

Oracle® Fusion Middleware
Mobile Client Developer's Guide for Oracle Application
Development Framework

11g Release 1 (11.1.1.5.0)

E14826-02

April 2011

Oracle Fusion Middleware Mobile Client Developer's Guide for Oracle Application Development
Framework 11g Release 1 (11.1.1.5.0)

E14826-02

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Authors: John Bassett, Liza Rekadze

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

v

Contents

Preface ... xv

Documentation Accessibility ... xv
Audience... xv
Related Documents ... xvi
Conventions ... xvi

1 Introduction to ADF Mobile Client

1.1 Introduction to ADF Mobile Client .. 1-1
1.1.1 Understanding Differences Between ADF Mobile Client Applications and ADF Faces

Web Applications 1-1
1.2 Infrastructure Requirements for Developing ADF Mobile Client Applications 1-3
1.3 Run-Time Architecture of ADF Mobile Client ... 1-4
1.4 Data and Transaction Synchronization ... 1-5
1.4.1 Data Synchronization.. 1-6
1.4.2 Transaction Synchronization ... 1-6
1.5 Introduction to ADF Mobile Client Application Development ... 1-7
1.5.1 Application Architecture .. 1-7
1.5.2 Typical Development Stages.. 1-8
1.5.3 The Lifecycle of a View ... 1-9
1.5.4 Supported Devices and the Supported Database .. 1-10
1.5.4.1 What You May Need to Know About SQLite ... 1-10
1.5.5 Supported ADF Components and Attributes... 1-10
1.5.6 Support for ADF View Objects ... 1-11
1.5.7 Support for Expression Language.. 1-11

2 Setting Up the ADF Mobile Client Environment

2.1 Introduction to the ADF Mobile Client Environment ... 2-1
2.2 Prerequisites for Developing ADF Mobile Client Applications .. 2-1
2.2.1 What You Need to Get Started With the ADF Mobile Client Sample Application ... 2-2
2.2.2 What You Need to Create an ADF Mobile Client Application..................................... 2-2
2.2.3 What You Need to Deploy an ADF Mobile Client Application to a Development

Environment 2-3
2.2.4 What You May Need to Know About Pre-Installed Components 2-4
2.3 Setting Up JDeveloper.. 2-5
2.4 Setting Up Oracle Database... 2-6

vi

2.5 Setting Up Oracle Database Lite ... 2-6
2.6 Setting Up Development Tools for Windows Mobile Platform... 2-7
2.6.1 How to Set Up the Windows Mobile Device... 2-7
2.6.2 How to Install and Set Up the Windows Mobile Emulator... 2-8
2.6.3 How to Connect the Mobile Device or Emulator.. 2-9
2.6.4 How to Install the Oracle Database Lite Client on the Mobile Device or Emulator 2-11
2.6.5 How to Install Java Runtime Environment on the Mobile Device or Emulator...... 2-12
2.6.6 What You May Need to Know About Limitations of Windows Mobile Platform Usage

2-12
2.7 Setting Up Development Tools for BlackBerry Platform... 2-13
2.7.1 How to Install BlackBerry JDE.. 2-13
2.7.1.1 What You May Need to Know About BlackBerry Mobile Data Service Simulator....

2-14
2.7.2 How to Install BlackBerry Desktop Software ... 2-14
2.7.3 How to Set Up a BlackBerry Smartphone ... 2-14
2.7.4 How to Set Up a BlackBerry Smartphone Simulator... 2-14
2.7.5 How to Configure JDeveloper for BlackBerry Development..................................... 2-15
2.7.6 How to Configure Proxy Settings .. 2-16
2.7.7 What You May Need to Know About BlackBerry File Browser System.................. 2-16
2.7.8 What You May Need to Know About Limitations of BlackBerry Platform Usage. 2-17
2.8 Installing SQLite Mobile Sync Client on BlackBerry Smartphone or Simulator 2-17
2.9 Setting Up the Fusion Order Demo Mobile Client Application.. 2-17

3 Introduction to the ADF Mobile Client Sample Application

3.1 About the Fusion Order Demo Mobile Client Application .. 3-1
3.2 Installing the Fusion Order Demo Schema ... 3-1
3.2.1 Mounting the Sample Client Database ... 3-3
3.2.1.1 How to Mount the Sample Client Database on Windows Mobile Devices 3-3
3.2.1.2 How to Mount the Sample Client Database on a BlackBerry Smartphone Simulator

3-3
3.3 Overview of the Fusion Order Demo Mobile Client Application Schema......................... 3-4
3.4 Running the Fusion Order Demo Mobile Client Application.. 3-5
3.4.1 How to Run the Demo Application on a Windows Mobile Device Emulator 3-5
3.4.2 Running the Sample Application on a BlackBerry Smartphone Simulator 3-7
3.4.2.1 How to Start the Demo Application on a BlackBerry Smartphone Simulator 3-7
3.5 Taking a Look at the Fusion Order Demo Mobile Client Application................................ 3-8
3.5.1 Design Time Components .. 3-8
3.5.1.1 MobileClient Project... 3-9
3.5.1.2 Model Project .. 3-9
3.5.2 Runtime Components .. 3-10
3.5.3 Browsing Orders .. 3-10
3.5.4 Viewing Order Details ... 3-14
3.5.5 Editing or Adding an Order.. 3-15
3.5.6 Viewing Ordered Items ... 3-17

4 Getting Started with ADF Mobile Client

4.1 About Declarative Development with JDeveloper .. 4-1

vii

4.2 About Developing an ADF Mobile Client Application... 4-1
4.3 Deploying the Model Project of the Base Application as an ADF Library......................... 4-2
4.3.1 How to Deploy the Model Project... 4-3
4.4 Creating an Application Workspace .. 4-3
4.4.1 How to Create an Application Workspace .. 4-3
4.4.2 What Happens When You Create a Mobile Client Application Workspace 4-6
4.5 Extending the Base Application for the Mobile Client Application.................................... 4-7

5 Developing the ADF Mobile Client Data Model

5.1 Building Business Services for ADF Mobile Client Applications .. 5-1
5.1.1 Support for the Core ADF Business Components .. 5-2
5.1.2 Support for Mobile Database Transactions.. 5-3
5.2 Extending an ADF Application to Mobile Client... 5-4
5.2.1 How to Create Subsets of Entity Objects and View Objects.. 5-4
5.2.2 What Happens When You Create a Subset of Entity Objects and View Objects 5-8
5.3 Editing Mobile Entity Objects ... 5-8
5.3.1 About Using the Overview Editors for Mobile Objects ... 5-8
5.3.2 About Editing Entity Objects .. 5-12
5.3.3 How to Add Attributes to an Entity Object .. 5-13
5.3.4 How to Add Transient Attributes .. 5-14
5.3.5 Adding Validation Rules ... 5-15
5.3.5.1 How to Add a Validation Rule to an Entity or Attribute 5-19
5.3.6 Overriding Default Validation Error Handling ... 5-20
5.3.6.1 How to Show the Error Message as a Message Box ... 5-20
5.3.6.2 How to Show the Error Message as Output Text ... 5-22
5.3.7 About Synchronization for Entity Objects .. 5-23
5.3.7.1 How to Enable or Disable Synchronization for Entity Objects........................... 5-24
5.3.8 View Accessor Support for Entity Objects and View Objects 5-25
5.3.9 Using List UI Hints for View Objects .. 5-25
5.3.10 Using Display Hints for Entity Objects ... 5-26
5.3.11 Adding Bind Variables to View Objects.. 5-27
5.3.12 Working with Resource Bundles.. 5-28
5.4 The Entity Object and View Object Extension... 5-29
5.4.1 Supported Constructs .. 5-30
5.4.2 Unsupported Methods... 5-30
5.5 Testing Application Modules... 5-31
5.6 Interacting Directly with SQLite.. 5-31
5.6.1 Differences Between SQLite and Other Relational Databases 5-32
5.6.1.1 Concurrency ... 5-32
5.6.1.2 SQL Support ... 5-32
5.6.1.3 Data Types .. 5-32
5.6.1.4 Foreign Keys... 5-33
5.6.1.5 Database Transactions .. 5-33
5.6.1.5.1 Nested Transactions... 5-33
5.6.1.5.2 Savepoints ... 5-33
5.6.1.5.3 Commit .. 5-33
5.6.1.5.4 Rollback ... 5-33

viii

5.7 Configuring JDeveloper to Connect to and Test Against a SQLite Database 5-33
5.7.1 How to Test Against a SQLite Database ... 5-34
5.8 Enabling ADF Mobile Transaction Replay Service for an ADF Application 5-35
5.8.1 How to Add the ADF Mobile Transaction Replay Service Technology to an ADF

Application 5-35
5.8.2 What Happens When You Add the ADF Mobile Transaction Replay Service

Technology to an Application 5-36
5.8.3 What Happens When JDeveloper Creates an ADF Mobile Transaction Replay

Service-Enabled Application 5-37
5.8.4 How to Create a Transaction Replay Type ... 5-37
5.8.5 What Happens When JDeveloper Creates a Transaction Replay Type.................... 5-42
5.9 Authentication.. 5-44
5.9.1 What You May Need to Know About the AuthenticationManager Class............... 5-44
5.9.1.1 Public Accessors .. 5-46
5.9.1.2 Public Methods .. 5-47
5.9.1.3 The AuthenticationCallback Class .. 5-47
5.9.2 What You May Need to Know About SecurityContext EL Expressions 5-48
5.9.2.1 Using EL Expressions for Authentication.. 5-49

6 Creating the ADF Mobile Client User Interface

6.1 Introduction to Creating the ADF Mobile Client User Interface ... 6-2
6.2 Creating Task Flows ... 6-2
6.2.1 How to Create a Task Flow .. 6-3
6.2.2 How to Create an Additional Task Flow ... 6-4
6.2.3 How to Use the Mobile Client Task Flow Creation Wizard.. 6-5
6.2.4 What Happens When You Create a Mobile Client Task Flow...................................... 6-6
6.2.5 What You May Need to Know About Supported Activities and Control Flows....... 6-6
6.2.6 What You May Need to Know About the MobileClient-task-flow.xml File 6-8
6.2.7 What You May Need to Know About the Mobile Client Task Flow Diagrammer.... 6-8
6.2.8 How to Add Mobile Client Activities ... 6-9
6.2.9 How to Add View Activities.. 6-9
6.2.10 How to Add a Wildcard Control Flow Rule.. 6-9
6.2.11 How to Enable Page Navigation Using Control Flow Case....................................... 6-10
6.3 Creating Mobile Views.. 6-10
6.3.1 How to Work With MCX Pages.. 6-10
6.3.1.1 Interpreting the MCX Page Structure... 6-10
6.3.1.2 Creating MCX Pages ... 6-11
6.3.1.3 What Happens When You Create an MCX Page.. 6-12
6.3.2 How to Add Mobile Client Components and Data Controls to an MCX Page 6-13
6.3.2.1 Adding UI Components ... 6-13
6.3.2.2 Using the Visual Editor... 6-15
6.3.2.3 Adding Data Controls to the View ... 6-16
6.3.2.4 Configuring UI Components ... 6-19
6.4 Designing the Layout of the Page.. 6-20
6.4.1 How to Use a Form Component... 6-21
6.4.1.1 How to Add a Form to a Page ... 6-21
6.4.2 How to Use a Panel Group Layout Component .. 6-21

ix

6.4.2.1 What You May Need to Know About Geometry Management and the Panel
Group Layout Component 6-22

6.4.2.1.1 Geometry Management and Vertical Panels.. 6-22
6.4.2.1.2 Geometry Management and Horizontal Panels .. 6-26
6.4.3 How to Use a Panel Form Layout Component .. 6-27
6.4.3.1 What You May Need to Know About Geometry Management and the Panel Form

Layout Component 6-28
6.4.4 How to Use a Panel Label And Message Component... 6-28
6.4.4.1 What You May Need to Know About Arranging Labels 6-28
6.5 Creating and Using Input Components ... 6-29
6.5.1 How to Use the Input Text Component .. 6-29
6.5.1.1 What You May Need to Know About Geometry Management and the Input Text

Component 6-30
6.5.2 How to Use the Input Date Component.. 6-30
6.5.2.1 What You May Need to Know About Geometry Management and the Input Date

Component 6-31
6.5.3 How to Use the Input Number Spinbox Component ... 6-32
6.5.3.1 What You May Need to Know About Geometry Management and the Input

Number Spinbox Component 6-32
6.5.4 How to Use the Select Boolean Checkbox Component... 6-33
6.5.4.1 What You May Need to Know About Geometry Management and the Select

Boolean Checkbox Component 6-34
6.5.5 How to Use the Select One Choice Component... 6-34
6.5.5.1 What You May Need to Know About Geometry Management and the Select One

Choice Component 6-35
6.5.5.2 What You May Need to Know About Differences Between Select Items and Select

Item Components 6-35
6.5.6 What You May Need to Know About Event Listeners and Input Components..... 6-36
6.6 Creating and Using Output Components .. 6-36
6.6.1 How to Use the Output Text Component ... 6-36
6.6.1.1 What You May Need to Know About Geometry Management and the Output Text

Component 6-37
6.6.1.2 Converting Numerical Values ... 6-37
6.6.1.3 Converting Date and Time Values.. 6-38
6.7 Displaying Images ... 6-38
6.7.1 How to Display an Image.. 6-38
6.7.2 What You May Need to Know About Supported Image File Formats..................... 6-39
6.7.3 What You May Need to Know About Geometry Management and the Image

Component 6-39
6.8 Creating and Using Tables ... 6-39
6.8.1 How to Use the Table Component... 6-40
6.8.2 What Happens When You Create a Table ... 6-43
6.8.3 What You May Need to Know About Event Listeners and Table Components 6-44
6.8.4 What You May Need to Know About the Table User Interaction Model 6-44
6.8.5 What You May Need to Know About Using a Databound Select One Choice

Component Within a Table 6-45
6.9 Using Buttons and Links... 6-45
6.9.1 How to Use the Button Component... 6-45

x

6.9.1.1 What You May Need to Know About Event Listeners and Button Components
6-46

6.9.1.2 What You May Need to Know About Geometry Management of Button
Components 6-46

6.9.2 How to Use the Link Component .. 6-47
6.9.2.1 What You May Need to Know About Event Listeners and Link Components 6-47
6.9.2.2 What You May Need to Know About Geometry Management of Link Components

6-47
6.9.3 How to Enable the Back Button Navigation ... 6-48
6.10 Creating and Using Scanners ... 6-49
6.10.1 How to Use the Scanner Component... 6-49
6.10.2 What You May Need to Know About Event Listeners and Scanner Components 6-50
6.10.3 How to Integrate a Barcode Scanner Into a Mobile Client Application 6-50
6.10.3.1 Creating a Barcode Scanner Data Control ... 6-50
6.10.3.2 What Happens When You Create a Scanner Data Control 6-53
6.10.3.3 Enabling Scanning in Mobile Client Applications.. 6-54
6.11 Creating and Using Menus... 6-55
6.11.1 Menu Types ... 6-55
6.11.1.1 Main... 6-56
6.11.1.2 Alt .. 6-57
6.11.2 Menu Components ... 6-57
6.11.2.1 Menu.. 6-58
6.11.2.2 Menu Item... 6-58
6.11.2.3 Menu Group... 6-58
6.11.2.4 Menu Control ... 6-58
6.11.2.5 Sub Menu.. 6-59
6.11.3 How to Associate Menus with UI Components... 6-61
6.11.4 How to Create Menus for BlackBerry Smartphones ... 6-61
6.11.4.1 Defining a BlackBerry Full Menu.. 6-63
6.11.5 How to Create Menus for Windows Mobile Devices.. 6-64
6.11.6 What You May Need to Know About Design-Time Menu Usage 6-65
6.11.7 What You May Need to Know About Event Listeners and Menus 6-66
6.12 Using Event Listeners.. 6-66
6.13 Localizing UI Components... 6-68
6.14 Understanding EL Support .. 6-70
6.14.1 Supported EL Nodes .. 6-70
6.14.2 What You May Need to Know About ADF Mobile Client EL Implementation 6-70
6.14.2.1 Immediate and Deferred Evaluation .. 6-70
6.14.2.2 Enumerated Types .. 6-70
6.14.3 How to Reference Binding Containers .. 6-70
6.14.4 EL Events ... 6-73
6.15 Understanding Binding Layer Components.. 6-74
6.15.1 What You May Need to Know About Sequencing.. 6-75

7 Extending ADF Mobile Client Applications with Java

7.1 About Invoking Custom Methods Through EL Expressions ... 7-1
7.1.1 Adding Invocation Code for Custom Methods in Application Modules and View

Objects 7-2

xi

7.2 Java Support for Business Components .. 7-3
7.2.1 Support for Reflection ... 7-3
7.2.2 JDK 1.3 Compliance... 7-3
7.2.3 Alternate Package Names... 7-3
7.2.4 Supported Java Extension Points for Business Components .. 7-4
7.2.4.1 Unsupported Methods... 7-4
7.3 Using a Managed Bean in an ADF Mobile Client Application .. 7-4
7.3.1 About MethodDispatch and PropertyDispatch .. 7-7
7.3.2 About PropertyValueChangeSource and Notifications... 7-7
7.4 Resource Bundle Support ... 7-11
7.4.1 Managing Locales Using the List ResourceBundle and PropertyResourceBundle

Classes 7-11
7.4.2 Supporting Localization through XLFF Resource Bundles .. 7-12
7.5 Supported EL Nodes ... 7-15
7.5.1 Working with EL in Code.. 7-16
7.6 Additional JavaSE Classes Provided by the ADF Mobile Client Framework 7-17

8 Deploying ADF Mobile Client Components

8.1 Introduction to Deployment.. 8-1
8.1.1 Application Deployment Prerequisites .. 8-2
8.2 Deploying the ADF Mobile Client Runtime ... 8-2
8.2.1 How to Deploy the Runtime Components .. 8-2
8.3 Creating Data Sync Publications on the Server .. 8-3
8.3.1 How to Create Data Sync Publications... 8-3
8.3.2 What Happens When You Create a Database Connection.. 8-6
8.4 Working with Application Deployment Profiles ... 8-6
8.4.1 How to Create a Deployment Profile for BlackBerry Applications 8-7
8.4.1.1 Setting and Modifying Application Details.. 8-8
8.4.1.2 Setting the BlackBerry Digital Signature Tool Options .. 8-9
8.4.1.3 Adding a Customized Icon to a BlackBerry Application 8-10
8.4.1.3.1 How to Add Custom Icons to a BlackBerry Application 8-10
8.4.1.4 Deploying BlackBerry Applications ... 8-11
8.4.1.4.1 Selecting Most Recently Used Deployment Profiles 8-12
8.4.2 How to Create a Deployment Profile for Windows Mobile....................................... 8-13
8.4.2.1 Setting the JAR File Options .. 8-13
8.4.2.1.1 About the Launcher Executable File.. 8-13
8.4.2.1.2 About the Options File .. 8-14
8.4.2.1.3 About Debugging A Windows Mobile Application 8-15
8.4.2.1.4 How to Set the JAR Options ... 8-15
8.4.2.2 Adding Custom Icons to a Windows Mobile Application 8-16
8.4.2.3 How to Add Custom Icons to a Windows Mobile Application 8-17
8.4.2.4 Deploying a Windows Mobile Application... 8-18
8.5 Specifying the Client Database Location for an Application... 8-19
8.5.1 How to Specify the Client Database Location .. 8-19
8.5.2 What Happens When You Specify a Client Database... 8-23
8.5.3 What Happens When Oracle Database Lite Mobile Server Manages an Application's

Database 8-24

xii

8.5.4 How the ADF Mobile Client Framework Retrieves Mobile Server Credentials at
Application Startup 8-24

8.6 Deploying a Multi-Language ADF Mobile Client Application .. 8-25
8.6.1 How to Select the Language Resource Bundles for an ADF Mobile Client Application ..

8-25
8.6.2 What Happens When You Add Language Resource Bundles to a Deployment Profile .

8-27
8.6.3 Adding Language Resource Bundles for Multiple Base Application JAR Files...... 8-28
8.6.3.1 How to Add Language Resource Bundles from Another Base Application 8-28
8.6.3.1.1 What Happens When You Add Language Resource Bundles from Another

Base Application JAR 8-30
8.6.3.2 Manually Adding Resource Bundles.. 8-31
8.6.3.2.1 What Happens When You Manually Add a Resource Bundle 8-33
8.6.3.3 Adding Local Resource Bundles ... 8-35

9 Synchronizing ADF Mobile Client Data and Transactions

9.1 About Synchronizing Data with Oracle Mobile Server .. 9-1
9.1.1 About ADF Mobile Transaction Replay Service ... 9-2
9.1.2 About the Connection Between Client and Server ... 9-2
9.1.3 About Publishing Data.. 9-3
9.1.4 What Happens When You Make Changes to the Mobile Database............................. 9-3
9.1.5 What Happens When You Import Entity Objects into the Mobile Client Application

9-3
9.2 Configuring Oracle Mobile Server ... 9-4
9.3 Initiating Data Synchronization.. 9-4
9.4 Enabling Data Synchronization at Application Startup.. 9-5
9.4.1 How to Invoke Data Synchronization Programmatically ... 9-5
9.4.1.1 Providing Parameters for Data Synchronization... 9-5
9.4.1.1.1 Sync Progress Events .. 9-7
9.4.2 SQLite Database Locking and Mobile Server .. 9-7
9.5 Customizing the Synchronization Setup... 9-7
9.5.1 Creating a Custom Page for Mobile Synchronization.. 9-8
9.5.1.1 How to Create a Custom Synchronization Page.. 9-8
9.5.1.2 Updating the Application Task Flow ... 9-11
9.6 Setting Up ADF Mobile Transaction Replay Service.. 9-12

10 Testing and Debugging ADF Mobile Client Applications

10.1 Introduction to Testing and Debugging ADF Mobile Client Applications..................... 10-1
10.2 Testing ADF Mobile Client Applications ... 10-2
10.3 Debugging ADF Mobile Client Applications for Windows Mobile Platform 10-2
10.3.1 How to Configure a Window Mobile Device or Emulator for Debugging.............. 10-2
10.3.1.1 Increasing the Internal Storage Capacity of the Device or Emulator................. 10-2
10.3.1.2 Configuring the Device or Emulator for Network Access 10-3
10.3.2 How to Deploy the Application to the Window Mobile Device or Emulator for

Debugging 10-3
10.3.3 What Happens When You Choose to Generate the Debug Launcher...................... 10-5
10.3.4 How to Debug the Application on the Windows Mobile Platform 10-5

xiii

10.3.5 How to Enable Error Logging on a Window Mobile Device or Emulator............... 10-8
10.4 Debugging ADF Mobile Client Applications for BlackBerry Platform 10-9
10.4.1 How to Configure a BlackBerry Smartphone Simulator for Debugging.................. 10-9
10.4.2 How to Deploy the Application to the BlackBerry Simulator for Debugging....... 10-10
10.4.3 How to Debug the Application on BlackBerry Platform .. 10-11
10.4.4 What You May Need to Know About Modifying the Deployment and Run

Configurations 10-14
10.4.5 How to Enable Error Logging on a BlackBerry Simulator 10-15
10.5 Testing Synchronization ... 10-16
10.6 Using the ADF Mobile Client Settings Facility.. 10-17
10.6.1 How to Use the ADF Mobile Client Logging Facility ... 10-19
10.6.2 How to Configure Logging Using the Settings Facility .. 10-23
10.6.3 How to Enable Logging in Java Code.. 10-23

11 Working Directly with the Database

11.1 About Using a Client Database.. 11-1
11.2 Enabling Applications to Use SQL Initialization Scripts ... 11-2
11.2.1 Supported Column Data Type Declarations .. 11-3
11.2.2 Literal Format for Date Types... 11-3
11.2.3 SQL Syntax... 11-4
11.2.4 Inserting Multiple Rows into a Table .. 11-4
11.2.5 Commit Handling... 11-5
11.3 Adding the SQL Script as a Resource to the ADF Mobile Client Application................ 11-5

12 Using Web Services in ADF Mobile Client Applications

12.1 Introduction to Web Services in ADF Mobile Client Applications 12-1
12.2 Creating and Using Web Service Data Controls ... 12-1
12.2.1 How to Create a Web Service Data Control.. 12-2
12.2.2 How to Adjust the Endpoint for a Web Service Data Control 12-3
12.2.3 How to Create a New Web Service Connection... 12-3
12.3 Securing Web Service Data Controls .. 12-3

A Language Abbreviations

B Advanced Topics

B.1 Adding Devices in the Page Designer .. B-1

C Troubleshooting

C.1 Recovering from an mSync Failure ... C-1
C.2 Errors When Testing Value Binding Queries .. C-2
C.3 Receiving ActiveSync Connection Error Message on Deployment Log............................ C-2
C.4 Windows Mobile 6.0 Limitations... C-2
C.5 Sync Agent Issues .. C-3
C.6 Windows 7 Workarounds... C-3
C.7 SQLite Limitations ... C-5

xiv

C.8 Font Usage Limitations ... C-5

D Sample Code

D.1 Using the OperationProvider and OperationDelegate Interfaces D-1

Index

xv

Preface

Welcome to Mobile Client Developer's Guide for Oracle Application Development
Framework.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Audience
This document is intended for developers of mobile client applications for
smartphones and mobile devices.

xvi

Related Documents
For more information, see the following:

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

■ Oracle Database Lite Developer's Guide

■ Oracle Database Lite SQLite Mobile Client Guide

■ Oracle Fusion Middleware Installation Guide for ADF Mobile Transaction Replay Service

■ Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile Client

■ Oracle Fusion Middleware Java API Reference for Oracle ADF Mobile Client

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to ADF Mobile Client 1-1

1Introduction to ADF Mobile Client

This chapter introduces ADF Mobile client—an Oracle JDeveloper extension for
developing rich applications that run natively on mobile devices and smartphones.

This chapter includes the following sections:

■ Section 1.1, "Introduction to ADF Mobile Client"

■ Section 1.2, "Infrastructure Requirements for Developing ADF Mobile Client
Applications"

■ Section 1.3, "Run-Time Architecture of ADF Mobile Client"

■ Section 1.4, "Data and Transaction Synchronization"

■ Section 1.5, "Introduction to ADF Mobile Client Application Development"

1.1 Introduction to ADF Mobile Client
ADF Mobile client lets you develop high-performance mobile applications that do not
require a browser and that provide full functionality even when disconnected from the
server.

ADF Mobile client is built upon the ADF Mobile platform and lets you extend an
existing Oracle Application Development Framework (Oracle ADF) application to
create a new application that will run on any platform that ADF Mobile client supports
(see Section 1.5.4, "Supported Devices and the Supported Database"). ADF Mobile
client does the following:

■ Enables access to features of a mobile device or smartphone.

■ Uses APIs of a mobile device or smartphone for improved performance.

■ Uses UI of a mobile device or smartphone to provide applications with the native
look-and-feel.

ADF Mobile client applications use Oracle Database Lite Mobile Server and Oracle
ADF Mobile transaction replay service to synchronize data between back-end business
data sources and the mobile device or smartphone.

1.1.1 Understanding Differences Between ADF Mobile Client Applications and ADF
Faces Web Applications

The operation of an ADF Mobile client application is substantially different from the
operation of an ADF Faces Web application. ADF Faces applications adhere to the
standard JSF lifecycle for processing an HTTP request and response. In Web
applications, these lifecycle phases help define at various points in the processing of an
HTTP request which actions are valid, which values are initialized, and so forth. It is

Introduction to ADF Mobile Client

1-2 Mobile Client Developer's Guide for Oracle Application Development Framework

also common for an HTML page to be discarded in the browser, with a completely
new page then generated by the server and sent again to the browser (though this is
changing with Web 2.0).

In contrast, ADF Mobile client implements an application model where the front end
and back end reside on the same device. As it is inefficient to discard the UI every time
a page transition occurs, or every time a value is submitted to the database, ADF
Mobile client compresses the JSF lifecycle into a dynamic, always-on, event-driven
model. This operating model is less like the traditional HTTP request-and-response
model, and more like the Web 2.0 model, because a screen is created once and the user
interface elements on it are updated dynamically based on the underlying data.

The ADF Mobile client consists of the following three basic layers:

■ ADF Business Components: This layer operates very similarly to the ADF
Business Components layer in an ADF Faces application. You use the JDeveloper
business component design time to create entity objects and view objects, apply
view criteria for query customization, and so on. You can also generate Java
classes for your entity and view objects and program against a subset of the
oracle.jbo package.

■ ADF Model (JSR-227): This layer in ADF Mobile client is also very similar to ADF
Faces: views are exposed through data controls; action bindings, method bindings,
and iterator bindings are all available through the existing JDeveloper design time.
However, it is this layer where some differences start to emerge. The current ADF
Model layer is designed to support the JSF lifecycle among other things. Since the
lifecycle does not exist in ADF Mobile client, some of the lifecycle-oriented
constructs do not apply to ADF Mobile client applications.

■ UI: This layer of ADF Mobile client applications is new, but it retains a few key
concepts from ADF Faces. ADF Mobile client pages are defined by MCX files,
which are similar to JSPX files yet greatly simplified and abstracted in order to
support cross-platform development. Many of the basic components that are
present in ADF Faces, such as the Input Text, Output Text, and Select One Choice
are included in the MCX format. In addition, the components are "wired" to the
model layer with JSF Expression Language (EL). Understanding how EL
expressions transfer data between the model and UI layers is key to understanding
the difference between ADF Faces applications and ADF Mobile client
applications.

In an ADF Faces application, the server processes the JSPX file during the render
response phase and replaces EL expressions with actual values. This works for ADF
Faces because a new page can be generated and sent to the browser each time a
value changes. With ADF Mobile client, however, a page is usually created just
once. In order to provide data updates to the controls that are populated with EL
expressions, EL event sources and sinks are created for every EL expression on a
page. Whenever the underlying value of an EL expression changes, any event
sinks for that expression will automatically receive the update. The events transfer
data from the business component layer to the UI layer when a record iterator
moves, and the events transfer data from the UI layer to the business component
layer when a user updates a value on a form. For more information and examples,
see Section 6.14.4, "EL Events."

Infrastructure Requirements for Developing ADF Mobile Client Applications

Introduction to ADF Mobile Client 1-3

1.2 Infrastructure Requirements for Developing ADF Mobile Client
Applications

A number of physical and logical components are required when developing mobile
applications using ADF Mobile client.

The main functional component areas of ADF Mobile client are the mobile client itself
and the related synchronization technologies. On the server side, ADF Mobile client
application data is processed in the same way that data from regular ADF applications
is processed, ensuring data integrity and similarity of business processes.

Very simplistically, the ADF Mobile client infrastructure can be expressed, as shown in
Figure 1–1.

Figure 1–1 ADF Mobile Client Infrastructure

As the preceding illustration demonstrates, the synchronization technologies enable
interactions between the existing ADF application (also known as the base application)
including its database and the extended ADF Mobile client application.

For additional overview information on ADF Mobile client, see the following:

■ Section 1.3, "Run-Time Architecture of ADF Mobile Client"

■ Section 1.4, "Data and Transaction Synchronization"

■ Section 1.5, "Introduction to ADF Mobile Client Application Development"

ADF Mobile client is compatible with Oracle ADF (see "Introduction to Oracle ADF"
section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework). The mobile client shares most of the features and
functionality of Oracle ADF by supporting many ADF components, such as view
objects, Expression Language (EL), UI components, and so on. An ADF Mobile client
application is always an extension of an existing ADF application. You apply your
existing ADF development skills to develop mobile client applications.

Run-Time Architecture of ADF Mobile Client

1-4 Mobile Client Developer's Guide for Oracle Application Development Framework

For more information on what Oracle ADF shares with ADF Mobile client, see the
following:

■ Section 1.5.5, "Supported ADF Components and Attributes"

■ Section 1.5.6, "Support for ADF View Objects"

■ Section 1.5.7, "Support for Expression Language"

The synchronization technologies employed by ADF Mobile client may be hosted on
the same server as the base ADF application. When connectivity is available, the data
from the mobile client application’s SQLite database can be synchronized with the
base application’s data.

For more information on synchronization, see Section 1.4, "Data and Transaction
Synchronization."

When planning the development of a mobile client application, even though
requirements vary depending on the platform for which you are developing, you
generally need the following:

■ Oracle JDeveloper

■ Oracle Database

■ An existing ADF application

■ Oracle JDeveloper extension for ADF Mobile client

■ A mobile device or device simulator

■ Oracle Database Lite Mobile Server for data synchronization

■ ADF Mobile transaction replay service for business logic and transaction
synchronization. In addition, the transaction replay service requires a running
instance of a J2EE Server configured for ADF

For more information on prerequisites, see Section 2.2, "Prerequisites for Developing
ADF Mobile Client Applications."

1.3 Run-Time Architecture of ADF Mobile Client
ADF Mobile client consists of the following parts:

■ View expressed as a mobile device UI

■ Controller powered by the ADF Mobile framework

■ Model that includes the following:

– local relational database

– mobile ADF Business Components (BC4J) layer

■ Java runtime

Figure 1–2 shows the ADF Mobile client architecture (in red) and how it fits into the
overall ADF architecture.

Note: ADF Mobile client’s model-view-controller stack resides on a
mobile device or smartphone and represents reimplementation of
ADF’s model-view-controller layers. UI metadata is rendered to native
components on-device and is bound to the model through JSR 227.

Data and Transaction Synchronization

Introduction to ADF Mobile Client 1-5

Figure 1–2 ADF Mobile Client Run-Time Architecture Within ADF Architecture

1.4 Data and Transaction Synchronization
Data integrity is the main goal of any data-processing application. Because ADF
Mobile client enables functionality when the client is disconnected from the server and
the main data source, it relies on synchronization technologies to preserve integrity of
the application data. When data on the client is modified, a transaction is created to
encapsulate those modifications. When connectivity becomes available, this
transaction is recorded and replayed, triggering the update of data on the server.

Figure 1–3 shows how ADF Mobile client’s run-time synchronization mechanism
functions.

Data and Transaction Synchronization

1-6 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 1–3 ADF Mobile Client Run-Time Synchronization

1.4.1 Data Synchronization
ADF Mobile client provides local data storage on the mobile device or smartphone by
synchronizing a subset of application data down to the device. This frees you from the
need to provide the data synchronization code for your application.

The mobile client enables the table-level data synchronization from server to client
through the use of Oracle Database Lite Mobile Server.

For more information, see the following:

■ Chapter 9, "Synchronizing ADF Mobile Client Data and Transactions"

■ Section 9.3, "Initiating Data Synchronization"

1.4.2 Transaction Synchronization
Typically, server-side business logic cannot be duplicated or approximated on the
client. To ensure data integrity, ADF Mobile client synchronizes device-side data
transactions upstream via ADF Mobile transaction replay service. These transactions
are then replayed through the ADF BC (Entity Object) layer of the base ADF
application.

Basically, the transaction replay service enables the mobile client applications running
on clients to access and execute business logic components on the server or on the base

Note: The Entity Object Transaction Execution is supported by
default in V1.

Note: The transaction replay service can reside on the same
application server as an ADF application.

Introduction to ADF Mobile Client Application Development

Introduction to ADF Mobile Client 1-7

application. It can replay transactions against a variety of back-end services from ADF
Business Component (BC) entity object operations, ADF BC view operations, ADF BC
application modules operations and even other interfaces such as web services, Java
classes and other elements that can be bound using JSR 227.

The transaction replay service is implemented using J2EE technologies and modeled
on the Service Oriented Architecture (SOA). It is independent of the type of the
disconnected client, synchronization technologies, application server, and database
platform.

The transaction replay service infrastructure resides on the server side of the enterprise
application and accepts transactions posted from one or more disconnected clients to a
transaction replay service-specific database table. The transactions in this table are
configured to map with available Java methods, and are subsequently posted (or
replayed) to the enterprise application on behalf of the disconnected client. Using the
mapped Java methods for transaction replay allows the implementation of complete
server-side business logic for remotely collected data. Server-side business logic can
include validation, deferred event triggers, and so on.

Disconnected client transactions that can be replayed using the transaction replay
service are dependent on the type of application, as well as on your or your
administrator’s configurations. You can configure the transaction replay service for
use with your disconnected solution (see Section 5.8.4, "How to Create a Transaction
Replay Type"). Application administrators can monitor the transaction status and
performance of the transaction replay service while in use with a disconnected
solution.

The following are examples of transactions that can be replayed:

■ Creation of a new contact or account object record

■ Updates to existing records

1.5 Introduction to ADF Mobile Client Application Development
To ensure the best design for your ADF Mobile client application, Oracle recommends
that you follow an iterative step-by-step development process.

ADF Mobile client offers you a declarative approach to application development
through the use of drag-and-drop components, business logic wizards, and other
productivity aids. This enables the following:

■ Declarative UI design

■ Declarative page navigation

■ Declarative data binding

For more information, see Section 4.2, "About Developing an ADF Mobile Client
Application."

1.5.1 Application Architecture
Your ADF Mobile client application will always extend an existing (base) ADF
application:

Note: Even though the ADF Mobile client application is defined as
XML with components expressed as XML tags, you have an option to
customize it using Java code.

Introduction to ADF Mobile Client Application Development

1-8 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Your entity objects will be copies of a subset of the entity objects of the base
application.

■ Your view objects will either be based on entity objects, or they will be represented
by static view objects.

For more information, see Section 5.2, "Extending an ADF Application to Mobile
Client."

You use a wizard to generate your mobile client application’s business components
from the base ADF application’s business components.

The following is a potential architecture for your ADF Mobile client application:

■ A database-bound, mostly disconnected application that consists of several views
bound to data in tables stored in a local database on the device. Data is
synchronized from a server database to the mobile device or smartphone. This
data synchronization is the primary communication mechanism between the
server application along with its data sources and the ADF Mobile client
application. The application functionality is largely supported without the use of
network connectivity.

For more information, see Chapter 5, "Developing the ADF Mobile Client Data
Model."

1.5.2 Typical Development Stages
As with most application development, you perform the following activities when
building your ADF Mobile client application:

■ Gather requirements

■ Design

■ Develop

■ Test

■ Deploy

A disconnectable mobile application is generally created as an extension of a server
application. Although the mobile application should not mimic the server/desktop
application in its presentation, its underlying data schema will mimic the server’s data
schema because it is a subset of that server schema.

It is assumed that you have a server-side database with an application schema already
in place. The steps you take to build your ADF Mobile application will generally occur
as follows:

1. Design mobile tasks. Consider the tasks a mobile user will be performing,
keeping in mind that handheld usage is different from that of a laptop or desktop
machine. How will the mobile application help users get their jobs done? How
will the users interact with the device? The more streamlined the application, the
more they will use it. Can peripheral input devices be used (barcode scanners or
cameras) to simplify processing? Design your mobile client application to be a
genuine assistant to the mobile worker, not just a new data collection tool.

2. Design a mobile data schema. The tasks you are bringing to the mobile
application will have some server-side data representation, and likely they will
have some server validation code as well. Use that information as a starting point
for creation of your mobile application. Examine your server schema and identify
the subset of tables and columns that will need to be available in the handheld
application.

Introduction to ADF Mobile Client Application Development

Introduction to ADF Mobile Client 1-9

3. Set up your work environment. Install the necessary applications and complete
the required setup for development and deployment. For more information, see
Chapter 2, "Setting Up the ADF Mobile Client Environment."

4. Create your mobile client application using JDeveloper:

■ Build your mobile client business services (edit entity objects, create mobile
views).

■ Develop mobile client task flows.

■ Design and refine the user interface.

For more information, see Chapter 5, "Developing the ADF Mobile Client Data
Model" and Chapter 6, "Creating the ADF Mobile Client User Interface."

5. Deploy the application to a mobile device, smartphone, device emulator, or
smartphone simulator:

■ Set up data synchronization.

■ Create database connections.

■ Set up the mobile device, smartphone, or simulator.

■ Synchronize the data.

■ Deploy the client runtime.

■ Deploy the mobile application.

For more information, see Chapter 8, "Deploying ADF Mobile Client
Components."

6. Test and debug the application:

■ Test synchronization.

■ Test and debug the application.

■ Optimize performance.

For more information, see Chapter 10, "Testing and Debugging ADF Mobile Client
Applications."

7. Deploy the application to users.

For more information, see the section about ADF Mobile client deployment in
Oracle Fusion Middleware Administrator's Guide for Oracle Application Development
Framework.

1.5.3 The Lifecycle of a View
Unlike ADF, the mobile client does not represent a lifecycle-driven system: once its
view (page) is created, the flow of data from the UI to the model and back is
immediate and continuous. In other words, a page is live as long as it is displayed,
which makes Expression Language (EL) expressions live as well. For more information
on EL, see Section 1.5.7, "Support for Expression Language."

Note: With ADF Mobile client, it is required that you deploy to the
mobile device, smartphone, device emulator, or smartphone simulator
before doing any testing and debugging. A mobile client application
cannot be run until you deploy it.

Introduction to ADF Mobile Client Application Development

1-10 Mobile Client Developer's Guide for Oracle Application Development Framework

For more information on ADF lifecycle, see "Understanding the Fusion Page Lifecycle"
chapter of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

For more information on the JSF extended lifecycle, see "Understanding the JSF and
ADF Faces Lifecycles" chapter of Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

1.5.4 Supported Devices and the Supported Database
ADF Mobile client supports BlackBerry smartphones and Windows Mobile devices.
The supported database for these devices is SQLite (see Section 1.5.4.1, "What You May
Need to Know About SQLite").

1.5.4.1 What You May Need to Know About SQLite
SQLite is a relational database management system (RDBMS) specifically designed for
embedded applications. SQLite databases are entirely self-contained in a single,
portable file that is binary-compatible across a diverse range of computer architectures
and operating systems.

SQLite has the following characteristics:

■ It is embedded.

■ It is ACID-compliant (atomicity, consistency, isolation, durability).

■ It is contained in a small library.

■ It is weakly-typed: any object can be stored in any column, regardless of how that
column was declared.

■ It does not officially support foreign key constraints, although triggers can be used
as a workaround.

■ It does not support RIGHT OUTER JOINs.

Your application can either call the SQLite library dynamically through function calls,
or make it part of the application itself by creating a link to the library.

For more information, see http://www.sqlite.org

1.5.5 Supported ADF Components and Attributes
ADF Mobile client supports many ADF components and attributes. Refer to the
following information, organized by layer:

■ Model layer. See Section 5.1.1, "Support for the Core ADF Business Components."

■ Binding layer. See the following:

– Section 6.15, "Understanding Binding Layer Components"

– Section 6.3.2.3, "Adding Data Controls to the View"

– Section 1.5.7, "Support for Expression Language"

■ UI layer. See Chapter 6, "Creating the ADF Mobile Client User Interface."

Although ADF Mobile client is compatible with ADF, there is a number of differences
in every layer that exist due to the inherent differences between a mobile application
and a Web application.

Introduction to ADF Mobile Client Application Development

Introduction to ADF Mobile Client 1-11

1.5.6 Support for ADF View Objects
As stated in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework, a view object is an Oracle ADF component that encapsulates
an SQL query and simplifies working with its results.

View objects can access the database directly for read operations.

ADF Mobile client provides support for ADF view object functionality, with limited
support for database field types.

For more information, see the following:

■ "Introduction to View Objects" chapter of Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework

■ Section 5.2.1, "How to Create Subsets of Entity Objects and View Objects"

■ Section 5.3.8, "View Accessor Support for Entity Objects and View Objects"

■ Section 5.4, "The Entity Object and View Object Extension"

1.5.7 Support for Expression Language
You use the Expression Language (EL) to enable data binding. For an overview of the
use of EL with Oracle ADF, see "Using ADF Model in a Fusion Web Application"
chapter in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

ADF Mobile client supports the use of compound EL expressions. For more
information, see Section 6.14, "Understanding EL Support."

ADF objects exist within different scopes, such as the application scope, session scope,
page flow scope, and so on (see "About Object Scope Lifecycles" section in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework). ADF Mobile client, however, only supports the application scope. EL
expressions defined in the application scope namespace are available for the life of the
application. With the mobile client, you can define an application scope on one view of
an application, and then reference it on another.

For more information, see the following:

■ Section 1.5.3, "The Lifecycle of a View."

■ Section 6.14, "Understanding EL Support."

Note: With ADF Mobile client, you cannot create view objects that
are based on SQL statements.

Introduction to ADF Mobile Client Application Development

1-12 Mobile Client Developer's Guide for Oracle Application Development Framework

2

Setting Up the ADF Mobile Client Environment 2-1

2Setting Up the ADF Mobile Client
Environment

This chapter provides information on setting up the ADF Mobile Client environment
for application development and deployment.

This chapter includes the following sections:

■ Section 2.1, "Introduction to the ADF Mobile Client Environment"

■ Section 2.2, "Prerequisites for Developing ADF Mobile Client Applications"

■ Section 2.3, "Setting Up JDeveloper"

■ Section 2.4, "Setting Up Oracle Database"

■ Section 2.5, "Setting Up Oracle Database Lite"

■ Section 2.6, "Setting Up Development Tools for Windows Mobile Platform"

■ Section 2.7, "Setting Up Development Tools for BlackBerry Platform"

■ Section 2.8, "Installing SQLite Mobile Sync Client on BlackBerry Smartphone or
Simulator"

■ Section 2.9, "Setting Up the Fusion Order Demo Mobile Client Application"

2.1 Introduction to the ADF Mobile Client Environment
Before developing an ADF Mobile client application, you must set up your
development environment by downloading, installing, and configuring various
software components.

2.2 Prerequisites for Developing ADF Mobile Client Applications
Prerequisites for developing an ADF Mobile client application vary depending on the
type of work you are planning to do, as well as your target mobile platforms:

■ What You Need to Get Started With the ADF Mobile Client Sample Application

■ What You Need to Create an ADF Mobile Client Application

■ What You Need to Deploy an ADF Mobile Client Application to a Development
Environment

Prerequisites for Developing ADF Mobile Client Applications

2-2 Mobile Client Developer's Guide for Oracle Application Development Framework

2.2.1 What You Need to Get Started With the ADF Mobile Client Sample Application
Before you start working with the mobile client sample application (see Chapter 3,
"Introduction to the ADF Mobile Client Sample Application"), ensure that you have
the following components installed:

■ Oracle JDeveloper (see Section 2.3, "Setting Up JDeveloper")

■ Oracle JDeveloper extension for ADF Mobile client (see Section 2.3, "Setting Up
JDeveloper")

■ Oracle Database (Standard or Enterprise Edition) (see Section 2.4, "Setting Up
Oracle Database")

■ Oracle Database Lite (see Section 2.5, "Setting Up Oracle Database Lite")

■ Fusion Order Demo Mobile Client application (see Section 2.9, "Setting Up the
Fusion Order Demo Mobile Client Application")

■ The sample application deployed to a smartphone, mobile device, or emulator (see
Section 3.4, "Running the Fusion Order Demo Mobile Client Application")

In addition:

■ If Windows Mobile is your target platform, the following is required:

– Java Runtime Environment (JRE) in the form of Oracle Java Micro Edition
Connected Device Configuration HotSpot Implementation (Oracle Java ME
CDC HI)

– Windows Mobile SDK.

Note that this software is required if you are planning to use a Windows
Mobile device emulator only.

– Windows Mobile device or device emulator

For more information, see Section 2.6, "Setting Up Development Tools for
Windows Mobile Platform."

■ If BlackBerry is your target platform, the following is required:

– BlackBerry JDE

– BlackBerry smartphone or simulator.

Note that BlackBerry JDE download includes a number of smartphone
simulators. You only need to install a separate, standalone simulator if the JDE
does not include a simulator for your target device.

– BlackBerry Desktop Software

For more information, see Section 2.7, "Setting Up Development Tools for
BlackBerry Platform."

2.2.2 What You Need to Create an ADF Mobile Client Application
Before you start creating a mobile client application (see Chapter 4, "Getting Started
with ADF Mobile Client"), ensure that you have the following components installed:

■ Oracle JDeveloper (see Section 2.3, "Setting Up JDeveloper")

■ Oracle JDeveloper extension for ADF Mobile client (see Section 2.3, "Setting Up
JDeveloper")

■ Oracle Database (Standard or Enterprise Edition) (see Section 2.4, "Setting Up
Oracle Database")

Prerequisites for Developing ADF Mobile Client Applications

Setting Up the ADF Mobile Client Environment 2-3

■ Oracle Database Lite (see Section 2.5, "Setting Up Oracle Database Lite")

■ An existing ADF application: because you are extending an application to a mobile
device, you cannot begin application development by creating a standalone
mobile client application. An ADF application must first exist and stand as the
base (server) application for the mobile client. The view objects and entity objects
used by the mobile client application are likewise based on the view objects and
entity objects of the base application. For more information, see Section 4.5,
"Extending the Base Application for the Mobile Client Application."

■ Synchronization initiated using mSync (see Section 9.3, "Initiating Data
Synchronization").

In addition:

■ If Windows Mobile is your target platform, the following is required:

– Java Runtime Environment (JRE) in the form of Oracle Java Micro Edition
Connected Device Configuration HotSpot Implementation

– Windows Mobile SDK

Note that this software is required if you are planning to use a Windows
Mobile device emulator only

– Windows Mobile device or device emulator

For more information, see Section 2.6, "Setting Up Development Tools for
Windows Mobile Platform."

■ If BlackBerry is your target platform, the following is required:

– BlackBerry JDE

– BlackBerry smartphone or simulator.

Note that BlackBerry JDE download includes a number of smartphone
simulators. You only need to install a separate, standalone simulator if the JDE
does not include a simulator for your target device.

– BlackBerry Desktop Software

Note that this software is required if you are planning to use a BlackBerry
smartphone only.

For more information, see Section 2.7, "Setting Up Development Tools for
BlackBerry Platform."

2.2.3 What You Need to Deploy an ADF Mobile Client Application to a Development
Environment

Before you start deploying your mobile client application (see Chapter 4, "Getting
Started with ADF Mobile Client"), ensure that you have the following components
installed:

■ All components listed in Section 2.2.2, "What You Need to Create an ADF Mobile
Client Application"

■ The mobile client application

■ Various database connections and login credentials

■ The server application's model project deployed as an ADF library. This library
contains ADF Business Components from the base ADF application that you are

Prerequisites for Developing ADF Mobile Client Applications

2-4 Mobile Client Developer's Guide for Oracle Application Development Framework

extending to the mobile client application (see Section 4.3, "Deploying the Model
Project of the Base Application as an ADF Library").

In addition, if you are deploying to Windows Mobile devices, install the following:

■ Microsoft ActiveSync 4.5 or Microsoft Windows Mobile Device Center 6.1 or later:
this component connects a mobile device or emulator to your computer and
transfers your application to the device or emulator once it is running (see
Section 2.6.3, "How to Connect the Mobile Device or Emulator").

■ Microsoft Device Emulator 3.0: this component represents a program that can
emulate Window Mobile devices (see Section 2.6.2, "How to Install and Set Up the
Windows Mobile Emulator").

■ One or more Microsoft emulator images that enable functionality of Microsoft
Device Emulator (see Section 2.6.2, "How to Install and Set Up the Windows
Mobile Emulator").

For more information, see Section 2.6, "Setting Up Development Tools for Windows
Mobile Platform."

2.2.4 What You May Need to Know About Pre-Installed Components
There is a number of additional components that are part of the mobile client
environment setup with the purpose of the application development and deployment.
However, these components do not require explicit installation as they are installed by
default during installation of other components. These pre-installed components
include the following:

■ SQLite database: this component comes with Oracle Database Lite and is
preinstalled on BlackBerry smartphones. For Windows Mobile devices, the
required files are installed as part of the synchronization and runtime installation.
Moreover, the sample application includes an SQL script to automatically generate
the database.

■ SQLite Mobile Client installed on the mobile device or emulator (see Section 2.8,
"Installing SQLite Mobile Sync Client on BlackBerry Smartphone or Simulator"):
this component comes with Oracle Database Lite.

■ BlackBerry Desktop Manager pack: this component is included in the BlackBerry
Desktop Software installation (see Section 2.7.2, "How to Install BlackBerry
Desktop Software").

■ Microsoft Device Emulator Manager: this component is installed as part of
Microsoft Device Emulator 3.0 package. The Device Emulator Manager simulates
an ActiveSync connection. It connects the emulator for file synchronization using
Microsoft ActiveSync (see Section 2.6.2, "How to Install and Set Up the Windows
Mobile Emulator").

■ Oracle Java Micro Edition Connected Device Configuration HotSpot
Implementation: this component is included in the ADF Mobile client extension as
the Windows Mobile JVM (see Section 2.6.5, "How to Install Java Runtime
Environment on the Mobile Device or Emulator").

■ Oracle Database Lite Mobile Server: this component is a part of Oracle Database
Lite and enables data synchronization (see Section 2.5, "Setting Up Oracle
Database Lite").

■ BlackBerry Mobile Data Service Simulator (MDS simulator): this component
installs with the BlackBerry JDE and represents the BlackBerry network access

Setting Up JDeveloper

Setting Up the ADF Mobile Client Environment 2-5

server (see Section 2.7.1.1, "What You May Need to Know About BlackBerry
Mobile Data Service Simulator").

2.3 Setting Up JDeveloper
Setting up your ADF Mobile client development environment begins with Oracle
JDeveloper and its ADF Mobile client extension.

Before you develop an application or run the ADF Mobile client sample application,
you must perform the following steps:

1. Download and install Oracle JDeveloper.

For more information, see Oracle Fusion Middleware Installation Guide for Oracle
JDeveloper.

2. Download the Fusion Order Demo Mobile client application ZIP file.

For more information, see "Introduction to the ADF Sample Application" in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

3. Download the ADF Mobile client extension as follows:

1. In JDeveloper, choose Help, then Check for Updates, and then click Next.

2. In the Source page that Figure 2–1 shows, select Official Oracle Extensions
and Updates, and then click Next.

Figure 2–1 Selecting the ADF Mobile Client Extension

Note: You might need to configure proxy settings by selecting Tools
> Preferences from the main menu, and then Web Browser and Proxy
from the tree on the left of the Preferences dialog.

Setting Up Oracle Database

2-6 Mobile Client Developer's Guide for Oracle Application Development Framework

3. In the Updates dialog that Figure 2–2 shows, select the ADF Mobile Client
update.

Figure 2–2 Selecting the ADF Mobile Client Components

4. Click Next, and then click Finish.

2.4 Setting Up Oracle Database
While the ADF Mobile client application does not require a database, the server-side
application with which it synchronizes does. For this reason, you must install Oracle
Database.

This database hosts the application data and the Oracle Database Lite Mobile Server
repository schema. For more information, see Section 2.5, "Setting Up Oracle Database
Lite."

Because there is no local application database when you first create the mobile client
application, you must be able to access the same Oracle Database that houses the data
used by the server-side application you are extending.

Download Oracle Database from
http://www.oracle.com/technology/software/products/database/inde
x.html

2.5 Setting Up Oracle Database Lite
If your mobile client application requires data to be synchronized from a server
database, you need to install Oracle Database Lite by downloading it from

Note: Since Oracle Database Lite Mobile Server requires either the
Standard or Enterprise Edition of Oracle Database, you cannot use the
Express Edition.

Setting Up Development Tools for Windows Mobile Platform

Setting Up the ADF Mobile Client Environment 2-7

http://www.oracle.com/technology/software/products/lite/index.ht
ml

Oracle Database Lite installation provides the following tools necessary for developing
ADF Mobile client applications:

■ Mobile Database Workbench (MDW), which is a development tool for creating
publications and publication items. You can also use MDW to view and modify
publications and publication items after application data has been published to the
device. For more information, see Oracle Database Lite Developer's Guide.

■ Mobile Sync Client (mSync), which is a small footprint application that resides on
a mobile device and enables you to synchronize published application data
between Oracle databases, handheld devices, and desktop and laptop computers.

■ Oracle Database Lite Mobile Server, which is a server-side component that works
in conjunction with Oracle Database and mSync to synchronize data between
multiple client devices and computers.

■ Oracle Database Lite 10g MDK. For more information, see Oracle Database Lite
Developer's Guide.

For more information, see the following:

■ Oracle Database Lite Getting Started Guide

■ Chapter 9, "Synchronizing ADF Mobile Client Data and Transactions"

2.6 Setting Up Development Tools for Windows Mobile Platform
In addition to general-purpose tools listed in Section 2.2.2, "What You Need to Create
an ADF Mobile Client Application," getting ready for development of an ADF Mobile
client application for the Windows Mobile platform involves installation and
configuration of the following tools:

■ A Windows Mobile device (see Section 2.6.1, "How to Set Up the Windows Mobile
Device") or device emulator (see Section 2.6.2, "How to Install and Set Up the
Windows Mobile Emulator")

■ A connection utility (see Section 2.6.3, "How to Connect the Mobile Device or
Emulator")

■ Oracle Database Lite on the mobile device or emulator (see Section 2.6.4, "How to
Install the Oracle Database Lite Client on the Mobile Device or Emulator")

■ Java Runtime Environment (JRE) (see Section 2.6.5, "How to Install Java Runtime
Environment on the Mobile Device or Emulator")

2.6.1 How to Set Up the Windows Mobile Device
ADF Mobile client supports the following Windows Mobile devices:

■ Windows Mobile 6.0 Professional

Note: After installing any component of Oracle Database Lite, you
must remove the following two entries from your PATH environment
variable, and then restart your system:

1. <OLITE_HOME>\jre\1.4.2\bin

2. <OLITE_HOME>\jre\1.4.2\bin\client

Setting Up Development Tools for Windows Mobile Platform

2-8 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Windows Mobile 6.1 Professional

■ Windows Mobile 6.5 Professional

To set up your mobile device, you simply have to connect it to the USB port of the
computer running JDeveloper. At this point, either Microsoft ActiveSync or Microsoft
Windows Mobile Device Center establishes a connection from the mobile device to
your development computer (see Section 2.6.3, "How to Connect the Mobile Device or
Emulator").

2.6.2 How to Install and Set Up the Windows Mobile Emulator
During development, you can use the mobile device emulator instead of an actual
device (see Section 2.2, "Prerequisites for Developing ADF Mobile Client
Applications") to test your application.

ADF Mobile client supports the following device emulators:

■ Windows Mobile 6 Professional

■ Windows Mobile 6.1 Professional

■ Windows Mobile 6.5 Professional

Before you begin:
Download and install one of the following Windows Mobile SDK packages:

■ Windows Mobile 6 Professional SDK from Microsoft download site at
http://www.microsoft.com/downloads/en

■ Windows Mobile 6.5 Developer Tool Kit from Microsoft download site at
http://www.microsoft.com/downloads/en

To complete the set-up:
■ Download and install Microsoft Device Emulator 3.0 from Microsoft download

site at http://www.microsoft.com/downloads/en

Note: Only a single Windows Mobile device can be plugged in at
any given time. If ActiveSync or Microsoft Windows Mobile Device
Center does not automatically initiate a connection to the device,
check to make sure no other device is attached and no emulator is
running.

Also try selecting or deselecting the Enable advanced network
functionality option on your device. You access this option through
Settings >USB to PC menu.

Note: The current ADF Mobile client release does not provide
support for Windows Mobile Standard and Windows Mobile 7
(Windows Phone 7) device emulators.

Note: Since there is no Windows Mobile 6.1 SDK, you should
download Windows Mobile 6 Professional SDK for development
using Windows Mobile 6.1 Professional device emulator.

Setting Up Development Tools for Windows Mobile Platform

Setting Up the ADF Mobile Client Environment 2-9

For information on how to use Microsoft Device Emulator, search
http://msdn.microsoft.com site for "Step by Step: Using Microsoft Device
Emulator In-Depth in Your Application Development Experience".

■ Download one or more Microsoft emulator images that enable functionality of
Microsoft Device Emulator 3.0:

– For Windows Mobile 6: http://www.microsoft.com/downloads/en

– For Windows Mobile 6.1: http://www.microsoft.com/downloads/en

– For Windows Mobile 6.5: http://www.microsoft.com/downloads/en

Figure 2–3 shows a Windows Mobile device emulator.

