of levels. For example, a monthly sales table might contain a precomputed
sum of the revenue for each product in each store during each month. You configure
this metadata in the Content tab of the Logical Table Source dialog.

When you create a logical table source for an aggregate fact table, you should create
corresponding logical dimension table sources at the same levels of aggregation.

You need to have at least one logical dimension table source for each level of
aggregation. If the sources at each level already exist, you do not need to create new
ones.

For example, you might have a monthly sales fact table containing a precomputed
sum of the revenue for each product in each store during each month. You need to
have the following three other dimension sources, one for each of the logical
dimension tables referenced in the example:

■ A source for the Product logical table with one of the following content
specifications:

– By logical level: ProductDimension.ProductLevel

– By column: Product.Product_Name

■ A source for the Store logical table with one of the following content specifications:

– By logical level: StoreDimension.StoreLevel

– By column: Store.Store_Name

■ A source for the Time logical table with one of the following content specifications:

– By logical level: TimeDimension.MonthLevel

– By column: Time.Month

At query time, the Oracle BI Server first determines which sources have enough detail
to answer the query. Out of these sources, the Oracle BI Server chooses the most
aggregated source to answer the query, because it is assumed to be the fastest. The
most aggregated source is the one with the lowest multiplied number of elements. See
"Creating Logical Levels in a Dimension" for more information about specifying the
number of elements at each level.

Setting Up Fragmentation Content for Aggregate Navigation

10-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Setting Up Fragmentation Content for Aggregate Navigation
When a logical table source does not contain the entire set of data at a given level, you
need to specify the portion, or fragment, of the set that it does contain. You describe
the content in terms of logical columns in the Fragmentation content box in the
Content tab of the Logical Table Source dialog.

The examples in this section illustrate techniques and rules for specifying the
fragmentation content of sources.

This section contains the following topics:

■ Specifying Fragmentation Content for Single Column, Value-Based Predicates

■ Specifying Fragmentation Content for Single Column, Range-Based Predicates

■ Specifying Fragmentation Content for Aggregate Table Fragments

Specifying Fragmentation Content for Single Column, Value-Based Predicates
The IN predicates can be replaced with either an equality predicate or multiple
equality predicates separated by the OR connective.

Fragment 1:

logicalColumn IN <valueList1>

Fragment n:

logicalColumn IN <valueListN>

Specifying Fragmentation Content for Single Column, Range-Based Predicates
Fragment 1:

logicalColumn >= valueof(START_VALUE) AND logicalColumn < valueof(MID_VALUE1)

Fragment 2:

logicalColumn >= valueof(MID_VALUE1) AND logicalColumn < valueof(MID_VALUE2)

Fragment n:

logicalColumn >= valueof(MID_VALUEN-1) AND logicalColumn < valueof(END_VALUE)

Pick your start point, midpoints, and endpoint carefully.

The valueof referenced here is the value of a repository variable. If you use
repository values in your expression, note that the following construct does not work
for Fragment 2:

logicalColumn >= valueof(MID_VALUE1)+1 AND logicalColumn < valueof(MID_VALUE2)

Use another repository variable instead of valueof(MID_VALUE1)+1.

Note: Use >= and < predicates to make sure the fragment content
descriptions do not overlap. For each fragment, the upper value must
be expressed as <. You will get an error if you use <=. Likewise, you
cannot use the BETWEEN predicate to describe fragment range content.

Setting Up Fragmentation Content for Aggregate Navigation

Managing Logical Table Sources (Mappings) 10-13

The same variables, for example, valueof(MID_VALUE1), do not have to appear in
the content of both fragments. You could set another variable, and create statements of
the following form:

Fragment 1:

logicalColumn >= valueof(START_VALUE) AND logicalColumn < valueof(MID_VALUE1)

Fragment 2:

logicalColumn >= valueof(MID_VALUE2) AND logicalColumn < valueof(MID_VALUE3)

For more information about variables, see Chapter 18.

Specifying Multicolumn Content Descriptions
An arbitrary number of predicates on different columns can be included in each
content filter. Each column predicate can be value-based or range-based.

Fragment 1:

<logicalColumn1 predicate> AND <logicalColumn2 predicate > ... AND <logicalColumnM
predicate>

Fragment n:

<logicalColumn1 predicate> AND <logicalColumn2 predicate > ... AND <logicalColumnM
predicate>

Ideally, all fragments will have predicates on the same M columns. If there is no
predicate constraint on a logical column, the Oracle BI Server assumes that the
fragment contains data for all values in that logical column. See "Specifying Parallel
Content Descriptions" for exceptions using the OR predicate.

Specifying Parallel Content Descriptions
Unfortunately, the preceding techniques are still not sufficient to handle dates because
of the multiple hierarchical relationships across logical columns, such as year > year
month > date; month > year month > date. For example, consider fragments
delineated by different points in time, such as year and month. Constraining
sufficiently far back on year should be enough to drive the selection of just the
historical fragment. The parallel OR technique supports this, as shown in the next
example. This example assumes that the snapshot month was April 1, 12:00 a.m. in the
year 1999.

Fragment 1 (Historical):

EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode < VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Month in Year" < VALUEOF("Snapshot Month") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Monthname" IN ('Mar', 'Feb', 'Jan')

Fragment 2 (Current):

EnterpriseModel.Period."Day" >= VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode >= VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" > VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Month in Year" >= VALUEOF("Snapshot Month") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND

Setting Up Fragmentation Content for Aggregate Navigation

10-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

EnterpriseModel.Period."Monthname" IN ('Dec', 'Nov', 'Oct', 'Sep', 'Aug', 'Jul',
'Jun', '', 'Apr')

If the logical model does not go down to the date level of detail, then omit the
predicate on EnterpriseModel.Period."Day" in the preceding example.

Notice the use of the OR connective to support parallel content description tracks.

Examples of Parallel Content Descriptions In this section, the Track n labels in the
examples are shown to help relate the examples to the discussion that follows. You
would not include these labels in the actual fragmentation content statement.

Example 10–1 Fragment 1 (Historical)

Track 1 EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR
Track 2 EnterpriseModel.Period.MonthCode < VALUEOF("Snapshot Year Month") OR
Track 3 EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR
Track 4 EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Month in Year" < VALUEOF("Snapshot Month") OR

Track 5 EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Monthname" IN ('Mar', 'Feb', 'Jan')

For example, consider the first track on EnterpriseModel.Period."Day." In the
historical fragment, the < predicate tells the Oracle BI Server that any queries that
constrain on Day before the Snapshot Date fall within the historical fragment.
Conversely, the >= predicate in the current fragment on Day indicates that the current
fragment does not contain data before the Snapshot Date.

The second track on MonthCode (for example, 199912) is similar to Day. It uses the <
and >= predicates, as there is a nonoverlapping delineation on month (because the
snapshot date is April 1). The key rule to remember is that each additional parallel
track must reference a different column set. Common columns can be used, but the
overall column set must be unique. The Oracle BI Server uses the column set to select
the most appropriate track.

The third track on Year (< in the historical fragment and > in the current fragment)
tells the Oracle BI Server that optimal (single) fragment selections can be made on
queries that just constrain on year. For example, a logical query on Year IN (1997,
1998) should only hit the historical fragment. Likewise, a query on Year = 2000 should
only hit the current fragment. However, a query that hits the year 1999 cannot be
answered by the content described in this track, and therefore hits both fragments,
unless additional information can be found in subsequent tracks.

The fourth track describes the fragment set for Year and Month in Year (month
integer). Notice the use of the multicolumn content description technique, described
previously. Notice the use of < and >= predicates, as there is no ambiguity or overlap
for these two columns.

The fifth track describes fragment content in terms of Year and Monthname. It uses the
value-based IN predicate technique.

As an embellishment, suppose the snapshot date fell on a specific day within a month:
therefore, multicolumn content descriptions on just year and month would overlap on
the specific snapshot month. To specify this ambiguity, <= and >= predicates are used.

Fragment 1 (Historical):

EnterpriseModel.Period."Day" < VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode <= VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" < VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND

Setting Up Fragmentation Content for Aggregate Navigation

Managing Logical Table Sources (Mappings) 10-15

EnterpriseModel.Period."Month in Year" <= VALUEOF("Snapshot Month") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Monthname" IN ('Apr', 'Mar', 'Feb', 'Jan')

Fragment 2 (Current):

EnterpriseModel.Period."Day" >= VALUEOF("Snapshot Date") OR
EnterpriseModel.Period.MonthCode >= VALUEOF("Snapshot Year Month") OR
EnterpriseModel.Period."Year" > VALUEOF("Snapshot Year") OR
EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Month in Year" >= VALUEOF("Snapshot Month") OR

EnterpriseModel.Period."Year" = VALUEOF("Snapshot Year") AND
EnterpriseModel.Period."Monthname" IN ('Dec', 'Nov', 'Oct', 'Sep', 'Aug', 'Jul',
'Jun', '', 'Apr')

Specifying Unbalanced Parallel Content Descriptions
In an order entry application, time-based fragmentation between historical and current
fragments is typically insufficient. For example, records might still be volatile, even
though they are historical records entered into the database before the snapshot date.

Assume, in the following example, that open orders can be directly updated by the
application until the order is shipped or canceled. After the order has shipped,
however, the only change that can be made to the order is to type a separate
compensating return order transaction.

There are two parallel tracks in the following content descriptions. The first track uses
the multicolumn, parallel track techniques described in the preceding section. Notice
the parentheses nesting the parallel calendar descriptions within the
Shipped-or-Canceled order status multicolumn content description.

The second parallel track is present only in the Current fragment and specifies that all
Open records are in the Current fragment only.

Fragment 1 (Historical):

Marketing."Order Status"."Order Status" IN ('Shipped', 'Canceled') AND
Marketing.Calendar."Calendar Date" <= VALUEOF("Snapshot Date") OR

Marketing.Calendar."Year" <= VALUEOF("Snapshot Year") OR
Marketing.Calendar."Year Month" <= VALUEOF("Snapshot Year Month")

Fragment 2 (Current):

Marketing."Order Status"."Order Status" IN ('Shipped', 'Canceled') AND
Marketing.Calendar."Calendar Date" > VALUEOF("Snapshot Date") OR

Marketing.Calendar."Year" >= VALUEOF("Snapshot Year") OR
Marketing.Calendar."Year Month" >= VALUEOF("Snapshot Year Month") OR
Marketing."Order Status"."Order Status" = 'Open'

The overlapping Year and Month descriptions in the two fragments do not cause a
problem, as overlap is permissible when there are parallel tracks. The rule is that at
least one of the tracks has to be nonoverlapping. The other tracks can have overlap.

Specifying Fragmentation Content for Aggregate Table Fragments
Information at a given level of aggregation is sometimes stored in multiple physical
tables. When individual sources at a given level contain information for a portion or
fragment of the domain, the Oracle BI Server needs to know the content of the sources
in order to pick the appropriate source for the query.

Setting Up Fragmentation Content for Aggregate Navigation

10-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

For example, suppose you have a database that tracks the sales of soft drinks in all
stores. The detail level of data is at the store level. Aggregate information, as described
in Figure 10–4, is stored at the city level for the sales of Coke and Pepsi, but there is no
aggregate information for the sales of 7-Up or any other of the sodas.

Figure 10–4 Aggregating Information

The goal of this type of configuration is to maximize the use of the aggregate table. If a
query asks for sales figures for Coke and Pepsi, the data should be returned from the
aggregate table. If a query asks for sales figures for all soft drinks, the aggregate table
should be used for Coke and Pepsi and the detail data for the other brands.

The Oracle BI Server handles this type of partial aggregate navigation. To configure a
repository to use aggregate fragments for queries whose domain spans multiple
fragments, you need to define the entire domain for each level of aggregate data, even
if you must configure an aggregate fragment as being based on a less summarized
physical source.

This section contains the following topics:

■ Specifying the Aggregate Table Content

■ Defining a Physical Layer Table with a Select Statement to Complete the Domain

■ Specifying the SQL Virtual Table Content

■ Creating Physical Joins for the Virtual Table

Specifying the Aggregate Table Content
You configure the aggregate table navigation in the logical table source mappings. In
the soft drink example, the aggregate table contains data for Coke and Pepsi sales at
the city level. Its Aggregate content specification (in the Content tab of the Logical
Table Source window) is similar to the following:

Group by logical level:

GeographyDim. CityLevel, ProductDim.ProductLevel

Its Fragmentation content specification (also in the Content tab of the Logical Table
Source dialog) is similar to the following:

SoftDrinks.Products.Product IN ('Coke', 'Pepsi')

Setting Up Fragmentation Content for Aggregate Navigation

Managing Logical Table Sources (Mappings) 10-17

This content specification tells the Oracle BI Server that the source table has data at the
city and product level for two of the products. Additionally, because this source is a
fragment of the data at this level, you must select This source should be combined
with other sources at this level, in the Content tab of the Logical Table Source dialog,
to indicate that the source combines with other sources at the same level.

Defining a Physical Layer Table with a Select Statement to Complete the Domain
The data for the rest of the domain (the other types of sodas) is all stored at the store
level. To define the entire domain at the aggregate level (city and product, in this
example), you need to have a source that contains the rest of the domain at this level.
Because the data at the store level is at a lower (that is, more detailed) level than at the
city level, it is possible to calculate the city and product level detail from the store and
product detail by adding up the product sales data of all of the stores in a city. This
can be done in a query involving the store and product level table.

One way to do this is to define a table in the Physical layer with a Select statement that
returns the store level calculations. To define the table, create a table in the Physical
layer by right-clicking the physical schema object that the SELECT statement will be
querying and selecting New Physical Table. Choose Select from the Table Type list,
and type the SQL statement in the Default Initialization String box.

The SQL statement must define a virtual table that completes the domain at the level
of the other aggregate tables. In this case, there is one existing aggregate table, and it
contains data for Coke and Pepsi by city. Therefore, the SQL statement has to return
all of the data at the city level, except for the Coke and Pepsi data.

Specifying the SQL Virtual Table Content
Next, create a new logical table source for the Sales column that covers the remainder
of the domain at the city and product level. This source contains the virtual table
created in the previous section. Map the Dollars logical column to the USDollars
physical column in this virtual table.

The Aggregate content specification (in the Content tab of the Logical Table Source
dialog) for this source is:

Group by logical level:

GeographyDim.CityLevel, ProductDim.ProductLevel

This tells the Oracle BI Server this source has data at the city and product level.

The Fragmentation content specification might be:

SoftDrinks.Products.Product = '7-Up'

Additionally, because it combines with the aggregate table containing the Coke and
Pepsi data at the city and product level to complete the domain, you need to select the
option in the Content tab of the Logical Table Source dialog indicating that the source
is combined with other sources at the same level.

Creating Physical Joins for the Virtual Table
Construct the correct physical joins for the virtual table. Notice that CityProductSales2
joins to the Cities and Products tables in Figure 10–5.

Setting Up Fragmentation Content for Aggregate Navigation

10-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 10–5 Example Physical Joins

In this example, the two sources comprise the whole domain for soda sales. A domain
can have many sources. The sources have to all follow the rule that each level must
contain sources that, when combined, comprise the whole domain of values at that
level. Setting up the entire domain for each level helps ensure that queries asking for
Coke, Pepsi, and 7-Up do not leave out 7-Up. It also helps ensure that queries
requesting information that has been precomputed and stored in aggregate tables can
retrieve that information from the aggregate tables, even if the query requests other
information that is not stored in the aggregate tables.

11

Creating and Maintaining the Presentation Layer 11-1

11Creating and Maintaining the Presentation
Layer

The Presentation layer provides a way to present customized, secure, role-based views
of a business model to users. Role-based views provide object security and also
provide a way to hide some of the complexity of the business model. The Presentation
layer also provides some of the functionality of the metadata model, such as the ability
to set an implicit fact column.

Presentation layer views are called subject areas (formerly called presentation
catalogs). You can have a subject area that is identical to your business model, or you
can provide smaller, role-based subject areas that show a single subject, or that
support a particular business role. Create subject areas that help you organize your
content in a way that makes sense for your users.

After you have created the Business Model and Mapping layer, you can drag and drop
entire business models to the Presentation layer in the Administration Tool.
Alternatively, you can create subject areas and other Presentation layer objects
manually.

This chapter explains how to use the Administration Tool to create and edit objects in
the Presentation layer of a repository.

This chapter contains the following topics:

■ Creating and Customizing the Presentation Layer

■ Working with Subject Areas

■ Working with Presentation Tables and Columns

■ Working with Presentation Hierarchies and Levels

■ Setting Permissions for Presentation Layer Objects

■ Creating Aliases (Synonyms) for Presentation Layer Objects

Creating and Customizing the Presentation Layer
The Presentation layer provides a way to present customized views of a business
model to users. Subject areas in the Presentation layer appear as catalogs to client tools
that use the Oracle BI Server as an ODBC data source. Subject areas contain
presentation tables, columns, hierarchies, and levels.

Even though the Logical SQL requests from Answers and other clients query the
presentation tables and columns, the real logic for entities, relationships, joins, and so
on is in the Business Model and Mapping layer. The primary function of the

Creating and Customizing the Presentation Layer

11-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Presentation layer is to provide custom names, dictionary entries, organization, and
security for different groups of users.

This section contains the following topics:

■ Creating Subject Areas

■ Removing Unneeded or Unwanted Columns

■ Renaming Presentation Columns to User-Friendly Names

■ Exporting Logical Keys in the Subject Area

■ Setting an Implicit Fact Column in the Subject Area

■ Maintaining the Presentation Layer

Creating Subject Areas
There are several ways to create subject areas in the Presentation layer. The
recommended method is to drag and drop a business model from the Business Model
and Mapping layer to the Presentation layer, and then modify the Presentation layer
based on what you want users to see. You can move columns between presentation
tables, remove columns that do not need to be seen by the users, or even present all of
the data in a single presentation table. You can create presentation tables to organize
and categorize measures in a way that makes sense to your users.

You can also duplicate an existing subject area and its corresponding business model.
See "Duplicating a Business Model and Subject Area" for more information.

Although each subject area must be populated with contents from a single business
model, you can create multiple subject areas for one business model. For very large
business models, you may want to do this to help users work with the content. Users
in Oracle BI Answers can create queries that span multiple subject areas, as long as the
subject areas correspond to the same business model.

There are many ways to create multiple subject areas from a single business model.
One method is to drag a particular business model to the Presentation layer multiple
times, then edit the properties or objects of the resulting subject areas as needed.

For example, if you have a business model called ABC that contains the Geography
and Products dimensions, you can drag it to the Presentation layer twice. Two
subject areas are created, with the default names ABC and ABC#1. You can then edit
the subject areas as follows:

■ Rename the ABC subject area to DEF, then delete the Geography presentation
hierarchy

■ Rename the ABC#1 subject area to XYZ, then delete the Products presentation
hierarchy

Users in Oracle BI Answers can then run queries that span both the DEF subject area
(containing the Products hierarchy), and the XYZ subject area (containing the
Geography hierarchy).

Automatically Creating Subject Areas Based on Logical Stars and Snowflakes
You can automatically create one subject area for each logical star or logical snowflake
in your business model. Logical stars and logical snowflakes are both composed of a
centralized fact table connected to multiple dimension tables. This feature provides
another way to create multiple subject areas from a single business model.

Creating and Customizing the Presentation Layer

Creating and Maintaining the Presentation Layer 11-3

To create a subject area for each fact table that is part of a logical star or snowflake,
right-click the business model and select Create Subject Areas for Logical Stars and
Snowflakes. The new subject areas are automatically created, each containing a fact
table and only the dimension tables with which it is associated. This option is available
for any business model that contains logical stars or logical snowflakes.

For example, if you choose this option for the SampleApp business model with nine
fact tables, nine corresponding subject areas are created, each with one fact table and
its associated dimension tables. Subject areas are also created for lookup tables.
Figure 11–1 shows exactly how the logical fact tables and dimension tables are
modeled in the Presentation layer.

Figure 11–1 Creating Subject Areas for Logical Stars and Snowflakes in SampleApp

Removing Unneeded or Unwanted Columns
One important reason to use a custom Presentation layer is to make the schema as easy
to use and understand as possible. Therefore, users should not be able to view
columns that have no meaning to them. The following columns are examples of
columns that you might want to remove from the Presentation layer:

■ Key columns that have no business meaning

Creating and Customizing the Presentation Layer

11-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Columns that users do not need to view (for example, codes, when text
descriptions exist)

■ Columns that users are not authorized to see

Renaming Presentation Columns to User-Friendly Names
By default, presentation columns have the same name as the corresponding logical
column in the Business Model and Mapping layer. It is recommended to keep
presentation column names and their source logical column names synchronized to
reduce maintenance. To do this, ensure that Use Logical Column Name is selected in
the Presentation Column dialog.

In some cases, however, you may want a different presentation column name to be
shown to users. To do this, change the name of the presentation column in the
Presentation Column dialog.

When you change the name of a presentation column, an alias is automatically created
for the old name, so compatibility to the old name remains. See "Creating Aliases
(Synonyms) for Presentation Layer Objects" for more information about aliases.

Note that you cannot rename a Presentation layer object to a name that is already in
use as an alias for an object of the same type.

Exporting Logical Keys in the Subject Area
For each subject area in the Presentation layer, you can decide whether to export any
logical keys as key columns to tools that access it. Exporting logical keys is irrelevant
to users of Oracle BI Presentation Services, but it may be advantageous for some query
and reporting tools. If you decide to export logical keys, make sure that the logical key
columns exist in the table folders. In this situation, your business model should use
logical key/foreign key joins.

When you select the option Export logical keys in the Subject Area dialog, any
columns in the Presentation layer that are key columns in the Business Model and
Mapping layer are listed as key columns to any ODBC client. This is the default
selection. In most situations, this option should be selected.

Setting an Implicit Fact Column in the Subject Area
For each subject area in the Presentation layer, you can set an implicit fact column. The
implicit fact column is added to a query when it contains columns from two or more
dimension tables and no measures. The column is not visible in the results. It is used
to specify a default join path between dimension tables when there are several possible
alternatives or contexts.

Maintaining the Presentation Layer
There is no automatic way to synchronize all changes between the Business Model and
Mapping layer and the Presentation layer. For example, if you add logical columns to
an existing logical table, or edit existing columns, you must manually update the
corresponding Presentation layer objects.

Note: If you are using a tool that issues parameterized SQL queries,
such as Microsoft Access, do not select the option Export logical keys.
This stops the tool from issuing parameterized queries.

Working with Subject Areas

Creating and Maintaining the Presentation Layer 11-5

However, the Administration Tool can automatically synchronize the name of
presentation columns with their corresponding logical column names. To take
advantage of this feature, ensure that Use Logical Column Name is selected in the
Presentation Column dialog.

In some cases, if there are many changes to a logical table or even to an entire business
model, it is easiest to delete the corresponding presentation table or subject area, and
then and drag and drop the updated logical objects to the Presentation layer. For this
reason, it is best to wait until the Business Model and Mapping layer is relatively
stable before adding customizations in the Presentation layer.

Working with Subject Areas
In the Presentation layer, subject areas enable you to show different views of a
business model to different sets of users. Subject areas have to be populated with
contents from a single business model. They cannot span business models.

Typically, subject areas are created automatically by dragging and dropping business
models from the logical layer.

To edit the properties of a subject area:

1. In the Presentation layer, double-click a subject area. The Subject Area dialog is
displayed.

2. In the General tab, you can change the name for the subject area. Note that aliases
are created automatically whenever presentation objects are renamed, so that any
queries using the original name do not break.

Also, a subject area cannot have the same name as any of its child presentation
tables. For example, you cannot have a subject area called Customer that has a
Customer table within it.

3. To set permissions for this subject area, click Permissions. See "Setting Permissions
for Presentation Layer Objects" for more information.

4. Select Custom display name or Custom description to dynamically display a
custom name or custom description based on a session variable, typically for
localization purposes. See "Localizing Oracle Business Intelligence" in Oracle
Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for more information about localization.

5. The Business model list displays the business model for this subject area.

6. To expose the logical keys to other applications, select the option Export logical
keys.

In most situations, this option should be selected. Many client tools differentiate
between key and nonkey columns, and the option Export logical keys provides
client tools access to the key column metadata. Any join conditions the client tool
adds to the query, however, are ignored, because the Oracle BI Server uses the
joins defined in the repository.

Note: If you are using a tool that issues parameterized SQL queries,
such as Microsoft Access, do not select the Export logical keys option.
Not exporting logical keys stops the tool from issuing parameterized
queries.

Working with Presentation Tables and Columns

11-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

7. Optionally, you can set an Implicit Fact Column. This column is added to a query
when it contains columns from two or more dimension tables and no measures.
The column is not visible in the results. It is used to specify a default join path
between dimension tables when there are several possible alternatives or contexts.

8. Optionally, type a description. This description appears in a mouse-over tooltip
for the subject area in Oracle BI Answers.

9. In the Presentation Tables tab, you can add, remove, edit, or reorder the
presentation tables for this subject area.

10. Use the Aliases tab to specify or delete aliases for this subject area. See "Creating
Aliases (Synonyms) for Presentation Layer Objects" for more information about
aliases.

11. Click OK.

Working with Presentation Tables and Columns
Presentation tables and presentation columns appear as folders and columns in Oracle
BI Answers. You can customize presentation tables and presentation columns to help
users craft queries based on their business needs.

This section contains the following topics:

■ Creating and Managing Presentation Tables

■ Creating and Managing Presentation Columns

Creating and Managing Presentation Tables
You can use presentation tables to organize columns into categories that make sense to
the user community. A presentation table can contain columns from one or more
logical tables. The names and object properties of the presentation tables are
independent of the logical table properties.

Typically, presentation tables are created automatically by dragging and dropping
logical tables from the logical layer.

To edit the properties of a presentation table:

1. In the Presentation layer, double-click a presentation table. The Presentation Table
dialog appears.

2. In the General tab, you can change the name for the presentation table. Note that
aliases are created automatically whenever presentation objects are renamed, so
that any queries using the original name do not break.

Also, a presentation table cannot have the same name as its parent subject area.
For example, you cannot have a subject area called Customer that has a Customer
table within it.

3. To set permissions for this presentation table, click Permissions. See "Setting
Permissions for Presentation Layer Objects" for more information.

4. Select Custom display name or Custom description to dynamically display a
custom name or custom description based on a session variable, typically for
localization purposes. See "Localizing Oracle Business Intelligence" in Oracle
Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for more information about localization.

Working with Presentation Tables and Columns

Creating and Maintaining the Presentation Layer 11-7

5. In the Columns tab, you can add, remove, edit, or reorder the presentation
columns for this presentation table.

6. In the Hierarchies tab, you can add, remove, edit, or reorder the presentation
hierarchies for this presentation table.

7. Use the Aliases tab to specify or delete aliases for this presentation table. See
"Creating Aliases (Synonyms) for Presentation Layer Objects" for more
information about aliases.

8. Click OK.

To reorder a table or sort all tables in a subject area:

1. In the Presentation layer, double-click a subject area.

2. In the Subject Area dialog, click the Presentation Tables tab.

3. To move a table, in the Name list, select the table you want to reorder. Then, use
drag-and-drop to reposition the table, or click the Up and Down buttons.

4. To sort all tables in alphanumeric order, click the Name column heading. This
toggles the sort between ascending and descending alphanumeric order.

Nesting Folders in Answers
You can use the Administration Tool to update Presentation layer metadata to give the
appearance of nested folders in Answers. To do this, open the Properties dialog for the
presentation table that corresponds to the folder you want to nest and add -> to the
beginning of the Description field.

For example, to nest the Sales Facts folder in the Facts folder in Answers, place the
Sales Facts presentation table directly after the Facts presentation table in the metadata
and add -> to the Description field in the Presentation Table - Sales Facts dialog. To
nest a second folder called Marketing Facts in the Facts folder, add -> to the
Description field for the Marketing Facts presentation table and place it directly after
Sales Facts. Only two levels of nesting are supported.

Alternatively, you can prefix the name of the presentation table to be nested with a
hyphen and a space and then place the table after the presentation table in which it
nests. For example, to nest Sales Facts within Facts, place Sales Facts directly after
Facts and change its name to - Sales Facts. When Answers displays the folder name in
the left pane, it omits the hyphen and space from the folder name. However, the
hyphen and space are visible to ODBC clients.

Note that these techniques do not provide true folder nesting. If you move the parent
presentation table, the "child" presentation tables do not move with it. These
techniques only provide the appearance of nesting in Answers.

Creating and Managing Presentation Columns
The presentation column names are, by default, identical to the logical column names
in the Business Model and Mapping layer. However, you can present a different name
by clearing both the Use Logical Column Name and the Custom display name
options in the Presentation Column dialog.

To provide a convenient organization for your users, you can drag and drop a column
from a single logical table in the Business Model and Mapping layer onto multiple
presentation tables. This lets you create categories that make sense to the users. For
example, you can create several presentation tables that contain different classes of
measures: one containing volume measures, one containing share measures, one
containing measures from a year ago, and so on.

Working with Presentation Hierarchies and Levels

11-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Typically, presentation columns are created automatically by dragging and dropping
logical columns from the logical layer.

To edit the properties of a presentation column:

1. In the Presentation layer, double-click a presentation column to display the
Presentation Column dialog.

2. In the General tab, to specify a name that is different from the Logical Column
name, clear Use Logical Column Name, and then type a name for the column.
Note that aliases are created automatically whenever presentation objects are
renamed, so that any queries using the original name do not break.

3. To set permissions for this presentation column, click Permissions. See "Setting
Permissions for Presentation Layer Objects" for more information.

4. Select Custom display name or Custom description to dynamically display a
custom name or custom description based on a session variable, typically for
localization purposes. See "Localizing Oracle Business Intelligence" in Oracle
Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for more information about localization.

5. The Logical Column field displays the name of the logical column for this
presentation column. Click Edit to make any changes to the logical column object.

6. Use the Aliases tab to specify or delete aliases for this presentation column. See
"Creating Aliases (Synonyms) for Presentation Layer Objects" for more
information about aliases.

To reorder a presentation column:

1. In the Presentation layer, right-click a presentation table and select Properties.

2. Click the Columns tab.

3. Select the column you want to reorder.

4. Use drag-and-drop to reposition the column, or click the Up and Down buttons.

5. Click OK.

Working with Presentation Hierarchies and Levels
Presentation hierarchies and presentation levels provide an explicit way to expose the
multidimensional model in Oracle BI Answers. When presentation hierarchies and
levels are defined in the Presentation layer, roll-up information is displayed in the
Oracle BI Answers navigation pane, providing users with important contextual
information.

Caution: When you drag columns to presentation tables, make sure
that columns with the same name or an alias of the same name do not
already exist.

Note: You can also use the Custom display name and Custom
description fields to propagate UI hints (labels and tooltips) from an
ADF data source to display in Oracle BI Answers. See "Propagating
Labels and Tooltips from ADF Business Component Data Sources" for
more information about how to set up ADF data source UI hints.

Working with Presentation Hierarchies and Levels

Creating and Maintaining the Presentation Layer 11-9

Be aware that members in a presentation hierarchy are not visible in the Presentation
layer. Instead, you can see hierarchy members in Answers.

Most importantly, users can create hierarchy-based queries using these objects.
Presentation hierarchies expose analytic functionality such as member selection,
custom member groups, and asymmetric queries.

As with other Presentation layer objects, you can also provide localization information
and apply fine-grained access control to presentation hierarchies and levels.

If you have a repository from a previous release, note that presentation hierarchies do
not appear in the Presentation layer automatically as part of the RPD upgrade process.
You must manually create these objects by dragging logical dimensions from the
Business Model and Mapping layer to the appropriate presentation tables.

This section contains the following topics:

■ Creating and Managing Presentation Hierarchies

■ Creating and Managing Presentation Levels

Creating and Managing Presentation Hierarchies
To create a presentation hierarchy, you can drag a logical dimension hierarchy from the
Business Model and Mapping layer to a table in the Presentation layer. The
presentation hierarchy object must be located within a presentation table, unlike in the
Business Model and Mapping layer, where logical dimensions are peer objects of
tables. Presentation hierarchies are also displayed within their associated tables in
Oracle BI Answers, providing a conceptually simpler model.

If a logical dimension spans multiple logical tables in the Business Model and
Mapping layer, it is a best practice to model the separate logical tables as a single
presentation table in the Presentation layer.

There are several ways to create presentation hierarchies:

■ When you drag an entire business model to the Presentation layer, the
presentation hierarchies and constituent levels appear automatically, along with
other presentation objects.

■ When you drag a logical dimension table to the Presentation layer, presentation
hierarchies and levels based on those dimensions are created automatically.

■ You can also drag individual logical dimensions to the appropriate presentation
tables to create corresponding presentation hierarchies within those tables.

■ As with most other objects in the Administration Tool, you can right-click a
presentation table and select New Object > Presentation Hierarchy to manually
define the object.

You can also drag an individual logical level from the Business Model and Mapping
layer to a presentation table to create a presentation hierarchy that is a subset of the
logical dimension hierarchy.

For example, suppose a logical dimension has the levels All Markets, Total US, Region,
District, Market, and Market Key. Dragging and dropping the entire logical dimension
to the corresponding presentation table appears as follows:

Working with Presentation Hierarchies and Levels

11-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

However, dragging and dropping the Region level to the same presentation table
appears as follows:

Modeling Dimensions with Multiple Hierarchies in the Presentation Layer
For logical dimensions that contain multiple logical hierarchies, multiple separate
presentation hierarchies are created. For example, the following logical dimension
called Product contains the two hierarchies Category and Country:

In the Business Model and Mapping layer, this logical dimension is modeled as a
single dimension object that contains multiple hierarchies. In contrast, the Presentation
layer models this dimension as two separate objects: one that displays the drill path
through the Category level, and another that shows the drill path through the Country
level, as follows:

Working with Presentation Hierarchies and Levels

Creating and Maintaining the Presentation Layer 11-11

Editing Presentation Hierarchy Objects
You can edit presentation hierarchy properties, including setting permissions to apply
role-based access control, setting a custom display name for localization purposes, and
changing the levels in a hierarchy.

To edit the properties of a presentation hierarchy:

1. In the Presentation layer, double-click a presentation hierarchy to display the
Presentation Hierarchy dialog.

2. In the General tab, you can change the following:

■ Name. Note that aliases are created automatically whenever presentation
objects are renamed, so that any queries using the original name do not break.

■ Permissions. See "Setting Permissions for Presentation Layer Objects" for
more information.

■ Custom display name and Custom description. Select Custom display name
or Custom description to dynamically display a custom name or custom
description based on a session variable, typically for localization purposes. See
"Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information about localization.

■ Logical Dimension. This field displays the name of the logical dimension for
this presentation hierarchy. Click Browse to select a different logical
dimension.

3. The Levels tab lists the levels within the hierarchy and their order. This tab is not
available for parent-child hierarchies. You can add, delete, or reorder levels. You
can also click the Edit button to edit properties for a particular level. See "Creating
and Managing Presentation Levels" for information about level properties.

4. The Display Columns tab is only available for parent-child hierarchies. Because
parent-child hierarchies do not contain levels, display columns are defined for the
presentation hierarchy object as a whole. Use the Display Columns tab to define
which columns should be used for display for this parent-child hierarchy.

You can add, delete, or reorder display columns. You can also click the Edit button
to edit properties for a particular column.

5. Use the Aliases tab to specify or delete aliases for this presentation hierarchy. See
"Creating Aliases (Synonyms) for Presentation Layer Objects" for more
information about aliases.

Creating and Managing Presentation Levels
Presentation levels are displayed within hierarchical columns in Oracle BI Answers.
Presentation levels are typically created automatically when presentation hierarchies
are created.

Setting Permissions for Presentation Layer Objects

11-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

To edit the properties of a presentation level:

1. In the Presentation layer, double-click a presentation level to display the
Presentation level dialog.

2. In the General tab, you can change the following:

■ Name. Note that aliases are created automatically whenever presentation
objects are renamed, so that any queries using the original name do not break.

■ Permissions. See "Setting Permissions for Presentation Layer Objects" for
more information.

■ Custom display name and Custom description. Select Custom display name
or Custom description to dynamically display a custom name or custom
description based on a session variable, typically for localization purposes. See
"Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information about localization.

■ Logical Level. This field displays the name of the logical level for this
presentation level. Click Browse to select a different logical level.

3. The Drill To Levels and Drill From Levels tabs are reserved for a future release
and are not currently used. An additional option called Generate Drill Graph,
available as a right-click option for any Presentation layer object, is also reserved
for a future release.

4. Use the Display Columns tab to define which columns should be used for display
for that level (on drill-down). For example, if two columns called "Name" and "ID"
exist at the same level, you can choose to display "Name" because it is the more
user-friendly option.

You can add, delete, or reorder display columns. You can also click the Edit button
to edit properties for a particular column.

As an alternative to defining display columns in this tab, you can drag a
presentation column directly onto the presentation level in the Presentation layer
of the Administration Tool. Doing this automatically adds the column as a display
column for the presentation level.

Note that the display columns that appear by default when a presentation level is
created are based on which key columns for the corresponding logical level have
the Use for display option selected.

5. Use the Aliases tab to specify or delete aliases for a presentation level. See
"Creating Aliases (Synonyms) for Presentation Layer Objects" for more
information about aliases.

Setting Permissions for Presentation Layer Objects
You can apply access control to restrict which individual users or application roles
(groups) can access particular presentation layer objects. For example, you can provide
read-only access to a set of presentation tables for a particular application role,
read-write access for a second application role, and no access for a third application
role.

You can also use the Identity Manager to set up privileges and permissions. The
Identity Manager is useful for setting permissions for individual application roles to
many objects at once, unlike permissions in the Presentation layer, which you can only
set for one object at a time. See "Setting Up Object Permissions" for information about

Setting Permissions for Presentation Layer Objects

Creating and Maintaining the Presentation Layer 11-13

setting up object permissions in the Identity Manager. For a full description of data
access security in Oracle Business Intelligence, see Chapter 13.

You can control what level of privilege is granted by default to users and application
roles for repository objects without explicit permissions set. To do this, set the
DEFAULT_PRIVILEGES parameter in the NQSConfig.INI file. See Oracle Fusion
Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition
for more information.

To set permissions for presentation layer objects:

1. In the Presentation layer, double-click a presentation object, such as a subject area,
table, column, or hierarchy.

2. In the General tab, click Permissions.

Figure 11–2 shows the Permissions dialog.

Figure 11–2 Permissions Dialog

3. In the Permissions dialog, any users or application roles with the Default
permission do not appear in the User/Application Roles list. Select Show all
users/application roles to see users and application roles with the Default
permission.

In online mode only, by default, no users are retrieved, even when Show all
users/application roles is selected. Click Set online user filter to specify the set of
users you want to retrieve.

The filter is empty by default, which means that no users are retrieved. Enter * to
retrieve all users, or enter a combination of characters for a specific set of users,
such as A* to retrieve all users whose names begin with the letter A. The filter is
not case-sensitive.

4. For each user and application role, you can allow or disallow access privileges for
this presentation object by selecting one of the following options:

■ Read. Only allows read access to this object.

■ Read/Write. Provides both read and write access to this object.

■ No Access. Explicitly denies all access to this object.

■ Default. No object-specific access rules apply. The default access control for
this user or application role, as defined in the Identity Manager, controls what
the user or application role can do with this object.

Creating Aliases (Synonyms) for Presentation Layer Objects

11-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Note that any permissions applied to a presentation object also apply to its child
objects. For example, permissions applied to a presentation table also apply to any
presentation columns, hierarchies, and levels in that table.

5. Click OK.

6. Click OK in the Properties dialog for this presentation object.

Generating a Permission Report for Presentation Layer Objects
You can generate a permission report for individual presentation layer objects to see a
summary of how permissions have been applied for that object. To do this, right-click
any presentation object and select Permission Report. The Permission Report dialog
displays the name and a description of the presentation object, along with a list of
users/application roles and their permissions.

Sorting Columns in the Permissions Dialog
There are six ways that you can sort the types and User/Application Role names in the
Permissions dialog. To change the sort, click the heading of the first or second column.
The first column has no heading and contains an icon that represents the type of user
or application role. The second column contains the name of the User/Application
Role object. Note that you cannot sort on the columns for individual object
permissions (like Read, Read/Write, and so on).

There are three ways to sort by type, and two ways to sort the list of user and
application role names. This results in a total of six possible sort results (3 x 2 = 6). The
following list shows the sort results available by clicking the type column:

■ Everyone, Application Roles, Users (ascending by name of type)

■ Users, Application Roles, Everyone (descending by name of type)

■ Type column is in no particular order (Type value is ignored, as all names in
User/Application Role column are sorted in ascending order by value in
User/Application Role column)

The following list shows the sort results available by clicking the User/Application
Role column:

■ Ascending within the type

■ Descending within the type

Creating Aliases (Synonyms) for Presentation Layer Objects
Each presentation object can have a list of aliases (synonyms) for its name that can be
used in Logical SQL queries. To create the list of aliases, use the Alias tab in the
Properties dialog for the appropriate presentation object (subject area, presentation
table, presentation hierarchy, presentation level, or presentation column).

Because Presentation layer objects are often deleted and then re-created during the
repository development process, it is best to wait until your logical business model is
relatively stable before creating aliases for presentation objects.

You can use this feature to rename presentation objects without breaking references
that any existing requests have to the old names, including requests from Answers,
Oracle BI Publisher, or other Logical SQL clients. If you are still developing a new
repository, you might want to wait until the repository is stable before renaming
objects.

Creating Aliases (Synonyms) for Presentation Layer Objects

Creating and Maintaining the Presentation Layer 11-15

For example, consider a subject area called "Sample Sales Reduced" that contains a
presentation table called "Facts Other." If you rename the presentation column called
"# of Customers" to "Number of Customers," any requests that use "# of Customers"
fail. However, if you add "# of Customers" to the list of synonyms in the Alias tab for
the "Number of Customers" column, then queries containing both "# of Customers"
and "Number of Customers" succeed and return the same results.

Note the following:

■ Aliases for presentation objects do not appear in Answers or other query clients
when creating new queries. Only the primary names of subject areas, hierarchies,
levels, tables, and columns appear.

■ This feature works in a different way from SQL aliases or the alias feature in the
Physical layer. It simply provides synonyms for object names, much like
"synonyms" in SQL.

■ Aliases are created automatically when you rename presentation objects. For
example, if you change Catalog to Catalog1, the original name Catalog is added to
the Aliases list.

■ You cannot rename a Presentation layer object to a name that is already in use as
an alias for an object of the same type.

To add or delete an alias for a presentation object:

1. In the Presentation layer, double-click a presentation object, such as a subject area,
table, column, or hierarchy.

2. Click the Aliases tab.

3. To add an alias, click the New button, and then type the text string to use for the
alias.

4. To delete an alias, select the alias you want to delete from the Aliases list, then
click the Delete button.

5. Click OK.

Creating Aliases (Synonyms) for Presentation Layer Objects

11-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

12

Creating and Persisting Aggregates for Oracle BI Server Queries 12-1

12Creating and Persisting Aggregates for
Oracle BI Server Queries

Most data warehouse practitioners create aggregated data tables to dramatically
improve the performance of highly summarized queries. These aggregate tables store
precomputed results that are aggregated measures (typically summed) over a set of
dimensional attributes. Using aggregate tables is a typical technique used to improve
query response times in decision support systems.

If you write SQL queries or use a tool that only understands what physical tables exist
and not their meaning, then using aggregate tables becomes more complex as the
number of aggregate tables increases. The aggregate navigation capability of the
Oracle BI Server allows queries to use the information stored in aggregate tables
automatically. The Oracle BI Server lets you concentrate on asking the right business
question, and then the server decides which tables provide the fastest answers.

Oracle Business Intelligence has an aggregate navigation feature to take advantage of
those aggregates in source databases (for more information, see Chapter 10). However,
it can be time consuming to create and maintain the data aggregation, as well as load
database scripts and the corresponding metadata mappings. For that reason, Oracle
Business Intelligence provides an aggregate persistence feature that automates the
creation and loading of the aggregate tables and their corresponding Oracle Business
Intelligence metadata mappings.

This chapter explains how to set up and use aggregate persistence in Oracle Business
Intelligence.

This chapter contains the following topics:

■ About Aggregate Persistence in Oracle Business Intelligence

■ Identifying Query Candidates for Aggregation

■ Using the Aggregate Persistence Wizard to Generate the Aggregate Specification

■ Writing the Create Aggregates Specification Manually

■ Running the Aggregate Specification Against the Oracle BI Server

■ Troubleshooting Aggregate Persistence

About Aggregate Persistence in Oracle Business Intelligence
Use the Aggregate Persistence feature to create aggregates for Oracle BI Server
queries. The Aggregate Persistence Wizard lets you automate the creation of the
aggregate specification script. When you run this script against a live Oracle BI Server,
aggregate tables are created and are mapped into the metadata for navigation. When

Identifying Query Candidates for Aggregation

12-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

aggregates are persisted, indexes and statistics are created on relational tables for
greater performance.

The Aggregate Persistence Wizard creates a SQL script that you can run on a
scheduled basis against the Oracle BI Server. In the Aggregate Persistence Wizard, you
specify the measures, dimensionality, and other parameters of each star or cube based
on your performance design. The script should run after each load of the base-level
tables, so that the aggregates are always synchronized with the detail-level data when
the load window completes and users begin to run queries.

Aggregate creation runs against the master server in a cluster. It takes some time for
the metadata changes to propagate to the slaves. The cluster refresh time is a
user-controlled option and results might be incorrect if a query hits a slave server
before it is refreshed. It is the administrator's responsibility to set an appropriate
cluster refresh interval.

Aggregate persistence requires a dedicated connection pool to create tables or cubes in
the target database that will hold the aggregates. Because the Oracle BI repository
enables federation, the aggregated target can be on the same database as the detailed
source, or in a completely different database. This dedicated connection pool must be
created before you run the Aggregate Persistence Wizard, so it can be selected during
the appropriate step of the wizard.

The default prefix SA_ is automatically added to dimension (level) aggregates. You
can change this default prefix by updating the AGGREGATE_PREFIX parameter in the
AGGREGATE_PERSISTENCE section of the NQSConfig.INI file:

AGGREGATE_PREFIX = "prefix_name" ;

The target schema used to store aggregates must be appropriately secured and should
not allow public access. The schema should have privileges to connect, create, and
drop tables and indexes. By default, only users who belong to the BIAdministrators
group can manage aggregates.

Do not use aggregate persistence against tables with active Virtual Private Database
(VPD) security filters. There is a possibility that the aggregate information might be
persisted without the VPD filter, posing a security risk.

Identifying Query Candidates for Aggregation
When creating aggregates, you must identify which queries would benefit
substantially from aggregated data. You will achieve the best results by aggregating to
the highest level possible. To identify slow-running queries, perform the following
tasks:

■ Enable usage tracking in the Oracle BI Server. Usage tracking statistics can be
used in a variety of ways, such as database optimization, aggregation strategies,
and billing users or departments based on the resources they consume. The Oracle
BI Server tracks usage at the detailed query level. When you enable usage
tracking, statistics for every query are written to a usage tracking log file or
inserted into a database table.

Note: It is strongly recommended that you use the direct insertion
into a database method for usage tracking. See "Managing Usage
Tracking" in Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition for full information about
usage tracking.

Using the Aggregate Persistence Wizard to Generate the Aggregate Specification

Creating and Persisting Aggregates for Oracle BI Server Queries 12-3

■ Analyze the query run times and identify the slowest running queries as
candidates for aggregation. The run time for creating aggregates is dependent on
the type of aggregates selected by the user. Creating aggregates from large fact
tables is slower than from smaller tables. You should carefully select the
aggregates to be created.

Using the Aggregate Persistence Wizard to Generate the Aggregate
Specification

You can use the Aggregate Persistence Wizard to create the SQL file that will be used
to create and load aggregate tables and map them into the metadata. The resulting
SQL file must be executed against a running Oracle BI Server.

To use the Aggregate Persistence Wizard:

1. In the Administration Tool, select Tools > Utilities > Aggregate Persistence, and
then click Execute.

2. On the Select File Location screen, specify the complete path and file name of the
aggregate creation script. You can specify a new or an existing file name.

Typically, when you run the SQL script against the Oracle BI Server, it creates
DDL and runs it against the target database schema to create the aggregate tables,
then loads them from the source, and finally creates the Oracle BI Server metadata
so the aggregate navigation feature can use the new tables.

Alternatively, you can select Generate target DDL in a separate file if you want
the DDL to be stored in a separate file from the Oracle BI Server SQL script. When
you select this option, two SQL scripts are generated:

■ The create aggregates script (script_name)

■ The prepare aggregates script (script_name_DDL)

Both files are stored in the following location:

ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_obisn\
aggr

Selecting Generate target DDL in a separate file gives you the flexibility to alter
the auto-generated DDL and run it independently of the Oracle BI Server. For
example, you may want to alter the storage parameter or index settings. When you
select this option, you first make manual updates to the DDL file, then you run the
DDL file (prepare aggregates), then you run the create aggregates script.

Click Next after you have finished specifying options on the Select File Location
screen.

3. In the Select Business Measures screen, select the measures on which you want to
aggregate. To do this, select a business model in the upper pane, then select a

Note: It is strongly recommended that you use the Aggregate
Persistence Wizard because it automatically enforces many of the
constraints necessary when generating the aggregate specification.
However, you can manually write the aggregate Logical SQL as an
alternative to using the wizard. Make sure to follow the guidelines
described in "Writing the Create Aggregates Specification Manually" if
you choose to write your own aggregates specification.

Using the Aggregate Persistence Wizard to Generate the Aggregate Specification

12-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

single fact table or a set of measures in the lower pane. You cannot select measures
that span multiple fact tables. Use Ctrl-click to select multiple measures, or use
Shift-click to select a range of consecutive measures.

Note that the View Script button is not available during the creation of the first
aggregate table block.

Figure 12–1 shows the Select Business Measures screen.

Figure 12–1 Aggregate Persistence Wizard: Select Business Measures Screen

Click Next after you have selected the appropriate measures.

4. In the Select Levels screen, specify the level of aggregation by selecting a logical
level for one or more dimensions. You can specify a surrogate key to be used for
the fact-dimension join.

The default join option between the aggregated fact and dimension tables is the
primary key defined in the logical level you selected. If the primary key of the
level is large and complex, the join to the fact table is expensive, so using a
surrogate key is recommended in this case. A surrogate key is an artificially
generated key, usually a number. For example, a surrogate key in the level
aggregate table would simplify this join, removing unnecessary (level primary
key) columns from the fact table and resulting in a leaner fact table.

Using a surrogate key only changes the query response time, not the logical results
of the queries. However, generating the surrogate keys can have the side effect of
increasing the aggregate table load time. Therefore, the recommended setting is as
follows:

– If the primary key for the logical level you have selected is already a single,
numeric column, you typically should not select the Use Surrogate Key
option since it may add to load processing time without producing a
performance benefit.

– If the primary key for the logical level you have selected is a text string, or
consists of multiple logical columns, you typically should use a surrogate key

Using the Aggregate Persistence Wizard to Generate the Aggregate Specification

Creating and Persisting Aggregates for Oracle BI Server Queries 12-5

to improve the performance of the queries that join to that aggregate
dimension. However, keep in mind that generating the surrogate key can
increase the load time for that aggregate dimension table.

See "Adding Surrogate Keys to Dimension Aggregate Tables" for additional
information about surrogate keys.

Figure 12–2 shows the Select Levels screen.

Figure 12–2 Aggregate Persistence Wizard: Select Levels Screen

Click Next after you have selected the appropriate level of aggregation.

5. In the Select Connection Pool screen, select the appropriate items to specify a
location for the aggregate table.

A default aggregate table name is provided, and a prefix is added to the table
name. The default prefix for the generated fact table is ag. For tables created for
dimension (level) aggregates, the default prefix is SA_ and can be changed by
updating the AGGREGATE_PREFIX property in NQSConfig.INI. See Oracle Fusion
Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition for more information about changing configuration settings.

Figure 12–3 shows the Select Connection Pool screen.

Writing the Create Aggregates Specification Manually

12-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 12–3 Aggregate Persistence Wizard: Select Connection Pool Screen

Click Next after you have provided connection pool information.

6. In the Finish screen, the View Script button becomes available for use, and the
Logical SQL script appears for your review. Choose whether to define another
aggregate (default) or end the wizard, and then click Next.

7. In the Finish Script screen, the complete path and file name appears. Click Finish.

See "Running the Aggregate Specification Against the Oracle BI Server" for
information about using the SQL file to create aggregate tables.

Writing the Create Aggregates Specification Manually
If you choose not to use the Aggregate Persistence Wizard to create the script file, you
can write the file manually. It is recommended that you use the Aggregate Persistence
Wizard.

If you do not want the Oracle BI Server to modify your databases during aggregate
creation, then you can specify this in the Aggregate Persistence Wizard by selecting
the option Generate target DDL in a separate file. The Aggregate Persistence Wizard
will create a DDL file (the "prepare aggregates" script) that you can use to create the
empty aggregate tables. After this, you need to run the "create aggregates" script to
populate the aggregate tables. This option provides some flexibility in case the
database access to create tables is restricted. Note that you must run the prepare
aggregates script before you run the create aggregates script.

This section contains the following topics:

■ What Constraints Are Imposed During the Create Process?

■ How to Write the Create Aggregates Specification

■ Adding Surrogate Keys to Dimension Aggregate Tables

Writing the Create Aggregates Specification Manually

Creating and Persisting Aggregates for Oracle BI Server Queries 12-7

What Constraints Are Imposed During the Create Process?
The following constraints are imposed during the create process:

■ Valid measures. A valid measure must have a valid aggregation rule. The
following constraints apply to level-based measures:

– If the level is grand total alias, then that dimension must not be present in the
list of levels for that aggregate specification.

– Any other level defined for this measure must be present in the list of levels
for that aggregate specification.

If the above constraints are not met, then the entire aggregate specification is
discarded. In addition, a measure is ignored by the create process if any of the
following conditions are true:

– Measure is mapped to a session or repository variable.

– Measure is a derived measure.

– Measure has a default aggregation rule of None.

Measures that are ignored do not necessarily affect the aggregate specification.
The remaining measures are used to create the aggregate.

■ Valid levels. A valid level must have a valid primary key. If a level is invalid, the
aggregate specification is be discarded. Also, attributes of a level or its primary
key are ignored if any of the following conditions are true:

– Attribute is mapped to session or repository variables.

– Attributes are not from the same logical table.

■ Valid aggregate specification. A valid aggregate specification has the following
properties:

– Name length is between 1 and 18 characters (inclusive).

– At least one valid level must be specified.

– At least one valid measure must be specified.

– Must have a valid connection pool.

– Must have a valid output container (database/catalog/schema).

– Connection pool and container must belong to the same database.

– Only one level per dimension can be specified.

– Measures can only be from the same fact table.

– All logical components of the specification must be from the same subject area.

An aggregate specification is ignored if the name already exists in the output
container because level aggregates are scoped by the entire database. However, if
different catalogs or schemas are specified for the same fact aggregate name, it is
allowed to have multiple facts with the same name but different scope in the same
database.

Note that the aggregate specification is discarded if any dimension is not joined to
a fact.

Writing the Create Aggregates Specification Manually

12-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

How to Write the Create Aggregates Specification
All metadata names (except for logical fact columns) are fully qualified. There are two
modes of operation: Create and Delete. It is strongly recommended that you place all
aggregate specifications under a single Create Aggregates statement.

Follow these guidelines when writing the aggregate specification:

■ Begin the script file with a Delete statement. It is essential to delete
system-generated aggregates before creating new ones. This ensures that data is
consistent and removes invalid or incomplete aggregates before you run the
Create operation. The following statement is the syntax for deleting aggregates:

Delete aggregates;

■ The next statement should be a Create statement. The following is the syntax for
creating aggregates:

Create|Prepare aggregates
aggr_name_1
for logical_fact_table_1 [(logical_fact_column_1, logical_fact_column_2,…)]
at levels (level_1, level_2, …)
using connection pool connection_pool_name_1
in schema_name_1
[,aggr_name_2
for logical_fact_table_3 [(logical_fact_column_5, logical_fact_column_2,…)]
at levels (level_3, level_2, …)
using connection pool connection_pool_name_2
in schema_name_2] ;

■ To specify multiple aggregates in a single Create Aggregates statement, follow
these guidelines:

– Ensure that each of the multiple aggregate specifications are separated by a
comma, and the entire aggregate creation script is terminated with a
semicolon.

– In this file, only one Delete Aggregates statement should be specified at the
beginning. Make sure that only one delete is issued per ETL run (unless a reset
is called for).

For information about creating aggregates with surrogate keys, see the following
section.

Adding Surrogate Keys to Dimension Aggregate Tables
The join option default between fact and level aggregate tables uses primary keys from
the level aggregate. If the primary key of the level is large and complex (composite of
many columns), then the join to the fact table is expensive. A surrogate key is an
artificially generated key, usually a number. A surrogate key, in the level aggregate
table, simplifies this join and removes unnecessary columns (level primary key) from
the fact table, resulting in a smaller-sized fact table. Adding surrogate keys to the
dimension (level) aggregate tables can simplify joins to the fact tables and might
improve query performance. Additionally, a surrogate key makes sure that each
aggregate table has a unique identifier.

Caution: Any aggregate scripts that are run after the first one should
not have a Delete Aggregates statement, or all previously created
aggregates are removed.

Writing the Create Aggregates Specification Manually

Creating and Persisting Aggregates for Oracle BI Server Queries 12-9

There might be cases in which a level is shared among multiple fact tables. One fact
might use surrogate keys, and another might use primary keys from the dimension
aggregate. The following are some options for resolving this issue:

■ Set a metadata property for levels that indicates whether to use surrogate keys or
primary keys.

■ Always create a surrogate key for a level aggregate (relatively low cost operation).
Then, decide later if the fact aggregate should join to it using a surrogate or
primary key.

An alternative to specifying the join type for each dimension is to specify if surrogate
keys should be used for the entire star. This would result in simpler syntax, but would
also restrict the available user options and slow the aggregate creation process.

About the Create/Prepare Aggregates Syntax
The following syntax for create/prepare aggregates contains the change for [Using_
Surrogate_Key]. The surrogate key option can be specified for each level. If
unspecified, the fact and dimension tables are joined using the primary key from the
level aggregate.

Create|Prepare aggregates
aggr_name_1
[file output_file_name]
for logical_fact_table_1 [(logical_fact_column_1, logical_fact_column_2,…)]
at levels (level_1 [Using_Surrogate_Key], level_2, …)
using connection pool connection_pool_name_1
in schema_name_1
[,aggr_name_2
for logical_fact_table_3 [(logical_fact_column_5, logical_fact_column_2,…)]
at levels (level_3, level_2, …)
using connection pool connection_pool_name_2
in schema_name_2] ;

About Surrogate Key Output from Create/Prepare Aggregates
The changes to the current process are restricted to the physical metadata layer in the
repository and the database.

When you use the Using_Surrogate_Key join option, the following describes the
results:

■ For a level aggregate, the following occurs:

– In the physical metadata, the following occurs:

* The level aggregate table has a new column called levelName_
upgradeIDSK (check for collisions). This is the surrogate key column for
the dimension aggregate. Note that levelName is truncated if the total
number of characters exceeds 18.

* The type of this column is SMALLUINT.

– In the database, the following occurs:

* The level aggregate table also has a corresponding column called
levelName_upgradeIDSK. Again, levelName is truncated if the total
number of characters exceeds 18.

* It can be populated using RCOUNT().

■ For a fact aggregate, the following occurs:

Running the Aggregate Specification Against the Oracle BI Server

12-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

– In the physical metadata, the following occurs:

* The fact aggregate table no longer contains columns from the level's
primary keys.

* Instead, a new column that corresponds to the level aggregate's surrogate
key is added to the table.

* The type of this column is identical to the level's surrogate key.

* The column has the same name as that in the level aggregate (check for
collisions).

* The fact table and the level table are joined using this surrogate key only.

– In the database, the following occurs:

* The fact aggregate table also has the corresponding surrogate key.

* It is populated using new capabilities to be available through Populate.

Running the Aggregate Specification Against the Oracle BI Server
Before you run the aggregate specification against the Oracle BI Server, you should set
an appropriate logging level. Trace logs are be logged to nqquery.log if the logging
level is at least 2. The logging events include the aggregate execution plan and the
order in which the aggregates are created and deleted. Higher logging levels provide
more details about the query and execution plans. Error logs are logged to nqquery.log
if the logging level is at least 1, and to nqserver.log regardless of the logging level.

After generating the SQL script file and setting the logging levels, you can run the SQL
script using nqcmd. The SQL file must be executed against a running Oracle BI Server.
See "Testing and Refining the Repository" for more information about running nqcmd.

After executing the SQL script, aggregates are created and persisted in the Oracle BI
Server metadata, as well as in the back-end databases.

Troubleshooting Aggregate Persistence
The following is a list of some reasons errors can occur:

■ Network failure.

■ No disk space on the database.

■ Bad aggregate request.

If there is an error in the creation of any aggregate, then the entire aggregate request is
terminated and subsequent aggregates are not created. Aggregates that are already
created and checked in remain checked in. If there are errors, you must remove them
at the time of the error or at the next ETL run in one of the following ways:

■ Manually remove the aggregates from the metadata and the database.

■ Automatically remove all the aggregates using the Delete Aggregates
specification.

13

Applying Data Access Security to Repository Objects 13-1

13Applying Data Access Security to
Repository Objects

Data access security controls rights to view and modify data. You can use several
different methods of data access security with Oracle Business Intelligence: row-level
security (implemented either in the repository or in the database), object permissions,
and query limits. This chapter provides information about the different types of data
access security and explains how to set them up.

Other security tasks, including setting up SSL connections, managing users, groups,
and application roles, setting up custom LDAP servers, and managing custom
authenticators, are covered in Oracle Fusion Middleware Security Guide for Oracle
Business Intelligence Enterprise Edition. Note that you must create users and application
roles before you can implement data access security.

You should plan to implement data access security in the Administration Tool in
online mode. If you must perform data access security tasks in offline mode, be sure to
read "About Applying Data Access Security in Offline Mode" first.

Data access security auditing is covered by the Oracle Business Intelligence usage
tracking feature. See "Managing Usage Tracking" in Oracle Fusion Middleware System
Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information.

This chapter contains the following topics:

■ About Data Access Security

■ Setting Up Row-Level Security

■ Setting Up Object Permissions

■ Setting Query Limits

■ About Applying Data Access Security in Offline Mode

■ About the List of Users in the Administration Tool

About Data Access Security
After developing your metadata repository, you need to set up your data security
architecture to control access to source data. Data access security accomplishes the
following goals:

■ To protect business data queried from databases

■ To protect your repository metadata (such as measure definitions)

■ To prevent individual users from hurting overall system performance

About Data Access Security

13-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Oracle Business Intelligence supports three types of data security: row-level security,
object permissions, and query limits (governors). Object permissions and query limits
are set up in the repository and are enforced only by the Oracle BI Server. Row-level
data security, however, can be implemented and enforced in both the repository, and
in the database.

Even if you choose to implement row-level security in the database, you should still
set up object permissions and query limits in the repository. Although it is possible to
provide database-level object restrictions on individual tables or columns, objects to
which users do not have access are still visible in all clients, even though queries
against them will fail. It is better to set up object permissions in the repository, so that
objects to which users do not have access are hidden in all clients.

Because a variety of clients can connect to the Oracle BI Server, you cannot implement
or enforce data security in Oracle BI Presentation Services. Oracle BI Presentation
Services provides an extensive set of security controls that let you set up privileges to
access functionality in the Oracle Business Intelligence user interface, as well as
dashboards and analyses objects. However, Oracle BI Presentation Services does not
provide data access security. If you only implement security controls in Oracle BI
Presentation Services, you will be exposed to SQL injection hacker attacks and other
security vulnerabilities. You must provide object-level security in the repository to
create rules that apply to all incoming clients.

See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise
Edition for more information about the security controls available in Oracle BI
Presentation Services.

Where Do I Find Information About Security Tasks?
Oracle Business Intelligence security tasks are covered in this guide, in Oracle Fusion
Middleware Security Guide for Oracle Business Intelligence Enterprise Edition, and in other
sources. Table 13–1 summarizes the Oracle Business Intelligence security tasks and
where to go for more information.

Table 13–1 Security Tasks in Oracle Business Intelligence

Task Location

Setting up user
authentication with the
default authentication
provider or an alternative
authentication provider

"Managing Security Using the Default Security Configuration"
in Oracle Fusion Middleware Security Guide for Oracle Business
Intelligence Enterprise Edition

Creating and managing
users and groups in the
default authentication
provider

"Creating and Managing Users and Groups in the Embedded
WebLogic LDAP Server" in Oracle Fusion Middleware Security
Guide for Oracle Business Intelligence Enterprise Edition

Creating application roles
and managing policies in
the default policy store

"Managing the Policy Store" in Oracle Fusion Middleware
Application Security Guide

Viewing and understanding
the default Oracle Business
Intelligence permissions
used with application roles
in the policy store

"Default Permissions" in Oracle Fusion Middleware Security Guide
for Oracle Business Intelligence Enterprise Edition

Managing system
credentials in the default
credential store

"Default Credentials" in Oracle Fusion Middleware Security Guide
for Oracle Business Intelligence Enterprise Edition

Setting Up Row-Level Security

Applying Data Access Security to Repository Objects 13-3

Setting Up Row-Level Security
You can choose to set up row-level security in the repository, or in the database.
Implementing row-level security in the repository provides many benefits, including
the following:

■ All users share the same database connection pool for better performance

■ All users share cache for better performance

■ You can define and maintain security rules that apply across many federated data
sources

Implementing row-level security in the database, in contrast, is good for situations
where multiple applications share the same database. Note that even when you design
and implement row-level security in the database, you should still define and apply
object permissions in the repository.

Although it is possible to set up row-level security in both the repository and in the
database, you typically do not enforce row-level security in both places unless you
have a particular need to do so.

This section contains the following topics:

■ Setting Up Row-Level Security (Data Filters) in the Repository

■ Setting Up Row-Level Security in the Database

Setting Up Row-Level Security (Data Filters) in the Repository
Data filters are a security feature that provide a way to enforce row-level security rules
in the repository. Data filters are set up in the repository using the Administration Tool
and are applied for a particular application role. You typically do not set up data filters
if you have implemented row-level security in the database, because in this case, your

Applying data access
security in offline mode and
setting up placeholder
application roles

"About Applying Data Access Security in Offline Mode"

Setting up row-level data
security

"Setting Up Row-Level Security"

Setting repository object
permissions

"Setting Up Object Permissions"

Setting query limits
(governors)

"Setting Query Limits"

Viewing users in the
Administration Tool

"About the List of Users in the Administration Tool"

Setting up single sign-on
(SSO)

"Enabling SSO Authentication" in Oracle Fusion Middleware
Security Guide for Oracle Business Intelligence Enterprise Edition

Enabling SSL
communication

"SSL Configuration in Oracle Business Intelligence" in Oracle
Fusion Middleware Security Guide for Oracle Business Intelligence
Enterprise Edition

Managing custom
authenticators

"Authenticating by Using a Custom Authenticator Plug-In" in
Oracle Fusion Middleware Security Guide for Oracle Business
Intelligence Enterprise Edition

Table 13–1 (Cont.) Security Tasks in Oracle Business Intelligence

Task Location

Setting Up Row-Level Security

13-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

row-level security policies are being enforced by the database rather than the Oracle BI
Server.

Data filters can be set for objects in both the Business Model and Mapping layer and
the Presentation layer. Applying a filter on a logical object impacts all Presentation
layer objects that use the object. If you set a filter on a Presentation layer object, it is
applied in addition to any filters that might be set on the underlying logical objects.

Figure 13–1 illustrates how data filter rules are enforced in the Oracle BI Server. The
security rules are applied to all incoming clients and cannot be breached, even when
the Logical SQL query is modified.

In this example, a filter has been applied to an application role. When Anne Green,
who is a member of that role, sends a request, the return results are limited based on
the filter. Because no filters have been applied to the application roles for the
Administrator user, all results are returned. The Oracle BI Server-generated SQL takes
into account any data filters that have been defined.

Figure 13–1 Row-Level Security Enforcement in the Oracle BI Server

You should always set up data filters for particular application roles rather than for
individual users.

To set up data filters to apply row-level authorization rules for queries:

1. Open your repository in the Administration Tool.

2. Select Manage, then select Identity.

3. In the Identity Manager dialog, in the tree pane, select BI Repository.

4. In the right pane, select the Application Roles tab, then double-click the
application role for which you want to set data filters.

Note that if you are in offline mode, no application roles appear in the list unless
you have first modified them in online mode. See "About Applying Data Access
Security in Offline Mode" for more information.

5. In the Application Role dialog, click Permissions.

Setting Up Row-Level Security

Applying Data Access Security to Repository Objects 13-5

6. In the User/Application Role Permissions dialog, click the Data Filters tab.

To create filters, you first add objects on which you want to apply the filters. Then,
you provide the filter expression information for the individual objects.

7. To add objects on which you want to apply filters, perform one of the following
steps:

■ Click the Add button. Then, browse to locate the object you want, select it, and
then click Select.

■ Click the Name field for an empty row. Then, browse to locate the object you
want, select it, and then click Select.

8. To enter the filter expression for individual objects, perform one of the following
steps:

■ Select the data filter, then click the Expression Builder button. Create the filter
expression in Expression Builder, then click OK.

■ Click the Data Filter field for the appropriate filter, then type the filter
expression.

For example, you might want to define a filter like "Sample Sales"."D2
Market"."M00 Mkt Key" > 5 to restrict results based on a range of values for
another column in the table.

You can also use repository and session variables in filter definitions. Use
Expression Builder to include these variables to ensure the correct syntax.

9. Optionally, select a status for each filter from the Status list. You can choose one of
the following options:

■ Enabled: The filter is applied to any query that accesses the object.

■ Disabled: The filter is not used and no other filters applied to the object at
higher levels of precedence (for example, through an application role) are
used.

■ Ignored: The filter is not in use, but any other filters applied to the object (for
example, through a different application role) are used. If no other filters are
enabled, no filtering occurs.

10. In addition to defining new filters, you can perform other operations in the Data
Filters tab. Table 13–2 lists and describes the other buttons and options.

Table 13–2 Data Filters Tab: Buttons and Options

Option Name Description

Subject Area Select a subject area to only view data filters for that individual
subject area, or select All to view all filters.

Total Filters Lists the total number of data filters that have been defined for
this particular user or application role.

Add Click Add to open the Browse dialog to add objects on which
you want to apply data filters.

Delete Select a row and click Delete to remove a filter.

Setting Up Row-Level Security

13-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

11. Click OK, then click OK again to return to the Identity Manager.

Setting Up Row-Level Security in the Database
To set up Oracle Business Intelligence for row-level security that has been
implemented in the database, you can configure your connection pools so that the
Oracle BI Server passes the credentials for each user to the database. The database then
uses the credentials to apply its own row-level security rules to user queries.

Note that the row-level database security described in this section is different from
database authentication, a topic discussed in Oracle Fusion Middleware Security Guide for
Oracle Business Intelligence Enterprise Edition. Rather, row-level database security
provides database authorization. In other words, it applies access security to particular
rows in the database.

Figure 13–2 illustrates how row-level security is enforced in the database for Oracle
Business Intelligence queries. The security rules are applied to all incoming clients and
cannot be breached, even when the Logical SQL query is modified. In this example,
the results returned are different depending on which user generated the query, even
though the SQL query generated by the Oracle BI Server is the same. The returned
results are based on rules created and enforced in the database.

Browse Select a row and click Browse to change the object on which the
filter is applied.

Edit Expression (Expression
Builder)

Select a row and click Edit Expression to add or change a filter
expression for a particular object. You must first add an object
before you can apply a filter expression to the row.

Find Enter text in the Find field and click Find Down or Find Up to
find a particular string.

Table 13–2 (Cont.) Data Filters Tab: Buttons and Options

Option Name Description

Setting Up Row-Level Security

Applying Data Access Security to Repository Objects 13-7

Figure 13–2 Row-Level Security Enforcement in the Database

In addition to setting up Oracle Business Intelligence for row-level security in the
database, you must define your set of users, permissions, and security policies in the
database itself. Refer to your database documentation for more information.

To set up Oracle Business Intelligence for row-level access security in the database:

1. Open your repository in the Administration Tool.

2. Double-click the connection pool associated with the database for which you want
to set up database-level security.

3. In the General tab of the Connection Pool dialog, select Shared logon, and then
enter :USER and :PASSWORD in the User name and Password fields. The :USER
and :PASSWORD syntax automatically passes the value of user credentials upon
login to the database. Note that the :USER and :PASSWORD syntax does not refer
to session variables.

Figure 13–3 shows the General tab of the Connection Pool dialog.

Figure 13–3 Entering Credentials for Database-Level Security in the Connection Pool

Setting Up Object Permissions

13-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

4. Click OK in the Connection Pool dialog.

5. Double-click the database object for which you want to set up database-level
security.

6. In the Database dialog, select Virtual Private Database. Selecting this option
ensures that the Oracle BI Server protects cache entries for each user.

7. Click OK in the Database dialog.

After you have set up row-level security in the database, you still need to set up object
permissions in the repository for Presentation layer or other objects. You can also set
query limits (governors). See "Setting Up Object Permissions" and "Setting Query
Limits" for more information.

Setting Up Object Permissions
You can set up object permissions in your repository to control access to Presentation
layer and Business Model and Mapping layer objects. You set object permissions using
the Administration Tool. There are two approaches to setting object permissions: you
can set permissions for particular application roles in the Identity Manager, or you can
set permissions for individual objects in the Presentation layer.

This section explains how to set up object permissions for application roles in the
Identity Manager. See "Setting Permissions for Presentation Layer Objects" for
information about setting object permissions for individual Presentation layer objects.

Setting up object permissions for particular application roles is useful when you want
to define permissions for a large set of objects at one time. You should always set up
object permissions for particular application roles rather than for individual users.

Figure 13–4 shows how object permissions restrict what users can see. The security
rules are applied to all incoming clients and cannot be breached, even when the
Logical SQL query is modified. In this example, an application role to which the
Administrator belongs has been granted access to the Booked Amount column, so the
Administrator can view the returned results. The user Anne Green is not a member of
an application role with access to this object and cannot see the column in the Subject
Area pane in Answers. Even if the request SQL is modified, results are not returned
for this column because of the application role-based object permissions that have
been set.

Note: Alternatively, you can use the database session context to pass
end user identity to the database. Use a connection pool script to set
up session context. Note that this approach does not rely on database
authentication.

Setting Up Object Permissions

Applying Data Access Security to Repository Objects 13-9

Figure 13–4 Object Permission Enforcement in the Oracle BI Server

Note the following:

■ If an application role is granted or disallowed permissions on an object from
multiple sources (for example, explicitly and through one or more additional
application roles), the permissions are applied based on the order of precedence.

■ If you explicitly deny access to an object that has child objects, users who are
members of the individual application role are denied access to the child objects.
For example, if you explicitly deny access to a particular logical table, you are
implicitly denying access to all of the logical columns associated with that table.

■ Object permissions do not apply to repository and session variables, so values in
these variables are not secure. Anybody who knows or can guess the name of the
variable can use it in an expression in Answers or in a Logical SQL query. Because
of this, do not put sensitive data like passwords in session or repository variables.

■ You can control what level of privilege is granted by default to users and
application roles for repository objects without explicit permissions set. To do this,
set the DEFAULT_PRIVILEGES parameter in the NQSConfig.INI file. See Oracle
Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for more information.

To set up object permissions for individual application roles:

1. Open your repository in the Administration Tool.

2. Select Manage, then select Identity.

3. In the Identity Manager dialog, in the tree pane, select BI Repository.

4. In the right pane, select the Application Roles tab, then double-click the
application role for which you want to set object permissions.

Note that if you are in offline mode, no application roles appear in the list unless
you have first modified them in online mode. See "About Applying Data Access
Security in Offline Mode" for more information.

5. In the Application Role dialog, click Permissions.

Setting Up Object Permissions

13-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

6. In the User/Application Role Permissions dialog, in the Object Permissions tab,
select an object by performing one of the following steps:

■ Click the Add button. Then, browse to locate the object you want, select it, and
then click Select.

■ Click the Name field for an empty row. Then, browse to locate the object you
want, select it, and then click Select.

7. Assign the appropriate permission for each object. You can choose one of the
following options:

■ Read: Only allows read access to this object.

■ Read/Write: Provides both read and write access to this object.

■ No Access: Explicitly denies all access to this object.

8. Click OK, then click OK again to return to the Identity Manager.

About Permission Inheritance for Users and Application Roles
Users can have explicitly granted permissions. They can also have permissions
granted through membership in application roles, that in turn can have permissions
granted through membership in other application roles, and so on. Permissions
granted explicitly to a user have precedence over permissions granted through
application roles, and permissions granted explicitly to the application role take
precedence over any permissions granted through other application roles.

If there are multiple application roles acting on a user or application role at the same
level with conflicting security attributes, the user or application role is granted the
least restrictive security attribute. Any explicit permissions acting on a user take
precedence over any permissions on the same objects granted to that user through
application roles.

Filter definitions, however, are always inherited. For example, if User1 is a member of
Role1 and Role2, and Role1 includes a filter definition but Role2 does not, the user
inherits the filter definition defined in Role1.

Note that you should always define object permissions for application roles rather
than for individual users.

Example 13–1 Permission Inheritance 1

You might have a user (User1) who is explicitly granted permission to read a given
table (TableA). Suppose also that User1 is a member of Role1, and Role1 explicitly
denies access to TableA. The resultant permission for User1 is to read TableA, as
shown in Figure 13–5.

Because permissions granted directly to the user take precedence over those granted
through application roles, User1 has the permission to read TableA.

Setting Up Object Permissions

Applying Data Access Security to Repository Objects 13-11

Figure 13–5 User Permissions and Application Role Permissions

Example 13–2 Permission Inheritance 2

Consider the situation shown in Figure 13–6.

Figure 13–6 Permissions Example

These are the resulting permissions:

■ User1 is a direct member of Role1 and Role2, and is an indirect member of Role3,
Role4, and Role5.

■ Because Role5 is at a lower level of precedence than Role2, its denial of access to
TableA is overridden by the READ permission granted through Role2. The result is
that Role2 provides READ permission on TableA.

■ The resultant permissions from Role1 are NO ACCESS for TableA, READ for
TableB, and READ for TableC.

■ Because Role1 and Role2 have the same level of precedence and because the
permissions in each cancel the other out (Role1 denies access to TableA, Role2
allows access to TableA), the less restrictive level is inherited by User1. In other
words, User1 has READ access to TableA.

■ The total permissions granted to User1 are READ access for TableA, TableB, and
TableC.

Setting Query Limits

13-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Setting Query Limits
You can manage the query environment by setting query limits (governors) in the
repository for particular application roles. You can limit queries by the number of rows
received, by maximum run time, and by restricting to particular time periods. You can
also allow or disallow direct database requests or the Populate privilege.

You should always set query limits for particular application roles rather than for
individual users.

This section contains the following topics:

■ Accessing the Query Limits Functionality in the Administration Tool

■ Limiting Queries By the Number of Rows Received

■ Limiting Queries By Maximum Run Time and Restricting to Particular Time
Periods

■ Allowing or Disallowing Direct Database Requests

■ Allowing or Disallowing the Populate Privilege

Accessing the Query Limits Functionality in the Administration Tool
Follow the steps in this section to access the Query Limits tab of the User/Application
Role Permissions dialog.

To access the query limits functionality in the Administration Tool for a particular
application role:

1. Open your repository in the Administration Tool.

2. Select Manage, then select Identity.

3. In the Identity Manager dialog, in the tree pane, select BI Repository.

4. In the right pane, select the Application Roles tab, then double-click the
application role for which you want to set query limits.

Note that if you are in offline mode, no application roles appear in the list unless
you have first modified them in online mode. See "About Applying Data Access
Security in Offline Mode" for more information.

5. In the Application Role dialog, click Permissions.

6. In the User/Application Role Permissions dialog, click the Query Limits tab.

Limiting Queries By the Number of Rows Received
You can control runaway queries by limiting queries to a specific number of rows.

To limit queries by the number of rows received:

1. Follow the steps in "Accessing the Query Limits Functionality in the
Administration Tool" to access the Query Limits tab.

2. In the Max Rows column, type the maximum number of rows for users to retrieve
from each source database object.

3. In the Status Max Rows field, select one of the following options for each
database:

■ Enable: This limits the number of rows to the value specified. If the number of
rows exceeds the Max Rows value, the query is terminated.

Setting Query Limits

Applying Data Access Security to Repository Objects 13-13

■ Disable: Disables any limits set in the Max Rows field.

■ Warn: Does not enforce limits, but logs queries that exceed the set limit in the
Query log.

■ Ignore: Limits are inherited from the parent application role. If there is no row
limit to inherit, no limit is enforced.

4. Click OK, then click OK again to return to the Identity Manager.

Limiting Queries By Maximum Run Time and Restricting to Particular Time Periods
You can forbid queries during certain time periods, or you can specify the maximum
time a query can run on a database.

If you do not select a particular time period, access rights remain unchanged. If you
allow or disallow access explicitly in one or more application roles, users are granted
the least restrictive access for the defined time periods. For example, if a user is a
member of an application role that is explicitly allowed access all day on Mondays, but
that user also belongs to another application role that is disallowed access during all
hours of every day, then the user has access on Mondays only.

To limit queries by maximum run time, or restrict queries to particular time periods:

1. Follow the steps in "Accessing the Query Limits Functionality in the
Administration Tool" to access the Query Limits tab.

2. To specify the maximum time a query can run on a database, in the Max Time
(Minutes) column, enter the maximum number of minutes you want queries to
run on each database object. Then, in the Status Max Time field, select one of the
following options for each database:

■ Enable: This limits the time to the value specified.

■ Disable: Disables any limits set in the Max Time field.

■ Warn: Does not enforce limits, but logs queries that exceed the set time limit in
the Query log.

■ Ignore: Limits are inherited from the parent application role. If there is no
time limit to inherit, no limit is enforced.

3. To restrict access to a database during particular time periods, in the Restrict
column, click the Ellipsis button. Then, in the Restrictions dialog, perform the
following steps:

a. To select a time period, click the start time and drag to the end time.

b. To explicitly grant access, click Allow.

c. To explicitly deny access, click Disallow.

d. Click OK.

4. Click OK, then click OK again to return to the Identity Manager.

Allowing or Disallowing Direct Database Requests
You can allow or disallow the ability to execute direct database requests for a
particular application role. For the selected role, this privilege overrides the property
Allow direct database requests by default for the database object in the Physical
layer.

To set the ability to execute direct database requests:

About Applying Data Access Security in Offline Mode

13-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

1. Follow the steps in "Accessing the Query Limits Functionality in the
Administration Tool" to access the Query Limits tab.

2. For each database object, in the Execute Direct Database Requests field, select one
of the following options:

■ Allow: Explicitly grants the ability to execute direct database requests for this
database.

■ Disallow: Explicitly denies the ability to execute direct database requests for
this database.

■ Ignore: Limits are inherited from the parent application role. If there is no
limit to inherit, then direct database requests are allowed or disallowed based
on the property Allow direct database requests by default for the database
object.

3. Click OK, then click OK again to return to the Identity Manager.

Allowing or Disallowing the Populate Privilege
When a criteria block is cached, the Populate stored procedure writes the
Cache/Saved Result Set value to the database. You can grant or deny this privilege to
particular application roles. For the selected application role, this privilege overrides
the property Allow populate queries by default for the database object in the Physical
layer.

Any Oracle Marketing Segmentation user who writes a cache entry or saves a result
set must be a member of an application role that has been assigned the POPULATE
privilege for the target database. For more information about marketing cache, see the
topic about setting up cache for target levels in the documentation for the Oracle
Marketing Segmentation application.

To allow or disallow the Populate privilege:

1. Follow the steps in "Accessing the Query Limits Functionality in the
Administration Tool" to access the Query Limits tab.

2. For each database object, in the Populate Privilege field, select one of the
following options:

■ Allow: Explicitly grants the Populate privilege for this database. For all
Marketing data warehouses, select Allow.

■ Disallow: Explicitly denies the Populate privilege for this database.

■ Ignore: Limits are inherited from the parent application role. If there is no
limit to inherit, then the Populate privilege is allowed or disallowed based on
the property Allow populate queries by default for the database object.

3. Click OK, then click OK again to return to the Identity Manager.

About Applying Data Access Security in Offline Mode
It is strongly recommended that you perform data access security tasks in the
Administration Tool in online mode. If you must apply data access security in offline
mode, be aware that users and application roles do not appear in the Administration
Tool in offline mode unless you have first modified them in the Administration Tool in
online mode.

For example, if you open the Administration Tool in offline mode without first making
any changes in online mode, you will see zero users and application roles defined.

About Applying Data Access Security in Offline Mode

Applying Data Access Security to Repository Objects 13-15

However, if you first modify the users and application roles in online mode (for
example, applying object permissions or setting query limits), they will subsequently
be available in the Administration Tool in offline mode.

Setting Up Placeholder Application Roles for Offline Repository Development
Application roles are created and managed in the policy store using the Oracle
WebLogic Administration Console and Fusion Middleware Control. These application
roles are displayed in the Administration Tool in online mode so that you can use
them to set data filters, object permissions, and query limits for particular roles. The
application roles in the policy store are retrieved by the Oracle BI Server when it starts.

In some cases, you may want to proceed with setting up data access security in your
repository for application roles that have not yet been defined in the policy store. You
can do this by creating placeholder application roles in the Administration Tool, then
proceeding with setting up data access security in the repository.

If you create placeholder application roles in the Administration Tool, you must
eventually add them to the policy store. Run the Consistency Checker to identify
application roles that have been defined in the Administration Tool, but that have not
yet been added to the policy store. Be sure to use the same name in the policy store
that you used for the placeholder role in the Administration Tool.

To create placeholder application roles in the Administration Tool:

1. Open your repository in the Administration Tool.

2. Select Manage, then select Identity.

3. In the Identity Manager dialog, select Action > New > Application Role.

4. In the Application Role dialog, provide the following information:

■ Name: Provide a name for the role.

■ Description: Optionally, provide a description of this application role.

■ Members: Use the Add and Remove buttons to add or remove users and
other application roles as appropriate.

■ Permissions: Set object permissions, data filters, and query limits for this
application role as appropriate. Refer to the other sections in this chapter for
detailed information.

5. Click OK to return to the Identity Manager.

To check for application roles that need to be added to the policy store:

1. Open your repository in online mode in the Administration Tool.

2. Select File, then select Check Global Consistency.

3. Note any entries related to application roles, then add the appropriate roles to the
policy store as appropriate. See Oracle Fusion Middleware Security Guide for Oracle
Business Intelligence Enterprise Edition for information about adding application
roles to the policy store.

Note: Use caution when defining and using placeholder roles. If
make changes to a role in offline mode that also exists in the policy
store, the changes will be overwritten the next time you connect to the
Oracle BI Server.

About the List of Users in the Administration Tool

13-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

4. Optionally, select individual rows and click Copy to copy the entries to a text file.

Alternatively, you can check an individual application role by right-clicking the
application role in the Identity Manager dialog and then selecting Check Consistency.

About the List of Users in the Administration Tool
The Identity Manager in the Administration Tool provides a list of users that have
been defined for your system. The list of users is retrieved from your authentication
provider. The set of users is refreshed when the Oracle BI Server is restarted. To see the
user list, select BI Repository in the Identity Manager navigation tree, and then select
the Users tab in the right pane.

In online mode, by default, no users are retrieved, because the list of users might be
very large. Select Action, then select Set Online User Filter to specify the set of users
you want to retrieve.

The filter is empty by default, which means that no users are retrieved. Enter * to
retrieve all users, or enter a combination of characters for a specific set of users, such as
A* to retrieve all users whose names begin with the letter A. The filter is not
case-sensitive.

In offline mode, users do not appear in the list unless you have first modified them in
the Administration Tool in online mode. Because of this, you might not see any users
in the Administration Tool in offline mode.

Double-click a user in the Users list to open the User dialog. You can do the following
in this dialog:

■ In the User tab, you can view the application roles to which this user belongs. You
can also set the query logging level for this user. See Oracle Fusion Middleware
System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for
more information about setting the query logging level.

■ In the Logons tab, you can provide a list of data source-specific logons. In this tab,
you can provide a mapping of credentials that you want to be passed to data
sources for this user.

This feature is used when you set up a data source connection with no shared
connection pool, so that individual user names are passed directly to data sources.
Rather than passing the Oracle Business Intelligence user credentials to the data
source, you can map individual users to separate data source-specific credentials.

Important: Do not set object permissions, data filters, or query limits
for individual users using the Permissions button. Always use
application roles rather than individual users to secure data.

14

Completing Oracle BI Repository Setup 14-1

14Completing Oracle BI Repository Setup

After you have created the repository file, the Physical layer, Business Model and
Mapping layer, and Presentation layer, you need to perform several tasks to complete
the initial repository setup. These tasks include saving the repository and checking
consistency, adding an entry in NQSConfig.INI, and creating data source connections
to the Oracle BI Server for client applications. This chapter provides information about
these final setup tasks.

This chapter contains the following topics:

■ Configuring the Repository for Oracle Scorecard and Strategy Management

■ Saving the Repository and Checking Consistency

■ Testing and Refining the Repository

■ Making the Repository Available for Queries

■ Creating Data Source Connections to the Oracle BI Server for Client Applications

■ Publishing to the User Community

Configuring the Repository for Oracle Scorecard and Strategy
Management

If your organization licensed Oracle Scorecard and Strategy Management and if you
have the appropriate privileges, then you can use this functionality as part of a default
installation with no additional configuration. Oracle Scorecard and Strategy
Management also provides the capability to add comments (that is, annotations) or to
override the status that is associated with specific dimension values for KPIs,
Objectives, and Initiatives. KPI Watchlists offer the capability to add comments or to
override statuses for KPIs. To enable these features, you must configure the repository
to include a database object for storing the comment and status override information.

The database that you installed for use with Oracle Business Intelligence contains the
Business Intelligence Platform schema, which includes required Oracle Scorecard and
Strategy Management schema tables. For more information about installing a database
for Oracle Business Intelligence and running the Repository Creation Assistant (RCU)
to create the required schemas, see Oracle Fusion Middleware Installation Guide for Oracle
Business Intelligence.

To configure Oracle Scorecard and Strategy Management for comments and status
overrides:

1. In the Administration Tool, open the repository in online mode.

Saving the Repository and Checking Consistency

14-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Online mode is strongly recommended for performing data access security tasks,
such as the task described in Step 12 of this procedure.

2. In the Physical layer, right-click and select New Database. The Database dialog is
displayed.

3. For Name, enter BSC.

4. For Database, select the type of database that you have installed for use with
Oracle Business Intelligence (typically Oracle 11g).

5. Select the Connection Pool tab and click the Add button. The Connection Pool
dialog is displayed.

6. For Name, enter BSC.

7. Select the Call interface appropriate for the database (for example, OCI 10g/11g
for Oracle Database).

8. For Data source name, provide the information that is appropriate for the
database that you have installed and configured for use with Oracle Business
Intelligence. For example, for Oracle Database, enter a connection string similar to
the following:

(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)(HOST=192.168.1.100)(PORT=1521))(CONNECT_
DATA=(SERVER=DEDICATED)(SERVICE_NAME=KPIOracle)(SID=KPIOracl)))

When connecting to an Oracle Database data source, you can include the entire
connect string, or you can use the net service name defined in the tnsnames.ora
file. If you choose to enter only the net service name, then you must set up a
tnsnames.ora file in the following location within the Oracle Business Intelligence
environment, so that the Oracle BI Server can locate the entry:

ORACLE_HOME/network/admin

9. Select Shared logon and enter values for User name and Password. In this step,
you provide the user/schema name and password that you created when you
used the Repository Creation Utility (RCU) to populate the Business Intelligence
Platform schema in the Oracle Business Intelligence database.

Ensure that the user that you provide has read/write privileges for the
ANNOTATIONS and ASSESSMENT_OVERRIDES tables in the Business
Intelligence Platform schema.

10. Click OK in the Connection Pool dialog.

11. Click OK in the Database dialog.

12. Use the Identity Manager in the Administration Tool to allow the BISystem
application role to execute direct database requests by default for the BSC database
object. See "Allowing or Disallowing Direct Database Requests" for more
information.

13. Save and close the repository.

14. Restart the Oracle BI Server.

Saving the Repository and Checking Consistency
In offline editing, remember to save your repository from time to time. You can save a
repository in offline mode even though the business models may be inconsistent.

Testing and Refining the Repository

Completing Oracle BI Repository Setup 14-3

To determine if business models are consistent, use the Check Consistency command
to check for compilation errors. You can check for errors in the whole repository by
choosing File > Check Global Consistency, or in a particular logical business model
by selecting a business model and then selecting Check Consistency from the
right-click menu.

The consistency check analyzes the repository for certain kinds of errors and
inconsistencies. For example, the consistency check finds any logical tables that do not
have logical sources configured or any logical columns that are not mapped to
physical sources, checks for undefined logical join conditions, determines whether any
physical tables referenced in a business model are not joined to the other tables
referenced in the business model, and checks for existence of a subject area for each
business model.

When you check for consistency, any errors or warnings that occur are displayed in a
dialog. Correct any errors and check for consistency again, repeating this process until
there are no more errors. An error message indicates a problem that must be corrected.
A warning message identifies a possible problem. Refer to "Checking the Consistency
of a Repository or a Business Model" for more information.

After upgrading from a previous software version and checking the consistency of
your repository, you might observe messages that you had not received in previous
consistency checks. This typically indicates inconsistencies that had been undetected
before the upgrade, not new errors.

Testing and Refining the Repository
When your repository is complete, you can run sample queries against it to test that it
is created properly. Correct any problems you find and test again, repeating this
process until you are satisfied with the results.

You can use the Oracle BI Server utility nqcmd to run test queries against the
repository. The utility connects using an Oracle BI Server ODBC DSN. The Oracle BI
Server must be running to use nqcmd.

The nqcmd utility is available on both Windows and UNIX systems.

This utility is intended for sanity testing. For heavier load testing, use Answers or
another client. Queries with many thousands of rows will not work with nqcmd.

Although you can use nqcmd to run queries against other ODBC data sources, this
section only describes how to use this utility to query the Oracle BI Server.

Before running nqcmd, you must first run bi-init.cmd (or bi-init.sh on UNIX) to launch
a command prompt or shell window that is initialized to your Oracle instance. You
can find this utility in:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

Then, run nqcmd from the resulting shell window with the desired options. For
example:

nqcmd -dmy_dsn -umy_username [-pmy_password] -ssql_input_file -omy_result_file

Note: Passing a consistency check does not guarantee that a business
model is constructed correctly, but it does rule out many common
problems.

Testing and Refining the Repository

14-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

You can pass a text file with SQL statements to the utility (script mode), or you can
enter SQL at the command line (interactive mode). Queries are run against the default
subject area, unless the object names used in the query are fully qualified.

Table 14–1 lists the command-line arguments for nqcmd.

Table 14–1 Command-line Arguments for nqcmd

Argument Description

-? Lists the available command-line arguments.

-ddata_source_name The ODBC data source name for the Oracle BI Server to which
you want to connect.

If you omit this parameter, you are prompted at the command
line to enter the DSN.

Tip: On Windows, you can see the available local ODBC data
source names by going to Control Panel > Administrative
Tools > Data Sources (ODBC). Click the System DSN tab to
see a list of the available DSNs (for example, AnalyticsWeb_
coreapplication).

-uuser_name A valid Oracle Business Intelligence user name.

-ppassword The corresponding Oracle Business Intelligence user
password.

The password argument is optional. If you do not provide a
password argument, you are prompted to enter a password
when you run the command. To minimize the risk of security
breaches, Oracle recommends that you do not provide a
password argument either on the command line or in scripts.
Note that the password argument is supported for backward
compatibility only, and will be removed in a future release.

-ssql_input_file_name The name and path of a text file that includes your test SQL
queries.

-ooutput_result_file_name The name and path of a file to which the utility will write the
query results. This option is only used with -s.

-Ddelimiter The delimiter used in the SQL input file (for example,
semicolon (;) or colon (:)). This option is only used with -s.

-a Enables asynchronous processing.

This option is typically used with -s, when you are passing a
SQL input file with multiple SQL statements.

-z Enables UTF8 output instead of ACP in the output result file.

You might need to include this option to display international
characters in query results.

-utf16 Enables UTF16 instead of ACP for communication between
nqcmd and the Oracle BI ODBC driver.

You might need to include this option to display international
characters in query results.

-NotForwardCursor Disables the ODBC forward only cursor.

Including this argument overrides the setting specified in the
ODBC DSN.

-v Displays the version of the nqcmd utility.

-SessionVar session_variable_
name=session_variable_value

Includes the specified session variable and sets it to the
specified value.

Publishing to the User Community

Completing Oracle BI Repository Setup 14-5

Although -C, -R, -f, -H, -q, and -NoFetch are listed by the utility as available
arguments, these options are not typically used.

If you run nqcmd in interactive mode rather than script mode (or in other words, if
you do not pass a SQL input file), nqcmd shows a menu of options after you provide
the data source name and user credentials. Although many options are shown, you
typically only use Q, T, and C against the Oracle BI Server.

Enter Q to type a query at the command line. You must enter the query on a single
line, and you cannot use a semicolon as a delimiter. Pressing Enter sends the SQL to
the Oracle BI Server.

Enter T to browse presentation tables, or C to browse presentation columns. The utility
prompts you for catalog pattern, user pattern, table pattern, and table type pattern
before returning results.

For catalog pattern, enter the subject area that contains the tables you want to see. For
table pattern, enter the specific table. You can enter percent (%) to see all subject areas
or all tables, use % with other characters to replace a set of characters, or use
underscore (_) with other characters to replace a single character.

User pattern and table type pattern are not used in queries against the Oracle BI
Server, so enter % for these options.

You can also enter D to view a static list of data types supported by the Oracle BI
Server.

Making the Repository Available for Queries
After you build a repository and it is consistent, you need to upload the repository
using Fusion Middleware Control so that all Oracle BI Server instances can access it.
Uploading the repository allows the Oracle BI Server to load the repository into
memory upon startup and makes the repository available for queries.

See "Configuring Repositories" in Oracle Fusion Middleware System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition for information about how to
perform this task.

When the repository is uploaded and you can connect to it, run sample queries against
it to test that it is created properly. Correct any problems you find and test again,
repeating this process until you are satisfied with the results.

Creating Data Source Connections to the Oracle BI Server for Client
Applications

If you want to enable end user client applications to connect to the new repository,
you must define an ODBC data source connection to the Oracle BI Server for each
application. Note that Oracle BI Presentation Services has the same relationship to the
Oracle BI Server as any other client application.

See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion
Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for
information about creating ODBC data source connections for the Oracle BI Server.

Publishing to the User Community
After testing is complete, notify the user community that the data sources are available
for querying. Presentation Services users only need to know the URL to type in their

Publishing to the User Community

14-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

browser. Client/server users (for example, users accessing the Oracle BI Server with a
query tool or report writer client application) need to know the subject area names, the
computer on which the server is running, and their user IDs and passwords. They also
need to have the ODBC DSN for the Oracle BI Server installed on their computers, and
they may need to know the logical names of repositories if multiple repositories are
used and the data source name (DSN) being created does not point to the default
repository.

15

Setting Up Data Sources on Linux and UNIX 15-1

15Setting Up Data Sources on Linux and UNIX

Most repository development is performed on Windows, because the Administration
Tool runs only on Windows. When you move to a production system, however, you
can choose to run the Oracle BI Server on a Linux or UNIX platform. This chapter
describes how to set up data sources for use with Oracle Business Intelligence when
the Oracle BI Server is running on Linux or UNIX.

See "System Requirements and Certification" for information about supported Linux
and UNIX platforms.

This chapter contains the following topics:

■ About Setting Up Data Sources on Linux and UNIX

■ Configuring Data Source Connections Using Native Gateways

■ Using DataDirect Connect ODBC Drivers on Linux and UNIX

■ Configuring Database Connections Using Native ODBC Drivers

■ Configuring Oracle RPAS ODBC Data Sources on AIX UNIX

■ Configuring Essbase Data Sources on Linux and UNIX

■ Configuring DB2 Connect on IBM z/OS and s/390 Platforms

About Setting Up Data Sources on Linux and UNIX
When the Oracle BI Server is running on Linux or UNIX, most data source connections
are for query-only access. The Administration Tool is used for importing objects and is
a Windows-only tool. Because of this, data source connections for import must be set
up on Windows.

Note that some data source connections on Linux and UNIX do support write
operations for special functions, like data source connections for write-back, usage
tracking, and annotations for Oracle Scorecard and Strategy Management.

When the Oracle BI Server is running on Linux or UNIX and you need to update
database object settings (such as the database type) or connection pool settings, you
can copy the repository file to a Windows computer, make the changes using the
Administration Tool on Windows, and then copy the repository file back to the Linux
or UNIX computer.

There are three types of data source connections on Linux and UNIX platforms:

■ Native data source gateway connections, such as OCI for Oracle Database or DB2
CLI for IBM DB2

Configuring Data Source Connections Using Native Gateways

15-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ ODBC connections using the DataDirect Connect ODBC drivers that are bundled
with Oracle Business Intelligence

■ Native ODBC connections using external drivers, such as for Teradata data
sources

Note that you cannot have a single repository that contains both DataDirect Connect
ODBC connections and native ODBC connections.

Configuring Data Source Connections Using Native Gateways
You can connect to both Oracle Database and DB2 using native gateways (OCI and
DB2 CLI, respectively). To configure these connections, install the appropriate
database client on the computer running the Oracle BI Server, then edit the user.sh file
to set environment variables for the database client.

For Oracle Database, ensure the following:

■ The computer running Oracle Business Intelligence must use the Oracle Call
Interface (OCI) to connect to the database.

■ You must install the Oracle Database Client on the computer running the Oracle
BI Server to connect to an Oracle Database.

■ In the tnsnames.ora file, the Oracle Database alias (the defined entry name) must
match the Data Source Name used in the repository connection pools of all
physical Oracle databases.

When connecting to an Oracle Database data source, you can include the entire
connect string, or you can use the net service name defined in the tnsnames.ora
file. If you choose to enter only the net service name, you must set up a
tnsnames.ora file in the following location within the Oracle Business Intelligence
environment, so that the Oracle BI Server can locate the entry:

ORACLE_HOME/network/admin

Only certain versions of the Oracle Database Client are supported. See "System
Requirements and Certification" for more information.

To connect to Oracle Database or DB2 using native connections:

1. Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

2. Include the appropriate environment variable settings for the database client of
your choice. Make sure to point to the appropriate libraries, depending on
whether you are using a 32-bit or 64-bit database. See Example 15–1 for sample
values.

For an Oracle database using an OCI connection, establish the Web client before
you input the tnsnames entry.

3. Save and close the file.

Example 15–1 Sample user.sh Entries for Oracle Database and DB2 (32-Bit)

This example shows sample entries in user.sh for Oracle Database and DB2 on various
platforms.

###
Linux: Oracle BI 32 bit mode
##

Configuring Data Source Connections Using Native Gateways

Setting Up Data Sources on Linux and UNIX 15-3

#set +u

Oracle Parameters
#---------------------------
Make sure that Oracle DB 32 bit Client is installed
#ORACLE_HOME=/export/home/oracle/10g
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH

If you have Linux 64 bit Platform, and would like to run Oracle BI 32 bit
then you must install Oracle DB 64 bit client, and this client comes with
32 bit libraries under $ORACLE_HOME/lib32. The LD_LIBRARY_PATH in this case
shall be like this:
#LD_LIBRARY_PATH=$ORACLE_HOME/lib32:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH

DB2 Parameters
#---------------------------
#make sure the /DB2ISTANCE/sqllib/lib points to 32 lib file
#. /DB2ISTANCE/sqllib/db2profile
#---------------------------

###
Solaris: Oracle BI 64 bit mode
###
#set +u

Oracle Parameters
#---------------------------
Make sure to install Oracle DB 64 bit Client
#ORACLE_HOME=/export/home/oracle/10g
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#LD_LIBRARY_PATH_64=$ORACLE_HOME/lib:$LD_LIBRARY_PATH_64:/opt/j2se/jre/lib/sparc
#export LD_LIBRARY_PATH_64
#---------------------------

DB2 Parameters
#---------------------------
#make sure the /DB2ISTANCE/sqllib/lib points to 64 lib file
#. /DB2ISTANCE/sqllib/db2profile
#LD_LIBRARY_PATH_64=/DB2ISTANCE/sqllib/lib:$LD_LIBRARY_PATH_64
#export LD_LIBRARY_PATH_64
#---------------------------

###
HPUX Itanium: Oracle BI 64 bit mode
###
#set +u

Oracle Parameters
#---------------------------

Configuring Data Source Connections Using Native Gateways

15-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

#ORACLE_HOME=/export/home/oracle/10g
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#SHLIB_PATH=$ORACLE_HOME/lib:$SHLIB_PATH:/opt/j2se/jre/lib/hp700
#export SHLIB_PATH
#---------------------------

DB2 Parameters
#---------------------------
#make sure the /DB2ISTANCE/sqllib/lib points to 64 lib file
#. /DB2ISTANCE/sqllib/db2profile
#SHLIB_PATH=/DB2ISTANCE/sqllib/lib:$SHLIB_PATH
#export SHLIB_PATH
#---------------------------

###
AIX: Oracle BI 64 bit mode
###
#set +u

Oracle Parameters
#---------------------------
#ORACLE_HOME=/export/home/oracle/10g
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#LIBPATH=$ORACLE_HOME/lib:$LIBPATH:/opt/j2se/jre/lib/sparc
#export LIBPATH
#---------------------------

DB2 Parameters
#---------------------------
#make sure the /DB2ISTANCE/sqllib/lib points to 64 lib file
#. /DB2ISTANCE/sqllib/db2profile
#---------------------------

Note that the shell script excerpts shown are examples only and are not
recommendations for particular software platforms. See "System Requirements and
Certification" for information about supported software platforms.

Troubleshooting OCI Connections
If you are having trouble connecting to an Oracle Database using OCI, check to ensure
that the following conditions are true:

■ The computer running the Oracle BI Server must use Oracle Call Interface (OCI) to
connect to the database.

■ If you choose not to use the entire connect string in the repository connection pool,
you must ensure that a valid tnsnames.ora file is set up in the following location
within the Oracle Business Intelligence environment, so that the Oracle BI Server
can locate the entry:

ORACLE_HOME/network/admin

Configuring Data Source Connections Using Native Gateways

Setting Up Data Sources on Linux and UNIX 15-5

■ If you choose not to use the entire connect string in the repository connection pool,
ensure that the net service name in the tnsnames.ora file matches the Data Source
Name used in the connection pool.

For example, in the following example of a tnsnames.ora entry, the corresponding
Oracle BI repository connection pool Data Source Name is ITQA2.

ITQA2 =
(DESCRIPTION =

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = ITQALAB2)(PORT = 1521))

(CONNECT_DATA =
(SERVICE_NAME = ITQALAB2.corp)
)

)

The following procedure shows how to check repository database and connection pool
settings against the Oracle tnsnames.ora settings.

To check that the repository database and connection pool settings are correct:

1. Open your repository in the Administration Tool.

2. In the Physical layer, double-click the database you want to check to display the
Database dialog.

3. On the General tab, in the Data source definition: Database field, ensure that the
appropriate Oracle Database version is selected. Then, click OK.

4. Open the Connection Pool dialog for this data source. You might need to expand
the database object in the Physical layer to see the Connection Pool object.

5. In the Connection Pool dialog, check that the following is true:

– The Call interface field displays the appropriate value for the release of the
Oracle Database you are using.

– The Data source name field displays the Oracle Database net service name
that you defined in the tnsnames.ora entry.

– The User name and password fields contain the correct values.

Change the values if necessary, then click OK.

6. In the Oracle Business Intelligence environment, open the tnsnames.ora file
located in the following directory:

ORACLE_HOME/network/admin

7. Check that a valid net service name exists with the following characteristics:

– Matches the connection pool settings for the Data Source Name

– Specifies the targeted Oracle physical database

About Updating Row Counts in Native Databases
This topic applies if both of the following are true:

■ You are using the Update Rowcount functionality in the Administration Tool in
offline mode

■ You are running a heterogeneous environment, such as the Oracle BI Server on
UNIX, while remote administrators run the Administration Tool on Windows
computers.

Using DataDirect Connect ODBC Drivers on Linux and UNIX

15-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

When using the Update Rowcount functionality in offline mode, the Administration
Tool uses local data sources on the client computer, not the server data sources.
Therefore, Oracle Database or DB2 clients must be configured on the Windows
computer running the Administration Tool so that the following conditions are true:

■ Data sources point to the same database identified in the Oracle Business
Intelligence user.sh file on the UNIX server.

■ The name of the local data source must also match the name of the data source
defined in the Connection Pool object in the physical layer of the Oracle BI
repository (.rpd) file.

If these conditions are not true, and if the server and client data sources are pointing at
different databases, then erroneous updated row counts or incorrect results appear.

Using DataDirect Connect ODBC Drivers on Linux and UNIX
Oracle Business Intelligence provides DataDirect Connect ODBC drivers and driver
managers for Linux and UNIX operating systems for connectivity to Microsoft SQL
Server, Sybase ASE, and Informix databases.

After Oracle Business Intelligence is installed, the DataDirect Connect ODBC 32-bit
drivers are installed in ORACLE_HOME/odbc/lib. The 64-bit drivers are installed in
ORACLE_HOME/odbc/lib64.

Note that communication between database clients and servers is typically
independent of the widths and data paths. In other words, the 32-bit database drivers
can communicate with 64-bit database servers, and vice versa.

You do not need to set the ODBCINI environment variable to set up the DataDirect
Connect ODBC drivers. This variable is set automatically during installation.

Refer to "System Requirements and Certification" for information about supported
operating systems, databases, and driver versions for the DataDirect Connect ODBC
drivers.

This section contains the following topics:

■ Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server
Database

■ Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database

■ Configuring the DataDirect Connect ODBC Driver for Informix Database

Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server Database
The name of the DataDirect ODBC driver file to connect to a Microsoft SQL Server
database is SEmsss23.so (SEmsss23.sl on HP-UX PA-RISC). See "System Requirements
and Certification" for supported versions of Microsoft SQL Server.

To configure the DataDirect Connect ODBC Driver to connect to Microsoft SQL
Server:

1. Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

2. In the section for your operating system, include the appropriate library path
environment variable for the DataDirect Connect libraries. Make sure to point to
the appropriate library, depending on whether you are using a 32-bit or 64-bit
database. Note the following:

Using DataDirect Connect ODBC Drivers on Linux and UNIX

Setting Up Data Sources on Linux and UNIX 15-7

■ For Solaris and Linux, the library path variable is LD_LIBRARY_PATH.

■ For HP-UX, the library path variable is SHLIB_PATH.

■ For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the 32-bit driver on Linux:

##
Linux: Oracle BI 32 bit mode
##

#SQLServer 2000 Parameters
#---------------------------------------
LD_LIBRARY_PATH=/user/local/OracleBI/odbc/lib:$ LD_LIBRARY_PATH
export LD_LIBRARY_PATH

3. Save and close the file.

4. Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

5. Create an entry for your database, ensuring that the ODBC connection name is
identical to the data source name specified in the connection pool defined in the
repository. Be sure to set the Driver parameter to the file name and location of the
DataDirect Connect driver for Microsoft SQL Server. In the following example, the
Driver parameter is set to the 64-bit DataDirect Connect driver, and the data
source name is SQLSERVER_DB.

[SQLSERVER_DB]
Driver=/usr/OracleBI/odbc/lib64/SEmsss23.so
Description=DataDirect 5.1 SQL Server Wire Protocol
Address=111.111.111.111,1433
AlternateServers=
AnsiNPW=Yes
ConnectionRetryCount=0
ConnectionRetryDelay=3
Database=dbschema_name
LoadBalancing=0
LogonID=
Password=
QuoteID=No
ReportCodePageConversionErrors=0

6. Save and close the odbc.ini file.

7. Open your repository in the Administration Tool on a Windows computer.

8. In the Physical layer, double-click the database object for the Microsoft SQL Server
database.

9. Click the Features tab and scroll to the IDENTIFIER_QUOTE_CHAR parameter.
Then, replace the value for this parameter with ' ' (single quotes). The default
value is double quotes (" ").

10. Click OK.

11. Save and close the repository.

12. On the Linux or UNIX computer, shut down Oracle Business Intelligence.

13. Copy the repository from the Windows computer to the Linux or UNIX computer.

14. Start Oracle Business Intelligence on the Linux or UNIX computer.

Using DataDirect Connect ODBC Drivers on Linux and UNIX

15-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database
The name of the DataDirect ODBC driver file to connect to a Sybase ASE database is
SEase23.so. See "System Requirements and Certification" for information about
supported versions of Sybase ASE.

To configure the DataDirect Connect ODBC Driver to connect to Sybase ASE
Database:

1. Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

2. In the section for your operating system, include the appropriate library path
environment variable for the DataDirect Connect libraries. Make sure to point to
the appropriate library, depending on whether you are using a 32-bit or 64-bit
database. Note the following:

■ For Solaris and Linux, the library path variable is LD_LIBRARY_PATH.

■ For HP-UX, the library path variable is SHLIB_PATH.

■ For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the 32-bit driver on Linux:

LD_LIBRARY_PATH=/user/local/OracleBI/odbc/lib:$ LD_LIBRARY_PATH
export LD_LIBRARY_PATH

3. Save and close the file.

4. Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

5. Create an entry for your database, ensuring that the ODBC connection name is
identical to the data source name specified in the connection pool defined in the
repository. Be sure to set the Driver parameter to the file name and location of the
DataDirect Connect driver for Sybase ASE Database. For NetworkAddress,
provide the IP address or fully qualified host name and the port number.

In the following example, the Driver parameter is set to the 64-bit DataDirect
Connect driver, and the data source name is SybaseASE_DB.

[SybaseASE_DB]
Driver=/usr/OracleBI/odbc/lib64/SEase23.so
Description=DataDirect 5.3 Sybase Wire Protocol
AlternateServers=
ApplicationName=
ApplicationUsingThreads=1
ArraySize=50
AuthenticationMethod=0
Charset=
ConnectionRetryCount=0
ConnectionRetryDelay=3
CursorCacheSize=1
Database=Paint
DefaultLongDataBuffLen=1024
EnableDescribeParam=0
EnableQuotedIdentifiers=0
EncryptionMethod=0
GSSClient=native
HostNameInCertificate=
InitializationString=

Using DataDirect Connect ODBC Drivers on Linux and UNIX

Setting Up Data Sources on Linux and UNIX 15-9

Language=
LoadBalancing=0
LogonID=my_id
NetworkAddress=111.111.111.111,5005
OptimizePrepare=1
PacketSize=0
Password=
RaiseErrorPositionBehavior=0
ReportCodePageConversionErrors=0
SelectMethod=0
ServicePrincipalName=
TruncateTimeTypeFractions=0
TrustStore=
TrustStorePassword=
ValidateServerCertificate=1
WorkStationID=

6. Save and close the odbc.ini file.

Configuring the DataDirect Connect ODBC Driver for Informix Database
The name of the DataDirect ODBC driver file to connect to an Informix database is
SEifcl23.so. See "System Requirements and Certification" for information about
supported versions of Informix.

To configure the DataDirect Connect ODBC Driver to connect to Informix:

1. Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

2. In the section for your operating system, include the appropriate library path
environment variable for the DataDirect Connect libraries. Make sure to point to
the appropriate library, depending on whether you are using a 32-bit or 64-bit
database. Note the following:

■ For Solaris and Linux, the library path variable is LD_LIBRARY_PATH.

■ For HP-UX, the library path variable is SHLIB_PATH.

■ For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the 32-bit driver on Linux:

LD_LIBRARY_PATH=/user/local/OracleBI/odbc/lib:$ LD_LIBRARY_PATH
export LD_LIBRARY_PATH

3. Save and close the file.

4. Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

5. Create an entry for your database, ensuring that the ODBC connection name is
identical to the data source name specified in the connection pool defined in the
repository. Be sure to set the Driver parameter to the file name and location of the
DataDirect Connect driver for Informix. Also, you must specify the HostName
parameter (you can use the fully qualified host name or the IP address) and the
PortNumber parameter.

In the following example, the Driver parameter is set to the 64-bit DataDirect
Connect driver, and the data source name is Informix_DB.

Configuring Database Connections Using Native ODBC Drivers

15-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

[Informix_DB]
Driver=/usr/OracleBI/odbc/lib64/SEifcl23.so
Description=DataDirect Informix Wire Protocol
AlternateServers=
ApplicationUsingThreads=1
CancelDetectInterval=0
ConnectionRetryCount=0
ConnectionRetryDelay=3
Database=
HostName=111.111.111.111
LoadBalancing=0
LogonID=informix
Password=mypassword
PortNumber=1526
ReportCodePageConversionErrors=0
ServerName=
TrimBlankFromIndexName=1

6. Save and close the odbc.ini file.

Configuring Database Connections Using Native ODBC Drivers
Oracle Business Intelligence bundles UNIX ODBC drivers for some data sources, but
not all. For these data sources, including Teradata, you must install your own ODBC
driver, then update the user.sh and odbc.ini files to configure the data source.

To configure a database connection using a native ODBC driver:

1. Install the ODBC driver for your data source.

2. Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

3. In the section for your operating system, include the appropriate library path
environment variable for the native ODBC driver. Make sure to point to the
appropriate library, depending on whether you are using a 32-bit or 64-bit
database. Note the following:

■ For Solaris and Linux, the library path variable is LD_LIBRARY_PATH.

■ For HP-UX, the library path variable is SHLIB_PATH.

■ For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for Teradata on Linux:

LD_LIBRARY_PATH=/usr/odbc/lib:/usr/lpp/tdodbc/odbc/drivers:$ LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Note that for Teradata in particular, you need to put /usr/odbc/lib at the
beginning of the library path variable before all other entries. This step is only
required for Teradata.

4. Save and close the file.

5. Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

6. Create an entry for your database, ensuring that the ODBC connection name is
identical to the data source name specified in the connection pool defined in the
repository. Be sure to set the Driver parameter to the file name and location of the

Configuring Oracle RPAS ODBC Data Sources on AIX UNIX

Setting Up Data Sources on Linux and UNIX 15-11

native ODBC driver for your database, with the library suffix appropriate for your
operating system (for example, .so for Solaris and AIX, or .sl for HP-UX).

The following example provides details for a Teradata data source on Solaris, with
a data source name of Terav502.

[Terav502]
Driver=/usr/odbc/drivers/tdata.so
Description=NCR 3600 running Teradata V2R5.2
DBCName=172.20.129.42
LastUser=
Username=
Password=
Database=
DefaultDatabase=name_of_target_database_or_user

Note that the DefaultDatabase parameter can be left empty only if you have
selected the option Require fully qualified table names in the General tab of the
Connection Pool dialog for this data source in the Administration Tool.

7. Still in the odbc.ini file, add an entry to the section [ODBC Data Sources] with the
details appropriate for your data source. The following example provides details
for a Teradata data source with a data source name of Terav502.

Terav502=tdata.so

8. Using the Administration Tool, open the repository and add the new DSN you
created as the Connection Pool Data source name for the appropriate physical
databases. See "Creating or Changing Connection Pools" for more information.

9. Restart the Oracle BI Server.

Configuring Oracle RPAS ODBC Data Sources on AIX UNIX
You can access Oracle RPAS ODBC data sources when the Oracle BI Server is running
on an AIX UNIX platform. To configure this database connection, first update the
odbc.ini file to configure the Oracle RPAS ODBC data source, then use the rdaadmin
tool to define dimension tables as not normalized at run time.

See "Setting Up Oracle RPAS Data Sources" for information about configuring Oracle
RPAS ODBC data sources on Windows.

To configure Oracle RPAS ODBC as a data source on AIX UNIX:

1. Log on as a separate telnet session.

2. Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

3. In the RPAS data source section, edit the values. For example:

[RPAS Sample]
Data Source Name=RPAS Sample
Driver=[client RPASClient/lib/raix/oaodbc.so
DriverUnicodeType=1
Description=OpenRDA DSN

The Data Source Name you provide must match the value entered for
DATABASE: in Step 3 of the following procedure. Also, you must add the line
DriverUnicodeType=1 as shown in the preceding example.

Configuring Essbase Data Sources on Linux and UNIX

15-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

To use the rdaadmin client tool to define dimension tables as not normalized at run
time:

1. Locate the rdaadmin client tool in the following location:

/bin/rdaadmin

2. Run the rdaadmin client tool by typing the following command:

rdaadmin

3. Enter appropriate text when prompted, as follows:

DATABASE: [Oracle_RPAS_database_name]

The database name must match the name given for the Data Source Name in the
previous task (for example, RPAS Sample).

ADDRESS: [ip_address]

PORT: [port_number]

An example port number value is 1707.

CONNECT_STRING: [NORMALIZE_DIM_TABLES=NO]

This value treats dimension tables as not normalized at run time.

TYPE: []

SCHEMA_PATH: []

REMARKS: []

4. The RPAS environment variable OPENRDA should be declared in the Oracle BI
Server session on UNIX. For example, declare the variable as follows using the 64
bit rdaadmin client tool:

OPENRDA_INI=/rpasclient64/config/raix/openrda.ini export OPENRDA_INI

Configuring Essbase Data Sources on Linux and UNIX
The Oracle BI Server uses the Essbase client libraries to connect to Essbase data
sources. You must ensure that the Essbase client libraries are installed on the computer
running the Oracle BI Server before you can set up a connection to Essbase data
sources. See "System Requirements and Certification" for information about supported
versions of the Essbase Client for use with Oracle Business Intelligence.

After you install the Essbase client libraries, ensure that the PATH environment
variable includes the location of the Essbase client driver. For example, to configure
access to Essbase client libraries on Linux 32-bit, add the Essbase Client Libraries
directory to LD_LIBRARY_PATH:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:Essbase_Client_Libraries_directory

For example:

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/export/home/Hyperion/AnalyticServicesClient/bin
export LD_LIBRARY_PATH

Set the appropriate variable for your operating system, using the appropriate syntax.
For example, update LIBPATH on AIX, SHLIB_PATH on HP-UX Itanium, and LD_
LIBRARY_PATH_64 on Solaris 64-bit.

Configuring DB2 Connect on IBM z/OS and s/390 Platforms

Setting Up Data Sources on Linux and UNIX 15-13

You also need to ensure that an additional environment variable is set appropriately
(either ESSBASEPATH or ARBORPATH, depending on your client version). For more
information, see Oracle Hyperion Enterprise Performance Management System Installation
and Configuration Guide (or the equivalent title for your client version).

Finally, you need to update opmn.xml with the appropriate Essbase client library
information. See "Updating Essbase Information in opmn.xml" for more information.

Configuring DB2 Connect on IBM z/OS and s/390 Platforms
IBM DB2 Connect does not support the option of automatically disconnecting when an
application using it receives an interrupt request.

When the native database uses DB2 Connect workstation, then you must change the
setting of the parameter INTERRUPT_ENABLED. This parameter must be changed on
any Oracle Business Intelligence computer if the database or any data source resides
on IBM DB2 on a mainframe running z/OS or s/390 platforms.

To configure the INTERRUPT_ENABLED parameter:

1. Configure a database alias to be used as the native CLI Data Source Name. For
example, create a new database entry using DB2 Configuration Assistant.

2. Using the database alias created and the name of the actual target DB2 database,
set the INTERRUPT_ENABLED parameter using the following syntax:

uncatalog dcs db local_dcsname
catalog dcs db local_dcsname as target_dbname parms \",,INTERRUPT_ENABLED\"

where:

– local_dcsname represents the local name of the host or database (database
alias name)

Note: The following additional steps are required for HP-UX
Itanium systems:

1. Define ESSLANG and LANG.

For example:

ESSLANG=English_UnitedStates.UTF-8@Binary
export ESSLANG
LANG=en_US.utf8
export LANG

2. Comment out LOCALE, SORT_ORDER_LOCALE, and SORT_TYPE in
the NQSConfig.ini file. For example:

[GENERAL]
// Localization/Internationalization parameters.
// LOCALE="English-usa";
// SORT_ORDER_LOCALE="English-usa";
// SORT_TYPE="binary";

Note: If IBM DB2 is used, DB2 Connect must be installed on the
Oracle BI Server computer. The version of DB2 Connect must match
the most recent DB2 instance that was configured as a data source.

Configuring DB2 Connect on IBM z/OS and s/390 Platforms

15-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

– target_dbname represents the name of database on the host or database
system

The following example uses an OS390 DB2 instance:

uncatalog dcs db DB2_390
catalog dcs db DB2_390 as Q10B parms \",,INTERRUPT_ENABLED,,,,,\"
catalog database DB2_390 as DB2_390 at node NDE1EF20 authentication dcs

Note: Be sure to use backslashes to pass the quotation marks as part
of the string.

16

Managing Oracle BI Repository Files 16-1

16Managing Oracle BI Repository Files

This chapter provides information about topics related to managing your repository
files, including comparing and merging repositories, equalizing objects, and querying
and managing metadata.

This chapter contains the following topics:

■ Comparing Repositories

■ Equalizing Objects

■ Merging Repositories

■ Querying and Managing Repository Metadata

■ Changing the Repository Password

Comparing Repositories
This section explains how to use the Compare repositories dialog in the
Administration Tool. This feature enables you to compare all repository objects in two
different repositories.

If you are using an Oracle BI Applications repository and have customized its content,
you can use this option to compare your customized repository to a new version of the
repository received with Oracle BI Applications.

See "Merging Repositories" for more information about merging your customized
Oracle BI Applications repository with a new version of the repository.

To compare two repositories:

1. In the Administration Tool, open a repository in offline mode.

The repository that you open in this step is referred to as the current repository.
See "Using Online and Offline Repository Modes" for instructions on opening a
repository.

2. From the File menu, select Compare.

3. In the Select Original Repository dialog, select the repository you want to compare
to the open repository.

4. In the Open Offline dialog, enter the repository password and click OK.

5. Use the Compare repositories dialog to review the differences between the two
repositories. Figure 16–1 shows the Compare repositories dialog.

Comparing Repositories

16-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 16–1 Compare Repositories Dialog

Table 16–1 lists and describes the values in the Change column.

Table 16–2 lists and describes some of the buttons in the Compare repositories
dialog.

Table 16–1 Compare Repositories Dialog: Change Column

Change Description

Created Object was created in the current repository and does not exist
in the original repository.

Deleted Object exists in the original repository but has been deleted
from the current repository.

Modified Object exists in the original repository but has been modified in
the current repository.

Table 16–2 Compare Repositories Dialog: Buttons

Button Description

Filter Opens the Comparison Filter dialog to enable you to filter the
objects that appear in the Compare repositories dialog by type
of change and type of object. You can specify what you want to
appear and what you want to be hidden. If you select Group
created and deleted objects, the tool filters out the child objects
of created and deleted objects, so that only the parent objects are
shown. By default, all items are shown.

Find Search by an object Name and Type (such as Initialization
Block).

Equalizing Objects

Managing Oracle BI Repository Files 16-3

Turning Off Compare Mode
This option enables you to remove marks applied to objects while using the Compare
Repositories and Merge Repositories options. The Turn off Compare Mode option is
only available after you have clicked Mark during the File > Compare action. If no
repository object is marked, this option is not available.

To enable the Turn off Compare Mode option:

■ In the Administration Tool, select File, then select Turn off Compare Mode.

Equalizing Objects
If you have objects in two repositories that have the same name but different upgrade
IDs, you may want to treat them as the same object. To accomplish this, you can use
the equalizerpds utility to equalize the objects by giving them both the same upgrade
ID. Alternatively, you can equalize objects as part of the merge process.

You can also use the Equalize Objects dialog (available from the Compare repositories
dialog) to preview what the repository will look like after you run the equalizerpds
utility.

This section contains the following topics:

■ About Equalizing Objects

■ Using the Equalize Objects Dialog

■ Using the equalizerpds Utility

About Equalizing Objects
Objects may need to be equalized because the Administration Tool tracks the history
of each repository object using the upgrade ID of the object. The upgrade ID is a

Select Enables you to select a repository to compare with the current
repository.

Find Again Search again for the most recent Find value.

Diff Differences between the current repository and the original
repository.

Save Saves a list of the differences between the two repositories.

Stats Provides the number of changes by Change type.

View 1 Opens an object in the original repository in read-only mode.

Edit 2 Opens an object in the current repository in read/write mode.

Equalize Opens the Equalize Objects dialog so that you can model
changes to the upgrade ID of the objects. See "Equalizing
Objects" for more information.

Create Patch Creates a patch file that contains the differences between the
repositories. See "Performing Patch Merges" for more
information.

Mark Marks the object you select. Boxes appear around created and
modified objects. To remove marks, from the File menu, choose
Turn off Compare Mode.

Table 16–2 (Cont.) Compare Repositories Dialog: Buttons

Button Description

Equalizing Objects

16-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

unique identifier for each object. Sometimes, the upgrade ID can change because of
user actions or during merge. When this occurs, and a subsequent comparison is done,
the Administration Tool treats the new upgrade ID as a new object, and the missing
original upgrade ID as a deleted object.

For example, assume you have two identical repositories. In one repository, delete a
presentation column, then re-create it again. When you compare the two repositories
using the Compare repositories dialog, there are two entries for the presentation
column: one that shows the old object as deleted, and one that shows the new object as
created. Without using the Compare repositories dialog, it is hard to tell that this
action occurred, because the Administration Tool typically shows only the object name
and properties, not the underlying upgrade ID.

It is very useful run the equalizerpds utility on your repositories before merging them
to equalize your changes. Equalizing any opposing changes (such as a column that has
been duplicated, and then renamed) cleans up the underlying upgrade IDs and
prevents unintended renaming during the merge.

When you equalize objects, you can lose track of object renames because legitimate
object renames become different objects. In other words, intentional renames you did
in the repository might be changed to different upgrade IDs, so subsequent merges
erroneously treat the renamed object as a new object. To avoid this situation, enter the
before and after names of intentionally renamed objects in a rename map file that you
then pass to the utility. The equalizerpds utility uses the information in the file to
ensure that the original IDs are used in the renamed current objects.

Using the Equalize Objects Dialog
The Equalize Objects dialog gives you a preview of what your repository will look like
if you run the equalizerpds utility on it. The Equalize Objects dialog provides a
convenient way to compare changes related to objects that have the same name, but it
does not persist any of the changes. Note that using the Equalize Objects dialog can be
a very slow process for larger repositories.

To view and use the Equalize Objects dialog:

1. In the Administration Tool, open your repository in offline mode.

2. From the File menu, select Compare.

3. In the Select Original Repository dialog, select the repository you want to compare
to the open repository (typically the original repository).

4. In the Open Offline dialog, enter the repository password and click OK. The
Compare repositories dialog is displayed.

5. Click Equalize to display the Equalize Objects dialog.

Tip: You can view the upgrade ID for repository objects using the
Query Repository dialog. To do this, follow these steps:

1. Select Tools, then select Query Repository.

2. Run a query. See "Querying and Managing Repository Metadata" for
details.

3. Click Columns.

4. Select Upgrade ID from the list. You can use the Find button to help
locate the Upgrade ID.

5. Click OK. A new column showing the upgrade IDs appears in the Results
list.

Equalizing Objects

Managing Oracle BI Repository Files 16-5

6. The Equalize Objects dialog shows a list of changes where you may want to
consider objects with different upgrade IDs to be the same object. You can use the
following options to model how the changes might get equalized:

■ Click Automatic to automatically equalize changes related to objects that have
the same name. The changes appear in the Equated table.

If no changes can be automatically equalized, nothing appears in the table,
and the OK button remains disabled.

■ Select an object in the Deleted list, then select the equivalent object in the
Created list and click Add or Add Plus to equate the objects. Add Plus adds
the object along with its child objects to the Equated table, while Add simply
adds the selected object. For example, if you select a Subject Area and click
Add Plus, the underlying Presentation Tables and Presentation Columns are
added as well.

After you make a manual selection, the Automatic button is disabled.

■ Select a row in the Equated table and select Remove or Remove All to remove
objects from the Equated table. Remove All removes the object along with its
child objects, while Remove simply removes the selected object

The Automatic button is enabled after all manual selections are removed.

7. When you are finished modeling the changes, click OK. The changes appear in the
Compare Repositories dialog, but the changes do not persist after you close the
dialog.

Figure 16–2 Equalize Objects Dialog

Using the equalizerpds Utility
You can use the equalizerpds utility to equalize the upgrade ID of objects in two
separate repositories. If objects have the same upgrade ID, they are considered to be
the same object. The utility compares upgrade IDs from the first repository (typically
the original repository) with upgrade IDs from the second repository (typically the
modified repository). Then, the utility equalizes the upgrade IDs of objects with the
same name, using the upgrade ID from the original repository.

Before running equalizerpds, you must first run bi-init.cmd (or bi-init.sh on UNIX
systems) to launch a command prompt that is initialized to your Oracle instance. You
can find this utility in:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

Equalizing Objects

16-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Then, run equalizerpds from the resulting command prompt with the desired options.
You can run the utility from this directory with no arguments or parameters to see
usage information.

The utility takes the following parameters:

equalizerpds [-B original_repository_password] -C original_repository_name
[-E modified_repository_password] -F modified_repository_name [-J rename_map_file]
[-O output_repository_name] [-Y equalStringSet]

Where:

rename_map_file is a text file containing a list of objects that were renamed and that
you want to equalize. The format is a tab-separated file with the following columns:

TypeName Name1 Name2

For example, to include a logical column in the map file that was renamed from
Name1 to Name2, provide the following:

ATTRIBUTE "BusinessModel"."Table"."Name1" "BusinessModel"."Table"."Name2"

Do not cut and paste this example as the foundation for your own file, because the tab
separators might not get copied properly. Create a new file with proper tabs.

See "About Values for TypeName" for more information about valid TypeName values.

equalStringSet is a set of characters that you want to treat as equal.

Note that the original_repository_password and modified_repository_
password arguments are optional. If you do not provide these password arguments,
you are prompted to enter the passwords when you run the command (password1
and password2). To minimize the risk of security breaches, Oracle recommends that
you do not provide password arguments either on the command line or in scripts.
Note that the password arguments are supported for backward compatibility only, and
will be removed in a future release.

For example:

equalizedrpds -C original.rpd -F modified.rpd -O modified_equalized.rpd
password1: my_original_rpd_password
password2: my_modified_rpd_password

In this example, original.rpd is compared with modified.rpd, the upgrade IDs are
equalized using the upgrade IDs from original.rpd, and the final result is written to
modified_equalized.rpd.

About Values for TypeName
Table 16–3 shows the available object types and their corresponding values for
TypeName.

Note: Be sure to provide the full pathnames to your repository files,
both the input files and the output file, if they are located in a different
directory.

Table 16–3 TypeName Values

Object Type Value for TypeName

Database DATABASE

Equalizing Objects

Managing Oracle BI Repository Files 16-7

Connection Pool CONNECTION POOL

Physical Catalog CATALOG

Physical Schema SCHEMA

Physical Display Folder PHYSICAL DISPLAY FOLDER

Physical Table TABLE

Physical Key TABLE KEY

Physical Foreign Key FOREIGN KEY

Physical Column COLUMN

Physical Complex Join JOIN

Physical Hierarchy HIERARCHY

Physical Level PHYSICAL LEVEL

Cube Column COLUMN

Cube Table CUBE TABLE

LDAP Server LDAP SERVER

Custom Authenticator CUSTOM AUTHENTICATOR

Variable VARIABLE

Application Role SECURITY ROLE

User USER

User Database Signon USER DATABASE SIGNON

Project PROJECT

Business Model SUBJECT AREA

Logical Dimension DIMENSION

Logical Level LEVEL

Logical Display Folder LOGICAL DISPLAY FOLDER

Logical Table LOGICAL TABLE

Logical Source Folder LOGICAL SOURCE FOLDER

Logical Table Source LOGICAL TABLE SOURCE

Logical Column ATTRIBUTE

Logical Join ROLE RELATIONSHIP

Logical Key LOGICAL KEY

Logical Foreign Key LOGICAL FOREIGN KEY

Presentation Catalog CATALOG FOLDER

Presentation Table ENTITY FOLDER

Presentation Column FOLDER ATTRIBUTE

Presentation Hierarchy PRESENTATION HIERARCHY

Presentation Level PRESENTATION LEVEL

Catalog Link CATALOG LINK

Table 16–3 (Cont.) TypeName Values

Object Type Value for TypeName

Merging Repositories

16-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Merging Repositories
You can use the Merge Repository Wizard in the Administration Tool to merge
repositories (RPD files). There are three types of merges:

■ Full merges are typically used during development processes, when there are two
different repositories that need to be merged. The Administration Tool provides a
three-way merge feature that lets you merge two repositories that have both been
derived from a third, original repository. Full merges can also be used to import
objects from one repository into another.

■ Patch merges are used when you are applying the differential between two
versions of the same repository. For example, you might want to use a patch
merge to apply changes from the development version of a repository to your
production repository, or to upgrade your Oracle BI Applications repository.

■ Multiuser development merges are used when you are checking in projects using a
multiuser development environment. See "About the Multiuser Development
Merge Process" for more information.

See also Appendix D, "Merge Rules" for additional information about how repository
objects are merged.

This section contains the following topics:

■ Performing Full Repository Merges

■ Performing Patch Merges

Performing Full Repository Merges
You can use the Administration Tool to merge different repositories. This section
describes how to use the full (standard) repository merge feature in the
Administration Tool.

This section contains the following topics:

■ About Full Repository Merges

■ Performing Full Repository Merges With a Common Parent

■ Performing Full Repository Merges Without a Common Parent

About Full Repository Merges
The merge process typically involves three versions of an Oracle BI repository: the
original repository, modified repository, and current repository. The original
repository is the original unedited file (the parent repository), while the modified and

Target Level CUSTOMER TYPE

List Catalog LIST CATALOG

Qualified Item QUALIFIED ITEM

Qualifying Key QUALIFYING KEY

Sampling Table SAMPLING TABLE

Segmentation Catalog SEGMENTATION CATALOG

Table 16–3 (Cont.) TypeName Values

Object Type Value for TypeName

Merging Repositories

Managing Oracle BI Repository Files 16-9

current repository are the two changed files you want to merge. The current repository
is the one currently open in the Administration Tool.

During the merge process, the Administration Tool compares the original repository
with the modified repository and the original repository with the current repository.
Conflicts occur when there are conflicting changes resulting from the two
comparisons. For example, a conflict occurs if you rename object A to B in the
modified repository, but you rename object A to C in the current repository.

The Merge Repository feature lets you decide on an object-by-object basis which
changes you want to keep in the final merged repository. If there are no conflicts,
merging is automatic.

There are two types of full merge:

■ Common Parent. This merge, also called a three-way merge, is useful when you
have a common parent repository and two derived repositories (see Figure 16–3).
There is a parent (original) RPD, and two derived RPDs (file version 1 and file
version 2). After the merge, a fourth merged repository file is created.

Figure 16–3 Full Merge With a Common Parent

■ No Common Parent. This merge, also called a two-way merge, is useful when you
want to import objects from one repository to another. In this case, objects are
merged from two different repositories with no common parent. To accomplish
this, you perform a three-way merge in the Administration Tool with a completely
blank repository as the original file (see Figure 16–4). This functionality replaces
the Import from Repository feature that was deprecated in an earlier release.

Merging Repositories

16-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 16–4 Full Merge Without a Common Parent

Performing Full Repository Merges With a Common Parent
This section explains how to use the Administration Tool to perform a full repository
merge with a common parent. Typically, this approach is used when you have an
original parent repository and would like to merge the changes made to objects in two
modified repository versions (current and modified). Objects that do not exist in the
current repository are created as new objects.

To merge two versions of an Oracle BI repository file with a common parent:

1. In the Administration Tool, open the current repository in offline mode.

2. From the Administration Tool menu, select File, then select Merge. The Merge
Repository Wizard appears.

Figure 16–5 shows the Merge Repository Wizard.

Merging Repositories

Managing Oracle BI Repository Files 16-11

Figure 16–5 Merge Repository Wizard: Select Input Files Screen (Full Merge)

3. In the Select Input Files screen, for Merge Type, select Full Repository Merge.

4. Select the original parent repository by clicking Select next to Original Master
Repository. Browse to select the original repository, then click Open.

5. Provide the password for the original repository in the appropriate Repository
Password field.

6. Select the modified repository by clicking Select next to the Modified Repository
field. Browse to select the modified repository, then click Open.

7. Provide the password for the modified repository in the appropriate Repository
Password field.

8. Optionally, you can change the default name and location of the saved (merged)
file by clicking Select next to the Save Merged Repository as field. Provide a new
name and location, then click Save.

9. It is a good practice to equalize your changes to clean up underlying object IDs
before merging. If you have not yet equalized your changes, select Equalize
during merge to equalize objects as part of the merge process. Selecting this option
may affect merge performance.

See "Equalizing Objects" for more information about equalizing.

10. Click Next. If there are any conflicts, the Define Merge Strategy screen of the
Merge Repository Wizard appears. If there are no conflicts, the Merge Repository
Wizard closes.

Figure 16–6 shows the Define Merge Strategy screen.

Merging Repositories

16-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 16–6 Merge Repository Wizard: Define Merge Strategy Screen

11. The Define Merge Strategy screen displays a decision table that shows conflicts for
this merge. See Table 16–4 for details about the elements in this screen.

To make decisions about whether to include or exclude objects from the merged
repository, choose Current or Modified from the Decision list. Choose Current to
keep the change for the selected object in the current repository, or choose
Modified to keep the change for the selected object in the modified repository.

When you select an object in the decision table, the read-only text box below the
decision table describes what changes were made to that object in the current
repository. In addition, the tree panels at the bottom of the dialog show the
affected objects for the selected row. Alternatively, you can select an object in one
of the tree views to automatically highlight the corresponding row in the decision
table.

The Modified option in the Decision list displays a suffix that indicates whether
the object in question will be added to or deleted from the merged repository.
Modified (A) indicates that the object will be added, and Modified (D) indicates
that the object will be deleted.

The type of conflict is displayed in the Description column of the Conflicts table.
The decision choices you can make depend on the type of conflict shown in this
column. The following list shows example results for different types of conflicts:

■ Added to Current: Choosing Current keeps the new object in the merged
repository. Choosing Modified (D) deletes the new object from the merged
repository.

Merging Repositories

Managing Oracle BI Repository Files 16-13

■ Deleted from Current: Choosing Current keeps the repository as it is without
adding the object to the merged repository. Choosing Modified (A) adds the
object back into the merged repository.

■ Changed in both (different): The object was not added or deleted, but at least
one of its properties was modified. Click the plus sign (+) to the left of the row
to view the property that was changed, as well as its value in the original,
current, and modified versions of the repository. Property values are only
shown for small-length strings. Longer-length strings like descriptions,
features, and init strings are not shown.

Click the option for the value you want to retain in the merged version of the
repository. For some properties, such as aliases, you can choose the Merge
Choices option to merge the properties rather than choose one over the other.
This option is only available if the properties can be merged.

After you make a merge decision, the row for that decision in the table changes
from red to black. When all rows have a value in the Decision field, the Finish
button is enabled.

12. In addition to making merge decisions, you can perform other operations in the
Define Merge Strategies screen. See Table 16–4 for details.

13. Click Finish.

 Table 16–4 lists and describes the elements in the Define Merge Strategies screen.

Note: You typically do not need to make merge decisions regarding
objects that have been added to or deleted from the Modified
repository. However, you can view change statistics for this merge to
see a summary of changes, including objects that have been added to
or deleted from Modified. See Table 16–4 for more information about
this feature.

Merging Repositories

16-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Table 16–4 Elements in the Define Merge Strategies Screen

Element Description

Conflicts table The Conflicts table includes the following columns:

■ Type: The type of object for which there is a conflict (for
example, Presentation Column).

■ Name: The name of the object for which there is a conflict.

■ Description: The reason for the conflict, such as Added to
Current. See the previous step for a description of different
conflict types.

■ Decision: Select the decision according to what change you
want to keep in the merged repository, such as Current,
Modified (A), Modified (D), or By Property. See the
previous step for a description of the results of different
decisions.

For objects with properties that are modified in each repository,
a sub-table (grid) is displayed with details of the changed
properties. The grid includes the following columns:

■ Property: The name of the property that has been modified
in each repository.

■ Original: The value of the property in the original
repository.

■ Modified: The value of the property in the modified
repository. Select this option to keep this value.

■ Current: The value of the property in the current repository.
Select this option to keep this value.

■ Merge Choices: For some properties, like aliases, you can
choose this option to merge the property values rather than
choose one or the other.

Show qualified names When selected, shows fully qualified names for objects in the
decision table (for example, "Paint"..."Month Year Ago fact").

Note: When the Show qualified names option is selected, some
of the object names can be too long to fit into the cells of the
decision table. Use the mouse to hover over the truncated name
to see the full name of the object or property. Alternatively, you
can manually resize columns, or double click the column
separator to expand the column to the width of the object name.

Check consistency of the
merged RPD

When selected, runs a consistency check before saving the
merged file.

Save Decisions to File Saves a file containing interim changes in the Repository
subdirectory so that you can stop work on the merge and
continue it later. After saving the changes (decisions), close the
Merge repositories dialog by clicking Cancel.

Note: If there are a large number of decisions, you can save time
by saving the merge decisions to a CSV file, opening the file in
Excel or a text editor, and then modifying the merge decisions
manually. Then, you can load the updated merge decisions file
in the Define Merge Strategies screen.

Load Decision File Loads a saved decisions file from the Repository subdirectory so
that you can continue processing a repository merge.

Find by Name or Type Searches by an object Name and Type (such as Initialization
Block).

Merging Repositories

Managing Oracle BI Repository Files 16-15

Performing Full Repository Merges Without a Common Parent
This section explains how to use the Administration Tool to perform a full repository
merge without a common parent. Use this method when you want to import objects
from one repository (the modified repository) into another (the current repository).

To merge two versions of an Oracle BI repository file without a common parent:

1. If you do not already have a blank repository file to serve as the original repository
in the merge, create one, as follows:

a. In the Administration Tool, select File, then select New Repository. The
Create New Repository Wizard appears.

b. Provide a name for the repository (for example, blank.rpd).

c. For Import Metadata, choose No.

d. Enter and confirm the repository password you want to use for this repository.

e. Click Finish.

2. Close the blank repository.

3. Open the current repository in offline mode. This is the repository that contains
the objects you want to import.

4. From the Administration Tool menu, choose File, then select Merge. The Merge
Repository Wizard appears.

Find Again Searches again for the most recent Find value.

View Change Statistics Shows statistics for this merge, such as the number of objects
deleted from the Modified repository, the number of objects that
were changed in both repositories, and so on.

Details Shows the text in the read-only text box below the decision table
in a separate window.

View Original/Modified/
Current repository

Shows properties for the affected object in the selected
repository.

Note: In the repository you choose to define as current, make sure
that the Presentation layer references any Physical layer or Business
Model and Mapping layer objects that you want to keep. Objects like
business models, databases, and connection pools in the current
repository that are not referenced by any Presentation layer objects are
discarded during the merge. If necessary, you might want to add a
placeholder subject area that references the objects before you perform
the merge to ensure the desired objects are kept.

See Appendix D, "Merge Rules" for more information about which
objects are retained or discarded during the merge process.

Table 16–4 (Cont.) Elements in the Define Merge Strategies Screen

Element Description

Merging Repositories

16-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

5. In the Select Input Files screen, for Merge Type, select Full Repository Merge.

6. Click Select next to Original Master Repository. Then, browse to select your
blank repository file as the original repository and click Open. Leave the password
field blank.

7. Select the destination repository by clicking Select next to the Modified
Repository field. Browse to select the modified repository, then click Open. This is
the repository into which you want to import objects.

8. Provide a password for the modified repository in the appropriate Password field.

9. Optionally, you can change the default name and location of the saved (merged)
file by clicking Select next to the Save Merged Repository as field. Provide a new
name and location, then click Save.

10. Click Next. If there are any conflicts, the Define Merge Strategy screen of the
Merge Repository Wizard appears. If there are no conflicts, the Merge Wizard
continues with the merge process and then closes automatically when finished.

11. The Define Merge Strategy screen displays a decision table that shows conflicts for
this merge. To make decisions about whether to include or exclude objects from
the merged repository, choose Current or Modified from the Decision list. When
you select an object in the decision table, the read-only text box below the decision
table describes what changes were made to that object in the current repository.

Refer to Figure 16–6 to see the Define Merge Strategy screen. Refer to Table 16–4
for information about additional options in the Define Merge Strategy screen, such
as saving merge decisions to a comma-separated values (.csv) file.

After you make a merge decision, the row for that decision in the table changes
from red to black. When all rows have a value in the Decision field, the Finish
button is enabled.

12. Click Finish.

Performing Patch Merges
Oracle Business Intelligence provides the capability of generating an XML patch file
that contains only the changes made to a repository. This patch can be then applied to
the old (original) version of the repository to create the new version. This is very
useful for development-to-production scenarios, and can also be used for Oracle BI
Applications customers to upgrade their repository.

This section explains how to generate a patch that contains the differences between
two repositories, and then apply the patch to a repository file.

This section contains the following topics:

■ About Patch Merges

■ Generating a Repository Patch

■ Applying a Repository Patch

About Patch Merges
In a patch merge, you create a patch that contains the differences between the current
repository file and the original repository file. Then, you apply the patch file to the
modified repository file.

Merging Repositories

Managing Oracle BI Repository Files 16-17

In a development-to-production scenario, you have an original parent file, a current
file that contains the latest development changes, and a modified file that is the
deployed copy of the original file.

To generate a patch, you open the current file and select the original file, then create
the patch. Figure 16–7 shows how to create a patch in a development-to-production
scenario.

Figure 16–7 Development-to-Production: Creating the Patch

To apply the patch, you open the modified file and select the original file, then apply
the patch. Figure 16–8 shows how to apply a patch in a development-to-production
scenario.

Figure 16–8 Development-to-Production: Applying the Patch

In an Oracle BI Applications repository upgrade scenario, the current file is the latest
version of the repository shipped by Oracle, and the original file is the original
repository shipped by Oracle. The modified file is the file that contains the
customizations you made to the original file.

To generate a patch, you open the current file and select the original file, then create
the patch. Figure 16–7 shows how to create a patch in an Oracle BI Applications
repository upgrade scenario.

Merging Repositories

16-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 16–9 Oracle BI Applications Repository Upgrade: Creating the Patch

To apply the patch, you open the modified file and select the original file, then apply
the patch. Figure 16–10 shows how to apply a patch in an Oracle BI Applications
repository upgrade scenario.

Figure 16–10 Oracle BI Applications Repository Upgrade: Applying the Patch

Generating a Repository Patch
Use the Administration Tool to generate a patch that contains the differences between
two repositories.

To generate a patch using the Administration Tool:

1. In the Administration Tool, open the current Oracle BI repository in offline mode.
In other words, open the updated repository that contains the changes you want
to put in the patch.

2. Select File, then select Compare.

3. Select the original Oracle BI repository. When prompted, provide the appropriate
password. The Compare repositories dialog appears.

4. It is a good practice to equalize your changes to clean up underlying object IDs
before generating a patch. See "Equalizing Objects" for more information.

5. In the Compare repositories dialog, review the changes between the repositories.
Then, click Create Patch.

6. In the Create Patch dialog, enter a name for the patch file (for example, my_
patch.xml) and click Save.

Merging Repositories

Managing Oracle BI Repository Files 16-19

Applying a Repository Patch
Use the Administration Tool to apply a patch that contains the differences between
two repositories.

Note that you can apply patches from a larger multiuser repository to a smaller subset
extract repository. In this case, only the changes in the subset are applied from the
patch.

To apply a patch:

1. In the Administration Tool, open the modified Oracle BI repository in offline
mode. In other words, open the repository on which you want to apply the patch.

2. Select File, then select Merge. The Merge Repository Wizard appears.

Figure 16–11 shows the Merge Repository Wizard.

Figure 16–11 Merge Repository Wizard: Select Input Files Screen (Patch Merge)

3. For Merge Type, select Patch Repository Merge.

4. Click Select next to Original Master Repository. Browse to select the original
repository, then click Open. Note that the original repository cannot be the same
as the modified (currently open) repository.

5. Enter the repository password for the original repository.

6. Click Select next to Patch File. Browse to select the patch file you want to apply,
then click Open.

7. Optionally, click Select next to Save Merged Repository as, then enter a file name
under which the patched repository will be saved and click Save.

8. Click Finish.

Merging Repositories

16-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Using patchrpd to Apply a Patch You can also apply a patch using the patchrpd utility.
This feature is especially useful when you want to patch repositories on Linux and
UNIX systems where the Administration Tool is not available.

Note that unlike the Administration Tool patch feature, patchrpd does not display or
resolve conflicts. If a conflict is detected, patchrpd displays a warning and exits.

Before running patchrpd, you must first run bi-init.cmd (or bi-init.sh on UNIX) to
launch a command prompt or shell window that is initialized to your Oracle instance.
You can find this utility in:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

Then, run patchrpd from the resulting shell window with the desired options, as
follows:

patchrpd [-P modified_rpd_password] -C modified_rpd_pathname
[-W original_rpd_password] -G original_rpd_pathname -I xml_patch_file_pathname
-O output_rpd_pathname [-S schema_location] [-8]

Where:

modified_rpd_password is the repository password for the modified repository,
also called the customer or customized repository.

The password argument for the modified repository is optional. If you do not provide
a password argument for the modified repository, you are prompted to enter a
password when you run the command. To minimize the risk of security breaches,
Oracle recommends that you do not provide a password argument either on the
command line or in scripts. Note that the password argument is supported for
backward compatibility only, and will be removed in a future release.

modified_rpd_pathname is the name and location of the modified repository.

original rpd_password is the repository password for the original repository.

The password argument for the original repository is optional. If you do not provide a
password argument for the original repository, you are prompted to enter a password
when you run the command. To minimize the risk of security breaches, Oracle
recommends that you do not provide a password argument either on the command
line or in scripts. Note that the password argument is supported for backward
compatibility only, and will be removed in a future release.

original_rpd_pathname is the name and location of the original repository.

xml_patch_file_pathname is the name and location of the XML patch file you
want to apply.

output_rpd_pathname is the name and location of the RPD output file you want to
generate.

schema_location is the name and location of the Oracle BI Server XML schema. If
you do not specify a location, patchrpd assumes the schema file is in the default
location of ORACLE_HOME/bifoundation/server/bin/xudml1.xsd.

-8 specifies UTF-8 encoding.

For example:

patchrpd -C customer.rpd -G original.rpd -I patch.xml -O patched.rpd
Give password for customer repository: my_modified_rpd_password
Give password for original repository: my_original_rpd_password

Querying and Managing Repository Metadata

Managing Oracle BI Repository Files 16-21

This example applies a patch called patch.xml to the customer.rpd repository, and then
generates an output repository called patched.rpd.