Figure 2–3 Windows Mobile Device Emulator

After you install the Windows Mobile device emulator, you have to connect it to your
computer (see Section 2.6.3, "How to Connect the Mobile Device or Emulator").

2.6.3 How to Connect the Mobile Device or Emulator
To connect your development computer to the mobile device or emulator and enable
transfer of your mobile client application to the mobile device or emulator once it is
running, you use one of the following utilities:

■ Microsoft ActiveSync 4.5: This installation is required for Microsoft Windows XP
and 2000 systems and is available from Microsoft download site (see also
http://www.microsoft.com/windowsphone/en-ca/apps/65-downloads
.aspx).

■ Microsoft Windows Mobile Device Center 6.1 or later: This installation is required
for Microsoft Windows Vista and 7 systems and is available from Microsoft
download site (see also http://www.microsoft.com/downloads/en).

Once installed, this utility starts automatically when you plug in the mobile device or
cradle the emulator.

To connect to the Windows Mobile device emulator using Microsoft ActiveSync:
1. From the Windows Start menu, select Program Files > Windows Mobile 6 SDK >

Standalone Emulator Images, and then select an emulator.

2. From the Windows Start menu, choose Program Files > Windows Mobile 6 SDK
> Tools > Device Emulator Manager.

Setting Up Development Tools for Windows Mobile Platform

2-10 Mobile Client Developer's Guide for Oracle Application Development Framework

3. From the Device Emulator Manager, click Refresh, and then select the preferred
simulator, as Figure 2–4 shows.

Figure 2–4 The Device Emulator Manager

4. Choose Actions, and then select Cradle from the context menu. ActiveSync will
automatically appear upon successful connection.

5. Ensure that Allow connections to one of the following and DMA are both
selected, as Figure 2–5 shows, and then click OK.

Figure 2–5 Setting the Connection in Microsoft ActiveSync

To connect to the Windows Mobile device emulator using Windows Mobile
Device Center:
1. From the Windows Start menu, select Program Files > Windows Mobile Device

Center to open the Windows Mobile Device Center dialog (see Figure 2–6).

Note: If you are prompted by ActiveSync to establish a partnership,
you can dismiss this dialog by clicking Cancel.

Setting Up Development Tools for Windows Mobile Platform

Setting Up the ADF Mobile Client Environment 2-11

Figure 2–6 Windows Mobile Device Center

2. Select Mobile Device Settings, and then click Connection Settings (see
Figure 2–7).

Figure 2–7 Connections Settings Dialog

3. On the Connection Settings dialog, select Allow connections to one of the
following, and then select DMA.

4. Click OK.

2.6.4 How to Install the Oracle Database Lite Client on the Mobile Device or Emulator
You must install the Oracle Database Lite client on the mobile device or emulator in
order to synchronize data and access SQLite databases.

Setting Up Development Tools for Windows Mobile Platform

2-12 Mobile Client Developer's Guide for Oracle Application Development Framework

Before you begin:
Ensure that your computer and mobile device are connected (see Section 2.6.3, "How
to Connect the Mobile Device or Emulator").

To install the Oracle Database Lite client:
1. In JDeveloper, from the main menu select Tools > Deploy ADF Mobile Client

Runtime > to Windows Mobile device/emulator.

2. On the Deploy to Windows Mobile dialog that Figure 2–8 shows, select Data
Sync > Deploy, and then click OK.

Figure 2–8 Deploy to Windows Mobile Dialog

3. To complete the installation, follow the instructions that appear on the screen of
your device or emulator.

2.6.5 How to Install Java Runtime Environment on the Mobile Device or Emulator
To run ADF Mobile client applications, you must have Oracle Java Micro Edition
Connected Device Configuration HotSpot Implementation (Oracle Java ME CDC HI)
installed on the mobile device or emulator.

Before you begin:
Ensure that your computer and mobile device or emulator are connected (see
Section 2.6.3, "How to Connect the Mobile Device or Emulator").

To install JRE:
1. In JDeveloper, from the main menu select Tools > Deploy ADF Mobile Client

Runtime > to Windows Mobile device/emulator.

2. On the Deploy to Windows Mobile dialog that Figure 2–8 shows, select Java
Virtual Machine > Deploy, and then click OK.

3. To complete the installation, follow the instructions that appear on the screen of
your device or emulator.

2.6.6 What You May Need to Know About Limitations of Windows Mobile Platform
Usage

There is a number of limitations that are associated with the usage of Windows Mobile
platform in the current release of ADF Mobile client:

Note: If you are using the Window Mobile device emulator, you
must install JRE to its internal main memory. JRE does not function
properly if installed to the emulator's storage card.

Setting Up Development Tools for BlackBerry Platform

Setting Up the ADF Mobile Client Environment 2-13

■ Windows Mobile Standard and Windows Mobile 7 (Windows Phone 7) device
emulators are not supported.

■ At any given time, only a single Windows Mobile device or emulator can be
connected to your development computer. If ActiveSync or Microsoft Windows
Mobile Device Center does not automatically initiate a connection to the device,
you have to ensure no other device is attached and no emulator is running. You
may also try selecting or deselecting the Enable advanced network functionality
option on your device. This option is accessible through the Settings >USB to PC
menu.

■ The Window Mobile JVM does not function properly if installed to the device
emulator's storage card. Instead, it must be installed to the internal main memory
of the emulator.

2.7 Setting Up Development Tools for BlackBerry Platform
In addition to general-purpose tools listed in Section 2.2.2, "What You Need to Create
an ADF Mobile Client Application," getting ready for development of an ADF Mobile
client application for BlackBerry platform involves installation and configuration of
the following:

■ BlackBerry JDE (see Section 2.7.1, "How to Install BlackBerry JDE")

■ BlackBerry Desktop Software (see Section 2.7.2, "How to Install BlackBerry
Desktop Software")

■ BlackBerry smartphone (see Section 2.7.3, "How to Set Up a BlackBerry
Smartphone") or simulator (see Section 2.7.4, "How to Set Up a BlackBerry
Smartphone Simulator")

2.7.1 How to Install BlackBerry JDE
BlackBerry JDE includes all of the Java libraries and development tools that you need
to build applications for a BlackBerry smartphone.

ADF Mobile client provides support for BlackBerry JDE 5.0 and 6.0.

To install BlackBerry JDE:
Download BlackBerry JDE from
http://na.blackberry.com/eng/developers/javaappdev/javadevenv.js
p

Figure 2–9 shows a BlackBerry smartphone simulator.

Note: Due to certain limitations, if you are using Microsoft Windows
Vista or 7 system, you should download BlackBerry JDE 6.0. For more
information, see Section 2.7.8, "What You May Need to Know About
Limitations of BlackBerry Platform Usage."

Setting Up Development Tools for BlackBerry Platform

2-14 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 2–9 BlackBerry Smartphone Simulator Screen

2.7.1.1 What You May Need to Know About BlackBerry Mobile Data Service
Simulator
The BlackBerry Mobile Data Service (MDS) Simulator is a part of the BlackBerry JDE
and simulates a BlackBerry Enterprise Server for the simulator, providing network
access for the smartphone simulator.

For data security and network bandwidth efficiency, RIM provides server components
(BES and BIS) that act as a gateway between a BlackBerry smartphone and corporate
networks or the Internet. BlackBerry MDS Simulator is capable of simulating these
server components on your development computer for testing purposes.

2.7.2 How to Install BlackBerry Desktop Software
BlackBerry Desktop Software connects physical BlackBerry smartphones to your
development computer and enables you to install applications to those smartphones.

To install BlackBerry Desktop Software:
1. Download BlackBerry Desktop Software from the download site.

2. Run the installer and follow its on-screen instructions.

2.7.3 How to Set Up a BlackBerry Smartphone
In your mobile client application development and deployment, you can use either the
BlackBerry smartphone itself, or its simulator (see Section 2.7.4, "How to Set Up a
BlackBerry Smartphone Simulator"). If you are planning to use the smartphone, you
simply need to connect it to your computer in order to establish a link between the two
devices.

2.7.4 How to Set Up a BlackBerry Smartphone Simulator
In your mobile client application development and deployment, you can use either the
BlackBerry smartphone itself (see Section 2.7.3, "How to Set Up a BlackBerry

Note: If you are planning to work with smartphone simulators only,
this software is not required.

Setting Up Development Tools for BlackBerry Platform

Setting Up the ADF Mobile Client Environment 2-15

Smartphone") or its simulator. Deploying to a simulator is usually much faster than
deploying to a device, and it also means that you do not have to sign the application
first.

If you are planning to use one of the smartphone simulators included with JDE, you
do not need to download and install a separate smartphone simulator. In case JDE
does not contain a simulator for your target BlackBerry smartphone and you need to
download a standalone simulator, see the how-to section of the ADF Mobile page on
Oracle Technology Network (OTN) at
http://www.oracle.com/technetwork/developer-tools/adf/overview/a
df-mobile-096323.html for instructions on installing these simulators.

To set up the BlackBerry smartphone simulator:
1. Start the BlackBerry Mobile Data Service (MDS) simulator by double-clicking the

run.bat file, which is typically located in C:\Program Files\Research In
Motion\BlackBerry JDE <version number>\MDS directory.

2. Start the smartphone simulator.

To activate the default simulator, double-click the defaultSimulator.bat file
that is typically located in C:\Program Files\Research In
Motion\BlackBerry JDE <version number>\simulator\ directory.

2.7.5 How to Configure JDeveloper for BlackBerry Development
After you install the following components, you have to configure JDeveloper to make
use of them:

■ BlackBerry JDE (see Section 2.7.1, "How to Install BlackBerry JDE")

■ Optionally: standalone BlackBerry smartphone simulators, if the JDE does not
contain a simulator for your target BlackBerry smartphone (see Section 2.7.4, "How
to Set Up a BlackBerry Smartphone Simulator")

■ Optionally: Oracle Database Lite 10g MDK, if your application requires data
synchronization (see Section 2.5, "Setting Up Oracle Database Lite")

To configure JDeveloper for BlackBerry development:
1. In JDeveloper, select Tools > Preferences > ADF Mobile Client from the main

menu.

2. Set the directory of the BlackBerry JDE. Because the default BlackBerry simulator
installs with the JDE, the location of the BlackBerry simulator is populated
automatically when you enter the location for the BlackBerry JDE.

3. If you use a simulator that is not part of BlackBerry JDE, then enter the location of
this simulator.

4. Enter the root location of the MDK installation.

5. Click OK.

Figure 2–10 shows the locations set for BlackBerry JDE, the included simulator,
and Oracle Database Lite MDK installation directory.

Note: For information on how to configure MDS simulator to work
behind a proxy, see Section 2.7.6, "How to Configure Proxy Settings."

Setting Up Development Tools for BlackBerry Platform

2-16 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 2–10 Set BlackBerry JDE Location for Deployment

2.7.6 How to Configure Proxy Settings
You might need to configure network proxy settings by modifying the
rimpublic.property file that is typically located in the C:\Program
Files\Research In Motion\BlackBerry JDE <version
number>\MDS\config directory. The configuration settings vary depending on the
proxy server that is required to access the network, and may include any of the
following:

[HTTP HANDLER]
application.handler.http.logging = true
application.handler.http.CookieSupport = true
application.handler.http.AuthenticationSupport = true
application.handler.http.AuthenticationTimeout = 3600000
application.handler.http.device.connection.timeout = 120000
application.handler.http.server.connection.timeout = 120000
application.handler.http.proxyEnabled = true
application.handler.http.proxyAutoConfig = true
application.handler.http.proxyAutoConfigURL=http://wpad.us.oracle.com/wpad.dat
application.handler.http.proxyAutoConfig.ScriptCacheTime=0

For more information on how to configure MDS simulator to work behind a proxy, see
BlackBerry Developers Knowledge Base page at
http://www.blackberry.com/knowledgecenterpublic

2.7.7 What You May Need to Know About BlackBerry File Browser System
The BlackBerry file browser may not display the true path to a file. For instance,
/Media Card is displayed for /SDCard directory, and /Device Memory is
displayed for /store directory. Therefore, when referencing paths on the BlackBerry
file system, either in code or in configuration files (such as adf-config.xml and
connections.xml), ensure that you use the actual directory names.

Setting Up the Fusion Order Demo Mobile Client Application

Setting Up the ADF Mobile Client Environment 2-17

2.7.8 What You May Need to Know About Limitations of BlackBerry Platform Usage
Even though the mobile client supports both BlackBerry JDE 5.0 and 6.0, there is a
number of issues that are associated with the usage of these environments:

■ BlackBerry JDE 5.0: It is not possible to close a BlackBerry smartphone simulator
from the UI on Microsoft Windows Vista or 7 systems. The only means available
to terminate the simulator is to use the End Task utility of the Microsoft Windows
Task Manager on the fledge.exe file to force stop the program. When this
happens, the state of the simulator is not saved, resulting in the loss of information
as the data is not saved on the simulator between the restarts. In addition,
exceptions occur and the simulator is left in a faulty state.

■ BlackBerry JDE 6.0: The standalone synchronization of data is not possible. To
transfer data to the smartphone, you can only rely on the integrated
synchronization that is invoked by the application when data is not found on the
smartphone. For more information, see Chapter 9, "Synchronizing ADF Mobile
Client Data and Transactions."

Table 2–1 summarizes compatibility of BlackBerry components and specific Microsoft
Windows platforms.

2.8 Installing SQLite Mobile Sync Client on BlackBerry Smartphone or
Simulator

To synchronize data, you must install the SQLite Mobile Sync client on BlackBerry
smartphone or simulator.

Before you begin:
Ensure that your computer and the smartphone or simulator are connected (see
Section 2.7.3, "How to Set Up a BlackBerry Smartphone" and Section 2.7.4, "How to Set
Up a BlackBerry Smartphone Simulator").

To install the SQLite Mobile Sync client to a smartphone:
In JDeveloper, from the main menu select Tools > Deploy ADF Mobile Client
Runtime > to BlackBerry device.

To install the SQLite Mobile Sync client to a simulator:
In JDeveloper, from the main menu select Tools > Deploy ADF Mobile Client
Runtime > to BlackBerry simulator.

2.9 Setting Up the Fusion Order Demo Mobile Client Application
For information, see Chapter 3, "Introduction to the ADF Mobile Client Sample
Application."

Table 2–1 Platform Compatibility

Microsoft Windows platform
BlackBerry
JDE

BlackBerry
Desktop
Software

BlackBerry smartphone
simulator

32-bit editions of Microsoft
Windows XP, Vista, and 7

5.0 and 6.0 5.0 and 6.0 Included with JDE 5.0 and
6.0

64-bit editions of Microsoft
Windows XP, Vista, and 7

6.0 6.0 Included with JDE 6.0

Setting Up the Fusion Order Demo Mobile Client Application

2-18 Mobile Client Developer's Guide for Oracle Application Development Framework

3

Introduction to the ADF Mobile Client Sample Application 3-1

3Introduction to the ADF Mobile Client Sample
Application

The ADF Mobile client sample application, also referred to as the Fusion Order Demo
Mobile Client application, is a modified version of the Fusion Order Demo. It
demonstrates the extension of the Fusion application technology to mobile platforms.
This application is a companion to this guide and is used as an example throughout to
illustrate points and provide code examples.

Before you examine the individual components of the sample application in depth,
you may find it helpful to install and become familiar with the functionality of the
Fusion Order Demo Mobile Client application.

This chapter includes the following sections:

■ Section 3.1, "About the Fusion Order Demo Mobile Client Application"

■ Section 3.2, "Installing the Fusion Order Demo Schema"

■ Section 3.3, "Overview of the Fusion Order Demo Mobile Client Application
Schema."

■ Section 3.4, "Running the Fusion Order Demo Mobile Client Application"

■ Section 3.5, "Taking a Look at the Fusion Order Demo Mobile Client Application"

For information on the Oracle ADF Fusion Order Demo application, see "Introduction
to the ADF Sample Application" in Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

3.1 About the Fusion Order Demo Mobile Client Application
The sample application enables you to browse and edit orders for electronic devices.
For more information, see Section 3.5.2, "Runtime Components."

The sample application requires an existing installation of Oracle JDeveloper 11g and
an Oracle database. For a complete list of tasks for preparing your environment for the
Fusion Order Demo Mobile Client application, see Chapter 2, "Setting Up the ADF
Mobile Client Environment."

3.2 Installing the Fusion Order Demo Schema
You can download the Fusion Order Demo application from the Oracle Technology
Network (OTN) web site.

Installing the Fusion Order Demo Schema

3-2 Mobile Client Developer's Guide for Oracle Application Development Framework

To download the demo and install the FOD schema to your database:
1. Navigate to Oracle Technology Network (OTN)

http://www.oracle.com/technetwork/index.html and search for "Fusion
Order Demo Sample Application."

2. Download the ZIP file to a local directory.

3. Start Oracle JDeveloper 11g and from the main menu choose File then Open.

4. In the Open dialog, browse to the location where you extracted the ZIP file to in
Step 1 and select Infrastructure.jws from the infrastructure directory. Click Open.

5. In the Application Navigator, expand MasterBuildScript and then Resources, and
double-click build.properties.

6. In the editor, modify the properties shown in Table 3–1 for your environment.

7. From the JDeveloper main menu, choose File > Save All.

8. In the Application Navigator, under the Resources node, right-click build.xml and
choose Run Ant Target > buildAll.

9. In the Enter Property dialog, enter the password for the database system user and
click Continue.

Once you enter the password, the Ant build script creates the FOD users and
populates the tables in the FOD schema. In the Apache Ant - Log window, you
will see a series of SQL scripts and finally:

buildAll:

BUILD SUCCESSFUL
Total time: nn minutes nn seconds

For more information on the demo schema and scripts, see the README.txt file in
the MasterBuildScript project.

Table 3–1 Properties Required to Install the Fusion Order Demo Application

Property Description

jdeveloper.home The root directory where you have Oracle JDeveloper 11g
installed. For example:

 C:/JDeveloper/11/jdeveloper

jdbc.urlBase The base JDBC URL for your database in the format
jdbc:oracle:thin:@<yourhostname>. For example:

jdbc:oracle:thin:@localhost

jdbc.port The port for your database. For example:

1521

jdbc.sid The SID of your database. For example:

ORCL

db.adminUser The administrative user for your database. For example:

system

db.demoUser.tablespace The table space name where FOD users will be installed. For
example:

USERS

http://www.oracle.com/technology/products/jdev/samples/fod/index.html

Installing the Fusion Order Demo Schema

Introduction to the ADF Mobile Client Sample Application 3-3

3.2.1 Mounting the Sample Client Database
In addition to installing the FOD database, you also need to install client databases for
both Windows Mobile devices and BlackBerry smartphones. The sample client
database is delivered on a simulated SD card that is included in the sample application
ZIP file, ADFMCSampleApp.zip. The simulated cards are located within
ADFMCSampleApp at WindowsMobileSDCard and BlackBerrySDCard.

3.2.1.1 How to Mount the Sample Client Database on Windows Mobile Devices
Use the Windows Mobile simulator to mount the simulated SD card,
WindowsMobileSDCard, that contains the sample client database.

Before you begin:
Create the sample database that represents the database used by the server application
as described in Section 3.2, "Installing the Fusion Order Demo Schema," download and
extract ADFMCSampleApp.zip on your computer, and install the Windows Mobile
device simulator. You must start and connect the Windows Mobile simulator to the
computer as described in Chapter 2, "Setting Up the ADF Mobile Client Environment."

To mount the client database on a Windows Mobile device simulator:
1. On the Windows Mobile simulator, choose File > Configure.

2. In the Shared Folder folder, browse to WindowsMobileSDCard in
ADFMCSampleApp, as shown in Figure 3–1.

3. Click OK.

Figure 3–1 Mounting the Simulated SD Card on a Windows Mobile Device Simulator

3.2.1.2 How to Mount the Sample Client Database on a BlackBerry Smartphone
Simulator
Use the BlackBerry smartphone simulator to mount the sample client database that is
contained on the simulated SD card, BlackBerrySDCard.

Overview of the Fusion Order Demo Mobile Client Application Schema

3-4 Mobile Client Developer's Guide for Oracle Application Development Framework

Before you begin:
Create the sample database that represents the database used by the server application
as described in Section 3.2, "Installing the Fusion Order Demo Schema," download and
extract ADFMCSampleApp.zip on your computer, and install BlackBerry Java
Development Environment (JDE 5.0).

Start the BlackBerry smartphone simulator to the computer as described in Chapter 2,
"Setting Up the ADF Mobile Client Environment."

To mount the client database on a BlackBerry Smartphone simulator:
1. On the BlackBerry smartphone simulator, select Simulate > Change SD Card.

2. Click Add Directory and then browse to, and select, the BlackBerrySDCard
folder. Click OK.

3. Select BlackBerrySDCard as the current SD card as shown in Figure 3–2. Click
Close.

Figure 3–2 Mounting the Simulated SD Card to a BlackBerry Smartphone Simulator

3.3 Overview of the Fusion Order Demo Mobile Client Application
Schema

The schema of the Fusion Order Demo Mobile Client application consists of the
following core tables:

■ PERSONS: This table stores all the users who interact with the system, including
customers, staff, and suppliers. The first and last name, e-mail address, and person
type code of each user is stored. A user is uniquely identified by an ID. Other IDs
provide foreign keys to tables with address information and, membership
information (for customers).

■ ORDERS: This table represents activity by specific customers. When an order is
created, the date of the order, the total amount of the order, the ID of the customer
who created it, and the status of the order are all recorded. After the order is
fulfilled, the order status and order shipped date are updated. All orders are
uniquely identified by a sequence-assigned ID.

■ ORDER_ITEMS: For each order, there may be many order items recorded. The unit
price and quantity of each order item are recorded. The order line item and its
order ID uniquely identify each order item.

■ PRODUCTS_BASE: This table stores all of the products available in the store. For
each product, the name and cost are recorded. All products are uniquely identified
by a sequence-assigned ID. The image of the product and its description are stored
in separate tables, which each reference the product ID.

Running the Fusion Order Demo Mobile Client Application

Introduction to the ADF Mobile Client Sample Application 3-5

Queue-based snapshots (described in "Manage Snapshots on SQLite Mobile Client" in
Oracle Database Lite SQLite Mobile Client Guide) create a database file called OSE_
<database name>.db. This database file contains the following tables:

■ OSE$DATAQ: The data queue for both In Queue and Out Queue records. This
queue is used for all snapshots and contains both In and Out Queue records. The
TRID column is positive when the record is an Out Queue record. When you
synchronize with queue-based snapshots enabled, new data from the client is
uploaded from the OSE$DATAQ queue table and new data from the Oracle
database is downloaded into this queue. For more information, see "SQLITE
QUEUES" in Oracle Database Lite SQLite Mobile Client Guide.

■ OSE$BLOBQ: A BLOB queue

■ OSE$TABLES: A snapshot registry

■ OSE$TRANS: A transactions registry

■ OSE$TRESQ: A table that contains transaction sequences per publication.

In addition to these tables, SQLite replicates the following:

■ C$INDEXES: A table containing replicated index information.

■ C$SCRIPTS: A table containing SQL scripts published on the server.

■ C$WSEQ_CLIENTS: Simulates sequences

3.4 Running the Fusion Order Demo Mobile Client Application
Before you run the demo application on a BlackBerry Smartphone or a Windows
Mobile device, you must first do the following:

1. Open the demo application in JDeveloper.

2. Install simulators and other required development tools for the target platforms.

3. Connect and start the simulators.

4. Deploy the ADF Mobile client runtime components on BlackBerry smartphones
and Windows Mobile devices.

5. Deploy the demo application to the simulators.

6. Run the demo application.

For more information on Oracle Lite Mobile Development Kit (MDK), Mobile Sync
(mSync), and SQLite Mobile Client, see Chapter 2, "Setting Up the ADF Mobile Client
Environment."

3.4.1 How to Run the Demo Application on a Windows Mobile Device Emulator
You run the demo application after you have deployed it to a Windows Mobile device
emulator.

To run the demo application:
1. In JDeveloper, choose Tools the Deploy ADF Mobile Client Runtime then to

Windows Mobile.

2. Choose ADF Mobile Client Runtime and then click Deploy.

3. Monitor the deployment progress on the Windows Mobile device emulator.
Deployment must complete before you deploy another ADF Mobile client runtime
component.

Running the Fusion Order Demo Mobile Client Application

3-6 Mobile Client Developer's Guide for Oracle Application Development Framework

4. Choose Java Virtual Machine and then click Deploy.

5. Click Close. Verify the deployment by viewing JDeveloper’s Deployment-Log file.

6. In the Application Navigator, right-click the Mobile Client project.

7. Choose Deploy then choose ADFMCSampleApp_RC1 to Windows Mobile
Device.

8. On the Windows Mobile simulator, use the File Explorer utility to navigate to My
Device then Program Files and then MobileFOD.

9. Select the MobileFOD executable file, as shown in Figure 3–3.

Figure 3–3 Selecting the MobileFOD Executable File

Figure 3–4 shows the Fusion Order Demo Mobile Client application’s Browse
page, which appears after you click the MOBILEFOD executable. For more
information, see Section 3.5, "Taking a Look at the Fusion Order Demo Mobile
Client Application."

Running the Fusion Order Demo Mobile Client Application

Introduction to the ADF Mobile Client Sample Application 3-7

Figure 3–4 The Browse Order Page

3.4.2 Running the Sample Application on a BlackBerry Smartphone Simulator
Before you run the sample application on a BlackBerry Smartphone or simulator, you
must download the BlackBerry Java Development Environment (JDE 5.0), the
BlackBerry smartphone simulator, and BlackBerry Desktop Manager from BlackBerry
(http://na.blackberry.com).

3.4.2.1 How to Start the Demo Application on a BlackBerry Smartphone Simulator
You run the demo application after you have deployed it to a BlackBerry smartphone
or simulator.

Before you begin:
You must set the location of the JDE and the simulator directory in which JDeveloper
places the COD file.

To run the demo application:
1. If needed, stop the BlackBerry smartphone simulator.

2. In JDeveloper, choose Tools then Deploy ADF Mobile Client Runtime then
choose to BlackBerry Simulator.

3. Choose ADF Mobile Client Runtime and then click Deploy.

4. In the Application Navigator, right-click the mobile client project.

5. Choose Deploy then ADFMCSampleApp_BlackBerry to BlackBerry Device.

6. After the deployment completes, start the BlackBerry smartphone simulator.

7. On the BlackBerry smartphone or simulator, navigate to the Downloads folder, as
shown in Figure 3–5.

Taking a Look at the Fusion Order Demo Mobile Client Application

3-8 Mobile Client Developer's Guide for Oracle Application Development Framework

8. Click ADFMCSampleApp_BlackBerry.

Figure 3–5 The BlackBerry Smartphone Downloads Folder

3.5 Taking a Look at the Fusion Order Demo Mobile Client Application
The design time artifacts of the ADF Mobile sample application are visible in Oracle
JDeveloper. Its runtime UI consists of screens that are displayed natively on the device
outside of a mobile browser.

3.5.1 Design Time Components
After you have opened the projects in Oracle JDeveloper, you can then review the
artifacts within each project. The development environment for the Fusion Order
Demo Mobile Client application contains a view-controller project named
MobileClient and a model project named Model.

Note: Do not deploy an application to BlackBerry smartphone
simulator while it is running. To load the COD file to the simulator,
you must first stop it, then restart it. If you would like to deploy a
COD file manually, put it in the simulator location specified in the
Mobile Client Preferences page described in Chapter 2, "Setting Up the
ADF Mobile Client Environment."

Taking a Look at the Fusion Order Demo Mobile Client Application

Introduction to the ADF Mobile Client Sample Application 3-9

3.5.1.1 MobileClient Project
MobileClient project contains the files for the interface, including the backing beans,
deployment files, and MCX files (the ADF Mobile client equivalent of the JSPX file).

Figure 3–6 The MobileClient Project

Figure 3–6 shows the MobileClient project and its associated directories. The
MobileClient project contains the following directories:

■ Application Sources: Contains the code used by the mobile client, including
the managed and backing beans, property files used for internationalization, the
metadata used by ADF Mobile client to display bound data as well as the MCX
files and images. This project also includes MobileClient-task-flow.xml, the
source file for the bounded task flow.

■ META-INF (subdirectory of Application Sources): includes the following:

– UiApplication.jad—the Java Application Descriptor file (JAD) that is
required by BlackBerry to deploy applications over the air (OTA).

– adfm.xml—Used at runtime in order to help resolve data bindings.

3.5.1.2 Model Project
The Model project (shown in Figure 3–7) is a data model project that contains the data
definitions that allow the product data to be displayed in the sample application.

Taking a Look at the Fusion Order Demo Mobile Client Application

3-10 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 3–7 The Model Project

The Model project contains the Application Sources directory, which contains the files
used to access the product data. Included are the metadata files used by Oracle
Application Development Framework (ADF) to bind the data to the view.

3.5.2 Runtime Components
The Fusion Order Demo Mobile Client application displays the following pages at
runtime:

■ Browse Orders (home.mcx)

■ Order Details (details.mcx)

■ Edit Order (editorder.mcx)

■ Order Items (orderitems.mcx)

3.5.3 Browsing Orders
You start the Fusion Order Demo Mobile Client application by running the home.mcx
page. This page, which is the entry point of the application, displays on a BlackBerry
smartphone or Windows Mobile device as the Browse Orders page. As shown in
Figure 3–8, this page contains a dropdown list of order status codes. You use this list in
conjunction with the page’s Search button to retrieve a list of customers whose orders
belong to the category that you selected. Clicking a customer name opens the Order
Details page (shown in Figure 3–12), which displays information about the customer.

Clicking Add Order displays the Add Order page, which is comprised mainly of
inputText components. For more information about the Order Details page, see
Section 3.5.4, "Viewing Order Details." For more information on the Add Order page,
see Section 3.5.5, "Editing or Adding an Order."

Taking a Look at the Fusion Order Demo Mobile Client Application

Introduction to the ADF Mobile Client Sample Application 3-11

Figure 3–8 The Browse Order Page

After you select an order status and click Search (a commandButton component), the
application performs a search, executes a query and populates the table. Figure 3–9
shows the results of selecting the Order being picked status. As illustrated in Figure 3–9,
the table is populated with a status image, the customer name, and read-only
information about the date of the order and its total cost. The name is a commandLink
component that enables you to navigate to the details screen.

Taking a Look at the Fusion Order Demo Mobile Client Application

3-12 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 3–9 Records Retrieved by Order Status

The images are dynamic, reflecting the status of the order. Note, for example, that the
images reflect the Order being picked status in Figure 3–9 and the Order completed status
in Figure 3–10.

Figure 3–10 Dynamic Images

Taking a Look at the Fusion Order Demo Mobile Client Application

Introduction to the ADF Mobile Client Sample Application 3-13

Where to Find Implementation Details
Following are the sections of Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework and Oracle Fusion Middleware Mobile Client
Developer's Guide for Oracle Application Development Framework that describe how to
define queries and create query search forms:

■ Laying out ADF Mobile Tables

The Browse Orders page includes a single-column table which uses
panelGroupLayout components for the status images and the output text. For
more information, see Section 6.8, "Creating and Using Tables."

■ Enable navigation through the application

The demo application provides navigation using commandLink components, In
Figure 3–10, Add Order and the customer names (for example, Nancy Greenberg)
are commandLink components. For more information, see Section 6.9, "Using
Buttons and Links."

■ Creating dynamic images

The page achieves the dynamic, status-related images through an EL expression
and a string. For example,

<amc:image id="image1"source="/statusimages/#{row.OrderStatusCode}.gif"/>

For more information see "Creating EL Expressions" in Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework
and also "Displaying Images."

■ Creating a static view object

In the Browse Orders page, the selectOneChoice component for the order
status is backed by a list binding. The Status and StatusDesc attributes of the
OrderStatus view object, a static view object, populate the values for the
dropdown list. For more information, see "Populating View Object Rows with
Static Data" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

■ Defining a list of values for selection lists

Input forms displayed in the user interface can utilize databound ADF Faces
selection components to display a list of values (LOV) for individual attributes of
the data collection. To facilitate this common design task, Oracle ADF Business
Components provides declarative support to specify the LOV usage for attributes
in the data model project. For example, in the Fusion Order Demo application, the
selectOneChoice component displayed in the Browse Orders page is bound to
LOV-enabled attributes configured for the OrderStatus view object. For more
information about configuring attributes for LOV usage, see "Working with Lists
of Values (LOV) in View Object Attribtutes" in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

■ Creating menus for Windows Mobile devices and BlackBerry smartphones

Windows Mobile applications have two types of menus: The Main menu and the
ALT menu. The Main menu describes the right Standard menu button for the form
(such as the Menu button in Figure 3–10) and the ALT menu is the left Standard
menu button for the form. For BlackBerry, the MAIN menu describes the Full
menu for the form. The ALT menu is amalgamated into the Full menu for the
form. For more information, see Section 6.11, "Creating and Using Menus."

Taking a Look at the Fusion Order Demo Mobile Client Application

3-14 Mobile Client Developer's Guide for Oracle Application Development Framework

3.5.4 Viewing Order Details
The Order Details page displays information about the customer who placed the order.

Figure 3–11 The Order Details Page

This page contains two navigational links: Back to Order List, which you use to return
to the result list shown in Figure 3–10 and Show Order Items. Clicking Edit enables
you to edit the order details. For more information, see Section 3.5.5, "Editing or
Adding an Order."

Taking a Look at the Fusion Order Demo Mobile Client Application

Introduction to the ADF Mobile Client Sample Application 3-15

Figure 3–12 The Order Items Page

Clicking Show Order Items enables you to drill down to a list of ordered items that
match the status that you selected in the Browse Orders page. For example,
Figure 3–12 shows customer Nancy Greenberg’s items that have the status of Order
completed (shown in Figure 3–10). This page also includes a form that enables you to
filter order items. For more information, see Section 3.5.6, "Viewing Ordered Items."

3.5.5 Editing or Adding an Order
Clicking Edit opens a read-write form that enables you to modify order details. This
page (editorder.mcx) displays as either the Edit Order page or the Add Order page
depending on if the user is at the Browse Page (home.mcx) or the Order Details page
(details.mcx).

Taking a Look at the Fusion Order Demo Mobile Client Application

3-16 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 3–13 The Edit Order Page

Where to Find Implementation Details
Following are sections of the Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework and Oracle Fusion Middleware Mobile Client
Developer's Guide for Oracle Application Development Framework that describe how to
create a task flow and how to create an input form with required values.

■ Laying out the ADF Mobile page

This page, called editorder.mcx, consists primarily of inputText components
within panelFormLayout and panelLabelAndMessage components. For more
information, see Section 6.4, "Designing the Layout of the Page."

■ Grouping activities using a bounded task flow

ADF Mobile client applications use bounded task flows. As described in "Task
Flow Types" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework, a bounded task flow has one point of entry,
zero or more exits, and represents the reusable portion of an application. The task
flow for the demo application (MobileClient-task-flow.xml) is comprised
of view activities (home.mcx, editorder.mcx, details.mcx, and
orderitems.mcx), a router activity, a task flow return, and a wildcard control
rule. For more information see Section 6.2, "Creating Task Flows."

■ Using a router activity

The conditional routing that enables editorder.mcx page to display as either
the Edit Order page or the Add Order page is achieved through a router in the
application’s task flow that evaluates the applicationScope EL expression for
the panelGroupLayout component. If the scope variable for addMode is true
(that is, when the user is at the Browse Order page), then the application opens the
Add Order page. For more information, see "Using Router Activities" in Oracle

Taking a Look at the Fusion Order Demo Mobile Client Application

Introduction to the ADF Mobile Client Sample Application 3-17

Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

■ Creating a databound edit form

When you want to create a basic form that collects values from the user, instead of
having to drop individual attributes, JDeveloper allows you to drop all attributes
for an object at once as an input form. You can create forms that display values,
forms that allow users to edit values, and forms that collect values. For example, in
the Fusion Order Demo application, the Order Details displays a form that
displays user information and the Add Order and Edit Order forms used for
collecting shipping information for the user’s order. For more information, see
"Creating an Input Form" in Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework and Section 6.5, "Creating and Using
Input Components."

■ Creating databound UI controls

The page’s selectOneChoice components are used to filter view accessors and
lists of values for status codes and for customer ID. Such selectOneChoice
components are created by dragging and dropping the OrderStatus Code and
CustomerID attributes of the OrderView data control into the Structure view and
then by selecting Select One Choice from the context menu.

■ Using commit and rollback functions

The page’s Save and Undo menu functions are standard ADF commit and
rollback operations. For more information, see Section 6.11, "Creating and Using
Menus."

3.5.6 Viewing Ordered Items
The Order Items page lists the items that the customer has ordered, providing
information on the number of units and the price of each item. You can filter the
results using the search form, as shown in Figure 3–14.

Taking a Look at the Fusion Order Demo Mobile Client Application

3-18 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 3–14 The Order Items Page

Where to Find Implementation Details
■ Creating a search form

You create a query search form by dropping a named view criteria item from the
Data Controls panel onto a page. The Order Items page includes a search form,
one that JDeveloper creates automatically when you drag a view object in to the
Structure view and then select Filtering as the Enable ADF Behavior option in the
Edit Table Columns dialog. For more information, see "Creating Query Search
Forms" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

■ Displaying the results of a query search

Normally, you drop a query search panel with the results table. JDeveloper
automatically wires the results table with the query panel. For more information,
see "How to Create a Query Search Form and Add a Results Component Later" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

4

Getting Started with ADF Mobile Client 4-1

4Getting Started with ADF Mobile Client

This chapter describes how to use JDeveloper to declaratively create ADF Mobile
client applications.

This chapter includes the following sections:

■ Section 4.1, "About Declarative Development with JDeveloper"

■ Section 4.2, "About Developing an ADF Mobile Client Application"

■ Section 4.3, "Deploying the Model Project of the Base Application as an ADF
Library"

■ Section 4.4, "Creating an Application Workspace"

■ Section 4.5, "Extending the Base Application for the Mobile Client Application"

4.1 About Declarative Development with JDeveloper
You can write, deploy, and test an ADF Mobile client application without writing a line
of code because the JDeveloper design experience is enhanced to include support of
mobile client application development. JDeveloper provides a series of wizards that
step you through creating the mobile client application, creating its model and view
projects, and creating business objects. In addition, it generates the required artifacts to
define page flows. You can then define the views of the project using the drag and
drop functionality of the Data Controls panel and the Component Palette.

4.2 About Developing an ADF Mobile Client Application

To develop an ADF Mobile client application:
1. Determine the mobile data requirements: While mobile client applications are

extensions of ADF applications that run on a server, users will not use the
handheld version of this application in the same way as they would use it on a
desktop. Because mobile applications should not mimic their server-side
counterparts in terms of presentation or user interaction, consider the tasks that
users perform with the mobile application and the circumstances under which
they use the mobile application. For example, would the user interact with the
mobile application for minutes, as opposed to hours, as they would on a desktop
application?

Tip: To encourage usage, streamline the application as much as
possible. For example, consider peripherals, such as barcode readers,
cameras, or scanners.

Deploying the Model Project of the Base Application as an ADF Library

4-2 Mobile Client Developer's Guide for Oracle Application Development Framework

2. Create a subset of the server data model for the ADF Mobile client application:
Although the mobile applications themselves are not merely handheld copies of
server-side applications, the underlying data that they manipulate is a subset of
server data. Because the tasks enabled by a mobile client application have
server-side data representation as well as server-side validation, begin creating a
subset of the data by examining the server data model and identify a subset of
those entity objects that should be available to the mobile client application. As
described in Section 4.5, "Extending the Base Application for the Mobile Client
Application," you use the Create Business Components for ADF Mobile Client
wizard to identify the tables from the base application from which you want to
create entity objects and the columns that you want to expose. This wizard also
enables you to create view objects. For more information, see Section 5.2.1, "How
to Create Subsets of Entity Objects and View Objects." For more information on
entity objects and view objects, see Section 5.1.1, "Support for the Core ADF
Business Components."

3. Edit the entity objects as needed: If needed, you can expose additional attributes to
the user interface or change certain properties of the attributes that already belong
to entity objects. For more information, see Section 5.3, "Editing Mobile Entity
Objects."

4. Test the mobile data model by running the mobile Application Module with the
Business Component Browser. For more information, see "Using the Business
Component Browser for Testing and Debugging" in Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

5. Create or configure custom ADF Mobile transaction replay items.

6. Define the mobile client task flow: You begin designing the UI of the mobile
application by creating an overall page flow and then by populating the task flow
with views (pages) and control rules.

7. Create the mobile client views: After you create the task flow, you can create the UI
by populating the pages with ADF components and data controls. ADF Mobile
client supports components for page layout, input and output mechanisms, image
display, and page navigation. For more information, see Chapter 6, "Creating the
ADF Mobile Client User Interface."

8. Define menus: ADF Mobile client enables you to create platform-specific menus
for both BlackBerry smartphones and Windows Mobile devices. For more
information, see Section 6.11, "Creating and Using Menus."

4.3 Deploying the Model Project of the Base Application as an ADF
Library

Once you have created (or located) an ADF application on which to base the mobile
client application, you then deploy its model project as an ADF library as described in
"Packaging a Reusable ADF Component into an ADF Library" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework. You
draw from this library using the Business Components from ADF Library wizard to
create the subsets of entity objects and view objects used by the ADF Mobile
application. For more information, see Section 5.2, "Extending an ADF Application to
Mobile Client."

Creating an Application Workspace

Getting Started with ADF Mobile Client 4-3

4.3.1 How to Deploy the Model Project
You create the ADF Library for the mobile application by packaging the model project
of the base application as a JAR file.

Before you begin:
Obtain a JAR file that contains the ADF library that will be used to create the business
components for the ADF Mobile application or create an application that contains
these business components using the Create Business Components from Tables Wizard
as described in "Creating a Business Domain Layer Using Entity Objects" in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

To Deploy the model project as a JAR file:
1. In the Application Navigator, right click the model project.

2. In the Project Properties dialog’s left pane, select Deployment and then click New.

3. In the Create Deployment Profile dialog, select ADF Library JAR file for archive
type, enter a name for the deployment profile, and click OK.

4. Verify the default directory path or enter a new path to store your ADF Library
JAR file. Click OK.

5. In the Application Navigator, right-click the model project and choose
Deployment.

6. Select the deployment profile from the context menu.

7. Select Deploy to ADF Library JAR File in the Deployment Action page.

8. Click Next. Review the Summary page, which notes the output location for the
JAR file. This location is set in the JAR Options page of the Edit JAR Deployment
Profile Properties dialog.

9. Click Finish.

4.4 Creating an Application Workspace
The first steps in building an ADF Mobile client application are to assign it a name and
to specify a directory where its source files will be saved. By creating an application
using the application templates provided by JDeveloper, you automatically get the
organization of your workspace into projects, along with many of the configuration
files required by the type of application that you are creating.

4.4.1 How to Create an Application Workspace
You create an application workspace using the Create Mobile Client Application
(ADF) Wizard.

Before you begin:
The model project containing the entity objects and view objects on which you base the
ADF Mobile client application must be deployed as a JAR file on the development
computer, which can subsequently be imported in an ADF Mobile client application.
For information on creating an ADF library JAR, see "Packaging a Reusable ADF
Component into an ADF Library" in Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework. See also Section 4.3, "Deploying the
Model Project of the Base Application as an ADF Library."

Creating an Application Workspace

4-4 Mobile Client Developer's Guide for Oracle Application Development Framework

To create a workspace:
1. In the main menu, choose File > New.

2. In the New Gallery, expand General, select Applications and then Mobile Client
Application (ADF) and then click OK.

Figure 4–1 Selecting the Application Type

3. In the Name your application page, enter a name for the application and if needed,
change the directory name and application prefix and then click Next.

4. In the Name your project page, change the name and location of the project, if
needed. Click Next.

Figure 4–2 shows the ADF Mobile Client Model and Java technologies, which are
selected by default. You must select these technologies if they do not appear in the
Selected list. You must add the ADF Mobile Client Model technology to a model
project if it is not already present.

Note: This step is optional.

Creating an Application Workspace

Getting Started with ADF Mobile Client 4-5

Figure 4–2 Selecting the Project Technologies

5. If needed, change the Java settings for the model project. Click Next.

6. In the Name your project page, enter a name, if needed, for the view controller
project of the application. JDeveloper selects the ADF Mobile Client UI
technology by default, which enables you to create task flows. Click Next.

Figure 4–3 shows the ADF Mobile Client UI technology selected by default. To
create a task flow and define application pages, you must select this technology if
it is not already selected.

Note: This step is optional.

Note: This step is optional.

Creating an Application Workspace

4-6 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 4–3 Creating the Mobile Client View Project

7. If needed, change the Java settings for the view project.

8. Click Finish.

4.4.2 What Happens When You Create a Mobile Client Application Workspace
When you complete the entire Create Mobile Client Application wizard, JDeveloper
creates two projects: a model project (which bears the default name, Model, as shown
in Figure 4–4) and a view controller project. Table 4–1 lists the JDeveloper-generated
files that are contained in this project, which has the default name, MobileClient.

Note: This step is optional.

Table 4–1 Artifacts of Mobile Client View Projects

Artifact Location Description

MobileClient-task-fl
ow.xml

Application Sources The source file for the mobile client
task flow. By default, this is a
bounded task flow. This file is
created when you select the
Mobile Client UI technology for
the project. This is the mobile
client equivalent to the
adfc-config.xml or
faces-config.xml in an ADF
Faces application.

Extending the Base Application for the Mobile Client Application

Getting Started with ADF Mobile Client 4-7

Figure 4–4 shows the MobileClient project in the Application Navigator, containing the
files described in Table 4–1.

Figure 4–4 The MobileClient Project

4.5 Extending the Base Application for the Mobile Client Application
Extending an ADF application that resides on a server for ADF Mobile client is usually
the starting point in developing an application. Conceptually, the mobile client
application is always an extension of an existing ADF application (referred to as a base
application). Because of this, the entity objects of the mobile client application are
always copies of the base application’s entity objects. Entity objects define the data that
is available to the ADF Mobile client application. View objects are based on the entity
objects.

Not only are the entity objects of a mobile client application copies, they are also a
subset of the entity objects used by the base application. While a base application may
have 20 entity objects, a mobile application may require only five of them. Further, the
mobile client application may only require a subset of the attributes owned by the
selected entity objects.

UiApplication.jad META-INF This JAD (Java Application
Descriptor) file is required by
BlackBerry to deploy applications.
When you deploy a BlackBerry
application, note that the
BlackBerry Options page of the
BlackBerry Deployment Profile
Properties dialog contains entries
written to this file before it is used
to compile the application.

adf-config.xml <appDir>/.adf/META-INF A standard configuration file that
specifies application-level settings
that are usually determined at
deployment and are read-only at
runtime. ADF Mobile client uses
specific key values in this file. This
file has the same format as that
used by ADF Faces. For
information on adf-config.xml,
see "adf-config.xml" in Oracle
Fusion Middleware Fusion
Developer's Guide for Oracle
Application Development Framework.

Table 4–1 (Cont.) Artifacts of Mobile Client View Projects

Artifact Location Description

Extending the Base Application for the Mobile Client Application

4-8 Mobile Client Developer's Guide for Oracle Application Development Framework

You create these data subsets using the ADF Mobile Client Business Components from
Entity Objects wizard. This wizard, described in Section 5.2, "Extending an ADF
Application to Mobile Client," steps you through creating the entity objects and view
objects.

Because you derive a mobile client application from a base (server) ADF application,
you should assess which entity objects and view objects in the base application should
be used in its mobile counterpart before you develop the mobile client application.

Note: Read-only view objects that are based on SQL queries have
limitations in Oracle Fusion Middleware 11g release 1 of ADF Mobile
client. For example:

■ A SQL query-based, read-only view object contains all of the
columns of a table, while a mobile client application typically
synchronizes only a subset of these columns.

■ Although the mobile client ADF business components represent
the client database schema, JDeveloper points to the database on
the server rather than to the client database when determining
which attributes to create for a SQL query-based, read-only view
object. As a result, JDeveloper adds all of the columns on the
server database to the view object, regardless of whether they
exist on the client database.

If you create a read-only view object based on a SQL statement, you
must:

1. Ensure that the SQL query used to create the view object can run on the
device. For information on the SQL query syntax, refer to
http://www.sqlite.org

2. Manually change the view object’s attributes to match those of the
database columns on the client database.

5

Developing the ADF Mobile Client Data Model 5-1

5Developing the ADF Mobile Client Data
Model

This chapter provides an overview of developing the ADF Mobile client model layer.

This chapter includes the following sections:

■ Section 5.1, "Building Business Services for ADF Mobile Client Applications"

■ Section 5.2, "Extending an ADF Application to Mobile Client"

■ Section 5.3, "Editing Mobile Entity Objects"

■ Section 5.4, "The Entity Object and View Object Extension"

■ Section 5.5, "Testing Application Modules"

■ Section 5.6, "Interacting Directly with SQLite"

■ Section 5.7, "Configuring JDeveloper to Connect to and Test Against a SQLite
Database"

■ Section 5.8, "Enabling ADF Mobile Transaction Replay Service for an ADF
Application"

■ Section 5.9, "Authentication"

5.1 Building Business Services for ADF Mobile Client Applications
Mobile client utilizes ADF Business Components, which simplify building business
services. By eliminating the substantial coding and testing related to common
application development. ADF Business Components enable you to instead focus on
implementing business solutions. ADF Business Components provide a foundation of
Java classes that business-tier application components extend to leverage a robust
implementation of the numerous design patterns you need in many areas. The benefits
of ADF Business Components include:

■ Simplified Data Access

■ Enforcement of Business Domain Validation and Business Logic

■ Support for Sophisticated User Interfaces with Multi-Page Units of Work

■ Implementation of Best Practices, High-Performance, Service Oriented
Architecture

Simplified Data Access
ADF Business Components enable you to do the following:

■ Design a data model for client displays, including only necessary data

Building Business Services for ADF Mobile Client Applications

5-2 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Include master-detail hierarchies of any complexity as part of the data model

■ Implement end-user Query-by-Example data filtering without code

■ Automatically coordinate data model changes with business domain object layer

■ Easily validates and saves any changes to the database

Enforcement of Business Domain Validation and Business Logic
■ Declaratively enforce required fields, primary key uniqueness, data

precision/scale, and foreign key references

■ Easily capture and enforce both simple and complex business rules,
programmatically or declaratively, with multilevel validation support

■ Navigate relationships between business domain objects and enforce constraints
related to compound components

Support for Sophisticated User Interfaces with Multi-Page Units of Work
■ Reflect changes made by business service application logic in the user interface

■ Retrieve reference information from related tables, and automatically maintain the
information when user changes foreign-key values

■ Simplify multistep, web-based business transactions with automatic web-tier state
management

■ Handle images with no code

■ Synchronize pending data changes across multiple views of data

■ Consistently apply prompts, format masks, and error messages in any application
(these may be entity-based or a static list)

■ Define custom metadata for any business components to support metadata-driven
user interface or application functionality

■ Add dynamic attributes at runtime to simplify per-row state management

Implementation of Best Practices, High-Performance, Service Oriented
Architecture
■ Enforce best-practice, interface-based programming style

■ Reduce network traffic for remote clients through efficient batch operations

5.1.1 Support for the Core ADF Business Components
As the mobile implementation of the Oracle ADF architecture, ADF Mobile client
utilizes the core ADF Business Components but with some modifications:

■ entity object

An entity object represents a row in a database table. It simplifies modifying the
row’s data by handling all data manipulation language (DML) operations for you.
An entity object encapsulates business logic for the row to ensure your business
rules are consistently enforced. You associate an entity object with others to reflect
relationships in the underlying database schema to create a layer of business
domain objects to reuse in multiple applications. Association objects define
relationships between entity objects.

■ view object

Building Business Services for ADF Mobile Client Applications

Developing the ADF Mobile Client Data Model 5-3

View objects provide the means to retrieve data from a data source. In most cases,
the data source will be a database and the mechanism to retrieve data is the SQL
query. The view object simplifies working with the results of the SQL query. A
data model project can include the following types of view objects:

■ Read-only view objects when updates to data are not necessary (may be
entity-based)

■ Entity-based view objects when data updates will be performed

ADF Mobile client applications generally use entity-based view objects. These
rows are not populated until run time.

■ application module

An application module is the transactional component that UI clients use to work
with application data. It defines an updatable data model and top-level
procedures and functions (called service methods) related to a logical unit of work
related to an end-user task. Unlike ADF Faces applications, ADF Mobile client
supports only a single, globally accessible application module. For more
information, see "Getting Started with ADF Business Components" in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Because the application module component supports a "UI- aware" data model of
row sets, you do not need to write additional code for typical Create, Update, and
Delete operations. By declaratively binding such client UI components to active
view object instances in the application module’s data model, the components in
an MCX page automatically update to reflect changes in the rows of the view
object row sets of the data model. For more information, see "Overview of the
UI-Aware Data Model" in Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework.

5.1.2 Support for Mobile Database Transactions
The ADF Mobile client framework does the following after the user saves changes
made to the data using an ADF Mobile client application:

1. DBTransaction.commit() is invoked, which in turn generates appropriate
DML statements for all changes to the data model.

2. As each statement is posted to the database, an event is fired, which in turn
generates an XML record—an entity Replay Item—which encapsulates the details
of the INSERT, UPDATE, or DELETE statement.

3. After the transaction is committed, another event is fired, which causes the
previously generated XML records to be written to the database in a separate
transaction.

4. At some later point, data synchronization is initiated, either on-demand or in the
background, and Oracle Database Lite Mobile Server (Mobile Server) transfers the
Replay Item(s) up to the Mobile Server instance.

5. If data satisfies all necessary criteria, then it is committed to the enterprise
database. Otherwise, an error is recorded in Mobile Server and then delivered to
the mobile client the next time synchronization occurs.

Extending an ADF Application to Mobile Client

5-4 Mobile Client Developer's Guide for Oracle Application Development Framework

5.2 Extending an ADF Application to Mobile Client
As described in Section 4.5, "Extending the Base Application for the Mobile Client
Application," the mobile client application is an extension of the server, or base
application. The entity and view objects, as well as their attributes, are subsets of the
objects owned by the base application. To enable you to create a subset of entity objects
(as well as the attributes of these entity objects) and view objects that are required by
the mobile client projects, mobile client provides the Create Business Components for
ADF Mobile Client wizard, which derives objects from the ADF library JAR created
from the base application. For more information about creating an ADF library JAR
from the base application, see Section 4.3, "Deploying the Model Project of the Base
Application as an ADF Library."

5.2.1 How to Create Subsets of Entity Objects and View Objects
The Create Business Components from ADF Library wizard provides a multi-step
approach to adding business components to the ADF Mobile client application. First,
you point to the ADF library JAR file that was previously exported from the base ADF
application. The ADF library JAR enables you to reuse the ADF Business Components
defined in the base application. Next, you select the entity objects and entity attributes
that are required for the mobile client application. Lastly, you create updatable view
objects based on the previously selected entity objects and add them to a new
application module.

Before you begin:
As described in Section 4.4.1, "How to Create an Application Workspace," you must
have an ADF library JAR of the model project containing the entity objects and view
objects on which you base the ADF Mobile client application. For information on
creating an ADF library JAR, see "Packaging a Reusable ADF Component into an ADF
Library" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

To create subsets of entity objects:
1. In the Application Navigator, right-click the model project you created in

Section 4.4.1, "How to Create an Application Workspace," and choose New.

2. In the New Gallery, expand Business Tier, select ADF Mobile Client Business
Components and then Business Components from ADF Library. Click OK.

If this is the first component that you are creating in the project, the Initialize
Business Components Project dialog appears to allow you to select a database
connection to the server (base) application. You use this application to develop the
business components for an ADF Mobile client application.

Tip: You can add transient attributes to entity objects that do not
persist to columns defined in the underlying table. Any manually
added attributes on mobile client entity objects are considered
transient attributes.

Note: ADF Mobile client only supports SQL92 as the SQL flavor for
the database connection.

Extending an ADF Application to Mobile Client

Developing the ADF Mobile Client Data Model 5-5

Figure 5–1 Selecting the Business Components from ADF Library Wizard

3. In the Initialize Business Components Project dialog, select the database
connection or choose New to create a connection. Click OK.

4. After JDeveloper establishes the connection, Business Components from ADF
Library wizard appears. In the Select Entities page, enter the location (or browse
for) the ADF library JAR created from the base application, and click Open.

For example, Figure 5–2 shows the result of shuttling the ProductBaseEO,
OrderEO, and ProductBaseEO entity objects into the Selected list from the
Available list, which includes all of the entity objects.

5. Shuttle the entity objects that you want to base the mobile entity objects on to the
Selected list. Click Next.

Note: You must use the same connection used by the base (server)
application. Do not use the connection to the Oracle database schema
where Mobile Server artifacts are stored.

Note: Because the location of the ADF Library JAR used to create an
ADF Mobile client application is hard-coded in the model project, you
must update the JAR’s location for the NMCBaseLibraryFilePath
property in Model.jpx if you move the mobile application to another
computer or change or delete the JAR. The application will not run
unless you change this value.

Extending an ADF Application to Mobile Client

5-6 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 5–2 Selecting Entity Objects for the Mobile Client Application

6. In the Select Entity Attributes page, select the attributes that you want to include
from each entity usage in the Selected list. Shuttle the ones that you do not want
to the Available list. Click Next.

For example, Figure 5–3 shows the attributes have been selected from the
ProductBaseEO entity object.

Note: The attributes that appear by default in the Available window
are calculated fields that do not have a mapping in the database table
definition. You cannot move any attribute that is a primary key from
the Selected list.

Extending an ADF Application to Mobile Client

Developing the ADF Mobile Client Data Model 5-7

Figure 5–3 Selecting Attributes for the Entity Objects of the Mobile Client Application

7. In the Updatable View Objects page, select the entity objects to create a default
view object. Click Next.

For example, Figure 5–4 shows that OrderEO and OrderItemEO have been
selected to create the view objects OrderEOView and OrderItemEOView.

Figure 5–4 Selecting View Objects

8. In the Application Module page, select Application Module and then enter a
name for the application module. For more information on application modules,
see "Getting Started with ADF Business Components" in Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework. Click Next.

9. In the Summary page, click Finish.

Editing Mobile Entity Objects

5-8 Mobile Client Developer's Guide for Oracle Application Development Framework

5.2.2 What Happens When You Create a Subset of Entity Objects and View Objects
When you create a subset of the entity objects and view objects, JDeveloper creates the
new application module, along with the entity objects, view objects, associations, and
view links. It lists them in the Application Navigator.

For example, Figure 5–5 illustrates the model project and its contents in the
Application Navigator.

Figure 5–5 Model Project in the Application Navigator

5.3 Editing Mobile Entity Objects
At any point during application development, you can expose additional attributes or
change certain properties of the attributes that already belong to mobile entity objects
using the overview editor for entity objects, shown in Figure 5–6. Likewise, you can
use overview editors for view objects, view links, and application modules as you
would for a standard ADF application. However, because you selected the ADF
Mobile client technology when you created the project, these editors display only the
properties that are pertinent to ADF Mobile client.

5.3.1 About Using the Overview Editors for Mobile Objects
The overview editors for entity objects, view objects, and application modules include
only the features that pertain to ADF Mobile client. Table 5–1 lists the editor features
that are not present for ADF Mobile client development.

Tip: You can update the entity objects using the overview editor for
entity objects, described in Section 5.3, "Editing Mobile Entity
Objects."

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-9

Table 5–1 Non-ADF Mobile Client Features in Overview Editors

Editor Page Feature(s) Not Supported in ADF Mobile Client

Entity Object General Features not used for ADF Mobile client development
include:

■ Custom Properties

■ Because ADF Mobile client does not support multiple
application module, the Extends feature is not available;
you cannot specify a parent application module.

Attributes Features not used for ADF Mobile client include:

■ Custom Properties

■ Security

Features not supported in the Attributes Editor

■ Custom Properties page—not included in ADF Mobile
client.

■ Dependencies page— not included in ADF Mobile client.

Add Rule Validation dialog—Script Expression is not
available as a rule type. For more information on the Add
Rule dialog, see Section 5.3.5, "Adding Validation Rules."

View Object General Features not used for ADF Mobile client include:

■ Because ADF Mobile client does not support multiple
application module, the Extends feature is not available;
you cannot specify a parent application module.

■ Tuning section

■ Alternate keys section

Entity Features not used for ADF Mobile client include:

■ You cannot add child entity objects (the Subtypes button
is not available).

■ Right outer join is not supported as a join type, meaning
you cannot designate a view object to return all rows
that exist in one entity object, even though
corresponding rows do not exist in the joined entity
object. For more information, see "How to Create Joins
for Entity-Based View Objects" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

■ Participate in Row Delete option is not available. As a
result, for the updatable entity object, there is no action
of removing rows in the UI that deletes the participating
reference entity object.

Editing Mobile Entity Objects

5-10 Mobile Client Developer's Guide for Oracle Application Development Framework

Attribute Features not used for ADF Mobile include:

■ Custom Properties

■ In the List of Values editor (accessed through the List of
Properties section), only Choice List is available as the
type of component used by the user interface to display
the attribute values list. Most Recently Used Count is
not available; you cannot enter the number of items that
display in the choice list.

The following features are not supported in the View
Attribute dialog (used for adding an attribute) and the View
Attribute page accessed through the Edit Attribute dialog:

■ The Expression value type, meaning the default value
for the binding variable cannot be based on an
expression.

■ Discriminator

■ Effective Date

In addition, the View Attribute dialog does not include:

■ Edit—The Edit Expression Editor is not available for the
value type. This editor enables you to add an expression
that defines the default value for the current attribute of
an entity object or view object.

■ Passivate

The Edit Attribute dialog does not include the Dependencies
tab.

Table 5–1 (Cont.) Non-ADF Mobile Client Features in Overview Editors

Editor Page Feature(s) Not Supported in ADF Mobile Client

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-11

Query In the Bind Variable dialog, the Custom Properties tab and
Control Hints tab are not available for ADF Mobile client. In
the Variable tab:

■ The Expression option is not available, meaning the
default value of a binding variable cannot be based on
an expression.

■ ADF Mobile client supports the following Java types for
bind variables:

■ BigDecimal

■ Boolean

■ Byte

■ Character

■ Date

■ Double

■ Float

■ Integer

■ Long

■ Number

■ Short

■ String

■ Timestamp

For the Query Editor, the features that are not used include:

■ Declarative SQL mode—Only expert and normal modes
are available. For more information on expert mode, see
"Working with Objects in Expert Mode" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

■ Alternate Mappings—used to map the columns in the
SQL query to view attributes.

■ Alternate Keys—used for defining attributes for the
alternate keys.

In the View Criteria Editor, you can either select Database or
In Memory as the query execution mode, but not both. For
more information, see "How to Create Named View Criteria
Declaratively" in Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

In the UI Hints tab, the following are not available in ADF
Mobile client:

■ Search Region—For more information, see "Setting Up
Search Form Properties" in Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application
Development Framework.

■ Saved Search List—For more information, see "What
Happens at Runtime: Search Forms" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Table 5–1 (Cont.) Non-ADF Mobile Client Features in Overview Editors

Editor Page Feature(s) Not Supported in ADF Mobile Client

Editing Mobile Entity Objects

5-12 Mobile Client Developer's Guide for Oracle Application Development Framework

5.3.2 About Editing Entity Objects
Because the mobile client application synchronizes with its server-side counterpart,
this editor allows you to create transient attributes. You cannot create persistent
attributes because a mobile client application synchronizes data as exposed through its
entity objects against server-side data, which is exposed on an attribute-by-attribute
basis, through server-side entity objects backed by a database table. If you create an
entity object attribute that only exists in a mobile application, then this attribute cannot
be synchronized against a server-side counterpart because one does not exist. You can
create transient attributes using this editor, because by definition, a transient attribute
does not persist and thus is not synchronized against server-side data.

Java For information on the types supported by ADF Mobile
client, see Section 7.2, "Java Support for Business
Components."

ADF Mobile client supports the following:

■ View Object Class

■ View Row Class

■ View Object Client Interface

List UI Hints For ADF Mobile client:

■ Only Choice List is available as the type of component
used by the user interface to display the attribute values
list.

■ Most Recently Used Count is not available; you cannot
enter the number of items that display in the choice list.

Application Module General Because ADF Mobile client does not support multiple
application module, the Extends feature is not available; you
cannot specify a parent application module. The Tuning and
Custom Properties sections are not available for ADF Mobile
client.

Data Model The Subtypes feature is not available, so you cannot add a
child view instance to support of polymorphic view objects
for a selected view instance.

Java ADF Mobile client supports the following:

■ Application Module Class

■ Application Module Client Interface

■ Application Module Client Class

ADF Mobile client does not support Application Module
Definition Class.

EJB Session Bean This page is not available for ADF Mobile client.

Service Interface This page is not available for ADF Mobile client.

Configurations This page is not available for ADF Mobile client.

Note: ADF Mobile client does not support groovy expressions. To set
a value for calculated fields in an entity object, you must override the
set method in the Java code for that attribute.

Table 5–1 (Cont.) Non-ADF Mobile Client Features in Overview Editors

Editor Page Feature(s) Not Supported in ADF Mobile Client

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-13

Figure 5–6 The Overview Editor for an Entity Object

5.3.3 How to Add Attributes to an Entity Object
You use the entity editor to modify the attributes belonging to a mobile entity object,
or to add transient attributes to one. Because the mobile application must synchronize
with the base application, you cannot change certain properties for an attribute.
Otherwise, synchronization fails.

Use the Attributes page of the overview editor to create an attribute.

Before you begin:
Create a subset of entity objects for the ADF Mobile client application as described in
Section 5.2.1, "How to Create Subsets of Entity Objects and View Objects."

To add attributes:
1. Double-click an entity object in the Application Navigator.

2. Click the Attributes tab.

3. In the Attributes page, click Add from Base Entity. In the Create New Entity
Attributes for Columns dialog, shown in Figure 5–7, the attributes that you did not
select for the entity object using the Model Wizard appear in the Available list.

Note: Because the location of the ADF Library JAR used to create an
ADF Mobile client application is hard-coded in the resulting entity
objects, you must update the JAR’s location for the
NMCBaseLibraryFilePath property if you move the mobile
application to another computer or change or delete the JAR. If you do
not change this value, then the application will not run.

Note: The Name and Extends properties are read-only values.

Editing Mobile Entity Objects

5-14 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 5–7 Selecting Attributes

4. Select the attributes by moving them from the Available window to the Selected
window.

5. Click OK. The selected attributes display in the table.

5.3.4 How to Add Transient Attributes
Use the Attributes page of the overview editor to create a transient attribute.

Before you begin:
Create a subset of entity objects for the ADF Mobile client application as described in
Section 5.2.1, "How to Create Subsets of Entity Objects and View Objects."

To Add transient attributes:
1. Click Add in the Attributes page.

2. In the New Entity Attribute dialog, define the properties for the transient attribute
(listed in Table 5–2).

Note: You cannot use this editor to correct or update persistent
attributes. If an attribute has been designed improperly, you can only
correct it in the server-side application. You cannot edit the persistent
attributes because they must match the attributes of the server object.
For example, changing an attribute type from a date to a number
causes synchronization to fail.

Note: ADF Mobile client supports only transient attributes based on
literal values.

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-15

3. Click OK. The attribute appears in the table.

5.3.5 Adding Validation Rules
The Validators page of the overview editor enables you add the built-in Oracle ADF
declarative validation rules described in "Defining Validation and Business Rules
Declaratively" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework. When you create a validation rule using the
overview editor, they are stored in the entity object’s XML file.

Figure 5–8 shows the Validators page for the entity object, OrderEO.

Table 5–2 Attribute Properties

Property Description

Name The name of the attribute. This must be a valid Java identifier.

Type Choose the Java type for the attribute

Property Set Choose the type of element that this attribute represents. This
field is not available for all attribute types.

Value Type Select Literal to use a literal value for the default

Value For discriminator columns in subtypes of polymorphic entity
objects, enter the discriminator value for the subtype.

ADF Mobile client does not support expressions.

Mandatory Select if this attribute is mandatory. This option is selected by
default if the corresponding database column has a NOT NULL
constraint.

Derived from SQL
Expression

ADF Mobile client does not support this option. Do not use it.

Discriminator ADF Mobile client does not support this option. Do not use it.

Updatable The view attribute setting is based on the entity attribute setting
and can made more restrictive.

■ Always

Select to make an attribute updatable.

■ While New

Select to make an attribute updatable before an entity is first
posted.

■ Never

Select to make an attribute read-only.

Editing Mobile Entity Objects

5-16 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 5–8 The Validators Page

ADF Mobile client supports the following validators, which are available from the
Rule Type list of the Add Validation Rule dialog, which you invoke by first selecting
an entity or attribute and then by clicking Add.

Figure 5–9 shows the Add Rule Validation dialog.

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-17

Figure 5–9 The Add Validation Rule Dialog

Table 5–3 lists the validators and the classes that they support.

Editing Mobile Entity Objects

5-18 Mobile Client Developer's Guide for Oracle Application Development Framework

Table 5–3 Validators and Their Supported Classes

Validator Usage Supported Classes

Compare Performs a logical comparison
between an entity attribute and a
value. When you add a Compare
validator, you specify an operator
and a comparison. Entity
Operators include:

■ Literal value

■ Query result

■ View object attribute

■ View accessor attribute

■ Expression

■ Entity attribute

For more information, see "How
to Validate Based on
Comparison" in Oracle Fusion
Middleware Fusion Developer's
Guide for Oracle Application
Development Framework.

oracle.jbo.rules.JboCompareValidator

Key Exists Determines whether a key value
(primary, foreign, or alternate
key) exists. For more information,
see "How to Determine Whether
a Key Exists" in Oracle Fusion
Middleware Fusion Developer's
Guide for Oracle Application
Development Framework.

oracle.jbo.server.JboEOExistsValidator,
oracle.jbo.server.JboVOExistsValidator,
oracle.jbo.server.JboVOUsageExistsValidator

Length Validates whether the string
length (in characters or bytes) of
an attribute's value is less than,
equal to, or greater than a
specified number, or whether it
lies between a pair of numbers.
For more information, see "How
to Validate Against a Number of
Bytes or Characters" in Oracle
Fusion Middleware Fusion
Developer's Guide for Oracle
Application Development
Framework

oracle.jbo.rules.JboLengthValidator

List Compares an attribute against a
list of values (LOV).

For more information, see "How
to Validate Using a List of Values"
in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle
Application Development
Framework.

oracle.jbo.rules.JboListValidator

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-19

For more information, see "Using the Built-In Declarative Validation Rules" and
"Implementing Validation and Business Rules Programmatically" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

5.3.5.1 How to Add a Validation Rule to an Entity or Attribute
To add a declarative validation rule to an entity object, use the Validators page of the
overview editor.

To add a validation rule:
1. In the Application Navigator, double-click the desired entity object.

2. Click the Validators navigation tab on the overview editor.

3. Select the object for which you want to add a validation rule, and then click the
Add icon.

■ To add a validation rule at the entity object level, select Entity.

Method Supplements declarative
validation rules and
Groovy-scripted expressions
using your own Java code.
Method validators trigger Java
code that you write in your own
validation methods at the
appropriate time during the
entity object validation cycle. For
more information, see "Using
Method Validators" in Oracle
Fusion Middleware Fusion
Developer's Guide for Oracle
Application Development
Framework.

oracle.jbo.rules.JboMethodValidator

Range Performs a logical comparison
between an entity attribute and a
range of values. When you add a
Range validator, you specify
minimum and maximum literal
values. The Range validator
verifies that the value of the
entity attribute falls within the
range (or outside the range, if
specified). For more information,
see "How to Make Sure a Value
Falls Within a Certain Range" in
Oracle Fusion Middleware Fusion
Developer's Guide for Oracle
Application Development
Framework.

oracle.jbo.rules.JboRangeValidator

Regular
Expression

ADF Mobile Client does not
support Groovy Expressions. Do
not create validation rules as
Regular Expressions. Use
Method validation rule for
complex validation rules. for
more information see Chapter 7,
"Extending ADF Mobile Client
Applications with Java.".

oracle.jbo.rules.JboRegExpValidator

Table 5–3 (Cont.) Validators and Their Supported Classes

Validator Usage Supported Classes

Editing Mobile Entity Objects

5-20 Mobile Client Developer's Guide for Oracle Application Development Framework

■ To add a validation rule for an attribute, expand Attributes and select the
desired attribute.

When you add a new validation rule, the Add Validation Rule dialog appears.

4. Select from the validation rules in Rule Type list.

5. Use the dialog settings to configure the new rule.

The controls will change depending on the kind of validation rule you select. For
more information about the different validation rules, see "Using the Built-in
Declarative Validation Rules" in Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

6. You can optionally click the Validation Execution tab and enter criteria for the
execution of the rule, such as dependent attributes and a precondition expression.
For more information, see "Triggering Validation Execution" Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

7. Click the Failure Handling tab and enter or select the error message that will be
shown to the user if the validation rule fails. For more information, see "Creating
Validation Error Messages" in Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework

8. Click OK.

5.3.6 Overriding Default Validation Error Handling
When a validation error occurs, a message box showing error messages appears by
default. You can override the default behavior if you prefer the validation error
message as an outputText component rather than as a message box.

 Example 5–1 and Example 5–2 are two versions of the same application,
CustomErrorHandler.java. Example 5–1, describes how to use a message box for
the validation error message (similar to the default behavior) and how the main error
handling method, reportException, handles the error messages in this context.
Example 5–2 describes how to put the validating error messages into an outputText
component by overriding the reportException method.

5.3.6.1 How to Show the Error Message as a Message Box
Example 5–1 illustrates default behavior of the error handler.

To show a message box with an error message:
1. Declare the error handler as an attribute of the form component. For example, in

an MCX file, you would declare the error handler as an attribute of the form
component as follows:

<amc:form errorHandler="view.backing.CustomErrorHandler" ... >

Declaring the error handler creates the class and casts it to an
oracle.adfnmc.component.ErrorHandler interface.

2. Create the error handler class and implement the methods of the
oracle.adfnmc.component.ErrorHandler interface.

Note: For Key Exists and Method entity validators, you can also use
the Validation Execution tab to specify the validation level.

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-21

The reportException method returns a boolean as to whether the error was
handled. If this method returns false, the default error handling logic is invoked.

Example 5–1 view/backing/CustomErrorHandler.java

package view.backing;

import oracle.adfnmc.bindings.BindingContainer;
import oracle.adfnmc.bindings.dbf.BindingContext;
import oracle.adfnmc.component.ErrorHandler;
import oracle.adfnmc.component.MessageBox;
import oracle.adfnmc.component.ui.Form;
import oracle.adfnmc.java.util.List;

public class CustomErrorHandler
 implements ErrorHandler
{
 public CustomErrorHandler()
 {
 }

 public boolean reportException(Form form, BindingContainer formBnd, Exception
ex)
 {
 // do error handling here
 List errors = null;
 if (formBnd != null)
 {
 errors = formBnd.getErrors();
 }

 if ((errors != null) && (errors.size() > 0))
 {
 String[] messages = new String[errors.size()];
 for (int i = 0; i < errors.size(); ++i)
 {
 Exception exListElement = (Exception) errors.get(i);
 messages[i] = this.getDisplayMessage(BindingContext.getInstance(),
exListElement);
 }
 MessageBox.show(messages);
 }
 else
 {
 String message = this.getDisplayMessage(BindingContext.getInstance(), ex);
 MessageBox.show(message);
 }

 // return true so that the form knows the error has been handled
 return true;
 }

 public String getDisplayMessage(BindingContext ctx, Exception ex)
 {
 if (ex != null)
 {
 return ex.getMessage();
 }
 else

Editing Mobile Entity Objects

5-22 Mobile Client Developer's Guide for Oracle Application Development Framework

 {
 return "";
 }
 }
}

5.3.6.2 How to Show the Error Message as Output Text
Example 5–1 is similar to Example 5–2, but instead illustrates how to show an error
message as an outputText component.

To show the error message as output text
1. Declare the error handler as an attribute of the form component.

2. Declare an outputText component in the MCX file and set its value to an EL
expression. For example:

<amc:outputText value="#{applicationScope.validationMessage}"
foregroundColor="#FF0000" />

3. Override reportException in the Java class and set the EL expression
whenever there is an error.

Example 5–2 view/backing/CustomErrorHandler.java Showing Output Text Error
Message

package view.backing;

import oracle.adfnmc.bindings.BindingContainer;
import oracle.adfnmc.bindings.dbf.BindingContext;
import oracle.adfnmc.component.ErrorHandler;
import oracle.adfnmc.component.ui.Form;
import oracle.adfnmc.el.ValueExpression;
import oracle.adfnmc.el.impl.SimpleContext;
import oracle.adfnmc.java.util.List;

public class CustomErrorHandler

 implements ErrorHandler
{
 public CustomErrorHandler()
 {
 }

 public boolean reportException(Form form, BindingContainer formBnd, Exception
ex)
 {
 // do error handling here
 List errors = null;
 if (formBnd != null)
 {
 errors = formBnd.getErrors();
 }

 String message = "";
 if ((errors != null) && (errors.size() > 0))
 {

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-23

 for (int i = 0; i < errors.size(); ++i)
 {
 Exception exListElement = (Exception) errors.get(i);
 message += this.getDisplayMessage(BindingContext.getInstance(),
exListElement) + "\n";
 }
 }
 else
 {
 message = this.getDisplayMessage(BindingContext.getInstance(), ex);

 }

 ValueExpression valueExpression =
 SimpleContext.getValueExpression("#{applicationScope.validationMessage}",
String.class);
 valueExpression.setValue(message);

 // return true so that the form knows the error has been handled
 return true;
 }

 public String getDisplayMessage(BindingContext ctx, Exception ex)
 {
 if (ex != null)
 {
 return ex.getMessage();
 }
 else
 {
 return "";
 }
 }
}

5.3.7 About Synchronization for Entity Objects
Data synchronization is not enabled be default for entity objects. Only the entity
objects that are imported from a known schema context can be enabled for
synchronization.

You can enable or disable synchronization for each entity object using the
Synchronization page of the overview editor for entity objects, shown in Figure 5–10.
This page enables you to do the following:

■ Set data updates—You can set how the entity objects receive updates from the
server and also how the entity objects can update the server. The downstream
updates (from the server to the client) are accomplished through Oracle Database
Lite Mobile Server (Mobile Server). To perform upstream updates, an entity object
must be enabled for ADF Mobile transaction replay service.

■ Set conflict resolution rules—You can also use this page to set the rules for
resolving data conflicts between the client and server, as conflicts can arise if a
mobile client updates a stale record while the original record may have been
changed on the server.

■ Create a data set appropriate for a small database—You can refine the entity
object’s SQL statement by adding WHERE and ORDER BY clauses to the
JDeveloper-generated SELECT statement based on the selected entity attributes.

Editing Mobile Entity Objects

5-24 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 5–10 Setting the Synchronization for an Entity Object

5.3.7.1 How to Enable or Disable Synchronization for Entity Objects
The Synchronization page enables you to enable or disable synchronization for entity
objects that have been enabled for ADF Mobile transaction replay service as well as for
those that have not. Depending on whether transaction replay service has been
enabled for the selected entity object, this page enables you to set both the upstream
(client-to-server) and downstream (server-to-client) updates.

Before you begin:
The ADF Mobile client application must include entity objects imported from a base
(server) application using the Create Business Components from ADF Library wizard
as described in Section 5.2.1, "How to Create Subsets of Entity Objects and View
Objects." To use any of the ADF Mobile transaction replay service configuration
options, the selected entity must be enabled for transaction replay service as described
in Section 5.8, "Enabling ADF Mobile Transaction Replay Service for an ADF
Application."

To configure synchronization for entity objects:
1. Select Enable Data Synchronization.

2. Select how the ADF Mobile client application updates with the server. For
downstream, Oracle Database Lite Mobile Server - enabled updates, select
Updates made via Tables. For upstream updates, select Updates via TRS.

3. Select the type of table-level synchronization used by the entity object. The options
include:

Note: You can disable synchronization if you do not select Enable
Data Synchronization.

Note: The Updates via TRS option is only available if the entity has
been enabled for transaction replay service.

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-25

■ Fast (the default setting)

■ Complete Snapshot

■ Queue-based

■ None

4. Select how the data conflicts are resolved between the client and server.

5. Click Edit.

6. Select which transaction replay service events are enabled for synchronization.

7. Add a WHERE and ORDER BY clause to the JDeveloper-generated SQL statement
query to filter and order the data as required. You can add ORDER BY clauses
using the Order By dialog (accessed by clicking Edit). If you prefer not to use the
JDeveloper-generated SELECT clause and FROM list, then select Expert Mode from
the SQL Mode drop down and enter the SQL statement in the editor as described
in "How to Customize SQL Statements in Expert Mode" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

5.3.8 View Accessor Support for Entity Objects and View Objects
View accessors are value-accessor objects in ADF Business Components. You create a
view accessor to point from a base entity object attribute or view object attribute to a
source view row set. The view accessor returns a list of all possible values to the
attribute of the base object.

View Accessors are set in the View Accessors page of the Overview Editor for entity
objects and view objects, shown in Figure 5–11. For more information, refer to "How to
Create a View Accessor for an Entity Object or View Object" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

Figure 5–11 The Overview Editor for View Accessor Page

5.3.9 Using List UI Hints for View Objects
You can associate a control hint with the current entity attribute. View objects will
inherit the hint values at runtime. For more information, see "Defining Attribute
Control Hints for Entity Objects" in Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

Editing Mobile Entity Objects

5-26 Mobile Client Developer's Guide for Oracle Application Development Framework

Because any attribute-specific information that is added to the base application is
available to the ADF Mobile application after you complete the Create Mobile Business
Components from ADF Library wizard, you must re-import objects from the base
application if attribute-specific changes have been made to it. Otherwise, control hints
are not available to the ADF Mobile client application.

5.3.10 Using Display Hints for Entity Objects
You can specify default LOV (list of values) hints when you want the LOV-enabled
attributes of other view objects to inherit the list UI hints from the current view object.
To define LOV-enabled attributes, you must create a view accessor that points to the
view object that supplies the values. At design time, the LOV-enabled attributes whose
view accessor points to this source view object will inherit any list UI hints you have
defined. At runtime, the UI will display the same LOV usage for these LOV-enabled
attributes. For more information, see "Working with List of Values (LOV) in View
Object Attributes" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework

For example, Figure 5–12 shows the List UI Hints page of the Overview Editor for
AddressEOView, a view object.

Figure 5–12 The Overview Editor for List UI Hints

Note: ADF Mobile client does not support the following in the
Control Hints dialog. Do not use them.

■ Display Hint

■ Tooltip Text

■ Control Type

■ Display Width

■ Display Height

■ Form Type

■ Auto Submit

Editing Mobile Entity Objects

Developing the ADF Mobile Client Data Model 5-27

5.3.11 Adding Bind Variables to View Objects
The Query page of the overview editor for a view object (illustrated in Figure 5–13 and
described in "Working with Bind Variables" in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework) enables you to add bind
variables to a query. Although ADF Mobile client supports JDBC Positional, Oracle
Named, and Oracle Positional binding styles, Oracle Named is the preferred binding
style and is the only one supported in the overview editor for mobile client view
objects.

Figure 5–13 The Query Page of the Overview Editor for View Objects

You edit the binding using the Bind Variable dialog, shown in Figure 5–14. For more
information on Oracle Named binding style, see the online help available from
JDeveloper.

Editing Mobile Entity Objects

5-28 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 5–14 The Bind Variable Dialog

5.3.12 Working with Resource Bundles
ADF Mobile client provides design-time localization support by enabling the use of
the standard localization structures of ADF to specify resource strings in multiple
languages. As with standard ADF applications, you can configure an ADF Mobile
client application to store translatable strings such as control hints in a resource bundle
as described in "Working with Resource Bundles" in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework. As shown in
Figure 5–15, in addition to the default .properties bundle file, ADF Mobile also
supports the XLFF (XML Localization Interchange File Format) properties bundles
used for exchanging localization data. ADF Mobile client supports multiple resource
bundles. For more information, see Section 7.4.2, "Supporting Localization through
XLFF Resource Bundles."

The Entity Object and View Object Extension

Developing the ADF Mobile Client Data Model 5-29

Figure 5–15 Selecting Resource Bundle Type for an ADF Mobile Client Project

5.4 The Entity Object and View Object Extension
You can extend the mobile application using the same techniques for extending an
Oracle ADF application, described in "Advanced Business Components Techniques" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework. You extend mobile client applications using the Java page of the Overview
Editor for the entity object or view object. For more information on using the overview
editor, see "Creating and Modifying an Application Module" and "Generating Custom
Java Classes for a View Object" in Oracle Fusion Middleware Fusion Developer's Guide for
Oracle Application Development Framework

The ADF Mobile client entity objects and view objects support only a subset of the
functionality available to the server entity objects and view objects. Java Assist in
JDeveloper filters out the methods that are not supported.

Note: ADF Mobile client applications, which are based on the J2ME
platform, differ from J2EE-based Oracle ADF applications. Because
J2ME lacks the VM support to implement Java reflection, ADF Mobile
client applications do not bind methods dynamically; they instead link
methods statically at compile time. To simulate dynamic binding, you
must add delegation code to invoke application modules or view
object from the EL expressions and the entity object validation
methods as described in Chapter 7, "Extending ADF Mobile Client
Applications with Java."

Note: When you generate entity object and view object Java
implementations for ADF Mobile client applications, the generated
Java source must be compatible to Java 1.3. The source uses integers
for field indexes instead of enumerations.

The Entity Object and View Object Extension

5-30 Mobile Client Developer's Guide for Oracle Application Development Framework

5.4.1 Supported Constructs
The following JDeveloper-generated Java classes are supported by the runtime:

■ entity object

■ view object

■ view row

■ application module

The following are not used by the runtime, but can safely be generated and used at
design time.

■ view row client Interface

■ view row client

The following are explicitly not supported:

■ entity collection

■ entity definition

■ view object definition

■ application module definition

5.4.2 Unsupported Methods
Even though the classes listed in Section 5.4.1, "Supported Constructs" are supported
by the runtime, ADF Mobile client does not support every method in those classes. Do
not override or otherwise call the following methods:

entity object (oracle.jbo.server.EntityImpl)

■ doDMLWithLOBs(int operation, TransactionEvent e)

■ handleEffectiveDateOperations()

■ validateDateEffectivity()

■ removeAndRetain()

view object (oracle.jbo.server.ViewObjectImpl)

■ addEffectiveDateDstAttributes()

■ buildEffectiveDateFromClauseFragment(StringBuffer fromClause,
int noUserParams)

■ sortRows(Row[] rows)

■ activateNewRowTracker(ViewRowSetImpl vrs, KXmlParser parent)

■ validateRangeSizeForRangePaging(ViewRowSetImpl vrs, int
rangeSize)

■ activateState(ViewRowSetImpl vrs, ViewRowImpl currentRow,
KXmlParser parent)

view row (oracle.jbo.server.ViewRowImpl)

application module (oracle.jbo.server.ApplicationModuleImpl)

■ activateState(int id, SessionData info, int flags)

■ passivateStateForUndo(String id, byte[] clientData, int
flags)

Interacting Directly with SQLite

Developing the ADF Mobile Client Data Model 5-31

■ getAMSerializer()

5.5 Testing Application Modules
You can test the application logic of the application module (created using the Create
Business Components for ADF Mobile Client wizard) using the Business Component
Browser. To launch the Business Component Browser, select the application module in
the Application Navigator and then choose Run.

For more information on the Business Component Browser, see "Testing Application
Modules Using the Business Component Browser" in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

5.6 Interacting Directly with SQLite
The ADF Mobile client framework provides a large degree of compatibility with BC4J,
which is designed to relieve developers from manually performing create, update,
delete (CRUD) operations. Nonetheless, there are use cases that may require bypassing
the framework and interacting directly with the underlying database. As illustrated in
Example 5–3, ADF Mobile client supports these use cases in a manner that is similar to
BC4J's.

Example 5–3 Obtaining a Database Connection

import oracle.adfnmc.bindings.DataControl;
import oracle.adfnmc.bindings.bc4j.BC4JDataControl;
import oracle.adfnmc.bindings.dbf.BindingContext;
import oracle.jbo.ApplicationModule;

DataControl dc =
(DataControl)BindingContext.getInstance().get("AppModuleDataControl");
if (dc instanceof BC4JDataControl)
{
 ApplicationModule am = (ApplicationModule)dc.getDataProvider();
 DBTransaction dbTrans = am.getDBTransaction();
 PreparedStatement prepStmt = null;
 try
 {
 prepStmt = dbTrans.createPreparedStatement("arbitrary SQL query");
 // work with PreparedStatement as usual

 }
 finally

Note: If you receive a method not found exception when you test the
application module, rearrange the model project's classpath entries as
follows:

1. In the Application Navigator, right-click the model project and choose
Project Properties.

2. Select Libraries and Classpath.

3. Select the ADF Mobile Client Runtime classpath entry.

4. Using Move Up or Move Down, move the ADF Mobile Client Runtime
entry directly beneath the ADF Model Runtime entry.

5. Click OK.

Interacting Directly with SQLite

5-32 Mobile Client Developer's Guide for Oracle Application Development Framework

 {
 if (prepStmt != null)
 prepStmt.close();
 }
}

5.6.1 Differences Between SQLite and Other Relational Databases
SQLite is designed for use as an embedded database system, one typically used by a
single user and often linked directly into the application. Enterprise databases, on the
other hand, are designed for high concurrency in a distributed client-server
environment. Because of these differences, there are a number of limitations that may
be foreign to developers accustomed to working with Oracle databases. The most
important differences are:

■ Concurrency

■ SQL Support

■ Data Types

■ Foreign Keys

■ Database Transactions

5.6.1.1 Concurrency
Do not open your own connection to the database at any time during application
execution. Always reuse the framework's connection by following Example 5–3. This
limitation arises directly from SQLite's coarse-grained locking. For more information,
see the following documents available from the Documentation section at the SQLite
site (http://www.sqlite.org/docs.html):

■ File Locking And Concurrency In SQLite Version 3

■ BEGIN TRANSACTION

5.6.1.2 SQL Support
Although SQLite complies with the SQL92 standard, there are a few unsupported
constructs. For more information, see SQL Features That SQLite Does Not Implement,
available from the Documentation section at the SQLite site
(http://www.sqlite.org/docs.html).

5.6.1.3 Data Types
While most database systems are strongly typed, SQLite is dynamically typed and
therefore any value can be stored in any column, regardless of its declared type. The
ADF Mobile client framework takes care of converting values to and from the database
in accordance with the relevant entity metadata, but if you are working directly
against the database, be sure to maintain data integrity. SQLite will not return an error
if, for instance, a string value is mistakenly stored in a numeric column. For more
information, see Datatypes In SQLite Version 3, available from the Documentation
section at the SQLite site (http://www.sqlite.org/docs.html).

Note: Consult the Documentation section of the SQLite site
(http://www.sqlite.org/docs.html) for complete details.

Configuring JDeveloper to Connect to and Test Against a SQLite Database

Developing the ADF Mobile Client Data Model 5-33

5.6.1.4 Foreign Keys
Although SQLite parses foreign key constraints, it does not enforce them. For more
information, see the SQLite FAQ available from the Documentation section at the
SQLite site (http://www.sqlite.org/docs.html).

5.6.1.5 Database Transactions
Although SQLite is ACID-compliant and hence supports transactions, there are some
fundamental differences between its transaction support and Oracle's.

5.6.1.5.1 Nested Transactions SQLite does not support nested transactions. Only a
single transaction may be active at any given time.

5.6.1.5.2 Savepoints Although SQLite itself supports transaction savepoints, support
for this feature is not exposed in the ADF Mobile client framework.

5.6.1.5.3 Commit SQLite permits either multiple read-only connections or a single
read-write connection to any given database. The ADF Mobile client framework
manages a single read-write connection to your application's database and shares it
with OracleLite Mobile Server Sync (mSync) as needed. As long as you push changes
to the database through standard ADF business components, you can simply invoke
DBTransaction.commit() just as you would for an ADF Faces application.

5.6.1.5.4 Rollback ADF Mobile client fetches rows from the database into memory as
needed, like BC4J. This generally occurs as you iterate over the rows of the
application's viewobjects. As a consequence, there are usually multiple ResultSets
open at any given time while the application executes. This does not present a problem
for traditional server-grade databases such as Oracle, but SQLite does not permit a
transaction to be rolled back until all open ResultSets have been closed first. ADF
Mobile client has been designed to work around this limitation in the following
manner:

■ When DBTransaction.rollback() is invoked, the application is first
disconnected from its database. This will implicitly close all open JDBC ResultSets
and cancel any changes that have been posted to the database but not yet
committed.

■ Next, the application is reconnected to the database and rollback proceeds as
usual.

■ The state of all business components is preserved across the database disconnect,
including information about which row was the current row in a given view
object. Therefore, when the next row is requested by the application, the
framework can return the row that would have come next had the application not
been disconnected from its database.

This sequence of steps effectively produces the same behavior as a simple transaction
rollback in an ADF Faces application backed by an Oracle database.

5.7 Configuring JDeveloper to Connect to and Test Against a SQLite
Database

During the development cycle, you may need to test against the SQLite databases that
are generated from OracleLite Mobile Server Sync (mSync). Doing this enables you to
test against real data using direct SQL statements and verify if the SQL statement is
valid against the SQLite database. Because you must always test manually created
SQL statements against SQLite databases, this testing method is useful when you

Configuring JDeveloper to Connect to and Test Against a SQLite Database

5-34 Mobile Client Developer's Guide for Oracle Application Development Framework

define view objects and create custom SQL statements in expert mode as described
in"Working with View Objects in Expert Mode" in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework. Also, when a query
returns unexpected results, you can test the generated SQL in question by copying and
pasting the SQL statement into the view object editor.

5.7.1 How to Test Against a SQLite Database
Use JDeveloper’s Database Navigator to create a database connection to the SQLite
database. Use the SQL Worksheet to test SQL statements and the update SQLite
database schema.

Before you begin:
Download Oracle JDeveloper and the ADF Mobile client extension as described in
Section 2.3, "Setting Up JDeveloper."

Download the SQLiteJDBC driver from http://www.zentus.com/sqlitejdbc/.
This driver is contained in a JAR file called sqlitejdbc-v0xx.jar. Save this file to
an easily accessed location.

To register the Zentus SQLite JDBC driver and test against the SQLite database:
1. In JDeveloper, create a new database connection. You can create this connection in

the application or in the IDE shows how a finished connection may look. The
name and password fields are dummy values.

2. In the Database Navigator, select File > New > Connections and then Database
Connections.

3. Select Generic JDBC from the Connection drop-down menu.

4. Click New.

5. Enter org.sqlite.JDBC as the Driver Class in the Register JDBC Driver dialog, as
shown in Figure 5–16.

Figure 5–16 Registering the Zentus SQLite JDBC Driver

6. Click Browse, click New, and then click Add Entry.

7. Select the sqlitejdbc-v0xx.jar on your file system. Click OK.

8. Click OK until you return to the Create Database Connection page.

9. In the JDBC URL window, enter

jdbc:sqlite:<Path to your SQLite data file> as shown in
Figure 5–17.

For example, enter jdbc:sqlite:C:\Documents and Settings\<your
name>\Desktop\sqlite-3_6_22\MOBILEFOD.db, where MOBILEFOD.db is
the SQLite file containing the data.

Enabling ADF Mobile Transaction Replay Service for an ADF Application

Developing the ADF Mobile Client Data Model 5-35

Figure 5–17 The Create Database Connection Dialog

10. Enter dummy values in the name and password fields.

11. Click Test Connection. A Success! message appears if the connection is configured
correctly.

12. In the Database Navigator, right-click the connection and select SQL Worksheet,
from the context menu. The SQL Worksheet enables you to test SQL statements
and also review, modify, and export the SQLite database.

5.8 Enabling ADF Mobile Transaction Replay Service for an ADF
Application

Enabling transaction replay service for an ADF application involves the following
steps:

1. Enabling the server (base) application for transaction replay service by adding the
ADF Mobile transaction replay service technology to the project.

2. Adding a Replay Type to a mobile client application using the TRS Enablement
Wizard.

5.8.1 How to Add the ADF Mobile Transaction Replay Service Technology to an ADF
Application

You can add the ADF Mobile transaction replay service technology to a new or
existing ADF project. You can enable transaction replay service for any application that
has the web.xml deployment descriptor file.

Enabling ADF Mobile Transaction Replay Service for an ADF Application

5-36 Mobile Client Developer's Guide for Oracle Application Development Framework

Before you begin:
You must have an ADF application model project containing the entity objects and
view objects on which you base the ADF Mobile client application.

To add the ADF Mobile transaction replay service technology:
1. Select the a project in the Application Navigator, then select Edit and then

Properties.

2. In the Technology Scope page, select ADF Mobile Transaction Replay from the
Available window and move it to the Selected window as shown in Figure 5–18.
Click OK.

Figure 5–18 Adding the ADF Mobile Transaction Replay Service Technology

3. Deploy the application as an ADF JAR as described in "Packaging a Reusable ADF
Component into an ADF Library" in Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework.

5.8.2 What Happens When You Add the ADF Mobile Transaction Replay Service
Technology to an Application

When you add the ADF Mobile transaction replay service technology to an
application, JDeveloper adds the transaction replay service servlet JAR,
ReplayServlet, and updates web.xml with transaction replay service configuration
parameters as shown in Example 5–4.

Example 5–4 ADF Mobile Transaction Replay Service Configuration Parameters in
web.xml

<servlet-name>ReplayServlet</servlet-name>
 <servlet-class>oracle.txnreplay.adfadapter.ReplayServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>

Enabling ADF Mobile Transaction Replay Service for an ADF Application

Developing the ADF Mobile Client Data Model 5-37

 <url-pattern>/faces/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>ReplayServlet</servlet-name>
 <url-pattern>/replayservlet</url-pattern>
 </servlet-mapping>

In addition, JDeveloper updates the web.xml file’s <filter-mapping> element for
ReplayServlet, as shown in Example 5–5.

Example 5–5 Filter Mapping in web.xml

<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>ReplayServlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <servlet-name>ReplayServlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 </filter-mapping>

5.8.3 What Happens When JDeveloper Creates an ADF Mobile Transaction Replay
Service-Enabled Application

If a project already is already configured with the ADF Faces technology, then you can
enable the transaction replay service Object Replay mechanism in the application.

5.8.4 How to Create a Transaction Replay Type
The TRS Enablement Wizard configures the ADF Mobile client application, project,
and entity objects to enable the use of transaction replay service. The wizard verifies
that the ADF Mobile application has entity object definitions from an ADF library file.
When you create the entities for an ADF Mobile client application using the Create
Business Components from ADF Library wizard as described in Section 5.2.1, "How to
Create Subsets of Entity Objects and View Objects," the entity objects imported by this
wizard are enabled for synchronization because they have been given create, update,
and delete actions. For applications that have not been created using this wizard, you
can enable transaction replay service for the entity objects using the TRS Enablement
Wizard.

Note: Because transaction replay service requires a web.xml project
in the base (server) application, you usually add the ADF Mobile
technology scope to the view-controller project.

Enabling ADF Mobile Transaction Replay Service for an ADF Application

5-38 Mobile Client Developer's Guide for Oracle Application Development Framework

Before you begin:
Only applications whose Model projects contain the ADF Mobile Client Model
technology can be enabled for transaction replay service; this technology enables the
transaction replay service logging mechanism for the application. You can verify if an
application includes this technology by opening the Project Properties dialog for a
Model project and then selecting ADF Mobile Client. As shown in Figure 5–19,
JDeveloper notes that the project lacks the ADF Mobile Client Model technology
required for transaction replay service.

Figure 5–19 ADF Mobile Client Project Properties

When you create the entities for an ADF Mobile client application using the Create
Business Components from ADF Library wizard as described in Section 5.2.1, "How to
Create Subsets of Entity Objects and View Objects," the entity objects imported by this
wizard are enabled for synchronization because they have been given CREATE,
UPDATE, and DELETE actions.

You should have a connection that has a transaction replay service schema deployed to
it. If such a connection does not exist, then the wizard prompts you to create one.

To add the transaction replay service to an ADF Mobile client application:
1. In the Application Navigator, right-click the Model project.

2. In Project Properties, choose ADF Mobile Client.

Note: The transaction replay service-enabled mobile application
must use business components that are created from the base
application's JAR file because both the mobile client application and
the base application deployed to the server must share the same entity
objects in the application module so that the transactions generated
from the mobile applications can be replayed successfully against the
base application.

Enabling ADF Mobile Transaction Replay Service for an ADF Application

Developing the ADF Mobile Client Data Model 5-39

3. Click Configure Transaction Replay Service and then click OK.

As shown in Figure 5–20, if Configure Transaction Replay Service displays, then
the entity objects are not transaction replay service-enabled.

Figure 5–20 ADF Mobile Client Project Properties

4. In the TRS Schema page, shown in Figure 5–21, select an IDE connection or an
application connection. The transaction replay service schema must already be
deployed to this connection.

Figure 5–21 Selecting the ADF Mobile Transaction Replay Service Schema Connection

Enabling ADF Mobile Transaction Replay Service for an ADF Application

5-40 Mobile Client Developer's Guide for Oracle Application Development Framework

If the schema is not in the selected connection, you must create a new connection.
Click Next. The wizard proceeds after it verifies that the selected connection
contains the transaction replay service schema.

5. In the Replay Type page, shown in Figure 5–22, enter the replay type information.
The wizard defines the replay type by reviewing the imported entity object data
from the base (server) application and then populates the Type Name field with a
suggested name. You can override this value with any name as long as it is unique
in the REPLAY_TYPE table in the transaction replay service schema. The page also
enables you to designate how transaction replay service manages passwords.

Figure 5–22 The Replay Type Page

Table 5–4 describes the properties of the Replay Type page.

Table 5–4 Defining the Reply Type

Property Description

Type Name If needed, enter a name for the replay type or accept the name
populated by the wizard.

Application Module Name Enter the application module of the base (server) application.
Open the base server application's model project and locate the
application module. Include the application module package
and application module name. For example, if the package is
model and the name is AppModule, enter model.AppModule. You
can find these properties on the General page of the overview
editor for the application module.

Enabling ADF Mobile Transaction Replay Service for an ADF Application

Developing the ADF Mobile Client Data Model 5-41

Application Module
Configuration Name

Enter the configuration name of the base (server) application
module. You can select the application module configuration
name using the Manage Configurations dialog. To access this
dialog:

1. Open the base (server) application in JDeveloper.

2. In the Application Navigator, right-click the application
module.

3. Choose Configurations from the context menu.

4. Choose the configuration from the Names column.

5. Enter this configuration name in the Application Module
Configuration Name field.

Type Properties This field contains a group of name-value pairs that you can
configure for a replay type. This field has the format of
name1=value1;name2=value2;name3=value3.

The ADF Entity Event type has the following two properties:

1. Name: server.win

Values: true (the default) or false (optional)

2. Name: ReplayServletURL

Value: The URL to the replay servlet set up by adding the
ADF Mobile Transaction Replay technology as described
in Section 5.8.1, "How to Add the ADF Mobile Transaction
Replay Service Technology to an ADF Application." This is a
required value.

Example:

server.win=false;ReplayServletURL=http://test.e
xample.com:7001/CCare-ViewController-context-ro
ot/replayservlet

Password Type Select from among the following password types:

■ Public Key Encryption (PKE)

■ Credential Store Framework (CSF). A credential store is a
repository for user name-password or generic credentials.
When a credential store is used, an application does not
store its passwords in clear text or invent solutions for
protecting passwords. The Credential Store Framework
(CSF) used by Oracle Platform Security Services (OPSS) is a
set of APIs that enable secure Create, Read, Write, and
Update operations. For more information, see "Configuring
the Credential Store" in Oracle Fusion Middleware Security
Guide. If you select this option, then you must also enter the
name of the CSF map for the credentials.

■ No Password Type—Select this option if neither PKE nor
CSF apply. Use this option for testing only. Do not select this
option for a live deployment.

Credential Store Map Name If you select Credential Store Framework as the means by
which transaction replay service retrieves the password, then
you must enter the name of the map for the credentials.

Table 5–4 (Cont.) Defining the Reply Type

Property Description

Enabling ADF Mobile Transaction Replay Service for an ADF Application

5-42 Mobile Client Developer's Guide for Oracle Application Development Framework

6. Click Next.

Figure 5–23 Selecting ADF Mobile Transaction Replay Service Entity Objects

The Entity objects page displays all of the entity objects defined in the ADF Mobile
client Model project. As illustrated in Figure 5–23, all entity objects are selected by
default. Transaction replay service events (INSERT, UPDATE, and DELETE) are
enabled for each selected entity object. Select the entity objects designated for
transaction replay service by moving the entity objects from the Selected window
to the Available window. Click Next.

7. Review the information displayed on the Summary page. To make changes to the
replay type, click Back. Otherwise, click Finish.

5.8.5 What Happens When JDeveloper Creates a Transaction Replay Type
When you complete the wizard, the ADF Mobile Client page is updated with the
information configured for the transaction replay type. Figure 5–24 shows this page.
By clicking Reconfigure TRS Connection, you can access the TRS Enablement Wizard
starting at the TRS schema page. You can update the transaction replay type’s current
connection to the ADF Mobile transaction replay service schema, or select a new one.

Note: Although you can change the name of the replay type, you
cannot rename the underlying application references that are needed
to successfully replay events from the client to the server.

Note: You can enable or disable transaction replay service for entity
objects using the overview editor for entity objects. For more
information see Section 5.3.7, "About Synchronization for Entity
Objects."

Enabling ADF Mobile Transaction Replay Service for an ADF Application

Developing the ADF Mobile Client Data Model 5-43

In addition, you can edit the replay type properties and entity objects using the
wizard’s pages.

Figure 5–24 ADF Mobile Client Page (After Creation of a Replay Type)

In addition, JDeveloper updates adf-config.xml, writes the TRS replay type for the
identified server application to the REPLAY_TYPE table in the transaction replay
service Schema, and sets appropriate application, project, and entity object properties
to reflect that transaction replay service has been enabled. As shown in Figure 5–25,
JDeveloper also creates a transaction replay service data control named
ADFmcTransactionReplayDataControl. JDeveloper overwrites this data control
each time you complete the wizard.

Figure 5–25 The Transaction Replay Service Data Control

You can use this data control to create a view for reviewing Replay Items. Creating
such a view enables you to review any conflicts that occurred during a prior
synchronization with the server.

You do not need to use the transaction replay service data control to log the standard
Replay Items that are generated from the ADF business components used by the
mobile client entity objects if you enabled transaction replay service for the entity
objects as described in Section 5.3.7.1, "How to Enable or Disable Synchronization for
Entity Objects." The ADF Mobile client framework handles this logging automatically
for the transaction replay service-enabled entity objects. If you create a mobile

Authentication

5-44 Mobile Client Developer's Guide for Oracle Application Development Framework

application that uses transaction replay service to invoke some business logic outside
of ADF Business Components, then you can use the transaction replay service data
control to manually log those Replay Items.

5.9 Authentication
When an application contacts the ADF Mobile transaction replay service server
through the AuthenticationManager for the first time, it downloads an RSA public
key and stores it in the application database. When a user successfully authenticates
through AuthenticationManager for the first time, the user name and password
are stored in the application database in two forms: first, an SHA1 hash of the
password is stored so that the application can authenticate this user in the future if the
device does not have network connectivity; second, AuthenticationManager uses
the RSA public key to encrypt the password and stores this encrypted password in the
database.

As the user runs the application, it generates transaction replay service records for
replay on the server. When the application synchronizes these records to the server, the
user name and encrypted password are sent to the server so that the transactions can
be executed in the user's server security context. The server has the private key to
decrypt the user's password and the private key is never downloaded to the mobile
client.

ADF Mobile client provides authentication through the interaction of the
AuthenticationManager class and the following EL expressions.

■ "#{securityContext.userName}"

■ "#{securityContext.password}"

■ "#{securityContext.loggingIn}"

■ "#{securityContext.statusMessage}"

■ "#{securityContext.hasError}"

■ "#{securityContext.errorMessage}"

The userName and password expressions must be set to enable a user’s application
to use the AuthenticationManager class; otherwise backing beans cannot use
them. Other EL expressions are optional. For more information, see Section 5.9.2,
"What You May Need to Know About SecurityContext EL Expressions."

5.9.1 What You May Need to Know About the AuthenticationManager Class
Example 5–6 illustrates a mobile client login page containing components that use EL
expressions. For more information, see Section 5.9.2.1, "Using EL Expressions for
Authentication."

Example 5–6 A Mobile Client Login Page

<?xml version='1.0' encoding='windows-1252'?>
<amc:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amc="http://xmlns.oracle.com/jdev/amc">
 <amc:form id="form1">
 <amc:menuControl refId="altMain" />
 <amc:panelGroupLayout id="home" layout="vertical">
 <amc:panelGroupLayout layout="vertical">
 <amc:inputText id="txtUserName" label="User Name: "
value="#{securityContext.userName}" />

Authentication

Developing the ADF Mobile Client Data Model 5-45

 <amc:inputText id="txtPassword" label="Password: "
value="#{securityContext.password}" secret="true" />
 </amc:panelGroupLayout>
 <amc:panelGroupLayout layout="horizontal">
 <amc:commandButton disabled="#{securityContext.loggingIn}"
actionListener="#{LoginBean.onLogin}" text="Login" />
 <amc:commandButton disabled="#{!securityContext.loggingIn}"
actionListener="#{LoginBean.onCancel}" text="Cancel" />
 </amc:panelGroupLayout>
 <amc:outputText id="lblStatus" value="Status:
#{securityContext.statusMessage}" rendered="#{securityContext.loggingIn}" />
 <amc:outputText id="lblError" value="#{securityContext.errorMessage}"
rendered="#{securityContext.hasError}" foregroundColor="#FF0000" />
 </amc:panelGroupLayout>
 </amc:form>
 <amc:menu id="altMain" type="alt" platform="wm">
 <amc:menuGroup id="menuGroup1" index="200">
 <amc:commandMenuItem label="Exit" index="0" action="appExit"/>
 </amc:menuGroup>
 </amc:menu>
</amc:view>

Example 5–7 illustrates a backing bean called LoginBean that uses the
AuthenticationManager class.

Example 5–7 Sample LoginBean

package view.backing;

import oracle.adfnmc.el.util.BeanResolver;
import oracle.adfnmc.model.security.AuthenticationManager;
import oracle.adfnmc.model.security.CredentialsCache;
import oracle.adfnmc.util.Utility;

public class LoginBean
 extends BeanResolver
{
 private static final String HOME_ACTION = "toHome"; // defined in the task flow
definition files, typically task-flow-definition.xml

 private AuthenticationManager m_mgr;

 public LoginBean()
 {
 }

 private synchronized AuthenticationManager getAuthenticationManager()
 {
 if (m_mgr == null)
 {
 m_mgr = new AuthenticationManager();
 m_mgr.setNavigationAction(HOME_ACTION);
 m_mgr.setWebServiceUrl("<enter value here>");
 }
 return m_mgr;
 }

 private void onLogin()
 {

Authentication

5-46 Mobile Client Developer's Guide for Oracle Application Development Framework

 AuthenticationManager mgr = getAuthenticationManager();

 String replayTypeName = "<enter value here>";
 mgr.authenticate(replayTypeName);
 }

 private void onCancel()
 {
 AuthenticationManager mgr = getAuthenticationManager();
 mgr.cancel();
 }

 public Object invokeMethod(String methodName, Object[] params)
 {
 if (methodName.equals("onLogin"))
 {
 this.onLogin();
 }
 else if (methodName.equals("onCancel"))
 {
 this.onCancel();
 }

 return null;
 }
}

As illustrated in Example 5–7, the authenticate method of the
AuthenticationManger class is called and returns immediately after a user clicks a
login button. The bean’s onLogin and onCancel methods are hooked to the action
listeners (such as actionListener="#{LoginBean.onLogin}" text="Login"
and actionListener="#{LoginBean.onCancel}" text="Cancel" in
Example 5–8). The AuthenticationManager class spawns a background
authentication thread that checks if the user has the permission to update a transaction
replay service replay type. If authentication succeeds, it calls a NavigationAction,
which is set in the mobile client task flow. In this example, the NavigationAction
leads to the home page.

5.9.1.1 Public Accessors
Table 5–5 lists the public accessors of the AuthenticationManager class.

Note: You must set the String ReplayTypeName variable to the
same value entered in the Type Name field of the transaction replay
service wizard’s Replay Type Page. For example, you would enter
MyFodMobile-Entity-Replay_Type13, the value shown in Figure 5–22.

Note: Typically, you change only NavigationAction.

Authentication

Developing the ADF Mobile Client Data Model 5-47

5.9.1.2 Public Methods
Table 5–6 lists the public methods of the AuthenticationManager class.

5.9.1.3 The AuthenticationCallback Class
The callback method is:

Table 5–5 Public Accessors

Name Type Default Value Description

NavigationAction String None. The value must
be set before the
authenticate
method is called

Denotes the
navigation action
that runs after a
successful login

WebServiceAuthenticationMethodName String validateCredentia
l

Denotes a web
service method that
is used for
credential
validation

WebServiceNameSpace String http://webservice
.tnxreplay.oracle
/

Denotes the web
service namespace
that is used for web
service calls

WebServicePublicKeyMethodName String getPublicKey Denotes a web
service method that
is used for public
key retrieval

WebServiceUrl String None; The value must
be set before the
authenticate
method is called.

Denotes a web
service URL that is
used

Callback AuthenticationCall
back

null Denotes a callback
used for success or
failure of a login

Table 5–6 Public Methods

Method Usage

clearPublicKey Call this method when the server’s public key changes. Although servers seldom
change their public keys, this method clears the public key to enable the
AuthenticationManager class to request the public key when the user next tries to
authenticate.

authenticate The AuthenticationManager class calls the authenticate method when a user
wants to authenticate credentials. Before this method is called, the values must be set
to #{securityContext.userName} and #{securityContext.password}.

The authentication process is as follows:

■ For a user who has never logged in before:

If the device is offline, then an error is raised that indicates that the device is
offline. If the device is online, then the public key is requested and the credentials
are validated with the web service.

■ For a user who has logged in previously:

If the device is offline, then the credentials are validated against the cached
credentials. If the device is online, then the credentials are validated against the
web service.

cancel Call this method when a user wants to terminate the current authentication process.

Authentication

5-48 Mobile Client Developer's Guide for Oracle Application Development Framework

public void response(int value, Exception e);

The current int values are passed in:

/**
 * This denotes a successful login
 */
 public static final int AUTH_SUCCESS = 0;

 /**
 * This denotes a general failure
 */
 public static final int AUTH_FAILURE = 1;

 /**
 * This denotes a failure due to invalid credentials
 */
 public static final int AUTH_FAILURE_CREDENTIALS = 2;

 /**
 * This denotes a failure due to the device being offline with no
stored credentials
 */
 public static final int AUTH_FAILURE_OFFLINE = 3;

 /**
 * This denotes a failure resolving the URL
 */
 public static final int AUTH_FAILURE_INVALID_URL = 4;

5.9.2 What You May Need to Know About SecurityContext EL Expressions
Write to the expressions listed in Table 5–7 and read from the expressions listed in
Table 5–8.

Table 5–8 lists the EL expressions that are read from.

Table 5–7 EL Expressions (Written To)

Name Type Expression Description

UserName String #{securityContext.userName} This must be set before
AuthenticationManager.authenti
cate() is called. This value is passed to
the web service as the user name to be
authenticated.

Password String #{securityContext.password} This must be set before
AuthenticationManager.authenti
cate() is called. This value is passed to
the web service as the password to be
authenticated.

This value is cleared automatically on a
successful login to prevent it from
getting read later in the application.

Authentication

Developing the ADF Mobile Client Data Model 5-49

5.9.2.1 Using EL Expressions for Authentication
Example 5–8 illustrates an mobile client login page containing components with some
of the EL expressions listed in Table 5–7 and Table 5–8. In lines 7 and 8, the UserName

Table 5–8 EL Expressions (Read From)

Name Type Expression Description

LoggingIn Boolean #{securityContext.loggingIn} This expression is set to true when
AuthenticationManager.authenticate() is
called. It remains set to true until there is a
successful login or a failure.

You can use this expression to swap the disabled
nature of a Login/Cancel CommandButton pair
based on the current action. For example:

<amc:commandButton
disabled="#{securityContext.loggingIn}"
actionListener="#{LoginBean.onLogin.execute}
" text="Login" />
<amc:commandButton
disabled="#{!securityContext.loggingIn}"
actionListener="#{LoginBean.onCancel.execute
}" text="Cancel" />

Status
Message

String #{securityContext.statusMess
age}

This expression is updated when
AuthenticationManager.authenticate() is
called for the different steps that are taken to
authenticate the user. Use this expression to
populate an OutputText component that updates
users on the current status of the authentication.
For example:

<amc:outputText id="lblStatus"
value="Status:
#{securityContext.statusMessage}"
rendered="#{securityContext.loggingIn}" />

HasError Boolean #{securityContext.hasError} This expression is set to false when
AuthenticationManager.authenticate() is
called and remains set to false unless a login failure
occurs.

Use this expression for OutputText components
that render only when there is an error. For
example:

<amc:outputText id="lblError"
value="#{securityContext.errorMessage}"
rendered="#{securityContext.hasError}"
foregroundColor="#FF0000" />

Error
Message

String #{securityContext.errorMessa
ge}

The expression is updated when
AuthenticationManager.authenticate()res
ults in an error.

Use this expression when creating an OutputText
component that notifies the user of an error. For
example:

<amc:outputText id="lblError"
value="#{securityContext.errorMessage}"
rendered="#{securityContext.hasError}"
foregroundColor="#FF0000" />

Authentication

5-50 Mobile Client Developer's Guide for Oracle Application Development Framework

and Password EL expressions are set. Setting secret=true in line 8, hides the
password entered in the user interface by making it appear as a series of asterisks (*).
In lines 11 and 12, the LoggingIn EL expression is used to alternately disable the
login button or enable the cancel button. Lines 14 and 15 illustrate the Status Message
and Error Message expressions.

Example 5–8 Sample Mobile Client Login Page Using EL Expressions

1: <?xml version='1.0' encoding='windows-1252'?>
2: <amc:view>
3: <amc:form xmlns:amc="http://xmlns.oracle.com/jdev/amc">
4: <amc:menuControl refId="altMain" />
5: <amc:panelGroupLayout id="home" layout="vertical">
6: <amc:panelGroupLayout layout="vertical">
7: <amc:inputText id="txtUserName" label="User Name: " value="#{securityContext.userName}"
/>
8: <amc:inputText id="txtPassword" label="Password: " value="#{securityContext.password}"
secret="true" />
9: </amc:panelGroupLayout>
10: <amc:panelGroupLayout layout="horizontal">
11: <amc:commandButton disabled="#{securityContext.loggingIn}"

actionListener="#{LoginBean.onLogin}" text="Login" />
12: <amc:commandButton disabled="#{!securityContext.loggingIn}"

actionListener="#{LoginBean.onCancel}" text="Cancel" />
13: </amc:panelGroupLayout>
14: <amc:outputText id="lblStatus" value="Status: #{securityContext.statusMessage}"

rendered="#{securityContext.loggingIn}" />
15: <amc:outputText id="lblError" value="#{securityContext.errorMessage}"

rendered="#{securityContext.hasError}" foregroundColor="#FF0000" />
16: </amc:panelGroupLayout>
17: </amc:form>
18: <amc:menu id="altMain" type="alt" platform="wm">
19: <amc:menuGroup index="200">
20: <amc:commandMenuItem label="Exit" index="0" action="appExit"/>
21: </amc:menuGroup>
22: </amc:menu>
23: </amc:view>

6

Creating the ADF Mobile Client User Interface 6-1

6Creating the ADF Mobile Client User
Interface

This chapter describes how to build ADF Mobile client user interfaces for Windows
Mobile devices and BlackBerry smartphones using ADF Mobile client components.