Querying and Managing Repository Metadata
You can use repository queries to help manage repository metadata in the following
ways:

■ Examine and update the internal structure of the repository. For example, you can
query for objects in the repository based on name, type (such as Logical Column
or Presentation Hierarchy), or on a combination of name and type. You can then
edit or delete objects that appear in the Results list. You can also create new objects
and view parent hierarchies.

■ Query a repository and view reports that show such items as all tables mapped to
a logical source, all references to a particular physical column, content filters for
logical sources, initialization blocks, and security and user permissions.

For example, you might want to run a report before making any physical changes
in a database that might affect the repository. You can save the report to a file in
comma-separated value (CSV) or tab-delimited format.

■ You can save a query to run again later, or save the query results to an external file.
When you save to an external file, the encoding options are ANSI, Unicode, and
UTF-8.

This section contains the following topics:

■ Querying the Repository

■ Querying Related Objects

Querying the Repository
You can query for objects in the repository using the Query Repository tool. You can
also construct a filter to filter the results, save a query, run a previously saved query, or
create new repository objects.

To query a repository:

1. In the Administration Tool, open your repository.

2. Select Tools, then select Query Repository.

3. In the Query Repository dialog, complete the query information using Table 16–5
as a guide.

4. Click Query.

Table 16–5 lists the options available in the Query Repository dialog.

Table 16–5 Query Repository Options

Option Description

Name Use this option to search by object name. You can use an asterisk (*) wildcard
character to specify any characters. The wildcard character can represent the first
or last characters in the search string. Searches are not case sensitive.

Type Select a type from the list to narrow your search to a particular type of object, or
select All Types to query all objects. The list does not contain objects such as
aggregate rules, logical source folders, privilege packages, and other objects that
are considered internal objects.

Querying and Managing Repository Metadata

16-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Filter Click Filter to create or edit a filter for your query. After you create a filter, the
filter criteria appear in the box to the left of the button. See "Constructing a Filter
for Query Results" for more information.

Query Click Query when you are ready to submit your query.

Save
Query As

Click Save Query As to save your query to run again later. Enter the name of the
saved query in the Save query as field, then click Save.

Saved
Queries

Click Saved Queries to view or run previously saved queries. You can also delete
saved queries. To run a previously saved query, select the row that contains the
query you want to run and click Select, or double-click the row.

The Saved Queries option is only available if you have previously saved queries.

Edit After executing a query, select an object from the Results list and click Edit to edit
an object in the list of query results. Not all repository objects can be edited from
the results list (for example, privilege objects and user database sign-on objects). If
an object cannot be edited from the results list, Edit is not available.

Delete After executing a query, select one or more objects in the Results list and click
Delete to delete the objects. After you confirm the deletion, the objects are deleted
from your metadata repository.

New Use this option to create new repository objects. First, select the type of object you
want to create from the Type list, then click New. This option is not available
when All Types is selected.

The dialogs that appear depend on the object type that you select. For more
information, refer to the sections that describe how to create that object.

Note that if you choose to create a new logical dimension, you must choose
whether to create a dimension with a level-based hierarchy, or a
parent-child-hierarchy. Similarly, if you choose to create a new Oracle OLAP
hierarchy, you must select whether you want to create a level-based or
value-based hierarchy.

Show
Parent

After executing a query, select an object in the Results list and click Show Parent
to view the parent hierarchy of an object. If the object does not have a parent, a
message appears. You cannot use Show Parent with users or application roles.

In the Parent Hierarchy dialog, you can edit or delete objects. Note that if you
delete an object from this dialog, any child objects of the selected object are also
deleted.

Mark After executing a query, select one or more objects in the Results list and click
Mark to mark the selected objects. To unmark the objects, select them and click
Mark again. Marking objects makes them easier to visually identify as you
develop metadata.

Set Icon After executing a query, select one or more objects in the Results list and click Set
Icon to select a different icon for the objects. You can set special icons for objects to
help visually identify them as having common characteristics. For example, you
might want to pick a special icon to identify columns that will be used only by a
certain user group.

To change the icons back to the original icons, select the objects and click Set Icon
again. Then, select Remove associated icon and click OK.

GoTo After executing a query, select one or more objects in the Results list and click
GoTo to go to the objects in the Administration Tool view of the repository. The
selected objects appear highlighted in the Physical, Business Model and Mapping,
or Presentation layer.

Note that the Query Repository dialog closes when you choose this option.

Save After executing a query, click Save to save query results to an external file. Then,
in the Save As dialog, provide a name, file type, and encoding value for the file,
then click Save.

Table 16–5 (Cont.) Query Repository Options

Option Description

Querying and Managing Repository Metadata

Managing Oracle BI Repository Files 16-23

Constructing a Filter for Query Results
Use the Query Repository Filter dialog to filter the results in the Results list of the
Query Repository dialog.

The Query Repository Filter dialog contains five columns: an Item column and its
operator or selection column, a Value column and its operator or selection column, and
a Delete column that lets you delete the selected filter.

To construct a filter:

1. In the Administration Tool, select Tools, then select Query Repository.

2. In the Query Repository dialog, select an item in the Results list or select an item
from the Type list, and then click Filter.

3. In the Query Repository Filter dialog, click the Item field. The Item list contains
the items by which you can filter.

4. In the Item list, select the filter that you want to apply to the Results or Type object
you selected in Step 2. Then, adjust or enter information in the Value column, as
appropriate.

You can construct multiple filters. When you do, the Operator field becomes
active. When the Operator field is active, you can set AND and OR conditions.

5. Click OK to return to the Query Repository dialog. The filter appears in the box to
the left of the Filter button.

Example 16–1 and Example 16–2 show how to create different kinds of filters.

Example 16–1 Viewing All Databases Referenced In a Business Model

The following example shows how to create a filter that lets you view all databases
referenced in a particular business model.

1. In the Query Repository dialog, select Database from the Type list, and then click
Filter.

2. In the Query Repository Filter dialog, click the Item field, and then select Related
to.

Columns Click Columns to add additional columns of information to the results. Then,
select the columns you want from the list and click OK. Note that in the Select
Columns dialog, you can re-order the columns by selecting a checked column and
clicking Up or Down.

Show
Qualified
Name

Use this option to display the fully qualified name of the objects found by the
query.

For example, if you query for logical columns, the default value in the Name
column of the Results list is the column name. However, if you select Show
Qualified Names, the value in the Name list changes to
businessmodel.logicaltable.column.

Note: If you are constructing a complex filter, you might want to
click OK after adding each constraint to verify that the filter
construction is valid for each constraint.

Table 16–5 (Cont.) Query Repository Options

Option Description

Querying and Managing Repository Metadata

16-24 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

3. Click the ellipsis button to the right of the Value field, and in the list, choose Select
object.

4. In the Select dialog, select the business model by which you want to filter, and
then click Select. Your selection appears in the Value field.

5. Click OK to return to the Query Repository dialog. The filter appears in the box to
the left of the Filter button.

6. Click Query. The Results list shows the databases referenced by the business
model you selected.

Example 16–2 Viewing All Presentation Columns Mapped to a Logical Column

The following example shows how to create a filter that lets you view all presentation
columns mapped to a particular logical column.

1. In the Query Repository dialog, select Presentation Column from the Type list,
and then click Filter.

2. In the Query Repository Filter dialog, click the Item field, and then select Column.

3. Click the ellipsis button to the right of the Value field, and in the list, choose Select
object.

4. In the Select dialog, select the column by which you want to filter, and then click
Select. Your selection appears in the Value field.

5. Click OK to return to the Query Repository dialog. The filter appears in the box to
the left of the Filter button.

6. Click Query. The Results list shows the presentation columns mapped to the
logical column you selected.

Example 16–3 Nested Queries

The following example shows nested queries, where the filter itself is another query.

1. In the Query Repository dialog, select Logical Column from the Type list, and
then click Filter.

2. In the Query Repository Filter dialog, click the Item field, and then select Related
to.

3. Click the ellipsis button to the right of the Value field, and in the list, choose Set
Condition for Physical Column.

4. In the new Query Repository Filter dialog, click the Item field, and then select
Source column.

5. Click the ellipsis button to the right of the Value field, and in the list, choose Select
Object.

6. In the Browse dialog, select a source physical column (for example, Column A)
and click Select.

7. Click OK in the Query Repository Filter dialog for the subquery condition. This
subquery queries all aliases for the source column you selected.

8. In the Query Repository Filter dialog for the main query, click the Item field in the
next row and then select Related to.

9. Click the ellipsis button to the right of the Value field, and in the list, choose Select
Object.

Querying and Managing Repository Metadata

Managing Oracle BI Repository Files 16-25

10. In the Browse dialog, select the same source physical column (for example,
Column A) and click Select.

11. Select OR from the Operator list.

12. Click OK to return to the Query Repository dialog. The filter appears in the box to
the left of the Filter button.

13. Click Query. The Results list shows a list of logical columns related to either
Column A, or aliases of Column A.

Querying Related Objects
The Query Related Objects feature enables you to query objects related to one or more
objects that you select from the Physical, Business Model and Mapping, or
Presentation layer.

You can only use this feature with objects selected from the same layer. For example,
you cannot query objects related to both a Physical layer object and a Business Model
and Mapping layer object.

To query objects related to a selected object:

1. In the Administration Tool, open your repository.

2. Select one or more objects from a single layer (for example, a set of logical columns
from the Business Model and Mapping layer). The objects you select must all be of
the same type.

3. Right-click the objects and select Query Related Objects.

4. From the right-click submenu, select an object type to narrow your search to a
particular type of object, or select All Types to query all objects related to your
source objects. If you have previously made queries for this source object type, the
three most recent queries are available at the top of the submenu.

After you select an object type, the Query Related Objects dialog is displayed,
showing the objects related to your source objects in the Name list.

Table 16–6 lists the options available in the Query Repository dialog.

Table 16–6 Query Related Objects Options

Option Description

Mark Select one or more objects in the Name list and click Mark to
mark the selected objects. To unmark the objects, select them
and click Mark again. Marking objects makes them easier to
visually identify as you develop metadata.

Set Icon Select one or more objects in the Name list and click Set Icon to
select a different icon for the objects. You can set special icons
for objects to help visually identify them as having common
characteristics. For example, you might want to pick a special
icon to identify columns that will be used only by a certain user
group.

To change the icons back to the original icons, select the objects
and click Set Icon again. Then, select Remove associated icon
and click OK.

Changing the Repository Password

16-26 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Changing the Repository Password
Each repository has a password that is used to encrypt its contents. You create the
repository password when you create a new repository file, or when you upgrade a
repository from a previous release of Oracle Business Intelligence.

You can change the repository password using the Administration Tool in offline
mode. You cannot change the repository password when the repository is open in
online mode.

After you change the repository password in the Administration Tool, you must also
publish the updated repository and specify the new password in Fusion Middleware
Control. Specifying the repository password in Fusion Middleware Control enables
the password to be stored in an external credential store, so that the Oracle BI Server
can retrieve it to load the repository.

To change the repository password in the Administration Tool and Fusion
Middleware Control:

1. Open the repository in the Administration Tool in offline mode.

2. Select File, then select Change Password.

3. Enter the current (old) password.

4. Enter the new password and confirm it. The repository password must be longer
than five characters and cannot be empty.

5. Click OK.

Show Qualified Name Use this option to display the fully qualified name of the objects
found by the query.

For example, if you query for logical columns, the default value
in the Name list is the column name. However, if you select
Show Qualified Names, the value in the Name list changes to
businessmodel.logicaltable.column.

Show Parent Select an object in the Name list and click Show Parent to view
the parent hierarchy of an object. If the object does not have a
parent, a message appears. You cannot use Show Parent with
users or application roles.

In the Parent Hierarchy dialog, you can edit or delete objects.
Note that if you delete an object from this dialog, any child
objects of the selected object are also deleted.

GoTo Select one or more objects in the Name list and click GoTo to go
to the objects in the Administration Tool view of the repository.
The selected objects appear highlighted in the Physical, Business
Model and Mapping, or Presentation layer.

Note that the Query Related Objects dialog closes when you
choose this option.

Note: If you are using the SampleAppLite.rpd sample repository,
you must change the default password the first time you open it in the
Administration Tool, for security reasons. See "About the
SampleApp.rpd Demonstration Repository" for more information
about the sample repository.

Table 16–6 (Cont.) Query Related Objects Options

Option Description

Changing the Repository Password

Managing Oracle BI Repository Files 16-27

6. Save and close the repository.

7. Open a Web browser and log in to Fusion Middleware Control from the computer
where the updated repository is located.

8. In the navigation tree, expand Business Intelligence and then click coreapplication
to display the Business Intelligence Overview page.

9. Display the Repository tab of the Deployment page.

10. Click Lock and Edit Configuration.

11. Click Browse next to Repository File. Then, select the updated repository file and
click Open.

12. Enter the new (updated) repository password in the Repository Password and the
Confirm Password fields.

Make sure to specify the password that has been set in the repository. If the
passwords do not match, the Oracle BI Server fails to start, and an error is logged
in nqserver.log.

13. Click Apply, then click Activate Changes.

14. Return to the Business Intelligence Overview page and click Restart.

See "Configuring Repositories" in Oracle Fusion Middleware System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition for more information about the
repository options in Fusion Middleware Control.

Changing the Repository Password

16-28 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

17

Using Expression Builder and Other Utilities 17-1

17Using Expression Builder and Other Utilities

This chapter describes Expression Builder and provides instructions for creating
constraints, aggregations, and other definitions within a repository. It also describes
the various utilities and wizards contained in the Administration Tool.

This chapter contains the following topics:

■ Using Expression Builder

■ Using Administration Tool Utilities

■ Using the Calculation Wizard

Using Expression Builder
You can use the Expression Builder dialogs in the Administration Tool to create
constraints, aggregations, and other definitions within a repository. Expression Builder
provides automatic color highlighting and other formatting enhancements to make
expressions easier to build and to read.

The expressions you create with Expression Builder are similar to expressions created
with SQL. Except where noted, you can use all expressions constructed with
Expression Builder in SQL queries against the Oracle BI Server.

For information about using SQL with Expression Builder, and for information about
the SQL functions supported by the Oracle BI Server, see Appendix C, "Logical SQL
Reference."

This section contains the following topics:

■ About the Expression Builder Dialogs

■ About the Expression Builder Toolbar

■ About the Categories in the Category Pane

■ Setting Up an Expression

About the Expression Builder Dialogs
You can access Expression Builder from the following dialogs:

■ Logical Table Source—Content tab

■ Logical Table Source—Column Mapping tab

■ Logical Column—General tab

■ Logical Column—Aggregation tab

Using Expression Builder

17-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Logical Foreign Key

■ Physical Foreign Key

■ Session Variable

■ Repository Variable

Figure 17–1 shows Expression Builder.

Figure 17–1 Example Expression Builder Dialog

The dialog contains the following sections:

■ The edit pane on the right hand side of the dialog lets you edit the current
expression.

■ The toolbar at the bottom of the dialog contains commonly used expression
operators.

■ In the left section of the dialog:

– The top pane is the Category pane. It displays categories that are appropriate
for the dialog from which you accessed Expression Builder.

– The middle pane displays a list of available items for the category you selected
in the Category pane.

You can use the Find field below the middle pane to display specific values in
the middle pane.

– The lower pane is the Building Blocks pane. It displays the individual building
blocks for the item you selected in the middle pane.

You can use the Find field below the lower pane to display specific values in
the lower pane.

When creating expressions in Expression Builder, you select a category from the
Category pane and values are displayed in the lower panes depending on the value
selected in the Category pane. When you type a value into a Find field, it filters out the
non-matching strings and displays matching strings only. After typing search criteria

Using Expression Builder

Using Expression Builder and Other Utilities 17-3

in a Find field, you can move up and down the list using the scroll bar, and use the tab
key to move between the Find fields. To return to the full list of results, delete the
string from the Find field.

Note that you can only enter text in the Find field that matches the text of one of the
available strings. For example, if the available string options begin with A11, A12, and
A13, the text you enter in the Find field must begin with A.

When you locate the building block you want to insert into the expression, select it
and do one of the following:

■ Click the arrow button

■ Double click the item

■ Press Enter on your keyboard

The building block you selected appears in the expression in the edit pane.

When you first open Expression Builder, the items are not sorted. When selected, the
Sort Panes option sorts all items in the panes. As soon as you select this option, the
panes are automatically redrawn without changing the contents of the panes or your
filtering criteria.

About the Expression Builder Toolbar
The toolbar is located at the bottom of Expression Builder. Table 17–1 describes each
button and its function in an expression.

Table 17–1 Expression Builder Toolbar

Operator Description

+ Plus sign for addition.

- Minus sign for subtraction.

* Multiply sign for multiplication.

/ Divide by sign for division.

|| Character string concatenation.

(Open parenthesis.

) Close parenthesis.

> Greater than sign, indicating values higher than the
comparison.

< Less than sign, indicating values lower than the comparison.

= Equal sign, indicating the same value.

<= Less than or equal to sign, indicating values the same or lower
than the comparison.

>= Greater than or equal to sign, indicating values the same or
higher than the comparison.

<> Not equal to, indicating values higher or lower, but different.

AND AND connective, indicating intersection with one or more
conditions to form a compound condition.

OR OR connective, indicating the union with one or more conditions
to form a compound condition.

NOT NOT connective, indicating a condition is not met.

Using Expression Builder

17-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

About the Categories in the Category Pane
The categories that appear in the Category pane vary, depending on the dialog from
which you accessed Expression Builder. Table 17–2 describes the categories that may
appear.

, Comma, used to separate elements in a list.

Table 17–2 Expression Builder Categories in the Category Pane

Category Name Description

Aggregate Content Contains the available aggregate functions. Aggregate sources
must use one of the functions listed here to specify the level of
their content.

Time Dimensions Contains the time dimensions configured in the business model.
If no time dimensions exist in a business model, or if time
dimensions are not pertinent to a particular Expression Builder,
the Time Dimensions category is not displayed.

When you select the Time Dimensions category, each
configured time dimension appears in the middle pane, and
each level for the selected dimension appears in the lower pane.

Logical Tables Contains the logical tables configured in the business model. If
logical tables are not pertinent to a particular Expression
Builder, the Logical Tables category is not displayed.

When you select the Logical Tables category, each logical table
in the business model appears in the middle pane, and each
column for the selected logical table appears in the lower pane.

Value Based Dimensions Contains the dimensions with parent-child hierarchies
configured in the business model. If no dimensions with
parent-child hierarchies exist in a business model, or if
dimensions with parent-child hierarchies are not pertinent to a
particular Expression Builder, the Value Based Dimensions
category is not displayed.

When you select the Value Based Dimensions category, the
configured dimensions with parent-child hierarchies appear in
the middle pane. No lower pane exists for this category.

Logical Levels Contains the related logical levels. If level-based dimensions are
not pertinent to a particular Expression Builder, the Logical
Levels category is not displayed.

When you select the Logical Levels category, you can then select
the appropriate logical dimension (level-based) in the middle
pane, and the level itself in the lower pane.

Physical Tables Contains the related physical tables. If physical tables are not
pertinent to a particular Expression Builder, the Physical Tables
category is not displayed.

Operators Contains the available SQL logical operators.

Expressions Contains the available expressions.

Functions Contains the available functions. The functions that appear
depend on the object you selected.

Constants Contains the available constants.

Types Contains the available data types.

Table 17–1 (Cont.) Expression Builder Toolbar

Operator Description

Using Expression Builder

Using Expression Builder and Other Utilities 17-5

Setting Up an Expression
Figure 17–2 shows the Expression Builder dialog for a derived logical column.

Figure 17–2 Expression Builder for Derived Logical Columns

To set up an expression, select Functions from the Category pane, select a function
type from Functions pane, then select a function from the lower pane. Double-click the
function you want to use to paste it in the edit pane. Then, in the edit pane, click once
between the parentheses of the function to select that area as the insertion point for
adding the argument of the function.

To paste a logical column at the insertion point, select Logical Tables from the
Category pane, select the table you want to use in the Logical Tables pane, and then
double-click the logical column in the lower pane to paste the logical column at the
insertion point as the argument of the function in the edit pane. Figure 17–3 shows
where the expression appears in the edit pane.

Repository Variables Contains the available repository variables. If no repository
variables are defined, this category does not appear.

Session Variables Contains the available system session and non-system session
variables. If no session variables are defined, this category does
not appear.

Table 17–2 (Cont.) Expression Builder Categories in the Category Pane

Category Name Description

Using Expression Builder

17-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 17–3 Example Logical Column Function in the Editing Pane

Navigating Within Expression Builder
Use the following procedure to navigate within Expression Builder.

To navigate within Expression Builder:

1. In the Category pane, select the appropriate category for the expression you want
to build.

The available expression types for the selected category appear in the middle
pane.

2. Select the appropriate item for the expression you want to build.

The available building blocks for the selected item appear in the lower pane.

3. Double-click a building block to display it in the edit pane.

4. To insert an operator into the expression, click an operator on the Expression
Builder toolbar.

Building an Expression
Use this procedure to build an expression in Expression Builder.

To build an expression:

1. Navigate to the individual building blocks you want in the expression.

The Syntax bar at the bottom of the Expression Builder dialog shows the syntax for
the expression.

For example: BETWEEN <<Upper Bound>> AND <<Lower Bound>>

2. Add the building blocks to the edit pane.

3. Edit the building blocks to reflect the expression you want.

4. Use the Expression Builder toolbar to insert operators into the expression.

5. Repeat the preceding steps until the expression is complete, and then click OK.

Using Administration Tool Utilities

Using Expression Builder and Other Utilities 17-7

The Administration Tool displays a message for any syntax errors in the
expression. When the expression is syntactically correct, the Administration Tool
adds the expression to the dialog from which you accessed Expression Builder.

Note that if the parameter PREVENT_DIVIDE_BY_ZERO is set to YES in
NQSConfig.INI, the Oracle BI Server prevents errors in divide-by-zero situations, even
for Answers column calculations. The Oracle BI Server creates a divide-by-zero
prevention expression using nullif() or a similar function when it writes the
physical SQL. Because of this, you do not have to use CASE statements to avoid
divide-by-zero errors, as long as PREVENT_DIVIDE_BY_ZERO is set to YES (the
default value).

See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition for more information about configuration settings.

About the INDEXCOL Conversion Function
The INDEXCOL function enables you to build a derived logical column. Selecting
INDEXCOL automatically generates the following function template:

IndexCol(<<integer literal>>, <<expr1>> [, <<expr2>>, ?-])

Note: The argument integer literal can also be a session variable, an arithmetic
expression, or a CASE WHEN statement (evaluation must be possible without reference
to back-end data).

See "INDEXCOL" for more information.

Using Administration Tool Utilities
In addition to Expression Builder, the Administration Tool provides several utilities
and wizards that perform functions like renaming objects, persisting aggregates, and
externalizing strings.

This section contains the following topics:

■ Using the Replace Column or Table Wizard

■ Using the Oracle BI Event Tables Utility

■ Using the Externalize Strings Utility

■ Using the Rename Wizard

■ Using the Update Physical Layer Wizard

■ Generating Documentation of Repository Mappings

■ Generating a Metadata Dictionary

■ Removing Unused Physical Objects

■ Persisting Aggregates

Using the Replace Column or Table Wizard
The Replace Column or Table Wizard automates the process of replacing physical
columns or tables in logical table sources. For example, if you have purchased Oracle
BI Applications, you can update your logical table sources to map to a different
database type. You can also use this utility to change logical table source mappings
from a development table to a production table.

Using Administration Tool Utilities

17-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

You can use the Replace Column or Table Wizard to replace a single column (within
the same table), or to replace an entire table. If you replace a table, you must map all
the columns in the table.

To replace a physical column in logical table sources:

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Replace Column or Table in Logical Table Sources and click Execute.

3. In the Select Object screen, select Replace single column only.

4. In the left pane, select the physical column that you want to replace. You must
select a valid column. For example, you cannot select a column that is used in a
logical table source that has more than one table as a source.

5. In the right pane, select the physical column that you want to use as a replacement
for the original column. Then, click Next.

6. The Select Sources screen shows all logical table sources that map to the physical
column you selected. Select the logical table sources in which you want to change
the physical column mapping. Select Show Qualified Names to see the full
context for each source.

If you select an invalid logical table source, or in other words, one that cannot be
used for replacement, a message appears explaining why that source cannot be
used, and the check box for that source is disabled.

Note that invalid logical table sources do not appear in the list when Hide
unusable logical table sources in Replace wizard has been selected in the General
tab of the Options dialog. Instead, the Info button is displayed when a logical
table source that maps to that column does not appear in the list. Click Info to see
details on why the physical objects could not be replaced in the logical table source
or sources.

The Select Sources screen only appears if there are multiple logical table sources
that map to the physical column you selected.

 Click Next after you have selected logical table sources.

7. When the repository is open in online mode, the Checkout screen appears. In
online mode, objects need to be checked out before you can make changes to them.
Click Next to check out the necessary objects.

8. The Finish screen displays a summary of the objects that will be replaced. If you
want to make changes, click Back, or select a particular step from the navigation
panel.

9. Click Finish.

To replace a physical table in logical table sources:

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Replace Column or Table in Logical Table Sources and click Execute.

3. In the Select Object screen, select Replace whole table.

4. In the left pane, select the physical table that you want to replace.

5. In the right pane, select the physical table that you want to use as a replacement
for the original table. Then, click Next.

6. The Select Sources screen shows all logical table sources that map to the physical
table you selected. Select the logical table sources in which you want to change the

Using Administration Tool Utilities

Using Expression Builder and Other Utilities 17-9

physical table mapping. Select Show Qualified Names to see the full context for
each source.

If you select an invalid logical table source, or in other words, one that cannot be
used for replacement, a message appears explaining why that source cannot be
used, and the check box for that source is disabled.

Note that invalid logical table sources do not appear in the list when Hide
unusable logical table sources in Replace wizard has been selected in the General
tab of the Options dialog. Instead, the Info button is displayed when a logical
table source that maps to that column does not appear in the list. Click Info to see
details on why the physical objects could not be replaced in the logical table source
or sources.

The Select Sources screen only appears if there are multiple logical table sources
that map to the physical table you selected.

Click Next after you have selected logical table sources.

7. The bottom pane of the Select Columns screen shows individual column
mappings between the selected physical tables. If column names in the two
selected tables match, default column mappings appear in the bottom pane.

To add a column mapping to the list of mapped columns, first select a source
column in the left pane. Then, select a replacement column in the right pane and
click Add.

To remove a column mapping from the list of mapped columns, select a row of
mapped columns from the list and click Remove.

Figure 17–4 shows the Select Columns screen.

Figure 17–4 Select Columns Screen of the Replace Column or Table Wizard

8. When you have finished mapping columns between the selected physical tables,
click Next.

9. When the repository is open in online mode, the Checkout screen appears. In
online mode, objects need to be checked out before you can make changes to them.
Click Next to check out the necessary objects.

Using Administration Tool Utilities

17-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

10. The Finish screen displays a summary of the objects that will be replaced. If you
want to make changes, click Back, or select a particular step from the navigation
panel.

11. Click Finish.

Using the Oracle BI Event Tables Utility
This utility lets you identify a table as an Oracle BI event polling table. An event
polling table is a way to notify the Oracle BI Server that one or more physical tables
have been updated. Each row that is added to an event table describes a single update
event. The cache system reads rows from, or polls, the event table, extracts the physical
table information from the rows, and purges cache entries that reference those physical
tables.

For more information about event polling tables, see "Cache Event Processing with an
Event Polling Table" in Oracle Fusion Middleware System Administrator's Guide for Oracle
Business Intelligence Enterprise Edition.

To start the Oracle BI Event Tables utility:

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Oracle BI Event Tables and click Execute.

Using the Externalize Strings Utility
You can use the Externalize Strings utility to localize the names of Presentation layer
subject areas, tables, hierarchies, columns, and their descriptions. You can save these
text strings to an external file with ANSI, Unicode, and UTF-8 encoding options.

Before you can use the Externalize Strings utility, you must externalize strings in the
Presentation layer. Note the following about externalizing strings in the Presentation
layer:

■ You can right-click any Presentation layer object, such as a subject area,
presentation table, or presentation column, and choose Externalize Display
Names > Generate Custom Names or Externalize Descriptions > Generate
Custom Descriptions to externalize strings.

■ Choosing one of these right-click externalization options automatically selects the
Custom display name or Custom description options in the Properties dialog for
the selected object and all of its child objects.

For example, if you right-click a subject area and choose one of the externalization
options, the externalization flag is set on all presentation tables, columns,
hierarchies, and levels within that subject area.

■ Running the Externalize Strings utility only externalizes those strings that have
been selected for externalization in the Presentation layer.

For full information about using the Externalize Strings utility, see "Localizing
Metadata Names in the Repository" in Oracle Fusion Middleware System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition.

To start the Externalize Strings utility:

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Externalize Strings and click Execute.

Using Administration Tool Utilities

Using Expression Builder and Other Utilities 17-11

Using the Rename Wizard
You can use the Rename Wizard to rename tables and columns in the Presentation
layer and Business Model and Mapping layer. It provides a convenient way to
transform physical names to user-friendly names.

It is a best practice to rename objects in the Business Model and Mapping layer rather
than the Presentation layer, for better maintainability. Giving user-friendly names to
logical objects rather than presentation objects ensures that the names can be reused in
multiple subject areas. Also, it ensures that the names persist even when you need to
delete and re-create subject areas to incorporate changes to your business model.

Be aware that when you use the Rename Wizard to rename presentation columns, the
Use Logical Column Name property gets set to false.

To use the Rename Wizard:

1. In the Administration Tool, select Tools, then select Utilities. Then, select Rename
Wizard and click Execute.

You can also access the Rename Wizard by right-clicking an object or set of objects
in the Business Model and Mapping layer or Presentation layer, and then selecting
Rename Wizard. The wizard starts in the Select Rules screen and only applies to
the logical or presentation objects you selected.

2. In the Select Objects screen, select the objects you want to rename. First, select the
layer that contains the objects (Presentation or Business Model and Mapping),
then select an object and click Add. Click Add Hierarchy to add all objects
associated with the selected object.

Click Next after you have selected the objects you want to rename.

3. In the Select Types screen, select the object types you want to rename, such as
Subject Area, Logical Table, or Logical Column. Then, click Next.

4. In the Select Rules screen, select the renaming rules you want to apply and click
Add. Select Change specified text to rename particular words or phrases.

The renaming rules are applied in the order in which they appear in the list. Select
a rule that you have added and click Up or Down to change the order in which the
rules will be applied.

For example, say you want to rename the logical columns GlobalGROUP,
GlobalSales, and GlobalCustomerName to Group, Sales, and Customer Name. To
achieve this, you can apply the following rules in the given order:

Insert space before each first uppercase letter, unless on the first position
or there is a space already
All text lowercase
First letter of each word capital
Change each occurance of "Global " to "" (not case sensitive)

Click Next after you have selected renaming rules.

5. When the repository is open in online mode, the Checkout screen appears. In
online mode, objects need to be checked out before you can make changes to them.
Click Next to check out the necessary objects.

6. The Finish screen displays a summary of the objects that will be renamed. If you
want to make changes to the list of renamed objects, click Back, or select a
particular step from the navigation panel. Click Finish to rename the objects.

Figure 17–5 shows the Rename Wizard.

Using Administration Tool Utilities

17-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure 17–5 Rename Wizard

Using the Update Physical Layer Wizard
You can use the Update Physical Layer Wizard to update database objects in the
Physical layer of a repository, based on their current definitions in the back-end
database. This wizard is not available for repositories that are open in read-only mode,
because they are not available for updating.

When the wizard processes the update, the Oracle BI Server connects to each back-end
database. The objects in the Physical layer are compared with those in the back-end
database. Explanatory text alerts you to differences between objects as defined in the
database in the Physical layer and as defined the back-end database, such as data
type-length mismatches and objects that are no longer found in the back-end database.
For example, if an object exists in the database in the Physical layer of the repository
but not in the back-end database, the following text is displayed:

Object does not exist in the database and will be deleted

The wizard does not add columns or tables to the repository that exist in the back-end
database, but not in the repository. Additionally, the wizard does not update column
key assignments. It checks that there is a column in the repository that matches the
column in the database, and then, if the values do not match, the wizard updates the
type and length of the column in the repository.

The connection pool settings for each database need to match the connection pool
settings used when the objects were last imported into the Physical layer from the
back-end database. See "Creating or Changing Connection Pools" for more information
about connection pool settings.

To update objects in the Physical layer:

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Update Physical Layer and click Execute.

The databases in the Physical layer of the repository are listed in the left pane of
the wizard.

Using Administration Tool Utilities

Using Expression Builder and Other Utilities 17-13

3. In the Select Database screen, select the databases that you want to update in the
left pane, and then click Add. To remove a database from the update list in the
right pane, select it and click Remove.

4. Click Next.

5. In the Select Connection Pool screen, select the connection pool for each database
that you want to update and then click Next. You might need to set or confirm
values for variables before continuing.

6. In the Update screen, review the information about each update and select the
updates you want to perform. You can sort the rows (toggle between ascending
and descending order) by clicking the Name column heading.

7. If you decide that you do not want the wizard to update a particular object in the
Physical layer, click the Back button and remove the object.

8. When the repository is open in online mode, the Checkout screen appears. In
online mode, objects need to be checked out before you can make changes to them.
Click Next to check out the necessary objects.

9. Click Finish.

The wizard updates the objects in the Physical layer, and then closes
automatically. Objects that do not exist in the database are deleted.

10. From the File menu, select Save to save the updated objects in the Physical layer.

Generating Documentation of Repository Mappings
The Repository Documentation utility documents the mapping from the presentation
columns to the corresponding logical and physical columns. The documentation also
includes conditional expressions associated with the columns. The documentation can
be saved in comma separated (CSV), XML, or tab delimited (TXT) format.

You can use the Repository Documentation utility to extract Oracle Business
Intelligence metadata to a flat file so that it can be loaded into Excel and RDBMS. You
can query the resulting file to answer questions such as "If I delete physical column X,
what logical columns will be affected?" or "How many places in the business model
refer to the physical table W_SRVREQ_F?" Then, you can establish dependency
relationships among elements in the repository.

Excel only allows data sets of 1,000,000 rows. You might exceed this in a large
repository. Therefore, you might want to run the Repository Documentation utility on
a subset of the repository by extracting relevant business models into a new project.
For more information, see Chapter 3.

The Repository Documentation utility creates a comma-separated values file or a
tab-separated values file that shows the connections between the Presentation and
Physical layers in the current repository. This file can be imported into a repository as
a Physical layer. Note that the file does not include information about repository
variables and marketing objects.

To run the Repository Documentation utility:

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Repository Documentation and click Execute.

3. In the Save As dialog, choose the directory where you want to save the file.

4. Type a name for the file.

Using Administration Tool Utilities

17-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

5. Choose a type of file and an Encoding value, and then click Save. Current
encoding options are ANSI, Unicode, and UTF-8.

Generating a Metadata Dictionary
You can generate a metadata dictionary to help Oracle Business Intelligence users
obtain more information about metrics or attributes for repository objects. For
example, users might need to resolve issues caused by confusing metadata object
names, or to obtain more details when an attribute is derived in a complicated way.

A metadata dictionary is a static set of XML documents. Each XML document
describes a metadata object, such as a column, including its properties and
relationships with other metadata objects. These XML documents can be viewed
within the Oracle BI Presentation Services user interface, or they can be viewed
directly in a browser.

Use the Administration Tool to generate a metadata dictionary for your repository.
Because the dictionary does not change dynamically as repository changes are made,
you must generate the dictionary periodically to update the content.

The metadata dictionary files need to be hosted on a Web server, such as Oracle HTTP
Server or Apache HTTP Server. When you generate the dictionary, you can set the
output location to the final location on the Web server, or to a temporary location. If
you generate the dictionary in a temporary location, you must then copy the files to
the location on the Web server.

Note that some large repositories can contain tens of thousands of objects. Generating
a dictionary for a large repository can take a significant period of time.

To generate a metadata dictionary:

1. In the Administration Tool, open your repository in offline mode. You cannot
generate a metadata dictionary in online mode.

2. Select Tools, then select Utilities.

3. Select Generate Metadata Dictionary and click Execute.

4. In the Choose Directory dialog, click Browse to locate and select the location
where you want to store the dictionary. You can select a destination for your
dictionary in the following ways:

■ Select a local or network location. When the dictionary is generated, a
subdirectory with the same name as the repository is created in that location.
The dictionary directories and files are created in that subdirectory.

For example, if you select J:\BI_DataDictionary and your repository name is
demo1.rpd, the dictionary files, including the style sheets, will be located in
J:\BI_DataDictionary\demo1.

■ If you want to use an IIS virtual directory, you can create or select a virtual
directory in IIS before you generate the dictionary. When you generate the
dictionary, choose the physical directory associated with the IIS virtual
directory.

5. Click OK.

6. If you did not save the files directly to a location on a Web server, copy the files
over to your Web server and ensure they are accessible. Refer to the
documentation for your Web server for detailed information.

Using the Calculation Wizard

Using Expression Builder and Other Utilities 17-15

The location where the metadata dictionary files can be viewed is dependent on
the host name and port number of your Web server, along with the directory
location where you store the files.

7. You must edit the instanceconfig.xml configuration file to enable the metadata
dictionary feature in the Oracle BI Presentation Services user interface, as well as
grant the appropriate privilege to your users, groups, or application roles. See
"Providing Access to Metadata Dictionary Information" in Oracle Fusion
Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise
Edition for more information about these additional configuration steps.

After you generate a metadata dictionary, style sheets and index files are created for
that dictionary. The related style sheets (XSL files) are created and stored in a directory
named xsl within the repository directory.

A name index and tree index are created and stored in the [drive]:\[path]\[repository
name] root directory. The index files are associated with each other so that you can
quickly switch views.

For additional information about viewing metadata dictionary information from the
Oracle BI Presentation Services user interface, see "Viewing Metadata Information
from the Subject Areas Pane" in Oracle Fusion Middleware User's Guide for Oracle
Business Intelligence Enterprise Edition.

Removing Unused Physical Objects
Large repositories use more memory on the server and are harder to maintain.
Additionally, development activities take longer on a large repository. This utility
enables you to remove objects that you no longer need in your repository. You can
remove databases, initialization blocks, physical catalogs, and variables.

To remove unused physical objects:

1. In the Administration Tool, select Tools, then select Utilities.

2. Select Remove Unused Physical Objects and click Execute.

3. In the Remove Unused Physical Objects dialog, from the Type list, select the type
of object.

4. In the list of objects, verify that only the objects that you want to remove are
selected.

Below the list of objects, the number of selected objects and the total number of
objects appears.

5. To remove the selected objects, click Yes.

Persisting Aggregates
You can use the Aggregate Persistence Wizard to create the SQL file that will be used
to create aggregate tables and map them into the metadata. See "Using the Aggregate
Persistence Wizard to Generate the Aggregate Specification" for more information.

Using the Calculation Wizard
You can use the Calculation Wizard to create new calculation columns that compare
two existing columns, and also to create metrics in bulk. It has a built-in mechanism to
handle divide-by-zero and null cases, as well as other difficult situations. The

Using the Calculation Wizard

17-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Calculation Wizard provides an automated way to calculate the sales by quarter, the
percentage of revenue, minimum and maximum values, and so on.

To start the Calculation Wizard, right-click any logical fact or dimension column in the
Business Model and Mapping layer of data type numeric, and then select the option
Calculation Wizard. The wizard starts with the column on which you right-clicked as
the source column, and then displays the other columns in that table for comparison.

To use the Calculation Wizard:

1. Right-click a measure column in the Business Model and Mapping layer (any
logical fact or dimension column of data type numeric), and then select
Calculation Wizard.

2. The first time you use the Calculation Wizard, the Introduction screen appears.
Select In the future, do not show this introduction screen if you do not want this
screen to display subsequently. If you choose not to display the Introduction
screen, you can go to Tools > Options to cause it to appear again. See "Setting
Preferences" for more information.

Click Next to display the Select Columns screen.

3. Select the columns that you want to compare with the source column. If the source
column is mapped to multiple logical tables, a list of tables appears in the upper
left pane. Select a table, then select a column or columns from the upper right pane
to add comparison columns to the Selected Columns list.

You can remove items from the Selected Columns list by selecting a column and
clicking Remove.

Click Next when you have finished selecting comparison columns.

4. In the New Calculations screen, you can choose which calculations you want to
perform for specific columns. The elements of the New Calculation screen are as
follows:

■ The upper left pane shows the name of the source column, followed by a list
of comparison columns that you selected in the Select Columns screen. Select a
particular column to create calculations for that column.

■ The upper right pane shows a list of calculations you can perform. Select a
calculation to view the calculation definition and the default calculation name.
In the calculation definition, CurrentX refers to the value of the source
column, and ComparisonX refers to the value of the comparison column you
selected in the upper left pane.

You can optionally change the calculation name. This name becomes the name
of the resulting calculation column.

The following calculations are available:

– Change (CurrentX - ComparisonX). Subtract the value of the comparison
column from the source column.

– Percent Change (100.0 * (CurrentX - ComparisonX) / ComparisonX).
Subtract the value of the comparison column from the source column and
express as a percentage.

– Index (1.0 * CurrentX / ComparisonX). Divide the source column by the
comparison column.

– Percent (100.0 * (CurrentX / ComparisonX)). Divide the source column by
the comparison column and express as a percentage.

Using the Calculation Wizard

Using Expression Builder and Other Utilities 17-17

■ The lower left pane shows special cases that are available for the selected
calculation. You can keep the default values, or specify how you want the
special cases to be handled. For example, for the Change calculation, you can
choose whether to return NULL or some other value when the comparison
column is NULL.

Select a calculation in the upper right pane to view and set special cases for
that calculation.

■ The lower right pane shows the resulting SQL for the selected calculation.

Figure 17–6 New Calculations Screen of Calculation Wizard

5. Click Next when you have finished creating calculations.

6. When the repository is open in online mode, the Checkout screen appears. In
online mode, objects need to be checked out before you can make changes to them.
Click Next to check out the necessary objects.

7. The Finish screen displays a summary of the calculations that will be created. If
you want to make changes, click Back, or select a particular step from the
navigation panel.

8. Click Finish. The new calculation columns are created.

Using the Calculation Wizard

17-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

18

Using Variables in the Oracle BI Repository 18-1

18Using Variables in the Oracle BI Repository

You can use variables in a repository to streamline administrative tasks and
dynamically modify metadata content to adjust to a changing data environment. There
are two classes of variables: repository variables and session variables.

■ A repository variable has a single value at any point in time. There are two types
of repository variables: static and dynamic.

■ Session variables are created and assigned a value when each user logs on. There
are two types of session variables: system and nonsystem.

Initialization blocks are used to initialize dynamic repository variables, system session
variables, and nonsystem session variables.

You can use the Variable Manager in the Administration Tool to define variables. The
Variable Manager dialog has two panes. The left pane displays a tree that shows
variables and initialization blocks, and the right pane displays details of the item you
select in the left pane. Repository variables and system and nonsystem session
variables are represented by a question mark icon. The icon for an initialization block
is a cube labeled i.

This chapter contains the following topics:

■ About Repository Variables

■ Creating Repository Variables

■ About Session Variables

■ Creating Session Variables

■ Working with Initialization Blocks

About Repository Variables
A repository variable has a single value at any point in time. Repository variables can
be used instead of literals or constants in Expression Builder in the Administration
Tool. The Oracle BI Server substitutes the value of the repository variable for the
variable itself in the metadata.

Caution: Values in repository and session variables are not secure,
because object permissions do not apply to variables. Anybody who
knows or can guess the name of the variable can use it in an
expression in Answers or in a Logical SQL query. Because of this, do
not put sensitive data like passwords in session or repository
variables.

About Repository Variables

18-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

This section contains the following topics:

■ About Static Repository Variables

■ About Dynamic Repository Variables

About Static Repository Variables
The value of a static repository variable is initialized in the Variable dialog. This value
persists, and does not change until an administrator decides to change it.

For example, suppose you want to create an expression to group times of day into
different day segments. If Prime Time were one of those segments and corresponded
to the hours between 5:00 PM and 10:00 PM, you could create a CASE statement like
the following:

CASE WHEN "Hour" >= 17 AND "Hour" < 23 THEN 'Prime Time' WHEN... ELSE...END

where Hour is a logical column, perhaps mapped to a timestamp physical column
using the date-and-time Hour(<<timeExpr>>) function.

Rather than entering the numbers 17 and 23 into this expression as constants, you
could use the Variable tab of the Variable dialog to set up a static repository variable
named prime_begin and initialize it to a value of 17, and create another variable
named prime_end and initialize it to a value of 23.

Static repository variables must have default initializers that are either numeric or
character values. In addition, you can use Expression Builder to insert a constant as the
default initializer, such as Date, Time, and TimeStamp. You cannot use any other
value or expression as the default initializer for a static repository variable.

In previous releases, the Administration Tool did not limit the values of default
initializers for static repository variables. Because of this, if your repository has been
upgraded from a previous release, you may see warnings in the Consistency Checker
similar to the following:

The variable, 'Current Month' does not have a constant default initializer.

If you see warnings similar to this, update the relevant static repository variables so
that the default initializers have constant values.

About Dynamic Repository Variables
You initialize dynamic repository variables in the same way as static variables, but the
values are refreshed by data returned from queries. When defining a dynamic
repository variable, you create an initialization block or use a preexisting one that
contains a SQL query. You also set up a schedule that the Oracle BI Server will follow
to execute the query and periodically refresh the value of the variable.

When the value of a dynamic repository variable changes, all cache entries associated
with a business model that reference the value of that variable are purged
automatically.

Each query can refresh several variables: one variable for each column in the query.
You schedule these queries to be executed by the Oracle BI Server.

Dynamic repository variables are useful for defining the content of logical table
sources. For example, suppose you have two sources for information about orders.
One source contains recent orders and the other source contains historical data.

Creating Repository Variables

Using Variables in the Oracle BI Repository 18-3

You need to describe the content of these sources on the Content tab of the Logical
Table Source dialog. Without using dynamic repository variables, you would describe
the content of the source containing recent data with an expression such as:

Orders.OrderDates."Order Date" >= TIMESTAMP '2001-06-02 00:00:00'

This content statement becomes invalid as new data is added to the recent source and
older data is moved to the historical source. To accurately reflect the new content of
the recent source, you would have to modify the fragmentation content description
manually. Dynamic repository values can be set up to do it automatically.

Another suggested use for dynamic repository values is in WHERE clause filters of
logical table sources, defined on the Content tab of the Logical Table Source dialog.

A common use of these variables is to set filters for use in Oracle BI Presentation
Services. For example, to filter a column on the value of the dynamic repository
variable CurrentMonth, set the filter to the variable CurrentMonth.

Creating Repository Variables
This section explains how to create repository variables.

To create a repository variable:

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager dialog, select Action > New > Repository > Variable.

3. In the Variable dialog, type a name for the variable.

Names for all variables should be unique. The names of system session variables
are reserved and cannot be used for other types of variables.

4. Select the type of variable: Static or Dynamic.

5. If you selected Dynamic, use the Initialization Block list to select an existing
initialization block that will be used to refresh the value on a continuing basis.

To create a new initialization block, click New. See "Creating Initialization Blocks"
for more information.

6. To add a Default initializer value, type the value in the Default initializer box, or
click the Expression Builder button to use Expression Builder.

For static repository variables, the value you specify in the Default initializer
window persists. It will not change unless you change it. If you initialize a variable
using a character string, enclose the string in single quotes ('). Static repository
variables must have default initializers that are constant values.

7. Click OK.

Using Repository Variables in Expression Builder
After they are created, variables are available for use in Expression Builder. In
Expression Builder, click the Repository Variables folder in the left pane to display all
repository variables (both static and dynamic) in the middle pane by name.

To use a repository variable in an expression, select it and double-click. Expression
Builder pastes it into the expression at the active cursor insertion point.

Variables should be used as arguments of the function VALUEOF(). This happens
automatically when you double-click the variables to paste them into the expression.

About Session Variables

18-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

For example, the following CASE statement is identical to the one explained in the
preceding example, except that variables have been substituted for the constants:

CASE WHEN "Hour" >= VALUEOF("prime_begin")AND "Hour" < VALUEOF("prime_end") THEN
'Prime Time' WHEN ... ELSE...END

About Session Variables
Session variables are similar to dynamic repository variables in that they obtain their
values from initialization blocks. Unlike dynamic repository variables, however, the
initialization of session variables is not scheduled. When a user begins a session, the
Oracle BI Server creates new instances of session variables and initializes them.

Unlike a repository variable, there are as many instances of a session variable as there
are active sessions on the Oracle BI Server. Each instance of a session variable could be
initialized to a different value.

Session variables are primarily used when authenticating users against external
sources such as database tables or LDAP servers. If a user is authenticated
successfully, session variables can be used to set filters and permissions for that
session. For information about using session variables when setting up security, see
"Managing Session Variables" in Oracle Fusion Middleware Security Guide for Oracle
Business Intelligence Enterprise Edition.

This section contains the following topics:

■ About System Session Variables

■ About Nonsystem Session Variables

About System Session Variables
System session variables are session variables that the Oracle BI Server and Oracle BI
Presentation Services use for specific purposes. System session variables have reserved
names that cannot be used for other kinds of variables (such as static or dynamic
repository variables and nonsystem session variables).

When you use these variables for Oracle BI Presentation Services, preface their names
with NQ_SESSION. For example, to filter a column on the value of the variable
LOGLEVEL, set the filter to the variable NQ_SESSION.LOGLEVEL.

Table 18–1 describes the available system session variables.

Note: You cannot use variables to represent columns or other
repository objects.

Table 18–1 System Session Variables

Variable Description

USER Holds the value the user enters as his or her logon name. This variable
is typically populated from the LDAP profile of the user.

PROXY Holds the name of the proxy user. A proxy user is a user that has been
authorized to act for another user.

See Oracle Fusion Middleware Security Guide for Oracle Business
Intelligence Enterprise Edition for more information about the PROXY
system session variable.

About Session Variables

Using Variables in the Oracle BI Repository 18-5

GROUP Contains the groups to which the user belongs. Exists only for
compatibility with previous releases. Legacy groups are mapped to
application roles automatically.

WEBGROUPS Specifies the Catalog groups (Presentation Services groups) to which
the user belongs, if any. Note that the recommended practice is to use
application roles rather than Catalog groups.

USERGUID Contains the global unique identifier (GUID) of the user, typically
populated from the LDAP profile of the user.

ROLES Contains the application roles to which the user belongs.

ROLEGUIDS Contains the global unique identifiers (GUIDs) for the application
roles to which the user belongs. GUIDs for application roles are the
same as the application role names.

PERMISSIONS Contains the permissions held by the user, such as
oracle.bi.server.impersonateUser or
oracle.bi.server.manageRepositories.

DISPLAYNAME Used for Oracle BI Presentation Services. It contains the name that is
displayed to the user in the greeting in the Oracle BI Presentation
Services user interface. It is also saved as the author field for catalog
objects. This variable is typically populated from the LDAP profile of
the user.

PORTALPATH Used for Oracle BI Presentation Services. It identifies the default
dashboard the user sees when logging in (the user can override this
preference after logged on).

LOGLEVEL The value of LOGLEVEL (a number between 0 and 5) determines the
logging level that the Oracle BI Server uses for user queries.

This system session variable overrides a variable defined in the Users
object in the Administration Tool. If the administrator user (defined
upon install) has a Logging level defined as 4 and the session variable
LOGLEVEL defined in the repository has a value of 0 (zero), the value
of 0 applies.

REQUESTKEY Used for Oracle BI Presentation Services. Any users with the same
nonblank request key share the same Oracle BI Presentation Services
cache entries. This tells Oracle BI Presentation Services that these users
have identical content filters and security in the Oracle BI Server.
Sharing Oracle BI Presentation Services cache entries is a way to
minimize unnecessary communication with the Oracle BI Server.

SKIN Determines certain elements of the look and feel of the Oracle BI
Presentation Services user interface. The user can alter some elements
of the user interface by picking a style when logged on to Oracle BI
Presentation Services. The SKIN variable points to an Oracle BI
Presentation Services folder that contains the nonalterable elements
(for example, figures such as GIF files). Such directories begin with
sk_. For example, if a folder were called sk_companyx, the SKIN
variable would be set to companyx.

DESCRIPTION Contains a description of the user, typically populated from the LDAP
profile of the user.

USERLOCALE Contains the locale of the user, typically populated from the LDAP
profile of the user.

DISABLE_CACHE_
HIT

Used to enable or disable Oracle BI Server result cache hits. This
variable has a possible value of 0 or 1.

DISABLE_CACHE_
SEED

Used to enable or disable Oracle BI Server result cache seeding. This
variable has a possible value of 0 or 1.

Table 18–1 (Cont.) System Session Variables

Variable Description

Creating Session Variables

18-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

About Nonsystem Session Variables
You use the same procedure to define nonsystem session variables as for system
session variables.

A common use for nonsystem session variables is setting user filters. For example, you
could define a nonsystem variable called SalesRegion that would be initialized to the
name of the sales region of the user.

You could then set a security filter for all members of a group that would allow them
to view only data pertinent to their region.

When you use these variables for Oracle BI Presentation Services, preface their names
with NQ_SESSION. For example, to filter a column on the value of the variable
SalesRegion, set the filter to the variable NQ_SESSION.SalesRegion.

Creating Session Variables
This section explains how to create session variables.

To create a session variable:

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager dialog, select Action > New > Session > Variable.

3. In the Session Variable dialog, type a variable name.

Names for all variables should be unique. The names of system session variables
are reserved and cannot be used for other types of variables.

4. For session variables, you can select the following options:

■ Enable any user to set the value. Select this option to set session variables
after the initialization block has populated the value (at user login) by calling
the ODBC store procedure NQSSetSessionValue(). For example, this
option lets non-administrators to set this variable for sampling.

■ Security Sensitive. Select this option to identify the variable as sensitive to
security when using a row-level database security strategy, such as a Virtual
Private Database (VPD). When filtering cache table matches, the Oracle BI
Server looks at the parent database object of each column or table that is
referenced in the logical request projection list. If the database object has the
Virtual Private Database option selected, the Oracle BI Server matches a list of
security-sensitive variables to each prospective cache hit. Cache hits would

DISABLE_
SUBREQUEST_
CACHE

Used to enable or disable Oracle BI Server subrequest cache hits and
seeding. This variable has a possible value of 0 or 1.

SELECT_PHYSICAL Identifies the query as a SELECT_PHYSICAL query. See "Syntax and
Usage Notes for SELECT_PHYSICAL" for more information.

DISABLE_PLAN_
CACHE_HIT

Used to enable or disable Oracle BI Server plan cache hits. This
variable has a possible value of 0 or 1.

DISABLE_PLAN_
CACHE_SEED

Used to enable or disable Oracle BI Server plan cache seeding. This
variable has a possible value of 0 or 1.

TIMEZONE Contains the time zone of the user, typically populated from the
LDAP profile of the user.

Table 18–1 (Cont.) System Session Variables

Variable Description

Working with Initialization Blocks

Using Variables in the Oracle BI Repository 18-7

only occur on cache entries that included and matched all security-sensitive
variables.

5. Use the Initialization Block list to select an initialization block that will be used to
refresh the value on a continuing basis.

To create a new initialization block, click New. See "Creating Initialization Blocks"
for more information.

6. To add a Default Initializer value, type the value in the Default Initializer box, or
click the Expression Builder button to use Expression Builder.

7. Click OK.

Working with Initialization Blocks
Initialization blocks are used to initialize dynamic repository variables, system session
variables, and nonsystem session variables. For example, the NQ_SYSTEM initialization
block is used to refresh system session variables.

This section contains the following topics:

■ About Using Initialization Blocks with Variables

■ Creating Initialization Blocks

■ Associating Variables with Initialization Blocks

■ Establishing Execution Precedence

■ When Execution of Session Variable Initialization Blocks Cannot Be Deferred

■ Enabling and Disabling Initialization Blocks

About Using Initialization Blocks with Variables
An initialization block contains the SQL statement that will be executed to initialize or
refresh the variables associated with that block. The SQL statement must reference
physical tables that can be accessed using the connection pool specified in the
Connection Pool field in the Initialization Block dialog.

If you want the query for an initialization block to have database-specific SQL, you can
select a database type for that query. If a SQL initialization string for that database
type has been defined when the initialization block is instantiated, this string is used.
Otherwise, a default initialization SQL string is used.

This section contains the following topics:

■ Initializing Dynamic Repository Variables

■ Initializing Session Variables

Caution: By default, when you open the Initialization Block dialog
for editing in online mode, the initialization block object is
automatically checked out. While the initialization block is checked
out, the Oracle BI Server may continue to refresh the value of dynamic
variables refreshed by this initialization block, depending on the
refresh intervals that are set. When you check in the initialization
block, the value of the dynamic variables is reset to the values shown
in the Default initializer. If you do not want this to occur, use the
Undo Check Out option.

Working with Initialization Blocks

18-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ About Row-Wise Initialization

Initializing Dynamic Repository Variables
The values of dynamic repository variables are set by queries defined in the Default
initialization string field of the Initialization Block dialog. You also set up a schedule
that the Oracle BI Server will follow to execute the query and periodically refresh the
value of the variable. If you stop and restart the Oracle BI Server, the server
automatically executes the SQL statements in repository variable initialization blocks,
reinitializing the repository variables.

The Oracle BI Server logs all SQL queries issued to retrieve repository variable
information in nqquery.log when the logging level for the administrator account (set
upon installation) is set to 2 or higher. You should set the logging level to 2 for the
administrator to provide the most useful level of information. You can find the
nqquery.log file in:

ORACLE_INSTANCE\diagnostics\logs\OracleBIServerComponent\coreapplication_obisn

For more information about user-level logging, see "Managing the Query Log" in
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition.

Initializing Session Variables
As with dynamic repository variables, session variables obtain their values from
initialization blocks. Unlike dynamic repository variables, session variables are not
updated at scheduled time intervals. Instead, the Oracle BI Server creates new
instances of those variables whenever a user begins a new session. The values remain
unchanged for the duration of the session.

Execution of session variable initialization blocks during session logon can be deferred
until their associated session variables are actually accessed within the session. See
"Creating Initialization Blocks" for more information.

The Oracle BI Server logs all SQL queries issued to retrieve session variable
information if the logging level is set to 2 or higher in the Identity Manager User
object, or the LOGLEVEL system session variable is set to 2 or higher in the Variable
Manager.

The default location for the nqquery.log file is:

ORACLE_INSTANCE\diagnostics\logs\OracleBIServerComponent\coreapplication_obisn

For more information about user-level logging, see "Managing the Query Log" in
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition.

About Row-Wise Initialization
You can use the row-wise initialization option to create session variables dynamically
and set their values when a session begins. The names and values of the session
variables reside in an external database that you access through a connection pool. The
variables receive their values from the initialization string that you type in the
Initialization Block dialog.

For example, suppose you want to create session variables using values contained in a
table named RW_SESSION_VARS. The table contains three columns:

■ USERID, containing values that represent the unique identifiers of the users

Working with Initialization Blocks

Using Variables in the Oracle BI Repository 18-9

■ NAME, containing values that represent session variable names

■ VALUE, containing values that represent session variable values

Table 18–2 shows the table in this example.

To use row-wise initialization, create an initialization block and select the Row-wise
initialization option (refer to "Creating Initialization Blocks"). For this example, you
would provide the following SQL statement for the initialization string:

SELECT NAME, VALUE
FROM RW_SESSION_VARS
WHERE USERID='VALUEOF(NQ_SESSION.USERID)'

Note that NQ_SESSION.USERID has already been initialized using another
initialization block.

The following session variables would be created:

■ When John connects to the Oracle BI Server, his session contains two session
variables from row-wise initialization: LEVEL, containing the value 4, and
STATUS, containing the value FULL_TIME.

■ When Jane connects to the Oracle BI Server, her session contains three session
variables from row-wise initialization: LEVEL, containing the value 8; STATUS,
containing the value FULL-TIME; and GRADE, containing the value AAA.

Initializing a Variable with a List of Values You can also use the row-wise initialization
option to initialize a variable with a list of values. You can then use the SQL IN
operator to test for values in a specified list.

For example, using the table values in the previous example, you would type the
following SQL statement for the initialization string:

SELECT 'LIST_OF_USERS', USERID
FROM RW_SESSION_VARS
WHERE NAME='STATUS' AND VALUE='FULL-TIME'

This SQL statement populates the variable LIST_OF_USERS with a list, separated by
colons, of the values JOHN and JANE (for example, JOHN:JANE). You can then use this
variable in a filter, as shown in the following WHERE clause:

WHERE TABLE.USER_NAME = valueof(NQ_SESSION.LIST_OF_USERS)

The variable LIST_OF_USERS contains a list of values, that is, one or more values.
This logical WHERE clause expands into a physical IN clause, as shown in the following
statement:

WHERE TABLE.USER_NAME IN ('JOHN', 'JANE')

Table 18–2 Sample Session Variables Database Table

USERID NAME VALUE

JOHN LEVEL 4

JOHN STATUS FULL-TIME

JANE LEVEL 8

JANE STATUS FULL-TIME

JANE GRADE AAA

Working with Initialization Blocks

18-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Creating Initialization Blocks
See "About Using Initialization Blocks with Variables" for more information about
initialization blocks.

To create initialization blocks, perform the steps in the following sections:

■ Assigning a Name and Schedule to Initialization Blocks

■ Selecting and Testing the Data Source and Connection Pool

Assigning a Name and Schedule to Initialization Blocks
For repository variables, you can specify the day, date, and time for the start date, as
well as a refresh interval.

To assign a name and schedule to initialization blocks:

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager dialog, from the Action menu, choose New > Repository
(or Session) > Initialization Block.

3. In the [Repository|Session] Variable Initialization Block dialog, type a name for
the block. (The NQ_SYSTEM initialization block name is reserved.)

4. (Repository initialization blocks only) In the Schedule area, select a start date and
time and the refresh interval.

5. (Session init blocks only) Select the following options when appropriate:

– Disabled. If you select this option, the initialization block is disabled.

You can also right-click an existing initialization block in the Variable
Manager and choose Disable or Enable. This option enables you to change
this property without opening the initialization block dialog.

– Allow deferred execution. If you select this option, execution of the
initialization block is deferred until an associated session variable is accessed
for the first time during the session.

This option prevents execution of all session variable initialization blocks
during the session logon stage, giving a shorter logon time. Session variables
that are not needed during the session do not have their initialization blocks
executed. This saves the resources which would have been used to execute
these unnecessary initialization blocks.

The deferred execution of an initialization block also triggers the execution of
all unexecuted predecessor initialization blocks. All associated variables of the
initialization block and its unexecuted predecessors are updated with the
values returned from the deferred execution.

Note: The Allow deferred execution option is unavailable in some
circumstances. See "When Execution of Session Variable Initialization Blocks
Cannot Be Deferred" for more information.

– Required for authentication. If you select this option, this initialization block
must succeed for users to log in. In other words, users are denied access to
Oracle Business Intelligence if the initialization block fails to execute. Failure
to execute can occur if the wrong credentials have been defined in the
initialization block, or if there is an error in the default initialization string.

Note that this requirement is waived for internal processes (like Delivers) that
use impersonation, if a single user session variable has been associated with

Working with Initialization Blocks

Using Variables in the Oracle BI Repository 18-11

the initialization block. In this case, the trusted internal process can connect
regardless of whether the initialization block succeeds or fails.

The next step is to select the data source and connection pool.

Selecting and Testing the Data Source and Connection Pool
If you select Database as the data source type for an initialization block, the values
returned by the database for the columns in your SQL statement are assigned to
variables that you associate with the initialization block. For session variable
initialization blocks, you can also select LDAP Server or Custom Authenticator.

It is recommended that you create a dedicated connection pool for initialization blocks
where you select Database as the data source type. See "About Connection Pools for
Initialization Blocks" for more information.

If you select Database as the data source type:

■ If you select Database as the data source type, and do not select the Use OBI EE
Server option

The SQL statement used to refresh the variable must reference physical tables that
can be accessed through the connection pool specified in the Connection Pool
field. The tables do not have to be included in the Physical layer of the metadata.
At run time, if an initialization string for the database type has been defined, this
string is used. Otherwise, the default initialization SQL for the database type is
used. You can overtype this string.

When you create SQL and submit it directly to the database (for example, when
using database-specific SQL in initialization blocks), the SQL statement bypasses
the Oracle BI Server. The order of the columns in the SQL statement and the order
of the variables associated with the initialization block determine which columns
are assigned to each variable.

You should test this SQL using the Test button in the [Repository|Session]
Variable Initialization Block Data Source dialog. If the SQL statement contains an
error, the database returns an error message. See "Testing Initialization Blocks" for
more information.

■ If you select Database as the data source type, and select the Use OBI EE Server
option

The SQL statement you use to refresh the variable might be written for a specific
database. However, it will still work with other data sources because the SQL
statement is processed by the Oracle BI Server. The Oracle BI Server can also
provide functions (such as PI) that might not be available in the data source, and
the SQL statement will work with other data sources supported by the Oracle BI
Server (for example, ADF, SQL Server, Oracle, and XML files). When you select
the Use OBI EE Server option, there is no need for a connection pool, because the
SQL statement is sent to the Oracle BI Server and not directly to the underlying
database.

You can only test this SQL statement using the Test button in the
[Repository|Session] Variable Initialization Block Data Source dialog when in
online mode. If the SQL statement contains an error, the database returns an error
message. See "Testing Initialization Blocks" for more information.

To select a data source and connection pool for initialization blocks:

1. In the Administration Tool, select Manage, then select Variables.

Working with Initialization Blocks

18-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

2. In the Variable Manager dialog, double-click the initialization block you want to
edit. You can edit Repository initialization blocks, or Session initialization blocks.

3. Click Edit Data Source next to the Connection Pool field.

4. From the Data Source Type list, select one of the following types.

■ Database: For repository and session variables.

■ LDAP Server: For session variables.

■ Custom Authenticator: For session variables. See Oracle Fusion Middleware
Security Guide for Oracle Business Intelligence Enterprise Edition for more
information.

5. If you selected Database for your data source type, perform one of the following
steps:

■ Select Default initialization string or Use database specific SQL, and then
perform the following steps:

a. Click Browse next to the Connection Pool field to select the connection
pool associated with the database where the target information is located.
If you do not select a connection pool before typing the initialization
string, you receive a message prompting you to select the connection pool.

b. In the Select Connection Pool dialog, select the connection pool and click
Select. You must select a connection pool before typing an initialization
string.

By default, the first connection pool under the database object in the Phys-
ical layer is not available for selection. This behavior ensures that you can-
not use the same connection pool for initialization blocks that you use for
queries. See "About Connection Pools for Initialization Blocks" for more
information

You can change this behavior so that the first connection pool is available
for selection by selecting Allow first Connection Pool for Init Blocks in
the Options dialog, although this is not recommended. See "Setting Prefer-
ences" for more information.

c. If you selected Use database specific SQL, then in the Database pane,
expand and select the database. Then, enter its associated string.

Otherwise, in the Default initialization string box, type the SQL initial-
ization string needed to populate the variables. See "Examples of Initial-
ization Strings" for examples.

d. (Optional) Click Test to test the data source connectivity for the SQL
statement.

e. Click OK to return to the Initialization Block dialog.

■ Select Use OBI EE Server, and then perform the following steps:

a. In the box, enter the SQL initialization string needed to populate the
variables.

The string you enter here is processed by the Oracle BI Server, and there-
fore as long as it is supported by the Oracle BI Server, the string will work
with different data sources.

For example, an initialization block might use the function pi(), which is
specific to SQL Server. However, if you select Use OBI EE Server, the
query is rewritten by the Oracle BI Server for the appropriate database. In

Working with Initialization Blocks

Using Variables in the Oracle BI Repository 18-13

other words, if you change the SQL Server back-end database to Oracle,
the query will still work.

See "Examples of Initialization Strings" for additional examples.

b. Click OK to return to the Initialization Block dialog.

6. If you selected LDAP Server for your data source type, perform the following
steps:

a. Click Browse to select an existing LDAP Server, or click New to open the
General tab of the LDAP Server dialog and create an LDAP Server.

b. Click OK to return to the Initialization Block dialog.

The LDAP server name and the associated domain identifier appear in the
Name and Domain identifier columns.

7. If you selected Custom Authenticator for your data source type, perform the
following steps:

a. Click Browse to select an existing custom authenticator, or click New to create
one.

b. Click OK to return to the Initialization Block dialog.

8. Click OK.

Examples of Initialization Strings This section contains the following initialization string
examples:

■ Example 18–1, "A SQL Statement When Site Uses Delivers"

■ Example 18–2, "A SQL Statement When Site Does Not Use Delivers"

■ Example 18–3, "A SQL Statement Joining Tables From Multiple Data Sources -
When Using the 'OBI EE Server' Setting"

Example 18–1 A SQL Statement When Site Uses Delivers

SELECT username, groupname, dbname, schemaname FROM users
WHERE username=':USER'
NQS_PASSWORD_CLAUSE(and pwd=':PASSWORD')NQS_PASSWORD_CLAUSE

This SQL contains two constraints in the WHERE clause:

':USER' (note the colon and single quotes) is the ID the user types when logging in.

':PASSWORD' (note the colon and single quotes) is the password the user enters. This
is another system variable whose presence is always assumed when the USER system
session variable is used. You do not need to set up the PASSWORD variable, and you
can use this variable in a database connection pool to allow passthrough login using
the user ID and password of the user. You can also use this variable in a SQL
statement.

When using external table authentication with Delivers, the portion of the SQL
statement that makes up the :PASSWORD constraint must be embedded between NQS_
PASSWORD_CLAUSE clauses.

The query returns data only if the user ID and password match values found in the
specified table. You should test the SQL statement outside of the Oracle BI Server,
substituting valid values for the USER and PASSWORD variables and removing the
NQS_PASSWORD_CLAUSE clause.

Working with Initialization Blocks

18-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

For more information, see Oracle Fusion Middleware System Administrator's Guide for
Oracle Business Intelligence Enterprise Edition.

Example 18–2 A SQL Statement When Site Does Not Use Delivers

SELECT username, groupname, dbname, schemaname FROM users
WHERE username=':USER'
AND pwd=':PASSWORD'

This SQL statement contains two constraints in the WHERE clause:

':USER' (note the colon and the single quotes) is the ID the user types when logging
in.

':PASSWORD' (note the colon and the single quotes) is the password the user enters.
This is another system variable whose presence is always assumed when the USER
system session variable is used. You do not need to set up the PASSWORD variable, and
you can use this variable in a database connection pool to allow passthrough login
using the user ID and password of the user. You can also use this variable in a SQL
statement.

The query returns data only if the user ID and password match values found in the
specified table. You should test the SQL statement outside of the Oracle BI Server,
substituting valid values for the USER and PASSWORD variables.

Example 18–3 A SQL Statement Joining Tables From Multiple Data Sources - When
Using the 'OBI EE Server' Setting

select WUSER.name, wuser_detail.email
from "db-11g/orcl"."NAME"."WUSER',
"sqlexpress"."master"."dbo"."wuser_detail"
where username=:USER:

The above query example in the initialization block uses a join query with multiple
tables from different data sources (for example, SQLServer, Oracle and XML Files).
The query works because when you select the Use OBI EE Server option, the query is
rewritten by the BI Server for the specified data sources.

Testing Initialization Blocks You should test the SQL statement using the Test button or a
SQL tool such as the Oracle BI Client utility. If you use a SQL tool, be sure to use the
same DSN or one set up identically to the DSN in the specified connection pool.

In online mode, Initialization Block tests do not work with connection pools set to use
:USER and :PASSWORD as the user name and password. In offline mode, the Set
values for variables dialog is displayed so that you can populate :USER and
:PASSWORD.

To test initialization blocks (optional):

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager dialog, double-click the initialization block.

3. In the [Repository|Session] Variable Initialization Block dialog, click Edit Data
Source.

4. In the [Repository|Session] Variable Initialization Block Data Source dialog, click
Test.

Note: The Test button is disabled when the Use OBI EE Server option is selected
in offline mode.

Working with Initialization Blocks

Using Variables in the Oracle BI Repository 18-15

5. In the Set value for the variables dialog, verify the information is correct, and then
click OK.

6. In the View Data from Table dialog, type the number of rows and the starting row
for your query, and then click Query.

The Results dialog lists the variables and their values.

The next step is to associate variables with the initialization block.

Associating Variables with Initialization Blocks
The SQL SELECT statement in the Default initializer list can contain multiple columns.
The order of the columns in the SQL statement and order of the variables associated
with the initialization block determine the column value that is assigned to each
variable. Therefore, when you associate variables with an initialization block, the value
returned in the first column is assigned to the first variable in the list.

For repository variable initialization blocks, when you open a repository in online
mode, the value shown in the Default initialization string field of the Initialization
Block dialog is the current value of that variable as known to the Oracle BI Server. The
number of associated variables can be different from the number of columns being
retrieved. If there are fewer variables than columns, extra column values are ignored.
If there are more variables than columns, the additional variables are not refreshed
(they retain their original values, whatever they may be). Any legal SQL can be
executed using an initialization block, including SQL that writes to the database or
alters database structures, assuming the database permits the user ID associated with
the connection pool to perform these actions.

If you stop and restart the Oracle BI Server, the server automatically executes the SQL
statement in the repository variable initialization blocks, re-initializing the repository
variables.

For session variable initialization blocks, you can select Row-wise initialization. The
Use caching option is automatically selected when you select the Row-wise
initialization option. Selecting the Use caching option directs the Oracle BI Server to
store the results of the query in a main memory cache. See "About Row-Wise
Initialization" for more information.

The Oracle BI Server uses the cached results for subsequent sessions. This can reduce
session startup time. However, the cached results might not contain the most current
session variable values. If every new session needs the most current set of session
variables and their corresponding values, you should clear this option.

See "About Using Initialization Blocks with Variables" for more information.

To associate variables with initialization blocks:

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager dialog, double-click the initialization block you want to
edit. You can edit repository initialization blocks, or session initialization blocks.

3. Click Edit Data Target.

4. In the [Repository|Session] Variable Initialization Block Variable Target dialog,
perform one of the following steps:

■ Associate variables with the initialization block by doing one of the following:

– Click New, and in the Variable dialog, create a new variable. See "Creating
Repository Variables" or "Creating Session Variables" for information
about creating variables.

Working with Initialization Blocks

18-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

– Click Link to associate an existing variable with an initialization block.
Then, in the Browse dialog, select the variable to be refreshed by this
initialization block and click OK.

■ Select Row-wise initialization. This option is for session variable initialization
blocks only. See "About Row-Wise Initialization" for more information. If you
select Row-wise initialization, the Use caching option becomes available.

5. To reorder variables, select a variable and click Up or Down.

6. To remove a variable from association with this block, select the variable and click
Remove.

7. Click OK.

The next step is to establish execution precedence.

Establishing Execution Precedence
When a repository has multiple initialization blocks, you can set the order (establish
the precedence) in which the blocks will be initialized.

First, you open the block that you want to be executed last and then add the
initialization blocks that you want to be executed before the block you have open. For
example, suppose a repository has two initialization blocks, A and B. You open
initialization block B, and then specify that block A will execute before block B. This
causes block A to execute according to block B's schedule, in addition to its own.

To establish execution precedence:

1. In the Administration Tool, select Manage, then select Variables.

2. In the Variable Manager dialog, double-click the last initialization block that you
want to be initialized.

3. In the [Repository|Session] Variable Initialization Block dialog, click Edit
Execution Precedence.

4. In the [Repository|Session] Variable Initialization Block Execution Precedence
dialog, click Add.

Add is only available if there are initialization blocks that have not yet been
selected.

5. In the Browse dialog, select the blocks that should be initialized before the block
that you have open, and then click OK.

6. To remove a block, in the [Repository|Session] Variable Initialization Block
Execution Precedence dialog, select the block you want to remove and click
Remove.

7. Click OK.

8. If you want the initialization block to be required, in the [Repository|Session]
Variable Initialization Block dialog, select the Required for authentication option.

9. Click OK.

Note: For the Custom Authenticator data source type (Session
variables only), the variable USER is required.

Working with Initialization Blocks

Using Variables in the Oracle BI Repository 18-17

When Execution of Session Variable Initialization Blocks Cannot Be Deferred
Execution of session variable initialization blocks cannot be deferred in some
circumstances, including when row-wise initialization is being used and when the
Required for authentication option has been selected. When the execution of session
variable initialization blocks cannot be deferred, a message is displayed that explains
why. See "Assigning a Name and Schedule to Initialization Blocks" for more
information.

The following list summarizes the scenarios in which execution of session variable
initialization blocks cannot be deferred:

■ The Row-wise initialization option is selected in the Session Variable
Initialization Block Variable Target dialog

Example message: "The execution of init block 'A_blk' cannot be deferred as it is
using row-wise initialization."

■ The Required for authentication option is selected in the Session Variable
Initialization Block dialog.

Example message: "The execution of init block 'A_blk' cannot be deferred as it is
required for authentication."

■ The Data Source Type is not Database.

Example message: "The execution of init block 'A_blk' cannot be deferred as it
does not have a connection pool."

■ The initialization block is used by session variables named PROXY or USER.

Example message: "The execution of init block 'A_blk' cannot be deferred as it is
used by session variable 'PROXY'."

■ The initialization block is used by session variables where the Security Sensitive
option is selected in the Session Variable dialog.

Example message: "The execution of init block 'A_blk' cannot be deferred as it is
used by session variable 'A' which is security sensitive."