This chapter includes the following sections:

■ Section 6.1, "Introduction to Creating the ADF Mobile Client User Interface"

■ Section 6.2, "Creating Task Flows"

■ Section 6.3, "Creating Mobile Views"

■ Section 6.4, "Designing the Layout of the Page"

■ Section 6.5, "Creating and Using Input Components"

■ Section 6.6, "Creating and Using Output Components"

■ Section 6.7, "Displaying Images"

■ Section 6.8, "Creating and Using Tables"

■ Section 6.9, "Using Buttons and Links"

■ Section 6.10, "Creating and Using Scanners"

■ Section 6.11, "Creating and Using Menus"

■ Section 6.12, "Using Event Listeners"

■ Section 6.13, "Localizing UI Components"

■ Section 6.14, "Understanding EL Support"

■ Section 6.15, "Understanding Binding Layer Components"

This chapter describes the following:

■ Design and development of the flow of the user interface.

■ Creation of MCX pages.

■ Features of ADF Mobile client components that are unique to the mobile client.

■ Usage of the Expression Language.

■ Usage of binding layer components.

Introduction to Creating the ADF Mobile Client User Interface

6-2 Mobile Client Developer's Guide for Oracle Application Development Framework

6.1 Introduction to Creating the ADF Mobile Client User Interface
ADF Mobile client provides a set of layout and field components that enable you to
create applications that behave appropriately for both the BlackBerry and Windows
Mobile user experience. While the mobile client maintains the same development
experience as ADF Faces by allowing you to drag these components into an editor
from the Component Palette or from the Data Control Palette, these components are
not identical to their ADF Faces counterparts: the mobile client components do not
support every property and behavior of ADF Faces components. In essence, the
mobile client components represent wrappers around native components in
BlackBerry and Windows Mobile, with their appearance and behavior being very
similar to the ADF Faces components.

For more information, see the following:

■ Chapter 4, "Getting Started with ADF Mobile Client"

■ Chapter 5, "Developing the ADF Mobile Client Data Model"

6.2 Creating Task Flows
Using your application workspace (see Section 4.4, "Creating an Application
Workspace"), you start creating the user interface for your application by designing
task flows. As with any standard JSF application, ADF Mobile client applications use
navigation cases and rules to define the task flow. These definitions are stored in the
MobileClient-task-flow.xml file (see Section 6.2.6, "What You May Need to
Know About the MobileClient-task-flow.xml File").

For Oracle Fusion Middleware 11g release 1 of ADF Mobile client, you can create
mobile applications that have only bounded task flows. As described in "Task Flow
Types" section of Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework, a bounded task flow is also known as a task flow
definition and represents the reusable portion of an application. Bounded task flows
have a single entry point and zero or more exit points. They have their own collections
of activities and control-flow rules, as well as their own memory scope and
managed-bean life span. Other features of bounded task flows include accepting input
parameters and generating return values.

You use the Mobile Client Task Flow Designer to create bounded task flows for mobile
client applications (mobile client task flows). When designing a mobile client task
flow, JDeveloper maintains the same experience as designing an ADF task flow, as
described in "Creating a Task Flow" section of Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework. Like the overview
editor for task flows, this tool includes a diagrammer (see Section 6.2.7, "What You
May Need to Know About the Mobile Client Task Flow Diagrammer") in which you
build the task flow by dragging and dropping activities and control flows from the
Component Palette. You then define these activities and the transitions between them
using the Property Inspector.

Note: When developing interfaces for mobile devices and
smartphones, always be aware of the fact that screen space is very
limited. In addition, touchscreen support is not available on some
mobile devices and smartphones.

Creating Task Flows

Creating the ADF Mobile Client User Interface 6-3

6.2.1 How to Create a Task Flow
You use the navigation diagrammer to declaratively create a task flow. When you use
the diagrammer, JDeveloper creates the XML metadata needed for navigation to work
in your application in the MobileClient-task-flow.xml file (default). To use the
task flow other than the default on the application startup, you need to manually
modify the value of the following setting in the adf-config.xml file:

<amc:setting name="root-task-flow" value="MobileClient-task-flow.xml"/>

Before you begin:
To design a task flow, the ADF Mobile application must include a view controller
project file (that is, a project that includes the ADF Mobile UI technology), which
includes the MobileClient-task-flow.xml file. If the project does not include this
file, or if the project requires an additional flow, you can create one using the Mobile
Client Task Flow Creation Wizard as described in Section 6.2.3, "How to Use the
Mobile Client Task Flow Creation Wizard."

To create a task flow:
1. Open the MobileClient-task-flow.xml file for your application. By default,

this is in the Application Sources node.

2. In the editor window, click the Diagram tab to open the navigation diagrammer.

3. If the Component Palette is not displayed, from the main menu choose View >
Component Palette. By default, the Component Palette is displayed in the upper
right-hand corner of JDeveloper.

4. In the Component Palette dropdown list, choose ADF Mobile Client Task Flow.

Figure 6–1 ADF Mobile Client Task Flow Palette in JDeveloper

5. Select the component you wish to use and drag it onto the diagram.

JDeveloper redraws the diagram with the newly added component.

Note: Each project must have one root task flow. For more
information, see Table 10–1, " ADF Mobile Client Framework
Settings".

Creating Task Flows

6-4 Mobile Client Developer's Guide for Oracle Application Development Framework

Once the navigation for your application is defined, you can create the pages and add
the components that will execute the navigation. For more information about using
navigation components on a page, see Section 6.2.11, "How to Enable Page Navigation
Using Control Flow Case."

After you define the task flow for the application, you can double-click a view file to
access the MCX view. For more information, see Section 6.3, "Creating Mobile Views."

6.2.2 How to Create an Additional Task Flow
JDeveloper automatically creates a bounded mobile client task flow (named
MobileClient-task-flow.xml by default) when you select the Mobile Client UI
technology for the project. You can create additional bounded task flows using the
task flow dialog.

To create a bounded task flow:
1. In the main menu, select File, and then New.

2. In New Gallery, expand the Client Tier node, and then select ADF Mobile Client.

3. From the Items list, select ADF Mobile Client Task Flow, as Figure 6–2 shows,
and then click OK.

Figure 6–2 Creating a Mobile Client Task Flow

Tip: You can also use the overview editor to create navigation rules
and navigation cases by clicking the Overview tab. Press F1 for details
on using the overview editor to create navigation.

Additionally, you can manually add elements to the
MobileClient-task-flow.xml file by directly editing the page in
the source editor. To view the file in the source editor, click the Source
tab.

Creating Task Flows

Creating the ADF Mobile Client User Interface 6-5

4. Complete the Create ADF Mobile Client Task Flow dialog by adding the
following:

■ Enter a name for the task flow. By default, JDeveloper names this file
MobileClient-task-flow.xml.

■ Enter the directory path.

5. Click OK.

Figure 6–3 shows the Create ADF Mobile Client Task Flow dialog. JDeveloper
increments the number of the task flow according to the number of task flows that
already exist in the same pattern. For example, Figure 6–3 shows a task flow
named MobileClient-task-flow1.xml.

Figure 6–3 Create ADF Mobile Client Task Flow Dialog

6.2.3 How to Use the Mobile Client Task Flow Creation Wizard
Although JDeveloper creates the mobile client task flow automatically when you
assign the Mobile Client technology to a project, you can also manually create a mobile
client task flow using the Mobile Client Task Flow Creation Wizard.

Before you begin:
Because the task flow files are included in the view controller project, the ADF Mobile
client application must include the view controller project file that results from the
selection of the ADF Mobile UI technology (see Section 4.4.1, "How to Create an
Application Workspace.")

To create a mobile client task flow:
1. In the Application Navigator, select the project in which you want to create the

mobile client task flow, and then choose New to open the New Gallery dialog.

2. Select the Current Project Technologies tab, and then expand the Client Tier
node in the Categories list.

3. Select ADF Mobile Client, and then select ADF Mobile Client Task Flow from
the Items list.

4. Enter the name of the task flow (the default value is
MobileClient-task-flow.xml) and, if needed, enter the directory for the task
flow. If an application already includes a mobile client task flow, the wizard will
automatically give the task flow a unique name within the application. For
example, the task flow that Figure 6–5 shows is called
MobileClient1-task-flow.xml.

5. Click OK.

Creating Task Flows

6-6 Mobile Client Developer's Guide for Oracle Application Development Framework

6.2.4 What Happens When You Create a Mobile Client Task Flow
JDeveloper creates a bounded task flow, which by default is called
MobileClient-task-flow.xml. You can populate this task flow by dragging ADF
Mobile Client Task Flow components into the diagrammer.

Figure 6–4 shows the Diagram tab selected, revealing the diagrammer. ADF Mobile
Client Task Flow is selected in the Component Palette.

Figure 6–4 The Bounded Task Flow in the Diagrammer

6.2.5 What You May Need to Know About Supported Activities and Control Flows
The mobile client task flow designer supports a subset of ADF activities and control
flows.

Table 6–1 lists the activities supported for mobile client task flows.

Creating Task Flows

Creating the ADF Mobile Client User Interface 6-7

Table 6–2 lists the control flows supported by mobile client task flows.

Table 6–1 Supported Activities

Activity Description

Method Call Invokes a method (typically a method on a managed bean). You
can place a method call activity anywhere in the control flow of
an application to invoke application logic based on control flow
rules. For additional information, see "Using Method Call
Activities" in Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

You can also specify parameters that you pass into a method call
in a task flow at design time. These include standard ADF
parameters for a method call action in a mobile client task flow.
When you use the designer to generate a method, it adds the
required arguments and type. For more information, see the
following sections of Oracle Fusion Middleware Fusion Developer's
Guide for Oracle Application Development Framework:

■ "Using Method Call Activities"

■ "How to Specify Method Parameters and Return Values"

At run time, you can define parameters for a method call in a
mobile client task flow, and pass parameters into the method call
itself for its usage. For more information on passing method call
parameters, see the following sections of Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application
Development Framework:

■ "Creating Complex Task Flows"

■ "Setting Parameter Values Using a Command Component"

■ "Working with Task Flow Activities"

■ "How to Specify Method Parameters and Return Values"

Router Evaluates an EL expression and returns an outcome based on
the value of the expression. These outcomes can then be used to
route control to other activities in the task flow. For more
information, see "Using Router Activities" section in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

View Displays an MCX page. You can create an MCX page by
double-clicking the view activity. For more information, see
"Using View Activities" section in Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development
Framework.

Task Flow Return In mobile client applications, this activity is used as the exit
Figure 6–5 shows a task flow return named Exit.

Table 6–2 Supported Control Flows

Control Flows Description

Control Flow Case Identifies how control passes from one activity to the next in an
application. For more information, see "Control Flows" in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

Wildcard Control Flow Rule Represents a control flow case that can originate from any
activity with an ID matching a wildcard expression. For more
information, see "How to Add a Wildcard Control Flow Rule" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

Creating Task Flows

6-8 Mobile Client Developer's Guide for Oracle Application Development Framework

6.2.6 What You May Need to Know About the MobileClient-task-flow.xml File
As described in Section 4.4.2, "What Happens When You Create a Mobile Client
Application Workspace," adding the Mobile Client technology to the project results in
the addition of the MobileClient-task-flow.xml file. This file is the mobile client
counterpart to task-flow-definition.xml, and lets you design the interactions
between views (MCX pages) by dragging and dropping the mobile client task flow
components from the Component Palette into the diagrammer. The
MobileClient-task-flow.xml file (shown in Figure 6–5), which JDeveloper
generates as a result of selecting the ADF Mobile UI technology for the project, is the
source file for creating task flows for mobile client applications.

Figure 6–5 The MobileClient-task-flow.xml File

You use the Property Inspector to define the components in the mobile client task flow
in the same manner as you would using task-flow-definition.xml or
faces-config.xml.

6.2.7 What You May Need to Know About the Mobile Client Task Flow Diagrammer
As illustrated in Figure 6–5, the task flow diagram and Component Palette display
automatically after you create a task flow using the Mobile Client Task Flow Creation
Wizard. The task flow diagram is a visual editor into which you can drag and drop
activities and task flows from the Component Palette or from the Application
Navigator.

For more information, see the following:

■ Section 6.2.3, "How to Use the Mobile Client Task Flow Creation Wizard"

■ Section 6.2.9, "How to Add View Activities"

Creating Task Flows

Creating the ADF Mobile Client User Interface 6-9

6.2.8 How to Add Mobile Client Activities
After you create a mobile client task flow, the task flow diagrammer and Component
Palette automatically display. As in ADF application development, this task flow
diagrammer is the visual editor onto which you drag and drop activities, views, and
control flows.

Before you begin:
You must select ADF Mobile Client Task Flow from the Component Palette as
Figure 6–6 shows.

To add an activity to a mobile client task flow:
1. In the Application Navigator, double-click a task flow source file

(MobileClient-task-flow.xml) to display the task flow diagram and the
Component Palette, as Figure 6–6 shows. The diagrammer displays the task flow
editor. The Component Palette automatically displays the components available
for a mobile client task flow.

Figure 6–6 The Diagrammer for the Task Flow Editor

2. Drag an activity from the Component Palette onto the diagram. If you drag a view
activity onto the diagram, you can invoke the Create MCX File wizard.

6.2.9 How to Add View Activities
The view activity is associated in metadata with an actual MCX page. You add a view
activity by dragging and dropping a view activity from the Component Palette. A
view activity displays an MCX page. You can create an actual MCX page by
double-clicking the view activity in the Diagram window. You can also create a view
activity by dragging and dropping an MCX file in the Application Navigator into the
overview editor’s Diagram tab.

6.2.10 How to Add a Wildcard Control Flow Rule
Mobile client task flows support the wildcard control flow rule, which represents a
control flow from-activity-id that contains a trailing wildcard (foo*) or a single
wildcard character.

Creating Mobile Views

6-10 Mobile Client Developer's Guide for Oracle Application Development Framework

6.2.11 How to Enable Page Navigation Using Control Flow Case
You can create navigation using the Control Flow Case component, which identifies
how control passes from one activity to the next. To create a control flow, select
Control Flow Case from the Component Palette. Next, connect the control flow case to
the source activity and then to the destination activity. JDeveloper creates the
following after you connect a source and target activity:

■ control-flow-rule: Identifies the source activity using a
from-activity-id.

■ control-flow-case: Identifies the destination activity using a
to-activity-id.

To define a control flow case directly in the Mobile client task flow diagram
1. In the Application Navigator, double-click a task flow source file to display the

task flow diagram.

2. Select Control Flow Case from the Component Palette.

3. On the diagram, click a source activity and then a destination activity. JDeveloper
adds the control flow case to the diagram. Each line that JDeveloper adds between
an activity represents a control flow case. The from-outcome contains a value
that can be matched against values specified in the action attribute of the UI
components.

4. To change the from-outcome, select the text next to the control flow in the
diagram. By default, this is a wildcard character.

5. To change the from-activity-id (the identifier of the source activity), or the
to-activity-id (the identifier for the destination activity), drag either end of
the arrow in the diagram to a new activity.

For more information, see "What Happens When You Create a Control Flow Rule"
section in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

6.3 Creating Mobile Views
You start creating mobile views by doing the following:

■ Getting familiar with the MCX page structure

■ Using the visual editor

■ Dragging and dropping components into the MCX page

■ Adding data controls to a view

6.3.1 How to Work With MCX Pages
The MCX page is represented by an XML file similar to a JSPX file in ADF Faces. The
view layer of a mobile client application is persisted in this file.

6.3.1.1 Interpreting the MCX Page Structure
The following is a basic structure of the MCX file:

<amc:view>
 <amc:form/>
 <amc:menu/>
 …

Creating Mobile Views

Creating the ADF Mobile Client User Interface 6-11

 <amc:menu/>
</amc:view>

For more information, see Section 6.3.1.3, "What Happens When You Create an MCX
Page."

6.3.1.2 Creating MCX Pages
MCX files are contained in the MobileClient project. You create these files using the
Create ADF Mobile Client Page dialog.

Before you begin:
The ADF Mobile client application must include a MobileClient project (that is, a
project that includes the ADF Mobile UI technology).

To create an MCX page:
1. In the Application Navigator, right-click the directory where you would like the

page to be saved, and choose New.

2. In the New Gallery, expand the Client Tier node, select ADF Mobile Client and
then ADF Mobile Client Page and click OK.

Figure 6–7 Creating a Mobile Client Page

3. In the Create ADF Mobile Client Page dialog, enter a name and, if needed, a
location. For help, click Help in the dialog. Click OK.

Tip: Alternatively, you can also create an MCX page by
double-clicking a view icon in the task flow editor for a page that has
not yet been created.

Creating Mobile Views

6-12 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 6–8 Create ADF Mobile Client Page Dialog

6.3.1.3 What Happens When You Create an MCX Page
When you use the Create ADF Mobile Client Page dialog to create an MCX page,
JDeveloper creates the physical file and adds it to the mobile directory of the
MobileClient project.

In the Application Navigator that Figure 6–9 shows, the mobile node contains a
newly created MCX file called revieworder.mcx.

Figure 6–9 The MCX File in the Application Navigator

JDeveloper also adds the code necessary to import the component libraries and
display a page. This code is illustrated in the source editor shown in Figure 6–9.

Example 6–1 Declarative Page Source Created by JDeveloper

<?xml version="1.0" encoding="UTF-8" ?>
<amc:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amc="http://xmlns.oracle.com/jdev/amc">
 <amc:form id="form0">
 <amc:menuControl refId="menu0"/>
 <amc:panelGroupLayout id="panelGroupLayout1"/>
 </amc:form>
 <amc:menu type="main" id="menu0">
 <amc:menuGroup id="group1">
 <amc:commandMenuItem id="commandMenuItem1"/>
 </amc:menuGroup>
 </amc:menu>
</amc:view>

Creating Mobile Views

Creating the ADF Mobile Client User Interface 6-13

When the page is first displayed in JDeveloper, it is displayed in the visual editor
(accessed by clicking the Design tab), which allows you to view the page in a
WYSIWYG environment. Figure 6–10 shows the Preview tab selected for a newly
created MCX page called revieworder.mcx. This page is blank because it has not
yet been populated with ADF Mobile client components or data controls.

Figure 6–10 The Visual Editor for a Newly Created MCX Page

You can also view the source for the page in the source editor by clicking the Source
tab, as shown in Figure 6–9. The Structure window located in the lower left-hand
corner of JDeveloper (also shown in Figure 6–10), provides a hierarchical view of the
page. For more information, see Section 6.3.2.2, "Using the Visual Editor."

6.3.2 How to Add Mobile Client Components and Data Controls to an MCX Page
After you create an MCX page, you can start adding the mobile client UI components
and data controls to your page.

6.3.2.1 Adding UI Components
You can use the Component Palette to drag and drop components onto the page.
JDeveloper then adds the necessary declarative page code and sets certain values for
component attributes.

For information on adding and using specific mobile client components, see the
following:

■ Section 6.4, "Designing the Layout of the Page"

■ Section 6.5, "Creating and Using Input Components"

■ Section 6.6, "Creating and Using Output Components"

■ Section 6.7, "Displaying Images"

■ Section 6.8, "Creating and Using Tables"

Creating Mobile Views

6-14 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Section 6.9, "Using Buttons and Links"

■ Section 6.10, "Creating and Using Scanners"

Before you begin:
The ADF Mobile application must include a MobileClient project (that is, a project that
includes the ADF Mobile UI technology). This project must also contain an MCX page,
or an ADF Mobile task flow from which to create a page.

As described in Section 6.3.1.2, "Creating MCX Pages," you can invoke the Create ADF
Mobile Client page dialog by double-clicking a view icon in a navigation diagram or
by selecting the MobileClient project, then selecting ADF Mobile Client in the New
Gallery and then selecting ADF Mobile Client Page.

To add mobile client components to a page:
1. Open an MCX page in the visual editor.

2. In the Component Palette, use the menu to choose ADF Mobile Client (see
Figure 6–11).

Figure 6–11 ADF Mobile Client Component Palette

3. Select the component you wish to use, and then drag and drop it onto source
editor, page designer, or structure window.

Note: If the Component Palette is not displayed, from the menu
choose View > Component Palette. By default, the Component
Palette is displayed in the upper right-hand corner of JDeveloper.

Creating Mobile Views

Creating the ADF Mobile Client User Interface 6-15

JDeveloper redraws the page in the visual editor with the newly added
component. In the visual editor, you can directly select components on the page
and use the resulting context menu to add more components.

6.3.2.2 Using the Visual Editor
JDeveloper’s editor provides WYSIWYG support for both the Windows Mobile and
BlackBerry platforms when you build views using MCX files. As illustrated in
Figure 6–12, splitting a view while adding the mobile client components to the MCX
file enables you to see both the code view through the source editor and a mobile
client UI view through the visual interactive designer represented by the Design tab.
As a result, you can modify the source view and get instant feedback in terms of the
look and feel of that application on both the BlackBerry and Windows Mobile
platforms.

Figure 6–12 Splitting Design and Source Views

Note: When building an MCX page, you can only drop UI
components into UI containers such as a Panel Group Layout, Panel
Form Layout, and Panel Label and Message.

Tip: You can also drag and drop components from the palette into
the Structure window or directly into the code in the source editor.

You can always add components by directly editing the page in the
source editor. To view the page in the source editor, click the Source
tab at the bottom of the page.

Creating Mobile Views

6-16 Mobile Client Developer's Guide for Oracle Application Development Framework

In addition to being able to see the Design and Source views simultaneously, you can
also open and work with multiple design views at the same time, as well as set each
one to a different platform and screen size. By opening a combination of design views
for different devices, you can develop applications simultaneously for different
platforms and form factors.

Besides providing the means to drag and drop components onto the MCX page, the
designer lets you interact with the components directly, therefore eliminating the need
to use the Structure pane:

■ When you select a component in the Designer, this component is outlined in all
visible renderers.

■ When you move the mouse over a component, you can see the highlight in the
current renderer.

■ You can select a component using a breadcrumb bar that shows the hierarchy of
components on the current page. Note that the breadcrumb bar appears below the
Design tab, and selecting a component in this bar has the same effect as selecting
the component in the Structure pane.

■ When you right-click a component in the designer, the standard context menu is
displayed. This menu is identical to the context menu of the Structure window.

6.3.2.3 Adding Data Controls to the View
You can create databound UI components in an MCX view by dragging data control
elements from the Data Controls panel and dropping them into either the Structure
window or the source editor. When you drag an item from the Data Controls panel to
either of these places, JDeveloper invokes a context menu of default UI components
available for the item that you dropped. When you select the desired UI component,
JDeveloper inserts into an MCX page. In addition, JDeveloper creates the binding
information in the associated page definition file. If no such file exists, then JDeveloper
creates one.

Depending on the approach you take, you can insert different types of data controls
into the Structure window of an MCX page. For example, dropping a collection such
as a View object enables you to create a Form or a Table.

Figure 6–13 shows the context menu for creating forms or tables that appears when
you drag a View object (such as OrderItemEOView3 in Figure 6–13) in to the
Structure window of an MCX page.

Note: The MCX page is rendered even for an invalid MCX file.
Errors are indicated by the error icon on a component. By moving the
mouse over the error icon, you can view the error details.

Creating Mobile Views

Creating the ADF Mobile Client User Interface 6-17

Figure 6–13 Creating a Form or Table from a View Object

Dropping an attribute of a collection lets you create various input and output
components. You can also create Buttons and Links by dropping a data control
operation on a page.

The respective action listener is added in the mobile client Button for each of these
operations. The EL expression in the actionListener is the same as the one created
on the drop of an operation into an ADF Faces application.

The following scenarios describe the specific controls that result from dropping an
entire collection or from dropping selected attributes into the Structure window or the
MCX page’s source file.

Scenario 1
In this scenario, you populate a Panel Form Layout based on the View objects in the
model layer by performing the following:

1. Create a new MCX page. Drag a Panel Form Layout component from the
Component Palette into the page’s Panel Group Layout.

2. From the Data Controls panel, select a collection such as a View object, and then
drop it into the Structure window. A context menu appears that presents options
to create a form or a table.

3. Select either form or table. A wizard appears that describes all of the View object
attributes that can be added to the MCX page as well as the type of mobile client
components that can be created for each of the fields.

4. Select the appropriate attributes and change the component as needed.

5. Click OK. JDeveloper adds all of the controls to the MCX page and adds the
required EL expressions.

Scenario 2
In this scenario, you add only specific attributes of a View object by performing the
following:

1. Create an MCX page.

Creating Mobile Views

6-18 Mobile Client Developer's Guide for Oracle Application Development Framework

2. From the Data Controls panel, expand a collection such as a View object.

3. Select an attribute, and then drop it into the Structure window of the MCX source
file. Depending on the type of attribute that you select, a context menu appears
that presents the appropriate components.

Table 6–3 lists the selection components, which are available when you select
Single Selections.

Selecting Texts in the context menu enables you to create text controls by
populating the page with the components listed in Table 6–4.

If you select a date attribute, then the context menu presents the components
listed in Table 6–5 when you select Date.

Table 6–3 Selection-Related Components

Component Description EL Expressions

Select One Choice Creates a mobile
client combo box
with a label and with
value properties

label="#{bindings.FieldName.label}"
value="#{bindings.FieldName.inputValue}"
(selectOneChoice)

value="#{bindings.FieldName.items}"
(nested selectItems)

Select Boolean
Checkbox

Creates a mobile
client check box with
a label and with a
value properties.

value="#{bindings.FieldName.inputValue}"
text="#{bindings.FieldName.label}"

Table 6–4 Text-Related Components

Component Description EL Expressions

Output Text with Label Creates a mobile
client Panel
Label and
Message
component that
contains an
Output Text
component.

label=”#{bindings.FieldName.hints.label}”
(on panelLabelAndMessage)

value=”#{bindings.FieldName.inputValue}”
(on outputText)

Output Text Creates a mobile
client output text
value property.

value=”#{bindings.FieldName.inputVa
lue}”

Input Text with Label Creates a mobile
client input text
with label and
value properties.

label=”#{bindings.FieldName.hints.l
abel}”

value=”#{bindings.FieldName.inputVa
lue}”

Input Text Creates a mobile
client input text
with value
property.

value=”#{bindings.FieldName.inputVa
lue}”

Creating Mobile Views

Creating the ADF Mobile Client User Interface 6-19

4. Select the component. JDeveloper adds the controls to the MCX page and adds the
required EL expressions as well.

Figure 6–14 shows the context menu for adding date, single selection, and text
controls that appears when you drag an attribute from the Data Controls panel
into the Structure window of an MCX page. As shown in Figure 6–14, dragging a
date-related attribute (CreationDate) results in a context menu that includes the
Dates selection, one that enables you to create date input components that
Table 6–5 describes.

Figure 6–14 Adding Controls from Attributes

6.3.2.4 Configuring UI Components
Once you drop components onto a page, you can use the Property Inspector
(displayed by default at the bottom right of JDeveloper) to set attribute values for each
component.

Table 6–5 Date Attribute-Related Components

Component Description EL Expression

Input Date with Label Creates a mobile
client input date
with a label and
value property.

value="#{bindings.FieldName.inputValue}"
label="#{bindings.FieldName.hints.label}"
required="#{bindings.FieldName.hints.mand
atory}"
(inputDate)

pattern="#{bindings.FieldName.format}"
(nested convertDateTime)

Input Date Creates a mobile
client input date
with a value
property.

value="#{bindings.FieldName.inputValue}"
required="#{bindings.FieldName.hints.mand
atory}"
(inputDate)

pattern="#{bindings.FieldName.format}"
(nested convertDateTime)

Designing the Layout of the Page

6-20 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 6–15 shows the Property Inspector displaying the attributes for an Input Text
component.

Figure 6–15 The Property Inspector

To set component attributes:
1. Select the component for which you want to set attributes. You can select the

component either in the visual editor or the Structure window, or you can select
its tag directly in the source editor.

2. In the Property Inspector, either enter values directly into the fields, or if the field
contains a list, use that list to select a value. You can also use the list to the right of
the field, which launches a popup containing tools you can use to set the value.
These tools are either specific property editors (opened by choosing Edit) or the
Expression Builder, which you can use to create EL expressions for the value
(opened by choosing Expression Builder). For more information about using the
Expression Builder, see "Creating EL Expressions" section in Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

When you use the Property Inspector to set or change attribute values, JDeveloper
automatically changes the page source for the attribute to match the entered value.

6.4 Designing the Layout of the Page
ADF Mobile client provides layout components (listed in Table 6–6) that let you
arrange components in a page. Usually, you begin building pages with these
components, and then add other components that provide other functionality either
inside these containers, or as child components to the layout components. Some of
these components provide geometry management functionality, such as the capability
to stretch when placed inside a component that stretches.

Tip: If the Property Inspector is not displayed, choose View >
Property Inspector from the main menu.

Tip: You can always change attribute values by directly editing the
page in the source editor. To view the page in the source editor, click
the Source tab at the bottom of the page.

Designing the Layout of the Page

Creating the ADF Mobile Client User Interface 6-21

With the exception of the Form component, you add a layout component by dragging
and dropping it onto the MCX page from the Component Palette (see Section 6.3.2.1,
"Adding UI Components"). Then you use the Property Inspector to set the
component’s attributes (see Section 6.3.2.4, "Configuring UI Components"). For
information on attributes of each particular component, see Oracle Fusion Middleware
Tag Reference Library for Oracle ADF Mobile Client.

6.4.1 How to Use a Form Component
A Form is a component that serves as a container for other components.

By default, when you create an MCX page, JDeveloper automatically creates and
inserts a Form component with its containing Panel Group Layout component (see
Section 6.4.2, "How to Use a Panel Group Layout Component") into the page. When
you add components to the page, they will be inserted inside the Form component
(form element in an MCX file).

6.4.1.1 How to Add a Form to a Page
You do not have to explicitly add the Form component to an MCX page, as JDeveloper
will add it for you. Note that each page must contain one Form component.

6.4.2 How to Use a Panel Group Layout Component
The Panel Group Layout component is a basic layout component that lays out its
children horizontally or vertically. The Form component must have one Panel Group

Table 6–6 ADF Mobile Client Page Management, Layout, and Spacing Components

Component Type Description

Form Page Management
Component

Creates a form element in an MCX file. For more
information, see Section 6.4.1, "How to Use a
Form Component."

For more information about MCX files, see
Section 6.3.1.2, "Creating MCX Pages."

Panel Form
Layout

Page Layout Container Creates a panelFormLayout element in an
MCX file. Positions components, such as Input
Text components, so that their labels and fields
line up horizontally. For more information, see
Section 6.4.3, "How to Use a Panel Form Layout
Component."

Panel Label And
Message

Page Layout Container Creates a panelLabelAndMessage element in
an MCX file. Lays out a label and its children.
For more information see Section 6.4.4, "How to
Use a Panel Label And Message Component."

Panel Group
Layout

Page Layout Container Creates a panelGroupLayout element in an
MCX file. Groups child components either
vertically or horizontally. For more information,
see Section 6.4.2, "How to Use a Panel Group
Layout Component."

Spacer Spacing Component Creates an area of blank space represented by a
spacer element in an MCX file.

For more information, see "Separating Content
Using Blank Space or Lines" section in Oracle
Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development
Framework.

Designing the Layout of the Page

6-22 Mobile Client Developer's Guide for Oracle Application Development Framework

Layout child component. To create the Panel Group Layout component, use the
Component Palette.

To add the Panel Group Layout component:
1. In the Component Palette, drag and drop a Panel Group Layout to the MCX

page.

2. Insert the desired child components into the Panel Group Layout component.

3. To add spacing between adjacent child components, insert the Spacer (spacer)
component.

4. Use the Property Inspector to arrange the child components in the desired layout
by setting the layout property. For more information, see Oracle Fusion Middleware
Tag Reference Library for Oracle ADF Mobile Client.

You can also change horizontal and vertical alignments. For more information, see
Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile Client.

5. In the Property Inspector, set the remaining attributes of this component. For
more information, see Oracle Fusion Middleware Tag Reference Library for Oracle ADF
Mobile Client.

6.4.2.1 What You May Need to Know About Geometry Management and the Panel
Group Layout Component
The geometry behavior of ADF Mobile client user interface components depends on
whether they are layered on a Panel Group Layout component with its layout
attribute set to vertical (default) or horizontal.

6.4.2.1.1 Geometry Management and Vertical Panels A vertical panel places components in
vertical direction in one column.

Typically, the height of the panel grows as components are added to the panel,
whereas the width of the panel is defined by the widest component in the panel.
However, if the height attribute is set, the panel will take on the specified height. If
the width attribute is set, the component will take on the lesser of the specified width
and the width made available by its parent container. This behavior is consistent when
scrolling is enabled. If horizontal scrolling is enabled and the width attribute is not
set, then the panel is as wide as the lesser of the width of its widest component and the
width made available by the parent container.

As a general rule, if no size is specified in a vertical Panel Group Layout, it will be as
high as the sum of the heights of its child components, and as wide as the widest
component.

The default width for such components as an Input Date and Input Text is the width
of the visible part of their parent container and not the maximum available width for
the entire screen.

A vertical Panel Group Layout ignores the verticalAlign attribute of its child
components.

The following examples show how the combination of various settings of the Panel
Group Layout and its child components affect the run-time display. Note that in all of
the examples, the Panel Group Layout has a blue backgroundColor, while the
Output Text child component has a green backgroundColor.

Designing the Layout of the Page

Creating the ADF Mobile Client User Interface 6-23

Example 6–2 Defining Full-Width Vertical Panel Group Layout with Right-Aligned Child
Component

<amc:panelGroupLayout id="home" layout="vertical"
backgroundColor="#0000FF" width="100%"
height="100%" scrollable="true">

<amc:outputText id="ot1" value="OutputText"
align="right" backgroundColor="#00FF00"/>

</amc:panelGroupLayout>

Figure 6–16 shows a Panel Group Layout component that fills up the whole screen
area, since its width and height are set to 100%. At run time, the Output Text is
right-aligned.

Figure 6–16 Full-Width Vertical Panel Group Layout with Right-Aligned Child
Component at Run Time

Example 6–3 Defining Full-Width Horizontal Panel Group Layout with Bottom-Aligned
Child Component

<amc:panelGroupLayout id="home" layout="horizontal"
backgroundColor="#0000FF" width="100%"
height="100%" scrollable="true">

<amc:outputText id="ot1" value="OutputText"
verticalAlign="bottom" backgroundColor="#00FF00"/>

</amc:panelGroupLayout>

Figure 6–17 shows a Panel Group Layout component that fills up the whole screen
area, since its width and height are set to 100%. At run time, the Output Text is
bottom-aligned.

Figure 6–17 Full-Width Horizontal Panel Group Layout with Bottom-Aligned Child
Component at Run Time

Designing the Layout of the Page

6-24 Mobile Client Developer's Guide for Oracle Application Development Framework

Example 6–4 Defining Vertical Panel Group Layout of the Size of Its Child Component

<amc:panelGroupLayout id="home" layout="vertical" backgroundColor="#0000FF">
<amc:outputText id="ot1" value="OutputText"

align="right" backgroundColor="#00FF00"/>
</amc:panelGroupLayout>

Figure 6–18 shows a Panel Group Layout component that is not visible, since it
expands only enough to accommodate its child component. At run time, only the
Output Text is visible for the Panel Group Layout is the same size as its child
component.

Figure 6–18 Vertical Panel Group Layout of the Size of Its Child Component at Run Time

Example 6–5 Defining Vertical Panel Group Layout That Is Wider than Its Child
Component

<amc:panelGroupLayout id="home" layout="vertical"
width="200" backgroundColor="#0000FF">

<amc:outputText id="ot2" value="OutputText"
align="right" backgroundColor="#00FF00"/>

</amc:panelGroupLayout>

Figure 6–19 shows a Panel Group Layout component that is set to be wider than its
child component. At run time, the Output Text is right-aligned with extra space to the
left.

Figure 6–19 Vertical Panel Group Layout That Is Wider than Its Child Component at Run
Time

Example 6–6 Defining Horizontal Panel Group Layout of the Size of Its Child Component

<amc:panelGroupLayout id="home" layout="horizontal" backgroundColor="#0000FF">
<amc:outputText id="ot3" value="OutputText"

verticalAlign="bottom" backgroundColor="#00FF00"/>
</amc:panelGroupLayout>

Figure 6–20 demonstrates the same layout behavior as Figure 6–18 the Panel Group
Layout component is not visible, since it expands only enough to accommodate its
child component. At run time, only the Output Text is visible for the Panel Group
Layout, as this component is the same size as its child component.

Figure 6–20 Horizontal Panel Group Layout of the Size of Its Child Component at Run
Time

Example 6–7 Defining Horizontal Panel Group Layout That Is Higher than Its Child
Component

<amc:panelGroupLayout id="home" layout="horizontal"
height="50" backgroundColor="#0000FF">

<amc:outputText id="ot4" value="OutputText"
verticalAlign="bottom" backgroundColor="#00FF00"/>

</amc:panelGroupLayout>

Designing the Layout of the Page

Creating the ADF Mobile Client User Interface 6-25

Figure 6–21 shows a Panel Group Layout component that is set to be higher than its
child component. At run time, the Output Text is right-aligned with extra space above
it.

Figure 6–21 Horizontal Panel Group Layout That Is Higher than Its Child Component at
Run Time

Horizontal Scrolling in Vertical Panels
By default, horizontal scrolling is disabled, but you can enable it. When horizontal
scrolling is disabled, the vertical panel attempts to lay out all components within the
visible width of the panel. When it is not possible to lay out a component within the
visible width, it extends of the screen to the right. The behavior of components on a
vertical panel varies depending on the component type.

On BlackBerry smartphones, when horizontal scrolling is enabled in a vertical panel,
the vertical panel scrolls in a horizontal direction when the focusable component that
was initially obscured becomes activated.

Vertical Scrolling in Vertical Panels
By default, vertical scrolling is automatically enabled on BlackBerry devices on a
vertical panel when the bottom edge of the component at the bottom exceeds the
maximum visible height of the panel. Note that the vertical scrolling takes place in the
panel that is the panel closest to the root panel in the hierarchical order and that is
enabled for vertical scrolling. Therefore, no local scrolling is performed unless there is
no containing panel enabled for vertical scrolling.

You can explicitly disable vertical scrolling of parts of the view while enabling
localized vertical scrolling by setting appropriate attributes. When vertical scrolling of
the root panel, as well as that of all the ancestors of a vertical panel, is disabled, the
panel scrolls in vertical directions within the panel.

You can also completely disable vertical scrolling on a view by explicitly disabling
vertical scrolling on all panels including the main view.

Alignment in Vertical Panels
A vertical panel can be aligned to left (default), center, or right with respect to the
current applicable width of the current column.

For example, suppose there is a vertical panel whose width attribute is set to 200. The
panel contains two components: Button commandButton1 that is 100 pixels wide, and
Button commandButton2 that is 150 pixels wide. Since the right horizontal alignment
is specified on both contained components, both are right-aligned within the panel
and there is an empty space to the left of both of them.

If in the preceding example the panel's width is not set, the panel would be 150 pixels
wide, because it assumes the width of the widest contained component

Note: Scrolling (both vertical and horizontal) is not enabled by
default on Windows Mobile devices. When enabled, vertical scrolling
takes place on the Panel Group Layout on which the
verticalScroll attribute is set to true.

Designing the Layout of the Page

6-26 Mobile Client Developer's Guide for Oracle Application Development Framework

(commandButton2). When the contained components are laid out on the panel, there
would not be any empty space to the left of the commandButton2.

Note that the horizontal alignment of the panel does not affect the horizontal
alignment of the contained UI components.

Vertical alignment is ignored on vertical panels.

Nesting Vertical Panels
A vertical panel can be nested within any panel, whether it is vertical or horizontal. A
vertical panel can contain any panel.

The width of a vertical panel is equal to the widest component in the panel when the
width attribute is not specified. When the width attribute is set, then the panel takes
on the smaller of the specified width or the available width provided by its parent
container. Vertical panels behave in the same way with respect to height.

At the same time, a vertical panel lays out its contained panels indifferent from the
way it would lay out other components.

Overlapping Vertical Panels
It is not possible for two panels or two components within a panel to overlap.

Spacing Between Panels
To create gaps between panels or components, use the Spacer component

6.4.2.1.2 Geometry Management and Horizontal Panels A horizontal panel places
components in a horizontal direction in one row. Components contained in a
horizontal panel may be multiline, but no component is placed on top of another.

The width of the panel when scrolling is enabled is the lesser of the total width
occupied by its children or 1073741823 (0x3FFFFFFF) pixels. The height of the panel is
defined by the highest component in the panel. If a horizontal panel contains a
component whose width is equal to the available width, the component does not
occupy the entire available width of a horizontally scrollable container by default. This
behavior is consistent regardless of the enablement of horizontal scrolling.

Horizontal Scrolling in Horizontal Panels
By default, horizontal scrolling is disabled, but you can enable it. When horizontal
scrolling is disabled, the horizontal panel attempts to lay out all components within
the visible width of the panel. The available width is the lesser of the remaining (or
provided) width of the parent container and the width specified on the panel.

This means that when a nonscrollable panel is embedded in a horizontally scrollable
panel, the embedded panel's available width is 1073741823 (0x3FFFFFFF) pixels. This
is because the very wide panel can be made visible through the scrolling on the
underlying panel.

When it is not possible to lay out a component within the panel, the component
extends to the right and it may become obscured and inaccessible. The behavior of
components varies depending on the component type.

Some components are laid out differently when horizontal scrolling is enabled.
However, if the component has a fixed width, such as a Button or an Output Text, the
component is not stretched but maintains the same size regardless of the enablement
of horizontal scrolling.

Designing the Layout of the Page

Creating the ADF Mobile Client User Interface 6-27

Some components display in different ways depending on the enablement of the
horizontal scrolling in a horizontal panel. When horizontal scrolling is enabled, an
input component can grow in width beyond the visible width. When horizontal
scrolling is disabled, the text in an input component wraps and all text is made visible
in most cases, possibly through vertical scrolling.

Vertical Scrolling in Horizontal Panels
By default, vertical scrolling is disabled, but you can enable it by setting the
verticalScroll property to true.

Alignment in Horizontal Panels
Changing horizontal alignment on components in a horizontal panel has no effect.
Changing vertical alignment on components in a horizontal panel shows an effect if
the horizontal panel is taller than the components being aligned."

Nesting Horizontal Panels
A horizontal panel can be nested within any panel, whether it is a vertical or a
horizontal panel. A vertical panel can contain any panel.

The geometry of a horizontal panel is calculated the containing panel as follows: when
the height attribute is not specified, the height of a horizontal panel is the lesser of
the highest component in the panel and the available height provided by the parent.
When the height attribute is set, then the panel takes on the lesser of the specified
height and the available height provided by its parent container. The width is the sum
of the widths of the panel's children when the width attribute is not set. When the
width attribute is set, the panel width is the lesser of the specified width and the sum
of the widths of its children.

At the same time, a horizontal panel lays out its contained panels indifferent from the
way it would lay out other components.

Overlapping Panels
It is not possible for two panels or two components within a panel to overlap.

Spacing Between Panels
To create gaps between panels or components, use the Spacer component

6.4.3 How to Use a Panel Form Layout Component
The Panel Form Layout (panelFormLayout) component positions components so
that their labels and fields align horizontally. In general, the main content of the Panel
Form Layout component is comprised of input components (such as Input Text and
Input Date) and selection components (such as Select One Choice).

For more information, see Section 6.4.3.1, "What You May Need to Know About
Geometry Management and the Panel Form Layout Component."

To add the Panel Form Layout component:
1. In the Component Palette, drag and drop a Panel Form Layout component to the

MCX page.

2. In the Property Inspector, set the component’s attributes. For more information,
see Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile Client.

Designing the Layout of the Page

6-28 Mobile Client Developer's Guide for Oracle Application Development Framework

6.4.3.1 What You May Need to Know About Geometry Management and the Panel
Form Layout Component
You can specify the labelWidth and the fieldWidth attributes as either pixels or
percentages.

To specify the width as a percentage, set these labelWidth and fieldWidth
attributes so that the sum of their combined percentages is 100. If only one of these
width attributes is set as a percent, then ADF Mobile client calculates the width for the
attribute that has not been set by subtracting the percentage set for the width attribute
from 100. For example, if you set "labelWidth=40%", but do not specify a value for
fieldWidth, then the value for fieldWidth will be calculated as 60% at run time. If
the combined values set for both fieldWidth and labelWidth do not total 100%,
then these values are disregarded at run time.

If you specify the labelWidth and fieldWidth attributes in absolute terms and
their length exceeds either the available width or the width of the Panel Form Layout
component itself, then the value set for the labelWidth attribute takes precedence
and the length of the fieldWidth attribute is truncated to the available width.

The display position of the Panel Form Layout component depends on the parent
Panel Group Layout on which it is layered. The following geometry behavior of the
Panel Form Layout is identical on BlackBerry and Windows Mobile platforms:

■ On vertical panels: Panel Form Layout is always positioned below the previous
component and horizontally aligned according to the align attribute value of the
Panel Form Layout.

■ On horizontal panels: Panel Form Layout is always positioned to the right of the
previous component and is vertically aligned according to the align attribute
value of the Panel Form Layout component.

6.4.4 How to Use a Panel Label And Message Component
Use the Panel Label And Message (panelLabelAndMessage) component to lay out a
label and its child, which is usually an output component (see Section 6.6, "Creating
and Using Output Components").

To add the Panel Label And Message component:
1. In the Component Palette, drag and drop a Panel Label And Message component

into a Panel Group Layout component.

2. In the Property Inspector, set the component’s attributes. For more information,
see Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile Client.

6.4.4.1 What You May Need to Know About Arranging Labels
You can use the Panel Form Layout to lay out multiple Panel Label And Message
components. When you place Panel Label And Message components within a Panel
Form Layout component, the labels align. If you place a component that already has a
label within a Panel Label And Message component, then the component’s label will

Note: While you can specify the labelWidth and the fieldWidth
attributes as either pixels or percentages, you cannot set one attribute
as a percentage and the other in pixels. The labelWidth and
fieldWidth attributes are disregarded at run time if you mix
attribute definitions.

Creating and Using Input Components

Creating the ADF Mobile Client User Interface 6-29

be displayed in the fields column at run time and the Panel Label And Message
component’s label is used in the label's column. To avoid this behavior, set the simple
attribute to true on the Panel Label And Message’s child component.

6.5 Creating and Using Input Components
You can use the following input components when developing your ADF Mobile
client application:

■ Input Text (see Section 6.5.1, "How to Use the Input Text Component")

■ Input Date (see Section 6.5.2, "How to Use the Input Date Component")

■ Input Number Spinbox (see Section 6.5.3, "How to Use the Input Number Spinbox
Component")

■ Select Boolean Checkbox (see Section 6.5.4, "How to Use the Select Boolean
Checkbox Component")

■ Select One Choice (see Section 6.5.5, "How to Use the Select One Choice
Component")

You add an input component by dragging and dropping it onto the MCX page from
the Component Palette (see Section 6.3.2.1, "Adding UI Components"). Then you use
the Property Inspector to set the component’s attributes (see Section 6.3.2.4,
"Configuring UI Components"). For information on attributes of each particular
component, see Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile
Client.

You can add event listeners to ADF Mobile client’s input components (see
Section 6.5.6, "What You May Need to Know About Event Listeners and Input
Components").

When creating these components, always consider their geometry behavior (see
Section 6.5.1.1, "What You May Need to Know About Geometry Management and the
Input Text Component").

6.5.1 How to Use the Input Text Component
The Input Text (inputText) component represents an editable field with an optional
text label in front of it.

Example 6–8 demonstrates how to declare the inputText element in an MCX file.

Example 6–8 Creating Input Text

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">
...

<amc:panelGroupLayout id="panelGroupLayout3"
layout="vertical"
rendered="#{!applicationScope.addMode}"
width="100%">

...
<amc:inputText label="Order Number"

id="inputText2"/>
...

Figure 6–22 shows the Input Text component in the Design page.

Creating and Using Input Components

6-30 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 6–22 Input Text in Design Page

To enable conversion of numbers, as well as date and time values that are entered in
the Input Text component, you use the Convert Number (see Section 6.6.1.2,
"Converting Numerical Values") and Convert Date Time (see Section 6.6.1.3,
"Converting Date and Time Values") components.

When creating the Input Text component for the use on BlackBerry smartphones, note
that the track wheel moves the focus caret in the main direction (usually vertical),
whereas pressing ALT+trackwheel moves the focus caret in the less-used direction
(usually horizontal).

You can use an Input Text component within the Panel Group Layout, Panel Form
Layout, and Panel Label And Message components.

6.5.1.1 What You May Need to Know About Geometry Management and the Input
Text Component
The default width of an Input Text component is 100%, which implies that it attempts
to occupy the visible width of the parent container. Note that the visible width is not
necessarily the same as the available width.

The display position of the Input Text component depends on the panel on which it is
layered. The following geometry behavior of the Input Text is identical on BlackBerry
and Windows Mobile platforms:

■ On vertical panels: Input Text is positioned according to the settings of the width
and align attributes.

■ On horizontal panels: Input Text is positioned according to the settings of the
width attribute.

6.5.2 How to Use the Input Date Component
The Input Date (inputDate) component presents an input field for entering dates.
The default date format is the short date format appropriate for the current locale. For
example, the default format in American English (ENU) is mm/dd/yy. However, you
can override the format using a date-time converter (for more information about using
converters, see Section 6.6.1.3, "Converting Date and Time Values").

Example 6–9 demonstrates how to declare the inputDate element in an MCX file.

Creating and Using Input Components

Creating the ADF Mobile Client User Interface 6-31

Example 6–9 Creating Input Date

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">
...

<amc:panelGroupLayout id="panelGroupLayout3"
layout="vertical"
rendered="#{!applicationScope.addMode}"
width="50%">

...
<amc:inputDate value="1 Jan 2009"

label="Date "
required="#{bindings.OrderDate.hints.mandatory}"
id="inputDate2"/>

...

Figure 6–23 shows the Date Input Date component in the Design page of the visual
editor.

Figure 6–23 Input Date in Design Page

The text label part of the Input Date component is always aligned to the left, while the
edit field is aligned to right.

To enable conversion of date and time values that are entered in the Input Date
component, you use the Convert Date Time component (see Section 6.6.1.3,
"Converting Date and Time Values").

6.5.2.1 What You May Need to Know About Geometry Management and the Input
Date Component
The display position of the Input Date component depends on the panel on which it is
layered. The following geometry behavior of the Input Date is identical on BlackBerry
and Windows Mobile platforms:

■ On vertical panels: Input Date is positioned according to the width attribute with
the default value of 100%.

■ On horizontal panels: Input Date is positioned according to the width attribute.

For more information, see Section 6.4.2.1, "What You May Need to Know About
Geometry Management and the Panel Group Layout Component."

Creating and Using Input Components

6-32 Mobile Client Developer's Guide for Oracle Application Development Framework

6.5.3 How to Use the Input Number Spinbox Component
The Input Number Spinbox (inputNumberSpinbox) is used for entering numbers
and quickly stepping through the numbers. The input number must be within the
range defined by its minimum and maximum attributes.

Example 6–10 demonstrates how to declare the inputNumberSpinbox element in an
MCX file.

Example 6–10 Creating Input Number Spinbox

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">
...

<amc:panelGroupLayout id="panelGroupLayout3"
layout="vertical"
rendered="#{!applicationScope.addMode}"
width="100%">

...
<amc:inputNumberSpinbox label="Select order number"

value="#{bindings.OrderId.inputValue}"
id="inputNumberSpinbox1" width="200"/>

...

Figure 6–24 shows the Select order number Input Number Spinbox component in the
Design page of the visual editor.

Figure 6–24 Input Number Spinbox in Design Page

6.5.3.1 What You May Need to Know About Geometry Management and the Input
Number Spinbox Component
The display position of the Input Number Spinbox component depends on the panel
on which it is layered. The following geometry behavior of the Input Number Spinbox
is identical on BlackBerry and Windows Mobile platforms:

■ On vertical panels: Input Number Spinbox is positioned according to the width
attribute.

Creating and Using Input Components

Creating the ADF Mobile Client User Interface 6-33

■ On horizontal panels: Input Number Spinbox is positioned according to the
width attribute.

For more information, see Section 6.4.2.1, "What You May Need to Know About
Geometry Management and the Panel Group Layout Component."

6.5.4 How to Use the Select Boolean Checkbox Component
The Select Boolean Checkbox (selectBooleanCheckbox) component represents a
check box that you use to enable single selection of true or false values, which
allows toggling between selected and deselected states.

Example 6–11 demonstrates how to declare the selectBooleanCheckbox element
in an MCX file.

Example 6–11 Creating Select Boolean Checkbox

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">
...

<amc:panelGroupLayout id="panelGroupLayout3"
layout="vertical"
rendered="#{!applicationScope.addMode}"
width="100%">

...
<amc:selectBooleanCheckbox label="New order"

id="selectBooleanCheckbox1"/>
...

Figure 6–25 shows the New Order Select Boolean Checkbox component in Design
page of the visual editor.

Note: On BlackBerry platform, if the Input Number Spinbox
component is set to a width that is too small to display all the numeric
text, an IndexOutOfBoundsException or
IllegalArgumentException may be thrown. To avoid this, take
one of the following approaches:

■ do not set the width and height attributes, so that the
component determines the appropriate size;

■ give the width and height attributes values that are large
enough to accommodate the text.

Creating and Using Input Components

6-34 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 6–25 Select Boolean Checkbox in Design Page

If you use the default font, this box will appear either empty or containing a check
mark, depending upon the state of the field. Pressing the spacebar when the Select
Boolean Checkbox component has the focus toggles its state.

6.5.4.1 What You May Need to Know About Geometry Management and the Select
Boolean Checkbox Component
The display position of the Select Boolean Checkbox component depends on the panel
on which it is layered. The following geometry behavior of the Select Boolean
Checkbox is identical on BlackBerry and Windows Mobile platforms:

■ On vertical panels: Select Boolean Checkbox is always positioned below the
previous component and horizontally aligned according to the alignment
attribute value.

■ On horizontal panels: Select Boolean Checkbox is always positioned to the right of
the previous component and is vertically aligned according to the
verticalAlignment attribute value.

For more information, see Section 6.4.2.1, "What You May Need to Know About
Geometry Management and the Panel Group Layout Component.".

6.5.5 How to Use the Select One Choice Component
The Select One Choice (selectOneChoice) component represents a combo box that
is used to enable selection of a single value from a list. The selection mechanism is
provided by the Select Items component (see Section 6.5.5.2, "What You May Need to
Know About Differences Between Select Items and Select Item Components")
contained by the Select One Choice component.

Example 6–12 demonstrates how to declare the selectOneChoice element with the
selectItems subelement in an MCX file.

Example 6–12 Creating Select One Choice

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">
...

Creating and Using Input Components

Creating the ADF Mobile Client User Interface 6-35

<amc:panelGroupLayout id="panelGroupLayout3"
layout="vertical"
rendered="#{!applicationScope.addMode}"
width="100%">

...
<amc:selectOneChoice label="Select">

<amc:selectItems value="#{bindings.OptionBean.optionList}"/>
</amc:selectOneChoice>

...

Figure 6–26 shows the Select Select One Choice with the Select Items subcomponent in
Design page of the visual editor.

Figure 6–26 Select One Choice in Design Page

The combo box part of the Select One Choice component is positioned after the text
label part.

6.5.5.1 What You May Need to Know About Geometry Management and the Select
One Choice Component
The display position of the Select One Choice component depends on the panel on
which it is layered. The following geometry behavior of the Select One Choice is
identical on BlackBerry and Windows Mobile platforms:

■ On vertical panels: Select One Choice is always positioned below the previous
component and horizontally aligned according to the alignment attribute value.

■ On horizontal panels: Select One Choice is positioned according to the setting of
the width attribute.

For more information, see Section 6.4.2.1, "What You May Need to Know About
Geometry Management and the Panel Group Layout Component.".

6.5.5.2 What You May Need to Know About Differences Between Select Items and
Select Item Components
The Select Items (selectItems) component is patterned after the JSF selectItems
tag and provides a list of objects that can be selected in multiple-selection components.
For more information, see JSF Toolbox page at http://www.jsftoolbox.com.

Creating and Using Output Components

6-36 Mobile Client Developer's Guide for Oracle Application Development Framework

The Select Item (selectItem) component is patterned after ADF’s selectItems tag
and represents a single selectable item of selection components. For more information,
see <af:selectItem> page in Oracle Fusion Middleware Tag Reference for Oracle ADF Faces.

6.5.6 What You May Need to Know About Event Listeners and Input Components
You can add the valueChangeListener event listener to input components.

This event listener is applicable to input components for ADF Mobile client run-time
description on both BlackBerry smartphones and Windows Mobile devices, but it does
not have any effect at design time.

For more information, see Section 6.12, "Using Event Listeners."

6.6 Creating and Using Output Components
ADF Mobile client provides the Output Text component for you to use as a label to
display text.

Use the Convert Number (see Section 6.6.1.2, "Converting Numerical Values") and
Convert Date Time (see Section 6.6.1.3, "Converting Date and Time Values") converters
to facilitate the conversion of numerical and date-and-time-related data for the Output
Text components.

You add an output component by dragging and dropping it onto the MCX page from
the Component Palette (see Section 6.3.2.1, "Adding UI Components"). Then you use
the Property Inspector to set the component’s attributes (see Section 6.3.2.4,
"Configuring UI Components"). For information on attributes of each particular
component, see Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile
Client.

When creating an Output Text component, always consider its geometry behavior (see
Section 6.6.1.1, "What You May Need to Know About Geometry Management and the
Output Text Component").

6.6.1 How to Use the Output Text Component
The Output Text component is represented by the outputText element in an MCX
file. Example 6–13 demonstrates how to declare this element in an MCX file.

Example 6–13 Creating Output Text

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">
...

<amc:panelGroupLayout id="panelGroupLayout1"
layout="vertical"
rendered="#{!applicationScope.addMode}"
width="100%">

...
<amc:outputText value="Edit Order"

id="outputText2"
align="center"
fontSize="14"
fontStyle="bold"
justification="center"/>

...

Creating and Using Output Components

Creating the ADF Mobile Client User Interface 6-37

Figure 6–27 shows the Edit Order Output Text component in the Design page of the
visual editor.

Figure 6–27 Output Text in Design Page

6.6.1.1 What You May Need to Know About Geometry Management and the Output
Text Component
The display position of the Output Text component depends on the panel on which it
is layered. The following geometry behavior of the Output Text is identical on
BlackBerry and Windows Mobile platforms:

■ On vertical panels: Output Text always positions itself below the previous
component, and is horizontally aligned according to the alignment attribute
value.

■ On horizontal panels: Output Text always positions itself to the right of the
previous component, and is vertically aligned according to the
verticalAlignment attribute value.

6.6.1.2 Converting Numerical Values
The Convert Number (convertNumber) is not an independent UI component: it is a
converter that you use in conjunction with an Output Text or Input Text component or
to display converted number or currency figures in a variety of formats following the
specified pattern.

Example 6–14 demonstrates how to use the convertNumber element in the MCX file.

Example 6–14 Using Convert Number

<amc:panelLabelAndMessage label="ID:" truncateAt="7">
 <amc:outputText value="#{bindings.OrderId.inputValue}">
 <amc:convertNumber groupingUsed="false"
 pattern="#{bindings.OrderId.format}"/>
 </amc:outputText>
</amc:panelLabelAndMessage>

Displaying Images

6-38 Mobile Client Developer's Guide for Oracle Application Development Framework

To convert numerical values:
1. From the Component Palette, drag a Convert Number component and insert it

within an Output Text or Input Text component, making it a child element of
those components.

2. Open the Property Inspector for the Convert Number component and define its
attributes. For more information, see Oracle Fusion Middleware Tag Reference Library
for Oracle ADF Mobile Client.