■ The initialization block is a predecessor to another initialization block which does
not have the Allow deferred execution option selected.

Example message: "One of the successors for init block 'A_blk' does not have
"Allow deferred execution" flag set. Init block 'B_blk' does not have "Allowed
deferred execution" flag set.

Enabling and Disabling Initialization Blocks
You can use the Variable Manager in the Administration Tool to enable and disable
initialization blocks.

Note: When you select the Use OBI EE Server option for an
initialization block:

■ Execution precedence does not apply, because during user login,
an initialization block with the Use OBI EE Server option selected
is executed after initialization blocks with the Use OBI EE Server
option not selected.

■ The Required for authentication option is dimmed, because this
type of initialization block is executed after authentication.

Working with Initialization Blocks

18-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

To enable or disable an initialization block:

1. In the Administration Tool, select Manage, then select Variables. The Variable
Manager appears.

2. In the left pane, select Initialization Blocks under Repository or Session,
depending on whether you want to enable or disable repository initialization
blocks or session initialization blocks.

3. In the right pane, right-click the initialization block you want to enable or disable.

4. Choose Enable or Disable from the right-click menu.

5. Close the Variable Manager and save the repository.

A

Managing the Repository Lifecycle in a Multiuser Development Environment A-1

AManaging the Repository Lifecycle in a
Multiuser Development Environment

This appendix provides best practice information for managing the lifecycle of the
Oracle BI repository when you are using a multiuser development environment.

Building your Oracle BI repository using the multiuser development environment
enables you to do the following:

■ Build large, interrelated semantic models

■ Independently build multiple, independent semantic models to run in the same
Oracle BI Server and Presentation Services server

■ Develop several branches on different schedules, in parallel, while fixing urgent
bugs or enhancement requests on the production version

■ Incrementally design and test at the individual and team levels

■ Enable individual developers to design and test manageable subsets without
impacting each other, yet share their changes with other developers in a
controlled, incremental fashion

■ Migrate changes to test and production systems in bulk, or incrementally

This appendix covers the development lifecycle of the Oracle BI repository (RPD). It
does not cover the development lifecycle of the Oracle BI Presentation Catalog used by
Presentation Services. This appendix also does not cover how to use the multiuser
development environment for Independent Software Vendor (ISV) organizations
building portable BI applications for sale as products.

See also Appendix B, "MUD Case Study: Eden Corporation" for detailed examples of
how the multiuser development environment is used in a typical business scenario.

This appendix contains the following topics:

■ Planning Your Multiuser Development Deployment

■ Multiuser Development Architecture

■ Understanding the Multiuser Development Environment

■ MUD Tips and Best Practices

■ Troubleshooting Multiuser Development

Planning Your Multiuser Development Deployment
This section describes tasks you need to perform as part of the planning phase before
beginning multiuser development.

Planning Your Multiuser Development Deployment

A-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

This section contains the following topics:

■ About Business Organization and Governance Process Best Practices

■ About Technical Team Roles and Responsibilities

About Business Organization and Governance Process Best Practices
You need to provide a strong, effective governance process to make decisions about
shared resources and to resolve conflicts among the many stake-holders. As in any
business process, you must have a strong business sponsor, and the steering
committee must be staffed with strong business people who can negotiate effectively
and make good decisions that will not change over time. Having an effective
governance process has proven to be the single most important factor in achieving
successful multiuser development with Oracle Business Intelligence.

Before you begin your multiuser development project, you must first lay out the
business value, priorities, roadmap, and requirements, as well as lower level details of
the design, as described in Table A–1.

About Technical Team Roles and Responsibilities
This section describes the hands-on roles involved in repository development and its
lifecycle. Depending on the size of your company and team, some of these roles might
be served by one person.

Table A–1 Tasks to Accomplish During the Planning Phase

For... You must...

Strategic requirements ■ Determine which business processes to measure

■ Determine which data sources and subject areas to access

Business requirements for
repository objects

■ Select and define metrics, dimensions, and hierarchies

■ Identify objects that will be shared between development
teams

■ Resolve conflicts between teams

■ Define Presentation layer subject areas

Security requirements ■ Define Application Roles and corresponding privileges for
your user base

■ Define which repository developers can access which
metadata and data

Development ■ Determine the styles of multiuser development to use

■ Define areas to break down into MUD projects

■ Determine the owners for metadata objects

Project management ■ Set initiatives - purpose, goals, requirements, scope,
schedule, budget

■ Define phases - scope, schedule

■ Allocate resources - hardware, software, databases,
developers

■ Decide on a strategy for development branching

■ Prioritize and schedule production updates from different
development teams

Operations ■ Negotiate service level agreements

■ Coordinate schedules for updates and downtime

Planning Your Multiuser Development Deployment

Managing the Repository Lifecycle in a Multiuser Development Environment A-3

Repository development roles include:

■ MUD administrator (one for each development team, plus backup)

– Assigns repository password

– Sets up and maintains MUD projects

– Manages the master repository shared directories

– Manages branches and branch merges

– Manages repository migrations

– Manages test and production connection pools

– Manages independent semantic models (has metadata read/write privileges
for all models)

■ Repository developer (many per development team)

– Knows the repository password

– Owns, operates, and maintains a personal development sandbox that includes
all necessary Oracle Business Intelligence components

– Manages user and application role provisioning on their sandbox stack

– Creates functional and data authorization content in the repository

– Performs unit testing

– Performs check-outs, and check-in merges and publishing, as required

■ Production Operations staff

– Knows the repository password (for managing connection pools and applying
patches)

– Applies updated repositories, and applies XML patch updates to the running
BI Server's repository

– Can log in to production computers and read/write the Oracle Business
Intelligence directories or run programs

– Manages the production file system, including the repository directory, logs,
and configuration files

– Manages the production servers (Administration Server, Managed Servers
with Java components, and Oracle Business Intelligence system components
like Oracle BI Server and Presentation Services)

– Manages production security, including provisioning users, groups, and
application roles

– Manages and migrates application roles in production

– Manages production connection pools (in the case where the MUD
administrator does not have security privileges for production connection
information)

People in other roles outside the repository development team are also involved.
These include people administering the test environment and running the tests, and
also the Oracle BI Presentation Catalog developers.

Multiuser Development Architecture

A-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Multiuser Development Architecture
Before you can understand best practices for MUD and repository lifecycle
management, you need to understand the architecture of the development
environment.

This section contains the following topics:

■ About Multiuser Development Concepts

■ About Multiuser Development Styles

■ Multiuser Development Sandbox Architecture

■ Multiuser Development and Lifecycle Management Architecture

About Multiuser Development Concepts
This section explains fundamental concepts related to developing and deploying
systems for multiuser development.

Repository (RPD)
The repository, or RPD file, is the fundamental artifact under development. It defines
all the metadata used by the Oracle BI Server for interpreting user requests, applying
role-based security, generating queries to data sources, and post-processing the
results.

Application Roles and the Policy Store
A secondary artifact under development is the set of application roles. User object
permissions, data access filters, and query limits (governors) are defined against these
application roles in the repository logic. Presentation Services also uses application
roles for assigning its privileges and permissions.

You can use the default policy store embedded in Oracle WebLogic Server, or you can
use a separate external policy store. If you are using the embedded policy store, you
define application roles in Fusion Middleware Control, which persists them in the
Policy Store in Oracle WebLogic Server. You can then use the Administration Tool in
online mode to add application roles from your policy store to your repository at
design time. At run time, the Oracle BI Server uses the application roles provisioned to
each user to apply the correct security privileges to user requests.

Sandboxes, Projects, and Branches
An instance of the repository is usually edited by only one repository developer at a
time. Multiple developers work in parallel on subset instances of the repository, called
"projects." They work in separate sandbox environments, and merge their changes into
a master repository instance frequently to distribute changes and pick up changes
made by others in the team. This approach enables the creation of very large enterprise
applications. It also enables independent semantic models to be developed by separate
teams and merged into the master repository for production hosting in a single Oracle
BI Server cluster. Finally, it enables branching and merging so that teams can work on
major projects in parallel, and can even make emergency fixes to the main code line in
production without disrupting ongoing development projects.

You typically use the Simple install type when installing a development sandbox.

Single, Shared Repository
Presentation Services connects to just one repository that has been uploaded to the
Oracle BI Server. The metadata for all semantic models must reside in this single

Multiuser Development Architecture

Managing the Repository Lifecycle in a Multiuser Development Environment A-5

repository, even if the semantic models share no objects. See "About Multiuser
Development Styles" for more information about semantic models in a repository.

Repository Password
The repository file is protected by the repository password. The Oracle BI Server needs
this password to open and load the repository at startup. It stores the repository
password in the secure Credential Store. You must also enter this password when you
open the repository in the Administration Tool or other utilities and line commands.
Note that user logon credentials are stored in the identity store, not the credential
store.

Oracle BI Presentation Catalog
The Oracle BI Presentation Catalog is an important BI application artifact that contains
the metadata that defines reports, dashboards, KPIs, scorecards, and other reporting
layer objects. The Oracle BI Presentation Catalog is outside the scope of this document.
See "Managing Objects in the Oracle BI Presentation Catalog" in Oracle Fusion
Middleware User's Guide for Oracle Business Intelligence Enterprise Edition for more
information about Oracle BI Presentation Catalog development.

Migration
The completed repository is migrated to test and production systems using Fusion
Middleware Control. No downtime is necessary, because you can refresh clustered
production Oracle BI Servers with a rolling restart.

Deployment Parameters During Migration
Some repository parameters must change when migrating a repository between
development, test, and production systems, such as connection pool settings. These
parameters must change because they are based on the deployment, not the
application logic. You can automate these updates using the Oracle BI Server XML API
(biserverxmlexec.exe -B). During multiuser development, developers merging in
content are automatically prevented from overwriting the master repository test
connection pool and database parameters with their local unit test parameters.

Application Role (Policy Store) Migration
There are several options for migrating application roles between development, test,
and production systems. For simplicity, this document assumes you will re-key a
small number of application role names by hand. For full information about migrating
application roles, and other migration considerations, see "Moving Oracle Business
Intelligence Components to a Production System" in Oracle Fusion Middleware
Administrator's Guide.

Users and the Identity Store
As a best practice, users are not represented by metadata objects in the repository at
design time. Also, the repository does not manage or store their credentials. Instead,
users must always be provisioned to application roles in the run-time environment to
receive privileges. Their credentials, as well as their mapping to application roles
through groups, are managed in an external Identity Store. See Oracle Fusion
Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more
information.

Setting the Environment for the Administration Tool and Utilities
The current directory structure generalizes the location of metadata, data, and
configuration files. For this reason, each program or utility you launch requires an

Multiuser Development Architecture

A-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

initial setup of the configuration for the Oracle instance to which that program
belongs. For command-line utilities, you must first launch the bi-init utility to set the
parameters, and then launch the utility from a command line inside the bi-init
window. Most Oracle BI Server tools, including the Administration Tool, run the
bi-init utility transparently. If you run a command without setting the instance
environment first, the program will typically fail to find external files.

About Multiuser Development Styles
Choose your style of development based on the size of your team, the number of
teams and parallel initiatives, and your requirements for security and availability.
Table A–2 shows the multiuser development styles.

Table A–2 Styles of Multiuser Development

Style Description

Serial Development
(Figure A–1)

You can use this method if you have a small number of
developers and low concurrency. Development users share a
repository file through e-mail, a shared directory, or on a shared
development system, and only one of them makes changes at a
time. They must coordinate with each other on the development
schedule.

Serial Development with
Patch Files (Figure A–1)

As a variation on serial development, you can share a base
binary repository, and ship changes only between users using
patch files.

Shared Online
Development (Figure A–2)

The best practice is for only one developer at a time to develop
metadata in online mode against a single Oracle BI Server and
its repository. However, multiple online users are an option for
development situations where communication among the team
members is frequent, a higher risk of conflicts is acceptable, and
minimum administrative overhead is a goal.

MUD (Figure A–3) The Multiuser Development feature enables over one hundred
development users to work in parallel on a shared, enterprise
repository. Each user can develop and unit test in a separate
sandbox environment, using only manageable-sized subsets of
the metadata. When a unit of work is complete, they can
automatically merge it into the branch, where other users can
pick up those changes and integrate them with their own
metadata. When a project phase is ready for promotion, the
MUD administrator migrates it to the test environment, and
eventually, production. The MUD administrator manages
branches and sub-branches to enable parallel development of
independent initiatives or fixes, and merges them into the main
branch to incrementally migrate them to test and production
environments. The MUD administrator also manages
fine-grained "projects," which are the manageable-sized
repository subsets individual developers check out to their local
sandbox environments. See "Understanding the Multiuser
Development Environment" for additional information.

Multiuser Development Architecture

Managing the Repository Lifecycle in a Multiuser Development Environment A-7

Figure A–1 the serial development style of multiuser development.

Figure A–1 Serial Development

Figure A–2 shows the shared online development style of multiuser development.

MUD with Multiple,
Independent Semantic
Models (Figure A–3 and
Figure A–4)

There might be cases where you need two or more independent
semantic models, rather than a single, integrated,
enterprise-wide model. This is common due to security
requirements, or when unrelated divisions of a business share a
common Oracle Business Intelligence infrastructure. The MUD
administrator creates a branch for each model, which enables
parallel development and integrated testing for each team's
semantic model. When an independent semantic model's
branch is ready for promotion to production, the MUD
administrator simply merges the branch into main. The MUD
administrator can set security on the branches so that each
developer can only see the semantic model to which they are
assigned, and so that only the MUD administrator and selected
production operations staff can access the integrated main
model.

MUD with Delegated
Administration (Figure A–3
and Figure A–4)

When the independent semantic models are developed by
different organizations on different schedules, a centralized
MUD administrator might not provide the desired level of local
control. In this case, you can provide a dedicated MUD
administrator for each independent semantic model's branch.
The branch administrator operates in the same way as an
ordinary MUD administrator.

In this scenario, the MUD super-administrator defines a branch
for each organization, checks out the subset repository, and
provides it to the branch administrator. When the model is
ready for promotion to production, the branch administrator
passes the repository back to the super-administrator, who
merges it into the main branch for promotion, and then
migrates the combined repository to production.

Table A–2 (Cont.) Styles of Multiuser Development

Style Description

Multiuser Development Architecture

A-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Figure A–2 Shared Online Development

Figure A–3 shows true multiuser development with branching.

Figure A–3 Multiuser Development

Figure A–4 shows the architecture for a repository with multiple, independent
semantic models.

Multiuser Development Architecture

Managing the Repository Lifecycle in a Multiuser Development Environment A-9

Figure A–4 Repository with Multiple, Independent Semantic Models

Table A–3 shows which multiuser development styles meet various requirements for
security and availability.

Multiuser Development Sandbox Architecture
When using MUD, each developer works on their own, fully dedicated sandbox
Oracle Business Intelligence system. You should set up your sandbox to contain all the
components you need for development and unit testing.

Table A–3 Requirements Met by Multiuser Development Styles

Requirement Serial
Shared
Online

MUD with
Single
Semantic
Model

MUD with
Multiple
Semantic
Models

MUD with
Delegated
Administration

No administrator Yes No No No No

Up to five concurrent
developers

No Yes Yes Yes Yes

More than five concurrent
developers

No No Yes Yes Yes

Work on manageable subsets
of a large repository, such as
Oracle BI Applications

No No Yes Yes Yes

Built-in checkout, merge, and
rollback

No No Yes Yes Yes

Host independent semantic
models in single repository

Yes Yes No Yes Yes

Incremental migration of
units of work to production

No No Yes Yes Yes

Developers of independent
semantic models cannot see
each others' metadata

No No No Yes1

1 Requires secure MUD Directory. An overall MUD administrator must still have access to all metadata from all teams.

Yes1

Each independent semantic
model has its own MUD
administrator

No No No No Yes

Multiuser Development Architecture

A-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

First, you need to decide whether to use a UNIX or Windows server for your Oracle
Business Intelligence stack. Follow these guidelines:

■ If you choose the Windows-only option, make sure your system has enough
memory. Note that you will need additional resources if you choose to host your
database on the same hardware. See "System Requirements and Certification" for
information about minimum hardware requirements.

■ If you choose the UNIX option, you still need a Windows system to run the
Administration Tool. Use the Oracle Business Intelligence Simple install type on
the UNIX system, and use the Client install type on the Windows system to install
the Administration Tool.

In online mode, the Oracle BI Server loads the repository from its local repository
directory on the UNIX system in:

ORACLE_INSTANCE/bifoundation/OracleBIServerComponent/coreapplication_
obisn/repository

Note that the Administration Tool on Windows also points to a local /repository
directory by default, but you can use any directory for offline development.

You also need to install a development database. This database can be a dedicated,
personal database, or it can be shared among multiple repository developers. Note the
following considerations about the development database

■ Platform: You can choose to host your development database on your sandbox
computer if you provide enough memory, or you can host it on a centralized,
shared server. Both scenarios are shown in Figure A–5.

■ RCU: The database must contain the schemas required by Oracle Business
Intelligence. You load these schemas using the Repository Creation Utility (RCU).
These schemas enable support for Oracle BI Scheduler and annotations for Oracle
Scorecard and Strategy Management, provide sample tables for Usage Tracking,
and enable many other features. The Oracle WebLogic Server Managed Servers for
Oracle Business Intelligence, and all the services that depend on it, require access
to a running database with the required RCU schemas in order to operate.

■ Data Source Schemas: You also need data source schemas for the metadata under
development. You can optionally include some data source schemas in your RCU
database, or they can be in other databases. Note the following additional
information about data source schemas:

– Test Data: The data source schemas should be loaded with test data. If users
are testing read-only metadata, the schemas can be shared among multiple
development sandboxes. They can be located on the development sandbox
computer if enough memory is available.

– Multiple Sources: Optionally, your environment might include multiple data
sources needed by your initiative, such as other relational sources, Essbase,
Hyperion Financial Management, Microsoft Analysis Services, SAP B/W, and
others. These sources can be shared or dedicated, local or remote.

Note: The Client install type does not include Catalog Manager, so if
you plan to develop the Oracle BI Presentation Catalog in this
environment, you should use the Simple install type on the Windows
computer rather than the Client install type.

Multiuser Development Architecture

Managing the Repository Lifecycle in a Multiuser Development Environment A-11

– Connectivity: You must set up connectivity from your Administration Tool
and Oracle Business Intelligence stack to each data source. This configuration
can include installing the required drivers or clients, setting up ODBC DSNs,
setting up native connectivity, and other steps. See Chapter 4, "Importing
Metadata and Working with Data Sources" and Chapter 15, "Setting Up Data
Sources on Linux and UNIX" for full information.

Note that for Oracle Database connectivity, Oracle Business Intelligence
requires an instance of TNSnames.ora in ORACLE_HOME/network/admin.

Figure A–5 shows the architecture of the multiuser development sandbox.

Figure A–5 Multiuser Development Sandbox Architecture

Multiuser Development and Lifecycle Management Architecture
The overall MUD architecture contains the developer sandbox systems described in
the previous section, as well as any test and production systems. In addition, there are
several additional major components, as follows:

Note: Most developers prefer to disable caching in the development
sandbox. This makes it easier to validate and debug physical queries
using the log. When the cache is enabled, the physical SQL might not
appear in the log, because the request might get fulfilled by the cache.
In this release, you must disable caching using Fusion Middleware
Control. See "Using Fusion Middleware Control to Enable and Disable
Query Caching" in Oracle Fusion Middleware System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition for more
information.

Multiuser Development Architecture

A-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Windows MUD administration system. This system is maintained by the MUD
administrator. Note the following about this system:

– It provides one shared network MUD directory for the main branch, and
additional shared network MUD directories for each side branch. The
Windows permissions on each shared directory only allow access to the
developers for that branch. Each shared directory stores the master repository
for that branch, as well as various control and history files for MUD functions.

– It has a client installation of Oracle Business Intelligence. The Administration
Tool and Oracle BI Server utilities are used for creating and managing MUD
projects, performing merges, creating patches, and other MUD administrator
tasks. Other Oracle Business Intelligence processes like the Oracle BI Server, as
well as the policy store and credential store, are typically not used on this
platform.

– A 32 bit or 64 bit system can be used, because none of the Oracle Business
Intelligence Java components, system components, or other infrastructure are
used on this computer.

■ One or more test systems. These systems are used for running integrated tests of
merged content. They run the full Oracle Business Intelligence stack, and can be
either UNIX- or Windows-based. These systems are frequently clustered.

■ Oracle BI Presentation Catalog system. Optionally, you might have a system with
a full Oracle Business Intelligence stack for developing Oracle BI Presentation
Catalog content.

■ Clustered production system. Eventually, you will have a clustered production
system on one of the supported Oracle Business Intelligence platforms.

■ External identity store. This appendix assumes you are using an external identity
store like Oracle Internet Directory.

Figure A–6 shows a sample deployment architecture for the repository lifecycle using
the multiuser development environment.

Understanding the Multiuser Development Environment

Managing the Repository Lifecycle in a Multiuser Development Environment A-13

Figure A–6 Example Multiuser Development Deployment Architecture

Understanding the Multiuser Development Environment
MUD is a set of features that enables teams of developers to work in parallel on
projects of any size, despite the complex interrelationships and dependencies in the
repository model. With MUD, you can:

■ Divide the repository file into subsets

– Enables users to work with manageable subsets when the repository is very
large

– Enables independent testing for each subset by each developer or team

– Makes it easier to manage merges later after checking out a branch subset

– Enables you to separate independent semantic models into secure branches for
development

■ Incrementally develop, test, and migrate

■ Merge subsets and branches, handling conflicts between user changes

■ Apply Oracle updates to a packaged BI Application you have modified

■ Merge separately developed applications into a single repository

■ Access history logging and audit information

■ Roll back to historical repository states

Understanding the Multiuser Development Environment

A-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

The multiuser development feature also provides the following other useful
capabilities:

■ Coordinates merging into the master, including tracking original repository files

■ Provides locking for reliable updates

■ Logs changes

■ Automatically backs up repositories before each potentially destructive operation

This section contains the following topics:

■ About Multiuser Development Environment Task Flow

■ About Multiuser Development Projects

■ How to Create Branches

■ Which Merge Utility Should I Use?

About Multiuser Development Environment Task Flow
The basic flow of working with multiple users is as follows:

1. A developer defines the "starter" Physical layer, as well as basic facts and subject
areas. This provides some basic objects to anchor the MUD projects.

2. The MUD administrator defines projects and puts the RPD into the main branch
MUD directory. Note that the MUD directory where the master repository is
stored cannot be the same as the Oracle BI Server local repository directory.

3. A developer can now check out one or more projects, do development work, and
then check back in by merging the changes into the master, and then publishing it
back to the MUD directory.

4. Meanwhile, other developers check out and do development on the same or other
projects (note that projects are for subsetting, not for enforcing security). Because
check-in uses a three-way merge, users can check out, develop, and check in their
changes in any order. Even property changes to a single object from multiple users
are merged. If conflicts do occur between users, the three-way merge feature
provides a way for the developer to choose which objects to keep. Communication
between users is a key to avoiding and resolving conflicts, and you should have
your governance process assign ownership of major objects in order to avoid such
conflicts.

5. When a development phase is complete, the MUD administrator can migrate the
content to a test system. There might be several iterations back through check out,
bug fix, check in, and retest. When the repository passes the testing phase, the
MUD administrator can migrate it to the production environment.

6. The MUD administrator can create and manage multiple development branches as
large MUD projects. A branch can be secured to ensure that only one development
team can work on it. A branch can even be treated recursively as a main, with its
own, delegated MUD administrator.

About Multiuser Development Projects
The multiuser development feature is built around a metadata object called a project.
The project is the unit of check-out from the master repository, and the subsequent
check-in merge and publish. When a master repository becomes very large, a project is
a manageable-sized subset that a developer can check out to work on. It is also
designed to be self-consistent, so that you can run the consistency checker (analogous

Understanding the Multiuser Development Environment

Managing the Repository Lifecycle in a Multiuser Development Environment A-15

to compile-time code checking) and then test it on the Oracle BI Server with a client
such as Answers at run time. When you are satisfied with the results, you can merge it
back into the master repository so that it becomes part of the larger application.
Meanwhile, history is logged and repository backups are automatically created at key
points.

MUD features in the Administration Tool streamline this flow for fine-grained
developer projects. Similarly, superset projects streamline the management and
merging of branches.

The project subset contains a set of metadata objects. You define a project to include a
minimum set of objects explicitly, but many others are included implicitly. Having
objects implicitly added to projects simplifies your project management task.

The following objects are explicitly specified by the MUD administrator as members of
a project:

■ Logical fact tables

■ Presentation layer subject areas

■ Application roles

■ Users (although the best practice is to only use application roles in RPD logic)

■ Initialization blocks

■ Variables

All other objects are implicitly included in a project and are found by the
Administration Tool during the check-out process. For example:

■ Descendents of the explicitly defined objects. For example, when a logical fact
table is included explicitly, all its logical columns are included in the project
implicitly.

■ Logical dimension tables that join to the selected logical fact tables, and the join
objects themselves.

■ Logical table sources for the included logical fact and dimension tables.

■ Physical tables that map to the logical tables included in the project, and the joins
between them.

■ Marketing target levels and list catalogs.

Note that objects that are in the list of explicitly defined objects are sometimes
included implicitly. For example, if a logical column contains an expression that
includes a variable, the variable is implicitly included in the project, even if the MUD
administrator does not explicitly add it.

It is normal for projects to overlap. An object that appears in one project can also
appear in another project. For example, some customers prefer to create an overall
project for each independent semantic model, as well as smaller projects within each
independent model for checking out individual units of development work. You can
also check out multiple projects simultaneously to work on a larger set of metadata.

[placeholder for diagram of how a project draws in some dimensions and physical
objects]

See also "Setting Up Projects" for additional information.

Understanding the Multiuser Development Environment

A-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

How to Create Branches
This section explains how to create main branches, side branches, and delegated
administration branches.

This section contains the following topics:

■ How to Create a Main Branch

■ How to Create a Side Branch

■ How to Create a Delegated Administration Branch

How to Create a Main Branch
The ultimate master repository is usually source-controlled in the main branch, out of
which all branches and ultimately all development projects check out. The main
branch usually stages the repository in production. That is, to migrate content to
production, you merge it into the main branch, and then migrate the main repository
to the production system.

Similarly, to fix a production bug, a developer typically checks out of the main branch.
The developer then fixes the bug, and then merges it back into the main branch for
migration to test and production. Meanwhile, parallel development in side branches is
not affected.

To create the main branch as the MUD administrator, you must first create a shared
directory and copy the master repository file to it. The directory can be on either
Windows or UNIX, but the UNIX share must be accessible by Windows users.

Set the security on the share to only allow access by the appropriate developers.
Depending on your requirements, you might only allow developers to access the side
branch master repositories, not the main branch master repository.

If this is a new project, you typically have a developer seed the repository with initial
content that can be easily split into branch projects.

How to Create a Side Branch
The best practice for branching is to start with a superset MUD project, and then use
the MUD check-out, merge, and publish features. Then, individual users or
sub-branches use finer-grained projects and check out of the branch master. Using
MUD for this functionality provides automatic back-ups at the check-out points, tracks
original repositories to ensure correct merges, uses more optimistic merge
assumptions that require less user intervention, and provides history and roll-backs.

To create a side branch as the MUD administrator:

1. In the main master repository, create a project that extracts all content required for
the branch. Follow these guidelines to create the project:

■ If little or no metadata has been designed in the repository, it is a best practice
to seed it with content that can anchor the project. This makes it easier to
ensure the project extracts the physical content you need to support the logical
fact tables. Usually, this means one or more logical fact tables are created, with
at least some representative columns. The columns should be mapped to the
physical tables and joins needed to support the fact tables. Finally, create the
project and define the objects that belong to it.

■ If content already exists, create the project and define the objects needed in
that branch. The branch can overlap with other projects, if necessary.

Understanding the Multiuser Development Environment

Managing the Repository Lifecycle in a Multiuser Development Environment A-17

■ It is also possible to create an empty project for check-out. However, the
developer who checks it out must ensure that all the physical objects that need
to be implicitly added to the project are mapped to the logical fact table before
check-in. Similarly, the developer must ensure dimensions are joined before
check-in to ensure their inclusion, and must explicitly add any subject areas,
variables, initialization blocks, application roles, and users. This method is
more prone to errors than seeding the project before defining it.

■ Typically, connection pools for environments such as production must be
secured. Ensure that the connection pool settings in the master repository are
acceptable for the developers to access. Note that developers typically change
the settings to match their local test databases. At check-in, connection pool
and database settings are not merged, to prevent overwriting the settings in
the master repository.

Use the Oracle BI Server XML API to automate connection pool changes
required during migrations to production and other environments. See
"Moving from Test to Production Environments" in Oracle Fusion Middleware
Integrator's Guide for Oracle Business Intelligence Enterprise Edition for more
information.

2. Create a shared MUD directory for the branch. Every branch should have its own
MUD directory. Set the permissions so that only the developers working on that
branch have access to it.

Note that you can use branch permissions combined with project subsetting to
prevent developers from seeing metadata that belongs to other teams. Design the
projects carefully so that they only extract metadata related to one team. This goal
is easiest to achieve if the teams use different business models, subject areas,
physical models, variables, initialization blocks, and application roles.

It is also a best practice to use a consistent system of naming and numbering your
branches.

3. Check out the branch project using File > Multiuser > Checkout. You can check
out into your local repository directory, or another directory.

4. Copy the repository to the branch MUD directory, where it serves as the master
repository.

5. Define fine-grained MUD projects for developers to check out from the branch.
Inform the developers that the branch is ready for development.

6. Based on your project plan, your developers perform a final check-in (merge and
publish) of their changes when they have completed development and unit tests.

7. When all check-ins of planned content are complete for the phase, the branch
project is ready to undergo integrated testing. To accomplish this, migrate the
branch master repository file to the test environment. When a bug is found, the
assigned developer checks out the appropriate projects, fixes the bug, and tests the
metadata. After the changes are checked in, migrate the branch repository to the
test environment again. Note that this branch project can be tested without
impacting, or being impacted by, development work in other branches.

8. When integrated testing is complete, the branch is ready to promote to production.
Remove the branch master repository from the branch shared directory so that
users cannot change it. Copy it back into your local repository directory, and
merge it into the main using the Administration Tool. The main repository is now
ready for migration to integrated test and production.

Understanding the Multiuser Development Environment

A-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

9. Typically, the MUD administrator checks out the branch again and places the
branch repository in the shared MUD directory for the next phase of development.
Note that during the check-out, any changes from other branches, or bug fixes
from the main branch, are picked up by the branch repository.

How to Create a Delegated Administration Branch
You can use a branch to delegate local control of a metadata subset to the organization
that is developing and maintaining it. To do this, you assign a branch MUD
administrator to the branch, who performs the same roles as the main MUD
administrator. This approach works best with an independent semantic model, so that
you can ensure that there is no metadata overlapping with other groups.

The delegated branch MUD administrator performs the same tasks as the main branch
administrator, including defining projects for further branches and creating
fine-grained projects for developers.

To create a delegated administration branch as the main MUD administrator:

1. Set permissions on the main MUD directory so that only the main MUD
administrator (and the main MUD administrator backup) have access.

2. Create a branch MUD project, branch MUD directory, and checked-out branch
master repository as described in the previous section.

3. Set security on the branch MUD directory so that the main MUD administrator
and the delegated branch MUD administrator have access.

4. The branch administrator defines projects for further branches, as well as
fine-grained projects for developers. If required, the branch administrator deploys
additional branches off the delegated branch for development initiatives, with
permissions set to allow developers to check out of these repositories.

5. Developers fix production bugs by checking out of the delegated branch MUD
directories, because individual developers are not allowed access to the main
branch.

6. When developers check in all their changes, the branch administrator checks their
branches into the delegated branch for integrated testing.

7. To promote a delegated branch to production after integrated testing is complete,
the main MUD administrator performs the following two steps:

a. Removes the branch master repository from the delegated branch repository
shared directory and checks it back into the main branch using the
Administration Tool.

b. Migrates the main branch master repository to production.

8. Typically, the main MUD administrator checks out the branch again and places
the branch repository in the delegated branch shared MUD directory for the next
phase of development. The branch administrator then checks out next-level
branches and places their repositories into the branch shared MUD directories, so
that developers can check out their fine-grained projects and begin their work.

Which Merge Utility Should I Use?
There are several different merge tools that are optimized for various situations and
environments. When deciding which merge approach and utility to use, you should
consider whether you need to perform the task on Windows or UNIX systems. You
should also consider your other requirements, such as whether you need to merge

MUD Tips and Best Practices

Managing the Repository Lifecycle in a Multiuser Development Environment A-19

changes you made to a semantic model, or whether you need to combine two semantic
models from different development efforts.

Table A–4 shows which merge approaches and tools meet various requirements.

See "Merging Repositories" for more information about merging.

MUD Tips and Best Practices
This section provides tips and best practices for working in a multiuser development
environment.

This section contains the following topics:

■ Best Practices for Branching

■ Best Practices for Setting Up Projects

■ Best Practices for Three-Way Merges

■ Best Practices for MUD Merges

■ Best Practices for Two-Way Merges

■ Best Practices for Production Migration

■ Best Practices for Application Roles and Users

Table A–4 Requirements Met by Different Merge Approaches

Requirement Merge Approach Tools Used Platform

■ Merge a checked-out MUD project
back into master repository

■ Merge a checked-out MUD branch
project back into the main branch
master repository

Three-way merge ■ MUD merge Windows

■ Combine non-MUD branches and
changes back into the main branch

Three-way merge ■ Merge Repository Wizard
(Full Merge selected)

Windows

■ Apply an Oracle update XML
patch to customized, deployed BI
Application

■ Apply an update XML patch you
created from development to a
deployed repository

Three-way merge 1. Merge Repository Wizard
(Patch Merge selected)

2. Patchrpd utility

1. Windows

2. All

■ Combine disjoint logical content
with potential ID conflicts

Two-way merge ■ Merge Repository Wizard
(with blank original)

Windows

■ Combine disjoint content
guaranteed in advance by the
developer to have no conflicts (all
platforms)

Insert-Update-Delete ■ biserverxmlexec -B

■ biserverxmlcli (online)

■ Copy/Paste XML

All

■ Combine disjoint content
guaranteed in advance by the
developer to have no conflicts
(Windows only)

Insert-Update-Delete ■ Copy/Paste
Administration Tool tool
objects

■ Administration Tool
Import from Repository
(deprecated)

Windows

MUD Tips and Best Practices

A-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Best Practices for Branching
Follow these guidelines for creating side branches:

■ The MUD directory where the master repository is stored cannot be the same as
the Oracle BI Server local repository directory.

■ A branch should be a checked-out MUD project. This automates and streamlines
many of the tasks of merging the branch back into the main branch, such as using
the correct original repository.

■ Always put the checked-out branch master repository into its own MUD directory.
Then, let developers check out their fine-grained projects from the branch master
repository. When branch development, check-ins, and testing are complete,
remove the master from the branch repository directory and check it back into the
main branch master repository using the Administration Tool. Then, check it out
again and place the new version in the branch MUD directory for development of
the next phase.

■ Use Windows permissions on the branch MUD directory to control which
developers have access to it.

■ Set multiuser development options by creating an .opt file in the branch MUD
directory. As a best practice, define specific administrators, and set Mandatory
Consistency Check and Equalize During Merge to Yes. See "Setting Multiuser
Development Options" for more information.

■ Plan your branches based on the increments of functionality you want to deliver to
production. Each branch should contain an increment you want to migrate as a
unit.

■ If you accidentally merge branches in the wrong order, you can roll them back
using the MUD history. See "Viewing and Deleting History for Multiuser
Development" for more information.

Best Practices for Setting Up Projects
Follow these guidelines for setting up projects:

■ Break your RPD down into fine-grained projects, as small as possible while still
being useful. Doing so improves performance and ease of management.

■ Break your logical fact tables down into smaller partitions to enable smaller,
separate projects.

■ For each side branch, overlay a larger project that will extract the branch's
contents. This enables the project to manage the checkout and merge of the
branch, including tracking of the original repository. Individual developers can
check out their development projects from the checked-out branch project. Be sure
that all development projects are checked back into the side branch before
merging it back into the main branch.

■ When you add new content to a repository, be sure it is part of your project before
you check it in. If you check in objects that are not part of a project, they will not
be in your extract the next time you check the project out. You or the MUD
Administrator must then edit the entire repository, or at least several other
projects that do happen to include your new content, and then add the objects to
the project at that time.

■ Sometimes, you might need to extract several projects at the same time to get all
the content you need.

MUD Tips and Best Practices

Managing the Repository Lifecycle in a Multiuser Development Environment A-21

See also "Setting Up Projects" for more information.

Best Practices for Three-Way Merges
Follow these guidelines when performing three-way merges:

■ Ensure that you have the original repository from which both the modified and
current repositories were built.

Note that this step is done for you automatically in a MUD merge.

■ Typically, you should open the development repository as current, then use the
main repository as modified, and the starting point of the branch as original.

■ Unit test before merging.

■ As a best practice, select Equalize during merge and Check consistency of the
merged RPD in the Merge Repository Wizard. See "Equalizing Objects" for full
information about the importance of equalizing objects.

Best Practices for MUD Merges
Follow these guidelines when performing MUD merges:

■ Unit test before merging.

■ Unit test after merging, but before publishing. Keep in mind that you are holding
the lock on the master repository, so keep it brief.

■ Be sure your full name is correct in the Tools > Options > Multiuser tab. Doing so
assists in logging and in checking who holds the locks.

■ When performing the local merge, be sure to write useful comments in the Lock
Information screen. You or other administrators can use the comments later to
help identify historical repositories when you need to perform rollbacks or other
tasks.

■ When the MUD administrator is editing the master RPD, it must be inaccessible to
checkout users. To accomplish this, you can temporarily remove it from the shared
directory and place it in another directory, or you can rename it before editing.
Make sure to restore it when the edits are complete.

You can also open the repository in offline mode so that other users are locked out
by the Windows file system. Note that you should only use this method when you
are sure you will finish all your work in one atomic session.

■ Merge frequently. The list of conflicts and decisions needed in a small merge is
easy to understand. When the merge is too large, the number of changes make it
much harder to understand, and it is much harder to avoid human errors. If you
need to roll back, the number of changes discarded is also much bigger.
Performance is also better for small merges.

Tip: Presentation layer objects, including subject areas, presentation
tables, and presentation hierarchies, are now objects that you
explicitly include in the project. Unlike in previous releases, the
security settings of the Administration Tool user have no impact on
which subject areas, presentation tables, or presentation columns are
included in a project when checking it out. Instead, the set of
Presentation layer objects determines the scope of the project.

MUD Tips and Best Practices

A-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ If performance of merges is a problem, consider breaking the project down into
several, finer-grained projects. Also, be sure to merge more frequently, so the
number of changes in the merge is smaller and therefore faster.

■ Because local connection pool changes are overridden by the connection pool
settings in the master repository at each check-in time, the local test settings must
be reapplied at each checkout if they are different from the master. It is best to
automate application of your local connection pool settings using the Oracle BI
Server XML API. See "Moving from Test to Production Environments" in Oracle
Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition
for more information.

■ The most successful large teams have formal process requirements and
expectations for the communications and tasks between the repository developers
and the MUD administrator. For example, they might have a form for a request for
the MUD administrator to create a project. Many teams also have service level
agreements and lead times, such as 24 hours to create a project.

■ Set the option to force a consistency check during MUD merges. A clean
consistency check ensures that the Oracle BI Server can load the model correctly,
similar to the way a compiler checks to see if code can be generated correctly. Even
if the merge seems to succeed, an inconsistent repository may have trouble with
starting the Oracle BI Server, online repository editing check-ins, and subsequent
merges. See "Setting Multiuser Development Options" for information about how
to enable this feature.

■ Set the option to force an equalize before merge. This reduces the number of
duplicate objects, since it is common for developers to import the same physical
tables, for example. See "Setting Multiuser Development Options" for information
about how to enable this feature.

See also "Equalizing Objects" for full information about the importance of
equalizing objects.

■ Do not delete or change content needed by others, unless you are the owner and
have coordinated with the other developers. If you delete a column you do not
need in your project, that action usually causes it to be deleted from the master
when you merge, even if other users depend on it.

See also "About the Multiuser Development Merge Process" for more information.

Best Practices for Two-Way Merges
Use two-way merge when you need to combine two repositories that were developed
separately into a single repository. This situation usually occurs when you need to
host two semantic models in a single repository.

Follow these guidelines when performing two-way merges:

Tip: Presentation object aliases receive special treatment in merges.
Their purpose is to hold historical names of objects, so that when
names change, old reports do not break. If you changed any names
during development, new aliases were added. During merge, you
have the option whether to keep any new aliases you have created, or
not. You also have the option to keep any or all past aliases, because
the historical reports might still exist.

MUD Tips and Best Practices

Managing the Repository Lifecycle in a Multiuser Development Environment A-23

■ Make sure that the top-level objects in each repository have different names, so
there are no unintentional renames or object merges. Check the following objects:

– Business models

– Subject areas

– Physical databases

– Variables

– Initialization block

– Application roles

– Users

– Marketing objects

■ Equalize before merging. Doing so honors the fully qualified names over which
you have control, and assigns upgrade IDs to ensure there will be no conflicts
between the two repositories. See also "Equalizing Objects" for full information
about the importance of equalizing objects.

■ In the Administration Tool, perform a full merge with a blank repository as the
original file.

To create a blank repository, open a new repository, and save it without importing
a source or creating any objects. Although this repository contains default security
objects, these do not impact your merges.

See also "Performing Full Repository Merges Without a Common Parent" for more
information about two-way merges.

Best Practices for Production Migration
Follow these guidelines when moving from test to production:

■ When updating metadata on the production cluster, perform a rolling restart to
restart one Oracle BI Server at a time, so that users do not experience down time
while changes are being loaded. You can use the BI Systems Management API to

Caution: Do not use features like Import from Repository or
copy/paste in the Administration Tool to move metadata
incrementally. These approaches do not correctly merge changes.

Using these features might produce the results you expect most of the
time, but this is just good luck. The rest of the time, values of the
upgrade IDs in the metadata objects will clash, effectively causing
overwrites of random objects. However, you might not notice the
problem until much later when you do regression testing. Because
upgrade IDs are assigned sequentially, and are only unique within
one repository, clashes are very likely.

You should also use caution when using the biserverxmlcli and
biserverxmlexec -b utilities. Be sure to fully understand the
information about managing IDs described in "About Using the
Oracle BI Server XML API to Merge and Append Objects" in Oracle
Fusion Middleware Integrator's Guide for Oracle Business Intelligence
Enterprise Edition.

Troubleshooting Multiuser Development

A-24 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

programmatically start and stop Oracle BI Servers, or you can restart each Oracle
BI Server manually in Fusion Middleware Control.

For more information, see "Starting and Stopping Oracle Business Intelligence"
and "Starting and Stopping Oracle Business Intelligence Using the Oracle BI
Systems Management API" in Oracle Fusion Middleware System Administrator's
Guide for Oracle Business Intelligence Enterprise Edition.

■ It is not recommended to alter metadata in online mode in production using the
Administration Tool.

■ It is not recommended to update metadata in online mode in production using the
biserverxmlcli utility.

Best Practices for Application Roles and Users
Follow these guidelines when working with application roles and users:

■ Do not build data access security around user objects in the repository. Instead,
define repository permissions, filters and governors based on application roles.

■ The set of application roles should be defined by the governance committee. The
business team knows what the business roles are, who is allowed to see which
data, and which roles are the same from one application to the next. Therefore, the
governance committee is in a position to define and name the application roles
and decide which roles can be shared across applications.

■ When you create a new Application Role, be sure to add it to a project so that you
can check it out again after you merge. Also, if you create a placeholder
application role in the Administration Tool in offline mode, make sure to add it to
the policy store later.

■ You can find whether the application roles used by a repository are provisioned in
the system by opening your repository in the Administration Tool in online mode
and running the consistency checker. It is recommended that you perform this
check each time you migrate the repository and application roles to a new system.

■ If you only need to migrate a small number of application roles between
environments, you can enter them manually in Fusion Middleware Control on the
target system if you are using the embedded policy store in Oracle WebLogic
Server.

Troubleshooting Multiuser Development
This section describes common problems and how to resolve them.

Orphan Lock Held on Master RPD
If a user sets a lock by issuing the command to merge local changes, it is not cleared
until the user publishes or discards their changes. If the user forgets and leaves for a
two-week vacation, the MUD administrator can release the lock.

The lock is stored in a hidden system file in the master directory. If you cannot see the
lock file, in Windows Explorer, select Tools, then select Folder Options. In the View
menu, ensure that the option Show hidden files and folders is selected.

The lock file has the same name of the master RPD with a .lck extension. Delete the
lock file to release the lock on the repository.

Figure A–7 shows a repository lock file.

Troubleshooting Multiuser Development

Managing the Repository Lifecycle in a Multiuser Development Environment A-25

Figure A–7 Repository Lock File

Object Deleted By Other User
If another MUD developer deletes an object that you need, you can choose one of the
following options:

■ Roll back to an earlier version, and reapply all the changes since then. The easiest
way to roll back is generally to replay history in the history log. To do this, choose
File > Multiuser > History, and then select an entry and use Actions > View.

See "Viewing and Deleting History for Multiuser Development" for more
information.

■ Re-create the deleted objects, and equalize so that future merges treat it as the
same object.

Project Missing Needed Physical Tables and Joins After Checkout
Physical objects do not explicitly belong to a project. Instead, the physical objects
mapped to the logical fact tables in your project are extracted at the time of check out.

To get needed physical objects into your local extract, check out an additional project
that does have mappings to the physical objects you need. If there is no such project,
then the entire repository must be edited to create mappings to a logical fact table in
your project. The MUD administrator can take the repository off line to make that
change. Then, your next check out should include the physical objects.

Objects Added in the Last Session Missing from Checked Out Repository
If recently added objects are missing from your checked out repository, you might
have forgotten to add the objects to your project before you merged and published.
Only objects in your project, or inferred from your project (like dimensions and
physical objects), are included in your extracted repository.

To resolve this issue, ask the MUD administrator to add the objects to your project in
the master repository, and then check out again.

Object Renamed by Appending #1
This situation occurs when two objects are merged with the same fully qualified name,
but with different internal upgrade IDs. The merge logic in this situation determines
that the objects are semantically different objects, and changes the name of the object
to preserve uniqueness.

To resolve this issue, run the equalizerpds utility, which reassigns upgrade IDs so that
objects with the same fully qualified names in the two repositories have the same
Upgrade IDs. Then, try the merge again. The two objects should be merged instead of
causing a rename.

See "Equalizing Objects" for more information.

Troubleshooting Multiuser Development

A-26 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Rolling Back to Previous Versions
The multiuser development environment stores backup copies of RPDs at appropriate
checkpoints. Each time a potentially destructive operation is performed, a new backup
is stored in the master directory. It has the name of the RPD, and the extension is a
three-digit incrementing integer. Individual developers can also make copies of their
RPD files at any time during development.

In the developer's sandbox, the original version of a checked-out project is stored with
the name originalrpd_name.rpd. This version is automatically used if the developer
discards changes.

You can also view and roll back to an older version by following these steps:

1. Open the Administration Tool, but not a repository.

2. Select File > Multiuser > History.

3. Select the version of interest, and then choose Actions > View > Repository.

4. Select File, then select Copy As to save that version to a new name.

5. Use the older version to replace the latest version, or replace the master repository
with the older version.

Example

This example explains how to copy an older version to replace the latest version.
Assume you are at version 1000 and want to roll back to version 900. In this situation,
you have three files: repository.900, repository.1000, and repository.rpd, the current
version. To perform the roll back, make a copy of repository.900 and rename it to
repository.1001. (This lets you keep repository.1000 in your version history.) Then,
copy repository.900 to repository.rpd.

B

MUD Case Study: Eden Corporation B-1

BMUD Case Study: Eden Corporation

This appendix describes a fictional case study that shows how the multiuser
development environment might be used for a particular business case.

This appendix contains the following topics:

■ About the Eden Corporation Fictional Case Study

■ Phase I - Initiating Multiuser Development (MUD)

■ Phase II - Branching, Fixing, and Patching

■ Phase III - Independent Semantic Model Development

About the Eden Corporation Fictional Case Study
Eden Corporation (a fictional company) recently purchased Oracle Business
Intelligence. They have two divisions that are licensed and plan to use the product.
Because of this, the company has two separate initiatives:

■ Initiative S: The Sales Division wants to use Oracle Business Intelligence for
dashboarding and analysis of revenue versus plan. They want to deploy an initial
phase to production quickly to meet an immediate need. Then, they want to roll
out more functionality in Phases II and III. Initiative S is large enough that they
will have two developers working on it.

■ Initiative H: The Human Resources Division (HR) needs to do dashboarding and
analysis of HR data. Initiative H is a smaller initiative, so it will have only one
developer. They plan to deliver their application to production between Initiative
S Phases II and III.

Note that the Sales developers and the HR developers are not allowed to see each
others' data or metadata. The metadata administrator is the only person who has
security privileges for all the metadata.

As in all organizations, there will also be a steady stream of urgent requests and
occasional bugs from production. The developers will need to deliver fixes for these
within days, even though the longer-term initiatives S and H are in development at the
same time.

About the Technical Team Roles and Responsibilities
Eden Corporation has staffed the team as follows:

■ Adam Straight - MUD Administrator

■ Sally Andre - Developer for Sales Division, Revenue project

■ Scott Baker - Developer for Sales Division, Quota project

About the Eden Corporation Fictional Case Study

B-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Helen Rowe - Developer for HR Division

About the Eden Corporation Development Phases
Eden Corporation plans to deploy RPDs to production based on the following
timeline:

1. January - Sales Phase I (projects Revenue and Quota)

2. February - Sales Phase II (add project Target, extend projects Revenue and Quota)

3. March - HR (one project used)

4. April - Sales Phase III (extend all three projects)

About the Eden Corporation Topology
Eden Corporation plans to use the following systems for their multiuser development
environment:

■ MUD Administrator - NT computer with a share

■ Sally Andre - NT computer for Administration Tool client, and Linux computer to
run the Oracle Business Intelligence stack

■ Scott Baker - high-powered NT computer

■ Helen Rowe - either of the above

■ Test - Linux computer

■ Production - Clustered Linux computers

About the Repository Architecture
Because of Eden Corporation's business structure and initiatives, they need to have
two independent semantic models in their repository: one for Sales and one for HR.
Each of these models can have multiple projects.

Planning the Repository Structure
Eden Corporation knows that it is important to plan the structure of their repository
file so that it will be able to support the multiuser development needs of their
organization. They assigned owners to major objects, so the developers know who to
go to when conflicts arise, and which objects they should not modify on their own.

Tip: When hosting multiple independent semantic models, be sure to itemize the
names of top-level objects to prevent duplicate names.

Table B–1 and Table B–2 show the high-level repository objects in main.rpd for both
Initiative S and Initiative H, mapped to projects and owners. Note that Adam is the
overall owner of both Initiative S and Initiative H.

Table B–1 Initiative S Repository Objects Mapped to Projects and Owners

Object Type Object Owner ProjRevenue ProjQuota ProjTarget

physical database Sample App Data Sally Yes Yes Yes

business model Sales Sally n/a n/a n/a

logical fact table 1 F10 Billed Rev Sally Yes Yes No

logical fact table 2 F30 Facts Targets Scott No No Yes

logical fact table 3 F50 Facts Quotas Scott No Yes No

logical dimension (various) Sally Yes Yes Yes

Phase I - Initiating Multiuser Development (MUD)

MUD Case Study: Eden Corporation B-3

Phase I - Initiating Multiuser Development (MUD)
In the first phase, both Sally Andre and Scott Baker will develop in parallel. Sally will
create the starter content, which Adam Straight will divide into projects. He will then
create the MUD directory so that Sally and Scott can check out and perform their
development. After unit testing, they merge and publish their changes, and then
Adam migrates the repository to the test environment. After a bug fix cycle, Adam
promotes the repository to production.

The following sections describe Phase I development:

■ Starting Initiative S

■ Setting Up MUD Projects

■ First Developer Checks Out

■ Second Developer Checks Out

■ First Developer Checks In

■ Second Developer Checks In

■ MUD Administrator Test Migration Activities

■ Phase I Testing

subject area (1) Sales Quota Scott No Yes No

subject area (2) Sales Revenue Sally Yes No No

subject area (3) Sales Target Scott No No Yes

variable S_Last_Load Sally Yes Yes Yes

initialization block S_Last_Load Sally Yes Yes Yes

application role (1) Sales Management Sally Yes Yes Yes

application role (2) Sales Rep Sally Yes Yes Yes

Table B–2 Initiative H Repository Objects Mapped to Projects and Owners

Object Type Object Owner ProjHR

physical database Human Resources Data Helen Yes

business model HR Helen n/a

logical fact table (1) Payroll Facts Helen Yes

logical fact table (2) Medical Ins Facts Helen Yes

logical dimension (various) Helen Yes

subject area (1) HR Payroll Helen Yes

subject area (2) HR Medical Helen Yes

variable H_Last_Load Helen Yes

initialization block H_Last_Load Helen Yes

application role (1) HR Management Helen Yes

application role (2) HR Rep Helen Yes

Table B–1 (Cont.) Initiative S Repository Objects Mapped to Projects and Owners

Object Type Object Owner ProjRevenue ProjQuota ProjTarget

Phase I - Initiating Multiuser Development (MUD)

B-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Phase I Migration to Production

■ Phase I Summary

Starting Initiative S
Sally Andre starts off Initiative S from an empty RPD. Because it is easier to divide the
repository into MUD projects if you define some logical stars and subject areas first,
she begins by developing the physical model needed for Phase I. She includes
connection pool details for her own local test data sources.

Tip: The physical model should include the physical tables, the best practice of
aliasing all the physical tables to give them meaningful names, and joins.

Figure B–1 shows the physical model for Initiative S.

Figure B–1 Initiative S Physical Model

Sally drags the Physical layer to the Business Model and Mapping layer to create some
starter content. She removes unneeded tables, and ensures that the star joins are
correct. She also ensures that all the physical tables that will be needed during
development have mappings from the starter logical tables, so that they will be
included in the projects when they are checked out. For Sally, these steps create two
logical fact tables, F10 Revenue and F50 Quotas, that can act as the basis for the
projects.

Sally also needs to have some subject areas to map to the projects in the business
model. She could drag the entire business model, but a convenient way to accomplish
this is to instead right-click the business model and select Create Subject Areas for
Logical Stars and Snowflakes. This feature creates a subject area from each logical fact
table.

Phase I - Initiating Multiuser Development (MUD)

MUD Case Study: Eden Corporation B-5

Sally does not need to be concerned about the contents of the subject areas yet. All that
matters is that each subject area maps to the logical fact table for the same project.
However, she does name the subject areas based on the plan agreed to in the
governance meeting: Sales Quota and Sales Revenue.

Sally now has enough content for the MUD administrator to create the first two
projects based on the Revenue and Quota fact tables. To review, Sally has made sure
that she meets the following criteria at a minimum:

1. At least one logical fact table according to the governance plan, to anchor the
projects. The columns of the logical fact tables need not be complete or even
properly named, but they do need to be complete enough to map all the physical
content.

2. Enough logical dimensions so that the repository will pass the consistency check.

3. Physical content that maps to one or more logical fact tables, so they will be
included in projects.

4. The subject areas needed according to the governance plan.

Setting Up MUD Projects
The MUD administrator for Eden Corporation, Adam Straight, now handles the next
few steps to create the projects and get them ready for checkout.

First, he creates the MUD directory, RPD_main, where the master RPD will be stored.
This master RPD contains the superset of content for the developers. The users will
check their projects out of the master, and merge them back in when they want to
share their changes. Sally copies her started RPD to the master folder so that Adam
can create the first two projects, ProjRevenue and ProjQuota.

First, Adam opens the master RPD in the Administration Tool and selects Manage >
Projects. Then, in the Project Manager, he selects Action > New Project. Adam names
the project "ProjRevenue" and proceeds to pick the logical fact tables at the center of
the project. The top object in the list expands to show the logical fact tables, but he has
a choice of seeing them grouped by the Business Model to which they belong, or by
Subject Area.

Figure B–2 shows the different ways Adam can view the logical fact tables.

Figure B–2 Project Dialog with Facts Grouped by Business Model and Subject Area

Adam decides to group facts by Business Model for convenience, although he could
have used the Subject Area grouping to select the same fact table. He adds the fact
table, plus the default application roles and subject areas specified for this project.

Phase I - Initiating Multiuser Development (MUD)

B-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Because there are no custom-defined application roles, users, variables, or
initialization blocks yet, he cannot yet add them to the project. Adam repeats this
process for ProjQuota, the second project.

Tip: Note that some of the explicit objects are the same in both projects, because both
projects share application roles. Similarly, many of the implicit project objects are
shared, particularly dimension tables in both the logical and physical models. Keep in
mind that projects are a convenience for creating small subsets that are easy to work
with; they are not for security. It is critical in your governance process that the owner
of each top-level object is assigned and documented for the whole team, because this
enables developers to avoid conflicts.

Adam included the logical fact table F10 Bill Rev in the project, even though it is
owned by Sally Andre, not by Scott Baker, the owner of this project. He did this
because Scott needs to create a measure that derives from measures in both fact tables
(Sales percent of quota). Again, the point is to provide the user with the subset of
content they need to implement their requirements, not just the objects they own.

Adam saves the master RPD to the shared drive, RPD_Main, as "sales.rpd". It is now
ready for users to check out projects and begin working in parallel.

First Developer Checks Out
Now, the two developers will set up their Administration Tool clients for the master
repository, check out their projects, and begin working. Sally starts by setting up her
Administration Tool client to use the master repository. To do this, she selects Tools >
Options, and then selects the Multiuser tab. There, she sets up the pointer to the
master repository directory. She also enters her full name, which will be useful in logs
and locks. Now, she can check out her project and begin working on it.

Meanwhile, in the Master Repository directory, two new files have been created:
sales.000 and sales.mhl. Figure B–3 shows the new files.

Figure B–3 Two New Files in the Master Repository Directory

The sales.000 file is an automatic backup created for sales.rpd when Sally checked it
out. This file can be used to roll back if problems occur. The sales.mhl file tracks her
checkout status and parameters, including project, computer, and user.

Meanwhile, three files have been created in Sally's local repository directory:

■ originalProjRevenue.rpd: This file is the project subset RPD at the time of
checkout. It will be used later as the original in the three-way merge process, and
also if Sally discards her changes.

■ ProjRevenue.rpd: This file contains only the self-consistent subset project
(ProjRevenue). This is the file that is open for editing.

■ ProjRevenue.rpd.Log: This file is the log file for this editing session in the
Administration Tool. You can view its contents in the Administration Tool using
File > Multiuser > History.

Figure B–4 shows the three files in the local repository directory.

Phase I - Initiating Multiuser Development (MUD)

MUD Case Study: Eden Corporation B-7

Figure B–4 Three New Files in the Local Repository Directory

Now, Sally begins to work on the model for her application. She does not need to
change her connection pool settings because she used her own test data source
connection pool details when she created the starter content.

Sally starts by opening her fact table and deleting the unused keys based on the
modeling best practice. Then, she adds SUM aggregation rules to three measures,
Discnt_Value, Revenue, and Units. She also changes the name of Discnt_Value to
"Discount Amount," Units to "Units Sold," and Revenue to "Sales Revenue."

Sally also needs to add a new column to the D10 Product table, an upper-case version
of the Prod_Dsc column called "PRODUCT DESCRIPTION." It uses the following
expression: Upper("Sales"."D10 Product (Dynamic Table)"."Prod_Dsc"). She also adds
dimension hierarchies, creates a variable called "Constant One", and initializes it to the
value 1. She uses it to create a new measure, Constant One.

Sally starts her sandbox Oracle Business Intelligence stack so that she can add
application roles, and then test her repository using Answers. She follows these steps
to start her components in the right order and to configure her system environment:

1. Start the database containing the RCU schema, using its standard controls.

2. Start the Oracle WebLogic Server Administration Server. For example, on
Windows, select Start > Programs > Oracle WebLogic > User Projects >
bifoundation_domain > Start Admin Server for WebLogic Server Domain and
enter the user and password created during installation when prompted.

Note that if you used an Enterprise or Software-Only install type, you must also
start the Oracle WebLogic Server Managed Server using the Oracle WebLogic
Server Administration Console. Typically, you use the Simple install type when
installing development sandboxes.

3. Log in to Fusion Middleware Control and upload the repository file, making sure
to enter the correct repository password.

4. Also in Fusion Middleware Control, turn off Oracle BI Server caching, so that
interpreting the query log is simpler.

5. Still in Fusion Middleware Control, start the system components from the
Business Intelligence Overview page.

Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence
Enterprise Edition provides more information about steps 2 - 5.

Because Sally’s Oracle BI Server is on a Linux system, she must set up ODBC
connectivity on her Windows computer so that her Administration Tool client can
access the BI Server there.

Sally manually adds an Oracle BI Server ODBC DSN pointing to the Oracle BI Server
on the Linux computer. See "Integrating Other Clients with Oracle Business
Intelligence" in Oracle Fusion Middleware Integrator's Guide for Oracle Business
Intelligence Enterprise Edition for information about how to create an ODBC DSN for
the Oracle BI Server.

Sally is using the Oracle WebLogic Server embedded policy store and needs to add
two application roles, "Sales Management" and "Sales Rep." To add the roles, she
opens a Web browser on her Windows computer and logs in to Fusion Middleware

Phase I - Initiating Multiuser Development (MUD)

B-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Control (pointing to her Oracle Business Intelligence stack on Linux). She uses Fusion
Middleware Control to create the new roles, maps it to the appropriate users, groups,
or other roles, and grants the appropriate permissions to the role.

Tip: See "Creating an Application Role" in Oracle Fusion Middleware Security Guide for
Oracle Business Intelligence Enterprise Edition for more information.

Next, Sally needs to add the new application roles to her repository, and then use them
for object permissions and data access filters. To accomplish this, Sally does the
following:

1. Sally open the Administration Tool and selects File > Open > Online. She picks
the local Windows ODBC DSN that connects to her Oracle Business Intelligence
stack, enters her repository password, and also enters the default user name and
password for administering her stack that she created upon install.

2. Next, Sally selects Manage, and then selects Identity to open the Identity
Manager. She clicks BI Repository in the navigation tree and then clicks the
Application Roles tab. She sees the five default application roles, as well as the
new ones she just created.

3. Sally double-clicks the Sales Rep application role, and then clicks Permissions. On
the Data Filters tab, she adds a data filter with an expression that only allows users
who belong to this role to see sales that they themselves have made. On the Object
Permissions tab, she sets Read, Read/Write, or No Access permissions that allow
Sales Rep users to see revenue, but not quota or cost information. On the Query
Limits tab, she keeps the defaults for Max Rows and Max Time, and does not set
any time restrictions. She clicks OK to return to the Identity Manager.

4. Next, Sally double-clicks the Sales Management application role and sets up Data
Filters, Object Permissions, and Query Limits appropriate for this role, based on
the decisions of the governance committee.

5. Finally, Sally exits the Identity Manager.

For the new variable and application roles to be in Sally’s project the next time she
checks it out, she must add them to the project before she checks in her changes. To do
this, she performs the same steps that Adam did when he created the projects: She
selects Manage > Projects, selects her project, selects the new objects in the left pane,
and clicks Add.

Second Developer Checks Out
While Sally Andre is working on the ProjRevenue project, Scott Baker is getting started
on ProjQuota. He set up his Administration Tool options for MUD, checked out his
project, and started working.

Scott prefers to work in online mode. Doing this tightens the development/unit test
loop, because he is modifying the repository while it is running in the Oracle BI
Server. Every time he clicks Check In Changes in the Administration Tool toolbar, his
changes are applied to the running server. He can then immediately move to Answers
and test the changes there. Note that when he adds, deletes, renames, or reorganizes
Presentation layer objects, he must reload metadata in the Answers criteria tab to
refresh the tree visible there.

First, Scott starts his Oracle Business Intelligence stack, and uploads his checked-out
repository using Fusion Middleware Control. He restarts the Oracle BI Server, opens
the Administration Tool, and opens his repository in online mode.

Scott must change the connection pool settings to point to his local test database,
because the master repository contains Sally’s settings. Note that in the merge process,

Phase I - Initiating Multiuser Development (MUD)

MUD Case Study: Eden Corporation B-9

these connection pool changes will be overridden by the connection pools already in
the master repository. Therefore, the next time Scott checks out, he will need to apply
his local test connection pool changes again.

Tip: Use the Oracle BI Server XML API to automate connection pool changes required
during migrations to production and other environments. See "Moving from Test to
Production Environments" in Oracle Fusion Middleware Integrator's Guide for Oracle
Business Intelligence Enterprise Edition for more information.

Scott’s next task is to clean up his logical fact table by removing keys. He also gives a
measure a SUM aggregation rule and a business-friendly name (Quota Amount).

Scott does not change anything in the F10 logical table because it is owned by Sally.
After she checks in, merges, and publishes her changes to the master RPD, he will do
the same. Then he will check out again, picking up her changes.

Next, Scott adds a new measure called "Sales percent of quota" to the F50 table. It
derives from both fact tables with the following expression:

"Sales"."F10 Billed Rev."."Revenue" / "Sales"."F50 Facts Quotas"."Quota Amount"

Note that even if Sally changes the name of Revenue in her project, the merge will
identify it as the same object and use the new name in Scott's expression. The merge
logic can identify the name change because the upgrade ID of the object is still the
same as the original.

Finally, Scott forgets what he learned in the Governance Committee meeting, that all
the dimensions are owned by Sally. He has a requirement for an all-capitals version of
the D10 Product.Prod_Dsc column called PRODUCT DESCRIPTION. He creates a
column identical to the one Sally created. This mistake will be detected and resolved
through the check-in merge process in a few moments.

Scott does not need to upload his repository and restart his system because he is
working in online mode. Instead, he unit tests his changes immediately after making
them. Meanwhile, Sally has finished testing her changes.

First Developer Checks In
Sally has finished creating and unit testing her first batch of changes, so she saves her
work and prepares to merge it into the master repository. She chooses File > Multiuser
> Merge Local Changes. If she forgot to add any new objects to a project, a detailed
warning is displayed so that she can add the objects to her project and try the merge
again. Otherwise, the objects are not extracted the next time she checks out the project.

Next, the Administration Tool locks the master repository so that Sally can merge her
changes without any chance of corruption from other users' merges.

Tip: For logging purposes, it is a best practice to use the comment field to provide a
description of the changes you are checking in. Checking in frequently also makes it
easier to keep track of changes, and easier to audit the history later. Finally, it is a best
practice in Administration Tool modeling to work incrementally, which simplifies
testing and reduces the complexity of each task.

Sally's changes cause no conflicts, so they do not appear in the Define Merge Strategy
step that is displayed next. However, aliases for presentation objects are a special case
where you can choose to keep either the modified (your local version) or current (the
master), or merge the two. The aliases were automatically created when Sally changed
the column names, so that reports written to the old names would not break when she
put the new names into production. Because Eden Corporation has no reports yet,

Phase I - Initiating Multiuser Development (MUD)

B-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Sally keeps the aliases empty by selecting Current. She does this for "Sales Revenue,"
"Units Sold," and "Discount Amount."

Tip: Sometimes, there can be a series of aliases if names change more than once.
Because there might be a set of reports using the older names, you can select Merge
Choices in the Define Merge Strategy screen to keep any aliases already in Current as
well as the new ones in Modified.

After the merge completes, Sally tests one more time, to ensure that no functionality
has been broken by the merge with other content. However, Sally is careful not to test
too long, because the lock on the master repository is not released until she publishes
the repository to the master directory, or discards her changes.

Finally, Sally selects File > Multiuser > Publish to Network. This first copies the
master sales.rpd to a backup (sales.001), and then overwrites sales.rpd with the
changes from Sally. A merge log is also stored.

Second Developer Checks In
Now that Scott has completed his development work for this phase, he merges his
local changes. The Define Merge Strategy screen asks whether to keep the alias created
on the presentation column "Quota Amount." Like Sally, Scott chooses to keep the
current repository value, which does not use the alias.

After the local merge, Scott unit tests again briefly, although he is aware that he holds
the lock on the master repository. Upon inspection, he also notices his mistake of
creating the same PRODUCT DESCRIPTION column that Sally did. Because Scott’s
column was created separately, its internal upgrade ID is different than the one in
Sally's. Therefore, even though the name is the same, the merge logic knows it is a
different column, and renames it rather than overwriting it by appending #1
(PRODUCT DESCRIPTION#1).

Because Scott has completed the merge, he now has the entire repository open and
locked. He deletes the extra column, connects his logic to Sally's PRODUCT
DESCRIPTION column, tests again briefly, and publishes his changes to the network
master repository.

Note that if Scott had deleted or modified a different user's object, the error might have
been more difficult to resolve. It might have required re-creating and equalizing the
object, or rolling back to a backup version of the repository and re-creating his own
changes.

MUD Administrator Test Migration Activities
To prepare the repository for the test environment, the MUD administrator, Adam
Straight, must now perform several tasks directly on the master repository. In other
words, he will use File > Open > Offline rather than File > Multiuser > Checkout.

Adam begins by opening the Administration Tool and then opening sales.rpd in
offline mode. As soon as he does this, other users are locked out, and will get
Windows permissions errors if they try to check out projects. If Adam needed to open
and close the file several times, he would need to remove the RPD from the shared
directory while modifying it elsewhere, so that other users would not be able to check
out between his changes.

Adam changes the connection pool settings to match the test environment. Note that
when Administration Tool users check out projects, connection pool parameters are
not included in the checkout. Usually, the master repository in the MUD directory
contains the test connection pools, but each individual developer might need different

Phase I - Initiating Multiuser Development (MUD)

MUD Case Study: Eden Corporation B-11

settings for connecting to their own test databases. At check-in and publish, the
connection pools in the master repository are not overwritten by developer changes, so
that they can continue to point at the shared test databases.

Adam must also ensure that the new application roles are migrated to the test system.
Because there are only two, he decides to reenter them in Fusion Middleware Control
on the test system. Adam also provisions some test users or groups to the new
application roles so the security filters, permissions, and query limits can be tested.

Finally, Adam uploads the repository to the test system using Fusion Middleware
Control and restarts the Oracle BI Server. Using his local Administration Tool, he
connects to the test Oracle BI Server in online mode and runs the consistency checker.
If any application roles referenced by this repository are missing or incorrect, the
consistency checker will list errors for them.

Phase I Testing
The test team can now test the repository. During testing, the test team discovers a
bug: "Sales"."F50 Facts Quotas"."Sales percent of quota" was erroneously created with
the expression quota/sales instead of sales/quota. The test team writes a bug report,
and Scott Baker is assigned to fix the bug.

Scott opens the Administration Tool, checks out ProjQuota, makes the change, changes
the connection pool to point to his local test database, and tests on his own sandbox.
Then he merges his changes and publishes them to the shared MUD directory. He
informs Adam that the bug is fixed and that the repository is ready for him to send to
test again.

Adam notes that the connection pools are still pointed at the correct test system,
because the MUD feature isolates the master repository from connection pool changes
in checked out projects. Adam opens Fusion Middleware Control on the test
computer, uploads the repository, and restarts the Oracle BI Server.

The test team tests to completion, and the repository is cleared for production.

Phase I Migration to Production
After the repository has passed the testing phase, it needs its database connection
parameters updated and can then be uploaded to production. Also, the application
roles must be migrated and provisioned.

Based on the plan provided by the governance team, the production operations team
knows the new application roles needed. They create them as Adam did for the test
environment. They also provision users or groups to those application roles, based on
the security specification from the governance team.

Before migrating to production, Adam has to change the connection pool parameters
to the values needed for the production database. In Eden Corporation, Adam has the
privilege to see the production connection pools, but the repository developers do not.
Therefore, Adam cannot change from the test to production connection pools and
leave the repository in the master directory, because the developers have Windows
permissions to read and write to it. Instead, he creates an XML patch of the connection
pools needed for Production. Then, he copies sales.rpd to a secure directory and
applies the patch, and then tests to be sure it really does connect to the production data
sources. He then uploads the repository to the production system, and starts the
production cluster of servers.

Tip: Use the Oracle BI Server XML API to automate connection pool changes required
during migrations to production and other environments. See "Moving from Test to

Phase II - Branching, Fixing, and Patching

B-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Production Environments" in Oracle Fusion Middleware Integrator's Guide for Oracle
Business Intelligence Enterprise Edition for more information.

Because the master repository still points to the test databases, the Administration
Tool users can still be allowed to see it. Meanwhile, new versions of the production
repository can be built at any time by applying the connection pool changes in the
XML patch file.

Production validations are now performed. Similar to the migration to the test system,
an important validation is to run the consistency checker in online mode to ensure that
the application roles are all correct. When this validation is complete, Phase I is in
production.

Phase I Summary
Figure B–5 shows the parallel activities for Phase I.

Figure B–5 Summary of Phase I Activities

Phase II - Branching, Fixing, and Patching
In Phase II, development will continue on a new Phase II branch, while a Main branch
will track the production application. To manage this work, Adam will add a branch
project, and set up a second master repository shared directly, one for Main, and one
for the new Phase II branch.

Sally will add more content to ProjRevenue. While she works on that, Scott will add
brand new content. After Scott merges and publishes, Adam will create the new

Phase II - Branching, Fixing, and Patching

MUD Case Study: Eden Corporation B-13

project, ProjTarget, and move Scott's new content into it. Meanwhile, they will have to
handle any bugs that occur in production, which is still on the main sales.rpd branch.

The following sections describe Phase II development:

■ Setting Up the Second Branch

■ Developers Check Out Projects

■ Patch Fix for the Main Branch

■ Finishing and Merging Phase II Branch

■ Phase II Summary

Setting Up the Second Branch
Adam begins by creating another MUD directory to hold the master for the new
branch. He sets the Windows share security so that Sally and Scott can read or write to
it.

Next, Adam places the main repository into the main MUD directory. He adds a new
project for the branch, which encompasses all the existing functionality. Then, he closes
the repository, and checks out the branch project in his local Administration Tool
repository folder. He copies it to the branch MUD directory, where it now serves as
the master for the branch.

Developers Check Out Projects
Sally and Scott check out their projects again, and begin developing Sales Initiative
Phase II in parallel with each other, and in parallel with Phase I being in production.
Because Scott is adding new content that will become a new project, he needs to check
out one or more other projects that will provide the shared objects to which he needs
to map or join in the new content. He chooses to check out ProjQuota.

Patch Fix for the Main Branch
While Sally and Scott are developing Phase II, an urgent CEO request is escalated to
them. The CEO wants the key sales managers to see a new measure called "Sales
Quota Variance" on their dashboards within two days.

Scott closes his work on the new project on the Phase II branch; it will stay checked
out. Then, he checks out the project that will contain the new measure, ProjQuote,
from the main branch master repository (sales.rpd). He creates the new measure and
corresponding presentation column, tests it locally, merges it locally, and publishes it
back to the main branch.

Scott then reopens the checked-out Phase II repository from his local drive and
continues development.

Meanwhile, Adam sends the new sales.rpd to the test environment, where the test
team validates the fix.

Next, Adam prepares to send the fixed repository to Production. Rather than send the
entire repository, however, he sends a patch of the change.

To create the patch, Adam compares the modified repository to the one that is
currently running in production. The repository running in production is the same as
the main repository just before the new changes were merged in, so it is one of the
backup repositories in the MUD directory. The current repository running in
production is the backup called sales.006, the same one he identified as the original for

Phase II - Branching, Fixing, and Patching

B-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

the upcoming branch merge. He copies this to sales.006.rpd so the Administration Tool
can see and open the file. (He cannot simply rename it, because it may be needed for
another merge later.)

Figure B–6 shows the files in the MUD directory, including sales.rpd and sales.006.

Figure B–6 Renaming sales.006 to sales.006.rpd

Next, Adam opens the repository containing the update, sales.rpd. He selects File >
Compare, and chooses the sales.006.rpd as the old version to compare. The Compare
repositories dialog shows the differences between versions that will be included in the
patch.

Figure B–7 shows the Compare repositories dialog.

Figure B–7 Compare Repositories Dialog for sales.rpd and sales.006.rpd

Next, Adam clicks Create Patch and saves the result as Patch_variance.xml. The patch
contains just the objects needed to apply the two new columns, and their associated
interconnections.

Phase II - Branching, Fixing, and Patching

MUD Case Study: Eden Corporation B-15

Tip: More complex patches might also delete objects, or overwrite objects to merge in
new property values.

Adam’s patch appears as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>
<Repository xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<DECLARE>
<LogicalTable name="F50 Facts Quotas" parentName=""Sales""
parentId="2000:68667" parentUid="2160843965" id="2035:69454" uid="2160843966"
x="718" y="288">
<Description/>
<Columns>
<RefLogicalColumn id="2006:69460" uid="2160844041"
qualifiedName=""Sales"."F50 Facts Quotas"."Quota
Amount""/>
<RefLogicalColumn id="2006:69786" uid="2160845070" qualifiedName=
""Sales"."F50 Facts Quotas"."
Sales percent of quota""/>
<RefLogicalColumn id="2006:70033" uid="2160845342" qualifiedName=
""Sales"."F50 Facts Quotas"."
Sales Quota Variance""/>

</Columns>
<TableSources>
<RefLogicalTableSource id="2037:69456" uid="2160844747"
qualifiedName=""Sales"."F50 Facts Quotas"."
F50 Facts Quotas""/>

</TableSources>
</LogicalTable>
<LogicalColumn name="Sales Quota Variance" parentName=
""Sales"."F50 Facts Quotas"" parentId="2035:69454"
parentUid="2160843966" id="2006:70033" uid="2160845342" isDerived="true"
isWriteable="false">
<Description><![CDATA[quota - sales]]></Description>
<Expr><![CDATA["Sales"."F50 Facts Quotas"."Quota Amount" - "Sales".
"F10 Billed Rev."."Sales Revenue"]]></Expr>

</LogicalColumn>
<PresentationTable name="F50 Facts Quotas" parentName=
""Sales Quota"."""
parentId="4004:69706" parentUid="2160844968" id="4008:69707"
uid="2160844969" hasDispName="false" hasDispDescription="false">
<Description/>
<Columns>
<RefPresentationColumn id="4010:69711" uid="2160844973" qualifiedName=
""Sales Quota".."F50 Facts Quotas"."
Quota Amount""/>
<RefPresentationColumn id="4010:70032" uid="2160845338" qualifiedName=
""Sales Quota".."F50 Facts Quotas"."
Sales percent of quota""/>
<RefPresentationColumn id="4010:70036" uid="2160845345" qualifiedName=
""Sales Quota".."F50 Facts Quotas"."
Sales Quota Variance""/>

</Columns>
</PresentationTable>
<PresentationColumn name="Sales Quota Variance" parentName="
"Sales Quota".."F50 Facts Quotas"" parentId=
"4008:69707" parentUid="2160844969" id="4010:70036" uid="2160845345"
hasDispName="false" hasDispDescription="false" overrideLogicalName="false">
<Description><![CDATA[quota - sales]]></Description>
<RefLogicalColumn id="2006:70033" uid="2160845342" qualifiedName=
""Sales"."F50 Facts Quotas".

Phase II - Branching, Fixing, and Patching

B-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

"Sales Quota Variance""/>
</PresentationColumn>
</DECLARE>

</Repository>

Tip: Unlike migrating an entire repository, there is no need to make any connection
pool changes before applying this patch. The correct connection pool settings are
already in the repository running in production. The patch will not affect this logic, so
the connection pools will stay correct without an intervention.

Finally, Adam must have this patch migrated and applied to the production system.
There are several ways to accomplish this:

1. Patch main repository offline and upload using Fusion Middleware Control.
Adam can apply the patch to a copy of the production repository locally on his
Windows computer by using the Administration Tool to perform a patch merge.
Then, he can upload the repository to the production system using Fusion
Middleware Control, like Sally did earlier in her sandbox. Because the production
system is clustered, he must restart all the Oracle BI Servers after uploading the
repository. Adam can restart manually through Fusion Middleware Control, one
server at a time. If he performs a rolling restart in this way, end users do not see
any unavailability. Alternatively, Adam or one of the operations staff can write a
script using the BI Systems Management API to automate a rolling restart.

2. Patch production repository in place using patchrpd utility: The operations staff
can log onto a production system directly, and apply the XML patch using the
patchrpd utility. Note that if any conflict occurs, the utility will cancel the update
and exit without making changes. If the update is successful, the operations staff
can then perform a rolling restart, as described in the previous paragraph.

3. Patch running system using biserverxmlcli utility: This method is not
recommended for production systems.

Tip: If you have privileges to log on to a production Oracle BI Server using the
Administration Tool in online mode, you can use File > Copy As to copy it to your
local drive.

Finishing and Merging Phase II Branch
Sally and Scott complete their changes in the new branch, and check them in.

Adam now adds Scott's new content to a new project, projTarget. He performs the
same steps as before to send the branch repository to the testing team.

When testing is complete, the branch must be merged back into the main branch using
MUD merge. Doing this merges the production patch with the newly developed
content, so that can be moved to production later.

Now, sales.rpd contains all the changes, and the branch is no longer needed. Sales.rpd
is sent to integrated test, to ensure the merged content does not cause any bugs in the
existing content. When integrated testing is complete, Adam creates another patch
containing the changes, and has the operations staff apply it to the running production
system. Sales Initiative Phase II is now in production.

Phase II Summary
Figure B–8 shows the parallel activities for Phase II.

Phase III - Independent Semantic Model Development

MUD Case Study: Eden Corporation B-17

Figure B–8 Summary of Phase II Activities

Phase III - Independent Semantic Model Development
In the next phase, Sally and Scott begin development of Phase III of the Sales initiative.
Meanwhile, Helen Rowe builds the first phase of the HR initiative and brings this new
independent semantic model into production.

The following sections describe Phase III development:

■ Security Considerations for Multiple Independent Semantic Models

■ Sales Semantic Model Developers Check Out

■ HR Semantic Model Developer Builds Content

■ Phase III Summary

Security Considerations for Multiple Independent Semantic Models
Helen's application has highly sensitive personal information, such as salaries and
medical information. Meanwhile, the Sales application has legally sensitive financial
information. Due to corporate security compliance, these two teams are not allowed to
see each other's data or metadata. They also have little content they could share, other
than generic dimensions like time dimensions. Finally, they have different business
drivers, budgets, and schedules.

For these reasons, the Eden Corporation governance committee decided to use
independent semantic models in the repository: one for Sales, and the other for HR.
This approach requires the two teams to ensure that there are not any shared objects,
and there can be no conflicts between their content. The easiest way to ensure this is to

Phase III - Independent Semantic Model Development

B-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

make sure that the names for all top-level objects do not conflict. Even variables and
application roles must be different.

Tip: Some governance committees ensure that top-level objects do not conflict by
requiring developers to put a prefix specific to each semantic model before the name
of each top-level object, such as S_ for Sales and H_ for HR. This practice makes it easy
to see which objects belong to which organizations. Other committees prefer to keep a
master list of top-level objects, and require new applications to submit top-level object
names for review to ensure there are no conflicts. In addition, two-way merges can
catch any mistakes before overwrites can damage content or cause unexpected object
name changes.

Another security requirement is the need to apply security to the separate MUD
directories so that only the correct developers have access to each repository. Sally and
Scott can only see and check out from the Sales MUD directory, and Helen can only
see and check out from the HR MUD directory. The Main directory continues to exist,
since it must hold the merged master that is actually in production, but now only
Adam has privileges to see or modify that directory.

At Eden Corporation, a final security requirement is to disable the ability for
independent semantic model developers to access the running repository in online
mode after the merge. There is only a single repository password, so a developer who
has the password and access to the repository can see and modify all its contents in
offline mode. However, in online mode, the developer also needs a data access user
name and password to log on to the Oracle BI Server. To enforce this security
requirement, Adam must ensure that the developers have no privileges to log on to
the production or test system in this way. Alternatively, the production operations
staff can change the repository password to one that only they know, but this task
must be performed on a Windows computer because repository passwords are
changed using the Administration Tool.

Sales Semantic Model Developers Check Out
Sally and Scott check out their projects from the new, secure sales branch MUD
directory. They begin their work.

HR Semantic Model Developer Builds Content
Because Helen is working alone on her secure, independent semantic model, she does
not yet need to check out a project. In fact, she needs to start building her content from
a new, blank repository on her local computer. She follows the usual steps of building
and unit testing content incrementally.

When she is done with unit testing, Helen has a complete, free-standing repository.
She sends it to Adam, who uses a two-way merge to combine it into the main branch
repository. Adam performs the following two steps:

1. First, Adam equalizes the two repositories to reassign IDs honoring the different
names given to the top-level objects. This practice ensures that there will be no
conflicts during the merge.

2. Next, Adam performs a two-way merge by using the Merge Repository Wizard to
perform a full merge using a blank repository for the original.

Tip: To create a blank repository, select File > New Repository. Then, provide a name
(such as blank.rpd) and a repository password. Choose No for Import Metadata and
then click Finish.

Phase III - Independent Semantic Model Development

MUD Case Study: Eden Corporation B-19

After the merge, Adam creates a new project for managing the content going forward,
hr_payroll. He adds Helen's content to the project. Adam then checks it out of main
and posts it to the HR Branch MUD directory. Using a project checkout makes
managing IDs and merges easier later.

Adam adjusts connection pool parameters, and migrates the repository to the test
computer. When a bug is found, Helen checks out the hr_payroll project, fixes it, unit
tests it, and checks it back in. (Note that she checks her functional project out of the
checked-out branch project.) Adam migrates it to the test system for further testing.
When testing is complete, he checks the completed HR branch repository back into the
main branch, and sends the integrated repository to integration testing on the test
system.

When the integrated repository completes testing, it is ready for migration to
production. Again, the options are complete repository migration, or applying a patch
to the production environment using patchrpd. Both methods require a rolling restart.

After this step, the production repository contains content for both Initiative S and
Initiative H.

Phase III Summary
Figure B–9 shows the parallel activities for Phase III.

Figure B–9 Summary of Phase III Activities

Phase III - Independent Semantic Model Development

B-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

C

Logical SQL Reference C-1

CLogical SQL Reference

The Oracle BI Server accepts SQL SELECT statements from client tools. Additionally,
the Administration Tool enables you to define logical columns with complex
expressions. This appendix explains the syntax and semantics for the SELECT
statement and for the expressions you can use in the Administration Tool to create
derived columns.

This reference provides syntax and usage information for the Logical SQL statements
understood by the Oracle BI Server. Oracle BI Server Logical SQL includes standard
SQL, plus special functions (SQL extensions) like AGO, TODATE, EVALUATE, and
others. Logical SQL queries resolve to Presentation layer objects.

The abstraction provided by the Presentation layer and Business Model and Mapping
layer enables clients to query data with Logical SQL only, so that the interaction with
actual physical sources is handled by the Oracle BI Server. The complexity of the
multiple source languages needed to communicate with each data source type is
hidden from users and clients.

In Answers, you can view the Logical SQL queries issued by Oracle BI Presentation
Services for particular analyses by viewing the SQL Issued section of the Advanced
tab of the Analysis editor. If you have the appropriate privileges, then you can also
view SQL by displaying the Manage Sessions page in the Administration tab. Click
View Log from the Manage Sessions page to see further details.

In Answers, there are also several places where you can issue Logical SQL. If you have
the appropriate privileges, then you can use the Issue SQL page in the Administration
tab to enter any SQL code to send to the Oracle BI Server. If an analysis does not
contain hierarchical columns, member selections, or groups, then you can use the
Advanced SQL Clauses fields in the Advanced tab of the Analysis editor. You can also
enter SQL in the New Filter dialog.

In the Administration Tool, Logical SQL appears mostly in the form of expressions
related to objects in the Business Model and Mapping layer. You typically create SQL
functions in Expression Builder; see "About the Expression Builder Dialogs" for a
summary of the places in the Administration Tool where you can build Logical SQL
expressions.

Other clients, like Oracle BI Publisher, Oracle’s Hyperion Interactive Reporting, Smart
View, the Oracle BI Add-in for Microsoft Office, and Essbase, also provide their own
interfaces to view and issue Logical SQL to the Oracle BI Server.

This appendix contains the following topics:

■ SQL Syntax and Semantics

■ Aggregate, Running Aggregate, and Time Series Functions

■ String Functions

SQL Syntax and Semantics

C-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Math Functions

■ Calendar Date/Time Functions

■ Conversion Functions

■ Database Functions

■ Hierarchy Navigation Functions

■ System Functions

SQL Syntax and Semantics
This section explains SQL syntax and semantics. The following topics are included:

■ Syntax and Usage Notes for the SELECT Statement

■ Syntax and Usage Notes for SELECT_PHYSICAL

■ Rules for Queries with Aggregate Functions

■ Operators

■ Conditional Expressions

■ Expressing Literals

■ Calculated Members

■ Variables

Syntax and Usage Notes for the SELECT Statement
The SELECT statement, or query specification, is the way to query a decision support
system through the Oracle BI Server. A SELECT statement returns a table to the client
that matches the query. It is a table in the sense that the results are in the form of rows
and columns.

The SELECT statement is the basis for querying any structured query language (SQL)
database. The Oracle BI Server accepts logical requests to query objects in a repository,
and users (or query tools) make those logical requests with ordinary SQL SELECT
statements. The server then translates the logical requests into physical queries against
one or more data sources, combines the results to match the logical request, and
returns the answer to the end user.

The SELECT statement in Logical SQL differs from standard SQL in that tables do not
need to be joined. Any join conditions supplied in the query are ignored because the
join conditions are predefined in the Oracle BI repository.

This section provides the basic syntax for the SELECT statement, as well as definitions
for individual clauses. The syntax descriptions cover only basic syntax and features
unique to the Oracle BI Server. For a more comprehensive description of SQL syntax,
see a third-party reference book on SQL or a reference manual on SQL from your
database vendors. For Oracle Database, see Oracle Database SQL Language Reference.

This section contains the following topics:

■ Basic Syntax for the SELECT Statement

■ Usage Notes

■ Subquery Support

■ SELECT List Syntax

SQL Syntax and Semantics

Logical SQL Reference C-3

■ FROM Clause Syntax

■ WHERE Clause Syntax

■ GROUP BY Clause Syntax

■ ORDER BY Clause Syntax

Basic Syntax for the SELECT Statement
Syntax for the SELECT statement is as follows:

SELECT [DISTINCT] select_list
FROM from_clause
[WHERE search_condition]
[GROUP BY column {, column}

[HAVING search_condition]]
[ORDER BY column {, column}]

Where:

select_list is the list of columns specified in the request. See "SELECT List
Syntax" for more information.

FROM from_clause is the list of tables in the request. Optionally includes certain
join information for the request. See "FROM Clause Syntax" for more information.

WHERE search_condition specifies any combination of conditions to form a
conditional test. A WHERE clause acts as a filter that lets you constrain a request to
obtain results that answer a particular question. Together with the columns you select,
filters determine what your results will contain. See "WHERE Clause Syntax" for more
information.

GROUP BY column {, column} specifies a column (or alias) belonging to a table
defined in the data source. See for more information.

HAVING search_condition specifies any combination of conditions to form a
conditional test. The syntax is identical to that for the WHERE clause.

ORDER BY column {, column} specifies the columns to order the results by. See
"ORDER BY Clause Syntax" for more information.

Usage Notes
The Oracle BI Server treats the SELECT statement as a logical request. If aggregated
data is requested in the SELECT statement, a GROUP BY clause is automatically
assumed by the server. Any join conditions supplied in the query are ignored because
the join conditions are all predefined in the Oracle BI repository.

The Oracle BI Server accepts the following SQL syntaxes for comments:

■ /* */ C-style comments

■ // Double slash for single-line comments

■ # Number sign for single-line comments

Subquery Support
The Oracle BI Server supports certain subqueries, as well as UNION, UNION ALL,
INTERSECT, and EXCEPT operations in logical requests. This functionality increases
the range of business questions that can be answered, eases the formulation of queries,
and provides some ability to query across multiple business models.

SQL Syntax and Semantics

C-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

The Oracle BI Server supports the following subquery predicates in any conditional
expression (for example, within WHERE, HAVING, or CASE statements):

IN, NOT IN
Any, >=Any, =Any, <Any, <=Any, <>Any
All, >=All, =All, <All,<=All, <>All
EXISTS, NOT EXISTS

In Answers, advanced users and developers can use the Advanced SQL Clauses fields
in the Advanced tab of the Analysis editor to specify various SQL clauses, such as
GROUP BY, HAVING, and DISTINCT, to include in the SQL queries that are sent to the
Oracle BI Server. If an analysis contains hierarchical columns, selections, or groups,
then certain Advanced SQL Clauses fields are not available.

SELECT List Syntax
The select_list lists the columns in the request. All columns need to be from a
single business model. Table names can be included (as Table.Column), but are
optional unless column names are not unique within a business model. If column
names contain spaces, enclose column names in double quotes. The DISTINCT
keyword does not need to be included, because the Oracle BI Server always does a
distinct query. Columns that are being aggregated do not need to include the
aggregation function (such as SUM), as aggregation rules are known to the server and
aggregation is performed automatically.

Syntax

...
* |
(column | expr) [[AS] alias]
{, (column | expr) [[AS] alias] }

...

Where:

* Indicates all columns in the resultant table in the FROM clause.

column is a column (or alias) belonging to a table defined in the data source.

expr is any valid SQL expression.

FROM Clause Syntax
The Oracle BI Server accepts any valid SQL FROM clause syntax. To simplify FROM
clause creation, you can specify the name of a subject area instead of a list of tables.
The Oracle BI Server determines the proper tables and the proper join specifications
based on the columns the request asks for and the configuration of the Oracle BI
repository.

WHERE Clause Syntax
The Oracle BI Server accepts any valid SQL WHERE clause syntax. There is no need to
specify any join conditions in the WHERE clause, because the joins are all configured
within the Oracle BI repository. Any join conditions specified in the WHERE clause are
ignored.

The Oracle BI Server also supports the following subquery predicates in any
conditional expression (WHERE, HAVING or CASE statements):

IN, NOT IN
Any, >=Any, =Any, <Any, <=Any, <>Any

SQL Syntax and Semantics

Logical SQL Reference C-5

All, >=All, =All, <All,<=All, <>All
EXISTS, NOT EXISTS

GROUP BY Clause Syntax
With auto aggregation on the Oracle BI Server, there is no need to submit a GROUP BY
clause. When no GROUP BY clause is specified, the GROUP BY specification defaults to
all of the nonaggregation columns in the SELECT list. If you explicitly use aggregation
functions in the select list, you can specify a GROUP BY clause with different columns
and the Oracle BI Server computes the results based on the level specified in the
GROUP BY clause.

See "Rules for Queries with Aggregate Functions" for additional details, as well as
some examples of using the GROUP BY clause in queries against the Oracle BI Server.

ORDER BY Clause Syntax
The Oracle BI Server accepts any valid SQL ORDER BY clause syntax, including
referencing columns by their order in the select list (such as ORDER BY 3, 1, 5).

In addition, you can use the following syntax to alter the sort order for nulls in the
query:

ORDER BY col1 NULLS LAST, ORDER BY col2 NULLS FIRST

Syntax and Usage Notes for SELECT_PHYSICAL
The SELECT_PHYSICAL command provides the functionality to directly query objects
in the Physical layer of the metadata repository, and to nest such a statement within a
query against the Business Model and Mapping layer or the Presentation layer.

Though a SELECT_PHYSICAL query bypasses the Presentation layer and the Business
Model and Mapping layer, the Oracle BI Server still performs parsing, interpretation,
and query generation on a SELECT_PHYSICAL query before passing it to the
database.

A SELECT_PHYSICAL command can contain any element allowed in standard Oracle
BI Server SQL with the following constraints:

■ The SELECT_PHYSICAL command does not explicitly reference structures in the
repository Business Model and Mapping layer or the Presentation layer

■ The SELECT_PHYSICAL command does not require implicit logical
transformation

■ The SELECT_PHYSICAL command cannot contain certain aggregate functions -
see "Aggregate Functions Not Supported in SELECT_PHYSICAL Queries" for
details

You can set up an ODBC connection to the Oracle BI Server to be a dedicated physical
connection over which all SELECT queries are treated as SELECT_PHYSICAL queries.
To do this, select Route Requests To Physical Layer in the ODBC data source for the
Oracle BI Server. See "Integrating Other Clients with Oracle Business Intelligence" in
Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise
Edition for more information.

SELECT_PHYSICAL statements are logged as Physical Request entries.

Note: SELECT_PHYSICAL statements are not cached.

SQL Syntax and Semantics

C-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

The topics in this section are the following:

■ Syntax for the SELECT_PHYSICAL Statement

■ Aggregate Functions Not Supported in SELECT_PHYSICAL Queries

■ Queries Supported by SELECT_PHYSICAL

■ Using the NATURAL_JOIN Keyword

■ Special Usages of SELECT_PHYSICAL

Syntax for the SELECT_PHYSICAL Statement
Basic syntax for SELECT_PHYSICAL queries is equivalent to "Basic Syntax for the
SELECT Statement" with the term SELECT_PHYSICAL replacing the word SELECT,
namely:

SELECT_PHYSICAL [DISTINCT] select_list
FROM from_clause
[WHERE search_condition]
[GROUP BY column {, column}

[HAVING search_condition]]
[ORDER BY column {, column}]

In SELECT_PHYSICAL queries, you must fully qualify the table names in the FROM
list. Each fully qualified table name must match a table name in the physical layer of
the repository.

A fully qualified table name consists of up to four components, database name, catalog
name, schema name, and table name. Each component is surrounded by double
quotes (") with a period (.) separator between components. For example, "SQL_
DB"."My_Catalog"."My_Schema"."Customers" for a SQL Server table, and
"FoodMart"..."Sales" for a cube table.

Refer to the corresponding topics in "Basic Syntax for the SELECT Statement" for more
information about the different clauses and sub-clauses of the SELECT_PHYSICAL
command.

Aggregate Functions Not Supported in SELECT_PHYSICAL Queries
The following aggregate functions are not supported in SELECT_PHYSICAL queries:

■ AGO

■ BOTTOMN

■ FILTER

■ FIRST

■ LAST

■ RCOUNT

■ RMAX

■ RMIN

Notes: The SELECT_PHYSICAL statement is close to the standard
ANSI SQL SELECT statement. For example, you cannot omit the
GROUP BY clause nor, where relevant, the HAVING clause in a
SELECT_PHYSICAL aggregate query.

SQL Syntax and Semantics

Logical SQL Reference C-7

■ RSUM

■ TODATE

■ TOPN

Queries Supported by SELECT_PHYSICAL
The Oracle BI Server supports the use of SELECT_PHYSICAL for the following types
of logical query:

■ Standard Non-Aggregate Queries

Standard non-aggregate SELECT_PHYSICAL commands follow the same rules as
standard non-aggregate SELECT commands. They can also include scalar
functions, such as String, Math, and Calendar Date/Time functions. For example:

SELECT_PHYSICAL productid, categoryid
FROM "My_DB"."My_Schema"."products"
WHERE categoryid > 5;

SELECT_PHYSICAL LEFT(productname,10)
FROM "My_DB"."My_Schema"."products"
WHERE productname is not null;

■ Queries with Aggregate Functions

In general, all aggregate functions supported in SELECT queries are also
supported in SELECT_PHYSICAL queries. See "Aggregate Functions Not
Supported in SELECT_PHYSICAL Queries" for a list of the exceptions to this rule.

For aggregates supported in SELECT_PHYSICAL commands, each aggregate must
have an explicitly specified aggregation level, using the GROUP BY clause or the BY
clause. For example:

SELECT_PHYSICAL employeeid, SUM(quantity by)
FROM "My_DB"."My_Schema"."employees";

SELECT_PHYSICAL employeeid, SUM(quantity)
FROM "My_DB"."My_Schema"."employees"
GROUP BY employeeid
HAVING SUM(quantity) > 100;

■ Subqueries

The Oracle BI Server supports the following types of query:

■ Queries where both the parent query and the subquery use SELECT_
PHYSICAL

■ Parent query uses SELECT and subquery uses SELECT_PHYSICAL

Subqueries are supported on both filters and on projections embedded in a Case
statement.

For example:

SELECT_PHYSICAL *
FROM "My_DB"."My_Schema"."products"
WHERE supplierid IN
(SELECT_PHYSICAL supplierid
FROM "My_DB"."My_Schema"."suppliers");

SELECT productid
FROM snowflakesales.product

SQL Syntax and Semantics

C-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

WHERE categoryid IN
(SELECT_PHYSICAL categoryid
FROM "My_DB"."My_Schema"."categories");

SELECT CASE WHEN b.categoryid IN
(SELECT_PHYSICAL a.categoryid
FROM "My_DB"."My_Schema"."products" a)
THEN b.categoryid END
FROM categories b;

■ Queries with Derived Tables

Both SELECT and SELECT_PHYSICAL queries can have derived tables in their
FROM clause. The tables can be derived using either SELECT or SELECT_
PHYSICAL. For example:

SELECT_PHYSICAL COUNT(DISTINCT t.rto)
FROM
(SELECT_PHYSICAL employeeid AS id, reportsto AS rto
FROM "My_DB"."My_Schema"."employees") t;

SELECT productid, categoryid
FROM
(SELECT_PHYSICAL productid, categoryid
FROM "My_DB"."My_Schema"."products" a
LEFT OUTER JOIN "My_DB"."My_Schema"."categories" b
ON a.categoryid = b.categoryid);

SELECT y.cid, sum(x.qty)
FROM
(SELECT productid pid, categoryid cid, qtysold qty
FROM sales.product) x
RIGHT OUTER JOIN
(SELECT_PHYSICAL CASE categoryid WHEN 1 THEN null ELSE categoryid END cid
FROM "My_DB"."My_Schema"."categories") y
ON x.cid = y.cid
GROUP BY y.cid;

■ Cross-Database Queries

You can use SELECT_PHYSICAL to join tables in different databases. For example:

SELECT_PHYSICAL a.productid, b.categoryid
FROM "My_DB"."My_Schema"."products" a
FULL OUTER JOIN
"My_DB2"."My_Schema"."categories" b
ON a.categoryid = b.categoryid

Using the NATURAL_JOIN Keyword
SELECT_PHYSICAL queries support the NATURAL JOIN syntax, which enables you to
use predefined join expressions. For ADF Business Component data sources, the
ViewLink in ADF becomes active. The NATURAL JOIN join type, however, is not
exposed for use in Logical Table Sources (for example, LEFT OUTER JOIN).

You can only use the NATURAL JOIN keyword in SELECT_PHYSICAL queries. The
NATURAL JOIN behavior in Oracle Business Intelligence is different from the ANSI
NATURAL JOIN. The following examples illustrate how joins are executed with and
without the NATURAL JOIN syntax:

SELECT PHYSICAL *
FROM A, B;

SQL Syntax and Semantics

Logical SQL Reference C-9

In this example, no join is executed between A and B (even if one is defined in the
metadata).

SELECT_PHYSICAL *
FROM A NATURAL JOIN B;

In this example, the physical join between A and B is executed. For ADF Business
Component data sources, the join expression defined by the underlying ViewLink is
used.

SELECT_PHYSICAL *
FROM C, A NATURAL JOIN B;

In this example, even if C is joined to A in the metadata, only the A-B join is active.
The C-A join is not used.

Special Usages of SELECT_PHYSICAL
You can use session variables and the INDEXCOL function in a SELECT_PHYSICAL
command, as in the following examples:

SELECT_PHYSICAL VALUEOF(NQ_SESSION.REGION)
FROM "My_DB"."My_Schema"."products";

SELECT_PHYSICAL INDEXCOL(VALUEOF(NQ_SESSION.INDEXCOLINDEX), productid, categoryid)
FROM "My_DB"."My_Schema"."products";

Rules for Queries with Aggregate Functions
The Oracle BI Server simplifies the SQL statements needed to craft aggregate queries.
This section outlines the rules that the Oracle BI Server follows for whether a query
contains a GROUP BY clause and, if a GROUP BY clause is specified, what results you
should expect from the query. The rules outlined in this section apply to all aggregates
used in SQL statements (SUM, AVG, MIN, MAX, COUNT(*), and COUNT).

Computing Aggregates of Baseline Columns
A baseline column is a column that has no aggregation rule defined in the
Aggregation tab of the Logical Column dialog in the repository. Baseline columns map
to nonaggregated data at the level of granularity of the logical table to which they
belong. If you perform aggregation (SUM, AVG, MIN, MAX, or COUNT) on a baseline
column through a SQL request, the Oracle BI Server calculates the aggregation at the
level based on the following rules:

■ If there is no GROUP BY clause specified, the level of aggregation is grouped by all
of the nonaggregate columns in the SELECT list.

■ If there is a GROUP BY clause specified, the level of aggregation is based on the
columns specified in the GROUP BY clause.

For example, consider the following query, where the column revenue is defined in
the repository as a baseline column (no aggregation rules specified in the Logical
Column > Aggregation tab):

SELECT year, product, SUM(revenue)
FROM time, products, facts

The results appear in the following list by year, products, and then sum of revenue.

SQL Syntax and Semantics

C-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

This query returns results grouped by year and product, or in other words, it returns
one row for each product and year combination. The sum calculated for each row is
the sum of all the sales for that product in that year. It is logically the same query as
the following:

SELECT year, product, SUM(revenue)
FROM time, products, facts
GROUP BY year, product

If you change the GROUP BY clause to only group by year, then the sum calculated is
the sum of all products for the year, as follows:

SELECT year, product, SUM(revenue)
FROM time, products, facts
GROUP BY year

The results appear in the following list by year, products, and then sum of revenue:

If you add a column to the query requesting the COUNT of revenue, the Oracle BI
Server calculates the number of records used to calculate the results for each group. In
this case, it is a year, as shown in the following example:

SELECT year, product, SUM(revenue), COUNT(revenue)
FROM time, products, facts
GROUP BY year

The results appear in the following list by year, products, sum of revenue, and then
revenue count:

YEAR PRODUCT SUM(REVENUE)

1998 Coke 500

1998 Pepsi 600

1999 Coke 600

1999 Pepsi 550

2000 Coke 800

2000 Pepsi 600

YEAR PRODUCT SUM(REVENUE)

1998 Coke 1100

1998 Pepsi 1100

1999 Coke 1150

1999 Pepsi 1150

2000 Coke 1400

2000 Pepsi 1400

YEAR PRODUCT SUM(REVENUE) COUNT(REVENUE)

1998 Coke 1100 6000

1998 Pepsi 1100 6000

1999 Coke 1150 6500

SQL Syntax and Semantics

Logical SQL Reference C-11

Computing Aggregates of Measure Columns
A measure column is a column that has a default aggregation rule defined in the
Aggregation tab of the Logical Column dialog in the repository. Measure columns
always calculate the aggregation with which they are defined. If you perform explicit
aggregation (SUM, AVG, MIN, MAX, or COUNT) on a measure column through a SQL
request, you are actually asking for an aggregate of an aggregate. For these nested
aggregates, the Oracle BI Server calculates the aggregation based on the following
rules:

■ A request for a measure column without an aggregate function defined in a SQL
statement is always grouped at the level of the nonaggregate columns in the
SELECT list, regardless of whether the query specifies a GROUP BY clause.

■ If there is no GROUP BY clause specified, the nested aggregate is a grand total of
each group determined by all of the nonaggregate columns in the SELECT list.

■ If there is a GROUP BY clause specified, the nested aggregation calculates the total
for each group as specified in the GROUP BY clause.

For example, consider the following query, where the column SumOfRevenue is
defined in the repository as a measure column with a default aggregation rule of SUM
(SUM aggregation rule specified in the Aggregation tab of the Logical Column dialog):

SELECT year, product, SumOfRevenue, SUM(SumOfRevenue)
FROM time, products, facts

The following query results are grouped by year and product, or in other words, it
returns one row for each product and year combination. The sum calculated for each
row in the SumOfRevenue column is the sum of all the sales for that product in that
year because the measure column is always at the level defined by the nonaggregation
columns in the query.

If you set the GROUP BY clause to only group by year, then the sum calculated in the
SumOfRevenue column is the sum of each product for the year, and the sum
calculated in the SUM(SumOfRevenue) column is total sales of all products for the
given year. The following is the query:

SELECT year, product, SumOfRevenue, SUM(SumOfRevenue)
FROM time, products, facts
GROUP BY year

1999 Pepsi 1150 6500

2000 Coke 1400 8000

2000 Pepsi 1400 8000

YEAR PRODUCT SUMofREVENUE SUM(SUMofREVENUE)

1998 Coke 500 3650

1998 Pepsi 600 3650

1999 Coke 600 3650

1999 Pepsi 550 3650

2000 Coke 800 3650

2000 Pepsi 600 3650

YEAR PRODUCT SUM(REVENUE) COUNT(REVENUE)

SQL Syntax and Semantics

C-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

In the following result set, the sum calculated for each row in the SumOfRevenue
column is the sum of all the sales for that product in that year because the measure
column is always at the level defined by the nonaggregation columns in the query. The
SUM(SumOfRevenue) is the same for each row corresponding to a given year, and
that sum represents the total sales for that year. In this case, it is the sales of Coke plus
the sales of Pepsi.

Display Function Reset Behavior
A display function is a function that operates on the result set of a query. The display
functions the Oracle BI Server supports (RANK, TOPN, BOTTOMN, PERCENTILE, NTILE,
MAVG, MEDIAN, and varieties of standard deviation) are specified in the SELECT list of
a SQL query. Queries that use display functions conform to the following rules:

■ If no GROUP BY clause is specified, the display function operates across the entire
result set, or in other words, the grouping level for the display function matches
that of the query.

■ If there is a GROUP BY clause specified, the display function resets its values for
each group as specified in the GROUP BY clause.

For example, in the following query, SumOfRevenue is defined as a measure column
with the default aggregation rule of SUM:

SELECT year, product, SumOfRevenue, RANK(SumOfRevenue)
FROM time, products, facts

In the following query result set, there is no GROUP BY clause specified, so the rank is
calculated across the entire result set:

If you change the GROUP BY clause to group by year and product, then the rank is
reset for each year, as follows:

SELECT year, product, SUM(revenue), RANK(sum(revenue) by year)
FROM time, products, facts

YEAR PRODUCT SUMofREVENUE SUM(SUMofREVENUE)

1998 Coke 500 1100

1998 Pepsi 600 1100

1999 Coke 600 1150

1999 Pepsi 550 1150

2000 Coke 800 1400

2000 Pepsi 600 1400

YEAR PRODUCT SUMofREVENUE RANK(SUMofREVENUE)

1998 Coke 500 6

1998 Pepsi 600 2

1999 Coke 600 2

1999 Pepsi 550 5

2000 Coke 800 1

2000 Pepsi 600 2

SQL Syntax and Semantics

Logical SQL Reference C-13

GROUP BY year, product

In the following result set, the rank is reset each time the year changes, and because
there are two rows for each year, the value of the rank is always 1 or 2:

Alternative Syntax
When using an aggregate function, you can calculate a specified level of aggregation
using BY within the aggregate function. If you do this, you do not need a GROUP BY
clause.

For example, the following query returns the column year_revenue that displays
revenue aggregated by year:

SELECT year, product, revenue, SUM(revenue BY year) as year_revenue
FROM softdrinks

The same syntax can be used with display functions. The following query calculates
overall rank of revenue for each product for each year (each row in the entire result
set), and also the rank of each product's revenue within each year:

SELECT year, product, revenue, rank(revenue), RANK(revenue by year)
FROM softdrinks ORDER BY 1, 5

Using FILTER to Compute a Conditional Aggregate
In SQL query language, traditional aggregates, such as SUM, COUNT, MIN, and MAX are
evaluated on a group of tuples (an ordered list of objects, each of a specified type),
determined by the GROUP BY clause. All the aggregates specified in the SELECT
clause of a query are evaluated over the same subset of tuples. Conditional aggregates
extend SQL by restricting their input using a predicate.

FILTER is an operator that restricts the set of rows used to compute its aggregate
argument to rows that satisfy the USING condition. The FILTER operator is a Logical
SQL construct. It may be used in logical queries referring to the metadata, or in logical
columns that use existing logical columns as the source.

Syntax

Conditional aggregates are only notational concepts and they do not represent
executable operators. Conditional aggregates are expressed in the form of a function as
shown in the following statement:

FILTER(measure_expr USING boolean_expr)

Where:

measure_expr is an expression that contains at least one measure. The following is a
list of examples:

YEAR PRODUCT SUMofREVENUE RANK(SUM(REVENUE) by year)

1998 Coke 500 2

1998 Pepsi 600 1

1999 Coke 600 1

1999 Pepsi 550 2

2000 Coke 800 1

2000 Pepsi 600 2

SQL Syntax and Semantics

C-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ The expression Sales + 1 is allowed if Sales is a measure.

■ The expression productid is not allowed if productid is a scalar attribute.

boolean_expr is a boolean expression (evaluates to TRUE or FALSE) that does not
contain any measures. This expression may not contain any nested queries.

Example

The following is a simple example of the FILTER function:

SELECT year,
FILTER(sales USING product = 'coke'),
FILTER(sales USING product = 'pepsi')
FROM logBeverages

After navigation, this query is executed as follows:

SELECT year,
SUM(CASE WHEN product = 'coke' THEN sales),
SUM(CASE WHEN product = 'pepsi' THEN sales)
FROM physBeverages
WHERE product = 'coke' OR product = 'pepsi'
GROUP BY year

Error Handling

In the example FILTER(x USING y), error messages are returned in the following
situations:

■ The y expression is not a boolean expression.

■ The y expression contains measures.

■ FILTER is used in outer query block.

■ Explicit aggregates are used in the x (measure) expression. For example,
FILTER(COUNT(product), C).

Operators
There are two types of operators: SQL logical operators, and mathematical operators.

SQL Logical Operators
The following SQL logical operators are used to specify comparisons between
expressions.

■ Between: Used to determine boundaries for a condition. Each boundary is an
expression, and the bounds do not include the boundary limits, as in less than and
greater than (as opposed to less than or equal to and greater than or equal to).
BETWEEN can be preceded with NOT to negate the condition.

■ In: Specifies a comparison of a column value with a set of values.

■ Is Null: Specifies a comparison of a column value with the null value.

■ Like: Specifies a comparison to a literal value. Often used with wildcard
characters to indicate any character string match of zero or more characters (%) or
a any single character match (_).

SQL Syntax and Semantics

Logical SQL Reference C-15

Mathematical Operators
Mathematical operators are used to combine expression elements to make certain
types of comparisons in an expression.

Table C–1 lists operators and describes their use in an expression.

Conditional Expressions
Expressions are building blocks for creating conditional expressions that convert a
value from one form to another. Expressions include:

■ CASE (Switch)

■ CASE (If)

CASE (Switch)
This form of the CASE statement is also referred to as the CASE(Lookup) form. The
value of expr1 is examined, then the WHEN expressions. If expr1 matches any WHEN
expression, it assigns the value in the corresponding THEN expression.

If none of the WHEN expressions match, it assigns the default value specified in the
ELSE expression. If no ELSE expression is specified, the system automatically adds an
ELSE NULL.

Table C–1 Operators

Operator Description

+ Plus sign for addition.

- Minus sign for subtraction.

* Multiply sign for multiplication.

/ Divide by sign for division.

|| Character string concatenation.

(Open parenthesis.

) Closed parenthesis.

> Greater than sign, indicating values higher than the
comparison.

< Less than sign, indicating values lower than the comparison.

= Equal sign, indicating the same value.

<= Less than or equal to sign, indicating values the same or lower
than the comparison.

>= Greater than or equal to sign, indicating values the same or
higher than the comparison.

<> Not equal to, indicating values higher or lower, but different.

AND AND connective, indicating intersection with one or more
conditions to form a compound condition.

OR OR connective, indicating the union with one or more conditions
to form a compound condition.

NOT NOT connective, indicating a condition is not met.

, Comma, used to separate elements in a list.

SQL Syntax and Semantics

C-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

If expr1 matches an expression in multiple WHEN clauses, only the expression
following the first match is assigned.

Syntax

CASE expr1
WHEN expr2 THEN expr3
{WHEN expr... THEN expr...}
ELSE expr

END

Where:

CASE starts the CASE statement. Must be followed by an expression and one or more
WHEN and THEN statements, an optional ELSE statement, and the END keyword.

WHEN specifies the condition to be satisfied.

THEN specifies the value to assign if the corresponding WHEN expression is satisfied.

ELSE specifies the value to assign if none of the WHEN conditions are satisfied. If
omitted, ELSE NULL is assumed.

END ends the CASE statement.

Example

CASE Score-par
WHEN -5 THEN 'Birdie on Par 6'
WHEN -4 THEN 'Must be Tiger'
WHEN -3 THEN 'Three under par'
WHEN -2 THEN 'Two under par'
WHEN -1 THEN 'Birdie'
WHEN 0 THEN 'Par'
WHEN 1 THEN 'Bogey'
WHEN 2 THEN 'Double Bogey'
ELSE 'Triple Bogey or Worse'

END

In this example, the WHEN statements must reflect a strict equality. For example, a
WHEN condition of WHEN < 0 THEN 'Under Par' is illegal because comparison
operators are not allowed.

CASE (If)
This form of the CASE statement evaluates each WHEN condition and if satisfied,
assigns the value in the corresponding THEN expression.

If none of the WHEN conditions are satisfied, it assigns the default value specified in the
ELSE expression. If no ELSE expression is specified, the system automatically adds an
ELSE NULL.

Syntax

CASE

Note: In a CASE statement, AND has precedence over OR.

Note: In a CASE statement, AND has precedence over OR.

SQL Syntax and Semantics

Logical SQL Reference C-17

WHEN request_condition1 THEN expr1
{WHEN request_condition2 THEN expr2}
{WHEN request_condition... THEN expr...}
ELSE expr

END

Where:

CASE starts the CASE statement. Must be followed by one or more WHEN and THEN
statements, an optional ELSE statement, and the END keyword.

WHEN specifies the condition to be satisfied.

THEN specifies the value to assign if the corresponding WHEN expression is satisfied.

ELSE specifies the value to assign if none of the WHEN conditions are satisfied. If
omitted, ELSE NULL is assumed.

END ends the CASE statement.

Example

CASE
WHEN score-par < 0 THEN 'Under Par'
WHEN score-par = 0 THEN 'Par'
WHEN score-par = 1 THEN 'Bogie'
WHEN score-par = 2 THEN 'Double Bogey'
ELSE 'Triple Bogey or Worse'

END

Unlike the Switch form of the CASE statement, the WHEN statements in the If form
allow comparison operators. For example, a WHEN condition of WHEN < 0 THEN
'Under Par' is legal.

Expressing Literals
A literal is a nonnull value corresponding to a given data type. Literals are typically
constant values, or in other words, they are values that are taken as they are. A literal
value must comply with the data type that it represents.

SQL provides mechanisms for expressing literals in SQL statements. This following
topics describe how to express each type of literal in SQL:

■ Character Literals

■ Datetime Literals

■ Numeric Literals

Character Literals
A character literal represents a value of CHARACTER or VARCHAR data type. To express
a character literal, enclose the character string in single quotes ('). The number of
characters enclosed between the single quotes implies the length of the literal.

Examples

'Oracle BI Server'

'abc123'

SQL Syntax and Semantics

C-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Datetime Literals
The SQL 92 standard defines three kinds of 'typed' datetime literals, in the following
formats:

DATE 'yyyy-mm-dd'
TIME 'hh:mm:ss'
TIMESTAMP 'yyyy-mm-dd hh:mm:ss'

To express a typed datetime literal, use the keywords DATE, TIME, or TIMESTAMP
followed by a datetime string enclosed in single quotation marks, as in the preceding
example. Two digits are required for all nonyear components even if the value is a
single digit.

These formats are fixed and are not affected by the format specified in the
NQSConfig.INI file for the parameters DATE_DISPLAY_FORMAT, TIME_DISPLAY_
FORMAT, or DATE_TIME_DISPLAY_FORMAT.

Examples

DATE '2000-08-15'
TIME '11:55:25'
TIMESTAMP '1999-03-15 11:55:25'

Numeric Literals
A numeric literal represents a value of a numeric data type (such as INTEGER,
DECIMAL, or FLOAT). To express a numeric literal, type the number as part of a SQL
statement.

Do not surround numeric literals with single quotes. Doing so expresses the literal as a
character literal.

Numeric literals include:

■ Integer Literals

■ Decimal Literals

■ Floating Point Literals

Integer Literals To express an integer constant as a literal, specify the integer as part of a
SQL statement (for example, in the SELECT list). Precede the integer with a plus sign
(+) to indicate the integer is positive, or a minus sign (-) to indicate the integer is
negative. Unsigned integers are assumed to be positive.

Examples

234
+2
567934

Decimal Literals To express a decimal literal, specify a decimal number. Precede the
number with a plus sign (+) to indicate the number is positive, or a minus sign (-) to
indicate the number is negative. Unsigned numbers are assumed to be positive.

Examples

1.223
-22.456
+33.456789

SQL Syntax and Semantics

Logical SQL Reference C-19

Floating Point Literals To express floating point numbers as literal constants, enter a
decimal literal followed by the letter E (either uppercase or lowercase), followed by the
plus sign (+) to indicate a positive exponent, or the minus sign (-) to indicate a
negative exponent. No spaces are allowed between the integer, the letter E, and the
sign of the exponent.

Examples

333.456E-
1.23e+

Calculated Members
A calculated member is a user-defined dimension member whose measure values are
calculated at run time.

You define a calculated member within a dimension through a formula that references
other members of the same dimension. If a dimension has multiple hierarchies, all
members referenced in the formula must belong to one hierarchy.

Within a calculated member, the members do not have to be at the same level in the
hierarchy. For example, in a Geography hierarchy, you can create a calculated member
to enable you to add together measure values for the Country member France and the
City member Budapest.

The three standard components of a calculated member are:

■ The presentation hierarchy on which the calculated member is based (for example,
"Geography")

■ The name to identify the calculated member, and to distinguish it from other
members in the dimension (for example, 'My Locations')

■ The formula used to calculate the calculated member, containing one or more
Member clauses (for example, Member ("Geography"."Country".'France') +
Member ("Geography"."City".'Budapest'))

This section contains the following topics:

■ CALCULATEDMEMBER Syntax

■ Rules for the CALCULATEDMEMBER Expression

■ Using Solve Order to Control Formula Evaluation Sequence

■ Examples of Calculated Members in Queries

CALCULATEDMEMBER Syntax
CALCULATEDMEMBER(presentation_hierarchy, member_identifier, calculated_member_
formula [, solve_order])

Where:

presentation_hierarchy identifies the fully qualified presentation hierarchy in
the presentation layer on which the calculated member is based, as follows:

"subject_area"."presentation_table"."presentation_hierarchy"

SQL Syntax and Semantics

C-20 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

member_identifier is the string or numeric literal that identifies the calculated
member. The type of literal depends on the data type of the dimension level-keys.

calculated_member_formula consists of one or more examples of a "member
clause" connected by the standard arithmetic operators + - * / (). The syntax of the
member clause depends on whether the presentation hierarchy is level-based or
parent-child. See "Syntax for the Member Clause in Level-Based Hierarchies" and
"Syntax for the Member Clause in Parent-Child Hierarchies" for details.

solve_order (optional) is a positive integer, used to determine the order of
evaluation when there are calculated members from different dimensions in the same
query. See "Using Solve Order to Control Formula Evaluation Sequence" for details.

Syntax for the Member Clause in Level-Based Hierarchies

MEMBER(presentation_hierarchy_level, member_value)

Where:

presentation_hierarchy_level identifies the fully qualified hierarchy level in
the presentation_hierarchy, as follows:

"subject_area"."presentation_table"."presentation_hierarchy"."presentation_level"

member_value is the string or numeric literal that identifies the member in the
presentation_hierarchy_level.

Syntax for the Member Clause in Parent-Child Hierarchies

MEMBER(presentation_hierarchy, member_value)

Where:

presentation_hierarchy identifies the fully qualified presentation hierarchy in
the presentation layer on which the calculated member is based, as follows:

"subject_area"."presentation_table"."presentation_hierarchy"

member_value is the string or numeric literal that identifies the member in the
presentation_hierarchy.

Rules for the CALCULATEDMEMBER Expression
The rules for calculated members relate to the CALCULATEDMEMBER expression itself
and the use of the CALCULATEDMEMBER expression in queries.

■ All level references in a given CALCULATEDMEMBER expression must belong to the
same dimension hierarchy.

■ CALCULATEDMEMBER expressions may only appear in the SELECT list of a query.

Note: When qualifying presentation hierarchies and presentation
hierarchy levels in both the CALCULATEDMEMBER expression and the
Member clause within the calculated_member_formula
parameter, the following rule applies:

■ You must specify the qualification term ("subject_area".) if
there are multiple presentation tables or presentation hierarchies
with the same name in different subject areas, otherwise you can
omit the term.

SQL Syntax and Semantics

Logical SQL Reference C-21

■ Only one CALCULATEDMEMBER expression is allowed for each dimension for each
SELECT list of a query block. However, CALCULATEDMEMBER expressions based
on other dimensions may exist in the same query.

■ You cannot include any other column from a dimension on which a calculated
member is based in the following components of a query block:

■ SELECT list

■ WHERE clause

■ HAVING clause

However, you may reference columns from the calculated member dimension in
subqueries.

■ Columns from other dimensions may be referenced in the same query block, as
long as there are no CALCULATEDMEMBER expressions on those dimensions.

Using Solve Order to Control Formula Evaluation Sequence
By default, when the CALCULATEDMEMBER expression does not contain a solve order,
the calculated members are evaluated in the order in which they appear in the SELECT
list.

When there are calculated members from different dimensions in the same query
block, the order in which the Oracle BI Server evaluates the calculated members may
be significant.

Example C–1 illustrates how the wrong solve order can lead to incorrect results.

Example C–1 Using Solve Order

Assume you have the following account and time data:

You want to calculate the percentage profit (Profit / Sales * 100) for each time period
and the totals for the two quarters.

If the solve order for your calculations is the following:

1. 'Profit%' = 'Profit'/'Sales' * 100

2. '2007 Second Half' = '2007 Q3' + '2007 Q4'

then the percentage profit for '2007 Second Half' is calculated incorrectly by adding the
2007 Q3 profit to the 2007 Q4 profit:

■ (300/1000) + (600/1500) = 30% + 40% = 70%

with the following results:

Kwik Grains Profit Sales

2007 Q3 300 1000

2007 Q4 600 1500

Kwik Grains Profit Sales Profit%

2007 Q3 300 1000 30

2007 Q4 600 1500 40

2007 Second Half 900 2500 70 (incorrect result)

SQL Syntax and Semantics

C-22 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

If the solve order for your calculations is the following:

1. '2007 Second Half' = '2007 Q3' + '2007 Q4'

2. 'Profit%' = 'Profit'/'Sales' * 100

then the percentage profit for '2007 Second Half' is calculated correctly by adding the
2007 Q3 and 2007 Q4 profits and sales first, then dividing the total Profit by the total
Sales:

■ (300+600) / (1000+1500) = 900/2500 = 36%

with the following results:

See Example C–3, "Using Calculated Members from Different Dimensions" for an
example of a query that explicitly specifies the solve order.

Examples of Calculated Members in Queries
The examples in this section show the use of calculated members in queries, and the
base data on which the calculations are performed.

Example C–2 Single Calculated Member Query

This example shows two queries, each with corresponding results.

The first query contains a calculated member.

SELECT CALCULATEDMEMBER(product."Product - Region",'USA - LA - Tokyo',
MEMBER(product."Product - Region"."Country", 'USA')

- MEMBER(product."Product - Region"."Region", 'LA')
- MEMBER(product."Product - Region"."City", 'Tokyo')
) MyRegion,

sales.Revenue Revenue, sales.QtySold QtySold
FROM product, sales;

Result:

MYREGION REVENUE QTYSOLD
USA - LA - Tokyo 61959.00 3959

The second query verifies the results of the first query. It shows the base data on
which the calculation in the first query is performed.

SELECT * from SupplierCity where Country in ('USA', 'Japan');

Result:

CITY REGION COUNTRY REVENUE QTYSOLD
Boston MA USA 28146.40 2084
Osaka Japan 15678.30 1417
New Orleans LA USA 33351.95 1735
Ann Arbor MI USA 43569.00 1436
Tokyo Japan 33533.20 1134
Bend OR USA 23776.80 1573

Kwik Grains Profit Sales Profit%

2007 Q3 300 1000 30

2007 Q4 600 1500 40

2007 Second Half 900 2500 36 (correct result)

SQL Syntax and Semantics

Logical SQL Reference C-23

Example C–3 Using Calculated Members from Different Dimensions

The requirement in this example is to determine the percentage increase over time in
Revenue and Quantity Sold for US and Canada combined.

To achieve the correct results, the solve order is significant. You must first add
Revenue and Quantity Sold for the two countries across the time periods, then
perform the percentage calculation. See "Using Solve Order to Control Formula
Evaluation Sequence" for more information about solve order significance.

This example shows two queries, each with corresponding results.

The first query contains the calculated members from the two dimensions Product -
Region and Time, with the "addition" formula calculated first, then the "percentage"
formula.

SELECT CALCULATEDMEMBER(product."Product - Region", 'North America',
MEMBER(product."Product - Region"."Country", 'USA')

+ MEMBER(product."Product - Region"."Country", 'Canada'), 1
) MyRegion,

CALCULATEDMEMBER(day."Time", 'Percentage Increase',
(MEMBER(day."Time"."Year", 1996)
- MEMBER(day."Time"."Year", 1995)) * 100
/ MEMBER(day."Time"."Year", 1995), 2
) MyTime,

sales.Revenue RevenuePC,
sales.QtySold QtySoldPC

FROM product, sales, day;

Result:

MYREGION MYTIME REVENUEPC QTYSOLDPC
North America Percentage Increase 16 35

Note that in the preceding query, the sequence of the calculated members in the
SELECT list is sufficient for correct results, even without the explicit solve orders. The
solve orders are included for completeness.

The second query verifies the results of the first query. It shows the base data on
which the calculations in the first query are performed.

SELECT CALCULATEDMEMBER(product."Product - Region", 'North America',
MEMBER(product."Product - Region"."Country", 'USA')

+ MEMBER(product."Product - Region"."Country", 'Canada')
) MyRegion,

year as Year, sales.Revenue Revenue, sales.QtySold QtySold
FROM product, sales, day;

Result:

MYREGION YEAR REVENUE QTYSOLD
North America 1996 101702.75 4918
North America 1995 87265.10 3638
North America 1994 30776.00 1616

Variables
You can include and set variables in SQL statements. To do this, include the variable at
the beginning of the SQL statement.

Syntax

SET VARIABLE variable_name = variable_value; SELECT_statement

Aggregate, Running Aggregate, and Time Series Functions

C-24 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

If you are executing a query from the nqcmd utility, use a colon as a delimiter.
Otherwise, you can use either a semicolon or a colon.

Examples

SET VARIABLE LOGLEVEL = 3; SELECT Products.Brand, Measures.Dollars FROM "Products"

SET VARIABLE DISABLE_CACHE_HIT=1, LOGLEVEL = 3, WEBLANGUAGE='en': SELECT
Products.Brand, Measures.Dollars FROM "Products"

Aggregate, Running Aggregate, and Time Series Functions
This section contains information about aggregate functions, running aggregate
functions, and time series functions:

■ Aggregate Functions

■ Running Aggregate Functions

■ Time Series Functions

Aggregate Functions
Aggregate functions perform operations on multiple values to create summary results.

The aggregate functions cannot be used to form nested aggregation in expressions on
logical columns that have a default aggregation rule defined in the Aggregation tab of
the Logical Column dialog. To specify nested aggregation, you must define a column
with a default aggregation rule and then request the aggregation of the column in a
SQL statement.

Aggregate functions include:

■ AGGREGATE AT

■ AVG

■ AVGDISTINCT

■ BOTTOMN

■ COUNT

■ COUNTDISTINCT

■ COUNT(*)

■ FIRST

■ GROUPBYCOLUMN

■ GROUPBYLEVEL

■ LAST

■ MAX

■ MEDIAN

■ MIN

■ NTILE

■ PERCENTILE

■ RANK

Aggregate, Running Aggregate, and Time Series Functions

Logical SQL Reference C-25

■ STDDEV

■ STDDEV_POP

■ SUM

■ SUMDISTINCT

■ TOPN

AGGREGATE AT
This function aggregates columns based on the level or levels you specify. Using
AGGREGATE AT guarantees that the aggregate for the measure always occurs at the
levels specified after the keyword AT, regardless of the WHERE clause.

Syntax

AGGREGATE(expr AT level [, level1, levelN])

Where:

expr is any expression that references at least one measure column

level is the level at which you want to aggregate. You can optionally specify
multiple levels.

You cannot specify a level from a dimension that contains levels that are being used as
the measure level for the measure you specified in the first argument. For example,
you cannot write the function as AGGREGATE(yearly_sales AT month) because
"month" is from the same time dimension that is being used as the measure level for
"yearly_sales."

Example

The following example shows the AGGREGATE AT function and example results:

SELECT month, year, AGGREGATE(sales AT Year)
FROM timeseriestesting
WHERE year = 1994 AND month = 12

Result:

Month Year AGGREGATE AT year
12 1994 7396
Row count: 1

Because the AGGREGATE AT operator is always executed before the predicates, it
always returns the correct total for the time level specified after the keyword AT.

AVG
This function calculates the average (mean) value of an expression in a result set. It
must take a numeric expression as its argument.

Note that the denominator of AVG is the number of rows aggregated. For this reason, it
is usually a mistake to use AVG(x) in a calculation in Oracle Business Intelligence.
Instead, write the expression manually so that you can control both the numerator and
denominator (x/y).

Syntax

AVG(numExpr)

Aggregate, Running Aggregate, and Time Series Functions

C-26 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Where:

numExpr is any expression that evaluates to a numeric value.

AVGDISTINCT
This function calculates the average (mean) of all distinct values of an expression. It
must take a numeric expression as its argument.

Syntax

AVG(DISTINCT numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

BOTTOMN
This function ranks the lowest n values of the expression argument from 1 to n, 1
corresponding to the lowest numeric value. The BOTTOMN function operates on the
values returned in the result set. A request can contain only one BOTTOMN expression.

Syntax

BOTTOMN(numExpr, integer)

Where:

numExpr is any expression that evaluates to a numeric value.

integer is any positive integer. Represents the bottom number of rankings
displayed in the result set, 1 being the lowest rank.

COUNT
This function calculates the number of rows having a nonnull value for the expression.
The expression is typically a column name, in which case the number of rows with
nonnull values for that column is returned.

Syntax:

COUNT(expr)

Where:

expr is any expression.

COUNTDISTINCT
This function adds distinct processing to the COUNT function.

Syntax

COUNT(DISTINCT expr)

Where:

expr is any expression.

COUNT(*)
This function counts the number of rows.

Aggregate, Running Aggregate, and Time Series Functions

Logical SQL Reference C-27

Syntax

COUNT(*)

Example

For example, if a table named Facts contained 200,000,000 rows, the sample request
would return the results shown:

SELECT COUNT(*) FROM Facts

Result:

200000000

FIRST
This function selects the first returned value of the expression argument. For example,
the FIRST function can calculate the value of the first day of the year.

The FIRST function is limited to defining dimension-specific aggregation rules in a
repository. You cannot use it in SQL statements.

The FIRST function operates at the most detailed level specified in your explicitly
defined dimension. For example, if you have a time dimension defined with hierarchy
levels day, month, and year, the FIRST function returns the first day in each level.

You should not use the FIRST function as the first dimension-specific aggregate rule.
It might cause queries to bring back large numbers of rows for processing in the
Oracle BI Server, causing poor performance.

When a measure is based on dimensions, and data is dense, the Oracle BI Server
optimizes the SQL statements sent to the database to improve performance. See
"Setting Default Levels of Aggregation for Measure Columns" for more information
about dense data.

Note that you cannot nest PERIODROLLING, FIRST, and LAST functions.

Syntax

FIRST(expr)

Where:

expr is any expression that references at least one measure column.

Example
FIRST(sales)

GROUPBYCOLUMN
For use in setting up aggregate navigation. It specifies the logical columns that define
the level of the aggregate data existing in a physical aggregate table.

For example, if an aggregate table contains data grouped by store and by month,
specify the following syntax in the content filter (General tab of Logical Source dialog):

GROUPBYCOLUMN(STORE, MONTH)

The GROUPBYCOLUMN function is only for use in configuring a repository. You cannot
use it to form SQL statements.

Aggregate, Running Aggregate, and Time Series Functions

C-28 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

GROUPBYLEVEL
For use in setting up aggregate navigation. It specifies the dimension levels that define
the level of the aggregate data existing in a physical aggregate table.

For example, if an aggregate table contains data at the store and month levels, and if
you have defined dimensions (Geography and Customers) containing these levels,
specify the following syntax in the content filter (General tab of Logical Source dialog):

GROUPBYLEVEL(GEOGRAPHY.STORE, CUSTOMERS.MONTH)

The GROUPBYLEVEL function is only for use in configuring a repository. You cannot
use it to form SQL statements.

LAST
This function selects the last returned value of the expression. For example, the LAST
function can calculate the value of the last day of the year.

The FIRST function is limited to defining dimension-specific aggregation rules in a
repository. You cannot use it in SQL statements.

The LAST function operates at the most detailed level specified in your explicitly
defined dimension. For example, if you have a time dimension defined with hierarchy
levels day, month, and year, the LAST function returns the last day in each level.

You should not use the LAST function as the first dimension-specific aggregate rule. It
might cause queries to bring back large numbers of rows for processing in the Oracle
BI Server, causing poor performance.

When a measure is based on dimensions, and data is dense, the Oracle BI Server
optimizes the SQL statements sent to the database to improve performance. See
"Setting Default Levels of Aggregation for Measure Columns" for more information
about dense data.

Note that you cannot nest PERIODROLLING, FIRST, and LAST functions.

Syntax

LAST(expr)

Where:

expr is any expression that references at least one measure column.

Example
LAST(sales)

MAX
This function calculates the maximum value (highest numeric value) of the rows
satisfying the numeric expression argument.

Syntax

MAX(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

The MAX function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

Aggregate, Running Aggregate, and Time Series Functions

Logical SQL Reference C-29

MEDIAN
This function calculates the median (middle) value of the rows satisfying the numeric
expression argument. When there are an even number of rows, the median is the mean
of the two middle rows. This function always returns a double.

Syntax

MEDIAN(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

The MEDIAN function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

MIN
This function calculates the minimum value (lowest numeric value) of the rows
satisfying the numeric expression argument.

Syntax

MIN(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

The MIN function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

NTILE
This function determines the rank of a value in terms of a user-specified range. It
returns integers to represent any range of ranks. In other words, the resulting sorted
data set is broken into several tiles where there are roughly an equal number of values
in each tile.

NTile with numTiles = 100 returns what is commonly called the "percentile" (with
numbers ranging from 1 to 100, with 100 representing the high end of the sort). This
value is different from the results of the Oracle BI PERCENTILE function, which
conforms to what is called "percent rank" in SQL 92 and returns values from 0 to 1.

Syntax

NTILE(numExpr, numTiles)

Where:

numExpr is any expression that evaluates to a numeric value.

numTiles is a positive, nonnull integer that represents the number of tiles.

If the numExpr argument is not null, the function returns an integer that represents a
rank within the requested range.

PERCENTILE
This function calculates a percent rank for each value satisfying the numeric
expression argument. The percentile rank ranges are from 0 (1st percentile) to 1 (100th
percentile), inclusive.

Aggregate, Running Aggregate, and Time Series Functions

C-30 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

The percentile is calculated based on the values in the result set.

Syntax

PERCENTILE(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

The PERCENTILE function resets its values for each group in the query according to
specific rules. See "Display Function Reset Behavior" for more information.

RANK
This function calculates the rank for each value satisfying the numeric expression
argument. The highest number is assigned a rank of 1, and each successive rank is
assigned the next consecutive integer (2, 3, 4,...). If certain values are equal, they are
assigned the same rank (for example, 1, 1, 1, 4, 5, 5, 7...).

The rank is calculated based on the values in the result set.

Syntax

RANK(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

The RANK function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

STDDEV
This function returns the standard deviation for a set of values. The return type is
always a double. STDEV_SAMP is a synonym for STDDEV.

Syntax

STDDEV([ALL | DISTINCT] numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

If ALL is specified, the standard deviation is calculated for all data in the set.

If DISTINCT is specified, all duplicates are ignored in the calculation.

If nothing is specified (the default), all data is considered.

The STDDEV function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

STDDEV_POP
This function returns the standard deviation for a set of values using the
computational formula for population variance and standard deviation.

Syntax

STDDEV_POP([ALL | DISTINCT] numExpr)

Aggregate, Running Aggregate, and Time Series Functions

Logical SQL Reference C-31

Where:

numExpr is any expression that evaluates to a numeric value.

If ALL is specified, the standard deviation is calculated for all data in the set.

If DISTINCT is specified, all duplicates are ignored in the calculation.

If nothing is specified (the default), all data is considered.

SUM
This function calculates the sum obtained by adding up all values satisfying the
numeric expression argument.

Syntax

SUM(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

The SUM function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

SUMDISTINCT
This function calculates the sum obtained by adding all of the distinct values satisfying
the numeric expression argument.

Syntax

SUM(DISTINCT numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

TOPN
This function ranks the highest n values of the expression argument from 1 to n, 1
corresponding to the highest numeric value. The TOPN function operates on the values
returned in the result set. A request can contain only one TOPN expression.

Syntax

TOPN(numExpr, integer)

Where:

numExpr is any expression that evaluates to a numeric value.

integer is any positive integer. Represents the top number of rankings displayed in
the result set, 1 being the highest rank.

The TOPN function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

Running Aggregate Functions
Running aggregate functions are similar to functional aggregates in that they take a set
of records as input, but instead of outputting the single aggregate for the entire set of
records, they output the aggregate based on records encountered so far.

Aggregate, Running Aggregate, and Time Series Functions

C-32 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

This section describes the running aggregate functions supported by the Oracle BI
Server. Functions include:

■ MAVG

■ MSUM

■ RSUM

■ RCOUNT

■ RMAX

■ RMIN

MAVG
This function calculates a moving average (mean) for the last n rows of data in the
result set, inclusive of the current row.

The average for the first row is equal to the numeric expression for the first row. The
average for the second row is calculated by taking the average of the first two rows of
data. The average for the third row is calculated by taking the average of the first three
rows of data, and so on until you reach the nth row, where the average is calculated
based on the last n rows of data.

Syntax

MAVG(numExpr, integer)

Where:

numExpr is any expression that evaluates to a numeric value.

integer is any positive integer. Represents the average of the last n rows of data.

The MAVG function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

MSUM
This function calculates a moving sum for the last n rows of data, inclusive of the
current row.

The sum for the first row is equal to the numeric expression for the first row. The sum
for the second row is calculated by taking the sum of the first two rows of data. The
sum for the third row is calculated by taking the sum of the first three rows of data,
and so on. When the nth row is reached, the sum is calculated based on the last n rows
of data.

Syntax

MSUM(numExpr, integer)

Where:

numExpr is any expression that evaluates to a numeric value.

integer is any positive integer. Represents the average of the last n rows of data.

The MSUM function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

Example

Aggregate, Running Aggregate, and Time Series Functions

Logical SQL Reference C-33

This example shows a query that uses the MSUM function, along with example query
results.

select month, revenue, MSUM(revenue, 3) as 3_MO_SUM from sales_subject_area

Result:

MONTH REVENUE 3_MO_SUM
JAN 100.00 100.00
FEB 200.00 300.00
MAR 100.00 400.00
APRIL 100.00 400.00
MAY 300.00 500.00
JUNE 400.00 800.00
JULY 500.00 1200.00
AUG 500.00 1400.00
SEPT 500.00 1500.00
OCT 300.00 1300.00
NOV 200.00 1000.00
DEC 100.00 600.00

RSUM
This function calculates a running sum based on records encountered so far. The sum
for the first row is equal to the numeric expression for the first row. The sum for the
second row is calculated by taking the sum of the first two rows of data. The sum for
the third row is calculated by taking the sum of the first three rows of data, and so on.

Syntax

RSUM(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

The RSUM function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

Example

This example shows a query that uses the RSUM function, along with example query
results.

SELECT month, revenue, RSUM(revenue) as RUNNING_SUM from sales_subject_area

Result:

MONTH REVENUE RUNNING_SUM
JAN 100.00 100.00
FEB 200.00 300.00
MAR 100.00 400.00
APRIL 100.00 500.00
MAY 300.00 800.00
JUNE 400.00 1200.00
JULY 500.00 1700.00
AUG 500.00 2200.00
SEPT 500.00 2700.00
OCT 300.00 3000.00
NOV 200.00 3200.00
DEC 100.00 3300.00

Aggregate, Running Aggregate, and Time Series Functions

C-34 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

RCOUNT
This function takes a set of records as input and counts the number of records
encountered so far.

Syntax

RCOUNT(expr)

Where:

expr is an expression of any data type.

The RCOUNT function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

Example

This example shows a query that uses the RCOUNT function, along with example query
results.

select month, profit, RCOUNT(profit) from sales_subject_area where profit > 200

Result:

MONTH PROFIT RCOUNT(profit)
MAY 300.00 2
JUNE 400.00 3
JULY 500.00 4
AUG 500.00 5
SEPT 500.00 6
OCT 300.00 7

RMAX
This function takes a set of records as input and shows the maximum value based on
records encountered so far. The specified data type must be one that can be ordered.

Syntax

RMAX(expr)

Where:

expr is an expression of any data type. The data type must be one that has an
associated sort order.

The RMAX function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

Example

This example shows a query that uses the RMAX function, along with example query
results.

SELECT month, profit, RMAX(profit) from sales_subject_area

Result:

MONTH PROFIT RMAX(profit)
JAN 100.00 100.00
FEB 200.00 200.00
MAR 100.00 200.00
APRIL 100.00 200.00

Aggregate, Running Aggregate, and Time Series Functions

Logical SQL Reference C-35

MAY 300.00 300.00
JUNE 400.00 400.00
JULY 500.00 500.00
AUG 500.00 500.00
SEPT 500.00 500.00
OCT 300.00 500.00
NOV 200.00 500.00
DEC 100.00 500.00

RMIN
This function takes a set of records as input and shows the minimum value based on
records encountered so far. The specified data type must be one that can be ordered.

Syntax

RMIN(expr)

Where:

expr is an expression of any data type. The data type must be one that has an
associated sort order.

The RMIN function resets its values for each group in the query according to specific
rules. See "Display Function Reset Behavior" for more information.

Example

This example shows a query that uses the RMIN function, along with example query
results.

select month, profit, RMIN(profit) from sales_subject_area

Result:

MONTH PROFIT RMIN(profit)
JAN 400.00 400.00
FEB 200.00 200.00
MAR 100.00 100.00
APRIL 100.00 100.00
MAY 300.00 100.00
JUNE 400.00 100.00
JULY 500.00 100.00
AUG 500.00 100.00
SEPT 500.00 100.00
OCT 300.00 100.00
NOV 200.00 100.00
DEC 100.00 100.00

Time Series Functions
Time series functions operate on time-oriented dimensions. The time series functions
calculate AGO, TODATE, and PERIODROLLING functions based on user supplied
calendar tables, not on standard SQL date manipulation functions.

These functions let you use Expression Builder to call a logical function to perform
time series calculations instead of aliasing physical tables and modeling logically.

To use time series functions on a particular dimension, you must designate the
dimension as a Time dimension and set one or more keys at one or more levels as
chronological keys. See "Modeling Time Series Data" for more information.

Aggregate, Running Aggregate, and Time Series Functions

C-36 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Functions include:

■ AGO

■ PERIODROLLING

■ TODATE

AGO
This function is a time series aggregation function that calculates the aggregated value
from the current time back to a specified time period. For example, AGO can produce
sales for every month of the current quarter and the corresponding quarter-ago sales.

Time series functions operate on members of time dimensions which are at or below
the level of the function. Because of this, one or more columns that uniquely identify
members at or below the given level must be projected in the query. Alternatively, you
can apply a filter to the query that specifies a single member at or below the given
level. See "Determining the Level Used by the AGO Function" for more information
about the level of the function.

If unsupported metrics are requested, NULL values are returned and a warning entry
is written to the nqquery.log file when the logging level equals three or above.

Multiple AGO functions can be nested if all the AGO functions have the same level
argument. You can nest exactly one TODATE and multiple AGO functions if they each
have the same level argument.

Syntax

AGO(expr, [time_level], offset)

Where:

expr is an expression that references at least one measure column.

time_level is an optional argument that specifies the type of time period, such as
quarter, month, or year.

offset is an integer literal that represents the time shift amount.

Example

The following example returns last year's sales:

SELECT Year_ID, AGO(sales, year, 1)

Determining the Level Used by the AGO Function The unit of time (offset) used in the AGO
function is called the level of the function. This value is determined by the measure
level of the measures in its first argument, the AGO level (optionally specified within
the function), and the query level of the query to which the function belongs.

■ The measure level for the measure can be set in the Administration Tool. If a
measure level has been set for the measure used in the function, the measure level
is used as the level of the function. The measure level is also called the storage grain
of the function.

■ The AGO level can be optionally specified as the second argument of the function.
If a measure level has not been set in the Administration Tool, but an AGO level
has been specified, the AGO level is used as the level of the function. The AGO level
is also called the time series grain of the function.

Aggregate, Running Aggregate, and Time Series Functions

Logical SQL Reference C-37

■ If a measure level has not been set in the Administration Tool, and if no AGO level
has been set explicitly in the function, the query level is used as the level of the
function. The query level is also called the query grain of the function.

PERIODROLLING
This function computes the aggregate of a measure over the period starting x units of
time and ending y units of time from the current time. For example, you can use
PERIODROLLING to compute sales for a period that starts at a certain quarter before
and ends at a certain quarter after the current quarter.

Time series functions operate on members of time dimensions which are at or below
the level of the function. Because of this, one or more columns that uniquely identify
members at or below the given level must be projected in the query. Alternatively, you
can apply a filter to the query that specifies a single member at or below the given
level. See "Determining the Level Used by the PERIODROLLING Function" for more
information about the level of the function.

You cannot nest AGO and TODATE functions within a PERIODROLLING function. Also,
you cannot nest PERIODROLLING, FIRST, and LAST functions.

If you embed other aggregate functions (like RANK, TOPN, PERCENTILE, FILTER, or
RSUM) inside PERIODROLLING, the PERIODROLLING function is pushed inward. For
example, PERIODROLLING(TOPN(measure)) is executed as
TOPN(PERIODROLLING(measure)).

Syntax

PERIODROLLING(measure, x ,y [,hierarchy])

Where:

measure is the name of a measure column.

x is an integer that specifies the offset from the current time. Precede the integer with
a minus sign (-) to indicate an offset into the past.

y specifies the number of time units over which the function will compute. To specify
the current time, enter 0.

hierarchy is an optional argument that specifies the name of a hierarchy in a time
dimension, such as yr, mon, day, that you want to use to compute the time
window. This option is useful when there are multiple hierarchies in a time
dimension, or when you want to distinguish between multiple time dimensions.

If you want to roll back or forward the maximum possible amount, use the keyword
UNBOUND. For example, the function PERIODROLLING (measure, -UNBOUND, 0)
sums over the period starting from the beginning of time until now.

You can combine PERIODROLLING and AGGREGATE AT functions to specify the level
of the PERIODROLLING function explicitly. For example, if the query level is day but
you want to find the sum of the previous and current months, use the following:

SELECT year, month, day, PERIODROLLING(AGGREGATE(sales AT month), -1)

Examples

SELECT Month_ID, PERIODROLLING(monthly_sales, -1, 1)

SELECT Month_ID, PERIODROLLING(monthly_sales, -UNBOUND, 2)

SELECT Month_ID, PERIODROLLING(monthly_sales, -UNBOUND, UNBOUND)

Aggregate, Running Aggregate, and Time Series Functions

C-38 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Determining the Level Used by the PERIODROLLING Function The unit of time (offset) used
in the PERIODROLLING function is called the level of the function. This value is
determined by the measure level of the measures in its first argument and the query
level of the query to which the function belongs. The measure level for the measure
can be set in the Administration Tool. If a measure level has been set for the measure
used in the function, the measure level is used as the level of the function. The
measure level is also called the storage grain of the function.

If a measure level has not been set in the Administration Tool, then the query level is
used. The query level is also called the query grain of the function. In the following
example, the query level is month, and the PERIODROLLING function computes the
sum of the last, current, and next month for each city for the months of March and
April:

SELECT year, month, country, city, PERIODROLLING(sales, -1, 1)
WHERE month in ('Mar', 'Apr') AND city = 'New York'

When there are multiple hierarchies in the time dimension, you must specify the
hierarchy argument in the PERIODROLLING function. For example:

SELECT year, fiscal_year, month, PERIODROLLING(sales, -1, 1, "fiscal_time_
hierarchy")

In this example, the level of the PERIODROLLING function is fiscal_year.

TODATE
This function is a time series aggregation function that aggregates a measure from the
beginning of a specified time period to the currently displayed time. For example, this
function can calculate Year to Date sales.

Time series functions operate on members of time dimensions which are at or below
the level specified in the function. Because of this, one or more columns that uniquely
identify members at or below the given level must be projected in the query.
Alternatively, you can apply a filter to the query that specifies a single member at or
below the given level.

If unsupported metrics are requested, NULL values are returned and a warning entry
is written to the nqquery.log file when the logging level equals three or above.

A TODATE function may not be nested within another TODATE function. You can nest
exactly one TODATE and multiple AGO functions if they each have the same level
argument.

TODATE is different from the TO_DATE SQL function supported by some databases.
Do not use TO_DATE to change to a DATE data type. Instead, use the CAST function.
See "CAST" for more information.

Syntax

TODATE(expr, time_level)

Where:

expr is an expression that references at least one measure column.

time_level is the type of time period, such as quarter, month, or year.

Example

The following example returns the year-to-month sales:

String Functions

Logical SQL Reference C-39

SELECT Year_ID, Month_ID, TODATE(sales, year)

String Functions
String functions perform various character manipulations, and they operate on
character strings. Functions include:

■ ASCII

■ BIT_LENGTH

■ CHAR

■ CHAR_LENGTH

■ CONCAT

■ INSERT

■ LEFT

■ LENGTH

■ LOCATE

■ LOCATEN

■ LOWER

■ OCTET_LENGTH

■ POSITION

■ REPEAT

■ REPLACE

■ RIGHT

■ SPACE

■ SUBSTRING

■ TRIMBOTH

■ TRIMLEADING

■ TRIMTRAILING

■ UPPER

ASCII
This function converts a single character string to its corresponding ASCII code,
between 0 and 255. If the character expression evaluates to multiple characters, the
ASCII code corresponding to the first character in the expression is returned.