6.6.1.3 Converting Date and Time Values
The Convert Date Time (convertDateTime) is not an independent UI component: it
is a converter that you use in conjunction with an Output Text or Input Date
component to display converted date, time, or a combination of date and time in a
variety of formats following the specified pattern.

Example 6–15 demonstrates how to use the convertDateTime element in an MCX
file.

Example 6–15 Using Convert DateTime

<amc:panelLabelAndMessage label="ID:" truncateAt="7">
 <amc:outputText value="#{bindings.OrderId.inputValue}">
 <amc:convertDateTime type="date"
 dateStyle="short"
 pattern="#{bindings.OrderId.format}"/>
 </amc:outputText>
</amc:panelLabelAndMessage>

To convert date and time values:
1. From the Component Palette, drag a Convert Date Time component and insert it

within an Output Text or Input Date component, making it a child element of that
component.

2. Open the Property Inspector for the Convert Date Time component and define its
attributes. For more information, see Oracle Fusion Middleware Tag Reference Library
for Oracle ADF Mobile Client.

6.7 Displaying Images
ADF Mobile client enables the display of images on BlackBerry smartphones and
Windows Mobile devices using the Image component represented by a bitmap.

You add an Image (image) component by dragging and dropping it onto the MCX
page from the Component Palette (see Section 6.3.2.1, "Adding UI Components"). Then
you use the Property Inspector to set the component’s attributes (see Section 6.3.2.4,
"Configuring UI Components" and Oracle Fusion Middleware Tag Reference Library for
Oracle ADF Mobile Client).

6.7.1 How to Display an Image
You specify the image source in the MCX file (either manually, or using the Property
Inspector), as well as other applicable attributes. Example 6–16 demonstrates how to
declare this element in an MCX file.

Example 6–16 Creating Image

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">

Creating and Using Tables

Creating the ADF Mobile Client User Interface 6-39

<amc:form id="form0">
...

<amc:image source="/images/globalhelp.gif"
shortDesc="global help"
longDescURL="help.html"
id="i2"/>

...

6.7.2 What You May Need to Know About Supported Image File Formats
The following are supported formats for BlackBerry smartphones:

■ GIF

■ JPEG

■ PNG

■ BMP

■ TIFF

■ WBMP

The following are supported formats for Windows Mobile devices:

■ GIF

■ JPG

■ PNG

6.7.3 What You May Need to Know About Geometry Management and the Image
Component

By default, the Image component uses only enough area to fit its contained bitmap.

If the width attribute is specified, the Image component will take on the lesser of the
specified width and available width. If the height attribute is specified, the Image
component will take on the lesser of the specified height and available height. If the
align attribute is specified, the Image component will not necessarily use the full
width of the parent container.

The display position of the Image component depends on the panel on which it is
layered. The following geometry behavior of the Image is identical on BlackBerry and
Windows Mobile platforms:

■ On vertical panels: Image is always positioned below the previous component and
horizontally aligned according to the align attribute value.

■ On horizontal panels: Image is always positioned to the right of the previous
component and is vertically aligned according to the verticalAlign attribute
value.

6.8 Creating and Using Tables
The Table (table) component displays data as rows and columns. This component
allows a single row selection, sorting, and record navigation. The mobile client Table
can include the following subcomponents in cells:

■ Input Text (see Section 6.5.1, "How to Use the Input Text Component")

■ Input Date (see Section 6.5.2, "How to Use the Input Date Component")

Creating and Using Tables

6-40 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Input Number Spinbox (see Section 6.5.3, "How to Use the Input Number Spinbox
Component")

■ Select Boolean Checkbox (see Section 6.5.4, "How to Use the Select Boolean
Checkbox Component")

■ Select One Choice1 (see Section 6.5.5, "How to Use the Select One Choice
Component")

■ Output Text (see Section 6.6.1, "How to Use the Output Text Component")

■ Button (see Section 6.9.1, "How to Use the Button Component")

■ Link (see Section 6.9.2, "How to Use the Link Component")

■ Image (see Section 6.7.1, "How to Display an Image")

■ Spacer

■ Panel Group Layout (see Section 6.4.2, "How to Use a Panel Group Layout
Component")

■ Panel Form Layout (see Section 6.4.3, "How to Use a Panel Form Layout
Component")

■ Panel Label and Message (see Section 6.4.4, "How to Use a Panel Label And
Message Component")

Generally, when creating a Table, you add Column components, and then add other
components to every Column component.

You can also add multiple components in a column by adding a Panel Group Layout
or Panel Form Layout component as a child of the Column, and then in turn adding
components to the Panel Group Layout (or Panel Form Layout).

You can add event listeners to Table components (see Section 6.8.3, "What You May
Need to Know About Event Listeners and Table Components").

6.8.1 How to Use the Table Component
Example 6–17 demonstrates the declaration of a table element in an MCX file, with
three column subelements, each containing outputText and convertNumber
subelements.

Example 6–17 Creating Noneditable Table with Bindings

...
<amc:table id="tblOrders"

value="#{bindings.OrderItems1View2.collectionModel}" var="row">
<amc:column sortProperty="ProductName" sortable="true" headerText="Product Name">

<amc:outputText value="#{row.bindings.ProductName.inputValue}"/>
</amc:column>
<amc:column sortProperty="UnitPrice" sortable="true" headerText="Price">

<amc:outputText value="#{row.bindings.UnitPrice.inputValue}">
<amc:convertNumber groupingUsed="false"

pattern="#{bindings.OrderItems1View2.hints.UnitPrice.format}"/>
</amc:outputText>

</amc:column>
<amc:column sortProperty="Quantity" sortable="true" headerText="Quan.">

1 To use a databound Select One Choice component within a Table, you must declare a list
binding in the page definition file and associate it with the proper Column attribute. For more
information, see Section 6.8.5, "What You May Need to Know About Using a Databound
Select One Choice Component Within a Table."

Creating and Using Tables

Creating the ADF Mobile Client User Interface 6-41

<amc:outputText value="#{row.bindings.Quantity.inputValue}">
<amc:convertNumber groupingUsed="false"

pattern="#{bindings.OrderItems1View2.hints.Quantity.format}"/>
</amc:outputText>

</amc:column>
</amc:table>
...

Figure 6–28 shows the Table component in the Design page of the visual editor.

Figure 6–28 The Table component in Design Page

The Table component is equipped with the following additional features:

■ Context-sensitive menu commands

■ Dynamic sorting and filtering

To create a table using a data control, you bind the Table component to a collection.
JDeveloper allows you to do this declaratively by dragging and dropping a view
object from the Data Controls panel.

To create a databound table:
1. From the Data Controls panel, select a view object.

2. Drag the view object onto an MCX page or into the Structure window.

3. From the context menu, choose the appropriate table.

When you drag the collection, you can choose from the following types of tables:

■ ADF Table: Allows you to select the specific attributes you wish your editable
table columns to display, and what UI components to use to display the data.
By default, ADF Input Text components are used for most attributes, thus
enabling the table to be editable. Attributes that are dates use the Input Date
component. Additionally, if a control type control hint has been created for an

Tip: You can also create a table by dragging a Table component from
the Component Palette and completing the Create ADF Faces Table
wizard.

Creating and Using Tables

6-42 Mobile Client Developer's Guide for Oracle Application Development Framework

attribute, or if the attribute has been configured to be a list, then the
component set by the hint is used instead.

■ ADF Read-Only Table: Same as the ADF Table; however, each attribute is
displayed in an Output Text component.

4. The ensuing Edit Table Columns dialog shows each attribute in the collection,
and allows you to determine how these attributes will behave and appear as
columns in your table.

Using this dialog, you can do the following:

■ Allow the ADF Model layer to handle selection by selecting the Row Selection
checkbox. Selecting this option means that the iterator binding will access the
iterator to determine the selected row. Select this option unless you do not
want the table to allow selection.

■ Allow the ADF Model layer to handle column sorting by selecting the Sorting
checkbox. Selecting this option means that the iterator binding will access the
iterator, which will perform an order-by query to determine the order. Select
this option unless you do not want to allow column sorting.

■ Allow the columns in the table to be filtered using entered criteria by selecting
the Filtering checkbox. Selecting this option allows the end user to enter
criteria in text fields above each column. That criteria is then used to build a
Query-by-Example (QBE) search on the collection, so that the table will
display only the results returned by the query.

■ Group columns for selected attributes together under a parent column, by
selecting the desired attributes (shown as rows in the dialog), and clicking the
Group button.

■ Change the display label for a column. By default, the label is bound to the
labels property for any control hint defined for the attribute on the table
binding. This binding allows you to change the value of a label text once on
the view object, and have the change appear the same on all pages that display
the label.

Instead of using this default, you can enter text or an EL expression to bind the
label value to something else, for example, a key in a resource file.

■ Change the value binding for a column. You can change the column to be
bound to a different attribute. If you simply want to rearrange the columns,
you should use the order buttons. If you do change the attribute binding for a
column, the label for the column also changes.

■ Change the UI component used to display an attribute. The UI components
are set based on the table you selected when you dropped the collection onto
the page, on the type of the corresponding attribute (for example, Input Date
components are used for attributes that are dates), and on whether or not
default components were set as control hints on the corresponding view
object. You can change to another component using the context menu.

Note: If the collection contains a structured attribute (an attribute
that is neither a Java primitive type nor a collection), the attributes of
the structured attributes will also appear in the dialog.

Creating and Using Tables

Creating the ADF Mobile Client User Interface 6-43

■ Change the order of the columns using the order buttons.

■ Add a column using the Add icon. There is no limit to the number of columns
you can add. When you first click the icon, JDeveloper adds a new column
line at the bottom of the dialog and populates it with the values from the first
attribute in the bound collection; subsequent new columns are populated with
values from the next attribute in the sequence, and so on.

■ Delete a column using the Delete icon.

5. Once the Table is dropped on the page, you can use the Property Inspector to set
other display properties of the Table component (see Oracle Fusion Middleware Tag
Reference Library for Oracle ADF Mobile Client). For example, you may want to set
the width of the table to a certain percentage or size. For more information about
display properties, see "Using Tables and Trees" chapter in Oracle Fusion
Middleware Web User Interface Developer's Guide for Oracle Application Development
Framework.

You enable sorting by setting a Column’s sortable attribute to true, and its
sortProperty attribute to a valid value. On BlackBerry smartphones, this allows
the end user to invoke sorting from the menu when the table is in either cell or
component selection mode: a table-specific "Sort" menu item is automatically
added to the displayed menu at the time when the Table component gains focus
(see Example 6–17). On Windows Mobile devices, sorting can be invoked by
clicking on the column header. The header of sortable columns contains arrows
indicating which column is currently sorted and in which direction.

On BlackBerry smartphones, if you set a table column’s filterable attribute to
true, the table-specific "Filter" menu item is automatically added to the displayed
menu at the time when the Table component gains focus (see Example 6–17).

6. If you want the end user to be able to edit information in the table and save any
changes, you have to provide a way to submit and persist those changes. For more
information and procedures on creating tables that allow data input, see "Using
Tables and Trees" chapter in Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework.

6.8.2 What Happens When You Create a Table
Dropping a Table from the Data Controls panel has the same effect as dropping an
Input Text or Form. Briefly, JDeveloper does the following:

■ Creates the bindings for the table and adds the bindings to the page definition file

Tip: If one of the attributes for your table is also a primary key, you
may want to choose a UI component that will not allow a user to
change the value.

Tip: If you want to use a component that is not listed in the context
menu, use this dialog to select the Output Text component, and then
manually add the other tag to the page.

Tip: When you set the table width to 100%, the table will not include
borders, so the actual width of the table will be larger. To have the
table set to 100% of the container width, expand the Style section of
the Property Inspector, select the Box tab, and set the borderWidth
attribute to 0 pixels.

Creating and Using Tables

6-44 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Adds the necessary code for the UI components to the MCX page.

6.8.3 What You May Need to Know About Event Listeners and Table Components
You can add the following event listeners to Table components:

■ rangeChangeListener

■ selectionListener

■ sortListener

These event listeners are applicable to the tables for ADF Mobile client run-time
description on both BlackBerry and Windows Mobile devices, but they do not have
any effect at design time.

For more information, see Section 6.12, "Using Event Listeners."

6.8.4 What You May Need to Know About the Table User Interaction Model

On non-touchscreen BlackBerry smartphones:
The Table supports three user interaction modes: table selection, row selection, and
cell selection.

By default, the Table starts in table selection mode. You can change this behavior by
specifying the startingSelectionMode attribute. Pressing the trackball changes
the mode from table to cell to component, while pressing the back key changes the
mode from component to cell to table.

In table selection mode, the entire table behaves as one focusable component. When
the table has focus, its border is drawn with a different color (black by default). It is
not possible to change the selected row or interact with components inside the table in
this mode. That means that trackball and key events are consumed by the table and are
not passed to the contained components.

In row selection mode it is possible to navigate between rows and columns.
Navigating between rows updates the current row in the Table's CollectionModel,
while changing the column updates the sort and filter menu choices. The current row
is indicated by setting the background color to dark grey (#9CACC9), while the
background of the currently selected cell is set to light yellow (#FFFCD8). As in table
mode, it is not possible to interact with components inside the cell or to navigate
between them.

In cell selection mode it is possible to interact with and navigate between components
inside a cell. As in row selection mode, the current cell is indicated by drawing its
border in a different color (blue by default). All key and trackball events are handled
first by the focused component. If there are several focusable components within a cell,
then navigation events first move focus between those components before changing
the selected cell. If there are no focusable components inside a cell, then that cell may
still become selected as in row selection mode.

On Windows Mobile devices:
The table navigation is performed by either using scroll bars or swiping in the desired
direction. Touching a cell or giving focus to a component inside it will set this cell as
the current cell, and its row as the current row.

Using Buttons and Links

Creating the ADF Mobile Client User Interface 6-45

6.8.5 What You May Need to Know About Using a Databound Select One Choice
Component Within a Table

To use a databound Select One Choice component within a Table, you must declare a
list binding in the page definition and then associate it with the proper Column
attribute, as Example 6–18 shows.

Example 6–18 Using Databound Select One Choice Component in Tables

<bindings>
...
<!-- added new list binding -->
<list IterBinding="-iteratorID-" StaticList="false" Uses="-LOVID-"

id="-listBindingID-" DTSupportsMRU="true"/>
<tree ...>

<nodeDefinition ...>
<AttrNames>

...
<!-- added Binds attribute that references list binding -->
<Item Value="-lovEnabledAttributeName-" Binds="-listBindingID-"/>

For more information, see Section 6.3.2.3, "Adding Data Controls to the View."

6.9 Using Buttons and Links
You use the following components to enable actions, as well as navigation through the
mobile client views:

■ Button (see Section 6.9.1, "How to Use the Button Component")

■ Link (see Section 6.9.2, "How to Use the Link Component")

You add a Button or Link component by dragging and dropping it onto the MCX page
from the Component Palette (see Section 6.3.2.1, "Adding UI Components"). Then you
use the Property Inspector to set the component’s attributes (see Section 6.3.2.4,
"Configuring UI Components"). For information on attributes of each particular
component, see Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile
Client.

You can add event listeners to ADF Mobile client action components (see
Section 6.9.1.1, "What You May Need to Know About Event Listeners and Button
Components" and Section 6.9.2.1, "What You May Need to Know About Event
Listeners and Link Components").

When creating the components, always consider their geometry behavior (see
Section 6.9.1.2, "What You May Need to Know About Geometry Management of
Button Components" and Section 6.9.2.2, "What You May Need to Know About
Geometry Management of Link Components").

The mobile client also supports navigation through the use of the back button (see
Section 6.9.3, "How to Enable the Back Button Navigation").

6.9.1 How to Use the Button Component
You use the Button (commandButton) component to trigger actions and enable
navigation through the view.

Example 6–19 demonstrates how to declare the commandButton element in an MCX
file.

Using Buttons and Links

6-46 Mobile Client Developer's Guide for Oracle Application Development Framework

Example 6–19 Creating Button

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">
...

<amc:panelGroupLayout id="panelGroupLayout3"
layout="horizontal">

...
<amc:commandButton text="Search"

id="commandButton2
actionListener="#{bindings.ExecuteWithParams}">

<amc:setActionListener from="#{true}"
to="#{applicationScope.SearchExecuted}"/>

</amc:commandButton>
...

Figure 6–29 shows the Search Button in the Design page of the visual editor.

Figure 6–29 Button and Link in Design Page

You can use the Button component within the Panel Group Layout, Panel Form
Layout, Panel Label And Message, and Table components, as well as inside any
container component.

6.9.1.1 What You May Need to Know About Event Listeners and Button
Components
You can add the actionListener to a Button.

This event listener is applicable to input components for ADF Mobile client run-time
description on both BlackBerry smartphones and Windows Mobile devices, but it does
not have any effect at design time.

For more information, see Section 6.12, "Using Event Listeners".

6.9.1.2 What You May Need to Know About Geometry Management of Button
Components
The display position of the Button component depends on the panel on which it is
layered. The following geometry behavior of the Button is identical on BlackBerry and
Windows Mobile platforms:

Using Buttons and Links

Creating the ADF Mobile Client User Interface 6-47

■ On vertical panels: Button is always positioned below the previous component
and horizontally aligned according to the align attribute value. If the contents of
the component do not fit in a line, it does not wrap to the next lines.

■ On horizontal panels: Button is always positioned to the right of the previous
component and is vertically aligned according to the verticalAlign attribute
value. If the contents of the component do not fit in a line, it does not wrap to the
next lines.

6.9.2 How to Use the Link Component
You use the Link (commandLink) component to enable navigation.

Example 6–20 demonstrates how to declare the commandLink element in an MCX file.

Example 6–20 Creating Link

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">
...

<amc:panelGroupLayout id="panelGroupLayout7">
<amc:commandLink id="commandButton1"

text="Add Order"
actionListener="#{bindings.CreateInsert}"
action="create"/>

...

Figure 6–29 shows the Add Order Link component in the Design page of the visual
editor.

You can use the Link component within the Panel Group Layout, Panel Form Layout,
Panel Label And Message, and Table components, as well as inside any container
component.

6.9.2.1 What You May Need to Know About Event Listeners and Link Components
You can add the actionListener to a Link.

This event listener is applicable to input components for ADF Mobile client run-time
description on both BlackBerry smartphones and Windows Mobile devices, but it does
not have any effect at design time.

For more information, see Section 6.12, "Using Event Listeners."

6.9.2.2 What You May Need to Know About Geometry Management of Link
Components
The display position of the Link component depends on the panel on which it is
layered. The following geometry behavior of the Link is identical on BlackBerry and
Windows Mobile platforms:

■ On vertical panels: Link is always positioned below the previous component and
horizontally aligned according to the align attribute value.

■ On horizontal panels: Link is always positioned to the right of the previous
component and is vertically aligned according to the verticalAlign attribute
value.

Using Buttons and Links

6-48 Mobile Client Developer's Guide for Oracle Application Development Framework

6.9.3 How to Enable the Back Button Navigation
The mobile client supports navigation using the back button, with the default behavior
of going back to the previously visited page enabled on the Escape-key press on the
BlackBerry smartphone.

A combination of the page history implementation and the Form’s onBack attribute
(see Section 6.4.1.1, "How to Add a Form to a Page") provides the basis for this
functionality.

You can customize the back button behavior by invoking a custom bean method. To do
so, you add the onBack attribute to the form element (see Section 6.4.1.1, "How to
Add a Form to a Page"). Example 6–21 shows an MCX file that uses the onBack
attribute.

Example 6–21 Usage of onBack Attribute in MCX File

<amc:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:amc="http://xmlns.oracle.com/jdev/amc">

<amc:form id="form0" onBack="#{applicationScope.Bean.onBackMethod}">
<amc:panelGroupLayout id="panelGroupLayout1">

<amc:outputText value="Press the back button" id="outputText1"/>
</amc:panelGroupLayout>

</amc:form>
</amc:view>

Example 6–22 shows a custom method that you may use to specify whether the
framework should continue with the default behavior, or execute the custom behavior.

Example 6–22 Custom onBack Method

private void onBackMethod(Object[] params) {
if (params != null && params.length > 0) {

String param = params[0].toString();
Trace.log(Trace.UI_LOGNAME, Level.FINE, this.getClass(),

"onBackMethod", "params[0] = " + param);
}
int result = MessageBox.show("Title", "Select a value",

new String[] { "Go back", "Cancel" }, new int[] { 20, 30 });
if (params[0] instanceof ClientEvent) {

ClientEvent backEvent = (ClientEvent) params[0];
if (result == 20)

backEvent.setParameter("isConsumed", new Boolean(false));
else if (result == 30)

backEvent.setParameter("isConsumed", new Boolean(true));
else

Trace.log(Trace.UI_LOGNAME, Level.FINE, this.getClass(),
"onBackMethod", "messageBox returned " + result);

}
}

In the preceding example, the bean method is passed a ClientEvent object. The
isConsumed parameter is set to a boolean value in the setParameter method of the
ClientEvent. Setting the isConsumed parameter to true informs the framework
that the click has been handled completely and that it should not continue with the
default back button behavior.

Example 6–23 demonstrates how to invoke the custom onBack method shown in
Example 6–22.

Creating and Using Scanners

Creating the ADF Mobile Client User Interface 6-49

Example 6–23 Invoking Custom Method

public Object invokeMethod(String methodName, Object[] params) {
if (methodName.equals("onBackMethod")) {

onBackMethod(params);
}
return null;

}

For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF
Mobile Client.

6.10 Creating and Using Scanners
The Scanner (scanner) represents a non-visual UI component that allows you to
define an action to react to a scan.

You add a Scanner component by dragging and dropping it onto the MCX page from
the Component Palette (see Section 6.3.2.1, "Adding UI Components"). Then you use
the Property Inspector to set the component’s attributes (see Section 6.3.2.4,
"Configuring UI Components" and Oracle Fusion Middleware Tag Reference Library for
Oracle ADF Mobile Client).

You can declare only one scanner element per MCX page. This component should be
defined as a child of the Form component.

You can add event listeners to ADF Mobile client Scanner components (see
Section 6.10.2, "What You May Need to Know About Event Listeners and Scanner
Components").

6.10.1 How to Use the Scanner Component
 Example 6–24 demonstrates how to declare the scanner element in an MCX file.

Example 6–24 Creating Scanner

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">
...

<amc:panelGroupLayout id="panelGroupLayout1"
layout="vertical"
rendered="#{!applicationScope.addMode}"
width="100%">

...
</amc:panelGroupLayout>
<amc:scanner id="scanner1" action="edit"/>

</amc:form>
...

The Scanner component is not visible in the Design page.

Figure 6–27 shows the Property Inspector settings for the Scanner component.

Creating and Using Scanners

6-50 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 6–30 Scanner Component Properties

6.10.2 What You May Need to Know About Event Listeners and Scanner Components
You can add the actionListener to Scanner components.

You can also define other actionListener components as children of the Scanner
component.

This event listener is applicable to Scanner components for ADF Mobile client
run-time description on both BlackBerry smartphones and Windows Mobile devices,
but it does not have any effect at design time.

For more information, see Section 6.12, "Using Event Listeners."

6.10.3 How to Integrate a Barcode Scanner Into a Mobile Client Application
You can integrate a barcode scanner into an ADF Mobile client application by creating
the scanner data control with the Scanner Data Control for ADF Mobile Client
Application wizard.

6.10.3.1 Creating a Barcode Scanner Data Control
Using the two-step wizard, you configure the scan objects used in applications and
their scan fields. You can also configure prefixes and suffixes that indicate where the
scan starts and finishes a barcode.

Before you begin:
1. Know the prefix and suffix for the scan. This information delimits the beginning

and the end of the data that is sent by the scanning device. The characters used to
mark the prefix and suffix are dependent on the specific device, but can usually be
programmed into the device. While some devices allow you to program any
combination, others limit this. If you determine the prefix and suffix, then use a
short character string that is a non-alphabetic character sequence, one that is not
easily entered and that you would not normally see.

2. Know the format of the actual scanned data. This information is comprised of the
scan objects and scan fields as well as the field delimiters (that is, what the scan
fields are and if they are delimited by prefix and suffix character strings or by
length). This information is usually pre-determined because the barcode format is
probably already created and being used.

To create a scanner data control:
1. Click File > New > Business Tier > Scanner Data Control for ADF Mobile Client

Application.

2. Enter a name for the scanner data control or accept the default name, ScannerDC,
as shown in Figure 6–31.

Creating and Using Scanners

Creating the ADF Mobile Client User Interface 6-51

3. Use the Browse feature to select package name or accept the default value, which
is the current package or enter the package name.

4. Enter the prefix that delimits the start of the scan from the physical scanner device.

5. Enter the delimiter that marks the end of the scanned string.

6. Click Next.

Figure 6–31 Defining the Scanner Class

7. Click Add to create a scanner object.

8. Accept the unique name added by JDeveloper, or enter a unique name for the
scanner object.

9. Select one of the following methods to parse the scanned barcode:

■ Prefix/Suffix Delimiters: Enter the prefix and suffix that denote the start and
end of a field. This is an optional parameter; you can define a prefix or suffix
only, or opt to define neither the prefix nor suffix. The Up and Down arrows
enable you to reorder the fields.

Figure 6–32 shows a scanned object called Product with fields named Price,
Country, and ID. Because the Product object uses the Prefix/Suffix
Delimiters method to parse its fields, each field is differentiated by a character
string.

Note: Do not use words as either the suffix or the prefix. Instead,
incorporate hidden characters (such as ç, ÿ, or ~).

Note: You must define the scanner name, package, prefix and suffix
to proceed to the next page of the wizard.

Creating and Using Scanners

6-52 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 6–32 Creating Scanner Objects

■ Position and Length: The Field Start Position is a read-only value that
indicates where a field starts. For the Field Length parameter, enter a number
that indicates where the field ends. JDeveloper automatically calculates the
start position when you reorder fields. The default length is 1 (the minimum).
This is an optional parameter.

As shown in Figure 6–33, JDeveloper marks the start of the Shipping Code
field start position at 13, which corresponds to the length of the OrderID
field. JDeveloper also recalculates the field positions when you use the Up and
Down arrows to reorder the fields. For example, if you moved OrderID
below ShippingCode, then JDeveloper recalculates the start position for
OrderID at Position 15, the length of the ShippingCode field.

Creating and Using Scanners

Creating the ADF Mobile Client User Interface 6-53

Figure 6–33 Setting the Position and Length of the Scanner Object Fields

10. Click Add to create a scanner field.

11. Accept the unique name added by JDeveloper, or enter a unique name for the
scanner field.

12. Click Finish.

6.10.3.2 What Happens When You Create a Scanner Data Control
After you complete the wizard, JDeveloper creates a data control using the name
defined in the wizard. This file includes data controls for the scanner objects. Because
JDeveloper also updates DataControls.dcx file with the scanner data control
information, the scanner data controls display in the Data Controls panel. (The design
time uses this file to populate the Data Control panel.) Figure 6–34 shows a scanner file
called ScannerDC (the default name generated by JDeveloper) as well as data
collections created from the configured scanner objects, order and project.

Note: You must create at least one scanner field to complete the
wizard and create a scanner data control.

Note: Repeat these steps to add additional scan objects and scan
object fields.

Note: You can add only one scanner data control file per application.

Creating and Using Scanners

6-54 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 6–34 Scanner Data Controls

In addition to the data controls, the wizard creates XML files used by the runtime to
parse the scanned data. For example, Figure 6–35 shows the resulting XML file created
for a scanned object called order in the Application Navigator.

Figure 6–35 The XML File for a Scanned Object

6.10.3.3 Enabling Scanning in Mobile Client Applications
The scanner component, which you nest within a form element on an MCX page,
enables scanning in the application. This component, which is not visible on the MCX
page, essentially ties the page's actions and fields to the scanner data control; when
you add the scanner component tag to an MCX page, it enables any of the necessary
page-centric listeners and handlers to catch and activate barcode scans. It also contains
references to fields and actions that may be triggered by the scanner data control when
the page is active. When the scanner component receives data from the physical
scanner, it populates the fields on the page with readable data converted from the
scanned data. You create these input fields by dragging the scanner data controls into
the MCX page.

To enable scanning:
1. Drag and drop the scanner component from the component palette into the form

element of the MCX page, and then define its properties, as described in
Section 6.10.1, "How to Use the Scanner Component."

2. Drag a field of the scanner data control object collection into the
panelGroupLayout element of the MCX page.

3. Select Texts, as Figure 6–36 shows, and then choose from among the input or
output text options, as described in "Using Attributes to Create Text Fields" of
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Creating and Using Menus

Creating the ADF Mobile Client User Interface 6-55

Figure 6–36 Creating Input and Output Text Fields from a Scanner Data Control
Attribute

4. Click OK.

6.11 Creating and Using Menus
The ADF Mobile client Menu Designer enables you to create platform-specific menus
for both BlackBerry smartphones and Windows Mobile devices.

Typically, to create a menu, you make a selection in the Structure window or source
editor for your MCX file. The visual editor displays a menu or its children, if any of
those are selected. If a component or a panel is selected, then the menu associated with
that component or panel is displayed. If multiple components are selected, the menu is
not displayed. As menus are platform-specific, BlackBerry-style menus are shown only
on BlackBerry smartphones, and Windows Mobile-style menus are displayed only on
Windows Mobile devices.

ADF Mobile client’s Menu Designer lets you define different types of menus for your
application.

6.11.1 Menu Types
The mobile client’s Menu Designer supports the following styles of menus:

■ Standard menu for Windows Mobile devices

■ Full menu for BlackBerry smartphones

Note: Even though the Menu Designer represents the basic structure
of menus, such as cascading menus, menu item ordering and menu
item presence based on the single selection of components or panels,
menus that you design for one platform cannot transform into menus
for another platform.

Creating and Using Menus

6-56 Mobile Client Developer's Guide for Oracle Application Development Framework

You choose whether or not to display a menu by making selections using a combo box
located on the UI designer tool bar. The following are valid values for the menu type
selector:

■ No Menu: The menu is not displayed when a UI component or panel is selected.
This is the default option.

■ Main: Only full menus are displayed when a UI component or panel is selected.
Corresponds to either Windows Mobile Standard menu, or BlackBerry Full menu.

Also note the following:

■ If you change the platform at design time, the menu type selector will retain the
displayed value.

■ If you open a new split screen, the menu type selector will switch to the default
value of No Menu.

■ If a menu or any of its menu items is selected in the Structure window or source
editor, this menu will be displayed in the Design page regardless of the menu type
selector’s value on an applicable platform.

Table 6–7 lists types of menus that you can define. Each type behaves differently
depending on the platform on which your application is viewed.

When displayed, menus with the same type and id values and that meet the
platform type criteria are combined together and treated as a single menu. For
example, the contents of the following menu definitions in an MCX file would be
combined on a Windows Mobile device:

<menu type="main" platform="all">

and

<menu type="main" platform="wm">

Note that for Main and Alt menus, the id attribute values are implicitly matching.

6.11.1.1 Main
Example 6–25 shows a Main menu defined in an MCX file. Note that the platform
attribute is specified for one menu item only ("Exit"), which will be displayed on
Windows Mobile devices, but not on BlackBerry smartphones. The rest of the menu
items in Example 6–25 are applied the default platform setting of all.

Note: If the menu itself or any of its children is selected, the menu
will still be displayed on the appropriate platform regardless of the
selection in the menu type selector.

Table 6–7 Menu Types

Type
Behavior on BlackBerry
Smartphones

Behavior on Windows Mobile
Devices

Main This menu definition describes
the Full menu for the form.

This menu definition describes the
right Standard menu button for the
form.

Alt This menu definition will be
combined into the Full menu
for the form.

This menu definition describes the
left Standard menu button for the
form.

Creating and Using Menus

Creating the ADF Mobile Client User Interface 6-57

Example 6–25 Defining Main Menu

<amc:menu id="main" type="main">
<amc:menuGroup index="200">

<amc:commandMenuItem label="View Orders"
index="10"
weight="0"/>

</amc:menuGroup>
<amc:menuGroup index="250">

<amc:commandMenuItem label="Edit Order"
index="20"
weight="0"/>

<amc:commandMenuItem label="Call Customer"
index="30"
weight="0"/>

<amc:commandMenuItem label="Exit"
index="70"
weight="0"
platform="wm"
action="appExit"/>

</amc:menuGroup>
</amc:menu>

As a general rule, when specifying the Main menu type, you should limit it to only one
menu definition per platform.

As Main menus are static to a page, you cannot associate them individually with a UI
component. If individual menu items should change on the Main menu, consider
using the EL expression of the Menu Item’s visible attribute (see Oracle Fusion
Middleware Tag Reference Library for Oracle ADF Mobile Client).

6.11.1.2 Alt
Example 6–26 shows an Alt menu defined in an MCX file.

Example 6–26 Defining Alt Menu

<amc:menu id="altMain" type="alt">
<amc:menuGroup index="200">

<amc:commandMenuItem label="View Items"
index="0"
weight="0"/>

</amc:menuGroup>
</amc:menu>

When specifying the Alt menu type, limit it to only one menu definition per platform
type.

6.11.2 Menu Components
A Menu component represents a virtual XSD group definition referring to either a
menu element or a commandMenuItem element in an MCX file (see Example 6–26 and
Example 6–27), allowing you to create a menu that contains both menu items and
submenus.

You add a menu component by dragging and dropping it onto the MCX page from the
Component Palette (see Section 6.3.2.1, "Adding UI Components"). Then you use the

Note: Main menus are always of fixed width.

Creating and Using Menus

6-58 Mobile Client Developer's Guide for Oracle Application Development Framework

Property Inspector to set the component’s attributes (see Section 6.3.2.4, "Configuring
UI Components"). For information on attributes of each particular menu component,
see Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile Client.

Example 6–27 shows how to define menu components in an MCX file.

Example 6–27 Creating Menus Using Various Menu Components

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">

<amc:panelGroupLayout backgroundColor="red" width="100"/>
</form>
...
<amc:menu id="altMain" type="alt">

<amc:menuGroup index="200">
<amc:commandMenuItem label="View Items"

index="0"
weight="0"/>

</amc:menuGroup>
</amc:menu>

</view>

6.11.2.1 Menu
ADF Mobile client menu defines a new menu construct, which may be represented by
a group of Menus and Menu Items, although you typically use it to define a group of
Menu Items.

To create a menu, you define the top-level menu (element in an MCX file) directly
within the view, as Example 6–27 shows.

The label attribute (see Oracle Fusion Middleware Tag Reference Library for Oracle ADF
Mobile Client) lets you assign a recognizable name for those platforms that support
submenus.

6.11.2.2 Menu Item
ADF Mobile client’s Menu Item (commandMenuItem) is the base element of menus. It
defines a single actionable item on a menu that the end user can execute. Most of its
attributes are general-purpose, with appropriate behavior occurring on all platforms.
However, a select group of attributes is platform-specific and requires definition of
XSD attribute groups (see Oracle Fusion Middleware Tag Reference Library for Oracle ADF
Mobile Client).

6.11.2.3 Menu Group
You use the Menu Group to group visual elements in a menu. Each Menu element
must have at least one child Menu Group element. If you place multiple Menu Group
elements under a Menu, then a Separator will be displayed.

You define ADF Mobile client’s menuGroup (element in an MCX file) within the menu
element, as Example 6–27 shows.

6.11.2.4 Menu Control
ADF Mobile client’s Menu Control defines when menus are displayed.

You use it to create associations between a menu displayed on the menu bar and a UI
component. Each such menu must be attached to at least one component in order to be
displayed. In an MCX file, you define menuControl elements as children of UI
components. Depending on the target platform, a menu is attached by default to the

Creating and Using Menus

Creating the ADF Mobile Client User Interface 6-59

top-level form element (see Example 6–28) so that the menu is always present. You
can optionally define special menus that appear only for certain components by
defining menuControl elements as children of those components. For example, you
could specify a telephone number input component with a menu item added to "Call",
but this menu should only appear when the focus is on the telephone number field.

The Menu Control can contain Select Items components (see Section 6.5.5.2, "What You
May Need to Know About Differences Between Select Items and Select Item
Components").

ADF Mobile client’s Menu Control may only reference definitions of menus displayed
on the menu bar when their associated UI component has focus; Main and Alt type
menus are statically defined for the form, and all components are implicitly associated
with them.

The Menu Control is represented by the menuControl element in an MCX file.
Example 6–28 demonstrates how to define this element in an MCX file.

Example 6–28 Defining the Menu Control

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">

<amc:menuControl refId="altMain"/>
<amc:panelGroupLayout id="home" layout="vertical">

<amc:panelGroupLayout layout="vertical">
<amc:inputText id="txtUserName"

label="User Name: "
value="#{securityContext.userName}"/>

<amc:inputText id="txtPassword"
label="Password: "
value="#{securityContext.password}" secret="true"/>

</amc:panelGroupLayout>
...

</amc:form>
</amc:view>

For more information, see Section 6.11.3, "How to Associate Menus with UI
Components."

6.11.2.5 Sub Menu
You use ADF Mobile client’s Sub Menu (subMenu) to create cascading menus for
Windows Mobile devices.

In an MCX file, you define subMenu elements as children of the menu, as
Example 6–29 shows.

Example 6–29 Defining the subMenu

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
...
<amc:menu id="main" type="main">

WARNING: If you define a menu without specifying a Menu
Control element, this menu will never be displayed.

Note: Submenus always expand to the left.

Creating and Using Menus

6-60 Mobile Client Developer's Guide for Oracle Application Development Framework

<amc:menuGroup index="200">
<amc:commandMenuItem label="View Orders"

index="10"
weight="0"/>

</amc:menuGroup>
<amc:menuGroup index="250">

<amc:subMenu label="View Customers"
rendered="true">

<amc:menuGroup index="200">
<amc:commandMenuItem label="Ascending"

index="15"
weight="0"/>

<amc:commandMenuItem label="Descending"
index="16"
weight="0"/>

</amc:menuGroup>
</amc:subMenu>
<amc:commandMenuItem label="Edit Order"

index="20"
weight="0"/>

<amc:commandMenuItem label="Call Customer"
index="30"
weight="0"/>

<amc:commandMenuItem label="Call Customer Mobile"
index="40"
weight="0"/>

<amc:commandMenuItem label="Email Customer"
index="50"
weight="0"/>

<amc:commandMenuItem label="Call Shipment Phone"
index="60"
weight="0"/>

<amc:commandMenuItem label="Exit"
index="70"
weight="0"
platform="wm"
action="appExit"/>

</amc:menuGroup>
</amc:menu>

</amc:view>

Figure 6–37 shows the Sub Menu component in the Design page of the visual editor.

Creating and Using Menus

Creating the ADF Mobile Client User Interface 6-61

Figure 6–37 Defining the Sub Menu

6.11.3 How to Associate Menus with UI Components
You can create an association between a UI component and one or more Alt or Main
menus by inserting a menuControl child element under the component element in
your MCX file, and then setting the refId attribute of the menuControl (see Oracle
Fusion Middleware Tag Reference Library for Oracle ADF Mobile Client) to the id attribute
of the subject menu item, as the following example shows:

...
<amc:outputText id="AccountName" …>

<amc:menuControl refId="accountContextMenu">
</amc:outputText>
...

For menus that are meant to be displayed on the top-level menu bar, the mobile client
Menu Designer provides an association tool in the form of a popup dialog that you
can reach through a context menu selection on the UI component in the Structure
window. This dialog displays a tree view of the available menus defined on the page
and allows for a multiple selection of them. Upon completion of the dialog, you create
a menuControl element under the original component element for each selected
menu in the dialog. That is, when an association is created between a menu and a UI
component, the menu will be displayed on the menu bar when its associated UI
component has focus.

6.11.4 How to Create Menus for BlackBerry Smartphones
You can create full menus for BlackBerry smartphones.

The full menu pops up on the side of the screen upon the press of the BlackBerry
Menu button, as Figure 6–38 shows.

Creating and Using Menus

6-62 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 6–38 Full Menu Displayed on a BlackBerry Smartphone

Note that BlackBerry smartphones do not natively support submenus.

The mobile client’s Menu Designer positions full menus in the center of the design
view, and the menus readjust their position according to the selected form factor.

Example 6–30 shows the source view of the menu defined in an MCX file.

Example 6–30 BlackBerry Menu in Source View

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
...
<amc:menu id="altMain" type="alt">

<amc:menuGroup index="200">
<amc:commandMenuItem label="View Items"

index="0"
weight="0"/>

</amc:menuGroup>
</amc:menu>
<amc:menu id="main" type="main">

<amc:menuGroup index="200">
<amc:commandMenuItem label="View Orders"

index="10"
weight="0"/>

</amc:menuGroup>
<amc:menuGroup index="250">

<amc:commandMenuItem label="Edit Order"
index="20"
weight="0"/>

<amc:commandMenuItem label="Call Customer"
index="30"
weight="0"/>

<amc:commandMenuItem label="Call Customer Mobile"
index="40"
weight="0"/>

<amc:commandMenuItem label="Email Customer"
index="50"
weight="0"/>

<amc:commandMenuItem label="Call Shipment Phone"
index="60"
weight="0"/>

<amc:commandMenuItem label="Exit"
index="70"
weight="0"
platform="wm"
action="appExit"/>

</amc:menuGroup>
</amc:menu>

Creating and Using Menus

Creating the ADF Mobile Client User Interface 6-63

</amc:view>

Figure 6–39 shows the menu from Example 6–30 in the Structure window and the
Design page.

Figure 6–39 BlackBerry Menu in Structure Window and Design Page

6.11.4.1 Defining a BlackBerry Full Menu
When creating full menus for BlackBerry smartphones, consider the following;

■ You can specify only one BlackBerry Main menu per MCX file. If you declare more
than one, the Menu Designer will only use the first one while ignoring the rest.

■ You cannot create submenus for BlackBerry Main menus.

■ A number of UI components listed in the following table, when selected,
automatically add their own menu items to the BlackBerry Main menu.

UI Component Menu Item index1

1 The index attribute of the Menu Item together with the group is used to determine how the
menu items are grouped and where separators, if any, should be inserted. The valid values
for the index are between 0 and 65535. The default value is 0.

Input Text Clear Field

Select

Cancel Selection

Copy

Cut

Paste

60

90

50

40

70

80

Input Date Change Option

Copy

30270

64

Output Text Copy 64

Select One Choice Change Option 40

Select Boolean Checkbox Change Option 30270

Creating and Using Menus

6-64 Mobile Client Developer's Guide for Oracle Application Development Framework

■ If you select a BlackBerry Main menu in the Structure window or source editor,
every menu item is shown. This is the only way to see the superset of all menu
items.

■ Since the BlackBerry Main menu is applicable to any component in an MCX file, it
is displayed for any selected component, assuming that the menu type selector is
set to Main.

■ The contents of the BlackBerry Alt menu are appended to the BlackBerry Main
menu whenever displayed.

6.11.5 How to Create Menus for Windows Mobile Devices
You can create a standard menu for Windows Mobile devices.

The standard menu is the two-button style of menu, with menu items popping up
from either of the two buttons on the bottom of the screen. Note that, instead of a
menu, you can assign each button an action. You can also create submenus for menu
items on the popup menu, which would create the cascading effect.

The Main menu, which refers to the right-side menu, consists of the following two
parts:

1. The appropriate half of the menu bar displayed directly under the visual editor.

2. The associated popup menu displayed directly above the menu bar.

The Alt menu refers to the left-side menu and consists of the appropriate half of the
menu bar displayed directly under the visual editor.

Example 6–31 shows the source view of the menu defined in an MCX file.

Example 6–31 Windows Mobile Menu in Source View

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
...
<amc:menu type="main" id="mainMenu">

<amc:menuGroup id="menuGroup1" index="1">
<amc:commandMenuItem id="commandMenuItem1"

label="Exit"
action="exit"/>

</amc:menuGroup>
<amc:menuGroup id="menuGroup2">

<amc:commandMenuItem label="Undo"
id="commandMenuItem2"
action="goback"
actionListener="#{bindings.Rollback}"/>

</amc:menuGroup>
</amc:menu>
<amc:menu id="altMenu" type="alt">

<amc:menuGroup id="menuGroup3">
<amc:commandMenuItem label="Save"

id="commandMenuItem3"
action="goback"
actionListener="#{bindings.Commit}"/>

</amc:menuGroup>
</amc:menu>

</amc:view>

Figure 6–40 shows the menu from Example 6–31 in the Structure window and the
Design page.

Creating and Using Menus

Creating the ADF Mobile Client User Interface 6-65

Figure 6–40 Windows Mobile Menu in Structure Window and Design Page

When creating Main and Alt menus for Windows Mobile devices, consider the
following:

■ The menu bar (without left or right menu buttons) is always visible by default on
the Windows Mobile platform, even if there is no definition of the standard menu
in the MCX file.

■ The Windows Mobile editor height is reduced by the menu bar height.

■ You can specify only one Main type menu per MCX file, although you may specify
one Main type menu for each platform option.

■ An Alt menu for the Windows Mobile platform has a single menu item.

■ Both Main and Alt menus are optional: you do not have to define them.

■ The right menu button is labeled with the label attribute of the Main menu (see
Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile Client).

■ If you select the Main menu or any of its children in the Structure window or
source editor, the right menu button popup will be displayed showing all
submenus and menu items.

■ If you select a UI component in the Structure window while the menu type
selector is set to Main, the left menu button label will be updated (if this
component has a menu item associated with it) and the right menu button popup
will be shown (with the system menu items and all menu items associated with
the selected component).

■ You create separator lines similarly to how you create them for BlackBerry menus,
using the Group (group) component and the index attribute (see Oracle Fusion
Middleware Tag Reference Library for Oracle ADF Mobile Client).

6.11.6 What You May Need to Know About Design-Time Menu Usage
Figure 6–41 shows a menu combo box that appears at the top of the preview window
at design time, with the values "Main" and "No Menu" (default).

Using Event Listeners

6-66 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 6–41 Menu Selector at Design Time

If the "No Menu" option is selected and the focus is placed on a Menu Control, the
menu will pop up and appear in the preview window displaying all of its submenus.
If the focus is moved to another component, the menu will disappear. On Windows
Mobile devices, if the Menu Control is either associated with the currently focused
component or associated with the Form, the menu label will appear in the menu bar at
the bottom. This is an indication and visual cue that the menu has been correctly
attached to another component via the Menu Control. On BlackBerry smartphones,
there is no visual cue for menus since they only appear when the menu key is pressed.

If the "Main" option is selected, all menus associated with the current component or
any parent components, including the Form, are always displayed. This allows to see
which menus are associated with which components while scrolling through a page or
clicking on a page. Because these menus pop up over other components in the
preview, this option is used only to verify menu associations and is usually turned off
by default.

6.11.7 What You May Need to Know About Event Listeners and Menus
You can add the actionListener to menus.

This event listener is applicable to menus for ADF Mobile client run-time description
on both BlackBerry smartphones and Windows Mobile devices, but it does not have
any effect at design time.

For more information, see Section 6.12, "Using Event Listeners."

6.12 Using Event Listeners
You may use the following listeners to add awareness of the view-triggered events to
your mobile application:

■ valueChangeListener: This is a method reference to a value change listener.
The ValueChangeEvent is fired when a value is updated in an input component.

■ selectionListener: This is a method reference to a selection listener. The
SelectionEvent is fired when a selection changes in a Table component.

■ actionListener: This is a method reference to an action listener. The
ActionEvent is fired when a command component or a menu element is
activated.

■ sortListener: This is a method reference to a sort listener. The SortEvent is
fired when a table column sort criteria are changed.

■ rangeChangeListener: This is a method reference to a range change listener.
The RangeChangeEvent is fired when a navigation happens on a table
component.

You define a listener in one of the following ways:

Using Event Listeners

Creating the ADF Mobile Client User Interface 6-67

■ Manually in the source of an MCX file.

■ From the Property Inspector of the selected component. For more information, see
Oracle Fusion Middleware Tag Reference Library for Oracle ADF Mobile Client.

The value for your listener must match the pattern #{*} and conform to the following
requirements:

■ Type name: EL Expression

■ Base type: string

■ Primitive type: string

For information on EL events, see Section 6.14.4, "EL Events."

When defining event listeners in your Java code, you need to pass the
oracle.adfnmc.event.ClientEvent class that contains the following:

■ a source value that returns an Object;

■ a type value that is a String representation of the event's name;

■ a property map to retrieve relevant information.

For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF
Mobile Client.

Example 6–32, Example 6–33, and Example 6–34 demonstrate a Button and a Link
components calling the same bean method. The source value of the ClientEvent
determines which object invoked the event by showing a message box with the
component's ID.

Example 6–32 Calling a Bean Method from MCX File

<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">
<amc:form id="form0">

<amc:panelGroupLayout id="panelGroupLayout1">
<amc:commandButton text="commandButton1" id="commandButton1

actionListener="#{applicationScope.Bean.actionListenerMethod}">
</amc:commandButton>
<amc:commandLink text="commandLink1" id="commandLink1

actionListener="#{applicationScope.Bean.actionListenerMethod}">
</amc:commandLink>

...

Example 6–33 Using the ClientEvent

private void actionListenerMethod(ClientEvent clientEvent) {
Component source = (Component) clientEvent.getSource();
MessageBox.show("actionListener called for " + source.getId());

}

Example 6–34 Invoking the Event Method

public Object invokeMethod(String methodName, Object[] params) {
if (methodName.equals("actionListenerMethod")) {

actionListenerMethod((ClientEvent) params[0]);
}
return null;

}

Localizing UI Components

6-68 Mobile Client Developer's Guide for Oracle Application Development Framework

6.13 Localizing UI Components
In your ADF mobile client application, you can localize the text that UI components
display. You do so by selecting a component and one of its text-presenting properties
whose value you intend to localize, and then choosing Select Text Resource in the
Property Inspector (see Figure 6–42).

Figure 6–42 Selecting Text Resource

This will display the standard ADF Select Text Resource dialog that Figure 6–43
shows. You use this dialog to enter or find a string reference for the property you are
modifying.

Figure 6–43 Select Text Resource Dialog

Localizing UI Components

Creating the ADF Mobile Client User Interface 6-69

After you have defined a localized string resource, the EL for that reference is
automatically placed in the property from which the Select Text Resource dialog was
launched.

Figure 6–44 and Figure 6–45 show respectively the completed Select Text Resource
dialog and changes in the MCX file.

Figure 6–44 Completed Select Text Resource Dialog

Figure 6–45 Localized String in MCX File

For more information on localization, see the following:

■ Section 5.3.12, "Working with Resource Bundles"

■ Section 7.4, "Resource Bundle Support"

■ Section 7.4.1, "Managing Locales Using the List ResourceBundle and
PropertyResourceBundle Classes"

Understanding EL Support

6-70 Mobile Client Developer's Guide for Oracle Application Development Framework

6.14 Understanding EL Support
ADF Mobile client provides support for Expression Language (EL).

6.14.1 Supported EL Nodes
ADF Mobile client supports the following EL nodes:

■ Data bindings: "#{bindings.*}"

■ Application Global Variable Scope: "#{applicationScope.*}"

■ Sync Context: "#{syncContext.*}"

■ Security Context: "#{securityContext.*}"

■ Device Context: "#{device.*}"

6.14.2 What You May Need to Know About ADF Mobile Client EL Implementation
The ADF Mobile client EL implementation is based on the Java Unified Expression
Language (JUEL) project and follows Expression Language Specification Version 2.1
(available from the JUEL project page at http://juel.sourceforge.net/, and
referred to hereinafter as "the specification"), with the following exceptions:

■ Immediate and Deferred Evaluation

■ Enumerated Types

6.14.2.1 Immediate and Deferred Evaluation
In reference to "1.2.1: Eval-expression" in the specification:

In ADF Mobile client, expressions are parsed when the page metadata is loaded, at
which point the owning component holds on to a reference to the parsed object. The
expression is not actually evaluated until the component needs it for rendering a
value. Because ADF Mobile client supports only the deferred semantics, an expression
using the immediate construction expression ("${}") will still parse, but will behave
the same as deferred expression ("#{}").

6.14.2.2 Enumerated Types
As described "1.17: Enums" in the specification, using a literal string to coerce to the
value of an Enum type is not supported, because the required underlying Enum
operations are not supported on J2ME.

6.14.3 How to Reference Binding Containers
The active screen's binding container can be referenced by the root EL expression
"#{bindings}". Another screen's binding container can be referenced through the
expression "#{data.PageDefName}". ADF Mobile client binding objects are
referenced by name from the binding container "#{bindings.Name}".

Table 6–8 lists the properties that you can use in EL expressions to access values of
ADF Mobile client binding objects at run time. The table lists these properties in
alphabetical order.

Understanding EL Support

Creating the ADF Mobile Client User Interface 6-71

Table 6–8 Runtime Properties

Runtime Property Description Iterator Action Attribute

collectionModel Exposes a collection of data. EL
expressions used within a
component that is bound to a
collectionModel can be
referenced with a ’row’ variable 1,
which will resolve the expression
for each element in the collection.

No NA NA

dataControl Returns the iterator's associated
data control.

Yes No No

dataProvider Returns the iterator's associated
data provider.

Yes NA NA

enabled Returns true or false,
depending on the state of the
action binding. For example, the
action binding may be enabled
(true) or disabled (false) based
on the currency (as determined, for
example, when the user clicks the
First, Next, Previous, Last
navigation buttons).

NA Yes NA

error Returns any exception that was
cached while updating the
associated attribute value for a a
value binding or when invoking an
operation bound by an operation
binding.

No No Yes

execute Invokes the named action or
methodAction binding when
resolved.

NA Yes No

findMode Returns true if the iterator is
currently operating in find mode.
Otherwise, returns false.

Yes NA NA

Understanding EL Support

6-72 Mobile Client Developer's Guide for Oracle Application Development Framework

hints Returns a list of name-value pairs
for UI hints for all display
attributes to which the binding is
associated. The following named
values are supported:

■ displayHeight: The height
in lines for the current
attribute.

■ displayWidth: The width in
characters for the current
attribute.

■ displayHint: The display
hint for the current attribute.

■ label: The label to display for
the current attribute.

■ format: The format to be
used for the current attribute.

■ formatter: The formatter
object to be used for the
current attribute.

■ mandatory: Returns true if a
value is required for the
current attribute.

■ precision: The precision to
be used for the current
attribute.

■ tooltip: The ToolTip text to
display for the current
attribute.

■ updateable: Returns true if
the current attribute can be
written to.

Yes NA Yes

inputValue Returns or sets the value of the
current attribute.

NA NA Yes

items Returns the list of values
associated with the current list
enabled attribute.

NA NA No

iteratorBinding Returns the iterator binding that
provides access to the data
collection.

NA Yes Yes

label Returns the label (if supplied by
control hints) for the first attribute
of the binding.

No No Yes

labelSet Returns an ordered set of labels for
all the attributes to which the
binding is associated.

No NA NA

rangeSize Returns the range size of the
iterator binding's row set.

Yes NA NA

rangeStart Returns the absolute index in a
collection of the first row in range.

Yes NA NA

rowCount Returns the total number of rows
in the collection.

Yes NA NA

Table 6–8 (Cont.) Runtime Properties

Runtime Property Description Iterator Action Attribute

Understanding EL Support

Creating the ADF Mobile Client User Interface 6-73

6.14.4 EL Events
EL events play a significant role in the functioning of the ADF Mobile client UI.

EL expressions can refer to values in various contexts. Example 6–35 shows the
creation of two Input Number Spinbox components, with each component tied to an
applicationScope value. The Output Text then uses EL to display a simple
addition equation along with the calculated results. When the framework parses the
EL expression in the Output Text labels, it determines that the expression contains
references to two values and creates event listeners (see Section 6.12, "Using Event
Listeners") for the Output Text on those two values. Anytime the value of the
underlying expression changes, an event is generated to all listeners for that value.

Example 6–35 Generating EL Events with Two Components

<amc:inputNumberSpinbox id="spin1" label="X" value="#{applicationScope.X}"/>
<amc:inputNumberSpinbox id="spin2" label="Y" value="#{applicationScope.Y}"/>
<amc:outputText id="ot1" value="#{applicationScope.X} +

#{applicationScope.Y} = #{applicationScope.X + applicationScope.Y}"/>

In the preceding example two components are updating one value each, and one
component is consuming both values. Example 6–36 shows that the behavior would be
identical if a third Input Number Spinbox component is added that references one of
the existing values.

Example 6–36 Generating EL Events with Three Components

<amc:inputNumberSpinbox id="spin1" label="X" value="#{applicationScope.X}"/>
<amc:inputNumberSpinbox id="spin2" label="Y" value="#{applicationScope.Y}"/>
<amc:outputText id="ot1" value="#{applicationScope.X} +

#{applicationScope.Y} = #{applicationScope.X + applicationScope.Y}"/>
<amc:inputNumberSpinbox id="spin3" label="X" value="#{applicationScope.X}"/>

updateable Returns true if the current
attribute is updateable.

NA NA Yes

1 The EL term 'row' is used within the context of a collection component. 'row' simply acts as an iteration
variable over each element in the collection whose attributes can be accessed by an ADF Mobile client
binding object when the collection is rendered. Attribute and list bindings can be accessed through the
row variable. The syntax for such expressions will be the same as those used for accessing binding objects
outside of a collection, with the 'row' variable prepended as the first term:
#{row.bindings.Name.property}.

Table 6–8 (Cont.) Runtime Properties

Runtime Property Description Iterator Action Attribute

Understanding Binding Layer Components

6-74 Mobile Client Developer's Guide for Oracle Application Development Framework

In the preceding example, when either Input Number Spinbox component updates
#{applicationScope.X}, the other will automatically be updated along with the
Output Text. All of the updates are automatic (no coding is required).

6.15 Understanding Binding Layer Components
ADF Mobile client interprets the ADF lifecycle in the context of a disconnected native
application. As a consequence, the mobile client runtime uses the default behavior
(illustrated in Example 6–37) to invoke the action for a particular operation, because it
must be called on repeat showings of the page after it has been loaded, not only for the
initial load.

Example 6–37 invokeAction in ADF Mobile Client

<invokeAction id="callSetCurrentRowWithKeyValue"
Binds="setCurrentRowWithKeyValue"
Refresh="default"
RefreshCondition="#{requestScope.partyId != null}"/>

For information on the recognized values of the Refresh attribute and their meaning
in a disconnected context, see Table 6–9, " Refresh Values and the Corresponding
Conditions to Invoke".

The mobile client runtime can detect the following conditions for issuing notifications
to invoke executables:

■ A: Each time a page is shown.

■ B: On any action that changes the state of the model. Setting an attribute value or
navigating to a new row are examples of this.

The runtime will execute an invokeAction on the above conditions according to
values of its Refresh and RefreshCondition attributes, as listed in Table 6–9.

Table 6–9 Refresh Values and the Corresponding Conditions to Invoke

Refresh Value Condition to invoke

always A and B

deferred Not supported on invokeAction.

For more information, see "What You May Need to Know
About Using the Refresh Property Correctly" section of Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework.

default A

ifNeeded Not supported.

Instead, use always and gate with a RefreshCondition.

never Not supported

prepareModel Not supported

prepareModelIfNeeded Not supported

renderModel Not supported

renderModelIfNeeded Not supported

Understanding Binding Layer Components

Creating the ADF Mobile Client User Interface 6-75

If a RefreshCondition expression is supplied, it will be evaluated at each potential
execution of the invokeAction. If it evaluates to false, execution will be skipped
on that occurrence.

6.15.1 What You May Need to Know About Sequencing
By default, invokeActions declared with the same Refresh value will execute in
the order they are declared in the pagedef.

To override this behavior, a predecessor iterator or invokeAction can be specified
with the RefreshAfter attribute. Note, however, that the predecessor will still
execute or not based on its own Refresh and RefreshCondition values.

Note: Note that for iterator executables, deferred is the standard
behavior, that is the iterator will not perform its initial Refresh until
an EL expression that is dependent on it is evaluated.