Syntax

ASCII(strExpr)

Where:

strExpr is any expression that evaluates to a character string.

String Functions

C-40 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

BIT_LENGTH
This function returns the length, in bits, of a specified string. Each Unicode character is
2 bytes in length (equal to 16 bits).

Syntax

BIT_LENGTH(strExpr)

Where:

strExpr is any expression that evaluates to character string.

CHAR
This function converts a numeric value between 0 and 255 to the character value
corresponding to the ASCII code.

Syntax

CHAR(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value between 0 and 255.

CHAR_LENGTH
This function returns the length, in number of characters, of a specified string. Leading
and trailing blanks are not counted in the length of the string.

Syntax

CHAR_LENGTH(strExpr)

Where:

strExpr is any expression that evaluates to a character string.

CONCAT
There are two forms of this function. The first form concatenates two character strings.
The second form uses the character string concatenation character to concatenate more
than two character strings.

Syntax for Form 1 (To Concatenate Two Strings)

CONCAT(strExpr1, strExpr2)

Where:

strExprs are expressions that evaluate to character strings, separated by commas.

Example

This example request returns the results shown.

SELECT DISTINCT CONCAT('abc', 'def') FROM employee
CONCAT('abc', 'def')

Result:

abcdef

String Functions

Logical SQL Reference C-41

Syntax for Form 2 (To Concatenate More Than Two Strings)

CONCAT(strExpr1, strExpr2 || strExpr3)

Where:

strExprs are expressions that evaluate to character strings, separated by commas
and the character string concatenation operator || (double vertical bars). First,
strExpr2 is concatenated with strExpr3 to produce an intermediate string, then
both strExpr1 and the intermediate string are concatenated by the CONCAT function
to produce the final string.

Example

This example request returns the results shown.

SELECT DISTINCT CONCAT('abc','def' || 'ghi') FROM employee

Result:

abcdefghi

INSERT
This function inserts a specified character string into a specified location in another
character string.

Syntax

INSERT(strExpr1, integer1, integer2, strExpr2)

Where:

strExpr1 is any expression that evaluates to a character string. Identifies the target
character string.

integer1 is any positive integer that represents the number of characters from the
beginning of the target string where the second string is to be inserted.

integer2 is any positive integer that represents the number of characters in the
target string to be replaced by the second string.

strExpr2 is any expression that evaluates to a character string. Identifies the
character string to be inserted into the target string.

Example

In the first string, starting at the second position (occupied by the number 2), three
characters (the numbers 2, 3, and 4) are replaced by the string abcd.

SELECT INSERT('123456', 2, 3, 'abcd') FROM table

Result:

1abcd56
1abcd56
...

LEFT
Returns a specified number of characters from the left of a string.

Syntax

String Functions

C-42 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

LEFT(strExpr, integer)

Where:

strExpr is any expression that evaluates to a character string.

integer is any positive integer that represents the number of characters from the left
of the string to return.

Example

This example returns the three leftmost characters from the character string 123456:

SELECT LEFT('123456', 3) FROM table

Result:

123
123
...

LENGTH
This function returns the length, in number of characters, of a specified string. The
length is returned excluding any trailing blank characters.

Syntax

LENGTH(strExpr)

Where:

strExpr is any expression that evaluates to a character string.

LOCATE
This function returns the numeric position of a character string in another character
string. If the character string is not found in the string being searched, the function
returns a value of 0.

If you want to specify a starting position to begin the search, use the LOCATEN
function instead. See "LOCATEN" for details.

Syntax

LOCATE(strExpr1, strExpr2)

Where:

strExpr1 is any expression that evaluates to a character string. Identifies the string
for which to search.

strExpr2 is any expression that evaluates to a character string. Identifies the string
to be searched.

Examples

This example returns 4 as the numeric position of the letter d in the character string
abcdef:

Locate('d', 'abcdef')

String Functions

Logical SQL Reference C-43

This example returns 0, because the letter g is not found within the string being
searched.

Locate('g', 'abcdef')

LOCATEN
This function returns the numeric position of a character string in another character
string. LOCATEN is identical to the LOCATE function, except that the search begins at
the position specified by an integer argument. If the character string is not found in the
string being searched, the function returns a value of 0. The numeric position to return
is determined by counting the first character in the string as occupying position 1,
regardless of the value of the integer argument.

Syntax

LOCATEN(strExpr1, strExpr2, integer)

Where:

strExpr1 is any expression that evaluates to a character string. Identifies the string
for which to search.

strExpr2 is any expression that evaluates to a character string. Identifies the string
to be searched.

integer is any positive (nonzero) integer that represents the starting position to
begin to look for the character string.

Examples

This example returns 4 as the numeric position of the letter d in the character string
abcdef. The search begins with the letter c, the third character in the string. The
numeric position to return is determined by counting the letter 'a' as occupying
position 1.

LOCATEN('d' 'abcdef', 3)

This example returns 0, because the letter b occurs in the string before the starting
position to begin the search.

LOCATEN('b' 'abcdef', 3)

LOWER
This function converts a character string to lowercase.

Syntax

LOWER(strExpr)

Where:

strExpr is any expression that evaluates to a character string.

OCTET_LENGTH
This function returns the number of bits, in base 8 units (number of bytes), of a
specified string.

Syntax

String Functions

C-44 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

OCTET_LENGTH(strExpr)

Where:

strExpr is any expression that evaluates to a character string.

POSITION
This function returns the numeric position of strExpr1 in a character expression. If
strExpr1 is not found, the function returns 0. See also "LOCATE" and "LOCATEN"
for related information.

Syntax

POSITION(strExpr1 IN strExpr2)

Where:

strExpr1 is any expression that evaluates to a character string. Identifies the string
to search for in the target string.

strExpr2 is any expression that evaluates to a character string. Identifies the target
string to be searched.

Examples

This example returns 4 as the position of the letter d in the character string abcdef:

POSITION('d', 'abcdef')

This example returns 0 as the position of the number 9 in the character string 123456,
because the number 9 is not found.

POSITION('9', '123456')

REPEAT
This function repeats a specified expression n times.

Syntax

REPEAT(strExpr, integer)

Where:

strExpr is any expression that evaluates to a character string.

integer is any positive integer that represents the number of times to repeat the
character string.

Example

This example repeats abc four times:

REPEAT('abc', 4)

REPLACE
This function replaces one or more characters from a specified character expression
with one or more other characters.

Syntax

String Functions

Logical SQL Reference C-45

REPLACE(strExpr1, strExpr2, strExpr3)

Where:

strExpr1 is any expression that evaluates to a character string. This is the string in
which characters are to be replaced.

strExpr2 is any expression that evaluates to a character string. This second string
identifies the characters from the first string that are to be replaced.

strExpr3 is any expression that evaluates to a character string. This third string
specifies the characters to substitute into the first string.

Example

In the character string abcd1234, the characters 123 are replaced by the character string
zz:

Replace('abcd1234', '123', 'zz')

Result:

abcdzz4

RIGHT
This function returns a specified number of characters from the right of a string.

Syntax

RIGHT(strExpr, integer)

Where:

strExpr is any expression that evaluates to a character string.

integer is any positive integer that represents the number of characters from the
right of the string to return.

Example

This example returns the three rightmost characters from the character string 123456:

SELECT right('123456', 3) FROM table

Result:

456

SPACE
This function inserts blank spaces.

Syntax

SPACE(integer)

Where:

integer is any positive integer that indicates the number of spaces to insert.

String Functions

C-46 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

SUBSTRING
This function creates a new string starting from a fixed number of characters into the
original string.

Syntax

SUBSTRING(strExpr FROM starting_position)

Where:

strExpr is any expression that evaluates to a character string.

starting_position is any positive integer that represents the number of
characters from the start of the left side of the string where the result is to begin.

TRIMBOTH
This function strips specified leading and trailing characters from a character string.

Syntax

TRIM(BOTH character FROM strExpr)

Where:

character is any single character. If you omit this specification (and the required
single quotes), a blank character is used as the default.

strExpr is any expression that evaluates to a character string.

TRIMLEADING
This function strips specified leading characters from a character string.

Syntax

TRIM(LEADING character FROM strExpr)

Where:

character is any single character. If you omit this specification (and the required
single quotes), a blank character is used as the default.

strExpr is any expression that evaluates to a character string.

TRIMTRAILING
This function strips specified trailing characters from a character string.

Syntax

TRIM(TRAILING character FROM strExpr)

Where:

character is any single character. If you omit this specification (and the required
single quotes), a blank character is used as the default.

strExpr is any expression that evaluates to a character string.

Math Functions

Logical SQL Reference C-47

UPPER
This function converts a character string to uppercase.

Syntax

UPPER(strExpr)

Where:

strExpr is any expression that evaluates to a character string.

Math Functions
The math functions perform mathematical operations. Functions include:

■ ABS

■ ACOS

■ ASIN

■ ATAN

■ ATAN2

■ CEILING

■ COS

■ COT

■ DEGREES

■ EXP

■ EXTRACTBIT

■ FLOOR

■ LOG

■ LOG10

■ MOD

■ PI

■ POWER

■ RADIANs

■ RAND

■ RANDFROMSEED

■ ROUND

■ SIGN

■ SIN

■ SQRT

■ TAN

■ TRUNCATE

Math Functions

C-48 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

ABS
This function calculates the absolute value of a numeric expression.

Syntax

ABS(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

ACOS
This function calculates the arc cosine of a numeric expression.

Syntax

ACOS(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

ASIN
This function calculates the arc sine of a numeric expression.

Syntax

ASIN(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

ATAN
This function calculates the arc tangent of a numeric expression.

Syntax

ATAN(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

ATAN2
This function calculates the arc tangent of y/x, where y is the first numeric expression
and x is the second numeric expression.

Syntax

ATAN2(numExpr1, numExpr2)

Where:

numExpr is any expression that evaluates to a numeric value.

Math Functions

Logical SQL Reference C-49

CEILING
This function rounds a noninteger numeric expression to the next highest integer. If
the numeric expression evaluates to an integer, the CEILING function returns that
integer.

Syntax

CEILING(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

COS
This function calculates the cosine of a numeric expression.

Syntax

COS(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

COT
This function calculates the cotangent of a numeric expression.

Syntax

COT(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

DEGREES
This function converts an expression from radians to degrees.

Syntax

DEGREES(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

EXP
This function sends the value to the power specified.

Syntax

EXP(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

Math Functions

C-50 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

EXTRACTBIT
This function retrieves a bit at a particular position in an integer. It returns an integer
of either 0 or 1 corresponding to the position of the bit. The primary use case for this
function is to extract 'cell status' in the Hyperion Financial Management cube source.
The EXTRACTBIT function cannot be pushed into any database, and is always
internally executed (in the Oracle BI Server).

Syntax
Int ExtractBit(Arg1, Arg2)

Where:

Arg1 is an expression of the following types: INT, SMALLINT, UNIT, SMALLUNIT,
TINYINT, TINYUNIT. If Arg1 is of double type, it is necessary to cast the column to an
INT first.

Arg2 is an expression of type integer. The value should range from 1 to length_of_Arg1.
1 retrieves the Least Significant Bit. If the Arg2 is beyond the length of the integer, then
0 is returned. An error message is triggered when the Arg2 is less than 1.

FLOOR
This function rounds a noninteger numeric expression to the next lowest integer. If the
numeric expression evaluates to an integer, the FLOOR function returns that integer.

Syntax

FLOOR(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

LOG
This function calculates the natural logarithm of an expression.

Syntax

LOG(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

LOG10
This function calculates the base 10 logarithm of an expression.

Syntax

LOG10(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

Math Functions

Logical SQL Reference C-51

MOD
This function divides the first numeric expression by the second numeric expression
and returns the remainder portion of the quotient.

Syntax

MOD(numExpr1, numExpr2)

Where:

numExpr is any expression that evaluates to a numeric value.

Examples

This example request returns a value of 0:

MOD(9, 3)

This example request returns a value of 1:

MOD(10, 3)

PI
This function returns the constant value of pi (the circumference of a circle divided by
its diameter).

Syntax

PI()

POWER
This function takes the first numeric expression and raises it to the power specified in
the second numeric expression.

Syntax

POWER(numExpr1, numExpr2)

Where:

numExpr1 is any expression that evaluates to a numeric value.

RADIANs
This function converts an expression from degrees to radians.

Syntax

RADIANS(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

RAND
Returns a pseudo-random number between 0 and 1.

Syntax

Math Functions

C-52 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

RAND()

RANDFROMSEED
Returns a pseudo-random number based on a seed value. For a given seed value, the
same set of random numbers are generated.

Syntax

RAND(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

ROUND
This function rounds a numeric expression to n digits of precision.

Syntax

ROUND(numExpr, integer)

Where:

numExpr is any expression that evaluates to a numeric value.

integer is any positive integer that represents the number of digits of precision.

Example

This example returns 2.17 as the result.

ROUND(2.166000, 2)

SIGN
This function returns the following:

■ A value of 1 if the numeric expression argument evaluates to a positive number.

■ A value of -1 if the numeric expression argument evaluates to a negative number.

■ 0 (zero) if the numeric expression argument evaluates to zero.

Syntax

SIGN(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

SIN
This function calculates the sine of a numeric expression.

Syntax

SIN(numExpr)

Where:

Calendar Date/Time Functions

Logical SQL Reference C-53

numExpr is any expression that evaluates to a numeric value.

SQRT
This function calculates the square root of the numeric expression argument. The
numeric expression must evaluate to a nonnegative number.

Syntax

SQRT(numExpr)

Where:

numExpr is any expression that evaluates to a nonnegative numeric value.

TAN
This function calculates the tangent of a numeric expression.

Syntax

TAN(numExpr)

Where:

numExpr is any expression that evaluates to a numeric value.

TRUNCATE
This function truncates a decimal number to return a specified number of places from
the decimal point.

Syntax

TRUNCATE(numExpr, integer)

Where:

numExpr is any expression that evaluates to a numeric value.

integer is any positive integer that represents the number of characters to the right
of the decimal place to return.

Examples

This example returns 45.12:

TRUNCATE(45.12345, 2)

This example returns 25.12:

TRUNCATE(25.126, 2)

Calendar Date/Time Functions
The calendar date/time functions manipulate data of the data types DATE and
DATETIME based on a calendar year. You must select these functions with another
column; they cannot be selected alone. Functions include:

■ CURRENT_DATE

■ CURRENT_TIME

Calendar Date/Time Functions

C-54 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ CURRENT_TIMESTAMP

■ DAY_OF_QUARTER

■ DAYNAME

■ DAYOFMONTH

■ DAYOFWEEK

■ DAYOFYEAR

■ HOUR

■ MINUTE

■ MONTH

■ MONTH_OF_QUARTER

■ MONTHNAME

■ NOW

■ QUARTER_OF_YEAR

■ SECOND

■ TIMESTAMPADD

■ TIMESTAMPDIFF

■ WEEK_OF_QUARTER

■ WEEK_OF_YEAR

■ YEAR

CURRENT_DATE
This function returns the current date. The date is determined by the system in which
the Oracle BI Server is running.

Syntax

CURRENT_DATE

CURRENT_TIME
This function returns the current time. The time is determined by the system in which
the Oracle BI Server is running.

Syntax

CURRENT_TIME(integer)

Where:

integer is any integer representing the number of digits of precision with which to
display the fractional second. The argument is optional; the function returns the
default precision when no argument is specified.

CURRENT_TIMESTAMP
This function returns the current date/timestamp. The timestamp is determined by the
system in which the Oracle BI Server is running.

Calendar Date/Time Functions

Logical SQL Reference C-55

Syntax

CURRENT_TIMESTAMP(integer)

Where:

integer is any integer representing the number of digits of precision with which to
display the fractional second. The argument is optional; the function returns the
default precision when no argument is specified.

DAY_OF_QUARTER
This function returns a number (between 1 and 92) corresponding to the day of the
quarter for the specified date.

Syntax

DAY_OF_QUARTER(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

DAYNAME
This function returns the name of the day of the week for a specified date.

Syntax

DAYNAME(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

DAYOFMONTH
This function returns the number corresponding to the day of the month for a
specified date.

Syntax

DAYOFMONTH(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

DAYOFWEEK
This function returns a number between 1 and 7 corresponding to the day of the week,
Sunday through Saturday, for a specified date. For example, the number 1
corresponds to Sunday, and the number 7 corresponds to Saturday.

Syntax

DAYOFWEEK(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

Calendar Date/Time Functions

C-56 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

DAYOFYEAR
This function returns the number (between 1 and 366) corresponding to the day of the
year for a specified date.

Syntax

DAYOFYEAR(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

HOUR
This function returns a number (between 0 and 23) corresponding to the hour for a
specified time. For example, 0 corresponds to 12 a.m. and 23 corresponds to 11 p.m.

Syntax

HOUR(timeExpr)

Where:

timeExpr is any expression that evaluates to a time.

MINUTE
This function returns a number (between 0 and 59) corresponding to the minute for a
specified time.

Syntax

MINUTE(timeExpr)

Where:

timeExpr is any expression that evaluates to a time.

MONTH
This function returns the number (between 1 and 12) corresponding to the month for a
specified date.

Syntax

MONTH(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

MONTH_OF_QUARTER
This function returns the number (between 1 and 3) corresponding to the month in the
quarter for a specified date.

Syntax

MONTH_OF_QUARTER(dateExpr)

Calendar Date/Time Functions

Logical SQL Reference C-57

Where:

dateExpr is any expression that evaluates to a date.

MONTHNAME
This function returns the name of the month for a specified date.

Syntax

MONTHNAME(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

NOW
This function returns the current timestamp. The NOW function is equivalent to the
CURRENT_TIMESTAMP function.

Syntax

NOW()

QUARTER_OF_YEAR
This function returns the number (between 1 and 4) corresponding to the quarter of
the year for a specified date.

Syntax

QUARTER_OF_YEAR(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

SECOND
This function returns the number (between 0 and 59) corresponding to the seconds for
a specified time.

Syntax

SECOND(timeExpr)

Where:

timeExpr is any expression that evaluates to a time.

TIMESTAMPADD
This function adds a specified number of intervals to a specified timestamp, and
returns a single timestamp.

In the simplest scenario, this function adds the specified integer value to the
appropriate component of the timestamp, based on the interval. Adding a week
translates to adding seven days, and adding a quarter translates to adding three
months. A negative integer value results in a subtraction (such as going back in time).

Calendar Date/Time Functions

C-58 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

An overflow of the specified component (such as more than 60 seconds, 24 hours, 12
months, and so on) necessitates adding an appropriate amount to the next component.
For example, when adding to the day component of a timestamp, this function
considers overflow and takes into account the number of days in a particular month
(including leap years when February has 29 days).

When adding to the month component of a timestamp, this function verifies that the
resulting timestamp has enough days for the day component. For example, adding 1
month to 2000-05-31 does not result in 2000-06-31 because June does not have 31 days.
This function reduces the day component to the last day of the month, 2000-06-30 in
this example.

A similar issue arises when adding to the year component of a timestamp having a
month component of February and a day component of 29 (that is, last day of
February in a leap year). If the resulting timestamp does not fall on a leap year, the
function reduces the day component to 28.

These actions conform to the behavior of Microsoft SQL Server and the native OCI
interface for Oracle Database.

Syntax

TIMESTAMPADD(interval, intExpr, timestamp)

Where:

interval is the specified interval. Valid values are:

■ SQL_TSI_SECOND

■ SQL_TSI_MINUTE

■ SQL_TSI_HOUR

■ SQL_TSI_DAY

■ SQL_TSI_WEEK

■ SQL_TSI_MONTH

■ SQL_TSI_QUARTER

■ SQL_TSI_YEAR

intExpr is any expression that evaluates to an integer value.

timestamp is any valid timestamp. This value is used as the base in the calculation.

A null integer expression or a null timestamp passed to this function results in a null
return value.

Examples

The following query asks for the resulting timestamp when 3 days are added to
2000-02-27 14:30:00. Since February, 2000 is a leap year, the query returns a single
timestamp of 2000-03-01 14:30:00.

SELECT TIMESTAMPADD(SQL_TSI_DAY, 3, TIMESTAMP'2000-02-27 14:30:00')
FROM Employee WHERE employeeid = 2;

The following query asks for the resulting timestamp when 7 months are added to
1999-07-31 0:0:0. The query returns a single timestamp of 2000-02-29 00:00:00. Notice
the reduction of day component to 29 because of the shorter month of February.

SELECT TIMESTAMPADD(SQL_TSI_MONTH, 7, TIMESTAMP'1999-07-31 00:00:00')

Calendar Date/Time Functions

Logical SQL Reference C-59

FROM Employee WHERE employeeid = 2;

The following query asks for the resulting timestamp when 25 minutes are added to
2000-07-31 23:35:00. The query returns a single timestamp of 2000-08-01 00:00:00.
Notice the propagation of overflow through the month component.

SELECT TIMESTAMPADD(SQL_TSI_MINUTE, 25, TIMESTAMP'2000-07-31 23:35:00')
FROM Employee WHERE employeeid = 2;

TIMESTAMPDIFF
This function returns the total number of specified intervals between two timestamps.

This function first determines the timestamp component that corresponds to the
specified interval parameter, and then looks at the higher order components of both
timestamps to calculate the total number of intervals for each timestamp. For example,
if the specified interval corresponds to the month component, the function calculates
the total number of months for each timestamp by adding the month component and
twelve times the year component. Then the function subtracts the first timestamp's
total number of intervals from the second timestamp's total number of intervals.

 The TIMESTAMPDIFF function rounds up to the next integer whenever fractional
intervals represent a crossing of an interval boundary. For example, the difference in
years between 1999-12-31 and 2000-01-01 is one year because the fractional year
represents a crossing from one year to the next (such as 1999 to 2000). By contrast, the
difference between 1999-01-01 and 1999-12-31 is zero years because the fractional
interval falls entirely within a particular year (that is, 1999). Microsoft SQL Server
exhibits the same rounding behavior, but IBM DB2 does not; it always rounds down.

When calculating the difference in weeks, the function calculates the difference in days
and divides by seven before rounding. Additionally, the function takes into account
how the parameter FIRST_DAY_OF_THE_WEEK has been configured in the
NQSConfig.INI file. For example, with Sunday as the start of the week, the difference
in weeks between 2000-07-06 (a Thursday) and 2000-07-10 (the following Monday)
results in a value of 1 week. With Tuesday as the start of the week, however, the
function would return zero weeks since the fractional interval falls entirely within a
particular week. When calculating the difference in quarters, the function calculates
the difference in months and divides by three before rounding.

The Oracle BI Server pushes down the TIMESTAMPADD and TIMESTAMPDIFF
functions to Microsoft SQL Server, Oracle Database, IBM DB2, and ODBC databases
by default.

Syntax

TIMESTAMPDIFF(interval, timestamp1, timestamp2)

Where:

interval is the specified interval. Valid values are:

■ SQL_TSI_SECOND

Caution: The TIMESTAMPADD function is turned on by default for
Microsoft SQL Server, ODBC, IBM DB2, and Oracle databases.
Because DB2 and Oracle semantics do not fully support this function,
the answers from this function might not match with what the Oracle
BI Server computes.

Calendar Date/Time Functions

C-60 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ SQL_TSI_MINUTE

■ SQL_TSI_HOUR

■ SQL_TSI_DAY

■ SQL_TSI_WEEK

■ SQL_TSI_MONTH

■ SQL_TSI_QUARTER

■ SQL_TSI_YEAR

timestamp1 and timestamp2 are any valid timestamps.

A null timestamp parameter passed to this function results in a null return value.

Example

The following example query asks for a difference in days between timestamps
1998-07-31 23:35:00 and 2000-04-01 14:24:00. It returns a value of 610. Notice that the
leap year in 2000 results in an additional day.

SELECT TIMESTAMPDIFF
(SQL_TSI_DAY, TIMESTAMP'1998-07-31 23:35:00',TIMESTAMP'2000-04-01 14:24:00')
FROM Employee WHERE employeeid = 2;

WEEK_OF_QUARTER
This function returns a number (between 1 and 13) corresponding to the week of the
quarter for the specified date.

Syntax

WEEK_OF_QUARTER(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

WEEK_OF_YEAR
This function returns a number (between 1 and 53) corresponding to the week of the
year for the specified date.

Syntax

WEEK_OF_YEAR(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

Caution: The TIMESTAMPDIFF function is turned on by default for
Microsoft SQL Server, ODBC, IBM DB2, and Oracle databases.
Because DB2 and Oracle semantics do not fully support this function,
the answers from this function might not match with what the Oracle
BI Server computes.

Conversion Functions

Logical SQL Reference C-61

YEAR
This function returns the year for the specified date.

Syntax

YEAR(dateExpr)

Where:

dateExpr is any expression that evaluates to a date.

Conversion Functions
The conversion functions convert a value from one form to another. You can also use
the VALUEOF function in a filter to reference the value of an Oracle BI system variable.
Functions include:

■ CAST

■ CHOOSE

■ IFNULL

■ INDEXCOL

■ TO_DATETIME

■ VALUEOF

CAST
This function changes the data type of an expression or a null literal to another data
type. For example, you can cast a customer_name (a data type of Char or Varchar) or
birthdate (a datetime literal). The following are the supported data types to which the
value can be changed:

CHARACTER, VARCHAR, INTEGER, FLOAT, SMALLINT, DOUBLE PRECISION, DATE, TIME,
TIMESTAMP, BIT, BIT VARYING

Depending on the source data type, some destination types are not supported. For
example, if the source data type is a BIT string, the destination data type must be a
character string or another BIT string.

Use CAST to change to a DATE data type. Do not use TO_DATE.

The following describes unique characteristics of the CHAR and VARCHAR data types:

■ Casting to a CHAR data type. You must use a size parameter. If you do not add a
size parameter, a default of 30 is added. Syntax options appear in the following
list:

– The recommended syntax is:

CAST(expr|NULL AS CHAR(n))

For example:

CAST(companyname AS CHAR(35))

– You can also use the following syntax:

CAST(expr|NULL AS data_type)

Conversion Functions

C-62 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

For example:

CAST(companyname AS CHAR)

■ Casting to a VARCHAR data type. You must use a size parameter. If you omit the
size parameter, you cannot can save the change.

Examples

CAST(hiredate AS CHAR(40)) FROM employee

SELECT CAST(hiredate AS VARCHAR(40)), CAST(age AS double precision), CAST(hiredate
AS timestamp), CAST(age AS integer) FROM employee

CAST("db"."."table"."col" AS date)

CHOOSE
This function takes an arbitrary number of parameters and returns the first item in the
list that the user has permission to see. However, administrators must model the
column permissions in the Administration Tool to enable this behavior. See
"INDEXCOL" for an alternate method.

Syntax

CHOOSE(expr1, expr2, ..., exprN)

For example, a single query can be written to return security-based revenue numbers
for the entire organization. The function could look like the following:

CHOOSE(L1-Revenue, L2-Revenue, L3-Revenue, L4-Revenue)

If the user issuing this function has access to the column L1-Revenue, then that column
value would be returned. If the user does not have visibility to the column L1-Revenue
but does have visibility to L2-Revenue, then L2-Revenue is returned.

IFNULL
This function tests if an expression evaluates to a null value, and if it does, assigns the
specified value to the expression.

Syntax

IFNULL(expr, value)

Where:

expr is the expression to evaluate.

value is the value to assign if the expression evaluates to a null value.

INDEXCOL
This function can use external information to return the appropriate column for the
logged-in user to see. The Oracle BI Server handles this function in the following ways:

Note: If you use this syntax, the Oracle BI Server explicitly converts
and stores as CAST(expr|NULL AS CHAR(30))

Conversion Functions

Logical SQL Reference C-63

■ ODBC Procedures. NQSGetLevelDrillability and
NQSGenerateDrillDownQuery return the context-specific drill-down
information based on the expression translated from INDEXCOL. This applies to
both INDEXCOL expressions specified in the Logical SQL query and INDEXCOL
expressions specified in a derived logical column.

■ Query Log and cache. The Logical SQL query with INDEXCOL function appears in
the SQL string in the query log. But the logical request does not show the
INDEXCOL function because the Oracle BI Server translates INDEXCOL to one of
the expressions in its expression list in the logical request generator.

The query cache uses the resulting translated expression for cache hit detection.

■ Usage Tracking. Usage tracking inserts the Logical SQL query string with the
INDEXCOL function.

■ Security. As long as the user has the privileges to access the columns in the
expression translated from INDEXCOL, then the query executes.

When the first argument to INDEXCOL is a session variable and if a default
expression is expected to be returned even if the initialization block fails, then you
should set a default value for the session variable. Otherwise, the query fails
because the session variable has no value definition.

Syntax

INDEXCOL(integer_literal, expr_list)

Where:

expr_list equals the following:

expr1 [, expr_list]

The INDEXCOL function takes in an integer literal value as its first argument, followed
by a variable length expression list and translates to a single expression from the
expression list. The literal value is the 0-based index of the expression in the
expression list to translate to. Consider the following expression:

INDEXCOL(integer_literal, expr1, expr2, …)

If the literal value is 0, the above expression is equivalent to expr1. If the literal value
is 1, then the value is equivalent to expr2, and so on.

The primary use case for INDEXCOL is for the first argument to contain a session
variable. Specifying a constant literal would result in INDEXCOL always choosing the
same expression.

Example With Hierarchy Levels
Company ABC has a geography dimension with the hierarchy Country, State, City.
The CEO can access the Country level down to the City level, and the sales manager
can access the State and City levels, and the sales people can only access the City level.
Table C–2 shows the back-end database for Company ABC.

Table C–2 IndexCol Example of Back-End Database

USER_NAME TITLE GEO_LEVEL CURRENCY CURRENCY_COL

Bob CEO 0 US Dollars 0

Harriet Sales Manager 1 Japanese Yen 1

Conversion Functions

C-64 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

The following steps illustrate one way to create a single query where each user sees
the top level to which they have access:

■ The administrator creates a new session variable called GEOOGRAPHY_LEVEL that
is populated by the following initialization block: SELECT GEO_LEVEL from T
where USER_NAME = ':USER'.

This assumes that the Oracle BI Server instance has the same user names.

■ Using SELECT INDEXCOL(VALUEOF(NQ_SESSION.GEOGRAPHY_LEVEL),
Country, State, City), Revenue FROM Sales, the following occurs:

– Bob logs in and INDEXCOL translates to the Country column because the
GEOGRAPHY_LEVEL session variable is 0. He gets the same result and can drill
down on Country to State as if he had used SELECT Country, Revenue
FROM Sales.

– Jackson logs in and INDEXCOL translates to the State column because the
GEOGRAPHY_LEVEL session variable for Jackson is 1. He gets the same result
and can drill down on State to City as if he had used SELECT State,
Revenue FROM Sales.

– Mike logs in and INDEXCOL translates to the City column because the
GEOGRAPHY_LEVEL session variable for Mike is 2. He gets the same result and
cannot drill down on City as if he had used SELECT City, Revenue FROM
Sales.

TO_DATETIME
This function converts string literals of dateTime format to a DateTime data type.

Syntax

TO_DATETIME('string1', 'DateTime_formatting_string')

Where:

string1 is the string literal you want to convert

DateTime_formatting_string is the DateTime format you want to use, such as
yyyy.mm.dd hh:mi:ss. For this argument, yyyy represents year, mm represents month,
dd represents day, hh represents hour, mi represents minutes, and ss represents
seconds.

Examples

SELECT TO_DATETIME('2009-03-03 01:01:00', 'yyyy-mm-dd hh:mi:ss') FROM
snowflakesales

SELECT TO_DATETIME('2009.03.03 01:01:00', 'yyyy.mm.dd hh:mi:ss') FROM
snowflakesales

Jackson Sales Manager 1 Japanese Yen 1

Mike Sales Person 2 Japanese Yen 1

Jim Sales Person 2 US Dollars 0

Table C–2 (Cont.) IndexCol Example of Back-End Database

USER_NAME TITLE GEO_LEVEL CURRENCY CURRENCY_COL

Database Functions

Logical SQL Reference C-65

VALUEOF
Use the VALUEOF function to reference the value of a repository variable. Repository
variables are defined using the Administration Tool. You can use the VALUEOF
function both in Expression Builder in the Administration Tool, and when you edit the
SQL statements for an analysis from the Advanced tab of the Analysis editor in
Answers.

Syntax

Variables should be used as arguments of the VALUEOF function. Refer to static
repository variables by name. Note that variable names are case sensitive. For
example, to use the value of a static repository variables named prime_begin and
prime_end:

CASE WHEN "Hour" >= VALUEOF("prime_begin")AND "Hour" < VALUEOF("prime_end") THEN
'Prime Time' WHEN ... ELSE...END

You must refer to a dynamic repository variable by its fully qualified name. If you are
using a dynamic repository variable, the names of the initialization block and the
repository variable must be enclosed in double quotes ("), separated by a period, and
contained within parentheses. For example, to use the value of a dynamic repository
variable named REGION contained in an initialization block named Region Security,
use the following syntax:

SalesSubjectArea.Customer.Region = VALUEOF("Region Security"."REGION")

The names of session variables must be preceded by NQ_SESSION, separated by a
period, and contained within parentheses, including the NQ_SESSION portion. If the
variable name contains a space, enclose the name in double quotes ("). For example,
to use the value of a session variable named REGION, use the following syntax in
Expression Builder or a filter:

"SalesSubjectArea"."Customer"."Region" = VALUEOF(NQ_SESSION.REGION)

Although using initialization block names with session variables (just as with other
repository variables) may work, you should use NQ_SESSION. NQ_SESSION acts like
a wildcard that matches all initialization block names. This lets you change the
structure of the initialization blocks in a localized manner without impacting requests.

Database Functions
Users and administrators can create requests by directly calling database functions
from either Oracle BI Answers, or by using a logical column (in the logical table
source) within the metadata repository. Key uses for these functions include the ability
to pass through expressions to get advanced calculations, as well as the ability to
access custom written functions or procedures on the underlying database.

Support for database functions does not currently extend across all multidimensional
sources. Also, you cannot use these functions with XML data sources.

Functions include:

■ EVALUATE

■ EVALUATE_ANALYTIC

■ EVALUATE_AGGR

■ EVALUATE_PREDICATE

Database Functions

C-66 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

EVALUATE
This function passes the specified database function with optional referenced columns
as parameters to the back-end data source for evaluation. This function is intended for
scalar calculations, and is useful when you want to use a specialized database function
that is not supported by the Oracle BI Server, but that is understood by the underlying
data source.

The embedded database function may require one or more columns. These columns
are referenced by %1 ... %N within the function. The actual columns must be listed
after the function.

Syntax

EVALUATE('db_function(%1...%N)' [AS data_type] [, column1, columnN])

Where:

db_function is any valid database function understood by the underlying data
source.

data_type is an optional parameter that specifies the data type of the return result.
Use this parameter whenever the return data type cannot be reliably predicted from
the input arguments. However, do not use this parameter for type casting; if the
function needs to return a particular data type, add an explicit cast. You can typically
omit this parameter when the database-specific function has a return type not
supported by the Oracle BI Server, but is used to generate an intermediate result that
does not need to be returned to the Oracle BI Server.

column1 through columnN is an optional, comma-delimited list of columns.

Examples

This example shows an embedded database function.

SELECT EVALUATE('instr(%1, %2)', address, 'Foster City') FROM employees

Examples Using EVALUATE_AGGREGATE and EVALUATE to Leverage Unique
Essbase Functions
The following examples use the EVALUATE_AGGREGATE and EVALUATE functions.
Note that expressions are applied to columns in the logical table source that refers to
the physical cube.

Use EVALUATE_AGGREGATE to implement custom aggregations. For example, you
may want to compare overall regional profit to profits for the top three products in the
region. You can define a new measure to represent the profits for top three products
resulting in the Logical SQL statement:

SELECT Region, Profit, EVALUATE_AGGREGATE('SUM(TopCount(%1.members, 3, %2), %3)',
Products, Profit, Profit) Top_3_prod_Profit FROM SampleBasic

The Oracle BI Server generates the following expression for the custom aggregation:

member [Measures].[MS1] AS
'SUM(Topcount([Product].Generations(6).members,3,[Measures].[Profit]),[Measures].[
Profit])'

Use the EVALUATE function on projected dimensions to implement scalar functions
that are computed post-aggregation. EVALUATE may change the grain of the query, if
its definition makes explicit references to dimensions (or attributes) that are not in the
query.

Database Functions

Logical SQL Reference C-67

For example, if you would like to see the Profits for the top five products ranked by
Sales sold in a Region, after creating the applicable measure, the resulting Logical SQL
statement is as follows

SELECT Region, EVALUATE('TopCount(%1.members, 5, %2)' as VARCHAR(20), Products,
Sales), Profits
FROM SampleBasic

The Oracle BI Server generates the following expression to retrieve the top five
products:

set [Evaluate0] as
'{Topcount([Product].Generations(6).members,5,[Measures].[Sales]) }'

EVALUATE_ANALYTIC
This function passes the specified database analytic function with optional referenced
columns as parameters to the back-end data source for evaluation.

The embedded database function may require one or more columns. These columns
are referenced by %1 ... %N within the function. The actual columns must be listed
after the function.

Syntax

EVALUATE_ANALYTIC('db_function(%1...%N)' [AS data_type] [, column1, columnN])

Where:

db_function is any valid database analytic function understood by the underlying
data source.

data_type is an optional parameter that specifies the data type of the return result.
Use this parameter whenever the return data type cannot be reliably predicted from
the input arguments. However, do not use this parameter for type casting; if the
function needs to return a particular data type, add an explicit cast. You can typically
omit this parameter when the database-specific analytic function has a return type not
supported by the Oracle BI Server, but is used to generate an intermediate result that
does not need to be returned to the Oracle BI Server.

column1 through columnN is an optional, comma-delimited list of columns.

Examples

This example shows an embedded database analytic function.

EVALUATE_ANALYTIC('dense_rank() over(order by %1)' AS INT,sales.revenue)

If the preceding example needs to return a double, then an explicit cast should be
added, as follows:

CAST(EVALUATE_ANALYTIC('Rank(%1.dimension.currentmember, %2.members)',
"Foodmart93"."Time"."Month" as Double)

EVALUATE_AGGR
This function passes the specified database function with optional referenced columns
as parameters to the back-end data source for evaluation. This function is intended for
aggregate functions with a GROUP BY clause.

Database Functions

C-68 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

The embedded database function may require one or more columns. These columns
are referenced by %1 ... %N within the function. The actual columns must be listed
after the function.

Syntax

EVALUATE_AGGR('db_agg_function(%1...%N)' [AS data_type] [, column1, columnN)

Where:

db_agg_function is any valid aggregate database function understood by the
underlying data source.

data_type is an optional parameter that specifies the data type of the return result.
Use this parameter whenever the return data type cannot be reliably predicted from
the input arguments. However, do not use this parameter for type casting; if the
function needs to return a particular data type, add an explicit cast. You can typically
omit this parameter when the database-specific function has a return type not
supported by the Oracle BI Server, but is used to generate an intermediate result that
does not need to be returned to the Oracle BI Server.

column1 through columnN is an optional, comma-delimited list of columns.

Example

EVALUATE_AGGR('REGR_SLOPE(%1, %2)', sales.quantity, market.marketkey)

EVALUATE_PREDICATE
This function passes the specified database function with optional referenced columns
as parameters to the back-end data source for evaluation. This function is intended for
functions with a return type of Boolean.

The embedded database function may require one or more columns. These columns
are referenced by %1 ... %N within the function. The actual columns must be listed
after the function.

Note that EVALUATE_PREDICATE is not supported for use with Essbase data sources.

Syntax

EVALUATE_PREDICATE('db_function(%1...%N)', [, column1, columnN)

Where:

db_function is any valid database function with a return type of Boolean that is
understood by the underlying data source.

column1 through columnN is an optional, comma-delimited list of columns.

If you want to model a database function for comparison purposes, you should not
use EVALUATE_PREDICATE. Instead, use EVALUATE and put the comparison outside
the function. For example, do not use EVALUATE_PREDICATE as follows:

EVALUATE_PREDICATE('dense_rank() over (order by 1%) < 5', sales.revenue)

Instead, use EVALUATE, as follows:

EVALUATE('dense_rank() over (order by 1%) ', sales.revenue) < 5

Example
SELECT year, Sales AS DOUBLE,CAST(EVALUATE('OLAP_EXPRESSION(%1,''LAG(units_cube_
sales, 1, time, time LEVELREL time_levelrel)'')', OLAP_CALC) AS DOUBLE) FROM

Hierarchy Navigation Functions

Logical SQL Reference C-69

"Global".Time, "Global"."Facts - sales" WHERE EVALUATE_PREDICATE('OLAP_
CONDITION(%1, ''LIMIT time KEEP ''''1'''', ''''2'''', ''''3'''', ''''4'''' '')
=1', OLAP_CALC) ORDER BY year;

Hierarchy Navigation Functions
The hierarchy navigation functions enable you to identify relationships between
members of hierarchies. The hierarchy navigation functions include:

■ ISANCESTOR

■ ISCHILD

■ ISDESCENDANT

■ ISLEAF

■ ISPARENT

■ ISROOT

The ISLEAF function applies to both level-based and parent-child hierarchies, while
the other functions apply only to parent-child hierarchies.

See Chapter 9, "Working with Logical Dimensions" for information about level-based
and parent-child hierarchies, including information about creating parent-child
relationship tables (closure tables) for relational sources.

ISANCESTOR
The ISANCESTOR function enables you to find the ancestors of a member of a
parent-child hierarchy, either all the ancestors of a member, or the ancestors at a
specified hierarchical distance from the member.

Each member of the parent-child hierarchy is compared with the specified member to
determine if it is an ancestor. The ISANCESTOR function returns the Boolean value
True for each ancestor of the specified member, else it returns False.

You can use the ISANCESTOR function in a query both within CASE statements and in
WHERE clause conditions.

You can use the ISANCESTOR function in both Presentation layer queries, and in the
Business Model and Mapping layer (for example, when creating a derived column).
Note that the syntax of the function depends on where you are using it.

Presentation Layer Syntax

ISANCESTOR(pc_presentation_hierarchy, member_identifier [, distance])

Where:

pc_presentation_hierarchy identifies the fully qualified parent-child
presentation hierarchy, as follows:

"subject_area"."presentation_table"."pc_presentation_hierarchy"

The qualification term ("subject_area".) is optional unless there are multiple
presentation tables or presentation hierarchies with the same name in different subject
areas.

member_identifier is the string or numeric literal that identifies the member in
pc_presentation_hierarchy. The type of literal depends on the data type of the
dimension level keys.

Hierarchy Navigation Functions

C-70 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

distance (optional) is a positive integer that identifies the distance from the specified
member to the parent-child hierarchy level at which to search for ancestors.

By default, if distance is not specified, the ISANCESTOR function searches the
current parent-child level containing member_identifier and all levels above.

Business Model and Mapping Layer Syntax

ISANCESTOR(logical_dimension, member_identifier [, distance])

Where:

logical_dimension identifies the fully qualified dimension containing the
parent-child hierarchy, as follows:

"business_model"."dimension_name"

The qualification term ("business_model".) is optional unless there are multiple
dimensions with the same name in different business models.

member_identifier is the string or numeric literal that identifies the member in
logical_dimension. The type of literal depends on the data type of the dimension
level keys.

distance (optional) is a positive integer that identifies the distance from the specified
member to the parent-child hierarchy level at which to search for ancestors.

By default, if distance is not specified, the ISANCESTOR function searches the
current parent-child level containing member_identifier and all levels above.

Example

The following example selects all the ancestor employees of the employee Joe in a
parent-child hierarchy. The returned list includes the employee Joe.

SELECT emp_name
FROM "employees"
WHERE ISANCESTOR("employees"."emp_hierarchy", 'Joe')

ISCHILD
The ISCHILD function enables you to find the children of a member of a parent-child
hierarchy, that is, all the members that are one hierarchical level below the specified
member.

The ISCHILD function returns the Boolean value True for each child of the specified
member, else it returns False.

You can use the ISCHILD function in a query both within CASE statements and in
WHERE clause conditions.

You can use the ISCHILD function in both Presentation layer queries, and in the
Business Model and Mapping layer (for example, when creating a derived column).
Note that the syntax of the function depends on where you are using it.

Presentation Layer Syntax

ISCHILD(pc_presentation_hierarchy, member_identifier)

Note: The ISCHILD function is the same as the ISDESCENDANT
function with a distance parameter of 1.

Hierarchy Navigation Functions

Logical SQL Reference C-71

Where:

pc_presentation_hierarchy identifies the fully qualified parent-child
presentation hierarchy, as follows:

"subject_area"."presentation_table"."pc_presentation_hierarchy"

The qualification term ("subject_area".) is optional unless there are multiple
presentation tables or presentation hierarchies with the same name in different subject
areas.

member_identifier is the string or numeric literal that identifies the member in
pc_presentation_hierarchy. The type of literal depends on the data type of the
dimension level-keys.

Business Model and Mapping Layer Syntax

ISCHILD(logical_dimension, member_identifier)

Where:

logical_dimension identifies the fully qualified dimension containing the
parent-child hierarchy, as follows:

"business_model"."dimension_name"

The qualification term ("business_model".) is optional unless there are multiple
dimensions with the same name in different business models.

member_identifier is the string or numeric literal that identifies the member in
logical_dimension. The type of literal depends on the data type of the dimension
level keys.

Example

The following example selects all the children of the employee Joe in a parent-child
hierarchy.

SELECT emp_name
FROM "employees"
WHERE ISCHILD("employees"."emp_hierarchy", 'Joe')

ISDESCENDANT
The ISDESCENDANT function enables you to find the descendants of a member of a
parent-child hierarchy, either all the descendants of a member, or the descendants at a
specified hierarchical distance from the member.

Each member of the parent-child hierarchy is compared with the specified member to
determine if it is a descendant. The ISDESCENDANT function returns the Boolean
value True for each descendant of the specified member, else it returns False.

You can use the ISDESCENDANT function in a query both within CASE statements and
in WHERE clause conditions.

You can use the ISDESCENDANT function in both Presentation layer queries, and in
the Business Model and Mapping layer (for example, when creating a derived
column). Note that the syntax of the function depends on where you are using it.

Presentation Layer Syntax

ISDESCENDANT(pc_presentation_hierarchy, member_identifier [, distance])

Hierarchy Navigation Functions

C-72 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Where:

pc_presentation_hierarchy identifies the fully qualified parent-child
presentation hierarchy, as follows:

"subject_area"."presentation_table"."pc_presentation_hierarchy"

The qualification term ("subject_area".) is optional unless there are multiple
presentation tables or presentation hierarchies with the same name in different subject
areas.

member_identifier is the string or numeric literal that identifies the member in
pc_presentation_hierarchy. The type of literal depends on the data type of the
dimension level-keys.

distance (optional) is a positive integer, that identifies the distance from the
specified member to the parent-child hierarchy level at which to search for
descendants.

By default, if distance is not specified, the ISDESCENDANT function searches the
current parent-child level containing member_identifier and all levels below.

Business Model and Mapping Layer Syntax

ISDESCENDANT(logical_dimension, member_identifier [, distance])

Where:

logical_dimension identifies the fully qualified dimension containing the
parent-child hierarchy, as follows:

"business_model"."dimension_name"

The qualification term ("business_model".) is optional unless there are multiple
dimensions with the same name in different business models.

member_identifier is the string or numeric literal that identifies the member in
logical_dimension. The type of literal depends on the data type of the dimension
level-keys.

distance (optional) is a positive integer that identifies the distance from the specified
member to the parent-child hierarchy level at which to search for descendants.

By default, if distance is not specified, the ISDESCENDANT function searches the
current parent-child level containing member_identifier and all levels below.

Example

The following example selects all the descendant employees of the employee Joe in a
parent-child hierarchy. The returned list includes the employee Joe.

SELECT emp_name
FROM "employees"
WHERE ISDESCENDANT("employees"."emp_hierarchy", 'Joe')

ISLEAF
The ISLEAF function applies to both level-based and parent-child hierarchies. For
both types of hierarchy, a leaf member is defined as a member that has no child
members.

Hierarchy Navigation Functions

Logical SQL Reference C-73

Each member of the hierarchy is examined to determine if it is a leaf member. The
ISLEAF function returns the Boolean value True for each leaf member, else it returns
False.

You can use the ISLEAF function in a query both within CASE statements and in
WHERE clause conditions.

You can use the ISLEAF function in both Presentation layer queries, and in the
Business Model and Mapping layer (for example, when creating a derived column).
Note that the syntax of the function depends on where you are using it.

Presentation Layer Syntax

ISLEAF(presentation_hierarchy)

Where:

presentation_hierarchy identifies the fully qualified presentation hierarchy,
either level-based or parent-child, as follows:

"subject_area"."presentation_table"."presentation_hierarchy"

The qualification term ("subject_area".) is optional unless there are multiple
presentation tables or presentation hierarchies with the same name in different subject
areas.

Business Model and Mapping Layer Syntax

ISLEAF(logical_dimension)

Where:

logical_dimension identifies the fully qualified dimension containing the
hierarchy you want to navigate, either level-based or parent-child, as follows:

"business_model"."dimension_name"

The qualification term ("business_model".) is optional unless there are multiple
dimensions with the same name in different business models.

Example

The following example selects all the employees in a hierarchy that are leaf members,
that is, the employees who have no members below them in the hierarchy.

SELECT emp_name
FROM "employees"
WHERE ISLEAF("employees"."emp_hierarchy")

ISPARENT
The ISPARENT function enables you to find the parents of a member of a parent-child
hierarchy, that is, all the members that are one hierarchical level above the specified
member.

The ISPARENT function returns the Boolean value True for each parent of the
specified member, else it returns False.

Note: The ISPARENT function is the same as the ISANCESTOR
function with a distance parameter of 1.

Hierarchy Navigation Functions

C-74 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

You can use the ISPARENT function in a query both within CASE statements and in
WHERE clause conditions.

You can use the ISPARENT function in both Presentation layer queries, and in the
Business Model and Mapping layer (for example, when creating a derived column).
Note that the syntax of the function depends on where you are using it.

Presentation Layer Syntax

ISPARENT(pc_presentation_hierarchy, member_identifier)

Where:

pc_presentation_hierarchy identifies the fully qualified parent-child
presentation hierarchy, as follows:

"subject_area"."presentation_table"."pc_presentation_hierarchy"

The qualification term ("subject_area".) is optional unless there are multiple
presentation tables or presentation hierarchies with the same name in different subject
areas.

member_identifier is the string or numeric literal that identifies the member in
pc_presentation_hierarchy. The type of literal depends on the data type of the
dimension level keys.

Business Model and Mapping Layer Syntax

ISPARENT(logical_dimension, member_identifier)

Where:

logical_dimension identifies the fully qualified dimension containing the
parent-child hierarchy, as follows:

"business_model"."dimension_name"

The qualification term ("business_model".) is optional unless there are multiple
dimensions with the same name in different business models.

member_identifier is the string or numeric literal that identifies the member in
logical_dimension. The type of literal depends on the data type of the dimension
level keys.

Example

The following example selects all the parents of the employee Joe in a parent-child
hierarchy.

SELECT emp_name
FROM "employees"
WHERE ISPARENT("employees"."emp_hierarchy", 'Joe')

ISROOT
A presentation hierarchy member is defined as a root member if it has no ancestors
above it in a parent-child presentation hierarchy.

Each member of the parent-child hierarchy is examined to determine if it is a root
member. The ISROOT function returns the Boolean value True for each root member,
else it returns False.

System Functions

Logical SQL Reference C-75

You can use the ISROOT function in a query both within CASE statements and in
WHERE clause conditions.

You can use the ISROOT function in both Presentation layer queries, and in the
Business Model and Mapping layer (for example, when creating a derived column).
Note that the syntax of the function depends on where you are using it.

Presentation Layer Syntax

ISROOT(pc_presentation_hierarchy)

Where:

pc_presentation_hierarchy identifies the fully qualified parent-child
presentation hierarchy, as follows:

"subject_area"."presentation_table"."pc_presentation_hierarchy"

The qualification term ("subject_area".) is optional unless there are multiple
presentation tables or presentation hierarchies with the same name in different subject
areas.

Business Model and Mapping Layer Syntax

ISROOT(logical_dimension)

Where:

logical_dimension identifies the fully qualified dimension containing the
parent-child hierarchy, as follows:

"business_model"."dimension_name"

The qualification term ("business_model".) is optional unless there are multiple
dimensions with the same name in different business models.

Example

The following example selects all the employees in a parent-child hierarchy that are
root members, that is, the employees who have no ancestors above them in the
hierarchy.

SELECT emp_name
FROM "employees"
WHERE ISROOT("employees"."emp_hierarchy")

System Functions
The system functions return values relating to the session. Functions include:

■ USER

■ DATABASE

USER
This function returns the user name for the Oracle BI repository to which you are
logged on.

Syntax

USER()

System Functions

C-76 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

DATABASE
This function returns the name of the default subject area.

Syntax

DATABASE()

D

Merge Rules D-1

DMerge Rules

When you use the Merge Repository Wizard in the Administration Tool, sophisticated
rules determine how objects are merged. Some decisions about merging objects are
made automatically by the wizard, while other decisions appear as prompts in the
Define Merge Strategy screen. This appendix describes some of the merge rules and
behavior of the Merge Repository Wizard.

There are three types of merges:

■ Full merges are typically used during development processes, when there are two
different repositories that need to be merged. The Administration Tool provides a
three-way merge feature that lets you merge two repositories that have both been
derived from a third, original repository. Full merges can also be used to import
objects from one repository into another. See "Performing Full Repository Merges"
for more information.

■ Patch merges are used when you are applying the differential between two
versions of the same repository. For example, you might want to use a patch
merge to apply changes from the development version of a repository to your
production repository, or to upgrade your Oracle BI Applications repository. See
"Performing Patch Merges" for more information.

■ Multiuser development merges are used when you are checking in projects using a
multiuser development environment. See "About the Multiuser Development
Merge Process" for more information.

This appendix contains the following topics:

■ General Merge Rules and Behavior

■ Special Merge Algorithms for Logical Table Sources and Other Objects

General Merge Rules and Behavior
The merge process typically involves three versions of an Oracle BI repository: the
original repository, modified repository, and current repository. The original
repository is the original unedited file (the parent repository), while the modified and
current repository are the two changed files you want to merge. The current repository
is the one currently open in the Administration Tool.

The original, modified, and current repository may mean different things, depending
on your situation. For example:

■ In a development-to-production scenario, you have an original parent file, a
current file that contains the latest development changes, and a modified file that
is the deployed copy of the original file.

General Merge Rules and Behavior

D-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ In an Oracle BI Applications repository upgrade scenario, the current file is the
latest version of the repository shipped by Oracle, and the original file is the
original repository shipped by Oracle. The modified file is the file that contains the
customizations you made to the original file.

Note that patch merge can be used with both of these situations. In a patch merge, you
open the current file and select the original file, then generate the patch. To apply the
patch, you open the modified file and select the original file, then apply the patch. See
"Performing Patch Merges" for more information.

Regardless of which merge scenario you want to perform, and regardless of the merge
type (full, patch, or multiuser development merge), the following general rules are
applied:

■ It is assumed that you generally want to keep the changes in the modified
repository. For example, if an object is added to or deleted from the modified
repository, the object is added or deleted without prompting.

■ If an object is added to or deleted from the current repository, the Merge
Repository Wizard asks whether you want to keep the changes.

In general, the Merge Repository Wizard tries to ensure that you have the
minimum set of objects necessary to service your queries. During a merge, there
might be objects introduced by the current repository that are not needed in the
merged repository. To address this issue, the Merge Repository Wizard asks
whether new Presentation layer objects in the current repository are needed in the
final merged result. If you choose to keep the new presentation objects, all the
dependent logical and physical objects are added as well. However, if you choose
not to keep the new presentation objects, then the dependent logical and physical
objects are not kept, because no queries will require the use of these objects. The
Merge Repository Wizard discards these objects to ensure that the merged
repository does not get populated with unused objects.

■ If an object is added to or deleted from both repositories, the object is added or
deleted without prompting. If the same object was added with slight differences in
its properties, the Merge Repository Wizard asks which version of the properties
you want to keep.

■ If an object has been modified only in the current repository, or only in the
modified repository, the change is kept. If the same object is modified in both the
current and modified repository, and the changes are different, then there is a
merge conflict. When conflicts occur, the Merge Repository Wizard asks you to
choose which change you want to keep.

■ Making a decision about one object can determine a whole set of decisions,
depending on the object relationships involved. For example, if you choose to keep
a presentation column that has been added to the current repository, then the
associated presentation table and subject area must also be kept, along with the
logical column, physical column, and other associated objects upon which it is
based. Alternatively, if you choose not to keep a subject area that has been added
to the current repository, then you are not prompted to choose whether to keep its
associated objects. Adding a join may require the addition of its base tables, while
changing an expression may cause physical columns to be added.

■ Object relationships can be interconnected through their properties. In addition to
strings and numbers, the internal value of a property can be other repository
objects. Because of this, a change to one object might cause a corresponding
change to an interrelated object.

General Merge Rules and Behavior

Merge Rules D-3

For example, assume you change the data source of Init Block B from a connection
pool to Custom Authenticator A. In addition to the data source property change to
the initialization block object, a corresponding property change occurs in the
custom authenticator object (because the value of the initialization block property
for Custom Authenticator A is now Init Block B).

Because the decisions made for these properties must be synchronized, if you
select Current as the decision for the data source property of Init Block B, then the
decision for the initialization block property of Custom Authenticator A will also
be Current. See Figure D–1 shows what this example looks like in the Merge
Repository Wizard.

In the Merge Repository Wizard, any decisions that require user input are displayed
on the Define Merge Strategy screen. Figure D–1 shows the Define Merge Strategy
screen.

Figure D–1 Define Merge Strategy Screen

Some other rules are dependent on the type of merge you want to perform. For
example, if you are performing a patch merge to upgrade a repository, you want to
retain the security settings and database feature table changes in your customized
(modified) repository. If you are performing a multiuser development (MUD) merge,
however, you do not want to retain security settings and database feature table
changes, to prevent developers from overwriting passwords and other important
objects in the master repository. Because of this, changes to security settings and
database features are not retained when you perform a MUD merge.

To change security settings or database features in a multiuser development
environment, you must edit the master repository directly. To do this, remove the
master repository from the multiuser development directory, edit it in offline mode,
then move it back.

Special Merge Algorithms for Logical Table Sources and Other Objects

D-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Special Merge Algorithms for Logical Table Sources and Other Objects
In addition to the general rules governing how objects are merged and which
situations require prompting, there are special rules for certain types of objects and
situations.

This section contains the following topics:

■ Merging Objects that Use the Vector Merge Algorithm

■ Merging Logical Table Sources

■ Merging Security Filters

■ Inferring the Use Logical Column Property for Presentation Columns

■ Merging Aliases

Merging Objects that Use the Vector Merge Algorithm
Some objects, such as levels, application roles, and object permissions, use a vector
merge algorithm that determines the parent/child relationships between objects.

Objects that use the vector merge algorithm include:

■ Levels in a dimension, levels associated with a logical column, and child levels

■ Dimensions and tables in a logical display folder

■ Aggregation content in a logical table source

■ Security objects like user and application role membership and permissions

■ Initialization block LDAP server settings and execution precedence

The Oracle BI Server determines the initial state of object relationships in each
repository during the merge process. For example, the following list shows the
different possibilities for object permissions and how they relate to users and
application roles:

■ M - Missing. The application role, user, or object is not present in the repository.

■ D - Default. Permissions are inherited from the parent application role.

■ Y - Yes. The permission is explicitly granted to the user or application role.

■ N - No. The permission is explicitly denied to the user or application role.

The Merge Repository Wizard determines the appropriate relationship for the merged
repository depending on the state of the object permission relationships in each
repository. For example:

■ For an original repository with a result of Y, a modified repository with a result of
N, and a current repository with a result of M, the Merge Repository Wizard
determines a result of N for the merged repository.

■ For an original repository with a result of N, a modified repository with a result of
Y, and a current repository with a result of M, the Merge Repository Wizard
determines a result of Y for the merged repository.

Example D–1 provides a detailed explanation of how object relationships are merged
for application role objects.

Special Merge Algorithms for Logical Table Sources and Other Objects

Merge Rules D-5

Example D–1 Vector Merge Example: Merging Application Roles

The following list shows the different possibilities for user and application role
relationships:

■ M - Missing. The application role or user is not present in the repository.

■ Y - Yes. The application role or user is a member of the application role.

■ N - No. The application role or user is not a member of the application role.

Table D–1 shows the merged result for different combinations of object relationships in
the merging repositories.

Table D–1 Results for Merging Application Roles Based on Object Relationships

Original Repository Modified Repository Current Repository Result

M M M N1

1 This situation can happen if neither the application role nor the user are present in the original repository,
but the user is present in the modified repository and the application role is present in the current
repository. In this case, no membership can be assumed.

M M Y Y

M M N N

M Y M Y

M Y Y Impossible2

M Y N Impossible

M N M N

M N Y Impossible

M N N Impossible

Y M M Y

Y M Y Y

Y M N N

Y Y M Y

Y Y Y Y

Y Y N N

Y N M N

Y N Y N

Y N N N

N M M N

N M Y Y

N M N N

N Y M Y

N Y Y Y

N Y N Y

N N M N

N N Y Y

N N N N

Special Merge Algorithms for Logical Table Sources and Other Objects

D-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Merging Logical Table Sources
Special rules govern how to merge column mappings in logical table source objects.
Each column mapping is merged individually. For each column, if the mapping has
changed in either the modified or current repository, the change is kept. If the
mapping has changed in both repositories, the Oracle BI Server attempts to merge the
mappings automatically.

Note that the deletion of a column is not considered to be a change in its mapping. If a
column is not present in the modified repository, then the mapping in the current
repository is used instead.

If there are differences in aggregation content, then the aggregation content specified
by level has priority. In other words, if the aggregation content in one repository is by
level and the aggregation content in another repository is by column, then the
aggregation content by level is retained.

Merging Security Filters
If a filter for an application role has changed in only one repository, then the change is
kept. If the filter has changed in both repositories, the Oracle BI Server attempts to
merge the filters automatically.

If an object is required for merging a particular filter (such as a presentation column)
and is not present, then that filter is considered invalid and does not appear in the
merged repository. Note, however, that this rule does not apply to variables. If a
variable is required for merging a particular filter, the Oracle BI Server ensures that the
variable is retained in the merged repository.

Inferring the Use Logical Column Property for Presentation Columns
Presentation columns have both a Name property and a Use Logical Column Name
property. In some cases, these properties can come into conflict. For example,
Table D–2 shows a scenario where this situation could occur.

If the regular merge rules for the objects in Table D–2 are applied, the merged
repository contains a presentation column called GroupSales and a logical column
called Sales, with the Use Logical Column Name property set to Yes. However, this
result is incorrect, because the name of the presentation column is different from the
name of the logical column.

To avoid this situation, the Oracle BI Server infers the value of the Use Logical Column
Name property. Using this logic, the merged repository for the example in Table D–2
has a presentation column called GroupSales, a logical column called Sales, and a Use
Logical Column Name property set to No.

2 M in original implies that either the user or application role is not present. The missing object added in
both cannot be considered the same object.

Table D–2 Conflicting Presentation Column Name and Use Logical Column Name
Properties

Repository
Presentation
Column Name

Logical Column
Name

Use Logical
Column Name

Original Sales GroupSales No

Current Sales Sales Yes

Modified GroupSales GroupSales Yes

Special Merge Algorithms for Logical Table Sources and Other Objects

Merge Rules D-7

Merging Aliases
During the full merge process, users are not prompted to make decisions about aliases.
Aliases from the current and modified repositories are merged automatically.

In multiuser development merges, however, users are prompted to choose whether to
keep aliases from the current repository, keep aliases from the modified repository, or
merge choices to keep aliases from both repositories.

Also note the following:

■ If object names change because of the merge process, then the previous names are
added as aliases.

■ Any aliases that are not associated with presentation objects are deleted.

Special Merge Algorithms for Logical Table Sources and Other Objects

D-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

E

Deleting Unwanted Objects from the Repository E-1

EDeleting Unwanted Objects from the
Repository

If your repository contains many objects that you do not need, you can use the
command-line pruning utility to delete the unwanted objects. This appendix explains
how to the pruning utility works and how to use it.

This appendix contains the following topics:

■ About the Object Pruning Utility

■ Using the Object Pruning Utility

■ Deletion Rules for the Object Pruning Utility

About the Object Pruning Utility
If you have a large number of extraneous or unwanted objects in your repository, you
can delete the unwanted objects using the prunerpd command-line utility. You can use
prunerpd on both Windows and UNIX systems.

You can delete unwanted repository objects such as databases, tables, columns,
initialization blocks, and variables. However, note that the pruning utility does not
remove objects from the Oracle BI Presentation Catalog.

Deleting objects from the repository has a cascading effect. For example, if a physical
column is deleted, then any mapped logical columns are deleted, as well as any
associated presentation columns. See "Deletion Rules for the Object Pruning Utility"
for more information.

Using the Object Pruning Utility
You must first create the input file that contains the list of repository objects to be
deleted. Then, you must run the utility at the command line, passing the input file as
an argument

This section contains the following topics:

■ Creating the Input File

■ Running the Prune Utility

Creating the Input File
The prune utility accepts the list of repository objects you want to delete as a text file.
The utility can accept multiple input files at a time. The syntax rules for the input file
are shown in Table E–1.

Using the Object Pruning Utility

E-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

For example, a text file that contains instructions to delete a database named "Stock
Quotes" and a physical column named "S_NQ_ACCT"."USER_NAME" would include
the following entry:

D "Stock Quotes" C "S_NQ_ACCT"."USER_NAME"

Use white space as a delimiter in the input file (a single space, tab, or multiple spaces).

Running the Prune Utility
Before running prunerpd, you must first run bi-init.cmd (or bi-init.sh on UNIX
systems) to launch a command prompt that is initialized to your Oracle instance. You
can find this utility in:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

Then, run prunerpd from the resulting command prompt window with the desired
options. The prune utility accepts the following parameters:

-s
Provide the location of the source repository file.

-p
Provide the repository password.

The password argument is optional. If you do not provide a password argument, you
are prompted to enter a password when you run the command. To minimize the risk
of security breaches, Oracle recommends that you do not provide a password
argument either on the command line or in scripts. Note that the password argument
is supported for backward compatibility only, and will be removed in a future release.

Note: Object names in the input file must match the fully qualified
name that is used in the repository. Wildcards (such as "*" and "?") are
not supported in the object name.

Table E–1 Syntax Rules for Input File

Object Type Example Action

Database D "Paint" Deletes the database named "Paint."

Table ■ T "W_AGREE_D"

■ T "DB"."Catalog"."Schema"."Table"

■ Deletes the table or alias named
"W_AGREE_D" from the
Physical layer.

■ Deletes the table or alias named
"Table" from the schema named
"Schema," contained in the
catalog named "Catalog," located
in the database named "DB,"
from the Physical layer.

Column C "W_AGREE_MD"."AGREE_CD" Deletes the column named "AGREE_
CD" located in a table or alias named
"W_AGREE_D" from the Physical
layer.

Initialization
block

I "External Metadata Strings" Deletes the initialization block named
"External Metadata Strings."

Variable V CURR_USER Deletes the variable named "CURR_
USER."

Deletion Rules for the Object Pruning Utility

Deleting Unwanted Objects from the Repository E-3

-f
Provide the input file name (in text format) that contains the list of repository objects
to be removed. Separate multiple file names by spaces. Enclose spaces within a
filename with double quotes (" ").

-o
Provide the name and location of the output repository file, also known as the pruned
repository.

-l
Provide the name and location of the output log file. All actions performed on the
repository are written to this file, including descriptions.

-e
Provide the name and location of the error log file. The pruning utility writes
exceptions and errors to this log.

-8
Input is in UTF-8 format.

Example E–1 Prune Utility Usage Example

prunerpd -s C:/OBI/Server/Repository/BIApps.rpd
-f "C:/Remove Oracle EBS Objects.txt"
-o "C:/OBI/Server/Repository/BIApps Pruned.rpd"
-l "C:/temp/BIApps Prunning.log" -e "C:/temp/ BIApps Prunning.err"
Give password: my_repos_password

Log File
The log file includes a list of actions performed on the repository file and is in XML
format. Other messages, such as progress indicators, are sent to the standard output
stream.

Error Log File
The error log file includes a list of errors encountered while processing the contents of
the input file and is in XML format. Other errors are sent to the standard output error
stream.

Deletion Rules for the Object Pruning Utility
Deleting repository objects has a cascading effect. This section describes the deletion
rules.

Physical Layer Rules
■ If a physical column or a table is deleted, then all of the affected keys, foreign keys,

and complex joins are deleted as well. The internal obsolete attribute definition
(attr defn) that links a logical column to a physical column is also removed.

■ Empty schemas, catalogs, and databases are removed.

■ If a table is deleted, then all its columns are deleted.

Logical Table Rules
■ If a regular column (not an aggregate or derived column) is not mapped in any

logical source, then it is deleted. The keys, including the level key and the logical
key, are also removed.

Deletion Rules for the Object Pruning Utility

E-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ If the source column for a derived column or its referenced variable is deleted
(corrupted), then the column is removed.

■ If an aggregate rule or override aggregate rule for an aggregate column is
corrupted (due to a logical column deletion), then the column is removed.

■ If a logical table is removed (because its underlying physical table was deleted),
then the keys, foreign keys, logical joins, sources, and source folder are removed.

■ If a logical table source does not have any valid mapping, then it is deleted.

■ If a logical table source is retained, but its aggregate content or filters are
corrupted, then the corresponding expressions are set to null. The join
specification is also removed.

■ If a logical table, dimension, or business model is empty (contains no meaningful
child), then it is deleted.

Presentation Layer Rules
■ If a logical column is removed (because its underlying physical column was

deleted), then any corresponding presentation columns are removed.

■ If a presentation table or subject area does not contain children, then it is removed.

Security Rules
■ If a security filter for a user or application role becomes corrupt due to deletion,

then the filter is removed. If all filters are removed for a user or application role,
then the internal privilege object is deleted.

■ Even if all filters for an application role are deleted, the application role is still
maintained.

■ To remove an application role from the repository, you must explicitly delete it.
See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise
Edition for information about deleting application roles.

Variable Rules
■ Initialization blocks are deleted if the underlying connection pool is deleted.

■ Repository and session variables are deleted if the associated initialization blocks
are deleted.

■ If a session variable is deleted and its parent initialization block does not contain
variables, then the initialization block is removed.

■ If an initialization block is deleted, then its variables are removed.

Marketing Rules
■ Qualified list items are deleted if the associated cache catalog, GUID column, or

qualified column is deleted.

■ Target levels are deleted if the associated catalog (Segmentation Catalog name) is
deleted.

■ List catalogs are deleted if the associated catalog, table, or column is deleted.

■ Conforming dimensions are deleted if the associated catalog, table, or column is
deleted.

F

Exchanging Metadata with Databases to Enhance Query Performance F-1

FExchanging Metadata with Databases to
Enhance Query Performance

If your organization has installed either Oracle Database or IBM DB2, then you can use
these databases to enhance the data warehouse performance and functionality of
queries that run on the Oracle BI Server.

This appendix contains the following topics:

■ About Exchanging Metadata with Databases

■ Generating the Import File

■ Using Materialized Views in the Oracle Database with Oracle Business Intelligence

■ Using IBM DB2 Cube Views with Oracle Business Intelligence

About Exchanging Metadata with Databases
By exchanging Oracle Business Intelligence metadata from the Oracle BI Server with
your Oracle Database or IBM DB2 database, you enable the database to accelerate the
performance of data warehouse queries.

You use the Oracle BI Server utility sametaexport to exchange the metadata. When you
run this utility to generate cube views for DB2, the utility is called the DB2 Cube Views
Generator. When you run this utility to generate metadata for Oracle Database, the
utility is called the Oracle Database Metadata Generator.

The Oracle BI Server export utility works with the following tools:

■ In the Oracle Database, the SQL Access Advisor creates materialized views and
index recommendations on optimizing performance. Note that in database
releases prior to 10g, this feature is called the Oracle Database Summary Advisor.

■ In the IBM DB2 database, IBM DB2 Cube Views creates materialized query tables
(MQTs).

The sametaexport utility generates the information necessary for the SQL Access
Advisor or IBM DB2 Cube Views tool to preaggregate the relational data and improve
query performance.

Generating the Import File
Both the Oracle Database Metadata Generator and the DB2 Cube Views Generator
create the files that are needed to import metadata from the Oracle BI Server into the
SQL Access Advisor or an IBM DB2 database.

This section contains the following topics that are common to the two generators:

Generating the Import File

F-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

■ Running the Generator

■ About the Metadata Input File

■ About the Output Files

■ Troubleshooting Errors from the Generator

■ Metadata Conversion Rules and Error Messages

Running the Generator
The Oracle Database Metadata Generator and the DB2 Cube Views Generator are
invoked from the command line or embedded in a batch file. The command-line
executable is named sametaexport.

Before running the utility, you must first run bi-init.cmd (or bi-init.sh on UNIX) to
launch a command prompt or shell window that is initialized to your Oracle instance.
You can find this utility in:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

Then, run sametaexport with the desired options, as follows:

sametaexport -r "PathAndRepositoryFileName" [-p repository_password]
-f "InputFileNameAndPath" [options]

Table 18–3 contains descriptions of the parameters in the command-line executable
file.

You can include some additional parameters in the input file or at the command line
to change various defaults for the Oracle Database Metadata Generator and the DB2
Cube Views Generator. Parameters specified in the input file take precedence over
parameters specified at the command line. You must include these parameters only if
you want to change the default values.

Table 18–3 Parameters for sametaexport

Parameter Definition Additional Information

-r Repository file name
and full path

Quotation marks are required for the file name and
path only if the file path is in long format or has spaces.
Use the full path if the file is not in the current
directory.

-p Repository password The password for the given repository.

The password argument is optional. If you do not
provide a password argument, you are prompted to
enter a password when you run the command. To
minimize the risk of security breaches, Oracle
recommends that you do not provide a password
argument either on the command line or in scripts.
Note that the password argument is supported for
backward compatibility only, and will be removed in a
future release.

-f Input file name and
full path

Quotation marks are required for the file name and
path only if the file path is in long format or has spaces.
Use the full path if the file is not in the current
directory. You specify input files so that you do not
have to type all the required information at the
command line, and so that you can type international
characters. See "About the Metadata Input File" for
more information.

Generating the Import File

Exchanging Metadata with Databases to Enhance Query Performance F-3

Table 18–4 and Table 18–5 describe these optional parameters.

Table 18–4 Optional Parameters and Defaults for the Oracle Database Metadata Generator

Parameter
Definition Additional Information

Input File Usage
Example

Command Line Usage
Example

Use schema
name from RPD

When set to YES, the table schema
names are used as they are used in the
repository. The default value is YES.

USE_SCHEMA_NAME_
FROM_RPD = NO

-schemafrom rpd NO

Default schema
name

The default schema name is used as
the table schema name if the value of
-schemafromrpd is set to NO, or if
the repository schema name cannot be
determined. The default value is
SIEBEL.

DEFAULT_SCHEMA_
NAME = ORACLE

-defaultschema
ORACLE

Oracle schema
name

The metadata from Oracle Database
Metadata Generator is created under
this schema. The default value is
SIEBEL.

ORA_DIM_SCHEMA_
NAME = ORACLE

-orclschema ORACLE

Logging enabled Indicates whether to keep a log of the
metadata export process. Valid values
are ON, OFF, and DEBUG. The default
value is ON.

LOGGING = DEBUG -logging DEBUG

Log file name The path to the log file. If you provide
an invalid path, an error occurs.

If you do not provide this parameter,
the default log file path is used. The
default path is:

ORACLE_
INSTANCE\diagnostics\logs\OracleB
IServerComponent\coreapplication_
obisn\OraDimExp.log

LOG_FILE_NAME =
C:\bea_default\instances
\instance1\diagnostics\
logs\generator\logfile.log

-logfile C:\bea_
default\instances\
instance1\diagnostics\
logs\generator\logfile.l
og

Table 18–5 Optional Parameters and Defaults for the DB2 Cube Views Generator

Parameter
Definition Additional Information Input File Usage Example

Command Line Usage
Example

Distinct count
supported

When set to YES, allows measure
containing the DISTINCT_COUNT
aggregation to be exported. The
recommended setting and default
value is NO.

DISTINCT_COUNT_
SUPPORTED = YES

-distinct YES

Statistical
functions
supported

When set to YES, allows measures
containing the aggregation
STDDEV to be exported. The
recommended setting and default
value is NO.

STATISTICAL_FUNCTIONS_
SUPPORTED = YES

-stat YES

Use schema
name

When set to YES, the Cube Views
metadata attributes have columns
from tables under a schema name,
which are then specified in the
parameters. When set to NO, the
schema names for these tables are
empty. The default value is YES.

USE_SCHEMA_NAME = NO -useschema NO

Generating the Import File

F-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

About the Metadata Input File
The input file is a text file that contains the parameters that are described in Table 18–6.

Use schema
name from RPD

When set to YES, the table schema
names are used as they are used in
the repository. The default value is
YES.

USE_SCHEMA_NAME_
FROM_RPD = NO

-schemafromrpd NO

Default schema
name

The default schema name is used
as the table schema name if the
value of -schemafromrpd is set
to NO, or if the repository schema
name cannot be determined. The
default value is SIEBEL.

DEFAULT_SCHEMA_NAME
= ORACLE

-defaultschema
ORACLE

Cube views
schema name

The name of the schema under
which the Cube Views metadata is
created. The default value is
SIEBEL.

CUBE_VIEWS_SCHEMA_
NAME = ORACLE

-cubeschema ORACLE

Log file name The path to the log file. If you
provide an invalid path, an error
occurs.

If you do not provide this
parameter, the default log file path
is used. The default path is:

ORACLE_
INSTANCE\diagnostics\logs\Ora
cleBIServerComponent\coreappl
ication_obisn\CubeViews.log

LOG_FILE_NAME = C:\bea_
default\instances\instance1\
diagnostics\logs\generator\l
ogfile.log

-logfile C:\bea_
default\instances\insta
nce1\diagnostics\logs\
generator\logfile.log

Log failures When set to YES, the log file lists
the metadata that was invalidated
under a certain rule. The default
value is YES.

LOG_FAILURES = NO -logfail NO

Log success When set to YES, the log file lists
the metadata that has been
checked under each rule and has
passed the check. The default
value is NO.

LOG_SUCCESS = YES -logsuccess YES

Table 18–6 Cube Metadata Input File Parameters

Input File Name Description

BUSINESS_MODEL The name of the business model in the logical layer of the Oracle
Business Intelligence repository that contains the metadata to
export. If the business model is not found in the repository, then an
error message is displayed.

You can only specify one business model name in the input file. To
generate metadata for multiple business models, create another
input file and run the Oracle Database Metadata Generator or DB2
Cube Views Generator again.

Table 18–5 (Cont.) Optional Parameters and Defaults for the DB2 Cube Views Generator

Parameter
Definition Additional Information Input File Usage Example

Command Line Usage
Example

Generating the Import File

Exchanging Metadata with Databases to Enhance Query Performance F-5

The following text shows a sample metadata input file:

BUSINESS_MODEL = "1 - Sample App"
PHYSICAL_DATABASE = "1 - Sample App Data"
RUN_AS_USER = "Administrator"
OUTPUT_FOLDER = "C:\OracleBI"

About the Output Files
Each Generator creates different types of output files, as described in the following list:

■ Oracle Database Metadata Generator: Generates a SQL file that is encoded in
UTF-8 and stored in the specified output folder. The file name is based on the
name of the business model you specified in the input file, such as my_business_
model.sql.

■ DB2 Cube Views Generator: Generates the following files in the specified output
folder:

– XML file (encoded in UTF8). One XML file is created for the specified business
model. It contains all objects that were converted to cubes. Additionally,
objects in the repository will be mapped to similar objects in the IBM Cube
Views metadata. See "Conversion Rules for IBM DB2 Databases" for a list of
objects that will not be converted.

The name of the XML file matches the business model name, without spaces,
followed by the XML extension (for example, SalesResults.xml).

– A SQL file that contains the alias generation DLL. A SQL file is created for the
specified business model only if aliases exist in the physical layer databases
that are referenced in the business model. The alias file contains SQL
commands that will create the aliases in the DB2 database. The name of the
SQL file matches the business model name, without spaces, followed by the
SQL extension (for example, SalesResults-alias.sql).

Troubleshooting Errors from the Generator
Error messages indicate that the Generator was unable to complete some or all of its
tasks. After starting the Generator, you might observe the following error messages:

■ Unable to write to Log file: log_file_name.

PHYSICAL_
DATABASE

The name of the database in the physical layer of the Oracle
Business Intelligence repository that contains the metadata to
export. When the business model derives from multiple databases,
then it eliminates metadata from all databases other than the one
specified here. When the physical database is not found in the
repository, an error message is displayed.

RUN_AS_USER The user name of the database user whose visibility must be
duplicated for the metadata export. This parameter cannot be
empty. This user must exist as a user reference in the repository.

OUTPUT_FOLDER The full path and file name of the folder to which the SQL file will
be written. If the folder does not exist when you run the Oracle
Database Metadata Generator, then it will be created. See "About
the Output Files" for more information.

Table 18–6 (Cont.) Cube Metadata Input File Parameters

Input File Name Description

Generating the Import File

F-6 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

The log file specified in the input file or at the command line might contain the
wrong path, the user might not have write permissions to that folder, or the disk
could be out-of-space.

■ Run_as_user, user_name, is invalid.

The user name is incorrect.

■ Repository, repository_name.rpd, is invalid or corrupt.

The repository name might be incorrect, it might not exist in the given path, or the
user might not have permission to read it.

■ Physical Database, database_name, is invalid.

The physical database name does not match a valid physical database object in the
repository.

■ Business Model, model_name, is invalid.

The business model name does not match a valid business model object in the
repository.

■ Authentication information provided is invalid.

The repository password provided at the command line is incorrect.

■ Path: "path_name" is invalid.

The path or file name is incorrect, or the current user does not have read access.

Metadata Conversion Rules and Error Messages
When the Generator creates the output files, it also maps the metadata objects in the
Oracle Business Intelligence repository to similar objects in the metadata of the Oracle
Database or the IBM DB2 database.

This section explains the rules used to identify Oracle Business Intelligence metadata
that cannot be translated (converted) into either SQL or XML format. These rules are
necessary because Oracle Database and IBM Cube Views do not support some of the
metadata constructs that are allowed by Oracle Business Intelligence.

Dimensional metadata in the SQL or XML file will be generated at the logical fact table
source level. If a logical fact table source has an invalid logical dimension table source,
then the logical dimension table source will be invalidated. If the logical fact table
source is invalid, then all the logical dimension table sources that are mapped to it will
also be invalidated. Invalid Oracle Business Intelligence repository metadata elements
will not be converted to cubes in the SQL or XML file.

When a rule is violated, the Generator writes the error messages and the metadata that
violated the rule to the log file.

Conversion Rules for Oracle Databases
The following list provides the rules for converting Oracle Business Intelligence
metadata into objects in the Oracle Database:

■ Attributes that contain expressions in the logical table cannot be exported.

■ Tables joined using complex joins are not considered.

■ Tables that are opaque views are not considered.

■ Columns used as part of a key in one level cannot be used as part of another level
key.

Generating the Import File

Exchanging Metadata with Databases to Enhance Query Performance F-7

Oracle Database prohibits the use of columns as keys in multiple levels. This
prohibition requires the Oracle Database Metadata Generator to eliminate one of
the two joins, usually the join that is encountered first. Therefore, the other joins
are lost, which prevents them from being exported.

Conversion Rules for IBM DB2 Databases
Table 18–7 lists the rules used to validate Oracle Business Intelligence repository
metadata elements, error messages that are written to the log file if the rule is violated,
and an explanation of what caused the rule violation. The error messages help you
determine why a particular Oracle Business Intelligence metadata object was not
exported to the XML file.

Table 18–7 Validation Rules for Metadata Elements

Rule Message Explanation

ComplexJoin
FactsRule

[Fact Logical Table Source]Complex
Physical Joins not supported

%qn has a complex Join %qn between
Physical Tables %qn and %qn

If the physical fact tables are
connected through complex joins,
then the join is not supported. A
complex join is defined as any join
between two tables that do not have
a foreign key relationship.

ComplexJoin
DimsRule

[Dimension Logical Table
Source]Complex Physical Joins not
supported

%qn has a complex Join %qn between
Physical Tables %qn and %qn

If the dimension physical tables are
connected through a complex join,
then that join is not supported.

ComplexJoin
FactDimRule

[Fact Logical Table Source ->
Dimension Logical Table Source]
Complex Physical Joins not supported.

%qn has a complex Join %qn between
Physical Tables %qn and %qn.

If a dimension physical table and a
fact physical table are connected
through a complex join, then that join
is not supported and the dimension
table source is invalidated.

OpaqueView
FactRule

[Fact Logical table Source] Physical
SQL Select Statements not supported.

%qn uses the SQL Select Statement
%qn.

When the physical fact table is
generated by a SQL select statement,
the logical fact table source that
contains the table is invalidated. All
logical dimension table sources
connected to this logical fact table
source are also invalidated. This
construct allows subquery
processing.

OpaqueView
DimRule

[Dimension Logical table Source]
Physical SQL Select Statements not
supported.

%qn uses the SQL Select Statement
%qn.

When a physical dimension table is
generated by a SQL select statement,
the logical dimension table source
containing that table is invalidated.

OuterJoinFac
tRule

[Fact Logical Table Source] Physical
Outer Joins not supported.

%qn has an outer join %qn between
physical tables %qn and %qn.

If the logical fact table source has an
outer join mapping, then that logical
fact table source is invalidated and all
logical dimension table sources
mapped to this source will also be
invalidated.

OuterJoinDi
mRule

[Dimension Logical Table Source]
Physical Outer Joins not supported.

%qn has an outer join %qn between
physical tables %qn and %qn.

If the logical dimension table source
has an outer join mapping, then that
logical dimension table source is
invalidated.

Generating the Import File

F-8 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

WhereClause
FactRule

[Fact Logical Table Source] WHERE
clauses are not supported.

%qn has a where condition %s.

If the fact table source uses a WHERE
clause to filter the data that is loaded,
then this table source is invalidated.

WhereClause
DimRule

[Dimension Logical Table Source]
WHERE clauses are not supported.

%qn has a where condition %s.

If the dimension table source uses a
WHERE clause to filter the data that is
loaded, then this table source is
invalidated.

TwoJoinFact
DimRule

[Fact Logical Table Source ->
Dimension Logical Table Source]
Multiple Joins between sources not
supported.

%qn and %qn have at least the
following joins : %qn, %qn.

If a physical fact table is mapped to
two dimension tables from the same
dimension source (if the fact table is
not exclusively mapped to the most
detailed table in the table source),
then the dimension table source is
invalidated.

HiddenMan
yManyRule

[Fact Logical Table Source ->
Dimension Logical Table Source] Join
between (physical or logical?) fact and
dimension is not on the most detailed
table.

%qn between %qn and %qn is not on
the most detailed table %qn {Join
name, facttable, dimtable).

This is related to the
TwoJoinFactDimRule. If the fact table
is joined to a dimension table that is
not the most detailed table in the
table source, then the dimension
table source is invalidated.

ComplexMea
sureRule

[Column] Complex Aggregation Rules
not supported.

%qn uses an aggregation rule of %s
which is not supported.

The supported aggregations are
typically SUM, COUNT, AVG, MIN, MAX,
STDDEV, COUNTDISTINCT, and
COUNT.

CountDistM
easureRule

[Column] COUNT-DISTINCT
Aggregation Rule not supported.

%qn uses an aggregation rule of %s
which is not supported.

COUNTDISTINCT aggregation is not
supported for this particular column.

InvalidColu
mnLevelRule

[Level] Some columns that are part of
the Primary Level Key are invalid.

%qn has %qn as part of its primary
key, when %qn has already been
marked invalid.

The level key for this level has one or
more columns that are invalid.

VariableBase
dColumnRul
e

[Logical Table Source -> Column]
Column uses a Variable in the
Expression

Column %qn uses a variable in its
mapping.

The logical column uses repository
and session variables in the
expression.

OneFactToM
anyDimRule

[Fact Logical Table Source ->
Dimension Logical Table Source] There
must be a unique join path between the
most detailed tables in the (logical or
physical?) fact and the dimension.

No join paths found between %qn and
%qn (both physical table names).

Found at least the following join paths:
(%qn->%qn....), (%qn->%qn....)

Same as in TwoJoinFactDimRule or
HiddenManyManyRule.

Table 18–7 (Cont.) Validation Rules for Metadata Elements

Rule Message Explanation

Generating the Import File

Exchanging Metadata with Databases to Enhance Query Performance F-9

ManyMDTin
FactRule

[Fact Logical Table Source] Fact Logical
Table Source must have a unique most
detailed table.

%qn has at least the following most
detailed tables : %qn,%qn.

A fact that has more than one table
that is the most detailed table.

NoMeasureF
actRule

[Fact Logical Table Source] Fact Logical
Table Source does not have any
Measures.

%qn does not have any deployable
measures.

A fact table does not have any
measures because all the measures
have been invalidated.

NoInActiveF
actRule

[Fact Logical Table Source] Fact Logical
Table Source is not marked Active.

A fact source is not active.

NoInActiveD
imRule

[Dimension Logical Table Source]
Dimension Logical Table Source is not
marked Active.

A dimension source is not active.

NoAttributeI
nFactRule

[Fact Logical Table Source -> Column]
Attribute found in Fact.

%qn in a fact source %qn does not have
an aggregation rule.

No attributes in the fact source.

NoMeasureI
nDimRule

[Dimension Logical Table Source ->
Column] Measure found in Dimension.

%qn in a dimension source %qn has an
aggregation rule.

No measures in the dimension
source.

VisibleColu
mnsAttrRule

[Column] -> The run_as_user does not
have visibility to this Logical Column.

%qn is not accessible to the run_as_
user %qn due to visibility rules.

A column does not have visibility for
this user.

VisibleColu
mnsMeasRul
e

[Column] -> The run_as_user does not
have visibility to this Logical Column.

%qn is not accessible to the run_as_
user %qn due to visibility rules.

A column does not have visibility for
this user.

MultiplePri
maryKeysDi
mRule

[Dimension Logical Table Source] A
Join uses an alternate key in the
Dimension Logical Table Source.

%qn between %qn and %qn in %qn
uses the alternate key %qn.

A dimension physical table can
contain only one primary key. It is
joined to another dimension physical
table using a different unique key
and that join is invalid.

IBM Cube Views does not accept any
unique keys to be used for foreign
joins and always requires the
primary key.

MultiplePri
maryKeysFa
ctRule

[Dimension Logical Table Source] A
Join uses an alternate key in the
Dimension Logical Table Source.

%qn between %qn and %qn in %qn
uses the alternate key %qn.

A fact physical table can contain only
one primary key. It is joined to
another fact physical table using a
different unique key and that join is
invalid.

IBM Cube Views does not accept any
unique keys to be used for foreign
joins and always requires the
primary key.

Table 18–7 (Cont.) Validation Rules for Metadata Elements

Rule Message Explanation

Using Materialized Views in the Oracle Database with Oracle Business Intelligence

F-10 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Using Materialized Views in the Oracle Database with Oracle Business
Intelligence

This section explains how to export metadata from Oracle Business Intelligence into
the SQL Access Advisor and create materialized views using the Oracle Database
Metadata Generator.

This section contains the following topics:

■ About Using the SQL Access Advisor with Materialized Views

■ Deploying Metadata for Oracle Database

About Using the SQL Access Advisor with Materialized Views
This feature enhances the data warehouse performance and functionality of a
database. It enables the SQL Access Advisor to store metadata about the logical
relationships of the data that resides in the database. Additionally, it accelerates data
warehouse queries by using more efficient Oracle materialized views. These
materialized views preaggregate the relational data and improve query performance.
Once the metadata is stored in the SQL Access Advisor, the database administrator
can optimize the database objects and improve query performance.

When processing queries, Oracle Database routes queries to tables that hold
materialized views when possible. Because these tables of materialized views are
smaller than the underlying base tables and the data has been pre aggregated, the
queries that are rerouted to them might run faster.

Oracle Database Metadata Generator works as a metadata bridge to convert the Oracle
Business Intelligence proprietary metadata into a SQL file that contains PL/SQL

MultiplePri
maryKeysFa
ctDimRule

[Fact Logical Table Source -> Dim
Logical Table Source] A Join uses an
alternate key between the Logical Table
sources.

%qn between %qn and %qn for sources
%qn and %qn uses the alternate key
%qn.

A fact physical table can contain only
one primary key. It is joined to a
dimension physical table using a
different unique key and is invalid.

IBM Cube Views does not accept any
unique keys to be used for foreign
joins and always requires the
primary key.

NotDB2Expr
essionAttrRu
le

[Dimension Logical Table Source ->
Column] The Column contains an
Expression not supported.

%qn has expression %s which is not
supported.

The attribute contains an expression
not supported by IBM Cube Views.

This includes metadata expressions
that use DateTime functions (for
example, CURRENT_DATE).

NotDB2Expr
essionMeasR
ule

[Fact Logical Table Source -> Column]
The Column contains an Expression
not supported.

%qn has expression %s which is not
supported.

A measure contains an expression
not supported by IBM Cube Views.

This includes metadata expressions
that use DateTime functions (for
example,. CURRENT_DATE).

NoAttribute
DimRule

[Dimension Logical Table Source]
Dimension Logical Table Source does
not have any attributes visible to the
run_as_user.

%qn can not be queried by user %qn
since none of its attributes are visible.

A dimension does not have any
attributes.

Table 18–7 (Cont.) Validation Rules for Metadata Elements

Rule Message Explanation

Using Materialized Views in the Oracle Database with Oracle Business Intelligence

Exchanging Metadata with Databases to Enhance Query Performance F-11

commands to generate dimensions in the SQL Access Advisor. After converting
metadata into a SQL file, you use a tool such as SQL*Plus to import the translated
metadata into the SQL Access Advisor and store it in metadata catalog tables. After
importing the metadata, you create materialized views, which are used by to optimize
incoming application queries.

You can use this feature with Oracle Database 9i and higher. See "System
Requirements and Certification" for information about platform compatibility.

Note that in database releases prior to 10g, the SQL Access Advisor was called the
Oracle Database Summary Advisor and was documented in Oracle9i Data Warehousing
Guide.

Deploying Metadata for Oracle Database
Become familiar with the Oracle Database and its tools before attempting to deploy
metadata in the Oracle Database. For more information, see "SQL Access Advisor" in
Oracle Database Performance Tuning Guide.

Ensure that you complete the steps in "Running the Generator" before deploying
metadata. To deploy cube metadata, perform the tasks described in the following
sections:

■ Executing the SQL File for Oracle Database

■ Defining Constraints for the Existence of Joins

■ Creating the Query Workload

■ Creating Materialized Views

Executing the SQL File for Oracle Database
Before executing the SQL file for importing into the SQL Access Advisor, ensure that
you are familiar with Oracle Database import tools. See the Oracle Database
documentation set for information.

Use a tool such as SQL*Plus to execute the SQL file that the Oracle Database Metadata
Generator generated. You might see error messages if the dimensions already exist or
if the database schema differs from that in the RPD file. When the script executes
successfully, you can see the dimensions that were created by using the database web
console or the Oracle Enterprise Manager Database Control. In the Oracle Enterprise
Manager Database Control, expand the following nodes: Network, Databases,
database-name, Warehouse, Summary Management, Dimensions, System.

After you execute the SQL file, be aware of the following:

■ No incremental metadata changes are allowed. Schema changes require that you
manually delete cube model metadata in the Oracle Database and convert the
Oracle Business Intelligence metadata again. For example, if you must make a
change to a dimension in a cube in the Oracle BI repository, you must delete the
cube model in the Oracle Database, regenerate the SQL file from the Oracle BI
repository, and import it into the SQL Access Advisor.

■ You cannot delete metadata using the Oracle Database Metadata Generator.
Instead, you must manually delete the cube model using the Oracle Enterprise
Manager Database Control.

Defining Constraints for the Existence of Joins
For more information on this topic, see the Oracle Database documentation set.

Using Materialized Views in the Oracle Database with Oracle Business Intelligence

F-12 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

You must ensure that Oracle Database knows about the joins between the dimension
tables and the fact tables. To do so, you create constraints in SQL*Plus or the Oracle
Enterprise Manager Database Control. In the Oracle Enterprise Manager Database
Control, you select the table on which you must create a constraint, then select the
Constraint tab.

You create a different type of constraint for each kind of table, as follows:

■ For dimension tables, create a UNIQUE key constraint.

■ For fact tables, create a FOREIGN key constraint and specify the referenced schema
and referenced table. In the Constraint Definition area, include the foreign key
columns in the fact table and the corresponding unique keys in the dimension
table. An attempt to create a foreign key on a fact table can fail if the foreign key
column data does not match the unique key column data on the dimension table.

Creating the Query Workload
See the Oracle Database documentation set for detailed information about creating the
query workload.

A query workload is a sample set of physical queries to optimize. Before you create the
workload, you generate a Trace file with information on the slowest-running queries.

To generate the Trace file:

You can generate the Trace file of the slowest-running queries using a tool that is
appropriate to your database version, as described in the following list:

■ Usage Tracking: Use this capability in Oracle Business Intelligence to log queries
and how long they take to run. Long-running Oracle Business Intelligence queries
can then be executed as a script and used with the Trace feature in the Oracle
Database to capture the Oracle Database SQL code for these queries.

■ Oracle Database Trace: Use this tool to identify the slowest physical query. You
can enable the Trace feature either within Oracle Enterprise Manager Database
Control or by entering SQL commands with the DBMS_MONITOR package. Once
you enable the Trace feature, you use a script to create a Trace file to capture the
SQL code for queries in a query workload table.

■ Oracle Enterprise Manager: Use this tool to track slow-running queries.

To analyze the information in the Trace file:

1. Use the following guidelines when reviewing the Trace file:

– When you have traced many statements at once, such as in batch processes,
quickly discard any statements that have acceptable query execution times.
Focus on those statements that take the longest times to execute.

– Check the Query column for block visits for read consistency, including all
query and subquery processing. Inefficient statements are often associated
with a large number of block visits. The Current column indicates visits not
related to read consistency, including segment headers and blocks that will be
updated.

Note: The capabilities that are described in the following sections are
available in Oracle Database, rather than as part of Oracle Business
Intelligence.

Using Materialized Views in the Oracle Database with Oracle Business Intelligence

Exchanging Metadata with Databases to Enhance Query Performance F-13

– Check the Disk column for the number of blocks that were read from disk.
Because disk reads are slower than memory reads, the value will likely be
significantly lower than the sum of the Query and Current columns. If it is not,
check for issues with the buffer cache.

– Locking problems and inefficient PL/SQL loops can lead to high CPU time
values even when the number of block visits is low.

– Watch for multiple parse calls for a single statement, because this indicates a
library cache issue.

2. After identifying the problem statements in the file, check the execution plan to
learn why each problem statement occurred.

To load queries into the workload:

■ After you use the Trace utility to learn the names of the slowest physical queries,
insert them into the USER_WORKLOAD table.

Table 18–8 describes the columns of the USER_WORKLOAD table.

■ Use INSERT statements to populate the QUERY column with the SQL statements
for the slowest physical queries and the OWNER column with the appropriate
owner names.

Creating Materialized Views
After you populate the query workload table, use the appropriate tool for the Oracle
Database version to create materialized views. In Oracle Database 10g, use the SQL
Access Advisor in the Oracle Enterprise Manager Database Control and specify the
query workload table that you created.

The SQL Access Advisor generates recommendations on improving the performance
of the fact tables that you specify. The SQL Access Advisor displays the SQL code with

Table 18–8 Columns in USER_WORKLOAD Table

Column Data Type
Require
d Description

QUERY Any LONG or
VARCHAR type (all
character types)

YES SQL statement for the query.

OWNER VARCHAR2 (30) YES User who last executed the query.

APPLICATION VARCHAR2 (30) NO Application name for the query.

FREQUENCY NUMBER NO Number of times that the query
was executed.

LASTUSE DATE NO Last date on which the query was
executed.

PRIORITY NUMBER NO User-supplied ranking of the
query.

RESPONSETIME NUMBER NO Execution time of the query in
seconds.

RESULTSIZE NUMBER NO Total number of bytes that the
query selected.

SQL_ADDR NUMBER NO Cache address of the query.

SQL_HASH NUMBER NO Cache hash value of the query.

Using IBM DB2 Cube Views with Oracle Business Intelligence

F-14 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

which it will create the appropriate materialized views. Before indicating that the SQL
Access Advisor should create the materialized views, review the following tips:

■ The creation of a materialized view can fail if the SQL code includes a CAST
statement.

■ Ensure that the CREATE MATERIALIZED VIEW statement does not specify the
same query that you provided as a workload table. If the statement does specify
the same query, then the materialized views will likely not reflect the true
performance gain. However, if the query is executed frequently, then creating a
materialized view might still be worthwhile.

■ Add a forward slash (/) to the end of the CREATE MATERIALIZED VIEW
statement after the SQL statement. Otherwise, the SQL*Plus worksheet will not
recognize it as a valid statement.

Using IBM DB2 Cube Views with Oracle Business Intelligence
This section explains how to export metadata from Oracle Business Intelligence into
IBM DB2 using the DB2 Cube Views Generator.

This section contains the following topics:

■ About Using IBM DB2 Cube Views with Oracle Business Intelligence

■ Deploying Cube Metadata

About Using IBM DB2 Cube Views with Oracle Business Intelligence
The term IBM DB2 Cube Views is a registered trademark of IBM. See "System
Requirements and Certification" for information about platform compatibility.

This feature enhances the data warehouse performance and functionality of a
database. It enables the DB2 database to store metadata about the logical relationships
of the data residing in the database. Additionally, it accelerates data warehouse
queries by using more efficient DB2 materialized query tables (MQTs). These MQTs
preaggregate the relational data and improve query performance.

When processing queries, the DB2 Query Rewrite functionality routes queries to the
MQTs when possible. Because these tables are smaller than the underlying base tables
and the data has been pre aggregated, the queries that are rerouted to them might run
faster.

DB2 Cube Views Generator works as a metadata bridge to convert the Oracle Business
Intelligence proprietary metadata into an IBM Cube Views XML file. After converting
metadata into an XML file, you use IBM Cube Views to import the translated metadata
into the DB2 database and store it in IBM Cube Views metadata catalog tables. After
importing the metadata, you use the IBM Optimization Advisor to generate scripts to
create materialized query tables (MQT) and their indexes. The deployed MQTs are
used by the DB2 Query Reroute Engine to optimize incoming application queries.

DB2 provides an API (implemented as a stored procedure) that passes XML
documents as arguments to create, modify, delete, or read the metadata objects. For
more information about IBM Cube Views, see the IBM DB2 documentation.

Note: The SQL Access Advisor can also help determine appropriate
indexing schemes.

Using IBM DB2 Cube Views with Oracle Business Intelligence

Exchanging Metadata with Databases to Enhance Query Performance F-15

Deploying Cube Metadata
The alias-SQL file generated by the DB2 Cube Views Generator should be executed
before importing the XML file. The XML file generated by the DB2 Cube Views
Generator contains the cube metadata in XML format. After importing the XML file
into your DB2 database, you must create materialized query tables.

Ensure that you complete the steps in "Running the Generator" before deploying
metadata. To deploy cube metadata, perform the tasks described in the following
sections:

■ Executing the Alias-SQL File for IBM Cube Views

■ Importing the XML File

■ Guidelines for Creating Materialized Query Tables (MQTs)

Executing the Alias-SQL File for IBM Cube Views
You must execute the alias-SQL file before you import the XML file into your DB2
database. For more information, see the IBM documentation.

The alias-SQL file that is generated by the DB2 Cube Views Generator must be
executed by a SQL client on the database where the data warehouse is located. When
executed, it creates aliases (synonyms) for tables in the database.

Importing the XML File
After you execute the alias-SQL file, you can import the XML file into the database.
For more information, see the IBM documentation.

You can import this file using the following IBM tools:

■ IBM OLAP Center (recommended). For more information, see "Guidelines for
Importing the XML File Using the IBM OLAP Center" and the IBM
documentation.

■ IBM command-line client utility (db2mdapiclient.exe). IBM ships this utility
with DB2. For more information about using the command-line client utility, see
the IBM documentation.

■ IBM DB2 Stored Procedure. IBM Cube Views provides a SQL-based and
XML-based application programming interface (API) that you can use to run a
single stored procedure to create, modify, and retrieve metadata objects. For more
information, see the IBM documentation.

Guidelines for Importing the XML File Using the IBM OLAP Center Using the IBM OLAP
Center, you can import cube metadata into DB2. The IBM OLAP Center provides
wizards to help you import the file. For more information, see the IBM documentation.

Note: It is strongly recommended that you become familiar with
IBM Cube Views and its tools before attempting to import the XML
file. For more information, see the IBM documentation.

Note: It is strongly recommended that you become familiar with
IBM Cube Views and its tools before attempting to import the XML
file. For more information, see the IBM documentation.

Using IBM DB2 Cube Views with Oracle Business Intelligence

F-16 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

To import the XML file, use the following guidelines:

■ Using the IBM OLAP Center tool, connect to the DB2 database.

■ In the Import Wizard, choose the XML file that you want to import.

■ If metadata exists that refers to database constructs that are not in the database,
then an error message is displayed.

■ When the wizard asks for an import option, choose to replace existing objects.

■ When you are returned to the IBM OLAP Center, a diagram of the cube model is
shown.

Guidelines for Changing Cube Metadata After Importing the XML File After you import the
XML file, you might need to perform the following actions:

■ Because Oracle OLAP does not store foreign keys as metadata, they will not exist
in the converted metadata in the DB2 database. You must use the IBM Referential
Integrity Utility for IBM Cube Views to generate foreign key informational
constraints. You can obtain this utility on the IBM Web site.

■ You might encounter other issues such as foreign key join columns being nullable.
You can use the following methods to solve this problem:

– If data in these columns are not null, then you should convert these columns
to not-null columns.

– If data in these columns are null or you prefer not to convert the column data
type even if the column data is not null, then you should modify the cube
model using the following guidelines:

* In a fact-to-dimension join, you must manually eliminate this dimension
object from the converted cube model and create a degenerated dimension
object consisting of the foreign key of this join.

* In a dimension-to-dimension join, you must manually eliminate the
dimension object that represents the primary-key side of the join from the
converted cube model and create a degenerated dimension object
consisting of the foreign key of this join.

* In a fact-to-fact join, you must manually eliminate the fact object that
represents the primary-key side of the join from the converted cube model
and create a degenerated dimension object consisting of the foreign key of
this join.

■ No incremental metadata changes will be allowed by the Cube Generator. Schema
changes require that you manually delete cube model metadata in the DB2
database and convert the Oracle Business Intelligence metadata again. For
example, if you must make a change to a dimension in a cube in the Oracle
Business Intelligence metadata repository, then you must delete the cube model in
the DB2 database, regenerate the XML file from the Oracle Business Intelligence
repository, and import it into the DB2 database.

■ You cannot delete metadata using the DB2 Cube Views Generator. Instead, you
must manually delete the cube model using the IBM OLAP Center.

■ The IBM Statistics tool and IBM Optimization Advisor must be run periodically.

For more information, see the IBM documentation.

Guidelines for Creating Materialized Query Tables (MQTs)
For more information, see the IBM documentation.

Using IBM DB2 Cube Views with Oracle Business Intelligence

Exchanging Metadata with Databases to Enhance Query Performance F-17

After you import the cube metadata into the database, you must run the IBM
Optimization Advisor to generate SQL scripts and then execute those scripts to create
the MQTs. You must provide certain parameters to the IBM Optimization Advisor to
get optimal results from the implementation. The IBM Optimization Advisor wizard
analyzes your metadata and recommends how to build summary tables that store and
index aggregated data for SQL queries. Running the IBM Optimization Advisor can
help you keep the MQTs current. Additionally, you must refresh your database after
each ETL.

To create MQTs, use the following guidelines:

■ In the IBM OLAP Center, choose the cube model that you want to optimize and
open the IBM Optimization Advisor wizard.

■ Follow the instructions in the wizard, using the following table as a guide.

■ When the IBM Optimization Advisor closes, you must execute the SQL scripts to
create the MQTs.

When asked for: Choose:

Summary Tables Choose Deferred (or Immediate) and provide a tablespace for the tables

Limitations Choose an appropriate value for the optimization parameters. You should
turn on the Data-sampling option.

SQL Scripts Creation of the scripts needed to run to create the Summary tables. Choose
the filename and locations

Using IBM DB2 Cube Views with Oracle Business Intelligence

F-18 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

G

Administration Tool Keyboard Shortcuts G-1

GAdministration Tool Keyboard Shortcuts

This appendix provides keyboard shortcut information for the Administration Tool.
The following sections list Administration Tool menu items and their corresponding
keyboard shortcuts, keyboard shortcuts for navigating dialogs, and Physical Diagram
and Business Model Diagram keyboard shortcuts.

This appendix contains the following topics:

■ Menu Keyboard Shortcuts

■ Dialog Keyboard Shortcuts

■ Physical Diagram and Business Model Diagram Keyboard Shortcuts

Menu Keyboard Shortcuts
The following sections describe keyboard shortcuts for Administration Tool menu
options.

File Menu Shortcuts
■ The shortcut for New is Ctrl + N.

■ The shortcut for Open, and then Offline is Ctrl + F.

■ The shortcut for Open, and then Online is Ctrl + L.

■ The shortcut for Save is Ctrl + S.

■ The shortcut for Check Global Consistency is Ctrl + K.

Edit Menu Shortcuts
■ The shortcut for Cut is Ctrl + X.

■ The shortcut for Copy is Ctrl + C.

■ The shortcut for Paste is Ctrl + V.

■ The shortcut for Delete is Delete.

View Menu Shortcut
■ The shortcut for Refresh is F5.

Tools Menu Shortcuts
■ The shortcut for Show Consistency Checker is Ctrl + E.

■ The shortcut for Query Repository is Ctrl + Q.

Dialog Keyboard Shortcuts

G-2 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

General Menu Shortcuts
Table G–1 lists the general keyboard shortcuts available in the Administration Tool
menus. Note that you can use the Window menu options to change the focus from the
menus to the navigation panes.

Dialog Keyboard Shortcuts
Table G–2 lists the keyboard shortcuts available in Administration Tool dialogs.

Table G–1 Menu Keyboard Shortcuts

Action Keyboard Shortcut

Quit the application Alt+ F4

Move cursor to the menu
option

Alt + Underlined letter

Open application's control
menu

Alt+ Spacebar

View the shortcut menu for
the selected item

Shift + F10

Move through the menu
bar

Left arrow key

Right arrow key

Open a menu option Down arrow key

Move through a menu list Up arrow

Down arrow

Close the current menu Esc

Select or deselect items in a
check box or list

Spacebar

Make noncontinguous
selections

Ctrl + Up arrow + Spacebar

Table G–2 Dialog Keyboard Shortcuts

Action Keyboard Shortcut

Move forward through
options

Tab

Move backward through
options

Shift + Tab

Select or deselect an item in
a list

Shift + Up arrow

Shift + Down arrow

Close the current dialog Esc

Go to the top of a list Home

Go to the bottom of a list End

Refresh F5

For dialogs with up arrow
buttons: Move selected item
up in the list

Alt + Up arrow

Note: Select a list item before using this shortcut.

Physical Diagram and Business Model Diagram Keyboard Shortcuts

Administration Tool Keyboard Shortcuts G-3

Physical Diagram and Business Model Diagram Keyboard Shortcuts
Table G–3 lists the keyboard shortcuts available in the Physical and Business Model
Diagrams. Note that the Physical and Business Model Diagram toolbar options are
also available from the Actions menu.

For dialogs with down
arrow buttons: Move
selected item down in the
list

Alt + Down arrow

Note: Select a list item before using this shortcut.

For dialogs with plus (add)
buttons: Insert item from
list

Alt + Insert

For dialogs with x (delete)
buttons: Delete item from
list

Alt + Delete

For dialogs with pencil
(edit) buttons: Edit item
from list

Alt + Enter

Browse dialog: Move focus
between trees located in left
pane

F5, F6, Shift + Tab, Tab

When a table row has a
child row (grid): Expand
the child row from the cell
displaying the plus icon

This situation occurs in the
Define Merge Strategy page
of the Merge Repository
Wizard.

Spacebar

Note: Move the focus to the cell displaying the plus icon before
using this shortcut.

When a table row has a
check box: Select or deselect
the check box

This situation occurs in the
Define Merge Strategy page
of the Merge Repository
Wizard.

Spacebar

Note: Move the focus to the cell displaying the check box before
using this shortcut.

Table G–3 Diagram Keyboard Shortcuts

Action Keyboard Shortcut

Pan around the diagram
when no diagram objects
are selected

Arrow keys

Select a diagram object: use
the arrow keys to move an
object under the pointer,
then press the spacebar to
select the object

Spacebar + Arrow keys

Open the property dialog
for a selected diagram
object

Enter

Cancel current operation Esc

Table G–2 (Cont.) Dialog Keyboard Shortcuts

Action Keyboard Shortcut

Physical Diagram and Business Model Diagram Keyboard Shortcuts

G-4 Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition

Resume default mode
(Select) after using Pan or
Marquee Zoom

Esc

Deselect an object Use one of the following methods:

Esc

Press the spacebar when the mouse cursor is not over an object

Zoom in +

Zoom out -

Select the pan tool P

Note that you can also use the arrow keys to pan around the
diagram.

Revert to auto-layout S

Create a new join J

This shortcut selects the New Join option.

Create a new table N

This shortcut selects the New Table option. After using this
shortcut, you can use the arrow keys and spacebar to pan
around the diagram and open the Logical Table dialog for the
new table.

Select the Marquee Zoom
tool

Z

This shortcut selects the Marquee Zoom tool.

Zoom to fit all objects in the
current view

F

Show all tables in
Expanded View, with
columns visible

1

Show all tables in
Collapsed View, with
columns hidden and only
the table name displayed

2

Table G–3 (Cont.) Diagram Keyboard Shortcuts

Action Keyboard Shortcut

Glossary-1

Glossary

This glossary defines terms for Oracle Business Intelligence Enterprise Edition. See
also the Oracle Fusion Middleware Master Glossary for additional terms and
definitions.

action

Provides functionality to navigate to related content or to invoke operations, functions
or processes in external systems. You can include actions in analyses, dashboard pages,
agents, scorecard objectives, scorecard initiatives, and KPIs.

See also action link.

Action Framework

The Action Framework is a component of the Oracle BI EE architecture and includes a
J2EE application called the Action Execution Service (AES) and actions-specific
JavaScript functionality deployed as part of Oracle BI EE. The action framework also
includes client-side functionality for creating actions and invoking certain action types
directly from the browser.

action link

A link to an action that you have embedded in an analysis, dashboard page, scorecard
objective, scorecard initiative, or KPI that, when clicked, runs an associated action.

See also action.

ADF Business Intelligence Component

Provides the developer the ability to include Oracle BI Presentation Catalog objects in
ADF Applications. This component uses a SOAP connection to access the catalog.

Administration Server

Part of the WebLogic server domain and runs the processes that manage Oracle
Business Intelligence components. The Administration Server includes the Oracle
WebLogic Server Administration Console, Oracle Fusion Middleware Control, and
JMX MBeans. For a Simple Install type, the Administration Server also includes Java
components for Oracle Business Intelligence such as Oracle BI Publisher and Oracle
Real-Time Decisions.

See also Fusion Middleware Control, Java components and Managed Server.

Administration Tool

See Oracle BI Administration Tool.

agent

Glossary-2

agent

Enables you to automate your business processes. You can use agents to provide
event-driven alerting, scheduled content publishing, and conditional event-driven
action execution.

Agents can dynamically detect information-based problems and opportunities,
determine the appropriate individuals to notify, and deliver information to them
through a wide range of devices (e-mail, phones, and so on).

aggregate persistence

A feature that automates the creation and loading of aggregate tables and their
corresponding Oracle Business Intelligence metadata mappings to enable aggregate
navigation.

aggregate table

A table that stores precomputed results from measures that have been aggregated over
a set of dimensional attributes. Each aggregate table column contains data at a given
set of levels. For example, a monthly sales table might contain a precomputed sum of
the revenue for each product in each store during each month. Using aggregate tables
optimizes performance.

aggregation rule

In an Oracle BI repository, a rule applied to a logical column or physical cube column
that specifies a particular aggregation function to be applied to the column data, such
as SUM.

In Presentation Services, users can see the rules that have been applied in the
repository. Users can also change the default aggregation rules for measure columns.

alias table

A physical table that references a different physical table as its source. You can use
alias tables to set up multiple tables, each with different keys, names, or joins, when a
single physical table must serve in different roles. Because alias table names are
included in physical SQL queries, you can also use alias tables to provide meaningful
table names, making the SQL statements easier to read.

analysis

A query that a user creates on the Criteria tab in Presentation Services. An analysis can
optionally contain one or more filters or selection steps to restrict the results.

See also filter and selection step.

analysis criteria

Consists of the columns, filters, and selection steps that you specify for an analysis.

See also analysis.

analysis prompt

A prompt that is added to an analysis. When the user selects a prompt value, that
value then determines the content that displays in the analysis that contains the
prompt, only.

See dashboard prompt and prompt.

business model

Glossary-3

attribute

The details of a dimension in an Oracle BI repository. Attributes usually appear as
columns of a dimension table.

attribute column

In Presentation Services, a column that holds a flat list of values that are also known as
members. No hierarchical relationship exists between these members, as is the case for
members of a hierarchical column. Examples include ProductID or City.

See hierarchical column.

BI Composer

BI Composer is a simple-to-use wizard that enables you to quickly and easily create,
edit, or view analyses without the complexities of the Analysis editor.

BI domain

Contains configurable system components (the coreapplication) and Java components
(the WebLogic server domain), and includes the Web-based management tools and
applications that use resources.

A BI domain can be a set of middleware homes spread across one or more physical
servers.

See also BI instance.

BI instance

Refers to the system components (coreapplication) of a BI domain

See also BI domain.

BI object

A piece of business intelligence content that is created with Presentation Services and
saved to the Oracle BI Presentation Catalog. Examples of BI objects include analyses,
dashboards, dashboard pages, scorecards, and KPIs.

BI Search

A search tool that resides outside of Presentation Services. BI Search is available from
the Home Page after the administrator adds a link to the BI Search URL. BI Search
provides a mechanism for searching for objects in the Oracle BI Presentation Catalog
that is similar to a full-text search engine.

bookmark link

Captures the path to a dashboard page and all aspects of the page state.

See prompted link.

bridge table

A table that enables you to resolve many-to-many relationships between two other
tables.

briefing book

See Oracle BI Briefing Books.

business model

Contains the business model definitions and the mappings from logical to physical
tables. Business models are always dimensional, unlike objects in the Physical layer,

Business Model and Mapping layer

Glossary-4

which reflect the organization of the data sources. Each business model contains
logical tables, columns, and joins.

Business Model and Mapping layer

A layer of the Oracle BI repository that defines the business, or logical, model of the
data and specifies the mapping between the business model and the Physical layer
schemas. This layer can contain one or more business models.

The Business Model and Mapping layer determines the analytic behavior that is seen
by users, and defines the superset of objects available to users. It also hides the
complexity of the source data models.

business owner

The person responsible for managing and improving the business value and
performance of a KPI or scorecard object, such as an objective, cause & effect map, and
so on.

catalog

See Oracle BI Presentation Catalog.

cause & effect map

A component of a scorecard that lets you illustrate the cause and effect relationships of
an objective or KPI.

See also Oracle Scorecard and Strategy Management.

chronological key

A column in a time dimension that identifies the chronological order of the members
within a dimension level. The key must be unique at its level.

Cluster Controller

A process that serves as the first point of contact for new requests from Presentation
Services and other clients. The Cluster Controller determines which Oracle BI Server in
the cluster to direct the request to based on Oracle BI Server availability and load. It
monitors the operation of servers in the cluster, including the Oracle BI Scheduler
instances. The Cluster Controller is deployed in active-passive configuration.

column

In an Oracle BI repository, columns can be physical columns, logical columns, or
presentation columns.

In Presentation Services, indicates the pieces of data that an analysis returns. Together
with filters and selection steps, columns determine what analyses contain. Columns
also have names that indicate the types of information that they contain, such as
Account and Contact.

See also analysis, attribute column, hierarchical column, and measure column.

column filter

See filter.

column prompt

A type of filter that enables you to build specific value prompts on a data column to
either exist alone on the dashboard or analysis or to expand or refine existing
dashboard and analysis filters.

dashboard

Glossary-5

See also prompt.

complex join

A join in the Physical layer of an Oracle BI repository that uses an expression other
than equals.

condition

Objects that return a single Boolean value based on the evaluation of an analysis or of
a key performance indicator (KPI). You use conditions to determine whether agents
deliver their content and execute their actions, whether actions links are displayed in
dashboard pages, or whether sections and their content are displayed in dashboard
pages.

See also action, action link, agent and key performance indicator (KPI).

connection pool

An object in the Physical layer of an Oracle BI repository that contains the connection
information for a data source.

See also Physical layer.

content designer

The user who creates business intelligence objects such as analyses, dashboards, and
scorecards.

contextual event action

A predelivered action that uses the Action Framework to pass content from the
business intelligence object to another region on an ADF page.

See also action, Action Framework, and action link.

criteria

See analysis criteria.

cube

An OLAP (online analytical processing) data structure that lets data be analyzed more
quickly and with greater flexibility than structures in relational databases. Cubes are
made up of measures and organized by dimensions. Cubes in multidimensional data
sources roughly correspond to star schemas in relational database models.

currency prompt

A prompt that enables the user to change the currency type that displays in the
currency columns on an analysis or dashboard.

See also prompt.

custom view

A component of a scorecard that lets you show a customized view of your business
and strategy data.

See also Oracle Scorecard and Strategy Management.

dashboard

An object that provides personalized views of corporate and external information. A
dashboard consists of one or more pages. Pages can display anything that you can

dashboard prompt

Glossary-6

access or open with a Web browser, such as results of analyses, images, alerts from
agents, and so on.

dashboard prompt

A prompt that is added to the dashboard. When the user selects a prompt value, that
value then determines the content that displays in all analyses that are included on the
dashboard.

See analysis prompt and prompt.

Dashboard URL

Used for incorporating or referencing the content of a specific dashboard in external
portals or applications. It has several forms and optional arguments that you can use
to control its behavior.

data source name (DSN)

A data structure that contains the information about a specific database, typically used
by an ODBC driver to connect to the database. The DSN contains information such as
the name, directory, and driver of the database.

Connection pool objects in the Physical layer of the Oracle BI repository contain DSN
information for individual data sources.

database hint

Instructions placed within a SQL statement that tell the database query optimizer the
most efficient way to execute the statement. Hints override the optimizer's execution
plan, so you can use hints to improve performance by forcing the optimizer to use a
more efficient plan. Hints are supported only for Oracle Database data sources.

dimension

A hierarchical organization of logical columns (attributes). One or more logical
dimension tables might be associated with at most one dimension.

A dimension might contain one or more (unnamed) hierarchies. There are two types of
logical dimensions: dimensions with level-based hierarchies (structure hierarchies),
and dimensions with parent-child hierarchies (value hierarchies).

A particular type of level-based dimension, called a time dimension, provides special
functionality for modeling time series data.

See also hierarchy.

dimension table

A logical table that contains columns used by a particular dimension. A dimension
table cannot be a fact table.

See also fact table.

driving table

A mechanism used to optimize the manner in which the Oracle BI Server processes
multi-database joins when one table is very small (the driving table) and the other
table is very large.

DSN

See data source name (DSN).

Go URL

Glossary-7

event polling table

Event polling tables (also called event tables) provide information to the Oracle BI
Server about which physical tables have been updated. They are used to keep the
query cache up-to-date. The Oracle BI Server cache system polls the event table,
extracts the physical table information from the rows, and purges stale cache entries
that reference those physical tables.

Essbase

A multidimensional database management system available from Oracle that provides
a multidimensional database platform upon which to build business intelligence
applications. Also referred to as Oracle’s Hyperion Essbase.

fact table

In an Oracle BI repository, a logical table in the Business Model and Mapping layer
that contains measures and has complex join relationships with dimension tables.

See also dimension table.

filter

Criteria that are applied to attribute and measure columns to limit the results that are
displayed when an analysis is run. For measure columns, filters are applied before the
query is aggregated and affect the query and thus the resulting values.

See also prompt and selection step.

foreign key

A column or a set of columns in one table that references the primary key columns in
another table.

fragmentation content

The portion, or fragment, of the set of data specified in a logical table source when the
logical table source does not contain the entire set of data at a given level.
Fragmentation content is defined by the logical columns that are entered in the
Fragmentation content box in the Content tab of the Logical Table Source dialog box.

Fusion Middleware Control

Provides Web-based management tools that enable you to monitor and configure
Fusion Middleware components.

global header

An object in the user interface for Oracle BI Presentation Services that contains links
and options that enable the user to quickly begin a task or locate a specific object
within the Oracle BI Presentation Catalog. The global header always displays in the
Presentation Services user interface, thus enabling users to quickly access links and
search the catalog without having to navigate to the Home Page or Catalog page.

Go URL

Used to incorporate specific business intelligence results into external portals or
applications. The Go URL is used when you add a result to your favorites or add a link
to a request to a dashboard or external Web site. It has several forms and optional
arguments that you can use to control its behavior.

hierarchical column

Glossary-8

hierarchical column

In Presentation Services, a column that holds data values that are organized using both
named levels and parent-child relationships. This column is displayed using a tree-like
structure. Individual members are shown in an outline manner, with lower-level
members rolling into higher-level members. For example, a specific day belongs to a
particular month, which in turn is within a particular year. Examples include Time or
Geography.

See also attribute column.

hierarchy

In an Oracle BI repository, a system of levels in a logical dimension that are related to
each other by one-to-many relationships. All hierarchies must have a common leaf
level and a common root (all) level.

Hierarchies are not modeled as separate objects in the metadata. Instead, they are an
implicit part of dimension objects.

See also dimension, logical level, and presentation hierarchy.

hierarchy level

In Presentation Services, an object within a hierarchical column that either rolls up or
is rolled up from other levels. Corresponds to a presentation level in an Oracle BI
repository.

See also presentation level.

home page

Provides an intuitive, task-based entry way into the functionality of Presentation
Services. The Home page is divided into sections that enable you to quickly begin
specific tasks, locate an object, or access technical documentation.

image prompt

A prompt that provides an image with different areas mapped to specific values. The
user clicks an image area to select the prompt value that populates the analysis or
dashboard.

See also prompt.

initialization block

Used to initialize dynamic repository variables, system session variables, and
nonsystem session variables. An initialization block contains the SQL statements that
are executed to initialize or refresh the variables that are associated with that block.

initiative

Used in a scorecard, an initiative is a time-specific task or project that is necessary to
achieve objectives. As such, you can use initiatives that support objectives as
milestones as they reflect progress toward strategy targets.

See also objective and Oracle Scorecard and Strategy Management.

Java components

Fusion Middleware Control components that are deployed as one or more Java EE
applications (and a set of resources) and are managed by Node Manager.

See also Node Manager.

Logical SQL

Glossary-9

key performance indicator (KPI)

A measurement that defines and tracks specific business goals and strategic objectives.
KPIs often times roll up into larger organizational strategies that require monitoring,
improvement, and evaluation. KPIs have measurable values that usually vary with
time, have targets to determine a score and performance status, include dimensions to
allow for more precise analysis, and can be compared over time for trending purposes
and to identify performance patterns.

See also Oracle Scorecard and Strategy Management.

KPI watchlist

A method of distributing KPIs to end users. A watchlist is a collection of KPIs that are
built by adding the KPIs that are stored in the Oracle BI Presentation Catalog. After a
KPI watchlist is built and saved, it is stored as a catalog object and can be added to
dashboards and scorecards.

See also key performance indicator (KPI).

level

See hierarchy level.

logical display folder

Folders used to organize objects in the Business Model and Mapping layer. They have
no metadata meaning.

logical join

Joins that express relationships between logical tables. Logical joins are conceptual,
rather than physical, joins. In other words, they do not join to particular keys or
columns. A single logical join can correspond to many possible physical joins.

logical layer

See Business Model and Mapping layer.

logical level

In an Oracle BI repository, a component of a level-based hierarchy that either rolls up
or is rolled up from other levels.

Parent-child hierarchies have implicit, inter-member levels between ancestors and
descendants that are not exposed as logical level objects in the metadata. Although
parent-child hierarchies also contain logical level objects, these levels are system
generated and exist to enable aggregation across all members only.

See also dimension and hierarchy.

Logical SQL

The SQL statements that are understood by the Oracle BI Server. The Oracle BI Server
Logical SQL includes standard SQL, plus special functions (SQL extensions) like AGO,
TODATE, EVALUATE, and others.

Clients like Presentation Services send Logical SQL to the Oracle BI Server when a
user makes a request. In addition, Logical SQL is used in the Business Model and
Mapping layer to enable heterogeneous database access and portability. The Oracle BI
Server transforms Logical SQL into physical SQL that can be understood by source
databases.

logical table

Glossary-10

logical table

A table object in the Business Model and Mapping layer of an Oracle BI repository. A
single logical table can map to one or more physical tables. Logical tables can be either
fact tables or dimension tables.

See also dimension table and fact table.

logical table source

Objects in the Business Model and Mapping layer of an Oracle BI repository that
define the mappings from a single logical table to one or more physical tables. The
physical to logical mapping can also be used to specify transformations that occur
between the Physical layer and the Business Model and Mapping layer, and to enable
aggregate navigation and fragmentation.

Managed Server

An individual J2EE application container (JMX MBean container). It provides local
management functions on individual hosts for Java components and system
components contained within the local middleware home, and refers to the
Administration Server for all of its configuration and deployment information.

See also Administration Server and Fusion Middleware Control.

measure column

A column that can change for each record and can be added up or aggregated. Typical
measures are sales dollars and quantity ordered. Measures are calculated from data
sources at query time.

Measure columns are displayed in the Oracle BI repository, usually in fact tables, or in
Presentation Services.

metadata

Data about data. Metadata objects include the descriptions of schemas (such as tables,
columns, data types, primary keys, foreign keys, and so on) and logical constructs (like
fact tables, dimensions, and logical table source mappings).

The Oracle BI repository is made up of the metadata used by the Oracle BI Server to
process queries.

metadata dictionary

A static set of XML documents that describe metadata objects, such as a column,
including its properties and relationships with other metadata objects. A metadata
dictionary can help users obtain more information about metrics or attributes for
repository objects.

mission statement

A statement in a scorecard that specifies the key business goals and priorities that are
required to achieve your vision.

See also Oracle Scorecard and Strategy Management and vision statement.

multi-database join

A join between two tables in an Oracle BI repository, where each table resides in a
different database.

Oracle BI Administration Tool

Glossary-11

Node Manager

A daemon process that provides remote server start, stop, and restart capabilities
when Java processes become unresponsive or terminate unexpectedly.

See also Java components.

OCI

See Oracle Call Interface (OCI).

ODBC

See Open Database Connectivity (ODBC).

object properties

Information about an object and attributes that the owner can assign to an object.
Examples of properties include name, description, date stamps, read-only access, and
do not index flag.

See also permissions.

objective

A required or desired outcome in a scorecard that forms your corporate strategy.

See also initiative and Oracle Scorecard and Strategy Management.

offline mode

In the Oracle BI Administration Tool, a mode where a repository builder can edit a
repository that is not loaded into the Oracle BI Server.

online mode

In the Oracle BI Administration Tool, a mode where a repository builder can edit a
repository while it is available for query operations. Online mode also allows user
session monitoring for users connected to the subject areas in the repository.

opaque view

A Physical layer table that consists of a SELECT statement. In the Oracle BI repository,
opaque views appear as view tables in the physical databases, but the view does not
actually exist.

Open Database Connectivity (ODBC)

A standard interface used to access data in both relational and nonrelational databases.
Database applications can use ODBC to access data stored in different types of
database management systems, even if each database uses a different data storage
format and programming interface.

OPMN

See Oracle Process Manager and Notification Server (OPMN).

Oracle BI Administration Tool

A Windows application that is used to create and edit Oracle BI repositories. The
Administration Tool provides a graphical representation of the three parts of a
repository: the Physical layer, the Business Model and Mapping layer, and the
Presentation layer.

Oracle BI Briefing Books

Glossary-12

Oracle BI Briefing Books

A collection of static or updatable snapshots of dashboard pages, individual analyses,
and BI Publisher reports. You can download briefing books in PDF or MHTML format
for printing and viewing. You also can update, schedule, and deliver briefing books
using agents.

Oracle BI JavaHost

A service that gives Presentation Services the ability to use functionality that is
provided in Java libraries to support components such as graphs. The services are
provided based on a request-response model.

Oracle BI Logical SQL View Object

Provides the developer the ability to create a Logical SQL statement to access the
Oracle BI Server and fetch business intelligence data and bind it to native ADF
components for inclusion on an ADF page. This view object uses a BI JDBC connection
to the Oracle BI Server.

Oracle BI Presentation Catalog

Stores business intelligence objects, such as analyses and dashboards, and provides an
interface where users create, access, and manage objects, and perform specific
object-based tasks (for example, export, print, and edit). The catalog is organized into
folders that are either shared or personal.

Oracle BI Presentation Services

Provides the framework and interface for the presentation of business intelligence data
to Web clients. It maintains a Presentation Catalog service on the file system for the
customization of this presentation framework. It is a standalone process and
communicates with the Oracle BI Server using ODBC over TCP/IP. It consists of
components that are known as Answers, Delivers, and Interactive Dashboards.

See also ODBC; Oracle BI Server; Oracle BI Presentation Catalog; Oracle BI
Presentation Services server.

Oracle BI Presentation Services server

The Oracle BI Web server that exchanges information and data with the Oracle BI
Server.

Oracle BI Publisher

A J2EE application that provides enterprise-wide publishing services in Oracle
Business Intelligence. It generates highly formatted, pixel-perfect reports.

See also report.

Oracle BI Publisher report

See report.

Oracle BI repository

A file that stores Oracle Business Intelligence metadata. The metadata defines logical
schemas, physical schemas, physical-to-logical mappings, aggregate table navigation,
and other constructs. The repository file has an extension of .rpd. Oracle BI
repositories can be edited using the Oracle BI Administration Tool.

See also metadata and Oracle BI Administration Tool.

Oracle Call Interface (OCI)

Glossary-13

Oracle BI Scheduler

An extensible scheduling application for scheduling results to be delivered to users at
specified times. It is the engine behind the Oracle BI Delivers feature.

See also results.

Oracle BI Server

A standalone process that maintains the logical data model that it provides to
Presentation Services and other clients through ODBC. Metadata is maintained for the
data model in a local proprietary file called the repository file. The Oracle BI Server
processes user requests and queries underlying data sources.

Oracle BI Server XML API

Provides utilities to create a generic, XML-based representation of the Oracle BI
repository metadata. You can use this XML file version of the repository to
programmatically modify the metadata. The Oracle BI Server XML API objects
correspond to metadata repository objects in an RPD file. These objects differ from
XML objects in the Oracle BI Presentation Catalog.

Oracle Business Intelligence Mobile

Oracle Business Intelligence Mobile allows you to view Oracle BI EE content on
supported mobile devices such as the Apple iPhone and Apple iPad.

Using Oracle Business Intelligence Mobile, you can view and analyze BI content such
as analyses and dashboards, BI Publisher content, scorecard content, and content
delivered by agents.

Oracle Business Intelligence Web Services

See Oracle Business Intelligence Session-Based Web Services and Oracle Business
Intelligence Web Services for SOA.

Oracle Business Intelligence Session-Based Web Services

An API that implements SOAP. These Web services are designed for programmatic
use, where a developer uses one Web service to invoke many different business
intelligence objects. These Web services provide functionality on a wide range of
Presentation Services operations. These Web services enable the developer to extract
results from Oracle BI Presentation Services and deliver them to external applications,
perform Presentation Services management functions, and execute Oracle Business
Intelligence alerts (known as Intelligent Agents).

See also Oracle Business Intelligence Web Services for SOA.

Oracle Business Intelligence Web Services for SOA

Contains three Web services, ExecuteAgent, ExecuteAnalysis, and ExecuteCondition,
which are hosted by the bimiddleware J2EE application. These web services are
designed to enable developers to use third-party Web services clients (for example,
Oracle SOA Suite) to browse for and include business intelligence objects in service
oriented architecture components.

See also Oracle Business Intelligence Session-Based Web Services.

Oracle Call Interface (OCI)

A connection interface that the Oracle BI Server can use to connect to Oracle Database
data sources. You should always use OCI when importing metadata from or
connecting to an Oracle Database.

Oracle OLAP

Glossary-14

Oracle OLAP

Oracle Database has an OLAP Option that provides an embedded, full-featured online
analytical processing server.

Oracle Business Intelligence supports Oracle OLAP as a data source. When you import
metadata from an Oracle OLAP source, the Oracle OLAP objects appear in the
Physical layer of the Administration Tool. Oracle OLAP objects include Analytic
Workspaces, which are containers for storing related cubes.

Oracle Process Manager and Notification Server (OPMN)

A process management tool that manages all system components (server processes),
and supports both local and distributed process management, automatic process
recycling and the communication of process state (up, down, starting, stopping).
OPMN detects process unavailability and automatically restarts processes).

See also system components.

Oracle Scorecard and Strategy Management

A performance management tool that lets you describe and communicate your
business strategy. You can drive and assess your corporate strategy and performance
from the top of your organization down, or from the bottom up.

Oracle Technology Network (OTN)

A repository of technical information about Oracle’s products where you can search
for articles, participate in discussions, ask the user community technical questions, and
search for and download Oracle products and documentation.

parent-child hierarchy

A hierarchy of members that all have the same type. All the dimension members of a
parent-child hierarchy occur in a single data source. In a parent-child hierarchy, the
inter-member relationships are parent-child relationships between dimension
members.

See also dimension.

parent-child relationship table

A table with values that explicitly define the inter-member relationships in a
parent-child hierarchy. Also called a closure table.

pass-through calculation

A calculation that is not computed by the Oracle BI Server but instead is passed to
another data source. Enables advanced users to leverage data source features and
functions without the need to modify the Oracle BI repository.

permissions

Specify which users can access an object, and limit how users can interact with an
object. Examples of permissions include write, delete, and change permissions.

See object properties.

perspective

A category in your organization with which to associate initiatives, objectives, and
KPIs in a scorecard. A perspective can represent a key stakeholder (such as a customer,
employee, or shareholder/financial) or a key competency area (such as time, cost, or
quality).

presentation level

Glossary-15

See also initiative, key performance indicator (KPI), objective, and Oracle Scorecard
and Strategy Management.

physical catalog

An object in the Physical layer of a repository that groups different schemas. A catalog
contains all the schemas (metadata) for a database object.

physical display folder

Folders that organize objects in the Physical layer of an Oracle BI repository. They have
no metadata meaning.

physical join

Joins between tables in the Physical layer of an Oracle BI repository.

Physical layer

A layer of the Oracle BI repository that contains objects that represent physical data
constructs from back-end data sources. The Physical layer defines the objects and
relationships available for writing physical queries. This layer encapsulates source
dependencies to enable portability and federation.

physical schema

An object in the Physical layer of an Oracle BI repository that represents a schema
from a back-end database.

physical table

An object in the Physical layer of an Oracle BI repository, usually corresponding to a
table that exists in a physical database.

See also Physical layer.

presentation hierarchy

An object in the Presentation layer of an Oracle BI repository that provides an explicit
way to expose the multidimensional model in Presentation Services and other clients.
Presentation hierarchies expose analytic functionality such as member selection,
custom member groups, and asymmetric queries. Users can create hierarchy-based
queries using presentation hierarchies.

In Presentation Services, presentation hierarchies are displayed as hierarchical
columns.

See also hierarchical column and presentation level.

Presentation layer

Provides a way to present customized, secure, role-based views of a business model to
users. It adds a level of abstraction over the Business Model and Mapping layer in the
Oracle BI repository. The Presentation layer provides the view of the data seen by
users who build analyses in Presentation Services and other client tools and
applications.

See also Business Model and Mapping layer.

presentation level

In the Oracle BI repository, a component of a presentation hierarchy that either rolls up
or is rolled up from other levels. Presentation levels are displayed as levels within
hierarchical columns in Presentation Services.

Presentation Services

Glossary-16

See also hierarchy level and presentation hierarchy.

Presentation Services

See Oracle BI Presentation Services.

Presentation Services server

See Oracle BI Presentation Services server.

presentation table

An object in the Presentation layer of an Oracle BI repository that is used to organize
columns into categories that make sense to the user community. A presentation table
can contain columns from one or more logical tables. The names and object properties
of the presentation tables are independent of the logical table properties.

primary key

A column (or set of columns) where each value is unique and identifies a single row of
a table.

process instance

A unique process on an individual workstation that is associated with a BI instance.

See also BI instance.

prompt

A type of filter that enables the content designer to build and specify data values or
the end user to choose specific data values to provide a result sets for an individual
analysis or multiple analyses included on a dashboard or dashboard page. A prompt
expands or refines existing dashboard and analysis filters.

The types of prompts are column prompts, currency prompts, image prompts, and
variable prompts.

See also column prompt, currency prompt, filter, image prompt, and variable
prompt.

prompted link

Captures the path to a dashboard page and a simplified presentation of the dashboard
prompt.

See bookmark link.

query

Contains the underlying SQL statements that are issued to the Oracle BI Server. You do
not have to know a query language to use Oracle Business Intelligence.

query cache

A facility to store query results for use by other queries.

ragged hierarchy

See unbalanced hierarchy.

report

The response returned to the user from the execution of a query created using Oracle
BI Publisher. Reports can be formatted, presented on a dashboard page, saved in the
Oracle BI Presentation Catalog, and shared with other users.

strategy map

Glossary-17

See also analysis.

repository

See Oracle BI repository.

repository variable

See variable.

results

The output returned from the Oracle BI Server for an analysis.

See also analysis.

scorecard

See Oracle Scorecard and Strategy Management.

selection step

A choice of values that is applied after the query is aggregated that affects only the
members displayed, not the resulting aggregate values. Along with filters, selection
steps restrict the results for an analysis.

See also analysis and filter.

session variable

See variable.

skip-level hierarchy

A hierarchy where some members do not have a value for a particular ancestor level.
For example, in the United States, the city of Washington in the District of Columbia
does not belong to a state. The expectation is that users can still navigate from the
country level (United States) to Washington and below without the need for a state.

See also hierarchy.

snowflake schema

A dimensional schema where one or more of the dimensions are partially or
completely normalized.

SQL

See structured query language (SQL).

star schema

A relational schema that allows dimensional analysis of historical information. Star
schemas have one-to-many relationships between the logical dimension tables and the
logical fact table. Each star consists of a single fact table joined to a set of denormalized
dimension tables.

strategy map

A component of a scorecard that shows how the objectives that have been defined for
a scorecard and the KPIs that measure their progress are aligned by perspectives. It
also shows cause and effect relationships.

See also Oracle Scorecard and Strategy Management.

strategy tree

Glossary-18

strategy tree

A component of a scorecard that shows an objective and its supporting child objectives
and KPIs hierarchically in a tree diagram.

See also Oracle Scorecard and Strategy Management.

structured query language (SQL)

A standard programming language for querying and modifying data. Oracle Business
Intelligence supports standard SQL-92 with several value-added proprietary
extensions.

See also Logical SQL.

subject area

In an Oracle BI repository, an object in the Presentation layer that organizes and
presents data about a business model. It is the highest-level object in the Presentation
layer and represents the view of the data that users see in Presentation Services. Oracle
BI repository subject areas contain presentation tables, presentation columns, and
presentation hierarchies.

In Presentation Services, subject areas contain folders, measure columns, attribute
columns, hierarchical columns, and levels.

system components

Server processes (not Java applications) that are managed by the Oracle Process
Manager and Notification server (OPMN).

See also Oracle Process Manager and Notification Server (OPMN).

transformation

Work that is performed on data when moving from a database to another location
(sometimes another database). Some transformations are typically performed on data
when it is moved from a transaction system to a data warehouse system.

unbalanced hierarchy

A hierarchy where the leaves do not have the same depth. For example, an
organization might choose to have data for the current month at the day level, data for
the previous at the month level, and data for the previous five years at the quarter
level.

See also hierarchy.

value hierarchy

See parent-child hierarchy.

variable

Objects in an Oracle BI repository that are used to streamline administrative tasks and
dynamically modify metadata content to adjust to a changing data environment.

Variables are of the following types:

■ Repository variables have a single value at any point in time. There are two types
of repository variables: static and dynamic.

■ Session variables are created and assigned a value when each user logs on. There
are two types of session variables: system and nonsystem.

XML API

Glossary-19

variable prompt

Enables the user to select a value specified in the variable prompt to display on the
dashboard. A variable prompt is not dependent upon column data, but enables you to
manipulate, for example add or multiply, the column data on an analysis.

See also prompt.

virtual physical table

A physical table that is made from a stored procedure or a SELECT statement. Creating
virtual tables can provide the Oracle BI Server and the underlying databases with the
proper metadata to perform some advanced query requests.

vision statement

A short statement in a scorecard that describes what your organization wants to
become sometime in the future. For example, it might be to become the most
successful business in the South America Polypropylene Market.

See also mission statement and Oracle Scorecard and Strategy Management.

WebLogic server domain

Contains Java components that are configured to participate in the servicing of SOAP,
HTTP, and other forms of requests.

WebLogic Scripting Tool (WLST)

A command-line scripting interface that enables you to configure, manage, and persist
changes to WebLogic Server instances and domains and to monitor and manage server
run-time events.

XML API

See Oracle BI Server XML API.