Understanding Binding Layer Components

6-76 Mobile Client Developer's Guide for Oracle Application Development Framework

7

Extending ADF Mobile Client Applications with Java 7-1

7Extending ADF Mobile Client Applications
with Java

This chapter includes the following sections:

■ Section 7.1, "About Invoking Custom Methods Through EL Expressions"

■ Section 7.2, "Java Support for Business Components"

■ Section 7.3, "Using a Managed Bean in an ADF Mobile Client Application"

■ Section 7.4, "Resource Bundle Support"

■ Section 7.5, "Supported EL Nodes"

■ Section 7.6, "Additional JavaSE Classes Provided by the ADF Mobile Client
Framework"

7.1 About Invoking Custom Methods Through EL Expressions
ADF applications typically invoke custom methods defined on an application module
or a view object in response to some event or action that occurs on a page. These
custom method invocations are often declared in pages as EL expressions assigned to
various component attributes, as illustrated by the EL expression
"#{bindings.Foo.execute}" in Example 7–1.

Example 7–1 Declaring a Method Using EL Expressions

<amc:commandButton text="Foo" id="commandButton1"
actionListener="#{bindings.Foo.execute}"/>

This type of declarative invocation assumes that the platform on which the application
executes binds dynamically and invokes methods by name rather than compiling the
method invocation directly into the object code that executes at runtime.

On J2SE- and J2EE-based platforms, dynamic method invocation is enabled through
Java reflection (java.lang.reflect) classes which use underlying VM support to
dynamically link to a method call by name. ADF Mobile client’s J2ME platform, unlike
J2SE- or J2EE-based platforms, does not have this VM support to implement Java
reflection. Consequently, ADF Mobile client applications do not bind methods
dynamically; they instead link methods statically at compile time.

About Invoking Custom Methods Through EL Expressions

7-2 Mobile Client Developer's Guide for Oracle Application Development Framework

7.1.1 Adding Invocation Code for Custom Methods in Application Modules and View
Objects

Because the ADF Mobile client framework cannot rely on Java reflection to bind to
methods dynamically, it requires the application to provide information about the
method to be called. In addition, for the framework to call the method, it must call
through a generic interface to code that is linked at compile time to the method call.
The framework infrastructure accomplishes these through the bindings declaration in
application metadata defined for the page and through the
oracle.adfnmc.util.MethodDispatch interface.

The ADF Mobile client framework simulates binding to methods dynamically by
calling abstractly through MethodDispatch.invokeMethod, passing information
about the method to be called, and relying on the application to provide the concrete
code that links the names to compile time method calls. MethodDispatch should be
implemented on each application module or view object implementation class that
uses custom Java methods.

You can add custom methods using the overview editors for application modules or
view objects as follows:

1. Add a method to the application module or view object.

Access the overview editor by either choosing Open from the context menu in the
Application Navigator, or by double-clicking the application module or view
object. For more information on using the overview editor, see "Creating and
Modifying an Application Module" and "Generating Custom Java Classes for a
View Object" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
Application Development Framework.

2. Expose this method to the client interface.

3. Implement MethodDispatch.invokeMethod on the application module or
view object as illustrated in Example 7–2.

Example 7–2 Implementing the MethodDispatch Interface

public class MyVOImpl
 extends ViewObjectImpl
 implements MyVO, MethodDispatch
{
 public String myCustomMethod(String param1, boolean param2)
 {
 // implementation...
 }

 public Object invokeMethod(String methodName, Object[] params)
 {
 if (methodName.equals("myCustomMethod"))
 {
 String param1 = (String)params[0];
 boolean param2 = ((Boolean)params[1]).booleanValue())
 return this.myCustomMethod(param1, param2);
 }
 }
}

Java Support for Business Components

Extending ADF Mobile Client Applications with Java 7-3

7.2 Java Support for Business Components
ADF Mobile client supports using Java to extend and customize the functionality
delivered by the metadata of the standard business components. While you can
employ many of the same techniques and high-level API calls that you use in standard
ADF Faces applications, the target mobile device platforms impose constraints in the
following areas when you develop ADF Mobile client applications:

■ Support for Reflection

■ JDK 1.3 Compliance

■ Alternate Package Names

7.2.1 Support for Reflection
Only the following APIs are available in this category:

■ Class.forName(String)

■ Class.newInstance()

7.2.2 JDK 1.3 Compliance
All source code is compiled for compatibility with a JDK 1.3 JVM. As a consequence,
there is no support for Java 5 language features, including:

■ Generics

■ Iterators

■ Annotations

■ Enumerations

7.2.3 Alternate Package Names
In addition to missing language features, the supported target platforms also lack a
number of classes used in developing JavaSE and JavaEE platforms, including JDBC
for interfacing with relational databases and collections such as HashMap and
ArrayList. To offset these gaps in functionality, ADF Mobile client provides its own
implementations of these constructs, which augment the target platforms' base class
libraries. However, because some target devices do not permit modifying the JVM
bootclasspath, there is no provision for placing these implementations in the standard
java.* or javax.* package hierarchies. You must instead import these classes from
the alternate oracle.adfnmc.java.* or oracle.adfnmc.javax.* package
hierarchies.

For example, instead of:

import java.sql.ResultSet;
import java.util.HashMap;

Use:

import oracle.adfnmc.java.sql.ResultSet;
import oracle.adfnmc.java.util.HashMap;

Then use the classes normally:

HashMap map = new HashMap();
map.put("Key", "Value");
ResultSet rs = preparedStatement.executeQuery();

Using a Managed Bean in an ADF Mobile Client Application

7-4 Mobile Client Developer's Guide for Oracle Application Development Framework

7.2.4 Supported Java Extension Points for Business Components
Java source code can be used to extend the functionality of various business
components, including entity objects, view objects, and application modules. Table 7–1
lists both the ADF Mobile client’s supported and unsupported extension points.

7.2.4.1 Unsupported Methods
Not every method in BC4J is available for ADF Mobile client. To determine which
methods are supported:

1. Use JDeveloper code completion and syntax highlighting features to determine
what is supported at compile-time instead of repeatedly consulting a lengthy list
of supported methods.

2. Consult Table 7–2 that lists the unsupported methods.

7.3 Using a Managed Bean in an ADF Mobile Client Application
You can create and use managed beans (Mbeans) in an ADF Mobile client application
to store additional data or to execute custom code. Adding an MBean to an ADF
Mobile client application is similar to adding a bean to a standard Fusion Web
application, except for the following differences:

Table 7–1 Supported and Unsupported Extension Points

Supported Not Supported

Entity Object Class Entity Collection Class

Entity Definition Class

View Object Class

View Row Class

View Object Client Interface

View Object Definition Class

Service Data Object Class

View Client Row Interface

Application Module Class

Application Module Client Interface

Application Module Client Class

Application Module Definition Class

Table 7–2 Unsupported Methods

Class Supported Methods

ViewObjectImpl ■ activateNewRowTracker

■ activateState

■ addEffectiveDateDstAttributes

■ buildEffectiveDateFromClauseFragment

EntityImpl ■ doDMLWithLOBs

■ handleEffectiveDateOperations

■ validateDateEffectively

■ removeAndRetain

ApplicationModuleImpl ■ activateState

■ passivateStateForUndo

Using a Managed Bean in an ADF Mobile Client Application

Extending ADF Mobile Client Applications with Java 7-5

■ The MBean class must implement oracle.adfnmc.util.MethodDispatch or
oracle.adfnmc.util.PropertiesDispatch.

■ The MBean class must implement
oracle.adfnmc.java.beans.PropertyValueChangeSource.

■ The only valid scopes declared in an MBean are application, backingBean,
and none.

■ The managed property default values not presently supported.

For more information, see "Using a Managed Bean in a Web Fusion Application" in
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

To add a managed bean:
1. In JDeveloper, click File then New.

2. Choose Java and then Java Class and then click OK.

3. In the Create Java Class dialog, enter a name for the Java class.

4. In the Implements field, click Add to open the Class and Package Browser and use
it to locate oracle.adfnmc.util.MethodDispatch.

5. Click Add to open the Class and Package Browser and use it to locate
oracle.adfnmc.java.beans.PropertyValueChangeSource.

6. Click OK.

Figure 7–1 Adding Custom Properties to a Java Class

7. Use the overview editor for the ADF Mobile client task flow to add this Java class
as a managed bean as follows:

Using a Managed Bean in an ADF Mobile Client Application

7-6 Mobile Client Developer's Guide for Oracle Application Development Framework

a. In the Application Navigator, select the task flow (typically
MobileClient-task-flow.xml), click the Overview tab and then click
Managed Beans.

b. In the Managed Beans page, click New.

c. Enter a name for the managed bean.

d. Enter the name of the Java class created in Steps 1 through 5.

Figure 7–2 Creating a Managed Bean

8. Add custom methods and properties to the Java class.

a. To add a custom property, declare the backing member variable for that
property and then select Source and then Generate Accessors.

b. Select each member for which you wish to generate accessors, as illustrated in
Figure 7–3.

c. Select Notify Listeners when property changes.

Figure 7–3 Adding Custom Methods and Properties

Using a Managed Bean in an ADF Mobile Client Application

Extending ADF Mobile Client Applications with Java 7-7

9. Because reflection is not supported in the J2ME version on some platforms such as
BlackBerry, provide dispatch code if you want to invoke or access any of the
methods or properties from EL. Example 7–3 illustrates using invokeMethod.

7.3.1 About MethodDispatch and PropertyDispatch
The managed bean must implement oracle.adfnmc.util.MethodDispatch.
Because accessing properties and calling methods through EL expressions assumes
that the platform on which the application executes binds dynamically and invokes
methods by name rather than by compiling the method invocation directly into the
object code that executes at runtime, this interface declares a single method,
invokeMethod, that must be implemented to resolve names to actual property
accessors or method calls.

On J2SE- and J2EE-based platforms, dynamic method invocation is enabled through
the use of the java.lang.reflect classes which use underlying VM support to
dynamically link to a method call by name. This is not the case for J2ME platforms,
which lack the VM support required to implement the reflection classes. On this
platform, methods can only be linked statically at compile time. The ADF Mobile client
framework simulates binding to methods dynamically by calling abstractly through
oracle.adfnmc.util.MethodDispatch.invokeMethod, passing information
about the method to be called, and relying on the application to provide the concrete
code that links the names to compile-time method calls.

oracle.adfnmc.util.PropertyDispatch derives from MethodDispatch and
can be implemented to add support for type conversions for properties of types other
than String through the use of the getType(String) method. This method returns
the type of a property given its name. Because J2ME platforms do not support
reflection, using EL expressions to reference these properties from certain UI
components my require using the getType(String) method. Example 7–3 provides
a sample implementation of invokeMethod and getType(String).

7.3.2 About PropertyValueChangeSource and Notifications
oracle.adfnmc.java.beans.PropertyValueChangeSource is the interface
through which ADF Mobile client EL expressions register themselves as listeners on
the objects that they reference, enabling all occurrences of the same expression to be
updated when the underlying value to which they evaluate changes. The ADF Mobile
client UI components rely on this notification mechanism to keep the view of the
active form up to date when values referenced by EL expressions change in the
application through normal interaction.

Note: while the second argument to invokeMethod is a parameter
list to be passed to the named method, with the exception of a "set"
property accessor, this argument is not used when resolving a bean
method using EL expressions. The ADF Mobile client EL syntax does
not support an explicit parameter list when referencing a method.
However, values can be passed indirectly to the method through
object variable scopes, and accessed within the method
implementation.

Note: You must invoke invokeMethod regardless.

Using a Managed Bean in an ADF Mobile Client Application

7-8 Mobile Client Developer's Guide for Oracle Application Development Framework

Although implementing this interface is not required to simply reference bean
methods or properties through EL expressions, the rendering of any EL expressions in
the active form that depend on values stored in the bean must be kept up to date if
those values change.

JDeveloper can automatically generate the necessary code to source notifications from
your bean’s property accessors by selecting Notify listeners when property changes
in the Generate Accessors dialog, illustrated in Figure 7–3.

Example 7–3 Using PropertyDispatch

package adfmc.managedbean;

import oracle.adfnmc.component.MessageBox;
import oracle.adfnmc.event.ClientEvent;
import oracle.adfnmc.java.beans.PropertyChangeListener;
import oracle.adfnmc.java.beans.PropertyChangeSource;
import oracle.adfnmc.java.beans.PropertyChangeSupport;
import oracle.adfnmc.java.sql.Timestamp;
import oracle.jbo.domain.Number;
import oracle.adfnmc.util.PropertyDispatch;

// Instead of implementing MethodDispatch here, we are using
// PropertyDispatch which derives from MethodDispatch. It adds the
// getType method. This method allows you to return the correct types
// for each expression so the type conversions can be invoked
// automatically.
// PropertyChangeSource allows you to fire notifications when your
// member variables change so other components bound to the same
// properties also get updated.
public class Sample2 implements PropertyChangeSource, PropertyDispatch {

 private transient PropertyChangeSupport propertyChangeSupport =
 new PropertyChangeSupport(this);

 public Sample2() {
 }

 private String prop1 = "";
 private Number prop2 = new Number(0);
 private Timestamp prop3 = new Timestamp(0);
 private Boolean prop4 = Boolean.FALSE;
 private String prop5 = "";

 public Object invokeMethod(String methodName, Object[] params) {
 if (methodName.equals("MyMethod")) {
 Object actionEvent = params[0];
 this.MyMethod((ClientEvent)actionEvent);

Note: You must manually declare implements
PropertyChangeSource in your class. The generated code does not
currently add this, and it is required for ADF Mobile client runtime
support. Example 7–3 illustrates implements
PropertyChangeSource.

You must also change the package in the imports declarations of
PropertyChangeListener, PropertyChangeSource, and
PropertyChangeSupport from java.beans to
oracle.adfnmc.java.beans.

Using a Managed Bean in an ADF Mobile Client Application

Extending ADF Mobile Client Applications with Java 7-9

 return null;
 } else if (methodName.equals("prop1")) {
 if (params.length == 0) {
 return this.getProp1();
 } else {
 Object value = params[0];
 this.setProp1((String)value);
 return null;
 }
 } else if (methodName.equals("prop2")) {
 if (params.length == 0) {
 return this.getProp2();
 } else {
 Object value = params[0];
 this.setProp2((Number)value);
 return null;
 }
 } else if (methodName.equals("prop3")) {
 if (params.length == 0) {
 return this.getProp3();
 } else {
 Object value = params[0];
 this.setProp3((Timestamp)value);
 return null;
 }
 } else if (methodName.equals("prop4")) {
 if (params.length == 0) {
 return this.getProp4();
 } else {
 Object value = params[0];
 this.setProp4((Boolean)value);
 return null;
 }
 } else if (methodName.equals("prop5")) {
 if (params.length == 0) {
 return this.getProp5();
 } else {
 Object value = params[0];
 this.setProp5((String)value);
 return null;
 }
 }
 return null;
 }

 // Note that you cannot use the java.bean namespace for these methods
 // and they must use the oracle.adfnmc versions. The implementations
 // are the same though.
 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public void MyMethod(ClientEvent valueChangeEvent) {
 MessageBox.show("MyMethod fired!");
 }

Using a Managed Bean in an ADF Mobile Client Application

7-10 Mobile Client Developer's Guide for Oracle Application Development Framework

 public void setProp1(String prop1) {
 String oldProp1 = this.prop1;
 this.prop1 = prop1;
 propertyChangeSupport.firePropertyChange("Prop1", oldProp1, prop1);
 }

 public String getProp1() {
 return prop1;
 }

 public void setProp2(Number prop2) {
 Number oldProp2 = this.prop2;
 this.prop2 = prop2;
 propertyChangeSupport.firePropertyChange("Prop2", oldProp2, prop2);
 }

 public Number getProp2() {
 return prop2;
 }

 public void setProp3(Timestamp prop3) {
 Timestamp oldProp3 = this.prop3;
 this.prop3 = prop3;
 propertyChangeSupport.firePropertyChange("Prop3", oldProp3, prop3);
 }

 public Timestamp getProp3() {
 return prop3;
 }

 public void setProp4(Boolean prop4) {
 Boolean oldProp4 = this.prop4;
 this.prop4 = prop4;
 propertyChangeSupport.firePropertyChange("Prop4", oldProp4, prop4);
 }

 public Boolean getProp4() {
 return prop4;
 }

 public void setProp5(String prop5) {
 String oldProp5 = this.prop5;
 this.prop5 = prop5;
 propertyChangeSupport.firePropertyChange("Prop5", oldProp5, prop5);
 }

 public String getProp5() {
 return prop5;
 }

 // For each of the EL properties you can return a type. This allows
 // the framework to do automatic type conversions. If you only have
 // string types, this method isn't necessary.
 public Class getType(String propertyName) {
 if (propertyName.equals("prop1")) {
 return String.class;
 } else if (propertyName.equals("prop2")) {
 return Number.class;
 } else if (propertyName.equals("prop3")) {
 return Timestamp.class;

Resource Bundle Support

Extending ADF Mobile Client Applications with Java 7-11

 } else if (propertyName.equals("prop4")) {
 return Boolean.class;
 } else if (propertyName.equals("prop5")) {
 return String.class;
 }
 return Object.class;
 }

}

7.4 Resource Bundle Support
As described in Section 5.3.12, "Working with Resource Bundles," you define the
resource bundle configuration through the Project Properties as shown in Figure 5–15.
When creating the user interface, you define the string references using JDeveloper’s
Select Text Resource dialog, which, when completed, results the creation of EL in the
UI components that reference these strings. For more information, see Section 6.13,
"Localizing UI Components" and "Working with Resource Bundles" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

JDeveloper makes the complete ADF resource bundle containing localized strings
available during application compilation and deployment. The resource bundle is
translated to the format that is required by the run time. See also Section 8.6,
"Deploying a Multi-Language ADF Mobile Client Application." For a list of country
names and languages used in resource bundle files, see Appendix A, "Language
Abbreviations."

7.4.1 Managing Locales Using the List ResourceBundle and PropertyResourceBundle
Classes

ADF Mobile client supports the JavaSE ListResourceBundle and
PropertyResourceBundle classes, but you cannot use these classes as you would
in JavaSE or JavaEE. Specifically, you cannot import these classes from the
java.util. package as shown in Example 7–4 because they are not supported on
mobile devices.

Example 7–4 Importing from the java.util Package

import java.util.ListResourceBundle;
import java.util.PropertyResourceBundle;

Instead, import these resource bundle classes from oracle.adfmnc.java.util as
shown in Example 7–5.

Example 7–5 Importing from oracle.adfnmc.java.util Package

import oracle.adfnmc.java.util.ListResourceBundle;
import oracle.adfnmc.java.util.PropertyResourceBundle;

You use these constructs in ADF Mobile client as you would in Java SE or Java EE
environments. You can provide localization of selected String resources using
properties files that include settings appropriate to both non-localized and localized
display. The names of the properties files distinguish localized and non-localized
resources. For example, Example 7–6 illustrates the non-localized properties file called
localizationStrings.properties and Example 7–7 illustrates the localized
settings in an English-only properties file called localizationString_

Resource Bundle Support

7-12 Mobile Client Developer's Guide for Oracle Application Development Framework

en.properties. The _en locale identifier appended to the file name denotes that
this properties file is English-only.

Example 7–6 Settings in a Non-Localized File, localizationStrings.properties

errorMsg=Problem has occurred
greeting=To Whom It May Concern

Example 7–7 shows the settings in a localized, English-only properties file.

Example 7–7 Settings in a Localized File, localizationStrings_en.properties.

greeting=Hey there

Example 7–8 illustrates the Java code that accesses these properties. The non-localized
line always returns a Problem has occurred string. The localized line (Hey There!) is
returned on English language-supported platforms, while To Whom It May Concern is
returned on all other locales.

Example 7–8 Accessing Properties

ResourceBundle resourceBundle = ResourceBundle.getBundle("some.package.foo");
System.out.println(resourceBundle.getString("errorMsg"); // non-localized; always
returns "Problem has occurred"
System.out.println(resourceBundle.getString("greeting"); // localized. returns
"Hey there" on English platforms; "To Whom It May Concern" on all other locales

These resource bundles are also used implicitly at run time for attribute control hints.
For example, if there is an attribute in a ViewObject named PersonID and
PersonID=Custom Label is defined in the Model project’s resource bundle, then at
run time, whenever this attribute is displayed, it uses the custom label for the label
property rather than defaulting to the name of the attribute.

7.4.2 Supporting Localization through XLFF Resource Bundles
ADF Mobile client supports localization by resolving XLIFF (XML Localization
Interchange File Format) resource bundles in addition to its support of .properties
resource bundles. After ADF Mobile client imports the resource bundles from the base
(server) application and resolves them, it populates attributes with the appropriate
values taken from the JAR of the base application.

 Figure 7–5 shows the format of an XLF bundle called localizationBundle_
de.xml, which is in the German language (as noted by _de).

Resource Bundle Support

Extending ADF Mobile Client Applications with Java 7-13

Figure 7–4 A Localization Bundle

The following examples demonstrate how ADF Mobile client supports localization by
resolving a resource bundle in English (the default) and one in German.

Example 7–9, the source code for an attribute called Starttime, illustrates the results
of importing a German language resource bundle named localizationBundle_de
from the base (server) application’s JAR file: within the LABEL tag for Starttime
attribute, ADF Mobile client retrieved the value for ResID is defined as
${adfBundle[’localization.localizationBundle_
de’][localization.Caldroptest.Starttime_LABEL’]} from the base
application’s JAR.

Example 7–9 The Starttime Attribute

<Attribute
 Name="Starttime"
 ColumnName="STARTTIME"
 SQLType="TIMESTAMP"
 Type="oracle.jbo.domain.Date"
 ColumnType="DATE"
 TableName="CALDROPTEST">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="7"/
 </DesignTime>
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId=${adfBundle[’localization.localizationBundle_
de’][localization.Caldroptest.Starttime_LABEL’]}
 </SchemaBasedProperties>
 </Properties>
</Attribute>

As shown in Figure 7–5, viewing the attribute displayed in the editor (accessed
through the overview editor for the entity object), verifies that ADF Mobile client has
retrieved the correct string value from the German language file, as the Label Text
value is defined as Startzeit.

Resource Bundle Support

7-14 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 7–5 Control Hints for Start Time (Startzeit)

In addition to the German language resource bundle used for the Startzeit
attribute, the Endtime attribute uses the default resource bundle, which is in English.
The value of LABEL in Figure 7–10 shows that ADF Mobile client likewise imported
the resource bundle from the JAR, although this one is the default
(${adfBundle[’localization.localizationBundle’][’localization.Ca
ldroptest.Endtime_LABEL’]}).

Example 7–10 The Endtime Attribute

<Attribute
 Name="Endtime"
 ColumnName="ENDTIME"
 SQLType="TIMESTAMP"
 Type="oracle.jbo.domain.Date"
 ColumnType="DATE"
 TableName="CALDROPTEST">
 <DesignTime>
 <Attr Name="_DisplaySize" Value="7"/
 </DesignTime>
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId=${adfBundle[’localization.localizationBundle’][’localization.Caldroptest.Endtime_
LABEL’]}
 </SchemaBasedProperties>
 </Properties>
 <Attribute>

As shown in Figure 7–6, the attribute editor displays the Label Text value as End
Time.

Supported EL Nodes

Extending ADF Mobile Client Applications with Java 7-15

Figure 7–6 Control Hints for End Time

After deployment to a device, such as BlackBerry smartphone in Figure 7–7, the
application displays the column labels derived from the German language and default,
English language, resource bundles.

Figure 7–7 Localization of Column Names

7.5 Supported EL Nodes
Supported EL nodes include:

■ Data bindings - "#{bindings.*}"

Supported EL Nodes

7-16 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Application global variable scope - "#{applicationScope.*}"

■ Sync Context - "#{syncContext.*}"

■ Security Context - "#{securityContext.*}"

■ Device Context - "#{device.*}"

7.5.1 Working with EL in Code
EL Expression strings can be evaluated programmatically from Java code to resolve
property values and invoke methods. EL Expressions are represented at runtime as
objects that implement either the ValueExpression or MethodExpression
interface. Expression objects are created by passing the EL expression string and some
type information to factory methods on an ELContext, as shown in Example 7–11 and
Example 7–12.

Example 7–11 illustrates using the ValueExpression interface to get or set a named
value identified by an EL expression string.

Example 7–11 Using the ValueExpression Interface

import oracle.adfnmc.el.ValueExpression;
import oracle.adfnmc.el.impl.SimpleContext;
...

Class expectedType = String.class;
String expressionStr = "#{applicationScope.testBean.testProperty}";

ValueExpression expr = SimpleContext.getValueExpression(expressionStr,
expectedType);
String value = (String) testBeanExpr.getValue();
testBeanExpr.setValue("newValue");

Example 7–12 illustrates using the MethodExpression interface to invoke a method
identified by an EL expression string:

Example 7–12 Using the MethodExpression Interface

import oracle.adfnmc.el.impl.SimpleContext;
import oracle.adfnmc.el.MethodExpression;
...

// invoke "String testMethod(String param)" on TestBean.java instance
Class expectedReturnType = String.class;
Class[] expectedParamTypes = new Class[] { String.class };
String expressionStr = "#{applicationScope.testBean.testMethod}";

MethodExpression expr = SimpleContext.getMethodExpression(expressionStr,
expectedReturnType, expectedParamTypes);
String retVal = (String)expr.invoke(new Object[] { "param1Value" });

Note: applicationScope variables, such as beans, can be called
either with the applicationScope prefix
(#(applicationScope.Bean.method)) or without
#(Bean.method).

Additional JavaSE Classes Provided by the ADF Mobile Client Framework

Extending ADF Mobile Client Applications with Java 7-17

Method parameters are not declared directly in EL method expression strings. The
parameter values may come from other areas, such as EL value expressions or data
members in a bean. It is assumed that the caller will have their actual values available
to pass at invocation.

7.6 Additional JavaSE Classes Provided by the ADF Mobile Client
Framework

Table 7–3 lists JavaSE classes provided by ADF Mobile client.

Table 7–3 Additional JavaSE Classes

JavaSE Class ADF Mobile Client Equivalent

java.lang.Math oracle.adfnmc.java.lang.MathHelper

java.sql.Date oracle.adfnmc.java.sql.Date

java.sql.DriverPropertyInfo oracle.adfnmc.java.sql.DriverPropertyInfo

java.sql.Time oracle.adfnmc.java.sql.Time

java.sql.Timestamp oracle.adfnmc.java.sql.Timestamp

java.text.SimpleDateFormat oracle.adfnmc.java.text.SimpleDateFormat

java.util.Comparator oracle.adfnmc.java.util.Comparator

java.util.Locale oracle.adfnmc.java.util.Locale

java.io.BufferedReader oracle.adfnmc.java.io.BufferedReader

java.io.File oracle.adfnmc.java.io.File

java.io.FileInputStream oracle.adfnmc.java.io.FileInputStream

java.io.FileOutputStream oracle.adfnmc.java.io.FileOutputStream

java.io.LineNumberReader oracle.adfnmc.java.io.LineNumberReader

java.io.Serializable oracle.adfnmc.java.io.Serializable

java.io.StreamCorruptedException oracle.adfnmc.java.io.StreamCorruptedException

java.io.StringReader oracle.adfnmc.java.io.StringReader

java.lang.AssertionError oracle.adfnmc.java.lang.AssertionError

java.lang.Class oracle.adfnmc.java.lang.ClassUtils

java.lang.Comparable oracle.adfnmc.java.lang.Comparable

java.util.BitSet oracle.adfnmc.java.util.BitSet

java.util.Comparator oracle.adfnmc.java.util.Comparator

java.util.EventListener oracle.adfnmc.java.util.EventListener

java.util.EventObject oracle.adfnmc.java.util.EventObject

java.util.Locale oracle.adfnmc.java.util.Locale

java.util.Properties oracle.adfnmc.java.util.Properties

java.io.BufferedInputStream oracle.adfnmc.java.io.BufferedInputStream

java.io.BufferedOutputStream oracle.adfnmc.java.io.BufferedOutputStream

java.io.Closeable oracle.adfnmc.java.io.Closeable

java.io.FileNotFoundException oracle.adfnmc.java.io.FileNotFoundException

java.io.FilterInputStream oracle.adfnmc.java.io.FilterInputStream

java.io.FilterOutputStream oracle.adfnmc.java.io.FilterOutputStream

Additional JavaSE Classes Provided by the ADF Mobile Client Framework

7-18 Mobile Client Developer's Guide for Oracle Application Development Framework

java.io.Flushable oracle.adfnmc.java.io.Flushable

java.io.PrintWriter oracle.adfnmc.java.io.PrintWriter

java.io.StringWriter oracle.adfnmc.java.io.StringWriter

java.io.Writer oracle.adfnmc.java.io.Writer

java.lang.Appendable oracle.adfnmc.java.lang.Appendable

java.lang.Boolean java.lang.Boolean,
oracle.adfnmc.java.lang.BooleanHelper

java.lang.Byte java.lang.Byte, oracle.adfnmc.java.lang.ByteHelper

java.lang.Character java.lang.Character,
oracle.adfnmc.java.lang.CharacterHelper

java.lang.CharSequence java.lang.Char, oracle.adfnmc.java.lang.CharSequence

java.lang.Double java.lang.Double,
oracle.adfnmc.java.lang.DoubleHelper

java.lang.Integer java.lang.Integer,
oracle.adfnmc.java.lang.IntegerHelper

java.lang.Iterable oracle.adfnmc.java.lang.Iterable

java.lang.Long java.lang.Long, oracle.adfnmc.java.lang.LongHelper

java.lang.StringBuilder oracle.adfnmc.java.lang.StringBuilder

java.lang.String java.lang.String,
oracle.adfnmc.java.lang.StringHelper

java.lang.UnsupportedOperationException oracle.adfnmc.java.lang.UnsupportedOperationException

java.math.BigDecimal oracle.adfnmc.java.math.BigDecimal

java.math.BigInteger oracle.adfnmc.java.math.BigInteger

java.math.BitLevel oracle.adfnmc.java.math.BitLevel

java.sql.Array oracle.adfnmc.java.sql.Array

java.sql.BaseDate oracle.adfnmc.java.sql.BaseDate

java.sql.BaseTime oracle.adfnmc.java.sql.BaseTime

java.sql.BatchUpdateException oracle.adfnmc.java.sql.BatchUpdateException

java.sql.Blob oracle.adfnmc.java.sql.Blob

java.sql.CallableStatement oracle.adfnmc.java.sql.CallableStatement

java.sql.Clob oracle.adfnmc.java.sql.Clob

java.sql.Connection oracle.adfnmc.java.sql.Connection

java.sql.DatabaseMetaData oracle.adfnmc.java.sql.DatabaseMetaData

java.sql.Driver oracle.adfnmc.java.sql.Driver

java.sql.DriverManager oracle.adfnmc.java.sql.DriverManager

java.sql.ParameterMetaData oracle.adfnmc.java.sql.ParameterMetaData

java.sql.PreparedStatement oracle.adfnmc.java.sql.PreparedStatement

java.sql.Ref oracle.adfnmc.java.sql.Ref

java.sql.ResultSet oracle.adfnmc.java.sql.ResultSet

java.sql.ResultSetMetaData oracle.adfnmc.java.sql.ResultSetMetaData

java.sql.Savepoint oracle.adfnmc.java.sql.Savepoint

java.sql.SQLException oracle.adfnmc.java.sql.SQLException

Table 7–3 (Cont.) Additional JavaSE Classes

JavaSE Class ADF Mobile Client Equivalent

Additional JavaSE Classes Provided by the ADF Mobile Client Framework

Extending ADF Mobile Client Applications with Java 7-19

java.sql.SQLWarning oracle.adfnmc.java.sql.SQLWarning

java.sql.Statement oracle.adfnmc.java.sql.Statement

java.sql.Struct oracle.adfnmc.java.sql.Struct

java.sql.Types oracle.adfnmc.java.sql.Types

java.text.AttributedCharacterIterator oracle.adfnmc.java.text.AttributedCharacterIterator

java.text.CharacterIterator oracle.adfnmc.java.text.CharacterIterator

java.text.FieldPosition oracle.adfnmc.java.text.FieldPosition

java.text.Format oracle.adfnmc.java.text.Format

java.text.MessageFormat oracle.adfnmc.java.text.MessageFormat

java.text.ParseException oracle.adfnmc.java.text.ParseException

java.text.ParsePosition oracle.adfnmc.java.text.ParsePosition

java.util.AbstractCollection oracle.adfnmc.java.util.AbstractCollection

java.util.AbstractList oracle.adfnmc.java.util.AbstractList

java.util.AbstractMap oracle.adfnmc.java.util.AbstractMap

java.util.AbstractSequentialList oracle.adfnmc.java.util.AbstractSequentialList

java.util.AbstractSet oracle.adfnmc.java.util.AbstractSet

java.util.ArrayList oracle.adfnmc.java.util.ArrayList

java.util.Arrays oracle.adfnmc.java.util.Arrays

java.util.Calendar java.util.Calendar,
oracle.adfnmc.java.util.CalendarHelper

java.util.Collection oracle.adfnmc.java.util.Collection

java.util.ConcurrentModificationExcepti
on

oracle.adfnmc.java.util.ConcurrentModificationExcepti
on

java.util.Date java.util.Date, oracle.adfnmc.java.util.DateHelper

java.util.Dictionary oracle.adfnmc.java.util.Dictionary

java.util.EmptyStackException oracle.adfnmc.java.util.EmptyStackException

java.util.HashMap oracle.adfnmc.java.util.HashMap

java.util.HashSet oracle.adfnmc.java.util.HashSet

java.util.Hashtable oracle.adfnmc.java.util.Hashtable

java.util.Iterator oracle.adfnmc.java.util.Iterator

java.util.LinkedHashMap oracle.adfnmc.java.util.LinkedHashMap

java.util.LinkedList oracle.adfnmc.java.util.LinkedList

java.util.List oracle.adfnmc.java.util.List

java.util.ListIterator oracle.adfnmc.java.util.ListIterator

java.util.Map oracle.adfnmc.java.util.Map

java.util.MapEntry oracle.adfnmc.java.util.MapEntry

java.util.MissingResourceException oracle.adfnmc.java.util.MissingResourceException

java.util.Queue oracle.adfnmc.java.util.Queue

java.util.Random oracle.adfnmc.java.util.Random

java.util.RandomAccess oracle.adfnmc.java.util.RandomAccess

Table 7–3 (Cont.) Additional JavaSE Classes

JavaSE Class ADF Mobile Client Equivalent

Additional JavaSE Classes Provided by the ADF Mobile Client Framework

7-20 Mobile Client Developer's Guide for Oracle Application Development Framework

java.util.Set oracle.adfnmc.java.util.Set

java.util.SortedMap oracle.adfnmc.java.util.SortedMap

java.util.SortedSet oracle.adfnmc.java.util.SortedSet

java.util.Stack oracle.adfnmc.java.util.Stack

java.util.StringTokenizer oracle.adfnmc.java.util.StringTokenizer

java.util.TreeMap oracle.adfnmc.java.util.TreeMap

java.util.TreeSet oracle.adfnmc.java.util.TreeSet

java.util.Vector oracle.adfnmc.java.util.Vector

java.util.WeakHashMap oracle.adfnmc.java.util.WeakHashMap

This API is compatible, but it does not maintain weak reference
semantics.

java.util.logging.ConsoleHandler oracle.adfnmc.java.util.logging.ConsoleHandler

java.util.logging.DevNullHandler oracle.adfnmc.java.util.logging.DevNullHandler

java.util.logging.DevNullOutputStream oracle.adfnmc.java.util.logging.DevNullOutputStream

java.util.logging.ErrorManager oracle.adfnmc.java.util.logging.ErrorManager

java.util.logging.FileHandler oracle.adfnmc.java.util.logging.FileHandler

java.util.logging.Filter oracle.adfnmc.java.util.logging.Filter

java.util.logging.Formatter oracle.adfnmc.java.util.logging.Formatter

java.util.logging.Handler oracle.adfnmc.java.util.logging.Handler

java.util.logging.Level oracle.adfnmc.java.util.logging.Level

java.util.logging.Logger oracle.adfnmc.java.util.logging.Logger

java.util.logging.LogManager oracle.adfnmc.java.util.logging.LogManager

java.util.logging.LogRecord oracle.adfnmc.java.util.logging.LogRecord

java.util.logging.Messages oracle.adfnmc.java.util.logging.Messages

java.util.logging.NmcPatternFormatter oracle.adfnmc.java.util.logging.NmcPatternFormatter

java.util.logging.PatternFormatter oracle.adfnmc.java.util.logging.PatternFormatter

java.util.logging.SimpleFormatter oracle.adfnmc.java.util.logging.SimpleFormatter

java.util.logging.StreamHandler oracle.adfnmc.java.util.logging.StreamHandler

java.util.regex.AbstractCharClass oracle.adfnmc.java.util.regex.AbstractCharClass

java.util.regex.AbstractLineTerminator oracle.adfnmc.java.util.regex.AbstractLineTerminator

java.util.regex.AbstractSet oracle.adfnmc.java.util.regex.AbstractSet

java.util.regex.AheadFSet oracle.adfnmc.java.util.regex.AheadFSet

java.util.regex.AltGroupQuantifierSet oracle.adfnmc.java.util.regex.AltGroupQuantifierSet

java.util.regex.AltQuantifierSet oracle.adfnmc.java.util.regex.AltQuantifierSet

java.util.regex.AtomicFSet oracle.adfnmc.java.util.regex.AtomicFSet

java.util.regex.AtomicJointSet oracle.adfnmc.java.util.regex.AtomicJointSet

java.util.regex.BackReferencedSingleSet oracle.adfnmc.java.util.regex.BackReferencedSingleSet

java.util.regex.BackReferenceSet oracle.adfnmc.java.util.regex.BackReferenceSet

java.util.regex.BehindFSet oracle.adfnmc.java.util.regex.BehindFSet

java.util.regex.CanClasses oracle.adfnmc.java.util.regex.CanClasses

Table 7–3 (Cont.) Additional JavaSE Classes

JavaSE Class ADF Mobile Client Equivalent

Additional JavaSE Classes Provided by the ADF Mobile Client Framework

Extending ADF Mobile Client Applications with Java 7-21

java.util.regex.CharClass oracle.adfnmc.java.util.regex.CharClass

java.util.regex.CharSet oracle.adfnmc.java.util.regex.CharSet

java.util.regex.CIBackReferenceSet oracle.adfnmc.java.util.regex.CIBackReferenceSet

java.util.regex.CICharSet oracle.adfnmc.java.util.regex.CICharSet

java.util.regex.CIDecomposedCharSet oracle.adfnmc.java.util.regex.CIDecomposedCharSet

java.util.regex.CISequenceSet oracle.adfnmc.java.util.regex.CISequenceSet

java.util.regex.CompositeGroupQuantifie
rSet

oracle.adfnmc.java.util.regex.CompositeGroupQuantifie
rSet

java.util.regex.CompositeQuantifierSet oracle.adfnmc.java.util.regex.CompositeQuantifierSet

java.util.regex.CompositeRangeSet oracle.adfnmc.java.util.regex.CompositeRangeSet

java.util.regex.DecomposedCharSet oracle.adfnmc.java.util.regex.DecomposedCharSet

java.util.regex.DotAllQuantifierSet oracle.adfnmc.java.util.regex.DotAllQuantifierSet

java.util.regex.DotAllSet oracle.adfnmc.java.util.regex.DotAllSet

java.util.regex.DotQuantifierSet oracle.adfnmc.java.util.regex.DotQuantifierSet

java.util.regex.DotSet oracle.adfnmc.java.util.regex.DotSet

java.util.regex.EmptySet oracle.adfnmc.java.util.regex.EmptySet

java.util.regex.EOISet oracle.adfnmc.java.util.regex.EOISet

java.util.regex.EOLSet oracle.adfnmc.java.util.regex.EOLSet

java.util.regex.FinalSet oracle.adfnmc.java.util.regex.FinalSet

java.util.regex.FSet oracle.adfnmc.java.util.regex.FSet

java.util.regex.GroupQuantifierSet oracle.adfnmc.java.util.regex.GroupQuantifierSet

java.util.regex.HangulDecomposedCharSet oracle.adfnmc.java.util.regex.HangulDecomposedCharSet

java.util.regex.HashDecompositions oracle.adfnmc.java.util.regex.HashDecompositions

java.util.regex.HighSurrogateCharSet oracle.adfnmc.java.util.regex.HighSurrogateCharSet

java.util.regex.I18n oracle.adfnmc.java.util.regex.I18n

java.util.regex.IntArrHash oracle.adfnmc.java.util.regex.IntArrHash

java.util.regex.IntHash oracle.adfnmc.java.util.regex.IntHash

java.util.regex.JointSet oracle.adfnmc.java.util.regex.JointSet

java.util.regex.LeafQuantifierSet oracle.adfnmc.java.util.regex.LeafQuantifierSet

java.util.regex.LeafSet oracle.adfnmc.java.util.regex.LeafSet

java.util.regex.Lexer oracle.adfnmc.java.util.regex.Lexer

java.util.regex.LowHighSurrogateRangeSe
t

oracle.adfnmc.java.util.regex.LowHighSurrogateRangeSe
t

java.util.regex.LowSurrogateCharSet oracle.adfnmc.java.util.regex.LowSurrogateCharSet

java.util.regex.Matcher oracle.adfnmc.java.util.regex.Matcher

java.util.regex.MatchResult oracle.adfnmc.java.util.regex.MatchResult

java.util.regex.MatchResultImpl oracle.adfnmc.java.util.regex.MatchResultImpl

java.util.regex.MultiLineEOLSet oracle.adfnmc.java.util.regex.MultiLineEOLSet

java.util.regex.MultiLineSOLSet oracle.adfnmc.java.util.regex.MultiLineSOLSet

java.util.regex.NegativeLookAhead oracle.adfnmc.java.util.regex.NegativeLookAhead

Table 7–3 (Cont.) Additional JavaSE Classes

JavaSE Class ADF Mobile Client Equivalent

Additional JavaSE Classes Provided by the ADF Mobile Client Framework

7-22 Mobile Client Developer's Guide for Oracle Application Development Framework

java.util.regex.NegativeLookBehind oracle.adfnmc.java.util.regex.NegativeLookBehind

java.util.regex.NonCapFSet oracle.adfnmc.java.util.regex.NonCapFSet

java.util.regex.NonCapJointSet oracle.adfnmc.java.util.regex.NonCapJointSet

java.util.regex.Pattern oracle.adfnmc.java.util.regex.Pattern

java.util.regex.PatternSyntaxException oracle.adfnmc.java.util.regex.PatternSyntaxException

java.util.regex.PosAltGroupQuantifierSe
t

oracle.adfnmc.java.util.regex.PosAltGroupQuantifierSe
t

java.util.regex.PosCompositeGroupQuanti
fierSet

oracle.adfnmc.java.util.regex.PosCompositeGroupQuanti
fierSet

java.util.regex.PositiveLookAhead oracle.adfnmc.java.util.regex.PositiveLookAhead

java.util.regex.PositiveLookBehind oracle.adfnmc.java.util.regex.PositiveLookBehind

java.util.regex.PosPlusGroupQuantifierS
et

oracle.adfnmc.java.util.regex.PosPlusGroupQuantifierS
et

java.util.regex.PossessiveAltQuantifier
Set

oracle.adfnmc.java.util.regex.PossessiveAltQuantifier
Set

java.util.regex.PossessiveCompositeQuan
tifierSet

oracle.adfnmc.java.util.regex.PossessiveCompositeQuan
tifierSet

java.util.regex.PossessiveGroupQuantifi
erSet

oracle.adfnmc.java.util.regex.PossessiveGroupQuantifi
erSet

java.util.regex.PossessiveQuantifierSet oracle.adfnmc.java.util.regex.PossessiveQuantifierSet

java.util.regex.PreviousMatch oracle.adfnmc.java.util.regex.PreviousMatch

java.util.regex.Quantifier oracle.adfnmc.java.util.regex.Quantifier

java.util.regex.QuantifierSet oracle.adfnmc.java.util.regex.QuantifierSet

java.util.regex.RangeSet oracle.adfnmc.java.util.regex.RangeSet

java.util.regex.RelAltGroupQuantifierSe
t

oracle.adfnmc.java.util.regex.RelAltGroupQuantifierSe
t

java.util.regex.RelCompositeGroupQuanti
fierSet

oracle.adfnmc.java.util.regex.RelCompositeGroupQuanti
fierSet

java.util.regex.ReluctantAltQuantifierS
et

oracle.adfnmc.java.util.regex.ReluctantAltQuantifierS
et

java.util.regex.ReluctantCompositeQuant
ifierSet

oracle.adfnmc.java.util.regex.ReluctantCompositeQuant
ifierSet

java.util.regex.ReluctantGroupQuantifie
rSet

oracle.adfnmc.java.util.regex.ReluctantGroupQuantifie
rSet

java.util.regex.ReluctantQuantifierSet oracle.adfnmc.java.util.regex.ReluctantQuantifierSet

java.util.regex.SequenceSet oracle.adfnmc.java.util.regex.SequenceSet

java.util.regex.SingleDecompositions oracle.adfnmc.java.util.regex.SingleDecompositions

java.util.regex.SingleSet oracle.adfnmc.java.util.regex.SingleSet

java.util.regex.SOLSet oracle.adfnmc.java.util.regex.SOLSet

java.util.regex.SpecialToken oracle.adfnmc.java.util.regex.SpecialToken

java.util.regex.SupplCharSet oracle.adfnmc.java.util.regex.SupplCharSet

java.util.regex.SupplRangeSet oracle.adfnmc.java.util.regex.SupplRangeSet

java.util.regex.UCIBackReferenceSet oracle.adfnmc.java.util.regex.UCIBackReferenceSet

java.util.regex.UCICharSet oracle.adfnmc.java.util.regex.UCICharSet

Table 7–3 (Cont.) Additional JavaSE Classes

JavaSE Class ADF Mobile Client Equivalent

Additional JavaSE Classes Provided by the ADF Mobile Client Framework

Extending ADF Mobile Client Applications with Java 7-23

java.util.regex.UCIDecomposedCharSet oracle.adfnmc.java.util.regex.UCIDecomposedCharSet

java.util.regex.UCIRangeSet oracle.adfnmc.java.util.regex.UCIRangeSet

java.util.regex.UCISequenceSet oracle.adfnmc.java.util.regex.UCISequenceSet

java.util.regex.UCISupplCharSet oracle.adfnmc.java.util.regex.UCISupplCharSet

java.util.regex.UCISupplRangeSet oracle.adfnmc.java.util.regex.UCISupplRangeSet

java.util.regex.UEOLSet oracle.adfnmc.java.util.regex.UEOLSet

java.util.regex.UMultiLineEOLSet oracle.adfnmc.java.util.regex.UMultiLineEOLSet

java.util.regex.UnicodeCategory oracle.adfnmc.java.util.regex.UnicodeCategory

java.util.regex.UnicodeCategoryScope oracle.adfnmc.java.util.regex.UnicodeCategoryScope

java.util.regex.UnifiedQuantifierSet oracle.adfnmc.java.util.regex.UnifiedQuantifierSet

java.util.regex.WordBoundary oracle.adfnmc.java.util.regex.WordBoundary

javax.sql.DataSource oracle.adfnmc.java.javax.sql.DataSource

Table 7–3 (Cont.) Additional JavaSE Classes

JavaSE Class ADF Mobile Client Equivalent

Additional JavaSE Classes Provided by the ADF Mobile Client Framework

7-24 Mobile Client Developer's Guide for Oracle Application Development Framework

8

Deploying ADF Mobile Client Components 8-1

8Deploying ADF Mobile Client Components

This chapter describes how to deploy the ADF Mobile client runtime and applications
to Windows Mobile devices and emulators as well as BlackBerry smartphones and
simulators.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Deployment"

■ Section 8.2, "Deploying the ADF Mobile Client Runtime"

■ Section 8.3, "Creating Data Sync Publications on the Server"

■ Section 8.4, "Working with Application Deployment Profiles"

■ Section 8.5, "Specifying the Client Database Location for an Application"

■ Section 8.6, "Deploying a Multi-Language ADF Mobile Client Application"

8.1 Introduction to Deployment
ADF Mobile client enables you to package and deploy an application to either the
Windows Mobile or BlackBerry platforms. For Windows Mobile, ADF Mobile client
enables you to create and deploy cabinet (CAB) files. For BlackBerry, ADF Mobile
client enables you to package applications as COD files. ADF Mobile deployment is a
multi-step process that culminates in application deployment. This process involves:

1. Deploying the ADF Mobile client runtime to the BlackBerry smartphone or
simulator or to the Windows Mobile device or emulator. For more information, see
Section 8.2, "Deploying the ADF Mobile Client Runtime."

2. Creating Sync Data Publications on the Server. You must deploy the application
data publication to the runtime to specify the server-side data that synchronizes
with the local database on the client. For more information, see Section 8.3,
"Creating Data Sync Publications on the Server."

3. Deploying the actual ADF Mobile client application. You can deploy an
application through JDeveloper or you can deploy it directly to a BlackBerry
smartphone or simulator or to a Windows Mobile device or emulator. For more
information, see Section 8.4, "Working with Application Deployment Profiles."

Deployment is also part of the development process: because ADF Mobile client
applications only run after you have deployed them, you must therefore deploy an
application before testing and debugging it. Unlike applications deployed to a server,
ADF Mobile client applications are typically deployed directly to a mobile device
without receiving further configuration. As a result, the deployment process enables
you to verify the contents of an application.

Deploying the ADF Mobile Client Runtime

8-2 Mobile Client Developer's Guide for Oracle Application Development Framework

8.1.1 Application Deployment Prerequisites
Before you deploy applications, you must obtain and configure the software
appropriate to the target deployment platform and the Oracle database, Oracle
Database Lite, and SQLite databases as described in Chapter 2, "Setting Up the ADF
Mobile Client Environment."

8.2 Deploying the ADF Mobile Client Runtime
To enable ADF Mobile client applications to execute properly on a smartphone, mobile
device, simulator or emulator, you must deploy the ADF Mobile client runtime and
other runtime components to the appropriate target.

8.2.1 How to Deploy the Runtime Components
The Deploy to ADF Mobile Client Runtime options enable you to deploy the ADF
client runtime, along with the Mobile Sync (mSync) to a Windows Mobile device or
emulator or to a BlackBerry smartphone or simulator. For Windows Mobile, you can
also deploy the Java Virtual Machine (Java Micro Edition Connected Device
Configuration HotSpot Implementation).

Before you begin:
Configure the environment for Windows Mobile emulators or BlackBerry Smartphone
simulators as described in Section 2.6, "Setting Up Development Tools for Windows
Mobile Platform" and Section 2.7, "Setting Up Development Tools for BlackBerry
Platform." For deployment to a BlackBerry smartphone, you must connect the
smartphone to the development computer using a compatible USB cable.

To deploy the ADF Mobile client runtime and mSync to BlackBerry smartphones
and simulators:
1. Choose Tools and then choose Deploy ADF Mobile Client Runtime.

2. Depending on the deployment target, select either to BlackBerry Smartphone or
to BlackBerry Simulator.

3. Select the runtime components. Choose either ADF Mobile Client Runtime or
Data Sync (which deploys mSync), or both.

4. Click Deploy.

5. View the entries written to JDeveloper’s Deployment-Log. Example 8–1 illustrates
a deployment log to a BlackBerry Smartphone simulator:

Example 8–1 Deployment-Log Entries for Runtime Component to a BlackBerry
Smartphone Simulator

[03:41:22 PM] Copying files to simulator located at: C:\Program Files\Research In
Motion\BlackBerry Smartphone Simulators 4.7.1\4.7.1.65 (9630)
[03:41:23 PM] Files copied successfully. You must restart the simulator before
running the Mobile Client application.

6. Restart the BlackBerry smartphone simulator (for deployment to a simulator).

To deploy the ADF Mobile client runtime, mSync, and JVM to Windows Mobile
devices and emulators:
1. Choose Tools and then choose Deploy ADF Mobile Client Runtime.

2. Choose to Windows Mobile.

Creating Data Sync Publications on the Server

Deploying ADF Mobile Client Components 8-3

3. Select a runtime component, such as ADF Mobile Client Runtime, Data Sync, or
Java Virtual Machine.

4. Click Deploy.

5. Monitor the component’s deployment progress on the Windows Mobile device or
emulator.

6. If needed, select another runtime component and then click Deploy.

7. Click Close.

8. View the entries written to JDeveloper’s Deployment-Log. Example 8–2 illustrates
deployment of mSync (resulting from selecting the Data Sync option):

Example 8–2 Deployment of Data Sync (mSync) to a Windows Mobile Emulator

[01:00:25 PM] Copying file:
C:\JDev\jdeveloper\jdev\extensions\oracle.adfnmc.core\WindowsMobile\deploy\wm6\sql
ite.us.ppc60.armv4i.CAB
[01:02:18 PM] Data Sync file copied. Monitor installation progress from the device
or emulator...

8.3 Creating Data Sync Publications on the Server
When you create data sync publications, you are essentially telling Oracle Database
Lite Mobile Server (Mobile Server) which data should be synchronized to a BlackBerry
smartphone or Windows Mobile device. Data sync publications are not required for
applications that use a custom local database. For more information, see Section 8.5,
"Specifying the Client Database Location for an Application" and Chapter 11, "Working
Directly with the Database." In most situations, however, ADF Mobile client
applications must synchronize data with a back-end database. Data sync publications
provide ADF Mobile client applications with the appropriate data from the server.
Although you can successfully deploy an ADF Mobile client application without first
creating the data sync publications, doing so prevents the application from finding the
required data at runtime.

8.3.1 How to Create Data Sync Publications
The Sync Publication page (Figure 8–4) enables you to create the connection to the
Mobile Server.

Before you begin:
You must install Oracle Database Lite Mobile Server. (Mobile Server). For more
information, see Section 2.5, "Setting Up Oracle Database Lite."

You must create the following two types of connections:

■ A database connection for the Oracle Lite Mobile Server Repository schema. If you
installed Mobile Server with the default settings, this database schema belongs to
the MOBILEADMIN user. See also "Installation of Mobile Server" in Oracle Database
Lite Getting Started Guide.

Note: For Windows Mobile, you must deploy runtime components
one after another; you must wait for deployment of one component to
complete before you can select the next one.

Creating Data Sync Publications on the Server

8-4 Mobile Client Developer's Guide for Oracle Application Development Framework

■ A connection to a local database that synchronizes with the back-end database
using Mobile Server. You create this connection using the Create Database
Connection dialog illustrated in Figure 8–3.

To create data sync publications
1. Right-click the Model project in the Application Navigator, choose New and then

Deployment Profiles.

2. Choose ADF Mobile Client Sync Publication as shown in Figure 8–1 and then
click OK.

Figure 8–1 Selecting the Mobile Client Sync Publication Profile

3. Enter a name for the data sync publication (or accept the default name, as shown
in Figure 8–2) and then click OK.

Figure 8–2 Naming the Data Sync Publication

4. In the Sync Publication page, select the connection used by the client database that
synchronizes with the back-end database through Mobile Server. If no such
connection exists:

Creating Data Sync Publications on the Server

Deploying ADF Mobile Client Components 8-5

a. Click Add.

b. In the Create Database Connection dialog, enter the name for the connection
for the synchronized application, such as MySynchronizedConnection shown
in Figure 8–3.

c. Select ADF Mobile Client as the connection type.

d. Select Synchronized Database on Client.

e. Enter the name of the local (client) database that synchronizes with a back-end
database through Mobile Server.

f. Click OK. For more information on the Create Database Connection dialog,
click Help to see the JDeveloper online help

Figure 8–3 Creating a Synchronized Connection

5. Enter the following:

■ The User Name and Password parameters specify the account associated with
this sync publication. This is the same user name and password combination
that users enter on the device when prompted for credentials for data
synchronization. If this account does not exist on Mobile Server, it will be
created automatically when you publish synchronization artifacts.

■ The Database Connection for Oracle Mobile Server Repository Schema
parameters represent the Oracle database schema where the Mobile Server
artifacts are stored.

Note: This is not the same schema for the base application as
described in Section 5.2, "Extending an ADF Application to Mobile
Client."

Working with Application Deployment Profiles

8-6 Mobile Client Developer's Guide for Oracle Application Development Framework

Click Add to create a connection if one does not already exist or click Edit to
update the connection information.

6. Click OK.

Figure 8–4 The Sync Publication Page

8.3.2 What Happens When You Create a Database Connection
After you create an ADF Mobile client connection using the Create Database
Connection dialog, JDeveloper stores the connection information in the
connections.xml file, a file that is created when you create a new connection using
JDeveloper. This file is packaged with other meta-data files and deployed to the actual
device or simulator. The ADF Mobile client runtime reads the connection.xml file
as needed. connections.xml is located in the Application Navigator's Application
Resources panel, under either the Descriptors or ADF META-INF nodes.

8.4 Working with Application Deployment Profiles
Preparing ADF Mobile client applications for deployment is primarily comprised of
creating platform-specific deployment profiles. A deployment profile defines how an
application is packaged into the archive that will be deployed to either a BlackBerry
smartphone and simulator or Windows Mobile device and emulator. The deployment
profile:

■ Specifies the format and contents of the archive. For Windows Mobile, the archive
format is a cabinet (CAB) file. For BlackBerry, the format is a COD file.

■ Lists the source files, deployment descriptors, and other auxiliary files that will be
packaged into the archive file.

■ Describes the type and name of the archive file to be created.

Working with Application Deployment Profiles

Deploying ADF Mobile Client Components 8-7

■ Highlights dependency information, platform-specific instructions, and other
information.

The ADF Mobile client extension adds ADF Mobile client-specific pages for both CAB
and COD deployment to the standard ADF deployment profiles that include:

■ JAR Options

■ File Groups

■ Library Dependencies

■ Profile Dependencies

For more information on these standard ADF deployment profile pages, click Help to
see the JDeveloper online help.

Table 8–1 lists the ADF Mobile client-specific pages in the Deployment Profile dialog.

8.4.1 How to Create a Deployment Profile for BlackBerry Applications
ADF Mobile client applications are deployed to BlackBerry smartphones as COD files.
ADF Mobile client enables you to create a deployment profile.

Before you begin:
Set up the BlackBerry environment as described in Chapter 2, "Setting Up the ADF
Mobile Client Environment." Deployment requires that you complete this
configuration, which includes:

■ To enable users to add an application using the ALX file, download BlackBerry
Desktop Manager (for the development environment) and BlackBerry Enterprise
Server (if you plan on posting the COD to a server in a production environment).

■ Download BlackBerry Java Development Environment (JDE 5.0) and a BlackBerry
simulator. (The simulator is optional, as you typically use the simulator included
in the JDE.) If the application synchronizes with the back-end database using
Oracle Database Lite Mobile Server, download the Oracle Database Lite 10g
Mobile Development Kit (MDK). Using the ADF Mobile client preferences dialog
(accessed by clicking Tools then Preferences then ADF Mobile Client), you set the
locations for the JDE and the simulator. When you deploy an application to a

Table 8–1 ADF Mobile Client-Specific Deployment Profile Pages

Page Function

Windows Mobile Options Enables you to modify the settings for an application to be
deployed on a Windows Mobile device and emulator.

BlackBerry Options Enables you to modify the settings for an application deployed
to a BlackBerry smartphone and simulator.

Application Icon Enables you to assign custom icons to an application by adding
the appropriate graphics file.

Client Database Enables you to specify if the database is a standalone on the
device, or synchronized.

Localization Enables you to select localized resources for user-facing strings.

Note: Deployment depends on the needs of your application. You
can deploy an application using the default values seeded in the pages
listed in Table 8–1.

Working with Application Deployment Profiles

8-8 Mobile Client Developer's Guide for Oracle Application Development Framework

BlackBerry smartphone simulator, JDeveloper places the resulting COD file in the
simulator’s directory. If the application uses Mobile Server, entering the location of
the MDK directory adds osync_rim.jar and mSync.jar which enable
on-device synchronization. You do not need to specify the MDK location for
standalone applications or for applications using web servers for server
communications.

■ If you deploy to an actual device (that is, a BlackBerry smartphone), you must
connect the smartphone to the development computer using a compatible USB
cable.

To Create a BlackBerry Deployment Profile
1. Select Application then Application Properties.

2. Click New in the Deployment Page and then choose ADF Mobile Client for
BlackBerry as the Archive Type.

3. Enter a name for the deployment profile, or accept the default name, and then
click OK.

8.4.1.1 Setting and Modifying Application Details
The Options page enables you to edit the properties of a deployment file and to set the
behavior of the BlackBerry Signature tool.

Figure 8–5 The BlackBerry Options Page

To edit the deployment file options:
1. Choose BlackBerry Options.

2. Accept the default values, or define the following options:

■ Name—The name of the BlackBerry application. This value is populated by
default and matches the name of the application workspace.

■ Description—A description of the application.

Working with Application Deployment Profiles

Deploying ADF Mobile Client Components 8-9

■ Version—The version number of the application.

■ Vendor—The name of the application vendor.

■ Copyright—The copyright year.

■ ID—An ID for the application.

3. If needed, set the digital signature options as described in Section 8.4.1.2, "Setting
the BlackBerry Digital Signature Tool Options" and then click OK.

8.4.1.2 Setting the BlackBerry Digital Signature Tool Options
For security purposes, RIM requires that any application that uses controlled APIs be
signed, or it will fail to run on a smartphone.

Before you begin:
Before you can use the BlackBerry Signature Tool, you must register for the RIM
Signing Authority Account. For more information, see Blackberry - Java Code Signing
Keys at http://na.blackberry.com/eng/.

To set the digital signatures options:
Select from among the following and then click OK:

■ Sign Application During Deployment—Select this option to sign the application.
If you select this option, the BlackBerry signature tool launches before the
application is deployed to the BlackBerry smartphone or simulator.

■ Automatically request signatures—Select to enable the BlackBerry Signature Tool
to automatically send code-signing requests to the BlackBerry Signing Authority
Tool.

■ Close Signature tool—Select the option type to close the BlackBerry Signature
Tool. The Signing Tool closes after it returns request results and applies any
granted permissions to the application package. Application deployment then
begins.

– Select Manually to manually close the signing tool after the singing results
have been received.

– Select After Requesting Signatures to close the BlackBerry Signature Tool
after the signing results have been received, irrespective of success or failure.

– Select After Requesting Signatures, if no errors to close the BlackBerry
Signature Tool after the signing tool results have been received and the signing
completed successfully without any errors.

■ Deploy debug files with the application—Select this option to deploy debugging
files along with the application. The application debug files are deployed to the
BlackBerry simulator folder both for the simulator and for the BlackBerry
smartphone itself. These files enable debugging on both the BlackBerry
smartphone and simulator.

Note: You cannot overwrite the same application installed on a
BlackBerry smartphone that has the same or higher version number.

Note: Applications can run on the BlackBerry simulator without
signing.

Working with Application Deployment Profiles

8-10 Mobile Client Developer's Guide for Oracle Application Development Framework

8.4.1.3 Adding a Customized Icon to a BlackBerry Application
BlackBerry applications require two image files, one for a standard icon and one for
showing that the application has focus. RIM recommends using images measuring
80x80 pixels for both of these images. See "Default Themes and Dimensions for Screens
and Application Icons on BlackBerry Devices" in BlackBerry Smartphones UI Guidelines
Version: 2.4. available at:

http://docs.blackberry.com/

See also "Icons and Indicators" in BlackBerry Smartphones UI Guidelines Version: 2.4 for
design guidelines.

8.4.1.3.1 How to Add Custom Icons to a BlackBerry Application The Application Icons page
of the ADF Mobile Client for BlackBerry Deployment Profiles Properties dialog
enables you to add custom icons by adding the PNG- or GIF-formatted images for the
main and focus icons. If you do not add a custom image file, then the default Oracle
icon is used.

Figure 8–6 Adding Custom Icons to a BlackBerry Application

Before you begin:
Obtain the images in the file format, dimensions, pixels, and components appropriate
to the BlackBerry theme as described icons in BlackBerry Smartphones UI Guidelines
Version: 2.4, available at:

http://docs.blackberry.com/

You must also add the image files to the view controller (MobileClient) project. For
example, copy the file containing the application icon PNG and GIF files to:

C:\JDeveloper\mywork\<application_name>\MobileClient\<icon_image
file>

Note: Oracle recommends a size limit under 16K.

Working with Application Deployment Profiles

Deploying ADF Mobile Client Components 8-11

To add custom main and focus icons to a BlackBerry application:
1. Click Application Icons.

2. Use the Browse function to select the main and focus icon image files from the
project file.

3. Click OK.

8.4.1.4 Deploying BlackBerry Applications
The Deployment Action page, shown in Figure 8–7, enables you to deploy an
application to a BlackBerry smartphone or simulator or deploy to a JAR file. It also
enables you to deploy the application to a package that end users can manually add to
smartphones or simulators by copying it directly or by using the BlackBerry’s ALX
application loader file. When you package an application, JDeveloper creates an ALX
file along with other application objects.

Figure 8–7 The Deployment Action Page with Application-Level Deployment Options

Before you begin:
Set up the BlackBerry environment as described in Section 2.7, "Setting Up
Development Tools for BlackBerry Platform."

To deploy an ADF Mobile application to a Blackberry smartphone or simulator:
1. From the main menu, select Application then Deploy, and then choose the

BlackBerry deployment profile you created earlier. For more information on
creating a deployment profile, see Section 8.4.1, "How to Create a Deployment
Profile for BlackBerry Applications."

2. Select Deploy application to device or Deploy application to a simulator. Click
Next.

3. Review the Summary page, which lists the name of output JAR, main class and
compression level. Click Finish.

Working with Application Deployment Profiles

8-12 Mobile Client Developer's Guide for Oracle Application Development Framework

4. View the Deployment-Log in JDeveloper. JDeveloper writes lines similar to the
following for a successful deployment of a BlackBerry application to a simulator.

[14:15:55 PM] Deploying Mobile Client application to BlackBerry simulator
located at C:\Program Files\Research In Motion\BlackBerry JDE 5.0.0\simulator.
[14:15:55 PM] Mobile Client application successfully deployed to BlackBerry
simulator. Please start or restart the simulator before running the Mobile
Client application.
[14:15:55 PM] Elapsed time for deployment: 5 second
[14:15:55 PM] --- Deployment finished. ---

To deploy an ADF Mobile application directly to BlackBerry smartphone or
simulator:
You can deploy an application directly by copying the application files to the
BlackBerry smartphone or simulator. Depending on what files are in use at the time,
installing the application may trigger a restart on the smartphone. On the simulator,
the application files that you deploy are available when you next start the simulator.

Selecting the Deploy Application to Package option results in the creation of COD
and ALX files.

To deploy an ADF Mobile application directly to an ALX file:
1. Choose Deploy Application to Package.

2. If you are deploying to the actual smartphone, connect the smartphone to the
computer using a compatible USB cable.

3. In the Main Menu of BlackBerry Desktop Manager, select Application Loader.

4. Select Add/Remove Applications.

5. Click Browse to locate ALX file. It is at the same location where JDeveloper
created the package.

6. Select the ALX file.

7. Click Next in the Application Loader screen.

8. Click Finish.

8.4.1.4.1 Selecting Most Recently Used Deployment Profiles After you select a deployment
action, JDeveloper creates a shortcut on the Deploy menu that enables you to easily
redeploy the application using that same deployment action. Figure 8–8, for example,
shows shortcuts to recently used deployment profiles called FodMobile_BB1 to
BlackBerry device and FodMobile_BB1 to BlackBerry simulator that were created as a result
of choosing the Deploy application to device and Deploy application to simulator
options. Choosing these shortcuts redeploys the application.

Working with Application Deployment Profiles

Deploying ADF Mobile Client Components 8-13

Figure 8–8 Deployment Shortcuts

8.4.2 How to Create a Deployment Profile for Windows Mobile
ADF Mobile client applications are deployed to Windows Mobile devices and
emulators as CAB (cabinet) files.

Before you begin:
Set up the Windows Mobile environment as described in Chapter 2, "Setting Up the
ADF Mobile Client Environment."

To create a deployment profile:
1. Open the deployment properties for the application by clicking Application then

Application Properties and then Deployment.

2. Click New in the Deployment page.

3. In the Create Deployment Profile Dialog, choose ADF Mobile Client for Windows
Mobile.

4. Enter a name for the deployment profile, click OK.

5. Click OK.

8.4.2.1 Setting the JAR File Options
The CAB file includes an application JAR file, a launcher executable file, and an
options file. These components bear the same name as the deployment profile. For
example, the CAB for a profile called MyApplication would include
MyApplication.exe (the launcher), MyApplication.options, and
MyApplication.jar.

8.4.2.1.1 About the Launcher Executable File The launcher executable (the launcher)
simplifies the configuration of ADF Mobile client applications by dynamically
building a command line that starts the Oracle Java Micro Edition Connected Device
Configuration HotSpot Implementation (a JVM) and launches the application JAR,
thus eliminating the need to specify this information at buildtime. The launcher
contains the application icon in Windows Mobile applications. When you specify an
application icon using the deployment profile’s Application Icon page, it is embedded
in the application’s copy of the launcher executable before it is packaged.

Working with Application Deployment Profiles

8-14 Mobile Client Developer's Guide for Oracle Application Development Framework

The launcher has its own set of command line arguments (listed in Table 8–2) and can
use the classpath-related Java command line arguments to rewrite the classpath. The
launcher passes all other command line arguments (that is, those not specific to a Java
class path or to the launcher itself) directly to Java unaltered. These arguments can be
entered on the command line, or specified in the options file.

8.4.2.1.2 About the Options File The options file contains the command line arguments
used at application startup. The launcher automatically finds this file. Example 8–3
illustrates a typical options file called MyApplication.options. This example
shows that a full path is not required for the JAR file (MyApplication.jar) because
it resides in the same directory as both the launcher and options files. The launcher
expands the path and adds it to the classpath when invoking the Java executable.

Example 8–3 The Options File

-classpath MyApplication.jar
oracle.adfmc.Main

Example 8–4 shows an options file that uses JDWP (Java Debugging Wireline Protocol)
interface to debug an application running on a device.

Note: The typical ADF Mobile client application does not require
these arguments.

Table 8–2 Command Line Arguments

Argument Description

-options <filename> Instructs the launcher file to read a file containing command line
options. This argument cannot be placed in the options file itself.

-adfmc <directory> Specifies the directory where ADF Mobile client is installed. Use
this argument to override the value configured by the registry.

-java <directory> Specifies the directory where Java is installed. Use this argument
to override the value configured by the registry.

-olite <directory> Specifies the directory where Oracle Database Lite is installed.
Use this argument to override the default directory.

-stdout <filename> Specifies the file that receives the standard output stream.

-stderr <filename> Specifies the file that receives the standard error output stream.

-wait Use this argument to instruct the launcher to wait until the Java
process has exited before it itself exists.

-silent Use this argument to instruct the launcher to not use a modal
message box to report errors. This argument is useful for
running applications in a scripted environment.

Tip: Because the options file is regenerated each time you deploy an
application, enter command line arguments in the Command Line
Options or Additional Java Options fields of the Window Mobile
deployment profile’s Options page instead of the options file itself.

Note: You can also set these arguments using the Additional Java
Options field as described in Section 8.4.2.1.4, "How to Set the JAR
Options."

Working with Application Deployment Profiles

Deploying ADF Mobile Client Components 8-15

Example 8–4 Debugging Running Applications with JDWP

-classpath MyApplication.jar
-Xdebug -agentlib:jdwp=transport=dt_socket, server=y, address=4041
oracle.adfmnc.Main

In the options file, all options before the startup class name are issued to either Java or
the launcher itself. To pass arguments to the application instead, supply them after the
startup class, as illustrated by "argument one" in Example 8–5.

Example 8–5 Setting Application-Specific Arguments

-classpath MyApplication.jar
oracle.adfmc.Main
"argument one" arg2 arg3

These options are set using the Application Command Line Parameters field in the
Windows Mobile Options page. For more information, see Section 8.4.2.1.4, "How to
Set the JAR Options."

8.4.2.1.3 About Debugging A Windows Mobile Application ADF Mobile client enables you to
run an application in debug mode on both Windows Mobile devices or emulators.
When you select Generate Debug Launch Shortcut in the Windows Mobile Options
page. For more information, see Section 10.3.3, "What Happens When You Choose to
Generate the Debug Launcher."

8.4.2.1.4 How to Set the JAR Options The Windows Mobile Options page, shown in
Figure 8–9, enables you to set the information for the information for the application
JAR as well as application start-up or JVM debugging commands.

Figure 8–9 Windows Mobile Options

To set the JAR file options:
1. Choose Windows Mobile Options.

Working with Application Deployment Profiles

8-16 Mobile Client Developer's Guide for Oracle Application Development Framework

2. Accept the default values, or define the following options for the JAR file:

■ Application Name—The name of the application on the device. When the
CAB installer runs, this value clarifies which application, if any, that you are
overriding.

■ Application Directory—The location for the directory on the Windows Mobile
device or emulator.

■ Company Name—The name of the company that created the ADF Mobile
client application.

■ Additional Java Options—Typically, you use this field for the Java Micro
Edition Connected Device Configuration HotSpot Implementation debugging
options. These options include -Xdebug, the command for running JVM in
debugger mode, and -Xrunjdwp, which loads the Java Debugger Wireline
Protocol (JDWP) and its suboptions. Enter -Xrunjdwp and its subotptions
using the following format:

-Xrunjdwp:transport=dt_socket,server=y,address=<port>.

Using the -classpath option, you can also use this field update application
classpaths with additional JARs.

For more information about the debugging options and Java SE-command line
options, refer to "Application Debugging Command-Line Options" and
"Options" in CDC Runtime Guide, which is included in the ADF Mobile client
extension ZIP at adfmc_
bundle.zip\jdev\extensions\oracle.adfnmc.core\doc and also
available from the Oracle Technology Network
(http://www.oracle.com/technetwork/index.html)

■ Application Commandline Parameters—Enter the application-specific
command line arguments for such functions as setting the path to the database
directory or writing to the log file.

■ Generate Debug Launcher—Generates the executable and a corresponding
options file that enable you to run the application in debug mode. For more
information see Section 10.3.3, "What Happens When You Choose to Generate
the Debug Launcher."

3. Click OK.

8.4.2.2 Adding Custom Icons to a Windows Mobile Application
Windows Mobile devices display the same icon image in different sizes depending on
context and device resolution. For example, Windows Mobile may present a small
(16x16 pixels) version as a toolbar icon and a larger (32x32 pixels) version of the icon
elsewhere. To ensure that icons display correctly on all Windows Mobile devices,
including those using high DPI, the ICO file should contain various image files in the
following sizes:

■ 16x16 pixels

■ 22x22 pixels

■ 32x32 pixels

■ 44x44 pixels

■ 64x64 pixels

For more information, see the MSDN Library entries for both Icons and Compatible
Icons at

Working with Application Deployment Profiles

Deploying ADF Mobile Client Components 8-17

http://msdn.microsoft.com

8.4.2.3 How to Add Custom Icons to a Windows Mobile Application
The Application Icons page, shown in Figure 8–10, of the ADF Mobile Client for
Windows Mobile Deployment Profiles Properties dialog enables you to add an ICO
file. If you do not add a custom image file, then the default Oracle icon is used.

Figure 8–10 Adding Custom Icons to a Windows Mobile Application

Before you begin:
Create, or obtain, an ICO file for Windows Mobile devices. The ICO file must contain
an icon resource that includes the image files appropriate to the Windows Mobile
device.

You must also add the image files to the view controller (MobileClient) project. For
example, copy the file containing the ICO files to:

C:\JDeveloper\mywork\<application_name>\MobileClient\<icon_image
file>

To add a custom icon to a Windows Mobile application:
1. Click Application Icons.

2. Use the Browse function to select the ICO files from the project file.

3. Click OK.

Note: If you deploy an application using the default Oracle icon and
then subsequently re-deploy the application with a custom icon, you
must restart the Windows Mobile device or emulator for the custom
icon to appear.

Working with Application Deployment Profiles

8-18 Mobile Client Developer's Guide for Oracle Application Development Framework

8.4.2.4 Deploying a Windows Mobile Application
The Deployment Action page enables you to deploy an application directly to a
Windows Mobile device or to create a CAB file by selecting the Deploy application to
package option.

Figure 8–11 Windows Mobile Deployment Actions

Before you begin:
Connect a Windows Mobile device to your computer, or start an emulator. Also ensure
that ActiveSync or Windows Mobile Device Center has established a link with the
device or emulator. For more information, see Section 2.6, "Setting Up Development
Tools for Windows Mobile Platform."

To deploy an application to a Windows Mobile device or emulator:
1. Click Application then Deploy and then choose the Windows Mobile deployment

profile.

2. Select Deploy Application to Device. Click Next.

3. Review the Summary page, which lists the name of output JAR, the main class,
and the compression level. Click Finish.

4. View Deployment-Log in JDeveloper. JDeveloper writes lines similar to the
following for a successful deployment of a Windows Mobile application.

[10:50:12 AM] Windows Mobile package successully deployed.
[10:50:12 AM] If installing to a physical device, please refer to device to
complete installation.
[10:50:12 AM] Elapsed time for deployment: 1 second
[10:50:12 AM] --- Deployment finished. ---

5. Complete the installation using the Windows Mobile device or emulator.

To deploy an application directly to the Windows Mobile device or emulator
1. Click Application then Deploy.

Specifying the Client Database Location for an Application

Deploying ADF Mobile Client Components 8-19

2. Select the Window Mobile profile.

3. Select Deploy to Application Package and then click Next.

4. Click Finish.

5. Copy the CAB file to the Mobile device or simulator.

6. Click the CAB file.

7. Follow the prompts to complete the installation.

8.5 Specifying the Client Database Location for an Application
Usually, you do not have to specify the location of the database if the application uses
Oracle Database Lite Mobile Server (Mobile Server) to synchronize the mobile
database with a back-end enterprise database. In these cases, ADF Mobile client
handles the database location details automatically at runtime. However, you may
need greater control over the database location for certain usage scenarios, including:

■ An application that uses a database not managed by Mobile Server.

■ An application that does not use a database.

■ To simplify the early stages of application development by removing the
complexity of data synchronization.

8.5.1 How to Specify the Client Database Location
You can override the default behavior by specifying the client database location in the
Deployment Profile Properties dialog. The fields that appear on this page depend on
the type of connection selected for the application. Figure 8–12, for example, shows
properties for a synchronized connection used for an application that synchronizes
with a back-end server through Mobile Server.

Figure 8–12 The Client Database Page for a Synchronized Connection

Specifying the Client Database Location for an Application

8-20 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 8–13 shows the Client Database page for applications that use a standalone
connection and therefore do not synchronize using Mobile Server.

Figure 8–13 Client Database Page for a Standalone Connection

You can use the Client Database page to select the type of connection used by the
application or create or edit the connection using the Create Database Connection
Dialog, shown in Figure 8–14. See Figure 8–3 for an illustration of using the Create
Database Connection page to create a synchronized connection, the default connection
type.

Specifying the Client Database Location for an Application

Deploying ADF Mobile Client Components 8-21

Figure 8–14 Creating a Standalone Connection

Before you begin:
For applications that use a custom (local) database and use a SQL script to initialize
the database, you may add initialization-related parameters and also provide the SQL
script itself. The SQL script is described in Chapter 11, "Working Directly with the
Database."

If you select ADF Mobile Client in the Create Database Connection page as shown in
Figure 8–3, then you enable the ADF Mobile client framework to use Mobile
Server-enabled data synchronization to populate the device’s local database when you
start an application.

To specify the client database location for synchronizing applications:
1. Accept the default values that appear in the Client Database page, or click Edit (or

Add) to define the following properties in the Create Database Connection dialog:

■ Connection Name—Enter a name for the connection, such as one denoting
synchronization illustrated by MySynchronizedConnection in Figure 8–3.

■ Connection Type—Select ADF Mobile Client.

■ Synchronized Database on Client—Select this option if the application uses a
client (local) database that synchronizes with a back-end database using
Mobile Server.

2. In the Client Database page, select one of the following options for retrieving the
credentials:

■ Always Prompt for Credentials—Select this option to prompt the user for
synchronization credentials each time before initiating synchronization.
Although this mode is less convenient for end users, use it if multiple users
share a single device and each user requires his or her own subset of data.

Specifying the Client Database Location for an Application

8-22 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Use Credentials from Last Login—Select this option to direct the ADF Mobile
client framework to use the last-known parameters to automatically initiate
synchronization and only prompt the user if synchronization has never been
run before. Use this mode in scenarios where each end user has a separate
device.

■ Application Provides Credentials—Select this option so that the user is never
prompted for synchronization parameters. The application developer provides
these credentials in program code instead.

3. Click OK.

To specify the client database location for standalone applications:
1. Accept the default values that appear in the Client Database page, or click Edit (or

Add) to define the following properties in the Create Database Connection dialog:

2. Connection Name—Enter a name for the connection, such as one denoting the use
of a standalone database illustrated by MyStandaloneConnection in Figure 8–14.

3. Connection Type—Select ADF Mobile Client.

4. Standalone Database on Client—Select this option if the application uses a
custom database that is not synchronized using Mobile Server.

In the Device Database File field, enter the fully qualified path to the database on
the device's file system. For BlackBerry, the leading character for this path must be
a forward slash (/) character. Table 8–3 lists example path specifications for
different usage scenarios:

For Windows Mobile, enter this fully qualified path using a back slash (\) as the
leading character for the path. Table 8–4 lists example path specifications for
different usage scenarios:

Table 8–3 Fully Qualified Paths for BlackBerry

Usage Scenario Path Format in Device Database File Field

BlackBerry with a database on an internal file
system

/store/home/user/SAMPLE.db

BlackBerry with a database on an external SD
card

/SDCard/SAMPLE.db

Note: The name of the removable storage card on Windows Mobile
devices is not always Storage Card. On some device models, it may be
SD Card, or it may be translated to another language (SD-Karte).
Check your target device for the actual name.

Note: In general, SQLite databases on BlackBerry smartphones can
only be created on an SD card. While some BlackBerry smartphones
permit databases on internal flash memory, you should always specify
a database that resides on an SD card to ensure maximum
compatibility.

Specifying the Client Database Location for an Application

Deploying ADF Mobile Client Components 8-23

5. Click OK.

6. In the Client Database page, select Run Database Initialization Script for
applications that do not synchronize with Mobile Server but still require a
database. This option enables these applications to use a database created by a
simple SQL initialization script that uses a subset of SQL syntax. For more
information, see Section 11.2, "Enabling Applications to Use SQL Initialization
Scripts."

– Choose Always if the application should run the specified SQL initialization
script every time it starts.

– Choose if no database if the application should only run the SQL script when
the required database does not exist. This is useful in cases where you want
the SQL script to initialize the database only when the application starts for
the first time.

The Initialization script field specifies the location of the SQL script. Because this
script is embedded as a resource in the application's JAR file during deployment,
specify a path relative to the root of this JAR file. For example, if you added a file
called SqlScript.sql to the res subfolder of the application, then enter
/res/SqlScript.sql.

7. Click OK.

8.5.2 What Happens When You Specify a Client Database
When you deploy an ADF Mobile client application, the settings you entered are
written to the adf-config.xml file as a series of key-value pairs. When you run
the application, it attempts to connect to the database in one of the following ways:

■ Synchronized—The default setting. The Client Database Name field specifies a
database that is managed by Mobile Server. At runtime, the ADF Mobile client
framework receives the location of this database from the Oracle Database Lite
library. The framework invokes data synchronization to populate the database if
necessary. For more information, see Section 8.5.3, "What Happens When Oracle
Database Lite Mobile Server Manages an Application's Database" and
Section 8.5.4, "How the ADF Mobile Client Framework Retrieves Mobile Server
Credentials at Application Startup."

■ Standalone, with Device Database File parameter specified—The local database
will not be synchronized with a back-end database. The Device Database File

Table 8–4 Fully Qualified Paths for Windows Mobile

Usage Scenario
Path Format in Device Database
Field

Windows Mobile device
with a database on an
internal file system

\SAMPLE.db

Windows Mobile device
with a database on an
external storage card

\Storage Card\SAMPLE.db

Note: In general, you can only create SQL databases in flash memory
on Windows Mobile emulators, not on the storage card. Windows
Mobile devices, however, do not have this limitation.

Specifying the Client Database Location for an Application

8-24 Mobile Client Developer's Guide for Oracle Application Development Framework

field specifies an absolute path to the SQLite database on the device’s file system.
At runtime, the ADF Mobile client framework will open a connection to this
database file and optionally initialize it according to the specified Run Database
Initialization Script parameters. For more information, see Section 8.5.1, "How to
Specify the Client Database Location."

■ Standalone, (you do not enter a value into the Device Database File field)—This
indicates the application does not require a database at all, and the Mobile client
framework will not attempt to open one.

8.5.3 What Happens When Oracle Database Lite Mobile Server Manages an
Application's Database

Oracle Database Lite manages the location of the Mobile Server-managed database.
The general form for this location is: SQLite.DATA_DIRECTORY/sqlite_
db/syncUsername/applicationName.db, where:

■ SQLite.DATA_DIRECTORY is a value stored in OSE.TXT, which is found in a
platform-dependent location:

■ BlackBerry—/store/home/user/oracle/sync

■ Windows Mobile—mobile_client_install_root\sqlite, where
mobile_client_install_root is usually "\Program Files\ADFmc"

■ syncUsername is a value gathered at runtime.

When the application requests data for the first time, it attempts to connect to the
database at SQLite.DATA_DIRECTORY/sqlite_
db/syncUsername/applicationName.db. If this database exists at the specified
location, then the application connects to it and continues running. Otherwise, the user
is prompted to enter synchronization credentials to allow Mobile Server to connect to
the back-end database and perform an initial synchronization to populate the mobile
database.

8.5.4 How the ADF Mobile Client Framework Retrieves Mobile Server Credentials at
Application Startup

To enable synchronization between Mobile Server and multiple mobile devices, the
ADF Mobile client framework requires that users provide the following authentication
credentials supplied at runtime:

■ Sync username

■ Sync password

■ Mobile Server hostname/IP address

■ Whether to save the password

Note: In general, SQLite.DATA_DIRECTORY points to
/SDCard/Databases/oracle on BlackBerry.

Note: In general, SQLite.DATA_DIRECTORY will be the same as
mobile_client_install_root.

Deploying a Multi-Language ADF Mobile Client Application

Deploying ADF Mobile Client Components 8-25

After a user starts an application on a smartphone, device, simulator, or emulator, the
ADF Mobile client framework collects the username, password, Mobile Server URL,
and password saving option that it prompts from the user when the application
attempts to synchronize data with the Mobile Server. Figure 8–15 shows the page on a
BlackBerry simulator that prompts users for these credentials.

Figure 8–15 Prompting User-Provided Mobile Server Credentials

The type of authentication policy you select in the Client Database page dictates
which, if any, of the credentials that users must provide to synchronize application
data. Figure 8–15, for example, illustrates how selecting the Always Prompt for
Credentials option requires users to enter the username, password, and Mobile Server
URL credentials when running an ADF Mobile client application on a BlackBerry
simulator.

8.6 Deploying a Multi-Language ADF Mobile Client Application
You can select the language resource bundles for an application using the Localization
panel shown in Figure 8–16. The Localization panel displays all of the resource
bundles included in the base (server) application’s JAR file that was imported to create
the ADF Mobile client application using the ADF Components from ADF Library
wizard described in Section 5.2, "Extending an ADF Application to Mobile Client."

8.6.1 How to Select the Language Resource Bundles for an ADF Mobile Client
Application

The Localization page of the Deployment Profile Properties dialog enables you to set
the locales for the deployment profile.

Deploying a Multi-Language ADF Mobile Client Application

8-26 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 8–16 The Localization Page

Before you begin:
Create a mobile client application comprised of the business components from the base
application as described in Section 5.2.1, "How to Create Subsets of Entity Objects and
View Objects." This base application must include multi-language resource bundles.

Figure 8–16 shows the project structure of a base application called BaseApp whose
language resource bundles include:

■ ModelBundle_de.properties

■ ModelBundle_en_GB.properties

■ ModelBundle_en_US.properties

■ ModelBundle_fr.properties

Figure 8–17 Project Structure of a Multi-Language Base (Server) Application

Deploying a Multi-Language ADF Mobile Client Application

Deploying ADF Mobile Client Components 8-27

To select language resource bundles:
1. Open the deployment properties for the application by clicking Application then

Application Properties and then Deployment.

2. Click New in the Deployment page.

3. In the Create Deployment Profile Dialog, choose either ADF Mobile Client for
BlackBerry or ADF Mobile Client for Windows Mobile.

4. Enter a name for the deployment profile and then click OK.

5. For Windows Mobile applications, define the Windows Mobile Options and Client
Database options as needed.

6. Click Localization.

7. Choose the appropriate language resource bundle taken from the base
application’s JAR. Figure 8–18 shows the Localization page lists the resource
bundles of the base application JAR. Using the base application called BaseApp
shown in Figure 8–17 as an example, an ADF Mobile client application derived
from this application would include its language resource bundles, including
ModelBundle_de.properties, ModelBundle_en_GB.properties,
ModelBundle_en.US.properties, and ModelBundle_fr.properties.

As shown in Figure 8–18, selecting a folder (such as English (en) in this illustration)
automatically selects the locale-specific child nodes.

Figure 8–18 Selecting Resource Bundles

8. Click OK.

9. Deploy the application as described in Section 8.4.1.4 and Section 8.4.2.4.

8.6.2 What Happens When You Add Language Resource Bundles to a Deployment
Profile

The ADF Mobile client runtime automatically deploys ModelBundle.properties,
the base language resource bundle to a JAR file. When you deploy an application, this

Deploying a Multi-Language ADF Mobile Client Application

8-28 Mobile Client Developer's Guide for Oracle Application Development Framework

base language resource bundle, along with the resource bundles selected in the
Localization page, are deployed the archive file.

 Figure 8–19 shows the JAR file of an ADF Mobile client application called
LocAppDemo, which was created from the base application called BaseApp. The
resulting JAR file created by deploying LocAppDemo demonstrates that the base
resource bundle, ModelBundle.properties along with the language resource
bundles selected in the Localization page shown in Figure 8–18 (ModelBundle_
en.properties, ModelBundle_en_CA.properties, ModelBundle_en_
GB.properties, and ModelBundle_en_US.properties) and were deployed to a
JAR file called LocAappDemo_BB1.jar.

Figure 8–19 Localization Bundles Deployed to a JAR

8.6.3 Adding Language Resource Bundles for Multiple Base Application JAR Files
As stated in Section 7.4.2, "Supporting Localization through XLFF Resource Bundles,"
ADF Mobile client supports both XLIFF (XML Localization Interchange File Format)
and .properties resource bundles.

8.6.3.1 How to Add Language Resource Bundles from Another Base Application
Using the Localization page, you can integrate the resource language bundles from
different base application JARs.

Figure 8–20 shows a base application JAR called adflibLocalization.jar that
contains XLFF-formatted resource bundles localizationBundle_el.xlf and
localizationBundle_en_US.xlf as well as the base language resource bundle,
localizationBunlde.xlf. ADF Mobile client’s support of this format enables you
to import these resource bundles into an application that also supports .properties.

Deploying a Multi-Language ADF Mobile Client Application

Deploying ADF Mobile Client Components 8-29

Figure 8–20 Base Application JAR with XLFF-Formatted Resource Bundles

To add language resource bundles from another base application JAR file:
1. In the Application Navigator, right-click the MobileClient project.

2. Click New, select the All Technologies tab and then choose Business
Components from ADF Library (located under Business Tier).

3. Complete the Create Business Components from ADF Library wizard as described
in Section 5.2.1, "How to Create Subsets of Entity Objects and View Objects."

4. Select Application and then Application Properties.

5. Choose Deployment and the choose a deployment profile and then click Edit.

6. Choose Localization and check the resource bundles imported from the new base
application JAR as well as those from the first base application JAR.

As shown in Figure 8–21, the Localization page for the deployment profile of the
LocAppDemo application displays resource bundles for Greek, French, and
second En_us resource bundle from the second base application,
adflibLocalization.jar. Figure 8–21 also shows how the tooltip displays the
sources that contributed both of these en_us resource bundles:

Contributed from:
C:/JDeveloper/mywork/BaseApp/Model/deploy/BaseApp_Model_adflibBaseAppl.jar
C:/JDeveloper/mywork/adflibLocalization1.jar

As shown in this figure, the Localization page for LocAppDemo application shows
that the United States English Language bundle was imported from resource
bundles contributed by adflibLocalization1.jar and BaseApp_Model_
adflibBaseApp1.jar.

Deploying a Multi-Language ADF Mobile Client Application

8-30 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 8–21 Tooltips Showing Origin of Resource Bundle

7. Select the resource bundle and then click OK.

8. Redeploy the application.

8.6.3.1.1 What Happens When You Add Language Resource Bundles from Another Base
Application JAR As shown in Figure 8–22, the resulting JAR file contains deployed
language resource bundles from both base application JARs; it contains both base
language bundles (localizationBundle.xlf and ModelBundle.properties).
The JAR also contains the XLFF bundles from the second base application JAR as well
as the English resource bundles (ModelBundle_en.properties, ModelBundle_
en_CA.properties, ModelBundle_en_GB.properties, and ModelBundle_en_
US.properties) from the first JAR.

As shown in Figure 8–22, LocAppDemo’s JAR now has two United States English
(en_US) resource bundles after the second deployment: because there are two
corresponding language resource bundles for en_US from two different base
application JARs, ADF Mobile client added localizationBundle_en_US.xlf
along with ModelBundle_en_US.properties.

Deploying a Multi-Language ADF Mobile Client Application

Deploying ADF Mobile Client Components 8-31

Figure 8–22 JAR Containing XLFFs and .properties Resource Bundles

8.6.3.2 Manually Adding Resource Bundles
You can add a base language resource bundle to a MobileClient project and use it for a
component, such as command button, using the Resource Bundle page accessed
through Project Properties.

To add a resource bundle manually:
1. In the Application Navigator, right-click the MobileClient project.

2. In Project Properties, choose Resource Bundles.

3. Click the Bundle Search tab.

4. Click Add and then choose MobileClient.jpr.

Figure 8–23 shows selecting the MobileClient project as the source of the resource
bundle.

Deploying a Multi-Language ADF Mobile Client Application

8-32 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 8–23 Selecting MobileClient.jpr

5. Browse to the base bundle label within the JAR and then click Open.

As shown in Figure 8–24, the base JAR contains the following five language
resource bundles:

myBaseAppBundle_en.properties
myBaseAppBundle_en_CA.properties
myBaseAppBundle_en_GB.properties
myBaseAppBundle_en_US.properties
myBaseAppBundle_en_it.properties

Figure 8–24 Selecting Language Resource Bundles

Deploying a Multi-Language ADF Mobile Client Application

Deploying ADF Mobile Client Components 8-33

6. Click OK.

Figure 8–25 shows the resource bundle added from the MobileClient project.

Figure 8–25 Adding the Resource Bundle from the MobileClient Project

8.6.3.2.1 What Happens When You Manually Add a Resource Bundle As shown in
Figure 8–26, the Localization panel of the application deployment profile is updated to
show the addition of the new resource bundle. This figure shows the Italian language
resource bundle was imported from the base JAR, as was another en_US resource
bundle.

Figure 8–26 Localization Panel Updated with Manually Added Resource Bundles

Tip: Using the tooltip enables you to see the origin of the resource
bundle.

Deploying a Multi-Language ADF Mobile Client Application

8-34 Mobile Client Developer's Guide for Oracle Application Development Framework

Using the tooltips, as shown in Figure 8–27, reveals that en_US has been contributed
from the following three sources, including the MobileClient project
(myBassApp.jar):

C:/JDeveloper/mywork/BaseApp/Model/deploy/BaseApp_Model_adflibBaseApp1.jar
C:/JDeveloper/mywork/adflibLocalization1.jar
C:/JDeveloper/mywork/BaseApp/Model/myBaseApp.jar

Figure 8–27 Tooltips Showing Source of Manually Added Resource Bundle

After you redeploy the application, the updated JAR will contain all of the added
resource bundles.

As shown in Figure 8–28, the various en_US resource bundles are those included in
the deployed JAR file.

Deploying a Multi-Language ADF Mobile Client Application

Deploying ADF Mobile Client Components 8-35

Figure 8–28 JAR Containing Resource Bundles from Various Sources

8.6.3.3 Adding Local Resource Bundles
If an ADF Mobile client application includes local resource bundles, such as Persian
(MobileCientBundle_fa.properties, shown in Figure 8–29), the Localization
page also displays these resource bundles.

Figure 8–29 A MobileClient Project with Local Language Resource Bundles

Deploying a Multi-Language ADF Mobile Client Application

8-36 Mobile Client Developer's Guide for Oracle Application Development Framework

You can verify the origin of the local resource bundle using the tooltip as shown in
Figure 8–30. For example, the tooltips in this figure reveal the local source for the en_
US resource bundle as Application50:

Contributed from:
C:/JDeveloper/mywork/BaseApp/Model/deploy/BaseApp_Model_adflibBaseApp1.jar
C:/JDeveloper/mywork/Application50/MobileClient/src/mobile
C:/JDeveloper/mywork/adflibLocalization1.jar
C:/JDeveloper/mywork/BaseApp/Model/myBaseApp.jar

Figure 8–30 Verifying the Origins of the Resource Bundles Using Tooltips

When you deploy the application, the resulting JAR includes the local language
bundles. As shown in Figure 8–31 includes four different en_US resource bundles.

Deploying a Multi-Language ADF Mobile Client Application

Deploying ADF Mobile Client Components 8-37

Figure 8–31 Local Resource Bundles Included in JAR

Deploying a Multi-Language ADF Mobile Client Application

8-38 Mobile Client Developer's Guide for Oracle Application Development Framework

9

Synchronizing ADF Mobile Client Data and Transactions 9-1

9Synchronizing ADF Mobile Client Data and
Transactions

This chapter provides an overview of how to set up Oracle Database Lite Mobile
Server (Mobile Server) to work with ADF Mobile client so that you can publish data
and synchronize data between back-end servers and mobile devices and smartphones
or their respective simulators and emulators.

This chapter includes the following sections:

■ Section 9.1, "About Synchronizing Data with Oracle Mobile Server"

■ Section 9.2, "Configuring Oracle Mobile Server"

■ Section 9.4, "Enabling Data Synchronization at Application Startup"

■ Section 9.5, "Customizing the Synchronization Setup"

■ Section 9.6, "Setting Up ADF Mobile Transaction Replay Service"

For general information on Mobile Server, see Oracle Database Lite Getting Started Guide.

9.1 About Synchronizing Data with Oracle Mobile Server
As illustrated in Figure 9–1, Oracle Database Lite Mobile Server (Mobile Server) serves
as a bi-directional data conduit between your mobile device and the base ADF
application server. When synchronizing data downstream from server to device, SQL
statements are executed directly against the mobile database to bring its state in line
with that of the enterprise database. When synchronizing data upstream,
however—from device to server—it is not safe to push the data directly through
unchecked. Even though ADF Mobile client supports data validation on the device,
there may be additional validation rules and business processes that must execute
before the enterprise database can be safely updated with changes from the mobile
device. While these validation rules and business processes can be executed
immediately in the context of the base ADF Faces application, this is not the case for
mobile applications, which may not have network connectivity, or which may
otherwise be unable to access corporate resources. This is where ADF Mobile
transaction replay service comes in. Transaction replay service encapsulates database
changes in XML records known as Replay Items. Replay items are then "replayed" in the
context of the base ADF Faces application and a given user so that the same
validations and business processes that would normally be applied to a Web
application can also be applied to an ADF Mobile client application.

About Synchronizing Data with Oracle Mobile Server

9-2 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 9–1 Upstream and Downstream Synchronization

9.1.1 About ADF Mobile Transaction Replay Service
ADF Mobile transaction replay service is a server-side component which provides a
general mechanism for deferred execution (replay) of arbitrary server-side actions that
are unavailable to a client. Clients generate Replay Items, XML records containing
information about which method to call on the server and which parameters should be
passed to that method. Later, those XML records are pushed back to the server, parsed
by transaction replay service, and finally converted into appropriate method calls
which are executed.

9.1.2 About the Connection Between Client and Server
Mobile Server receives requests and passes data between the ADF Mobile client
application and the Windows Mobile device or BlackBerry smartphone. To publish
application data, you create a connection between the mobile client application and the
Oracle Mobile Server Repository Schema by specifying login credentials to Mobile
Server.

The credentials required to connect the mobile client application to Mobile Server are
not the same as the login credentials for the database connection to the Mobile Server
repository schema. The login credentials for the mobile application’s connection to the
Oracle Mobile Server repository schema are also used later in the deployment on the
device or device emulator when you synchronize changes back to the server. These
login credentials are set during the installation of Oracle Database Lite. For more
information, see "Installation of Oracle Database Lite" in Oracle Database Lite Getting
Started Guide.

For the publication process, you specify where data will be stored.

About Synchronizing Data with Oracle Mobile Server

Synchronizing ADF Mobile Client Data and Transactions 9-3

9.1.3 About Publishing Data
Application data is published for deployment to the mobile device through Mobile
Server, using publications and publication items that are based on mobile entity
objects.

When you deploy the ADF Mobile client from JDeveloper, ADF Mobile client
automatically creates publications used by Mobile Server to determine the server-side
and client-side data schemas. ADF Mobile client creates a mobile sync user as well as
subscriptions to the publications. Finally, the ADF Mobile client application is
deployed to the target mobile device, smartphone, emulator, or simulator. For more
information, see Section 8.3, "Creating Data Sync Publications on the Server."

9.1.4 What Happens When You Make Changes to the Mobile Database
When a user interacts with your mobile client application in the ADF Mobile client
framework, this is what happens:

1. The user makes changes to the data and saves.

2. DBTransaction.commit() is invoked, which in turn generates appropriate
DML statements for all changes to the data model.

3. As each statement is posted to the database, an event is fired, which in turn
generates an XML record—an entity Replay Item—which encapsulates the details
of the INSERT, UPDATE, or DELETE statement.

4. After the transaction is committed, another event is fired, which causes the
previously-generated XML records to be written to the database in a separate
transaction.

5. At some later point, data synchronization is initiated, either on-demand or in the
background, and Oracle Mobile Server transfers the Replay Item(s) up to the
Mobile Server instance.

6. Transaction replay service monitors the Replay Item queue and converts the XML
records into appropriate method calls as they arrive.

7. These method calls effectively simulate a specific user making the same changes to
the data model in the context of a standard ADF application. All standard
validations and business processes are applied.

8. If data satisfies all necessary criteria, then it is committed to the enterprise
database. Otherwise, an error is recorded in Mobile Server and then delivered to
the mobile client the next time synchronization occurs.

9.1.5 What Happens When You Import Entity Objects into the Mobile Client Application
When you import entity objects from the base ADF application into your mobile client
application, JDeveloper automatically inserts additional metadata into the entity
definitions to support replay-item generation at runtime. This metadata takes the form
of EventPub elements and EventDef elements. EventDef elements define the
payload of required attributes that must be serialized into the Replay Item when an
event fires. This payload can be thought of as the parameters that will be passed to
transaction replay service, so that it in turn can invoke the appropriate server-side
method. EventPub elements map a named EventDef element to an event generation
point, such as CREATE, UPDATE, or DELETE. By default, every imported entity object
will contain three event definitions:

■ TRS_Delete —This is triggered in response to the deletion of a row. The payload
is comprised of just the primary key attributes.

Configuring Oracle Mobile Server

9-4 Mobile Client Developer's Guide for Oracle Application Development Framework

■ TRS_Create—This is triggered in response to the creation of a new row. The
payload consists of all attributes.

■ TRS_Update—This is triggered in response to the modification of an existing row.
The payload consists of all modified attributes.

9.2 Configuring Oracle Mobile Server
To deploy and test an ADF Mobile client application, you must provide JDeveloper
with Mobile Server information. For JDeveloper, you use the Mobile Server user name,
password, and host name to:

■ Create a database connection for Mobile Server.

■ Specify database credentials for an administrative user to be able to create
publications and publication items for synchronizing data.

■ Set up a sync user and the sync user’s database credentials to be used by the test
application to synchronize with the server. The mobile sync user credentials you
specify subscribe the mobile sync user to the publications.

For details on how to install and configure Mobile Server, see "Installation of Oracle
Database Lite" in Oracle Database Lite Getting Started Guide.

9.3 Initiating Data Synchronization
Although you can create ADF Mobile client applications that do not require
synchronization because they either use a standalone database or no database at all,
most ADF Mobile client applications require synchronization with a back-end
database. For applications that require this type of synchronization, the ADF Mobile
client runtime attempts to locate a database on the mobile device, smartphone or their
respective simulators and emulators the first time that the application requires data. If
the runtime is unable to find this client database, it creates one through
synchronization with Oracle Database Lite Mobile Server (Mobile Server). To begin
this process, the runtime prompts the end user to define synchronization credentials
and various connection parameters in a dialog similar to the one shown in Figure 9–2.

Figure 9–2 Synchronization Credentials Dialog

Note: A sync user cannot have two schemas on the same device.

Enabling Data Synchronization at Application Startup

Synchronizing ADF Mobile Client Data and Transactions 9-5

After a user enters the correct values and clicks Sync, the ADF Mobile client runtime
retrieves this data from the Mobile Server and creates a SQLite database instance that
it stores on the mobile device or smartphone. The application continues to run after
synchronization completes.

9.4 Enabling Data Synchronization at Application Startup
As described in Section 8.5.3, "What Happens When Oracle Database Lite Mobile
Server Manages an Application's Database," if you configure the application’s
deployment profile to use Mobile Server, ADF Mobile client automatically uses data
synchronization to populate the device's local database when you start an application
for the first time. The ADF Mobile client framework requires the following to enable
synchronization between Mobile Server and multiple mobile devices:

■ Sync username

■ Sync password

■ Mobile Server hostname/IP address

■ Whether to save the password

ADF Mobile client uses the following three modes for collecting these parameters at
application startup. You can set these modes by selecting the Authentication Policy
options in the Client Database page as described in Section 8.5.3, "What Happens
When Oracle Database Lite Mobile Server Manages an Application's Database."

9.4.1 How to Invoke Data Synchronization Programmatically
You activate data synchronization after your application has started by constructing a
SyncOptions object as illustrated in Example 9–1.

Example 9–1 Calling a SyncOptions Object for Provided Sync Parameters

SyncOptions options = new SyncOptions("username", "password",
"http://syncserver.my.domain.com");
myAppModule.sync(options);

Constructing a SyncOptions object enables the display of a synchronization UI and
automatically initiates data synchronization with the specified parameters while
displaying progress and error messages as necessary without prompting the user for
credentials.

If the data synchronization operation is successful, the synchronization UI will
automatically be dismissed and returns users to the previous page of the application. If
any errors occurred, the synchronization UI remains visible, enabling the user to either
cancel the operation or correct any issues and try again. After a successful
synchronization operation, the client database has the latest changes from the server
database. Those changes, however, are not reflected in the application until you refresh
view objects by re-executing them.

9.4.1.1 Providing Parameters for Data Synchronization
The SyncOptions object encapsulates the parameters required by the
synchronization operation.

■ Username— The sync user name.

■ Password—The sync password.

Enabling Data Synchronization at Application Startup

9-6 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Server—The URL of the Mobile Server. For example:
http://syncserver.my.domain.com

■ SyncProgressListener—Enables you to specify your own UI for handling
sync progress events and errors by implementing
oracle.adfnmc.sync.SyncProgressListener as illustrated in Example 9–2.

■ SavePassword—Whether the password should be saved for future use; default is
false.

■ SyncMode—One of the following constants, defined in
oracle.adfnmc.sync.SyncOptions, that specifies how sync credentials are to
be provided:

■ SYNC_CREDENTIALS_MODE_PROMPT—Prompt the user for all necessary
parameters.

■ SYNC_CREDENTIALS_MODE_EL—Use EL expressions which have already
been populated with the required parameters. See also Table 9–2.

■ SYNC_CREDENTIALS_MODE_LASTUSER—Reuse the previously saved
credentials.

■ SYNC_CREDENTIALS_MODE_PARAMS—The caller is providing all required
parameters directly in the SyncOptions container.

■ SYNC_CREDENTIALS_MODE_SAME_AS_STARTUP—Use the same mode that
was used at application startup, specified in the sync-credentials-mode
key; this value is SYNC_CREDENTIALS_MODE_LASTUSER by default.

The user will be prompted to enter any missing values if not all of the required
parameters have been provided, regardless of which SyncMode is specified. Table 9–1
lists examples of various synchronization modes.

Table 9–1 Sync Options

Sync Mode Example

Developer-Provided Credentials SyncOptions options = new SyncOptions("username",
"password", "http://syncserver.my.domain.com");

User-Provided Credentials SyncOptions options = new SyncOptions(SyncOptions.SYNC_
CREDENTIALS_MODE_PROMPT);

Use Data Controls // Bind UI controls to the following expressions:
// #{syncContext.userName}
// #{syncContext.password}
// #{syncContext.url}
SyncOptions options = new SyncOptions(SyncOptions.SYNC_
CREDENTIALS_MODE_EL);
// When sync begins, the required parameters are read
from the EL expressions above

Use Previously Save Parameters SyncOptions options = new SyncOptions(SyncOptions.SYNC_
CREDENTIALS_MODE_LASTUSER);

Use Mode Specified at Application Startup SyncOptions options = new SyncOptions(SyncOptions.SYNC_
CREDENTIALS_MODE_SAME_AS_STARTUP);

Customizing the Synchronization Setup

Synchronizing ADF Mobile Client Data and Transactions 9-7

9.4.1.1.1 Sync Progress Events Mobile Server notifies the application with status
messages, progress, and errors as the sync operation proceeds. By default, ADF Mobile
client uses oracle.adfnmc.sync.ELExpressionSyncProgressListener to
receive these events and display them in the default sync UI, but you can create your
own listener by implementing oracle.adfnmc.sync.SyncProgressListener
and registering it with the SyncOptions container. Example 9–2 illustrates a simple
progress listener that logs data sync events to the console.

Example 9–2 Progress Listener

public class ConsoleSyncProgressListener implements SyncProgressListener
{
 public void progress(String message, int progress, int phase)
 {
 System.out.println("Sync phase: " + phase + ", progress %" + progress + ",
message = " + message);
 }
}
SyncOptions options = new SyncOptions(SyncOptions.SYNC_CREDENTIALS_MODE_PROMPT);
options.setSyncProgressListener(new ConsoleProgressListener());
myAppModule.sync(options);

9.4.2 SQLite Database Locking and Mobile Server
By design, SQLite employs very coarse-grained locking, so any writer must acquire an
exclusive lock on the whole database. This has two implications:

1. There can be either multiple read-only connections or a single read-write
connection to any given database.

2. A commit operation will succeed if there are any open cursors, but a rollback
operation will not.

In a typical ADF Mobile client application, the application module owns a read-write
database connection through which you indirectly access the database. When you call
ApplicationModule.sync(), this database connection is implicitly shared with
Mobile Server so that it can make modifications to the client database. If sync
succeeds, these modifications are committed to the database, and your application
continues running. If sync fails for any reason, Mobile Server rolls back the pending
changes. Because the ADF Mobile client framework may have open cursors, the
rollback operation will often fail. Under such circumstances the ADF Mobile client
framework does the following:

1. Preserves the state of the existing view object.

2. Disconnects from the database.

3. Reconnects to the database.

This effectively rolls back the Mobile Server transaction and enables the user to
continue using the application as though sync had never been invoked.

9.5 Customizing the Synchronization Setup
You can customize the setup for mobile synchronization by creating a page that
prompts users when they need to synchronize.

Customizing the Synchronization Setup

9-8 Mobile Client Developer's Guide for Oracle Application Development Framework

9.5.1 Creating a Custom Page for Mobile Synchronization
To equip an application with a page that tells users when they need to synchronize the
application, you create an additional task flow for the application that includes the
MCX file for the synchronization page itself. You then update the application task flow
to point to the custom synchronization task flow.

9.5.1.1 How to Create a Custom Synchronization Page
To enable this page (the custom sync page), you must create an additional ADF Mobile
client task flow as well as an MCX file using the ADF Mobile client page and task flow
dialogs.

Before you begin:
Familiarize yourself with creating MCX pages and task flows as described in
Chapter 6, "Creating the ADF Mobile Client User Interface."

To create the custom sync page:
1. Right-click the MobileClient project and choose File then New then ADF

Mobile Client and then ADF Mobile Client Page.

2. Create an MCX file. For example, create a page called
CustomMobileSyncPage.mcx, shown in Figure 9–3 with code similar to
Example 9–3.

Figure 9–3 The Custom Sync Page

Example 9–3 A Custom Sync Page

<?xml version='1.0' encoding='windows-1252'?>
<amc:view xmlns:amc="http://xmlns.oracle.com/jdev/amc">

<amc:form onShow="#{syncContext.MobileSyncBean.onShow.execute}">
<amc:panelGroupLayout id="home" layout="vertical">

<amc:outputText id="lblTitle" value="Custom Mobile Sync" fontWeight="bold" />
<amc:panelFormLayout>
<amc:inputText id="txtUserName" label="User Name: "

value="#{syncContext.userName}" />
<amc:inputText id="txtPassword" label="Password: "

value="#{syncContext.password}" secret="true" />
<amc:inputText id="txtUrl" label="URL: " value="#{syncContext.url}" />

Customizing the Synchronization Setup

Synchronizing ADF Mobile Client Data and Transactions 9-9

<amc:selectBooleanCheckbox id="cbSave" label="Save Password:"
value="#{syncContext.saveCredentials}" />

</amc:panelFormLayout>
<amc:panelGroupLayout layout="horizontal">

<amc:commandButton id="btnGo" disabled="#{syncContext.syncInProgress}"
actionListener="#{syncContext.MobileSyncBean.sync.execute}" text="#{syncContext.syncLocal != true ?
'Sync' : 'OK'}" />

<amc:commandButton id="btnStop"
actionListener="#{syncContext.MobileSyncBean.cancel.execute}" text="Cancel" />

</amc:panelGroupLayout>
<amc:panelGroupLayout layout="horizontal">

<amc:outputText id="lblProgress"
rendered="#{syncContext.syncInProgress}" value="Progress:" />

</amc:panelGroupLayout>
<amc:outputText id="lblStatus" value="Status: #{syncContext.statusMessage}"

foregroundColor="#{syncContext.error == null ? '#000000' : '#FF0000'}"/>
</amc:panelGroupLayout>

</amc:form>
</amc:view>

For the page to function properly, it must include the following:

■ onShow handling to reset values on the page:

<amc:form onShow="#{syncContext.MobileSyncBean.onShow}">

■ User name, password, and URL information are defined within inputText
components with the following values:

<amc:inputText id="txtUserName" label="User Name: "
value="#{syncContext.userName}" />
<amc:inputText id="txtPassword" label="Password: "
value="#{syncContext.password}" secret="true" />
<amc:inputText id="txtUrl" label="URL: " value="#{syncContext.url}" />

■ To save credentials, create a checkbox component with the following value:

<amc:selectBooleanCheckbox id="cbSave" label="Save Password:"
value="#{syncContext.saveCredentials}" />

■ To initiate the sync process, you must have the following listener tied to a
control:

<amc:commandButton id="btnGo" disabled="#{syncContext.syncInProgress}"
actionListener="#{syncContext.MobileSyncBean.sync}"
text="#{syncContext.syncLocal != true ? 'Sync' : 'OK'}" />

■ To terminate the sync process (which is optional), you must have the following
listener tied to a control:

<amc:commandButton id="btnStop"
actionListener="#{syncContext.MobileSyncBean.cancel}" text="Cancel" />

The remaining content in Example 9–3 is optional. Table 9–2 lists the sync-related
EL expressions used in this page.

Table 9–2 Sync EL Expression Reference

Expression Description

#{syncContext.error} Contains any exception that may have
been thrown by a synchronization
operation.

Customizing the Synchronization Setup

9-10 Mobile Client Developer's Guide for Oracle Application Development Framework

3. Right-click the MobileClient project and choose File then New then ADF Mobile
Client and then ADF Mobile Client Task Flow.

4. Create the bounded task flow. For example, create a task flow called
custom-mobile-sync-task-flow.xml using code similar to that illustrated in
Example 9–4.

Example 9–4 The Sync Task Flow

<?xml version="1.0" encoding="windows-1252" ?>
<adfc-config xmlns="http://xmlns.oracle.com/adf/controller" version="1.2">
 <task-flow-definition id="custom-mobile-sync-task-flow">
 <default-activity id="__1">CustomMobileSyncPage</default-activity>
 <view id="CustomMobileSyncPage">
 <page>/CustomMobileSyncPage.mcx</page>
 </view>
 <task-flow-return id="mobileSyncSuccess">
 <outcome id="__2">
 <name>mobileSyncSuccess</name>
 </outcome>
 </task-flow-return>
 <task-flow-return id="mobileSyncFailure">
 <outcome id="__3">
 <name>mobileSyncFailure</name>
 </outcome>
 </task-flow-return>
 <control-flow-rule id="__4">
 <from-activity-id id="__5">CustomMobileSyncPage</from-activity-id>
 <control-flow-case id="__6">
 <from-outcome id="__7">toMobileSyncSuccess</from-outcome>
 <to-activity-id id="__8">mobileSyncSuccess</to-activity-id>
 </control-flow-case>
 <control-flow-case id="__9">
 <from-outcome id="__10">toMobileSyncFailure</from-outcome>
 <to-activity-id id="__11">mobileSyncFailure</to-activity-id>
 </control-flow-case>
 </control-flow-rule>
 </task-flow-definition>
</adfc-config>

Figure 9–4 shows the task flow created from the code illustrated in Example 9–4.

#{syncContext.syncInProgress} Inquires if a synchronization operation is
currently running.

#{syncContext.userName} The sync user name.

#{syncContext.password} The sync password.

#{syncContext.saveCredentials} Inquires if the password should be saved.

#{syncContext.url} The address of the Mobile Server against
which to synchronize.

#{syncContext.statusMessage} A brief message describing the current
synchronization phase (for example,
sending data, receiving data).

#{syncContext.currentProgress} The percent complete of the current sync
phase.

Table 9–2 (Cont.) Sync EL Expression Reference

Expression Description

Customizing the Synchronization Setup

Synchronizing ADF Mobile Client Data and Transactions 9-11

Figure 9–4 Bounded Task Flow for Sync

5. In the application task flow, add a task flow call that points to the sync task flow,
such as CustomMobileSyncTaskFlowCall in Example 9–5. For more
information on task flow calls, see "Using Task Flow Call Activities" in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Example 9–5 The Task Flow Call to the Sync Task Flow

<task-flow-call id="CustomMobileSyncTaskFlowCall">
 <task-flow-reference>
 <document>/custom-mobile-sync-task-flow.xml</document>
 <id>custom-mobile-sync-task-flow</id>
 </task-flow-reference>
 </task-flow-call>

9.5.1.2 Updating the Application Task Flow
Add a control flow rule to override the toMobileSyncTaskFlow outcome as
illustrated in Example 9–6.

Example 9–6 The Override Control Flow Rule

<control-flow-rule>
 <from-activity-id>*</from-activity-id>
 <control-flow-case>
 <from-outcome>toMobileSyncTaskFlow</from-outcome>
 <to-activity-id>CustomMobileSyncTaskFlowCall</to-activity-id>
 </control-flow-case>
 </control-flow-rule>

Figure 9–5 shows the task flow override in the diagrammer.

Setting Up ADF Mobile Transaction Replay Service

9-12 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 9–5 Task Flow Call Pointing to Custom Task Flow

9.6 Setting Up ADF Mobile Transaction Replay Service
You must set up and configure ADF Mobile transaction replay service, a server-side
component that is a mechanism for replaying server-side actions that are unavailable
to a client when it is offline. It parses specially formatted XML records that contain
information about what method to call on the server and what parameters to pass that
method. For instructions on setting up and configuring transaction replay service, see
Installation Guide for ADF Mobile Transaction Replay Service.