XML API

Glossary-20

Index-1

Index

Numerics
503 Service Not Available errors, avoiding, 6-9

A
ABS math function, about, C-48
ACOS math function, about, C-48
Actions menu, about, 2-10
ADF Business Components

about, 5-1
application EAR file, deploying, 5-5
AppModule Config, 5-10, 6-20
AppModuleDefinition, 5-10, 6-20
enabling custom parameters, 5-11
importing metadata from, 5-9
JDBC data source for, 5-8
propagating labels and tooltips, 5-11
properties in connection pool, 6-19
setting up, 5-3
URL, 5-10, 6-20
working with, 5-1

Administration Tool
about, 2-1
Actions menu, 2-10
Edit menu, 2-8
File menu, 2-6
Help menu, 2-10
icons, 2-14
keyboard shortcuts, G-1
main window, 2-2
Manage menu, 2-8
opening, 2-2
setting preferences, 2-3
toolbar, 2-2
Tools menu, 2-9
version, 2-10
View menu, 2-8
Window menu, 2-10

Administration Tool utilities
Aggregate Persistence, 17-15
Externalize Strings, 17-10
Generate Metadata Dictionary, 17-14
Oracle BI Event Tables, 17-10
Remove Unused Physical Objects, 17-15
Rename Wizard, 17-11

Replace Column or Table in Logical Table
Sources, 17-7

Repository Documentation, 17-13
Update Physical Layer, 17-12

AGGREGATE AT aggregate function, about, C-25
aggregate functions

about, C-24, C-31
AGGREGATE AT, C-25
alternative syntax, C-13
AVG, C-25
AVGDISTINCT, C-26
BOTTOMN, C-26
computing aggregates of baseline columns, C-9
computing aggregates of measure columns, C-11
COUNT, C-26
COUNT (*), C-26
COUNTDISTINCT, C-26
display function reset behavior, C-12
FIRST, C-27
GROUPBYCOLUMN, C-27
GROUPBYLEVEL, C-28
LAST, C-28
MAX, C-28
MEDIAN, C-29
MIN, C-29
NTILE, C-29
PERCENTILE, C-29
RANK, C-30
rules for, C-9
STDDEV, C-30
STDDEV_POP, C-30
SUM, C-31
SUMDISTINCT, C-31
TOPN, C-31
using FILTER to compute conditional

aggregates, C-13
aggregate navigation

about aggregate table fragments, 10-15
about WHERE clause filters, 10-10
creating sources for each level of aggregated fact

data, 10-11
specifying aggregate levels for each source, 10-11
specifying fragmentation content, 10-12

aggregate persistence
about, 12-1
default prefix, 12-2

Index-2

identifying query candidates, 12-2
running the specification, 12-10
troubleshooting, 12-10
using the Aggregate Persistence Wizard, 12-3
writing script manually, 12-6

Aggregate Persistence Wizard, about, 12-3
aggregate queries, about, C-9
aggregate table fragments

about, 10-15
about configuring a repository to use

fragments, 10-16
constructing physical joins for virtual table, 10-17
creating SQL virtual table content, 10-17
defining Physical layer tables with a SELECT

Statement, 10-17
specifying aggregate table content, 10-16

AGGREGATE_PREFIX configuration option, 12-2
Aggregation content, group-by list, 10-8
aggregation rules

default rules for measure columns, 8-15
dimension-specific, 8-16
Evaluate_Aggr, 8-15
for multidimensional data sources, 8-18
for Oracle OLAP, 7-31

AGO time series function, about, C-36
alias tables

about, 7-8
creating, 7-12
for Essbase, 7-24

aliases
Alias tab, using, 11-14
merging, D-7

Allow direct database requests by default
about, 6-3
recommendations for enabling, 6-3

Allow first Connection Pool for Init Blocks
option, 2-5

Allow import from repository option, 2-4
Allow logical foreign key join creation option, 2-4
Allow populate queries by default, 6-3
alternate hierarchies, about, 7-25
Analytic Workspace objects, working with, 7-31
Ancestor Reference column type, 7-21
annotations, enabling for Oracle Scorecard and

Strategy Management, 14-1
application EAR file, for ADF Business

Components, 5-5
application module, 5-2
application roles

about granting privileges for, 13-10
managing, 1-16
managing in the default policy store, 13-2
permission inheritance, 13-10
setting up placeholder roles, 13-15

AppModule Config, for ADF Business
Components, 5-10, 6-20

AppModule Definition, for ADF Business
Components, 5-10, 6-20

ARBORPATH, setting, 4-6, 15-13
architecture

multiuser development, A-4
Oracle BI Server, 1-1
repository, 1-3

ASCII string function, about, C-39
ASIN math function, about, C-48
ATAN math function, about, C-48
ATAN2 math function, about, C-48
Attribute column type, 7-21
auditing, for data access security, 13-1
authentication

cache, 2-6
managing, 13-2

Auto Layout option, for Diagrams, 2-10
AVG aggregate function, about, C-25
AVGDISTINCT aggregate function, about, C-26

B
Based on dimensions option for measures, 8-16
baseline column

behavior with aggregate functions, C-9
example, C-9

Between SQL logical operator, about, C-14
bi-init, 2-2, 2-16, 2-24, 3-11, 4-7, 14-3, 16-5, 16-20, A-6,

E-2
biserverxmlcli, 2-16
biserverxmlexec, 2-16
biserverxmlgen, 2-16
BISystem user, 2-5
BIT_LENGTH string function, about, C-40
blank repository, creating, 16-15
BOTTOMN aggregate function, about, C-26
branching, in multiuser development, 3-17, A-16
bridge tables

about, 8-23
modeling in a single dimension, 8-24
modeling in separate dimensions, 8-25
modeling in the Physical layer, 8-24
weight factor for, 8-23

Browse dialog
about using, 2-13
querying for an object, 2-14
selecting an object in, 2-14
synchronizing an object in the query results list

with the tree control list, 2-14
buffer size, setting up, 6-22
bulk creation of metrics, 17-15
Business Model and Mapping layer

about, 1-3, 8-1
associating measures with levels in a

dimension, 8-19
automatically creating objects for, 8-2
creating logical columns, 8-11
creating logical table source content

definitions, 10-8
defining physical to logical mapping, 10-4
managing logical table sources, 10-1
setting up display folders in, 8-22
tips for, 1-12
working with logical tables, 8-4

Index-3

Business Model Diagram
about using, 2-10
about using to create joins, 8-7
displaying, 8-3
displaying qualified names in, 2-3
working with, 8-3

business models
creating, 8-2
disabling, 8-2
duplicating with subject area, 8-3
planning, 1-4
understanding, 1-4

C
Cache Manager

about, 2-9
column order, 2-6

Cache menu option, 2-9
Cache refresh interval option (authentication

cache), 2-6
caching

authentication cache, 2-6
managing, 1-16
settings for physical tables, 7-11

calculated items, creating, 10-4, 10-5
CALCULATEDMEMBER

examples, C-22
rules, C-20
syntax, C-19

Calculation Wizard
about, 17-15
setting up, 2-4
using, 17-15

calculations, for level-based measures, 9-7
calendar date/time functions

about, C-53
CURRENT_DATE, C-54
CURRENT_TIME, C-54
CURRENT_TIMESTAMP, C-54
DAY_OF_QUARTER, C-55
DAYNAME, C-55
DAYOFMONTH, C-55
DAYOFWEEK, C-55
DAYOFYEAR, C-56
HOUR, C-56
MINUTE, C-56
MONTH, C-56
MONTH_OF_QUARTER, C-56
MONTHNAME, C-57
NOW, C-57
QUARTER_OF_YEAR, C-57
SECOND, C-57
TIMESTAMPADD, C-57
TIMESTAMPDIFF, C-59
WEEK_OF_QUARTER, C-60
WEEK_OF_YEAR, C-60
YEAR, C-61

call interface, for connection pools, 6-8
CASE (If) conditional expression, about, C-16

CASE (Switch) conditional expression, about, C-15
CAST conversion function, about, C-61, C-62
catalogs, creating, 7-4
CEILING math function, about, C-49
certification information, 1-16
CHAR string function, about, C-40
CHAR_LENGTH string function, about, C-40
character literals, about, C-17
Check out objects automatically option, 2-4
checking global consistency, 2-21
checking in changes, 2-20
checking out objects, 2-20
chronological keys

about, 9-3
selecting and sorting, 9-10
setting for each level, 9-26

circular joins, about and eliminating, 1-11
client applications, enabling connectivity for, 14-5
Cluster Manager, 2-9
Cluster menu option, 2-9
Collapse All option, for Diagrams, 2-11
column mapping, logical to physical, 10-4
column types, for Essbase, 7-21
command-line utilities, 2-15
Common Enterprise Information Model, about, 1-4
Compare Mode, turning off, 16-3
Compare with Original menu option, 3-12
comparing repositories, 16-1
complex joins

See physical complex joins
CONCAT string function, about, C-40
conditional expressions

about, C-15
CASE (If), about and syntax, C-16
CASE (Switch), about and syntax, C-15

conformed dimensions, 1-6
connection pools

about, 1-11, 6-5
automating changes for, 6-7
call interface, 6-8
creating connection scripts, 6-14
creating or changing, 6-6
data source name, 6-10
for initialization blocks, 6-6
for standby database configuration, 4-36
maximum number of connections, 6-9
permissions for, 6-8
persist connection pool property, 6-21
properties for ADF Business Components, 6-19
require fully qualified table names, 6-10
shared logon, 6-11
Unicode database type option, 6-19
URL, 6-13
using net service name, xxxi
write-back properties, 6-17
XML properties, 6-16

connection scripts, in connection pool, 6-14
consistency check

checking repository for consistency, 2-23
checking single object for consistency, 2-23

Index-4

new validation rules, xxiv, xxxi
Consistency Check Manager

about checking repository or objects for
consistency, 2-21

about messages, 2-22
about passing consistency check, 2-21
checking repository for consistency, 2-23
checking single object for consistency, 2-23
copying inconsistency messages, 2-23
correcting inconsistencies, 2-23

context for dimension-only queries, specifying, 11-4,
11-6

conversion functions
about, C-61
CAST, C-61
CHOOSE, C-62
IFNULL, C-62
INDEXCOL, C-62
TO_DATETIME, C-64
VALUEOF, C-65

COS math function, about, C-49
COT math function, about, C-49
COUNT aggregate function, about, C-26
COUNT(*) aggregate function, about, C-26
COUNTDISTINCT aggregate function, about, C-26
create aggregates specification, writing

manually, 12-6
Create New Repository Wizard, 4-2
create view function, about, 7-39
create/prepare aggregates syntax, 12-9
creating calculated items, 10-4, 10-5
credential store, managing system credentials

in, 13-2
cube variables, working with, 7-19
cubes

about, 1-9, 7-15
viewing members, 7-20
working with, 7-1

current repository, about, 16-8
CURRENT_DATE calendar date/time function,

about, C-54
CURRENT_TIME calendar date/time function,

about, C-54
CURRENT_TIMESTAMP calendar date/time

function, about, C-54
custom authenticators, managing, 13-3
custom properties, enabling for ADF Business

Components, 5-11

D
data access security

about, 13-1
about applying in offline mode, 13-14
auditing, 13-1

data filters, setting up, 13-3
Data is dense option, 8-16
data modeling

identifying data source content, 1-8
identifying dimensions, 1-7

identifying logical dimension tables, 1-6
identifying logical fact tables, 1-5
identifying lookup tables, 1-8
objectives of, 1-4
planning the business model, 1-4

data source name, in connection pool, 6-10
data sources

connecting on Linux and UNIX using native ODBC
drivers, 15-10

DataDirect Connect drivers, 15-6
DB2 Connect, 15-13
Essbase setup, 4-6, 15-12
Hyperion Financial Management setup, 4-7
Microsoft Analysis Services, 4-16
ODBC DSN setup, 4-3
Oracle Database setup, 4-4
Oracle OLAP setup, 4-4
Oracle RPAS setup, 4-10, 15-11
preconfiguration tasks, 4-2
SAP/BW setup, 4-10
setup on Linux and UNIX, 15-1
supported by Oracle Business Intelligence, 1-16
Teradata setup, 4-4, 15-10
TimesTen setup, 4-4
using native gateways, 15-2
XML, 4-19

data types, transforming, 10-6
database

allowing or disallowing execution
privileges, 13-13

features, about, 6-4
features, for driving tables, 8-10
row-level security in, 13-6

database functions
about, C-65
EVALUATE, C-66
EVALUATE_AGGR, C-67
EVALUATE_ANALYTIC, C-67
EVALUATE_PREDICATE, C-68

database hints
about, 7-41
about entering SQL comment markers, 7-43
creating, 7-42
index hint, about, 7-42
Leading hint, about, 7-42
performance considerations, 7-42
Physical layer objects that accept hints, 7-41
usage examples, 7-42

database objects
about database types, 6-1
assigning ODBC type, 6-2
automatically assigning type, 6-1
creating for standby database configuration, 4-35
creating manually, 6-2
setting up, 6-1
specifying features for, 6-4
Virtual Private Database option, 6-2

DATABASE system function, about, C-76
databases, supported, 1-16
DataDirect Connect ODBC drivers, using, 15-6

Index-5

DATE data type, changing to, C-61
DATE_DISPLAY_FORMAT configuration

option, 2-17
DATE_TIME_DISPLAY_FORMAT configuration

option, 2-17
datetime literals, about, C-18
DAY_OF_QUARTER calendar date/time function,

about, C-55
DAYNAME calendar date/time function,

about, C-55
DAYOFMONTH calendar date/time function,

about, C-55
DAYOFWEEK calendar date/time function,

about, C-55
DAYOFYEAR calendar date/time function,

about, C-56
DB2 CLI (Unicode) connection protocol, 4-12
DB2 Connect, on IBM z/OS and s/390

platforms, 15-13
DB2 Cube Views

deploying cube metadata, F-15
guidelines for materialized query tables

(MQTs), F-16
DB2 Cube Views Generator

about, F-1, F-14
about input file for, F-4
about output files for, F-5
conversion rules, F-6
exporting metadata into DB2 Cube Views, F-14
generating import file, F-1
optional parameters and defaults, F-3
troubleshooting, F-5

DBFeatures.INI file, 6-4
decimal literal, about, C-18
Default logging level option, 2-5
default prefix, for aggregate persistence, 12-2
DEFAULT_PRIVILEGES configuration option, 1-15,

2-17
deferring execution of initialization blocks, 18-10
DEGREES math function, about, C-49
delegated administration in multiuser

development, A-18
deleting objects, 2-13
Density option, for Oracle OLAP, 7-33
derived columns, creating, 8-13
Derived from existing columns using an expression

option, 8-13
DESCRIPTION system session variable, 18-5
descriptor ID column, assigning to logical

column, 8-13
design guidelines for a repository, 1-10
Diagrams

about using, 2-10
dimensions

about, 1-7
about hierarchies in, 9-1
automatically creating, 9-10
automatically creating level counts, 9-12
identifying, 1-7
with multiple hierarchies, 1-8

dimension-specific aggregation rules, setting
up, 8-16

direct database requests, allowing or
disallowing, 13-13

DISABLE_CACHE_HIT system session
variable, 18-5

DISABLE_CACHE_SEED system session
variable, 18-5

DISABLE_PLAN_CACHE_HIT system session
variable, 18-6

DISABLE_PLAN_CACHE_SEED system session
variable, 18-6

DISABLE_SUBREQUEST_CACHE system session
variable, 18-6

Disallow Online RPD Updates configuration
option, 2-17

Disallow RPD Updates configuration option, 2-21
Discard Local Changes menu option, 3-13
Display Column, for Essbase cubes, 7-24
display functions

example, C-12
reset behavior, C-12

Display original names for alias in diagrams
option, 2-3

Display qualified names in diagrams option, 2-3
DISPLAYNAME system session variable, 18-5
documentation of repository mappings,

generating, 17-13
double column support, enabling, 8-13
dragging and dropping

business models, 11-2
physical tables and columns, 8-1

driving tables
about, 8-10
tuning performance, 8-10

DSNs, setting up for the Oracle BI Server, 1-16
duplicating business model and subject area, 8-3
dynamic name

for physical catalog or physical schema, 7-5
for physical tables, 7-11

dynamic repository variables
about, 18-2
initializing, 18-8

E
Edit menu, about, 2-8
editing objects, 2-13
Entity Objects, 5-2
equalizerpds utility, 16-5
equalizing objects, 16-3
equalStringSet parameter, for equalizing

objects, 16-6
Essbase

alternate hierarchies, 7-25
associating member attributes, 7-25
client libraries, 4-6, 15-12
column types, 7-21
defining aggregation rules for, 8-18
flattening metadata, 7-22

Index-6

Gen 1 levels, 7-23
Generations, 7-23
importing from, 4-15
importing UDAs, 4-18
incremental import, 7-23
measure hierarchies, 7-27
modeling UDAs, 7-25
setting up, 4-6, 15-12
SSO using CSS Token, 6-13
substitution variables, 7-22
using unqualified member names, 7-27
working with alias tables, 7-24
working with in the Physical layer, 7-21

ESSBASEPATH, setting, 4-6, 15-13
Estimate Levels, using, 9-12
EVALUATE database function, about, C-66
Evaluate_Aggr aggregation rule, 8-15
EVALUATE_AGGR database function, about, C-67
EVALUATE_ANALYTIC database function,

about, C-67
EVALUATE_PREDICATE database function,

about, C-68
event polling

setting up for standby database
configuration, 4-39

using the Oracle BI Event Tables utility, 17-10
exchanging metadata

about, F-1
generating import file, F-1
with IBM DB2 using DB2 Cube Views, F-14
with Oracle Database using SQL Access

Advisor, F-10
execution precedence, establishing for initialization

blocks, 18-16
EXP math function, about, C-49
Expand All option, for Diagrams, 2-11
Export logical keys option, about using with

parameterized SQL queries, 11-5
Expression Builder

about using, 17-1
accessing, 17-1
building an expression, 17-6
categories, about, 17-4
example expression, 17-5
navigating, 17-6
toolbar, 17-3

expression literals
character literals, about and expressing, C-17
decimal, about and expressing, C-18
integers, about and expressing, C-18

external aggregation, 7-16
External Expression, for ADF Business

Components, 5-2
Externalize Strings utility, using, 17-10
EXTRACTBIT math function, about, C-50
extractprojects utility, 3-11

F
feature table

changing entries using Query DBMS, 6-5
restoring default entries for, 6-5
viewing in Features tab of Database dialog, 6-4

file compression, 3-2
File menu, about, 2-6
filters, setting up, 13-3
FIRST aggregate function, about, C-27
Fit option, for Diagrams, 2-11
floating point literal, about, C-19
FLOOR math function, about, C-50
foreign keys

relationship with primary keys, 7-34
fragmentation content

about, 10-12
specifying, 10-8
specifying multicolumn content

descriptions, 10-13
specifying parallel content descriptions, 10-13
specifying single column range-based

predicates, 10-12
specifying single column value-based

predicates, 10-12
specifying unbalanced parallel content

descriptions, 10-15
fragmented data, about, 7-35
FROM clause syntax, about, C-4
full repository merges, about, 16-8
fully denormalized schemas, about, 1-9
fully qualified names, displaying, 2-3
Fusion Middleware Control

Disallow Online RPD Updates, 2-17
Repository File, 2-17
settings for repository builders, 2-17

G
Gen 1 levels

about, 7-23
skipping, 2-4

Generate ADF Label option, 5-13
Generate ADF Tooltip option, 5-13
Generate Metadata Dictionary utility, using, 17-14
Generate target DDL in a separate file option, 12-3
governors, setting up, 13-12
grains, for time queries, 9-22
grand total dimension hierarchy, example of, 9-8
grand total levels, about, 9-2
GROUP BY clause

query behavior with and without, C-12
syntax, about, C-5

GROUP system session variable, 18-5
GROUPBYCOLUMN aggregate function,

about, C-27
GROUPBYLEVEL aggregate function, about, C-28
groups, managing, 1-16, 13-2

H
hardware requirements, 1-16
Help menu, about, 2-10

Index-7

help, accessing, 1-11
Hide level based measure option, 2-5
Hide unusable logical table sources in Replace wizard

option, 2-5, 17-9
hierarchies

about, 1-7, 9-1
about level-based, 9-2
about multiple, 1-8
determining type, 1-7
example of grand total hierarchy, 9-8
grand total levels, 9-2
level attributes, about, 9-2
level keys, about, 9-2
level-based measure calculations, about, 9-7
levels and distances in parent-child

hierarchies, 9-14
levels, creating, 9-2
parent-child, about, 9-13
setting up level-based measure calculations, 9-8
skip-level, 9-3
time dimensions, about, 9-3
unbalanced, 9-3

hierarchy navigation functions
about, C-69
ISANCESTOR, C-69
ISCHILD, C-70
ISDESCENDANT, C-71
ISLEAF, C-72
ISPARENT, C-73
ISROOT, C-74

hints
about, 7-41
creating, 7-42
support for, 7-41

history for multiuser development, 3-20
HOUR calendar date/time function, about, C-56
HTML tables

XML Gateway, accessing by, 4-28
Hyperion Financial Management

Application Builder, 4-7
importing from, 4-17
POV value, 7-29
query support, 7-29
setting up, 4-7
SSO using CSS Token, 6-13
working with, 7-28

I
IBM DB2 Connect, configuring queries for

UNIX, 15-13
IBM DB2 Cube Views, 2-16

about, F-1
using to create DB2 materialized query

tables, F-14
icons, changing, 2-14
IDENTIFIER_QUOTE_CHAR parameter, 15-7
Identity Manager, 2-9
Identity menu option, 2-9
IFNULL conversion function, about, C-62

implicit fact column, setting, 11-4
Import Metadata Wizard, 4-11, 4-14, 4-21, 5-9
importing

ADF Business Components, 5-2, 5-9
data source preconfiguration tasks, 4-2
from Essbase, 4-15
from Hyperion Financial Management, 4-17
from multidimensional data sources, 4-14
from Oracle OLAP, 4-16
from Oracle RPAS, 4-15
from relational data sources, 4-10
from SAP/BW, 4-17
from XML data sources, 4-19
from XMLA, 4-16
locally, 4-10
metadata, 4-1
through the Oracle BI Server, 4-11
XML data using ODBC, 4-30

In SQL logical operator, about, C-14
incremental import, for Essbase, 7-23
INDEXCOL conversion function, about, 17-7, C-62
indexing, about index hint instructions, 7-42
Informix Database, connecting using DataDirect

Connect driver, 15-9
initialization blocks

about connection pools for, 6-6
about using with variables, 18-7
allowing deferred execution of, 18-10
associating with variables, 18-15
creating, 18-10
deferring execution, 18-8
enabling and disabling, 18-17
execution order, setting, 18-16
initializing dynamic repository variables, 18-8
initializing session variables, 18-8
Required for authentication option, 18-10
row-wize initialization, 18-8
rules for deferring execution, 18-17
working with, 18-7

INSERT string function, about, C-41
installation types, supported, 1-16
integers literals, about, C-18
INTERRUPT_ENABLED parameter, 15-13
Is Null SQL logical operator, about, C-14
ISANCESTOR hierarchy navigation function,

about, C-69
ISCHILD hierarchy navigation function, about, C-70
ISDESCENDANT hierarchy navigation function,

about, C-71
ISLEAF hierarchy navigation function, about, C-72
ISPARENT hierarchy navigation function,

about, C-73
ISROOT hierarchy navigation function, about, C-74

J
JDBC data source, for Oracle ADF application, 5-8
JDKs, supported, 1-16
Job Manager, 2-8
Jobs menu option, 2-8

Index-8

Joins Manager
about, 2-9
creating logical joins, 8-8
creating physical joins, 7-37
using to create joins, 8-7

Joins menu option, 2-9

K
keyboard shortcuts in Administration Tool, G-1
KPIs, 1-13

L
labels, for ADF data sources, 5-12
LAST aggregate function, about, C-28
Leading hint, about, 7-42
Leaf column type, 7-21
LEFT string function, about, C-41
LENGTH string function, about, C-42
level attributes, about, 9-2
level keys, about, 9-2
level-based hierarchies, about, 9-2
level-based measures

about, 9-7
calculations, 9-7
query results, 9-7

lexicographical sorting for logical columns, 8-12
lifecycle management, for repository, A-1
Like SQL logical operator, about, C-14
limits

limiting maximum run time, 13-13
limiting rows received, 13-12
restricting queries to time periods, 13-13

Linux
about data source setup, 15-1
connecting to data sources using native ODBC

drivers, 15-10
database setup script, locating, 15-2
DataDirect Connect ODBC drivers, 15-6

literals, in SQL, C-17
Load all objects on startup option, about

selecting, 2-19
Load Decision File option, 16-14
LOCALE configuration option, 2-17
localization, about, 1-16
localizing Presentation layer object names and

descriptions, 17-10
LOCATE string function, about, C-42
LOCATEN string function, about, C-43
LOG math function, about, C-50
LOG10 math function, about, C-50
logging level, setting for BISystem user, 2-5
logging, managing, 1-16
logical columns

assigning descriptor ID, 8-13
associating with logical levels, 9-6
changing sort order for, 8-12
configuring for multicurrency support, 8-14
creating, 8-11

creating derived columns, 8-13
enabling write back on, 8-21
lexicographical sorting, 8-12
mapping to physical columns, 10-5
moving or copying, 8-20
unmapping from source, 10-6

logical dimension tables
about, 1-6
identifying, 1-6

logical dimensions
about, 9-1
about including key column, 9-6
associating logical columns and tables with, 9-6
automatically populating level counts, 9-12
creating, 9-5
creating automatically, 9-10
creating logical levels, 9-5
creating time dimensions, 9-25
creating with parent-child hierarchies, 9-17
for multidimensional data sources, 9-1
modeling time dimensions, 9-21
with level-based hierarchies, 9-2
with parent-child hierarchies, 9-13

logical display folders, setting up, 8-22
logical fact tables

about, 1-5
identifying, 1-5
in a single business model, 1-13
joins, 1-6

logical foreign key joins, 8-7, 8-8
logical joins

about, 8-6
about creating, 8-7
about driving tables, 8-10
cardinality, 8-8
creating, 8-8
creating with Joins Manager, 8-8
displaying physical tables for, 8-11
displaying with Business Model Diagram, 8-7
tuning performance for driving table, 8-10

logical keys, exporting in Presentation layer, 11-4
logical levels

about keys, 9-2
associating logical columns for, 9-6
automatically populating level counts, 9-12
creating, 9-5
designating chronological keys, 9-26
grand total levels, example, 9-9
hierarchy, about, 9-2
populating level counts, 9-12
primary key, adding, 9-9
specifying preferred drill path, 9-10

logical objects, displaying mapped physical objects
for, 8-11

logical operators, C-14
Logical SQL, about, C-1
logical stars and snowflakes, creating corresponding

subject areas for, 11-2
logical table sources

about setting up, 10-1

Index-9

creating, 10-1
defining aggregate table content definitions, 10-7
defining content of, 10-6
limiting number of rows returned, 10-9
managing, 10-1
mapping columns in, 10-5
merge algorithms for, D-4
setting priority group numbers, 10-2
settings for parent-child hierarchies, 10-10
using the Replace Column or Table Wizard, 17-7
Where clause filter, using to constrain physical

tables, 10-10
logical tables

adding new logical table source, 10-1
associating with logical dimension, 9-6
creating and managing, 8-4
creating by dragging and dropping, 8-5
creating manually, 8-5
designating as lookup tables, 8-5
key, specifying, 8-6
working with, 8-4

LOGLEVEL system session variable, 18-5
logs for master repository, 3-17
lookup tables, 1-8, 2-22, 8-5
LOWER string function, about, C-43

M
main window, Administration Tool, 2-2
Manage menu, about, 2-8
ManageRepositories permission, 2-19
managing authentication, 13-2
mappings, creating between Physical layer and

Business Model and Mapping layer, 10-1
Marketing menu option, 2-9
Marquee Zoom option, for Diagrams, 2-11
master repository

about, 3-2
log, 3-17
tracking changes in, 3-17

Materialization option, for Oracle OLAP, 7-33
materialized query tables (MQTs), about, F-14
materialized views

creating, F-13
using, F-10

math functions
about, C-47
ABS, C-48
ACOS, C-48
ASIN, C-48
ATAN, C-48
ATAN2, C-48
CEILING, C-49
COS, C-49
COT, C-49
DEGREES, C-49
EXTRACTBIT, C-50
FLOOR, C-50
LOG, C-50
LOG10, C-50

MOD, C-51
PI, C-51
POWER, C-51
RADIANS, C-51
RAND, C-51
RANDFROMSEED, C-52
ROUND, C-52
SIGN, C-52
SIN, C-52
SQRT, C-53
TAN, C-53
TRUNCATE, C-53

mathematical operators, about, C-15
MAVG running aggregate function, about, C-32
MAX aggregate function, about, C-28
MAX_PARAMETERS_PER_DRIVE_JOIN

parameter, 8-10
MAX_QUERIES_PER_DRIVE_JOIN parameter, 8-11
maximum number of connections, 4-5, 6-9
MaxThreadsPerClient setting, for Microsoft Analysis

Services, 6-9
measures

about calculations for level-based measures, 9-7
associating with levels in a dimension, 8-19
Based on dimensions option, 8-16
behavior with aggregate functions, C-11
creating time series measures, 9-27
externally aggregated, 7-16
specifying default aggregation rule for, 8-15

MEDIAN aggregate function, about, C-29
Member Alias column type, 7-21
member counts, viewing, 7-20
Member Key column type, 7-21
memnor columns, 7-21
memory requirements, 1-16
menus, about, 2-6
Merge Local Changes menu option, 3-13
Merge Repository Wizard

rules for, D-1
using, 16-10, 16-15, 16-19, D-3

merging repositories
about, 16-8
about full merge, 16-8
about patch merge, 16-16
best practices, A-21
choosing merge method, A-18
equalizing objects, 16-3
merge rules, D-1
with a common parent, 16-10
without a common parent, 16-15

metadata
querying and managing, 16-21

metadata dictionary, generating, 17-14
Microsoft Analysis Services

avoiding connection errors for, 6-9
importing from, 4-16
MaxThreadsPerClient setting, 6-9

Microsoft SQL Server, connecting using DataDirect
Connect driver, 15-6

migrating the repository, A-5

Index-10

MIN aggregate function, about, C-29
minimum disk space requirements, 1-16
MINUTE calendar date/time function, about, C-56
Miscellaneous tab, in Connection Pool dialog, 6-19
MOD math function, about, C-51
modeling

alternate hierarchies, 7-25
best practices for presentation tables, 11-9
bridge tables, 8-23
Essbase data in the Physical layer, 7-21
Hyperion Financial Management data, 7-28
Oracle OLAP data, 7-30
parent-child relationship tables, 9-20
time series data, 9-21
UDAs, 7-25

modes, offline and online, 2-18
modified repository, about, 16-8
MONTH calendar date/time function, about, C-56
MONTH_OF_QUARTER calendar date/time

function, about, C-56
MONTHNAME calendar date/time function,

about, C-57
MSUM running aggregate function, about, C-32
MUD

history, 3-20
merge, 3-14
shared network directory, 3-7

multicurrency support, configuring, 8-14
multi-database joins, about, 7-35
multidimensional data sources

about, 1-9
importing, 4-14

multilingual schemas, 1-8
multiple hierarchies

about, 1-8
in the Presentation layer, 11-10

multiuser development
about, 3-1
architecture, A-4
best practices, A-19
branching, 3-17, A-16
case study, B-1
concepts, A-4
delegated administration, A-18
governance best practices, A-2
history, about viewing and deleting, 3-20
local changes, merging, 3-13
making changes, 3-8
merge, about, 3-14
metadata, changing and testing, 3-12
options, 3-21
planning for deployment, A-1
platforms, A-10
projects, 3-3, 3-9, 3-13, A-14
rolling back, A-26
sandboxes, A-4
setting directory, 2-6
setting up environment, about, 3-7
shared network directory, 3-7
styles, A-6

troubleshooting, A-24
understanding, A-13

Multiuser development directory option, 3-8

N
naming restrictions for repository objects, 2-13
NATURAL_JOIN keyword, using in SELECT_

PHYSICAL statements, C-8
nesting presentation tables, 11-7
net service name, using for Oracle Database

connections, xxxi
New Join option, for Diagrams, 2-12
New Table option, for Diagrams, 2-12
nonsystem session variables, 18-6
normalized schemas, about, 1-9
NOW calendar date/time function, about, C-57
nqcmd utility

disallowing access, 6-3
running for cache seeding, 6-3
using, 14-3

NQSConfig.INI
AGGREGATE_PREFIX, 12-2
DATE_DISPLAY_FORMAT, 2-17
DATE_TIME_DISPLAY_FORMAT, 2-17
DEFAULT_PRIVILEGES, 1-15, 2-17
LOCALE, 2-17
NULL_VALUES_SORT_FIRST, 4-19
options for repository builders, 2-17
PREVENT_DIVIDE_BY_ZERO, 8-13
TIME_DISPLAY_FORMAT, 2-17
using, 1-16

NTILE aggregate function, about, C-29
NULL_VALUES_SORT_FIRST configuration

option, 4-19
nullable, physical columns, 7-13
Number of Cache Entries option (authentication

cache), 2-6
Number of elements at this level option, 9-6
numeric literals, about, C-18

O
OBIEEBroker

deploying as a shared library, 5-4
URL for, 5-10, 6-20

object permissions, setting up, 13-8
objects

checking in, 2-20
checking out, 2-20
deleting, 2-13
editing, 2-13
naming requirements for, 2-13
reordering, 2-13
selecting, 2-13
sorting, 2-15

OCI 10g/11g connection protocol, 4-12
OCI connections, troubleshooting, 15-4
OCTET_LENGTH string function, about, C-43
ODBC

Index-11

2.0 and 3.5 connection protocol, 4-12
about query failures, 4-5
data sources, importing metadata from, 4-1
DataDirect Connect drivers on Linux and

UNIX, 15-6
native drivers, 15-10

ODBC DSN
for the Oracle BI Server, 1-16
setting up for data sources, 4-3

odbc.ini file, 15-7, 15-8, 15-9, 15-10, 15-11
offline mode, 2-18
online help, accessing, 1-11
online mode, 2-19
opaque views

about, 7-38
deleting, guidelines for, 7-41
deploying, 7-38
redeploying, guidelines for, 7-41
undeploying, 7-40
when to use, 1-12

operating systems, supported, 1-16
operators, in SQL, C-14
Options dialog, using, 2-3
Oracle Application Development Framework,

about, 5-1
Oracle BI Event Tables utility, using, 17-10
Oracle BI Scheduler setup, for standby database

configuration, 4-39
Oracle BI Server

architecture, 1-1
nonlocal files, about accessing, 4-20
ODBC DSN configuration, 1-16
starting and stopping, 1-15
utilities, 2-15

Oracle BI Server Web services, using, 1-15
Oracle BI Server XML API

using, 1-15, 2-16
using to update connection pool settings, 6-7

Oracle BI Server XML Gateway
See XML Gateway

Oracle Business Intelligence
home page on OTN, 2-10
localizing, 1-16
logging, 1-16
new features, xxiii
starting and stopping, 1-15

Oracle Database
about exchanging metadata with, F-1
deploying metadata in, F-11
importing from, 4-12
setting up, 4-4
Table or view not found error, 6-10
using net service name, xxxi
using stored procedures with, 7-7

Oracle Database Metadata Generator
about, F-1
about input file for, F-4
about output files for, F-5
conversion rules, F-6
exporting metadata into SQL Access

Advisor, F-10
generating import file, F-1
optional parameters and defaults, F-3
troubleshooting, F-5

Oracle Database SQL Access Advisor, 2-16
Oracle instance, initializing shell window for, 2-16
Oracle Marketing Segmentation, 2-9, 2-15
Oracle OLAP

about, 7-30
about cubes and columns, 7-33
about dimensions, hierarchies, and levels, 7-31
default aggregation rule, 7-31
Density option, 7-33
importing from, 4-16
Materialization option, 7-33
setting up, 4-4
working with, 7-30

Oracle RPAS
about, 4-18
importing from, 4-15
recommended metadata types for import, 4-18
setting SQLExtendedFetch option, 4-10
setting up, 4-10, 15-11

Oracle Scorecard and Strategy Management
enabling comments and status overrides for, 14-1
modeling requirements for, 1-13

Oracle WebLogic Server, managing, 1-16
OracleADF_HTTP connection type, 5-9
ORDER BY clause syntax, C-5
original repository, about, 16-8
orphan locks, about, A-24
Other column type, 7-21
outer joins, modeling, 1-14
Outline Sort column type, 7-21

P
paint.rpd, 2-18
Pan option, for Diagrams, 2-11
parallel content descriptions, examples, 10-14
Parent Reference column type, 7-21
parent-child hierarchies

about, 9-13
about levels and distances, 9-14
creating dimensions for, 9-17
logical table source settings, 10-10
maintaining, 9-21

parent-child relationship tables
about, 9-15
defining, 9-18
modeling, 9-20

patch repository merges
about, 16-16
applying patches, 16-19
generating patches, 16-18

patchrpd utility, about, 16-20
PERCENTILE aggregate function, about, C-29
performance

accelerating by exchanging metadata with
databases, F-1

Index-12

avoiding extra physical join conditions, 7-36
avoiding multi-database joins for, 7-35
best physical joins for, 7-34
considerations for driving tables, 8-10
defining aggregations correctly, 8-14
defining chronological key at query grain, 9-22
improving using aggregate tables, 12-1
improving using database hints, 7-42
improving using query caching, 1-16
improving using unqualified member

names, 7-27
improving with standby database

configuration, 4-34
indexing relational tables when persisting

aggregates, xxix
removing unnecessary objects from Physical

layer, 4-14
setting correct aggregation rules, 7-15
using OCI to connect to Oracle Database, 4-12

PERIODROLLING time series function, about, C-37
permission inheritance in the repository, 13-10
permissions

default, 13-2
for connection pools, 6-8
for Presentation layer objects, 11-12
limiting queries by setting up data filters, 13-4
report for Presentation layer objects, 11-14
required for online mode, 2-19
sorting columns, 11-14

PERMISSIONS system session variable, 18-5
persist connection pool

in Database dialog, 6-2
setting up, 6-21

physical catalogs
creating, 7-4
specifying dynamic name, 7-5

physical columns
creating or editing, 7-12
nullable, 7-13
row counts for, 7-43
type, 7-13
viewing data, 7-14

physical connection settings, updating, 3-12
physical cube tables, about, 7-15
Physical Diagram

about using, 2-10
about using to specify multi-database joins, 7-35
accessing from Business Model and Mapping

layer, 8-11
displaying, 7-2
displaying qualified names in, 2-3
foreign key join or complex join, defining, 7-36
physical joins, about defining, 7-36
working with, 7-2

physical dimensions, about, 7-17
physical display folders, setting up, 7-5
physical hierarchies

about, 7-17
adding or removing cube columns, 7-18
setting the hierarchy type, 7-18

physical joins
about, 7-34
about complex joins, 7-34
about imported key and foreign key joins, 7-34
about primary key and foreign key

relationships, 7-34
avoiding unnecessary joins, 7-36
creating with Joins Manager, 7-37
defining in the Physical Diagram, 7-36
fragmented data, about, 7-35
multi-database joins, about, 7-35
working with, 7-1

Physical layer
about, 1-3
creating and maintaining, 4-1
creating manually, 6-2
hints, about, 7-41
identifying source content, 1-8
mapping logical columns to physical

columns, 10-4
modeling bridge tables, 8-24
physical joins, defining with the Joins

Manager, 7-37
queries, specifying types sent to a database, 6-4
removing unused objects, 17-15
setting up display folders, 7-5
tips for, 1-11
updating objects in, 17-12
working with dimensions and hierarchies, 7-15
working with Essbase data sources, 7-21
working with Hyperion Financial Management

data, 7-28
working with multidimensional sources, 7-15
working with Oracle OLAP data, 7-30
working with physical tables, 7-6

physical schemas
about importing, 4-1
creating, 7-5
specifying dynamic name, 7-5

physical tables
about, 7-6
cache settings, 7-11
creating or editing, 7-10
row counts for, 7-43
setting XML properties for, 7-12
specifying columns and keys for, 7-12
table types, 7-6
viewing data, 7-14
virtual physical tables, creating, 7-6
working with, 7-1, 7-6

PI math function, about, C-51
platforms, supported, 1-16
Point of View (POV) value, for Hyperion Financial

Management data sources, 7-29
policies, managing, 13-2
Populate privilege, allowing or disallowing, 13-14
POPULATE SQL, 6-3
PORTALPATH system session variable, 18-5
POSITION string function, about, C-44
POWER math function, about, C-51

Index-13

preferences, setting, 2-3
preferred drill path, identifying, 9-10
PREFERRED_CURRENCY session variable, 8-14
presentation columns

about working with, 11-7
Alias tab, using, 11-14
creating, 11-7
removing, 11-3
renaming, 11-4
reordering, 11-8

presentation hierarchies
about, 11-8
based on logical dimensions with multiple

hierarchies, 11-10
creating and managing, 11-9
editing properties for, 11-11

Presentation layer
about, 1-3, 11-1
Alias tab, using, 11-14
creating, 11-1
localizing names, 17-10
logical keys, about exporting in the subject

area, 11-4
maintaining, 11-4
nested folders in Oracle BI Answers, 1-15, 11-7
permission report, 11-14
presentation columns, working with, 11-7
removing unnecessary columns, 11-3
renaming presentation columns, 11-4
setting permissions in, 11-12
tips for, 1-14

presentation levels
about, 11-8
creating and managing, 11-11
specifying columns for display, 11-12

presentation tables
Alias tab, using, 11-14
best practices for modeling, 11-9
creating and managing, 11-6
nesting, 11-7
reordering columns in, 11-8
reordering in subject area, 11-7

PREVENT_DIVIDE_BY_ZERO configuration
option, 8-13

primary key
foreign key, relationship with, 7-34
specifying, 7-14

priority group numbers
about, 10-2
example, 10-3

processes, starting and stopping, 1-15
production environments, moving to, 1-16
Project Manager, 2-9
Project menu option, 2-9
projects

about, 3-4, A-14
best practices, A-20
checking in, 3-15
checking out, 3-9
creating, 3-5

tracking checkouts and checkins, 3-17
upgrading, 3-7

Prompt when moving logical columns option, 2-4,
8-20

PROXY system session variable, 18-4
prunerpd utility, using, E-1
pruning repository objects, E-1
Publish to Network menu option, 3-13

Q
qualified names, displaying, 2-3
QUARTER_OF_YEAR calendar date/time function,

about, C-57
queries

aggregate functions, rules for, C-12
database, specifying types sent to, 6-4
limiting by maximum run time, 13-13
limiting by number of rows, 13-12
restricting to time periods, 13-13

query caching
cache expiration time, 7-11
cache persistence time, 7-11
including tables for, 7-11
managing, 1-16

query candidates, identifying for aggregation, 12-2
Query DBMS button, using to change Feature table

entries, 6-5
query limits, setting, 13-12
Query Related Objects feature, 16-25
Query Repository menu option, 2-10
Query Repository tool, 16-21
query workload, creating, F-12
querying repository metadata

about, 16-21
filtering results, 16-23
using Query Related Objects, 16-25
using Query Repository tool, 16-21

R
RADIANS math function, about, C-51
ragged hierarchies

See unbalanced hierarchies
RAND math function, about, C-51
RANDFROMSEED math function, about, C-52
RANK aggregate function, about, C-30
RCOUNT running aggregate function, about, C-34
rdaadmin client tool, 15-12
read-only mode, about, 2-21
refresh repository view, 2-8
relational data sources

importing, 4-10
schema types, 1-9

Remove Unused Physical Objects utility,
using, 17-15

Remove unused physical tables after Merge
option, 2-4

rename map, for equalizing objects, 16-6
Rename Wizard, using, 17-11

Index-14

reordering objects, 2-13
REPEAT string function, about, C-44
Replace Column or Table Wizard, using, 17-7
REPLACE string function, about, C-44
repository

applying patches, 16-19
architecture, 1-3
checking consistency, 14-2
comparing with another repository, 16-1
compressed format, 3-2
design guidelines, 1-10
documentation for mappings, 17-13
equalizing objects, 16-3
generating patches, 16-18
layers, 1-3
making available for queries, 14-5
managing lifecycle for, A-1
merging with another repository, 16-8
migration, A-5
object naming restrictions, 2-13
object permissions, 13-8
offline mode, 2-18
online mode, 2-19
opening, 2-7
original, modified, and current, 16-8
pruning unwanted objects, E-1
query limits, 13-12
querying, 16-21
read-only mode, 2-21
refreshing, 2-8
rolling back, A-26
row-level security, 13-3
saving, 14-2
testing, 14-3
upgrading, xxix
uploading, 14-5
using variables in, 18-1

repository builders
prerequisite knowledge, 1-1
tips for, 1-10

Repository Documentation utility, using, 17-13
repository file

blank, 16-15
create new, 4-2
options when saving, 2-21

Repository File configuration option, 2-17
repository objects

equalizing, 16-3
permissions, setting, 11-12
renaming, 17-11

repository password, changing, 16-26
repository variables

about, 18-1
associating with initialization blocks, 18-15
cache purging considerations, 18-2
creating, 18-3
dynamic, 18-2
initializing dynamic repository variables, 18-8
static, 18-2
using in Expression Builder, 18-3

REQUESTKEY system session variable, 18-5
require fully qualified table names, 6-10
Retail Predictive Application Server

See Oracle RPAS
REVERSE_LTS_PRIORITY session variable, 10-3
REVERSED_LTS_PRIORITY_SA_VEC session

variable, 10-3
REVERSIBLE_LTS_PRIORITY_SA_VEC session

variable, 10-3
RIGHT string function, about, C-45
RMAX running aggregate function, about, C-34
RMIN running aggregate function, about, C-35
ROLEGUIDS system session variable, 18-5
ROLES system session variable, 18-5
roles, for physical tables, 7-8
rolling back repository to previous versions, A-26
Root column type, 7-21
ROUND math function, about, C-52
row counts

displaying, 2-4, 7-43
native database, about updating in, 15-5
updating, 2-9, 7-44

row-level security, setting up, 13-3
row-wise initialization, 18-8
RSUM running aggregate function, about, C-33
running aggregate functions

about, C-31
MAVG, C-32
MSUM, C-32
RCOUNT, C-34
RMAX, C-34
RMIN, C-35
RSUM, C-33

S
SA System subject area, about, 1-16
sametaexport, 2-16
sametaexport utility

about, F-1
parameters, F-2
running, F-2

SampleAppLite.rpd
about, 2-17
changing password for, 16-26
default password for, 2-17

Sampleapp.rpd, about, 2-17
sandboxes, for multiuser development, A-4
SAP/BW

connection pool properties, 6-14
importing from, 4-17
setting up, 4-10

SAP/BW data sources
working with cube variables for, 7-19

Save Decisions to File option, 16-14
saving, the repository, 14-2
schema objects, creating in Physical layer, 7-5
schemas

about types of, 1-9
multilingual, 1-8

Index-15

physical schemas, about importing, 4-1
relational, 1-9

scrolling speed, 2-6
SECOND calendar date/time function, about, C-57
security

data access, 13-1
data filters, 13-3
managing, 1-16
object permissions, 13-8
permission inheritance, 13-10
query limits, 13-12
row-level, 13-3
summary of tasks, 13-2

security sensitive session variables, 18-6
Select option, for Diagrams, 2-12
SELECT statement

about and basic syntax, C-2
conditional expressions, C-15
GROUP BY clause syntax, C-5
mathematical operators, C-15
ORDER BY clause syntax, C-5
rules for queries and aggregate functions, C-9
select list syntax, C-4
SQL logical operators, C-14
subquery support, C-3
usage notes, C-3
WHERE clause syntax, C-4

SELECT_PHYSICAL statement
about and basic syntax, C-5
aggregate functions not supported in, C-6
queries supported by, C-7
usage notes, C-9
using the NATURAL_JOIN keyword, C-8

SELECT_PHYSICAL system session variable, 18-6
selecting objects, 2-13
semantic models, independent, A-7, B-2
Session Manager, 2-8
session variables

about, 18-4
associating with initialization blocks, 18-15
creating, 18-6
initializing, about, 18-8
naming scheme for ADF data source UI

hints, 5-12
nonsystem, 18-6
PREFERRED_CURRENCY, 8-14
REVERSE_LTS_PRIORITY, 10-3
REVERSED_LTS_PRIORITY_SA_VEC, 10-3
REVERSIBLE_LTS_PRIORITY_SA_VEC, 10-3
row-wise initialization, 18-8
security sensitive, 18-6
system, 18-4
using for authenticating users, 18-4
using in Dynamic Name field, 7-5
virtual private databases, 18-6

Sessions menu option, 2-8
shared login, for connection pools, 6-11
shared network directory, for MUD, 3-7
Show Calculation Wizard introduction page

option, 2-4

Show Consistency Checker menu option, 2-9
Show row count in physical view option, 2-4
Show statusbar option, 2-4
Show tables and dimensions only under display

folders option, 2-5
Show toolbar option, 2-4
SIGN math function, about, C-52
SIN math function, about, C-52
size, of a repository file, 3-2
SKIN system session variable, 18-5
Skip Gen 1 levels in Essbase drag and drop actions

option, 2-4
skip-level hierarchies, about, 9-3
snowflake schemas, about, 1-9
software requirements, 1-16
sort objects options, 2-6
sorting logical columns, 8-12
SPACE string function, about, C-45
SQL Access Advisor

about, F-1
using to create materialized views, F-10

SQL Bypass database
about specifying, 5-3
setting up, 5-10, 6-21

SQL features, specifying, 6-4
SQL functions

aggregate functions, about, C-24
calendar date/time functions, about, C-53
conversion functions, about, C-61
database functions, about, C-65
expressing literals, C-17
hierarchy navigation functions, about, C-69
math functions, about, C-47
running aggregate functions, about, C-31
string functions, about, C-39
system functions, about, C-75
time series functions, about, C-35

SQL operators, C-14
SQL syntax and semantics

conditional expressions, C-15
FROM clause syntax, about, C-4
GROUP BY clause syntax, about, C-5
including and setting variables, C-23
ORDER BY clause syntax, about, C-5
queries and aggregate functions, rules for, C-9
Select list syntax, C-4
Select statement, about and basic syntax, C-2
Select usage notes, C-3
SQL logical operators, C-14, C-15
WHERE clause syntax, about, C-4

SQLExtendedFetch option, setting for Oracle
RPAS, 4-10

SQRT math function, about, C-53
SSL, enabling, 13-3
SSO authentication, setting up, 13-3
SSO using CSS Token, for Essbase and Hyperion

Financial Management, 6-13
standby database configuration

about, 4-34
creating connection pools for, 4-36

Index-16

creating database object for, 4-35
Oracle BI Scheduler configuration for, 4-39
setting up event polling with, 4-39
setting up usage tracking with, 4-38
updating write-back scripts, 4-38
using with Oracle Business Intelligence, 4-34
write operations for primary source, 4-34

star schemas, about, 1-9
starting Oracle Business Intelligence processes, 1-15
static repository variables, 18-2
status bar, about, 2-2
status, enabling overrides for Oracle Scorecard and

Strategy Management, 14-1
STDDEV aggregate function, about, C-30
STDDEV_POP aggregate function, about, C-30
stopping Oracle Business Intelligence

processes, 1-15
string functions

about, C-39
ASCII, C-39
BIT_LENGTH, C-40
CHAR, C-40
CHAR_LENGTH, C-40
CONCAT, C-40
EXP, C-49
INSERT, C-41
LEFT, C-41
LENGTH, C-42
LOCATE, C-42
LOCATEN, C-43
LOWER, C-43
OCTET_LENGTH, C-43
POSITION, C-44
REPEAT, C-44
REPLACE, C-44
RIGHT, C-45
SPACE, C-45
SUBSTRING, C-46
TRIMBOTH, C-46
TRIMLEADING, C-46
TRIMTRAILING, C-46
UPPER, C-47

subject areas
Alias tab, using, 11-14
automatically creating based on logical stars and

snowflakes, 11-2
creating, 11-2
creating multiple for a single business

model, 11-2
duplicating with business model, 8-3
exporting logical keys, 11-4
reordering and sorting tables in, 11-7
setting implicit fact column for, 11-4
working with, 11-5

subset repository, creating, 3-10
substitution variables, for Essbase, 7-22
SUBSTRING string function, about, C-46
SUM aggregate function, about, C-31
SUMDISTINCT aggregate function, about, C-31
surrogate keys, 1-6

Sybase ASE Database, connecting using DataDirect
Connect driver, 15-8

system credentials, managing, 13-2
system functions

about, C-75
DATABASE, C-76
USER, C-75

system requirements, 1-16
system session variables, 18-4

T
Table or view not found, 6-10
table types, for physical tables, 7-6
TAN math function, about, C-53
Teradata, setting up, 4-4, 15-10
test to production, 1-16
testing the repository, 14-3
text strings, using the Externalize Strings utility to

translate, 17-10
third-party products, supported, 1-16
Tile when resizing option, 2-3
time dimensions

about, 9-3
creating, 9-25
for Oracle Scorecard and Strategy

Management, 1-13
modeling, 9-21
selecting and sorting chronological keys, 9-10

time series functions
about, 9-21, C-35
AGO, 9-21, C-36
creating measures for, 9-27
grains, 9-22
PERIODROLLING, 9-21, C-37
TODATE, 9-21, C-38
using in Expression Builder, 9-21

TIME_DISPLAY_FORMAT configuration
option, 2-17

TIMESTAMPADD calendar date/time function,
about, C-57

TIMESTAMPDIFF calendar date/time function,
about, C-59

TimesTen
avoiding query failures with, 4-5
setting up, 4-4

TIMEZONE system session variable, 18-6
tips, for repository builders, 1-10
title bar, about, 2-2
tnsnames.ora

for Oracle Database setup on UNIX, 15-2
for the Oracle BI Server, 4-4
locating with Oracle Business Intelligence

environment, xxxi
TO_DATETIME conversion function, about, C-64
TODATE time series function, about, C-38
toolbar

about, 2-2
options for Diagrams, 2-10

Tools menu, about, 2-9

Index-17

tooltips, for ADF data sources, 5-12
TOPN aggregate function, about, C-31
transaction boundary, setting up, 6-22
TRIMBOTH string function, about, C-46
TRIMLEADING string function, about, C-46
TRIMTRAILING string function, about, C-46
troubleshooting

DB2 Cube Views Generator, F-5
Oracle Database Metadata Generator, F-5

TRUNCATE math function, about, C-53
Turn off Compare Mode option, 2-7, 16-3

U
UDA column type, 7-21
UDAs

importing, 4-18
modeling, 7-25

UI hints, propagating for ADF data sources, 11-8
unbalanced hierarchies, about, 9-3
Undo Merge Local Changes menu option, 3-13
Unicode databases, 6-19
UNIX

about data source setup, 15-1
connecting to data sources using native ODBC

drivers, 15-10
DataDirect Connect ODBC drivers, 15-6
IBM DB2 Connect for queries, configuring, 15-13
native databases, about updating row

counts, 15-5
unmapping logical columns, 10-6
unqualified member names, using for Essbase, 7-27
Update All Row Counts menu option, 2-9
Update Physical Layer Wizard, using, 17-12
upgrade

considerations, xxiv, xxix
IDs, 16-3
repositories, xxix

UPPER string function, about, C-47
URL

for ADF Business Components, 5-10, 6-20
for connection pools, 6-13
refresh interval, for XML data sources, 6-17

usage tracking
managing, 1-16
setting up for standby database

configuration, 4-38
Use Logical Column Name property, 11-4
user authentication, setting up, 13-2
user interface hints, for ADF data sources, 5-11
USER system function, about, C-75
USER system session variable, 18-4
USERGUID system session variable, 18-5
USERLOCALE system session variable, 18-5
users, managing, 1-16, 13-2
user.sh file, 15-2, 15-6, 15-8, 15-9, 15-10
utilities

Aggregate Persistence, 17-15
command-line, 2-15
equalizerpds, 16-5

Externalize Strings, 17-10
extractprojects, 3-11
Generate Metadata Dictionary, 17-14
nqcmd, 14-3
Oracle BI Event Tables, 17-10
patchrpd, 16-20
prunerpd, E-1
Remove Unused Physical Objects, 17-15
Rename Wizard, 17-11
Replace Column or Table in Logical Table

Sources, 17-7
Repository Documentation, 17-13
Update Physical Layer, 17-12
validaterpd, 2-23

Utilities menu option, 2-10

V
validaterpd utility, 2-23
Value measure, for Hyperion Financial Management

data sources, 7-28
VALUEOF conversion function, about, C-65
Variable Manager, 2-9
variables

about repository variables, 18-1
about session variables, 18-4
associating with initialization blocks, 18-15
creating repository variables, 18-3
creating session variables, 18-6
including and setting in SQL, C-23
using repository variables in Expression

Builder, 18-3
Variables menu option, 2-9
View Data, 7-14
view links, 5-2
View menu, about, 2-8
View Objects, 5-2
virtual physical tables, creating using Table

Type, 7-6
Virtual Private Database, 6-2, 13-8

W
Web services, for Oracle BI Server, 1-15
WEBGROUPS system session variable, 18-5
WebLogic Domain, for ADF Business

Components, 5-4
WEEK_OF_QUARTER calendar date/time function,

about, C-60
WEEK_OF_YEAR calendar date/time function,

about, C-60
Weight Factor, for bridge tables, 8-23
WHERE clause filters, in aggregate

navigation, 10-10
WHERE clause syntax, about, C-4
Window menu, about, 2-10
wizards

Aggregate Persistence Wizard, 12-3, 17-15
Calculation Wizard, 2-4, 17-15
Create New Repository Wizard, 4-2

Index-18

Import Metadata Wizard, 4-11, 4-14, 4-21, 5-9
Merge Repository Wizard, 16-10, 16-15, 16-19,

D-3
Rename Wizard, 17-11
Replace Column or Table Wizard, 17-7
Update Physical Layer Wizard, 17-12

write back, enabling on logical columns, 8-21
write-back properties, for connection pool, 6-17
write-back scripts, updating for standby database

configuration, 4-38

X
XML data sources

about URL for, 4-19
importing from, 4-19
setting connection pool properties for, 6-16
setting physical table properties for, 7-12
URL refresh interval, 6-17

XML Gateway
about using, 4-20
examples, 4-23
HTML tables, accessing, 4-28
refresh interval, 4-22
supported security modes, 4-22

XML ODBC
about using, 4-29
example, 4-30
importing XML data, 4-30

XML utilities, 2-16
XMLA, importing from, 4-16

Y
YEAR calendar date/time function, about, C-61

Z
Zoom In option, for Diagrams, 2-11
Zoom Out option, for Diagrams, 2-11

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	New Features for Oracle BI Metadata Repository Builders
	New Features for Oracle BI EE 11g Release 1 (11.1.1.5)
	New Features for Oracle BI EE 11g Release 1 (11.1.1.3)

	1 Introduction to Building Your Metadata Repository
	About Oracle BI Server and Oracle BI Repository Architecture
	About Oracle BI Server Architecture
	About Layers in the Oracle BI Repository

	Planning Your Business Model
	Analyzing Your Business Model Requirements
	Identifying the Content of the Business Model
	Identifying Logical Fact Tables
	Identifying Logical Dimension Tables
	Identifying Dimensions
	About Dimensions with Multiple Hierarchies

	Identifying Lookup Tables

	Identifying the Data Source Content for the Physical Layer
	About Types of Physical Schemas in Relational Data Sources
	About Cubes in Multidimensional Data Sources
	Identifying the Data Source Table Structure

	Guidelines for Designing a Repository
	General Tips for Working on the Repository
	Design Tips for the Physical Layer
	Design Tips for the Business Model and Mapping Layer
	Modeling Outer Joins

	Design Tips for the Presentation Layer

	Topics of Interest in Other Guides
	System Requirements and Certification

	2 Before You Begin
	About the Oracle BI Administration Tool
	Opening the Administration Tool
	About the Administration Tool Main Window
	Setting Preferences
	About Administration Tool Menus
	File Menu
	Edit Menu
	View Menu
	Manage Menu
	Tools Menu
	Actions Menu
	Window Menu
	Help Menu

	Using the Physical and Business Model Diagrams
	Editing, Deleting, and Reordering Objects in the Repository
	About Naming Requirements for Repository Objects
	Using the Browse Dialog to Browse for Objects
	Changing Icons for Repository Objects
	Sorting Objects in the Administration Tool
	About Features and Options for Oracle Marketing Segmentation

	About the Oracle BI Server Command-Line Utilities
	Running bi-init to Launch a Shell Window Initialized to Your Oracle Instance

	About Options in Fusion Middleware Control and NQSConfig.INI
	About the SampleApp.rpd Demonstration Repository
	Using Online and Offline Repository Modes
	Opening a Repository in Offline Mode
	Opening a Repository in Online Mode
	Guidelines for Using Online Mode

	Checking Out Objects
	Checking In Changes
	About Read-Only Mode

	Checking the Consistency of a Repository or a Business Model
	About the Consistency Check Manager
	Checking the Consistency of Repository Objects
	Using the validaterpd Utility to Check Repository Consistency

	3 Setting Up and Using the Multiuser Development Environment
	About the Multiuser Development Environment
	About the Multiuser Development Process

	Setting Up Projects
	About Projects
	About the Project Dialog

	Creating Projects
	About Converting Older Projects During Repository Upgrade

	Setting Up the Multiuser Development Directory
	Identifying the Multiuser Development Directory
	Copying the Master Repository to the Multiuser Development Directory
	Setting Up a Pointer to the Multiuser Development Directory

	Making Changes in a Multiuser Development Environment
	Checking Out Repository Projects
	About Repository Project Checkout
	Checking Out Projects
	Using the extractprojects Utility to Extract Projects

	About Changing and Testing Metadata
	About Multiuser Development Menu Options
	About Closing a Repository Before Publishing It to the Network

	Checking In Multiuser Development Repository Projects
	About the Multiuser Development Merge Process
	How are Multiuser Merges Different from Standard Repository Merges?

	Checking In Projects
	Tracking Changes to the Master Repository

	Branching in Multiuser Development
	About Branching
	Using the Multi-Team, Multi-Release Model in Oracle Business Intelligence
	Synchronizing RPD Branches

	Viewing and Deleting History for Multiuser Development
	Viewing Multiuser Development History
	Deleting Multiuser Development History

	Setting Multiuser Development Options

	4 Importing Metadata and Working with Data Sources
	Creating New Oracle BI Repository Files
	Performing Data Source Preconfiguration Tasks
	Setting Up ODBC Data Source Names (DSNs)
	Setting Up Oracle Database Data Sources
	Setting Up Oracle OLAP Data Sources
	Setting Up Oracle TimesTen In-Memory Database Data Sources
	Avoiding Query Failures Due to Limited Connections with TimesTen Data Sources

	Setting Up Essbase Data Sources
	Updating Essbase Information in opmn.xml
	Adding Essbase Information to bi-init.cmd

	Setting Up Hyperion Financial Management Data Sources
	Setting Up SAP/BW Data Sources
	Setting Up Oracle RPAS Data Sources

	Importing Metadata from Relational Data Sources
	About the Map to Logical Model and Publish to Warehouse Screens

	Importing Metadata from Multidimensional Data Sources
	About Importing Metadata from Oracle RPAS Data Sources

	Importing Metadata from XML Data Sources
	About Using XML as a Data Source
	Importing Metadata from XML Data Sources Using the XML Gateway
	Examples of XML Documents Generated by the Oracle BI Server XML Gateway
	Accessing HTML Tables

	Importing Metadata from XML Data Sources Using XML ODBC
	Example of an XML ODBC Data Source

	Examples of XML Documents

	Using a Standby Database with Oracle Business Intelligence
	About Using a Standby Database with Oracle Business Intelligence
	Creating the Database Object for the Standby Database Configuration
	Creating Connection Pools for the Standby Database Configuration
	Updating Write-Back Scripts in a Standby Database Configuration
	Setting Up Usage Tracking in a Standby Database Configuration
	Setting Up Event Polling in a Standby Database Configuration
	Setting Up Oracle BI Scheduler in a Standby Database Configuration

	5 Working with ADF Business Component Data Sources
	What Are ADF Business Components?
	About Operational Reporting with ADF Business Components

	What Happens During Import?
	About Specifying a SQL Bypass Database
	Setting Up ADF Business Component Data Sources
	Creating a WebLogic Domain
	Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server
	Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper
	Setting Up a JDBC Data Source in the WebLogic Server
	Setting the Logging Level for the Deployed Application in Oracle WebLogic Server

	Importing Metadata from ADF Business Component Data Sources
	Enabling the Ability to Pass Custom Parameters to the ADF Application
	Propagating Labels and Tooltips from ADF Business Component Data Sources
	What are Labels and Tooltips?
	About the Session Variable Naming Scheme for UI Hints
	About Determining the Physical Column for a Presentation Column
	Initializing Session Variables Automatically for Propagating UI Hints
	Example of Using UI Hints From an Oracle ADF Data Source When Creating Analyses
	Using XML Code in Initialization Blocks to Query UI Hints

	6 Setting Up Database Objects and Connection Pools
	Setting Up Database Objects
	About Database Types in the Physical Layer
	Creating a Database Object Manually in the Physical Layer
	When to Allow Direct Database Requests by Default

	Specifying SQL Features Supported by a Data Source

	About Connection Pools
	About Connection Pools for Initialization Blocks

	Creating or Changing Connection Pools
	Setting Connection Pool Properties in the General Tab
	Common Connection Pool Properties in the General Tab
	Multidimensional Connection Pool Properties in the General Tab

	Setting Connection Pool Properties in the Connection Scripts Tab
	Setting Connection Pool Properties in the XML Tab
	Setting Connection Pool Properties in the Write Back Tab
	Setting Connection Pool Properties in the Miscellaneous Tab

	Setting Up Persist Connection Pools
	About Setting the Buffer Size and Transaction Boundary

	7 Working with Physical Tables, Cubes, and Joins
	Working with the Physical Diagram
	Creating Physical Layer Folders
	Creating Physical Layer Catalogs and Schemas
	Creating Catalogs
	Creating Schemas

	Using a Variable to Specify the Name of a Catalog or Schema
	Setting Up Display Folders in the Physical Layer

	Working with Physical Tables
	About Tables in the Physical Layer
	About Physical Alias Tables
	Creating and Managing Physical Tables and Physical Cube Tables
	Creating or Editing Physical Tables
	Creating Alias Tables
	Setting Physical Table Properties for XML Data Sources
	About the Calc Scripts Tab for Essbase Data Sources

	Creating and Managing Columns and Keys for Relational and Cube Tables
	Creating and Editing a Column in a Physical Table
	Specifying a Primary Key for a Physical Table
	Deleting Physical Columns for All Data Sources

	Viewing Data in Physical Tables or Columns

	Working with Multidimensional Sources in the Physical Layer
	About Physical Cube Tables
	About Measures in Multidimensional Data Sources
	About Externally Aggregated Measures

	Working with Physical Dimensions and Physical Hierarchies
	Working with Physical Dimension Objects
	Working with Physical Hierarchy Objects
	Adding or Removing Cube Columns in a Hierarchy

	Working with Cube Variables for SAP/BW Data Sources
	Viewing Members in Physical Cube Tables

	Working with Essbase Data Sources
	About Using Essbase Data Sources with Oracle Business Intelligence
	About Incremental Import

	Working with Essbase Alias Tables
	Determining the Value to Use for Display
	Explicitly Defining Columns for Each Alias

	Modeling User-Defined Attributes
	Associating Member Attributes to Dimensions and Levels
	Modeling Alternate Hierarchies
	Modeling Measure Hierarchies
	Improving Performance by Using Unqualified Member Names

	Working with Hyperion Financial Management Data Sources
	About Query Support for Hyperion Financial Management Data Sources

	Working with Oracle OLAP Data Sources
	About Importing Metadata from Oracle OLAP Data Sources
	Working with Oracle OLAP Analytic Workspace (AW) Objects
	Working with Oracle OLAP Dimensions, Hierarchies, and Levels
	Working with Oracle OLAP Cubes and Columns

	Working with Physical Foreign Keys and Joins
	About Physical Joins
	About Primary Key and Foreign Key Relationships
	About Complex Joins
	About Multi-Database Joins
	About Fragmented Data

	Defining Physical Joins with the Physical Diagram
	Defining Physical Joins with the Joins Manager

	Deploying Opaque Views
	About Deploying Opaque Views
	Deploying Opaque View Objects
	Using the Create View SELECT Statement

	Undeploying a Deployed View
	When to Delete Opaque Views or Deployed Views
	When to Redeploy Opaque Views

	Using Hints
	How to Use Oracle Hints
	About the Index Hint
	About the Leading Hint

	About Performance Considerations for Hints
	Creating Hints

	Displaying and Updating Row Counts for Physical Tables and Columns

	8 Working with Logical Tables, Joins, and Columns
	Creating the Business Model and Mapping Layer
	Creating Business Models
	Automatically Creating Business Model Objects
	Automatically Creating Business Model Objects for Multidimensional Data Sources

	Duplicating a Business Model and Subject Area

	Working with the Business Model Diagram
	Creating and Managing Logical Tables
	Creating Logical Tables
	Creating and Managing Logical Table Sources

	Specifying a Primary Key in a Logical Table
	Reviewing Foreign Keys for a Logical Table

	Defining Logical Joins
	Defining Logical Joins with the Business Model Diagram
	Defining Logical Joins with the Joins Manager
	Creating Logical Joins with the Joins Manager
	Creating Logical Foreign Key Joins with the Joins Manager

	Specifying a Driving Table
	Identifying Physical Tables That Map to Logical Objects

	Creating and Managing Logical Columns
	Creating Logical Columns
	Basing the Sort for a Logical Column on a Different Column
	Enabling Double Column Support by Assigning a Descriptor ID Column
	Creating Derived Columns
	Configuring Logical Columns for Multicurrency Support

	Setting Default Levels of Aggregation for Measure Columns
	Setting Up Dimension-Specific Aggregate Rules for Logical Columns
	Defining Aggregation Rules for Multidimensional Data Sources

	Associating an Attribute with a Logical Level in Dimension Tables
	Moving or Copying Logical Columns

	Enabling Write Back On Columns
	Setting Up Display Folders in the Business Model and Mapping Layer
	Modeling Bridge Tables
	Creating Joins in the Physical Layer for Bridge and Associated Dimension Tables
	Modeling the Associated Dimension Tables in a Single Dimension
	Modeling the Associated Dimension Tables in Separate Dimensions

	9 Working with Logical Dimensions
	Creating and Managing Dimensions with Level-Based Hierarchies
	About Level-Based Hierarchies
	Using Dimension Hierarchy Levels in Level-Based Hierarchies

	Manually Creating Dimensions, Levels, and Keys with Level-Based Hierarchies
	Creating Dimensions in Level-Based Hierarchies
	Creating Logical Levels in a Dimension
	Associating a Logical Column and Its Table with a Dimension Level
	Identifying the Primary Key for a Dimension Level
	Selecting and Sorting Chronological Keys in a Time Dimension
	Adding a Dimension Level to the Preferred Drill Path

	Automatically Creating Dimensions with Level-Based Hierarchies
	Populating Logical Level Counts Automatically

	Creating and Managing Dimensions with Parent-Child Hierarchies
	About Parent-Child Hierarchies
	About Levels and Distances in Parent-Child Hierarchies
	About Parent-Child Relationship Tables
	About Parent-Child Hierarchies Populated with Preaggregated Data

	Creating Dimensions with Parent-Child Hierarchies
	Defining Parent-Child Relationship Tables
	Adding the Parent-Child Relationship Table to the Model
	Maintaining Parent-Child Hierarchies Based on Relational Tables

	Modeling Time Series Data
	About Time Series Functions
	About the AGO Function
	About the TODATE Function
	About the PERIODROLLING Function

	Creating Logical Time Dimensions
	Selecting the Time Option in the Logical Dimension Dialog
	Setting Chronological Keys for Each Level

	Creating AGO, TODATE, and PERIODROLLING Measures

	10 Managing Logical Table Sources (Mappings)
	Creating Logical Table Sources
	Setting Priority Group Numbers for Logical Table Sources

	Defining Physical to Logical Table Source Mappings and Creating Calculated Items
	Unmapping a Logical Column from Its Source

	Defining Content of Logical Table Sources
	Verifying that Joins Exist from Dimension Tables to Fact Table
	About WHERE Clause Filters

	Working with Parent-Child Settings in the Logical Table Source
	Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data
	Setting Up Fragmentation Content for Aggregate Navigation
	Specifying Fragmentation Content for Single Column, Value-Based Predicates
	Specifying Fragmentation Content for Single Column, Range-Based Predicates
	Specifying Multicolumn Content Descriptions
	Specifying Parallel Content Descriptions
	Examples of Parallel Content Descriptions

	Specifying Unbalanced Parallel Content Descriptions

	Specifying Fragmentation Content for Aggregate Table Fragments
	Specifying the Aggregate Table Content
	Defining a Physical Layer Table with a Select Statement to Complete the Domain
	Specifying the SQL Virtual Table Content
	Creating Physical Joins for the Virtual Table

	11 Creating and Maintaining the Presentation Layer
	Creating and Customizing the Presentation Layer
	Creating Subject Areas
	Automatically Creating Subject Areas Based on Logical Stars and Snowflakes

	Removing Unneeded or Unwanted Columns
	Renaming Presentation Columns to User-Friendly Names
	Exporting Logical Keys in the Subject Area
	Setting an Implicit Fact Column in the Subject Area
	Maintaining the Presentation Layer

	Working with Subject Areas
	Working with Presentation Tables and Columns
	Creating and Managing Presentation Tables
	Nesting Folders in Answers

	Creating and Managing Presentation Columns

	Working with Presentation Hierarchies and Levels
	Creating and Managing Presentation Hierarchies
	Modeling Dimensions with Multiple Hierarchies in the Presentation Layer
	Editing Presentation Hierarchy Objects

	Creating and Managing Presentation Levels

	Setting Permissions for Presentation Layer Objects
	Generating a Permission Report for Presentation Layer Objects
	Sorting Columns in the Permissions Dialog

	Creating Aliases (Synonyms) for Presentation Layer Objects

	12 Creating and Persisting Aggregates for Oracle BI Server Queries
	About Aggregate Persistence in Oracle Business Intelligence
	Identifying Query Candidates for Aggregation
	Using the Aggregate Persistence Wizard to Generate the Aggregate Specification
	Writing the Create Aggregates Specification Manually
	What Constraints Are Imposed During the Create Process?
	How to Write the Create Aggregates Specification
	Adding Surrogate Keys to Dimension Aggregate Tables
	About the Create/Prepare Aggregates Syntax
	About Surrogate Key Output from Create/Prepare Aggregates

	Running the Aggregate Specification Against the Oracle BI Server
	Troubleshooting Aggregate Persistence

	13 Applying Data Access Security to Repository Objects
	About Data Access Security
	Where Do I Find Information About Security Tasks?

	Setting Up Row-Level Security
	Setting Up Row-Level Security (Data Filters) in the Repository
	Setting Up Row-Level Security in the Database

	Setting Up Object Permissions
	About Permission Inheritance for Users and Application Roles

	Setting Query Limits
	Accessing the Query Limits Functionality in the Administration Tool
	Limiting Queries By the Number of Rows Received
	Limiting Queries By Maximum Run Time and Restricting to Particular Time Periods
	Allowing or Disallowing Direct Database Requests
	Allowing or Disallowing the Populate Privilege

	About Applying Data Access Security in Offline Mode
	Setting Up Placeholder Application Roles for Offline Repository Development

	About the List of Users in the Administration Tool

	14 Completing Oracle BI Repository Setup
	Configuring the Repository for Oracle Scorecard and Strategy Management
	Saving the Repository and Checking Consistency
	Testing and Refining the Repository
	Making the Repository Available for Queries
	Creating Data Source Connections to the Oracle BI Server for Client Applications
	Publishing to the User Community

	15 Setting Up Data Sources on Linux and UNIX
	About Setting Up Data Sources on Linux and UNIX
	Configuring Data Source Connections Using Native Gateways
	Troubleshooting OCI Connections
	About Updating Row Counts in Native Databases

	Using DataDirect Connect ODBC Drivers on Linux and UNIX
	Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server Database
	Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database
	Configuring the DataDirect Connect ODBC Driver for Informix Database

	Configuring Database Connections Using Native ODBC Drivers
	Configuring Oracle RPAS ODBC Data Sources on AIX UNIX
	Configuring Essbase Data Sources on Linux and UNIX
	Configuring DB2 Connect on IBM z/OS and s/390 Platforms

	16 Managing Oracle BI Repository Files
	Comparing Repositories
	Turning Off Compare Mode

	Equalizing Objects
	About Equalizing Objects
	Using the Equalize Objects Dialog
	Using the equalizerpds Utility
	About Values for TypeName

	Merging Repositories
	Performing Full Repository Merges
	About Full Repository Merges
	Performing Full Repository Merges With a Common Parent
	Performing Full Repository Merges Without a Common Parent

	Performing Patch Merges
	About Patch Merges
	Generating a Repository Patch
	Applying a Repository Patch
	Using patchrpd to Apply a Patch

	Querying and Managing Repository Metadata
	Querying the Repository
	Constructing a Filter for Query Results

	Querying Related Objects

	Changing the Repository Password

	17 Using Expression Builder and Other Utilities
	Using Expression Builder
	About the Expression Builder Dialogs
	About the Expression Builder Toolbar
	About the Categories in the Category Pane
	Setting Up an Expression
	Navigating Within Expression Builder
	Building an Expression
	About the INDEXCOL Conversion Function

	Using Administration Tool Utilities
	Using the Replace Column or Table Wizard
	Using the Oracle BI Event Tables Utility
	Using the Externalize Strings Utility
	Using the Rename Wizard
	Using the Update Physical Layer Wizard
	Generating Documentation of Repository Mappings
	Generating a Metadata Dictionary
	Removing Unused Physical Objects
	Persisting Aggregates

	Using the Calculation Wizard

	18 Using Variables in the Oracle BI Repository
	About Repository Variables
	About Static Repository Variables
	About Dynamic Repository Variables

	Creating Repository Variables
	Using Repository Variables in Expression Builder

	About Session Variables
	About System Session Variables
	About Nonsystem Session Variables

	Creating Session Variables
	Working with Initialization Blocks
	About Using Initialization Blocks with Variables
	Initializing Dynamic Repository Variables
	Initializing Session Variables
	About Row-Wise Initialization
	Initializing a Variable with a List of Values

	Creating Initialization Blocks
	Assigning a Name and Schedule to Initialization Blocks
	Selecting and Testing the Data Source and Connection Pool
	Examples of Initialization Strings
	Testing Initialization Blocks

	Associating Variables with Initialization Blocks
	Establishing Execution Precedence
	When Execution of Session Variable Initialization Blocks Cannot Be Deferred
	Enabling and Disabling Initialization Blocks

	A Managing the Repository Lifecycle in a Multiuser Development Environment
	Planning Your Multiuser Development Deployment
	About Business Organization and Governance Process Best Practices
	About Technical Team Roles and Responsibilities

	Multiuser Development Architecture
	About Multiuser Development Concepts
	About Multiuser Development Styles
	Multiuser Development Sandbox Architecture
	Multiuser Development and Lifecycle Management Architecture

	Understanding the Multiuser Development Environment
	About Multiuser Development Environment Task Flow
	About Multiuser Development Projects
	How to Create Branches
	How to Create a Main Branch
	How to Create a Side Branch
	How to Create a Delegated Administration Branch

	Which Merge Utility Should I Use?

	MUD Tips and Best Practices
	Best Practices for Branching
	Best Practices for Setting Up Projects
	Best Practices for Three-Way Merges
	Best Practices for MUD Merges
	Best Practices for Two-Way Merges
	Best Practices for Production Migration
	Best Practices for Application Roles and Users

	Troubleshooting Multiuser Development

	B MUD Case Study: Eden Corporation
	About the Eden Corporation Fictional Case Study
	Phase I - Initiating Multiuser Development (MUD)
	Starting Initiative S
	Setting Up MUD Projects
	First Developer Checks Out
	Second Developer Checks Out
	First Developer Checks In
	Second Developer Checks In
	MUD Administrator Test Migration Activities
	Phase I Testing
	Phase I Migration to Production
	Phase I Summary

	Phase II - Branching, Fixing, and Patching
	Setting Up the Second Branch
	Developers Check Out Projects
	Patch Fix for the Main Branch
	Finishing and Merging Phase II Branch
	Phase II Summary

	Phase III - Independent Semantic Model Development
	Security Considerations for Multiple Independent Semantic Models
	Sales Semantic Model Developers Check Out
	HR Semantic Model Developer Builds Content
	Phase III Summary

	C Logical SQL Reference
	SQL Syntax and Semantics
	Syntax and Usage Notes for the SELECT Statement
	Basic Syntax for the SELECT Statement
	Usage Notes
	Subquery Support
	SELECT List Syntax
	FROM Clause Syntax
	WHERE Clause Syntax
	GROUP BY Clause Syntax
	ORDER BY Clause Syntax

	Syntax and Usage Notes for SELECT_PHYSICAL
	Syntax for the SELECT_PHYSICAL Statement
	Aggregate Functions Not Supported in SELECT_PHYSICAL Queries
	Queries Supported by SELECT_PHYSICAL
	Using the NATURAL_JOIN Keyword
	Special Usages of SELECT_PHYSICAL

	Rules for Queries with Aggregate Functions
	Computing Aggregates of Baseline Columns
	Computing Aggregates of Measure Columns
	Display Function Reset Behavior
	Alternative Syntax
	Using FILTER to Compute a Conditional Aggregate

	Operators
	SQL Logical Operators
	Mathematical Operators

	Conditional Expressions
	CASE (Switch)
	CASE (If)

	Expressing Literals
	Character Literals
	Datetime Literals
	Numeric Literals
	Integer Literals
	Decimal Literals
	Floating Point Literals

	Calculated Members
	CALCULATEDMEMBER Syntax
	Rules for the CALCULATEDMEMBER Expression
	Using Solve Order to Control Formula Evaluation Sequence
	Examples of Calculated Members in Queries

	Variables

	Aggregate, Running Aggregate, and Time Series Functions
	Aggregate Functions
	AGGREGATE AT
	AVG
	AVGDISTINCT
	BOTTOMN
	COUNT
	COUNTDISTINCT
	COUNT(*)
	FIRST
	GROUPBYCOLUMN
	GROUPBYLEVEL
	LAST
	MAX
	MEDIAN
	MIN
	NTILE
	PERCENTILE
	RANK
	STDDEV
	STDDEV_POP
	SUM
	SUMDISTINCT
	TOPN

	Running Aggregate Functions
	MAVG
	MSUM
	RSUM
	RCOUNT
	RMAX
	RMIN

	Time Series Functions
	AGO
	Determining the Level Used by the AGO Function

	PERIODROLLING
	Determining the Level Used by the PERIODROLLING Function

	TODATE

	String Functions
	ASCII
	BIT_LENGTH
	CHAR
	CHAR_LENGTH
	CONCAT
	INSERT
	LEFT
	LENGTH
	LOCATE
	LOCATEN
	LOWER
	OCTET_LENGTH
	POSITION
	REPEAT
	REPLACE
	RIGHT
	SPACE
	SUBSTRING
	TRIMBOTH
	TRIMLEADING
	TRIMTRAILING
	UPPER

	Math Functions
	ABS
	ACOS
	ASIN
	ATAN
	ATAN2
	CEILING
	COS
	COT
	DEGREES
	EXP
	EXTRACTBIT
	FLOOR
	LOG
	LOG10
	MOD
	PI
	POWER
	RADIANs
	RAND
	RANDFROMSEED
	ROUND
	SIGN
	SIN
	SQRT
	TAN
	TRUNCATE

	Calendar Date/Time Functions
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	DAY_OF_QUARTER
	DAYNAME
	DAYOFMONTH
	DAYOFWEEK
	DAYOFYEAR
	HOUR
	MINUTE
	MONTH
	MONTH_OF_QUARTER
	MONTHNAME
	NOW
	QUARTER_OF_YEAR
	SECOND
	TIMESTAMPADD
	TIMESTAMPDIFF
	WEEK_OF_QUARTER
	WEEK_OF_YEAR
	YEAR

	Conversion Functions
	CAST
	CHOOSE
	IFNULL
	INDEXCOL
	Example With Hierarchy Levels

	TO_DATETIME
	VALUEOF

	Database Functions
	EVALUATE
	EVALUATE_ANALYTIC
	EVALUATE_AGGR
	EVALUATE_PREDICATE

	Hierarchy Navigation Functions
	ISANCESTOR
	ISCHILD
	ISDESCENDANT
	ISLEAF
	ISPARENT
	ISROOT

	System Functions
	USER
	DATABASE

	D Merge Rules
	General Merge Rules and Behavior
	Special Merge Algorithms for Logical Table Sources and Other Objects
	Merging Objects that Use the Vector Merge Algorithm
	Merging Logical Table Sources
	Merging Security Filters
	Inferring the Use Logical Column Property for Presentation Columns
	Merging Aliases

	E Deleting Unwanted Objects from the Repository
	About the Object Pruning Utility
	Using the Object Pruning Utility
	Creating the Input File
	Running the Prune Utility
	Log File
	Error Log File

	Deletion Rules for the Object Pruning Utility

	F Exchanging Metadata with Databases to Enhance Query Performance
	About Exchanging Metadata with Databases
	Generating the Import File
	Running the Generator
	About the Metadata Input File
	About the Output Files
	Troubleshooting Errors from the Generator
	Metadata Conversion Rules and Error Messages
	Conversion Rules for Oracle Databases
	Conversion Rules for IBM DB2 Databases

	Using Materialized Views in the Oracle Database with Oracle Business Intelligence
	About Using the SQL Access Advisor with Materialized Views
	Deploying Metadata for Oracle Database
	Executing the SQL File for Oracle Database
	Defining Constraints for the Existence of Joins
	Creating the Query Workload
	Creating Materialized Views

	Using IBM DB2 Cube Views with Oracle Business Intelligence
	About Using IBM DB2 Cube Views with Oracle Business Intelligence
	Deploying Cube Metadata
	Executing the Alias-SQL File for IBM Cube Views
	Importing the XML File
	Guidelines for Importing the XML File Using the IBM OLAP Center
	Guidelines for Changing Cube Metadata After Importing the XML File

	Guidelines for Creating Materialized Query Tables (MQTs)

	G Administration Tool Keyboard Shortcuts
	Menu Keyboard Shortcuts
	Dialog Keyboard Shortcuts
	Physical Diagram and Business Model Diagram Keyboard Shortcuts

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