Transaction replay service allows the changes made on a mobile device to be processed
with the full validation logic and downstream trigger behavior of changes made on the
server or online client. After a user makes a change on the ADF Mobile client
application, ADF Mobile client automatically makes a transaction replay service
Replay Record corresponding to the ADF BC changes made by the user. The Replay
Item is brought to the server, either through the Mobile Server’s synchronization or
through the transaction replay service web service. Transaction replay service
processes the Replay Item, invoking the server-side business logic corresponding to
the changes made on the client.

Setup includes enabling the transaction replay service technology to the base ADF
application and configuring the ADF Mobile client application’s entity objects to use it
as described in Section 5.8, "Enabling ADF Mobile Transaction Replay Service for an
ADF Application." You also deploy the transaction replay service components to a web
application server. Several transaction replay service-related wizards are available in
the ADF Mobile client extension to help with this deployment and configuration.

10

Testing and Debugging ADF Mobile Client Applications 10-1

10Testing and Debugging ADF Mobile Client
Applications

This chapter provides an overview of the process you will take to finalize the
development of your ADF Mobile client application.

This chapter includes the following sections:

■ Section 10.1, "Introduction to Testing and Debugging ADF Mobile Client
Applications"

■ Section 10.2, "Testing ADF Mobile Client Applications"

■ Section 10.3, "Debugging ADF Mobile Client Applications for Windows Mobile
Platform"

■ Section 10.4, "Debugging ADF Mobile Client Applications for BlackBerry
Platform"

■ Section 10.5, "Testing Synchronization"

■ Section 10.6, "Using the ADF Mobile Client Settings Facility"

10.1 Introduction to Testing and Debugging ADF Mobile Client
Applications

Before you start any testing and debugging of your ADF Mobile client application, you
have to deploy it to one of the following:

■ Windows Mobile device

■ Windows Mobile device emulator

■ BlackBerry smartphone

■ BlackBerry smartphone simulator

There are two approaches to testing a mobile client application:

1. Testing on a mobile device or smartphone: This method always provides the most
accurate behavior, and is also necessary to gauge the performance of your
application. However, you may not have access to all the devices or smartphones

Note: You cannot run the mobile client application until it is
deployed. For more information, see Chapter 8, "Deploying ADF
Mobile Client Components."

Testing ADF Mobile Client Applications

10-2 Mobile Client Developer's Guide for Oracle Application Development Framework

on which you wish to test, making device testing impractical. In practice, most
developers use a combination both approaches

2. Testing on a mobile device emulator or smartphone simulator: This method
usually offers better performance and faster deployment, as well as convenience.
However, even though a device emulator or smartphone simulator closely
approximates the corresponding physical device, there are might be differences in
behavior and limitations on the capabilities that can be emulated.

Typically, a combination of both approaches yields the best results.

10.2 Testing ADF Mobile Client Applications
To test and debug a mobile client application, you generally take the following steps:

1. Test the application’s logic and page flows.

2. Make changes to the application as necessary.

3. Reconnect the mobile device, smartphone or simulator, then deploy and run the
application for further testing.

For more information, see Section 10.3, "Debugging ADF Mobile Client Applications
for Windows Mobile Platform" and Section 10.4, "Debugging ADF Mobile Client
Applications for BlackBerry Platform."

10.3 Debugging ADF Mobile Client Applications for Windows Mobile
Platform

You can debug your mobile client application on either a Windows Mobile device or
an emulator. After you configure the device or emulator, you can set breakpoints, view
the contents of variables, and inspect the method call stack just as you would when
debugging a Web-based ADF Faces application.

10.3.1 How to Configure a Window Mobile Device or Emulator for Debugging
Prior to debugging a mobile client application, you have to configure a mobile device
or emulator by performing the following:

■ Increasing the Internal Storage Capacity of the Device or Emulator

■ Configuring the Device or Emulator for Network Access

10.3.1.1 Increasing the Internal Storage Capacity of the Device or Emulator
You can increase the internal storage capacity of a mobile device or emulator from the
command line. For example, the following command line creates a Windows Mobile
6.0 Professional emulator instance with significantly increased RAM and storage
capacity:

"C:\Program Files\Microsoft Device
Emulator\1.0\DeviceEmulator.exe" "C:\program files\Windows
Mobile 6 SDK\PocketPC\Deviceemulation\0409\PPC_USA.bin"

Note: In the current release, you can only debug your Java code.
Debugging of EL expressions or other declarative elements is not
supported.

Debugging ADF Mobile Client Applications for Windows Mobile Platform

Testing and Debugging ADF Mobile Client Applications 10-3

/defaultsave /memsize 256 /skin "C:\program files\Windows Mobile
6 SDK\PocketPC\Deviceemulation\Pocket_pc\Pocket_PC.xml" /p

The following parameters are essential in achieving the desired effect:

■ /defaultsave causes a new .DESS file to be written to C:\Documents and
Settings\<user>\Application Data\Microsoft\Device Emulator.
Once written, this file can be copied anywhere, and then double-clicked to start an
instance of this preconfigured emulator.

■ /memsize 256 causes the emulator to be created with the maximum amount of
available memory. Once the .DESS file is created, this option is locked to the
save-state and cannot be changed.

10.3.1.2 Configuring the Device or Emulator for Network Access
Since debugging of a Java application on Windows Mobile platform occurs over the
standard JDWP protocol, which uses TCP sockets for communication, it is necessary
for the development computer to establish a TCP connection to the Windows Mobile
device or emulator.

When a Windows Mobile device is connected via ActiveSync, it is assigned an IP
address of 169.254.2.1, and it can see the host computer at 169.254.2.2.

When a Windows Mobile device emulator is connected through ActiveSync, one of the
following happens:

■ Windows Mobile 6.0 and later emulators maintain the IP address that the emulator
was assigned previously.

■ Windows Mobile 5.0 emulators are assigned the non-routable address of
192.168.55.101.

To debug your application, you may find it necessary to uncradle the emulator in
order to disable ActiveSync.

10.3.2 How to Deploy the Application to the Window Mobile Device or Emulator for
Debugging

To deploy the mobile client application to a Windows Mobile device or emulator for
debugging, you start with establishing a connection between you development
computer and the device or emulator. For more information, see Section 2.6.3, "How to
Connect the Mobile Device or Emulator."

If, at any point, you find that you cannot ping the emulator from your development
computer, perform the following steps:

■ Start Device Emulator Manager. This functionality is typically accessible through
the execution of the dvcemumanager.exe file located in the C:\Program
Files\Microsoft Device Emulator\1.0 directory.

■ Click Refresh, and then scroll through the list of emulators to find one with a
green arrow icon beside it.

■ Right-click this entry and select Uncradle.

Note: If a connected device is not addressable in this manner, ensure
that the Enable Advanced Network Functionality setting is selected.
This setting is accessible from Settings > Connections > USB to PC.

Debugging ADF Mobile Client Applications for Windows Mobile Platform

10-4 Mobile Client Developer's Guide for Oracle Application Development Framework

To deploy and install your application to the device or emulator:
1. In JDeveloper, create a Windows Mobile deployment profile for your application:

■ In Application Navigator, right-click the application name, and then select
Deploy > New Deployment Profile.

■ In the New Gallery dialog, select ADF Mobile Client for Windows Mobile to
create your deployment profile.

■ Accept all the default settings of subsequent screens by clicking OK until you
reach the ADF Mobile Client for Window Mobile Deployment Profile
Properties screen and make a selection of Windows Mobile Options from the
tree on the left.

■ On the ADF Mobile Client for Window Mobile Deployment Profile
Properties > Windows Mobile Options screen that Figure 10–1 shows, select
Generate Debug Launcher, and then click OK (see Section 10.3.3, "What
Happens When You Choose to Generate the Debug Launcher").

Figure 10–1 Generating Debug Launcher

■ Continue accepting the default settings on subsequent screens by clicking OK
until the deployment profile is created.

2. In the Application Navigator, right-click the application name, and then select
Deploy > <DEPLOYMENT PROFILE NAME>.

3. Click Finish to complete the deployment.

Upon successful deployment, you should see messages in the Deployment - log
window in JDeveloper, similar to the following:

[10:50:12 AM] Window Mobile package successfully deployed.

Note: You must recradle the emulator when you are ready to
redeploy your application from JDeveloper.

Debugging ADF Mobile Client Applications for Windows Mobile Platform

Testing and Debugging ADF Mobile Client Applications 10-5

[10:50:12 AM] If installing to a physical device, please refer to device to
complete installation.
[10:50:12 AM] Elapsed time for deployment: 1 second
[10:50:12 AM] --- Deployment finished. ---

In addition, you should see a screen that Figure 10–2 shows appear on the device or
emulator, prompting you to select installation to Storage Card or Device, and select
Device.

Figure 10–2 Installing Application to a Device

10.3.3 What Happens When You Choose to Generate the Debug Launcher
When you select Generate Debug Launcher in the Windows Mobile Options page (see
Figure 10–1, "Generating Debug Launcher"), the ADF Mobile client runtime generates
an executable debug file and a corresponding options file in addition to the application
launcher and options files described in Section 8.4.2.1, "Setting the JAR File Options."
Like those files, the debug files are named for the application and are also included in
the CAB file. These files are designated as follows: Debug_<Application
Name>.exe and Debug_<Application Name>.options. If the end user clicks
<Application Name>.exe, the application launches in regular mode. If the end
user clicks Debug_<Application Name>.exe the application starts in debug mode.

The contents of the debug options file are identical to those of the regular options file,
with the exception of additional command line option which is used to start an
application in debug mode:

-Xdebug "-agentlib:jdwp=transport=dt_socket,server=y,address=4041"

10.3.4 How to Debug the Application on the Windows Mobile Platform
After configuring the mobile device or emulator for debugging, and then deploying
your mobile client application, you can start the debugging as follows:

1. In JDeveloper, open the Project Properties by selecting Application > Project
Properties from the main menu.

Note: There must be a debugger attached to the application.
Otherwise, the application remains in a wait state for the debugger
and will appear to hang.

Debugging ADF Mobile Client Applications for Windows Mobile Platform

10-6 Mobile Client Developer's Guide for Oracle Application Development Framework

2. On the Project Properties dialog that Figure 10–3 shows, select
Run/Debug/Profile

Figure 10–3 Run Configurations Settings for Windows Mobile

3. Click Edit to open the Edit Run Configuration dialog and to start editing the
default configuration.

4. On the Edit Run Configuration dialog that Figure 10–4 shows, select Launch
Settings from the tree control on the left, and then select Remote Debugging.

Note: If no configurations are listed under Run Configurations, add
a new configuration by clicking New.

Debugging ADF Mobile Client Applications for Windows Mobile Platform

Testing and Debugging ADF Mobile Client Applications 10-7

Figure 10–4 Launch Settings Dialog

5. On the Edit Run Configuration dialog that Figure 10–5 shows, select Debugger >
Remote from the tree on the left, and then enter the IP address of the device or
emulator in the Host field.

You can determine the IP address as follows:

■ On the device or emulator screen, click Start > Settings.

■ Select the Connections tab, and then Network Cards.

■ Select NE2000 Compatible Ethernet Driver to display the IP address.

6. Ping the device or emulator’s IP address and ensure that the ping succeeds.

7. On the Remote screen of the Edit Run Configuration dialog, enter the port
number 4041 (see Figure 10–5), and then click OK.

Note: You might have to uncradle the device or emulator in order to
ping it, and then recradle when deploying the application from
JDeveloper.

Debugging ADF Mobile Client Applications for Windows Mobile Platform

10-8 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 10–5 Remote Settings Dialog

8. Open your application's Deployment Profile Properties, select Windows Mobile
Options, and then ensure that Generate Debug Launcher is selected (see
Figure 10–1 and Section 10.3.3, "What Happens When You Choose to Generate the
Debug Launcher").

-Xdebug "-agentlib:jdwp=transport=dt_socket,server=y,address=4041"

9. With the debug settings configured, deploy your application to the mobile device
or emulator (see Section 10.3.2, "How to Deploy the Application to the Window
Mobile Device or Emulator for Debugging").

10. Using the File Explorer application on the device or emulator, navigate to the
application folder, which is typically located in the \Program Files directory,
and then launch your application by clicking on it. At this point, the application is
waiting for a debugger to attach before it will start running.

11. Connect JDeveloper's debugger to the application by selecting the Debug
configuration that you created earlier.

12. Start debugging by selecting the edited run configuration from the debug icon
drop-down list in JDeveloper.

Upon completion of the preceding steps, you should be able to set breakpoints,
suspend execution, and inspect variables, just as you can with an ADF Faces
application.

10.3.5 How to Enable Error Logging on a Window Mobile Device or Emulator
You can enable logging of errors while running the mobile client application on a
device or emulator as follows:

1. In JDeveloper, in your application project, create a directory called store in a
location such as C:\JDeveloper\mywork\<application_name>

Debugging ADF Mobile Client Applications for BlackBerry Platform

Testing and Debugging ADF Mobile Client Applications 10-9

2. In the store directory, create another directory called logs in which the device or
emulator will record error log information and share it with your computer.

You enable sharing of the logs directory as follows:

a. On the emulator, select File > Configure.

b. In the Emulator Properties screen, edit the location of the Shared folder field
to point to the location on your computer:
C:\JDeveloper\mywork\<application_name>\store

c. Click OK.

You have enabled logging when you run the application.

Note that the log file is recreated each time you run the application.

10.4 Debugging ADF Mobile Client Applications for BlackBerry Platform
In the current release, you can debug your mobile client application on a BlackBerry
smartphone simulator only. Once you configure the simulator, you can set breakpoints,
view the contents of variables, and inspect the method call stack just as you would
when debugging a Web-based ADF Faces application.

You can still deploy and test your application on a physical smartphone, but you will
not be able to hit breakpoints and inspect variables, as you can on a simulator.

10.4.1 How to Configure a BlackBerry Smartphone Simulator for Debugging
Since debugging of Java applications on BlackBerry platform occurs over the standard
Java Debug Wire Protocol (JDWP) using TCP sockets as the transport mechanism, both
the simulator and the development computer must have network access and be visible
to one another on the network.

Prior to debugging a mobile client application, you have to configure the smartphone
simulator as follows:

1. In the <BLACKBERRY JDE PATH>\bin directory, double-click the JDWP.bat file
to start the BlackBerry Remote Debug Server.

2. In the BlackBerry Remote Debug Server dialog, in the Communications tab (see
Figure 10–6), make note of the JDWP port number. By default, this value is 8000,
but you can change it if necessary.

Note: Currently, you can only debug your Java code. Debugging of
EL expressions or other declarative elements is not supported.

Note: JDWP is used for establishing a connection between
JDeveloper and the simulator.

Debugging ADF Mobile Client Applications for BlackBerry Platform

10-10 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 10–6 BlackBerry Remote Debug Server

3. In the Simulator tab, ensure that Launch simulator when debugger connects is
selected.

10.4.2 How to Deploy the Application to the BlackBerry Simulator for Debugging
To deploy the mobile client application to a BlackBerry simulator for debugging, you
start with establishing a connection between you development computer and the
simulator. For more information, see Section 10.4.1, "How to Configure a BlackBerry
Smartphone Simulator for Debugging."

To deploy and install your application to the simulator:
1. In JDeveloper, create a BlackBerry deployment profile for your application:

■ In the Application Navigator, right-click the application name, and then select
Deploy > New Deployment Profile.

■ In the New Gallery dialog, select ADF Mobile Client for BlackBerry to create
your deployment profile, and then accept all the default settings of subsequent
screens by clicking OK until the deployment profile is created.

2. In the Application Navigator, right-click the application name, and then select
Deploy > <DEPLOYMENT PROFILE NAME>.

3. Select the Deploy Application to Simulator deployment action.

4. Click Finish to complete the deployment.

Upon successful deployment, you should see messages in the Deployment-Log
window in JDeveloper, similar to the following:

Note: If you prefer to start the simulator manually, do not select this
option, but instead on the Communications tab select Attach to >
Running simulator. In this case, you have to ensure that a simulator
instance has been started prior to attempting a connection.

Debugging ADF Mobile Client Applications for BlackBerry Platform

Testing and Debugging ADF Mobile Client Applications 10-11

[04:15:55 PM] Deploying Mobile Client application to BlackBerry simulator located
at: C:\Program Files\Research In Motion\BlackBerry JDE 5.0.0\simulator
[04:15:55 PM] Mobile Client application successfully deployed to BlackBerry
simulator. Please start or restart the simulator before running the Mobile Client
application.
[04:15:55 PM] Elapsed time for deployment: 5 seconds
[04:15:55 PM] -- Deployment finished. ----

If you want to hit breakpoints defined in any classes in your application, you can
instruct JDeveloper to deploy the application's .debug file(s) to the simulator. To do
so, select Deploy debug files with the application in the BlackBerry Options page of
the ADF Mobile Client for BlackBerry Deployment Profile Properties dialog that
shows. For more information, see Section 8.4.1.2, "Setting the BlackBerry Digital
Signature Tool Options."

Figure 10–7 Deploying Debug Files With Application

10.4.3 How to Debug the Application on BlackBerry Platform
After configuring the smartphone simulator for debugging, and then deploying your
mobile client application, you can start debugging as follows:

1. In JDeveloper, open the Project Properties by selecting Application > Project
Properties from the main menu.

2. On the Project Properties dialog that Figure 10–8 shows, select
Run/Debug/Profile

Debugging ADF Mobile Client Applications for BlackBerry Platform

10-12 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 10–8 Run Configurations Settings for BlackBerry

3. Click Edit to open the Edit Run Configuration dialog and to start editing the
default configuration.

4. On the Edit Run Configuration dialog that Figure 10–9 shows, select Launch
Settings from the tree control on the left, and then select Remote Debugging.

Note: If no configurations are listed under Run Configurations, add
a new configuration by clicking New.

Debugging ADF Mobile Client Applications for BlackBerry Platform

Testing and Debugging ADF Mobile Client Applications 10-13

Figure 10–9 Launch Settings Dialog

5. On the Edit Run Configuration dialog that Figure 10–8 shows, select Debugger >
Remote from the tree on the left, and in the Host field enter the IP address of the
computer on which the simulator is running, or 127.0.0.1

Specify the same port as you provided in the Communications tab of the
BlackBerry Remote Debug Server dialog (see Figure 10–6), which is 8000 by
default.

In addition, increase the time-out to 30000.

6. On the Remote screen of the Edit Run Configuration dialog, enter the same port
as you provided in the Communications tab of the BlackBerry Remote Debug
Server dialog (see Figure 10–10).

In addition, increase the time-out to 30000, and then click OK.

Debugging ADF Mobile Client Applications for BlackBerry Platform

10-14 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 10–10 Remote Settings Dialog

7. In your application, set breakpoints as needed.

8. Select the edited run configuration from the debug icon drop-down list in
JDeveloper.

9. Start debugging by running your application in the simulator.

At this point, you should be able to suspend execution and inspect variables, just as
you can with an ADF Faces application.

10.4.4 What You May Need to Know About Modifying the Deployment and Run
Configurations

At certain times, you may find it necessary to modify the deployment and run
configurations of your mobile client application.

You might need to modify your run configuration to debug a mobile device or its
emulator, or a smartphone or its simulator that is not connected to the default location
or port.

For information on how to modify the run configuration, see the following:

■ Figure 10.4.3, "How to Debug the Application on BlackBerry Platform"

■ Figure 10–8, "Run Configurations Settings for BlackBerry"

You might need to modify your deployment options for some of the following reasons:

■ To deploy the client application to a non-default location on the device.

■ To configure the client to access custom code or libraries on the device.

You can change deployment options from the deployment profile as follows:

1. Open the Application Properties dialog and select Deployment from the tree on
the left.

Debugging ADF Mobile Client Applications for BlackBerry Platform

Testing and Debugging ADF Mobile Client Applications 10-15

2. On the Deployment panel (see Figure 10–11), select the deployment profile that
you want modify from the Deployment Profiles list, and then click Edit to open
the Deployment Profile Properties dialog.

Figure 10–11 Modifying Deployment Options

3. On the Deployment Profile Properties dialog, perform the required
modifications, and then click OK.

10.4.5 How to Enable Error Logging on a BlackBerry Simulator
You can enable logging of errors while running the mobile client application on the
BlackBerry smartphone simulator as follows:

1. In JDeveloper, in your application project, create a directory (called mystore, for
example) in a location such as C:\JDeveloper\mywork\<application_
name>.

2. In the mystore directory, create another directory called logs in which the device
or emulator will record error log information and share it with your computer.

You enable sharing of the logs directory as follows:

a. On the simulator, select Simulate > Change SD Card.

b. In the SD Card screen, click Add Directory, and then select the location of the
logs directory.

c. Click OK.

Upon completion of the preceding procedure, when you run the application, the
logging will be enabled. Note that the log file is recreated each time you run the
application.

Testing Synchronization

10-16 Mobile Client Developer's Guide for Oracle Application Development Framework

10.5 Testing Synchronization
If your mobile client application synchronizes with a back-end database, you should
verify that this data synchronization functions as expected.

After deploying your application to the mobile device or smartphone and starting it
for the first time, you may notice that data synchronization is automatically initiated
when this data is required for the first time. If you have never synchronized data on
your mobile device or smartphone, ADF Mobile client will prompt you to enter the
required parameters, as Figure 10–12 and Figure 10–13 show.

Figure 10–12 Synchronization Parameters Screen on Windows Mobile Platform

Figure 10–13 Synchronization Parameters Screen on BlackBerry Platform

After entering the parameters, you start synchronization by clicking Sync.

If you previously synchronized data on your mobile device or smartphone and chose
to save your password, by default the ADF mobile client attempts to reuse those
settings and bypass the prompt. This behavior is useful when each device is owned by
a single user. For information on how to modify the default behavior, see Chapter 9,
"Synchronizing ADF Mobile Client Data and Transactions."

Using the ADF Mobile Client Settings Facility

Testing and Debugging ADF Mobile Client Applications 10-17

Once data synchronization has completed successfully, your application should
continue running automatically. If an error occurs during synchronization, it must be
resolved before your application can proceed. See Appendix C, "Troubleshooting" for
information on solutions to common problems related to synchronization.

10.6 Using the ADF Mobile Client Settings Facility
ADF Mobile client makes use of a number of settings that alter the run-time behavior.
These settings affect features such as logging and database initialization, and can also
include arbitrary application-defined parameters. Settings are defined as key-value
pairs in the following ways:

■ Runtime defaults: When a value is missing for a given key, the Java code supplies
a default value. These have lowest priority.

■ adf-config.xml and connections.xml: If a value is specified in one of these
files, it takes precedence over the Java-supplied default.

■ Command-line arguments: These settings have the highest priority.

This multilayered approach makes it possible to provide values once for settings that
are not expected to change frequently, but still override them easily when necessary.

To add application-specific settings:
1. Define a String constant in your Java code to represent the setting's key. For

example:

public static String MYSETTING_KEY = "mysetting";

2. Read the value of the key by calling Utility.getProperty, optionally
specifying a default value, as the following example shows:

// either
String myValue = Utility.getProperty(MYSETTING_KEY);
// or
String myValue = Utility.getProperty(MYSETTING_KEY, "defaultValue");

If mysetting is not specified, it will either be null, or take the value
defaultValue, depending on which version of getProperty is called. You can
change the value by adding the following entry to the adf-config.xml or
connections.xml file:

<amc:setting name="mysetting" value="myvalue"/>

To pass command-line parameters on Windows Mobile:
1. In JDeveloper, open your application deployment profile’s properties.

2. Select Windows Mobile Options from the tree on the left, and then enter the
command-line parameters in the Application Command Line Parameters field, as
Figure 10–14 shows.

Note: adf-config.xml and connections.xml are static files that
can only be modified at design time.

Using the ADF Mobile Client Settings Facility

10-18 Mobile Client Developer's Guide for Oracle Application Development Framework

Figure 10–14 Passing Command-Line Parameters

These parameters are placed in the generated options file after the start-up class name.

To pass a command-line parameter on BlackBerry:
Since adf-config.xml and connections.xml are static files that can only be
modified at design time, if you want to override the value without changing these files
and rebuilding your application, you can specify a new value by passing a
command-line parameter.

To do so, you must launch your application through another program, using code
similar to the following:

int handle = CodeModuleManager.getModuleHandle(appName);
ApplicationDescriptor[] browserDescriptors =

CodeModuleManager.getApplicationDescriptors(handle);
ApplicationDescriptor descriptor =

new ApplicationDescriptor(browserDescriptors[0],
null, new String[]{"-mysetting=myvalue"});

ApplicationManager.getApplicationManager().runApplication(descriptor);

Table 10–1 lists ADF Mobile client framework settings, which are specific to the ADF
Mobile client logging facility that Table 10–4 lists. For more information on the logging
facility, see Section 10.6.1, "How to Use the ADF Mobile Client Logging Facility."

Table 10–1 ADF Mobile Client Framework Settings

Setting Description

<amc:setting name="root-task-flow"
value="<path/to/MobileClient-task-flow.xml>"/>

Defines the path to the root task
flow.

Default value: ""

Using the ADF Mobile Client Settings Facility

Testing and Debugging ADF Mobile Client Applications 10-19

Table 10–2 lists ADF Mobile client framework database-related settings, which are
specific to the ADF Mobile client logging facility that Table 10–4 lists. For more
information on the logging facility, see Section 10.6.1, "How to Use the ADF Mobile
Client Logging Facility."

10.6.1 How to Use the ADF Mobile Client Logging Facility
ADF Mobile client makes extensive use of log messages throughout an application’s
execution for informational and diagnostic purposes. These messages can be

<amc:setting name="app-name"
value="NameOfYourApplication"/>

Sets the name of the
application. This is normally
prepopulated by JDeveloper.
Do not edit this directly; if you
need to change it, use the
JDeveloper design-time
features to do so.

Default value: ""

Table 10–2 ADF Mobile Client Framework Database Settings

Setting Description

<amc:setting name="db-connection"
value="connName"/>

Defines the name of the database
connection to use. connName is the
name of a connection in the
connections.xml file.

<amc:setting name="local-init-script"
value="<path to sql script>"/>

If the database needs initialization, it
will be initialized by executing the SQL
statements in the script referenced by
this setting. This script must be
included as a resource in the
application.

Default value: ""

<amc:setting name="local-run-init-script"
value="never|ifnodb|always"/>

If set to "always", the application will
execute the SQL script in
"init-script" during application
startup to (re)create the application
database. If the database exists, all
tables will be dropped before the script
is executed.

If set to "ifnodb", the script will only
be run if the database does not exist.

If set to "never", the script will not be
executed during startup and the
database will not be modified in any
way.

Default value: "never"

<amc:setting name="sync-credentials-mode"
value="prompt|provided|lastuser"/>

Controls how synchronization
parameters are provided to the
framework.

For more information, see Section 9.4,
"Enabling Data Synchronization at
Application Startup."

Default value: "prompt"

Table 10–1 (Cont.) ADF Mobile Client Framework Settings

Setting Description

Using the ADF Mobile Client Settings Facility

10-20 Mobile Client Developer's Guide for Oracle Application Development Framework

selectively enabled or disabled by different priority levels across the framework or for
specific areas of functionality within the framework for both performance and easier
processing of log output.

You can add log messages to your own code, using logging channels and logging
output mechanisms defined within ADF Mobile client, or creating your own.

The ADF Mobile client logging facility is a lightweight adaptation of the Java
platform's core logging facility implemented in the java.util.logging package.

The following are the key elements used in ADF Mobile client logging:

■ Logger: A configurable logical channel with which different groups of log
messages are associated. Loggers are named and organized hierarchically, where
sub-loggers can inherit or override settings of their parent loggers. A logger directs
messages to one or more associated handlers, which control how the messages are
output.

All ADF Mobile client framework classes log their messages through the following
named loggers according to their various functional areas within the framework:

– adfnmc.util: Logs messages from low-level Utility classes.

– adfnmc.model: Logs messages associated with the ADF Mobile client Model
layer.

– adfnmc.bindings: Logs messages associated with the ADF Mobile client
data-binding layer.

– adfnmc.ui: Logs messages associated with the ADF Mobile client UI layer.

– adfnmc.test: A channel that can be used for test messages and test output.

– adfnmc.profiling: Logs messages used for outputting performance
metrics.

– adfnmc: The parent logger for all ADF Mobile client loggers.

■ Handler: A configurable object responsible for exporting messages to various
destinations including memory, output streams, consoles, files, and sockets. The
subclass of the handler determines the destination type that it supports.

ADF Mobile client includes the following Handler types:

– oracle.adfnmc.java.util.logging.FileHandler: Writes messages to
a file.

– oracle.adfnmc.java.util.logging.ConsoleHandler: Writes
messages to the standard output stream.

– oracle.adfnmc.java.util.logging.StreamHandler: Writes messages
to an OutputStream.

– oracle.adfnmc.java.util.logging.DevNullHandler: Messages sent
to this handler are not exported.

Note: By default, only messages indicating severe issues are enabled.

Note: You can configure these loggers declaratively through the ADF
Mobile client settings facility as well as add your own.

Using the ADF Mobile Client Settings Facility

Testing and Debugging ADF Mobile Client Applications 10-21

■ Level: Loggers and handlers can be configured with priority levels to show or
suppress messages. All messages are assigned a priority level when they are
logged. If the level for a given message is lower than the level assigned to the
logger or handler the message is sent to, it will be suppressed.

The levels in descending order, along with their uses in the different areas of the
Mobile client framework are:

– SEVERE (highest value): Logs errors.

– WARNING: Logs warnings; provides information that may indicate a problem
in the framework or the application.

– INFO: Logs user actions in the UI area; logs PageDef loads in the bindings
area; logs view objects’ read and writes, as well as EA/VL movements in the
Model area; helps in resolving of objects at load time, as well as checkpoints.

– CONFIG: This level is not supported by ADF Mobile client.

– FINE: Logs EL evaluations in the binding area. Used for loading and parsing,
sets and gets.

Child loggers can override the level threshold for their messages to a higher or
lower level than that of their parent loggers. Note, however, that the highest level
threshold in a logger-handler chain will be applied. For example, if a logger is
configured with a level of INFO and has two handlers, configured with levels of
SEVERE and FINE, respectively, only SEVERE messages will be output from the
first handler, while SEVERE, WARNING, and INFO messages will be output from
the second handler. Neither will output FINE messages.

■ Formatter: Handlers can be configured with different formatting options to apply
to messages.

ADF Mobile client includes the following Formatter types:

■ oracle.adfnmc.java.util.logging.SimpleFormatter: Writes brief
"human-readable" summaries of log message records.

■ oracle.adfnmc.java.util.logging.NmcPatternFormatter: Writes
messages modified according to a supplied format string. Note that this
formatter does not fully parse format strings. See Table 10–3 for the fixed
formats that are supported.

Table 10–3 Formats Supported by NmcPatternFormatter

Pattern String Message Format

"[%p - %c - %C{1} - %M] %m%n" "[messageLevel - LoggerName -
sourceClassname - sourceMethodName]
message"

"[%p - %c - %C{1} - %M -
%d{ABSOLUTE}] %m%n"

"[messageLevel - LoggerName -
sourceClassname - sourceMethodName -
timeStamp] message"

"[%c] %m%n" "[LoggerName] message"

Using the ADF Mobile Client Settings Facility

10-22 Mobile Client Developer's Guide for Oracle Application Development Framework

Table 10–4 ADF Mobile Client Logging Settings

Setting Description

<amc:setting
name="declare-logger-<loggerIdentifier>"
value="<loggerName>"/>

Declares a named logger.

loggerName is the actual name
of the logger to be used in the
logging framework. A logger's
name determines its position in
the logger hierarchy. A '.' is used
in the logger name to delimit each
level in the hierarchy, from left to
right. For example, "adfnmc"
declares a top-level logger, while
"adfnmc.bindings" declares a
child logger that inherits settings
applied to the logger name
"adfnmc".

loggerIdentifier is an
identifier used to reference the
logger in subsequent setting
declarations.

loggerIdentifier needs to be the
same as loggerName, with any
"." delimiters replaced by a "-".

<amc:setting name="<loggerIdentifier>-level"
value="<level>"/>

Declares the logging level to be
used with the named logger.

<amc:setting name="<loggerIdentifier>-handlers"
value="<handlerIdentifiers>"/>

Declares the named handler or
handlers (separated by spaces) to
be used with the named logger.

<amc:setting
name="<loggerIdentifier>-useParentHandlers"
value="<true or false>"/>

Declares whether or not the
named child logger should use
the handler or handlers
associated with its parent loggers.

Default value: "true".

<amc:setting
name="declare-handler-<handlerIdentifier>"
value="<handlerClass>"/>

Declares a named handler to be
used by the logging framework.

handlerIdentifier is an
identifier used to reference the
handler in subsequent setting
declarations. Cannot contain
spaces.

handlerClass is a fully
qualified class name for the
handler to use.

<amc:setting name="<handlerIdentifier>-level"
value="<level>"/>

Declares the logging level to use
with the named handler.

<amc:setting name="<handlerIdentifier>-formatter"
value="<formatterClass>"/>

Declares the formatter class to use
with the named handler.

<amc:setting
name="<handlerIdentifier>-formatterPattern"
value="<patternString>"/>

Declares a pattern string to use
with a pattern-based formatter.

Valid for use with
oracle.adfnmc.java.util.l
ogging.NmcPatternFormatte
r only.

Using the ADF Mobile Client Settings Facility

Testing and Debugging ADF Mobile Client Applications 10-23

For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF
Mobile Client.

10.6.2 How to Configure Logging Using the Settings Facility
Most elements in the ADF Mobile client logging facility can be configured
declaratively through the ADF Mobile client settings facility. See Table 10–1, " ADF
Mobile Client Framework Settings" for a complete list of the settings and their
descriptions.

Consider the following examples:

■ To change the root ADF Mobile client framework logger level to FINE:

<amc:setting name="declare-logger-adfnmc" value="adfnmc"/>
<amc:setting name="adfnmc-level" value="FINE"/>

■ To change the Model layer logger level to WARNING:

<amc:setting name="declare-logger-adfnmc-model" value="adfnmc.model"/>
<amc:setting name="adfnmc-model-level" value="WARNING"/>

■ To specify a FileHandler and set its level and file path (per platform):

<amc:setting name="declare-handler-FILE1"
value="oracle.adfnmc.java.util.logging.FileHandler"/>

<amc:setting name="FILE1-level" value="FINEST"/>
<amc:setting name="FILE1-pattern" platform="wm"

value="\Storage Card\Logs\logfile.txt"/>
<amc:setting name="FILE1-pattern" platform="bb"

value="/SDCard/Logs/logfile.txt"/>

■ To associate a handler with a logger:

<amc:setting name="adfnmc-handlers" value="FILE1"/>

<!-- use a space delimiter to specify multiple handlers -->
<amc:setting name="adfnmc-handlers" value="FILE1 FILE2"/>

10.6.3 How to Enable Logging in Java Code
ADF Mobile client includes a utility class,
oracle.adfnmc.java.util.logging.Trace, which wraps most of the details
that you might need to use the logging facility.

For example, the following code logs an informational message:

Trace.log(Trace.TEST_LOGNAME, Level.INFO,
this.getClass(),"someMethod", "my message");

The message can also be formatted with parameters, as in the following example:

Trace.log(Trace.TEST_LOGNAME, Level.INFO, this.getClass(),

<amc:setting name="<handlerIdentifier>-pattern"
value="<path to log file>"/>

Declares a path to the file to use
for log output.

Valid for use with
oracle.adfnmc.java.util.l
ogging.FileHandler only.

Table 10–4 (Cont.) ADF Mobile Client Logging Settings

Setting Description

Using the ADF Mobile Client Settings Facility

10-24 Mobile Client Developer's Guide for Oracle Application Development Framework

"someMethod", "my message with param: {0} and another param:
{1}", new Object[] {param0, param1});

In the preceding methods, the first parameter is the name of the logger through which
to send the message, and the second parameter is the level to apply to the message.

For more information, see Oracle Fusion Middleware Java API Reference for Oracle ADF
Mobile Client.

11

Working Directly with the Database 11-1

11Working Directly with the Database

This document includes the following sections:

■ Section 11.1, "About Using a Client Database"

■ Section 11.2, "Enabling Applications to Use SQL Initialization Scripts"

11.1 About Using a Client Database
As stated in Section 8.5, "Specifying the Client Database Location for an Application,"
you can enable an application to bypass synchronization with the backend server
using Oracle Database Lite Mobile Server in favor of a SQLite client database by
selecting the Standalone Database on Client option in the Create Database
Connection dialog of the deployment profiles dialog and then defining the location of
database in the Device Database File field using one of the platform-appropriate
formats listed in Table 11–1.

Because SQL databases are binary-compatible across platforms, you can use the same
database file on either Windows Mobile or BlackBerry by entering the location in the
appropriate format.

Table 11–1 Fully Qualified Paths to SQLite Databases on BlackBerry and Windows
Mobile

Usage Scenario Path Format in Device Database File Field

Windows Mobile device
with a database on an
internal file system

\SAMPLE.db

Windows Mobile device
with a database on an
external storage card

\Storage Card\SAMPLE.db

You can only create SQL databases in flash memory on Windows
Mobile emulators, not on the storage card. Windows Mobile
devices, however, do not have this limitation.

BlackBerry with a database
on an internal file system

/store/home/user/SAMPLE.db

In general, SQLite databases on BlackBerry smartphones can
only be created on an SD card. While some BlackBerry
smartphones permit databases on internal flash memory, you
should always specify a database that resides on an SD card to
ensure maximum compatibility.

BlackBerry, with a database
on an external SD card

/SDCard/SAMPLE.db

Enabling Applications to Use SQL Initialization Scripts

11-2 Mobile Client Developer's Guide for Oracle Application Development Framework

Using the Run Database Initialization Script options, as shown in Figure 11–1, you
can enable the application to use a SQL script to initialize the database each time the
application starts.

Figure 11–1 Enabling the Use of a SQL Script

11.2 Enabling Applications to Use SQL Initialization Scripts
If you do not want an application to synchronize data with Oracle Database Lite
Mobile Server, you can enable it to use a client database through a SQL initialization
script. Although this simple script supports a subset of SQL syntax, it is robust enough
to populate a database with some default values.

Example 11–1 illustrates a SQL initialization script. This example shows some of the
supported SQL syntax (described in Section 11.2.3, "SQL Syntax") through its use of
the DROP TABLE, CREATE TABLE, and INSERT commands and the NUMBER and
VARCHAR2 data types. For more information, see Section 11.2.1, "Supported Column
Data Type Declarations," and Section 11.2.2, "Literal Format for Date Types."

Example 11–1 A SQL Initialization Script

DROP TABLE PERSONS;

CREATE TABLE PERSONS
(
PERSON_ID NUMBER(15) NOT NULL,
FIRST_NAME VARCHAR2(30),
LAST_NAME VARCHAR2(30),
EMAIL VARCHAR2(25) NOT NULL
);

INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (100,
'David', 'King', 'steven@king.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (101,
'Neena', 'Kochhar', 'neena@kochhar.net');

Enabling Applications to Use SQL Initialization Scripts

Working Directly with the Database 11-3

INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (102, 'Lex',
'De Haan', 'lex@dehaan.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (103,
'Alexander', 'Hunold', 'alexander@hunold.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (104,
'Bruce', 'Ernst', 'bruce@ernst.net');

11.2.1 Supported Column Data Type Declarations
Table 11–2 lists the data types used in column declarations. The types in italic font get
mapped.

11.2.2 Literal Format for Date Types
Table 11–3 lists the literal formats for date types that are allowed in the SQL script.

Table 11–2 Data Types

Declared Type Mapped Type

BIGINT BIGINT

BINARY BINARY

BINARY_DOUBLE DOUBLE

BINARY_FLOAT FLOAT

BLOB BLOB

CHAR CHAR

CLOB CLOB

DATE DATE

DECIMAL DECIMAL

FLOAT FLOAT

INT INT

LONG BIGINT

LONG VARCHAR LONG VARCHAR

NCHAR NCHAR

NUMBER DECIMAL

NUMERIC DECIMAL

TEXT VARCHAR

TIME TIME

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR

Table 11–3 Literal Formats for Date Types

Declared Type Allowed Format

DATE 'yyyy-mm-dd'

TIME 'hh:mm:ss'

Enabling Applications to Use SQL Initialization Scripts

11-4 Mobile Client Developer's Guide for Oracle Application Development Framework

11.2.3 SQL Syntax
The SQL script supports a subset of the SQL data types and commands.

Declaring Data Types
Example 11–2 shows the syntax for declaring data types.

Example 11–2 Declaring Data Types

CHAR(n) | NCHAR(n) | VARCHAR(n) | LONG VARCHAR(n) | INT |
DECIMAL(p,s) | FLOAT | DOUBLE | DATE | TIME | TIMESTAMP| BLOB | CLOB | BINARY

Using Commands
Example 11–3 lists the supported commands.

11.2.4 Inserting Multiple Rows into a Table
Example 11–3 shows adding rows to a table one at a time, using separate INSERT
statements. Alternatively, you can use a single INSERT statement in the following
form to add multiple rows into the table, as illustrated in Example 11–4:

INSERT INTO table (column1, column2,...) VALUES(?,?,?,?);

Example 11–3 Inserting Rows into a Table

INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (100,
'Steven', 'King', 'steven@king.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (101,
'Neena', 'Kochhar', 'neena@kochhar.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (102, 'Lex',
'De Haan', 'lex@dehaan.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (103,
'Alexander', 'Hunold', 'alexander@hunold.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (104,
'Bruce', 'Ernst', 'bruce@ernst.net');

Example 11–3 shows how a single INSERT statement adds the same rows to the
PERSONS table as did the separate statements used in Example 11–4.

TIMESTAMP 'yyyy-mm-dd hh:mm:ss.fffffffff'

Table 11–4 Supported Commands

Command Type Description BNF Notation

DROP TABLE DDL Removes existing objects
from the database.

DROP TABLE name...

CREATE TABLE DDL Creates a new table. CREATE TABLE table (column type [
NULL | NOT NULL] [UNIQUE] [DEFAULT
value] [column_constraint_clause |
PRIMARY KEY] [, ...]] [, ...])

INSERT DML Inserts new rows into table. INSERT INTO table (column [, ...])
VALUES (expression [, ...])

Table 11–3 (Cont.) Literal Formats for Date Types

Declared Type Allowed Format

Adding the SQL Script as a Resource to the ADF Mobile Client Application

Working Directly with the Database 11-5

Example 11–4 Inserting Multiple Rows into a Table

INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES(?,?,?,?);
{
100, 'Steven', 'King', 'steven@king.net'
101, 'Neena', 'Kochhar', 'neena@kochhar.net'
102, 'Lex', 'De Haan', 'lex@dehaan.net'
103, 'Alexander', 'Hunold', 'alexander@hunold.net'
104, 'Bruce', 'Ernst', 'bruce@ernst.net'
};

11.2.5 Commit Handling
Commit statements are ignored when encountered. Each statement is committed as it
is read from the SQL script.

11.3 Adding the SQL Script as a Resource to the ADF Mobile Client
Application

After you write the script, you add it as a resource to the ADF Mobile client
application by selecting the required Run database initialization script option and
entering its location in the Initialization script field in the Client Database page. For
more information, see Section 8.5, "Specifying the Client Database Location for an
Application."

Adding the SQL Script as a Resource to the ADF Mobile Client Application

11-6 Mobile Client Developer's Guide for Oracle Application Development Framework

12

Using Web Services in ADF Mobile Client Applications 12-1

12Using Web Services in ADF Mobile Client
Applications

This chapter describes how to integrate a third-party Web service into ADF Mobile
client applications.

This chapter includes the following sections:

■ Section 12.1, "Introduction to Web Services in ADF Mobile Client Applications"

■ Section 12.2, "Creating and Using Web Service Data Controls"

■ Section 12.3, "Securing Web Service Data Controls"

12.1 Introduction to Web Services in ADF Mobile Client Applications
Web services let you expose business functionality irrespective of the platform or
language of the originating application. For more information, see "Introduction to
Web Services in Fusion Web Applications" section in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.

12.2 Creating and Using Web Service Data Controls
The most common way of using Web services in an application developed with Oracle
ADF Mobile client is to create a data control for a Web service. Typically, this is done
for the following reasons:

■ To add functionality that is readily available as a Web service, but which would be
time-consuming to develop within the application.

■ To provide access to an application that runs on a different architecture.

■ To enable reuse of components created by the mobile client to make them
available as Web services for other applications.

For more information about Web service data controls and their usage, see the
following:

■ "What You May Need to Know About Web Service Data Controls" section in Oracle
Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ "Data Controls in Oracle ADF Fusion Web Applications" appendix in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework

■ Section 6.3.2.3, "Adding Data Controls to the View"

Creating and Using Web Service Data Controls

12-2 Mobile Client Developer's Guide for Oracle Application Development Framework

■ "Using the Data Controls Panel" section in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework

12.2.1 How to Create a Web Service Data Control
JDeveloper lets you create a data control for an existing Web service using only the
Web Services Description Language (WSDL) file for the service. You can either browse
to a WSDL file on the local file system, locate one in a Universal Description,
Discovery and Integration (UDDI) registry, or enter the WSDL URL directly.

To create a Web service data control:
1. In the Application Navigator, right-click the application name, and then select

New.

2. In the New Gallery dialog, select the All Technologies tab, and then expand the
Business Tier node on the left. Select Web Services, and then Web Service Data
Control from the Items list on the right (see Figure 12–1), and click OK.

Figure 12–1 Creating a New Web Service

3. Follow the wizard instructions to complete creation of the data control.

Note: If you are working behind a firewall and you want to use a
Web service that is outside the firewall, you must configure the Web
Browser and Proxy settings in JDeveloper. For more information, see
"Setting Browser Proxy Information" section in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development
Framework.

Securing Web Service Data Controls

Using Web Services in ADF Mobile Client Applications 12-3

12.2.2 How to Adjust the Endpoint for a Web Service Data Control
After creating a Web service data control, you can modify the endpoint. This is useful
in such cases as when you migrate the application from a test to production
environment.

You can modify the endpoint by editing the connections.xml file.

Alternatively, to change the endpoint for a Web service data control:
1. In the Application Navigator, select the .dcx file for the Web service data control.

2. In the Structure view, right-click the Web service data control and choose Edit
Web Service Connection from the context menu to open the Edit Web Service
Connection dialog.

3. In the Edit Web Service Connection dialog, make the necessary changes to the
endpoint URL and port name.

4. Click OK.

12.2.3 How to Create a New Web Service Connection
The connection information for the Web service is stored in the connections.xml
file along with the other connections in your application. You do not need to explicitly
create this file, as it is generated in the .adf/META-INF directory by the New Web
Service Data Control wizard at the time when the Web service data control is created
(see Section 12.2.1, "How to Create a Web Service Data Control").

You modify the connection settings by editing the connections.xml file.

12.3 Securing Web Service Data Controls
Web services allow applications to exchange data and information through defined
application programming interfaces. The mobile client provides the following means
of securing Web service data controls:

■ Secure Sockets Layer (SSL): provides secure data transfer over unreliable
networks.

■ Java Key Store (JKS): provides message-level security for which Web service data
controls can be configured.

For more information, see the following:

Note: The mobile client supports the following encoding styles for
both SOAP 1.1 and 1.2 versions:

■ Document/literal

■ Document/wrapped

■ RPC

Note: Currently, the mobile client only supports basic authentication
(BASIC_AUTH) over HTTP and HTTPS.

Securing Web Service Data Controls

12-4 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Sections about SSL configuration and managing key stores in Oracle Database
Administrator's Guide

■ Section about configuring policies in Oracle Fusion Middleware Security and
Administrator's Guide for Web Services

A

Language Abbreviations A-1

ALanguage Abbreviations

This document provides a list of the languages, countries, and their abbreviations used
in resource bundle file names. For more information, see Section 5.3.12, "Working with
Resource Bundles" and Section 8.6, "Deploying a Multi-Language ADF Mobile Client
Application."

Table A–1 Country Abbreviations in Resource Bundle File Names

Country Abbreviation Country Name

AD, AND Andorra, Principality of

AE, ARE United Arab Emirates

AF, AFG Afghanistan

AG, ATG Antigua and Barbuda

AI, AIA Anguilla

AL, ALB Albania, People's Socialist Republic of

AM, ARM Armenia

AN, ANT Netherlands Antilles

AO, AGO Angola, Republic of

AQ, ATA Antarctica (the territory South of 60 deg S)

AR, ARG Argentina, Argentine Republic

AS, ASM American Samoa

AT, AUT Austria, Republic of

AU, AUS Australia, Commonwealth of

AW, ABW Aruba

AX, ALA Aaland Islands

AZ, AZE Azerbaijan, Republic of

BA, BIH Bosnia and Herzegovina

BB, BRB Barbados

BD, BGD Bangladesh, People's Republic of

BE, BEL Belgium, Kingdom of

BF, BFA Burkina Faso

BG, BGR Bulgaria, People's Republic of

BH, BHR Bahrain, Kingdom of

A-2 Mobile Client Developer's Guide for Oracle Application Development Framework

BI, BDI Burundi, Republic of

BJ, BEN Benin, People's Republic of

BL, BLM Saint Barth, Saint Barthelemy

BM, BMU Bermuda

BN, BRN Brunei Darussalam

BO, BOL Bolivia, Republic of

BR, BRA Brazil, Federative Republic of

BS, BHS Bahamas, Commonwealth of the

BT, BTN Bhutan, Kingdom of

BV, BVT Bouvet Island (Bouvetoya)

BW, BWA Botswana, Republic of

BY, BLR Belarus

BZ, BLZ Belize

CA, CAN Canada

CC, CCK Cocos (Keeling) Islands

CD, COD Congo, Democratic Republic of

CF, CAF Central African Republic

CG, COG Congo, People's Republic of

CH, CHE Switzerland, Swiss Confederation

CI, CIV Cote D'Ivoire, Ivory Coast, Republic of the

CK, COK Cook Islands

CL, CHL Chile, Republic of

CM, CMR Cameroon, United Republic of

CN, CHN China, People's Republic of

CO, COL Colombia, Republic of

CR, CRI Costa Rica, Republic of

CS, SCG Serbia and Montenegro

CU, CUB Cuba, Republic of

CV, CPV Cape Verde, Republic of

CX, CXR Christmas Island

CY, CYP Cyprus, Republic of

CZ, CZE Czech Republic

DE, DEU Germany

DJ, DJI Djibouti, Republic of

DK, DNK Denmark, Kingdom of

DM, DMA Dominica, Commonwealth of

DO, DOM Dominican Republic

Table A–1 (Cont.) Country Abbreviations in Resource Bundle File Names

Country Abbreviation Country Name

Language Abbreviations A-3

DZ, DZA Algeria, People's Democratic Republic of

EC, ECU Ecuador, Republic of

EE, EST Estonia

EG, EGY Egypt, Arab Republic of

EH, ESH Western Sahara

ER, ERI Eritrea

ES, ESP Spain, Spanish State

ET, ETH Ethiopia

FI, FIN Finland, Republic of

FJ, FJI Fiji, Republic of the Fiji Islands

FK, FLK Falkland Islands (Malvinas)

FM, FSM Micronesia, Federated States of

FO, FRO Faeroe Islands

FR, FRA France, French Republic

GA, GAB Gabon, Gabonese Republic

GB, GBR United Kingdom of Great Britain and North Ireland

GD, GRD Grenada

GE, GEO Georgia

GF, GUF French Guiana

GH, GHA Ghana, Republic of

GI, GIB Gibraltar

GL, GRL Greenland

GM, GMB Gambia, Republic of the

GN, GIN Guinea, Revolutionary People's Rep'c of

GP, GLP Guadaloupe

GQ, GNQ Equatorial Guinea, Republic of

GR, GRC Greece, Hellenic Republic

GS, SGS South Georgia and the South Sandwich Islands

GT, GTM Guatemala, Republic of

GU, GUM Guam

GW, GNB Guinea-Bissau, Republic of

GY, GUY Guyana, Republic of

HK, HKG Hong Kong, Special Administrative Region of China

HM, HMD Heard and McDonald Islands

HN, HND Honduras, Republic of

HR, HRV Hrvatska (Croatia)

HT, HTI Haiti, Republic of

Table A–1 (Cont.) Country Abbreviations in Resource Bundle File Names

Country Abbreviation Country Name

A-4 Mobile Client Developer's Guide for Oracle Application Development Framework

HU, HUN Hungary, Hungarian People's Republic

ID, IDN Indonesia, Republic of

IE, IRL Ireland

IL, ISR Israel, State of

IN, IND India, Republic of

IO, IOT British Indian Ocean Territory (Chagos Archipelago)

IQ, IRQ Iraq, Republic of

IR, IRN Iran, Islamic Republic of

IS, ISL Iceland, Republic of

IT, ITA Italy, Italian Republic

JM, JAM Jamaica

JO, JOR Jordan, Hashemite Kingdom of

JP, JPN Japan

KE, KEN Kenya, Republic of

KG, KGZ Kyrgyz Republic

KH, KHM Cambodia, Kingdom of

KI, KIR Kiribati, Republic of

KM, COM Comoros, Union of the

KN, KNA St. Kitts and Nevis

KP, PRK Korea, Democratic People's Republic of

KR, KOR Korea, Republic of

KW, KWT Kuwait, State of

KY, CYM Cayman Islands

KZ, KAZ Kazakhstan, Republic of

LA, LAO Lao People's Democratic Republic

LB, LBN Lebanon, Lebanese Republic

LC, LCA St. Lucia

LI, LIE Liechtenstein, Principality of

LK, LKA Sri Lanka, Democratic Socialist Republic of

LR, LBR Liberia, Republic of

LS, LSO Lesotho, Kingdom of

LT, LTU Lithuania

LU, LUX Luxembourg, Grand Duchy of

LV, LVA Latvia

LY, LBY Libyan Arab Jamahiriya

MA, MAR Morocco, Kingdom of

MC, MCO Monaco, Principality of

Table A–1 (Cont.) Country Abbreviations in Resource Bundle File Names

Country Abbreviation Country Name

Language Abbreviations A-5

MD, MDA Moldova, Republic of

ME, MNE Montenegro, Republic of

MG, MDG Madagascar, Republic of

MH, MHL Marshall Islands

MK, MKD Macedonia, the former Yugoslav Republic of

ML, MLI Mali, Republic of

MM, MMR Myanmar

MN, MNG Mongolia, Mongolian People's Republic

MO, MAC Macao, Special Administrative Region of China

MP, MNP Northern Mariana Islands

MQ, MTQ Martinique

MR, MRT Mauritania, Islamic Republic of

MS, MSR Montserrat

MT, MLT Malta, Republic of

MU, MUS Mauritius

MV, MDV Maldives, Republic of

MW, MWI Malawi, Republic of

MX, MEX Mexico, United Mexican States

MY, MYS Malaysia

MZ, MOZ Mozambique, People's Republic of

NA, NAM Namibia

NC, NCL New Caledonia

NE, NER Niger, Republic of the

NF, NFK Norfolk Island

NG, NGA Nigeria, Federal Republic of

NI, NIC Nicaragua, Republic of

NL, NLD Netherlands, Kingdom of the

NO, NOR Norway, Kingdom of

NP, NPL Nepal, Kingdom of

NR, NRU Nauru, Republic of

NU, NIU Niue, Republic of

NZ, NZL New Zealand

OM, OMN Oman, Sultanate of

PA, PAN Panama, Republic of

PE, PER Peru, Republic of

PF, PYF French Polynesia

PG, PNG Papua New Guinea

Table A–1 (Cont.) Country Abbreviations in Resource Bundle File Names

Country Abbreviation Country Name

A-6 Mobile Client Developer's Guide for Oracle Application Development Framework

PH, PHL Philippines, Republic of the

PK, PAK Pakistan, Islamic Republic of

PL, POL Poland, Polish People's Republic

PM, SPM St. Pierre and Miquelon

PN, PCN Pitcairn Island

PR, PRI Puerto Rico

PS, PSE Palestinian Territory, Occupied

PT, PRT Portugal, Portuguese Republic

PW, PLW Palau

PY, PRY Paraguay, Republic of

QA, QAT Qatar, State of

RE, REU Reunion

RO, ROU Romania, Socialist Republic of

RS, SRB Serbia, Republic of

RU, RUS Russian Federation

RW, RWA Rwanda, Rwandese Republic

SA, SAU Saudi Arabia, Kingdom of

SB, SLB Solomon Islands

SC, SYC Seychelles, Republic of

SD, SDN Sudan, Democratic Republic of the

SE, SWE Sweden, Kingdom of

SG, SGP Singapore, Republic of

SH, SHN St. Helena

SI, SVN Slovenia

SJ, SJM Svalbard and Jan Mayen Islands

SK, SVK Slovakia (Slovak Republic)

SL, SLE Sierra Leone, Republic of

SM, SMR San Marino, Republic of

SN, SEN Senegal, Republic of

SO, SOM Somalia, Somali Republic

SR, SUR Suriname, Republic of

ST, STP Sao Tome and Principe, Democratic Republic of

SV, SLV El Salvador, Republic of

SY, SYR Syrian Arab Republic

SZ, SWZ Swaziland, Kingdom of

TC, TCA Turks and Caicos Islands

TD, TCD Chad, Republic of

Table A–1 (Cont.) Country Abbreviations in Resource Bundle File Names

Country Abbreviation Country Name

Language Abbreviations A-7

TF, ATF French Southern Territories

TG, TGO Togo, Togolese Republic

TH, THA Thailand, Kingdom of

TJ, TJK Tajikistan

TK, TKL Tokelau (Tokelau Islands)

TL, TLS Timor-Leste, Democratic Republic of

TM, TKM Turkmenistan

TN, TUN Tunisia, Republic of

TO, TON Tonga, Kingdom of

TR, TUR Turkey, Republic of

TT, TTO Trinidad and Tobago, Republic of

TV, TUV Tuvalu

TW, TWN Taiwan, Province of China

TZ, TZA Tanzania, United Republic of

UA, UKR Ukraine

UG, UGA Uganda, Republic of

UM, UMI United States Minor Outlying Islands

US, USA United States of America

UY, URY Uruguay, Eastern Republic of

UZ, UZB Uzbekistan

VA, VAT Holy See (Vatican City State)

VC, VCT St. Vincent and the Grenadines

VE, VEN Venezuela, Bolivarian Republic of

VG, VGB British Virgin Islands

VI, VIR U.S . Virgin Islands

VN, VNM Viet Nam, Socialist Republic of

VU, VUT Vanuatu

WF, WLF Wallis and Futuna Islands

WS, WSM Samoa, Independent State of

YE, YEM Yemen

YT, MYT Mayotte

ZA, ZAF South Africa, Republic of

ZM, ZMB Zambia, Republic of

ZW, ZWE Zimbabwe

Table A–1 (Cont.) Country Abbreviations in Resource Bundle File Names

Country Abbreviation Country Name

A-8 Mobile Client Developer's Guide for Oracle Application Development Framework

Table A–2 Languages and Abrreviations Used in Resource Bundle File Names

Language Abbreviation Language Name

aa, aar Afar

ab, abk Abkhazian

ae, ave Avestan

af, afr Afrikaans

ak, aka Akan

am, amh Amharic

an, arg Aragonese

ar, ara Arabic

as, asm Assamese

av, ava Avaric

ay, aym Aymara

az, aze Azerbaijani

ba, bak Bashkir

be, bel Belarusian

bg, bul Bulgarian

bh, bih Bihari

bi, bis Bislama

bm, bam Bambara

bn, ben Bengali

bo, bod Tibetan

br, bre Breton

bs, bos Bosnian

ca, cat Catalan

ce, che Chechen

ch, cha Chamorro

co, cos Corsican

cr, cre Cree

cs, ces Czech

cu, chu Church Slavic

cv, chv Chuvash

cy, cym Welsh

da, dan Danish

de, deu German

dv, div Divehi

dz, dzo Dzongkha

ee, ewe Ewe

el, ell Greek

Language Abbreviations A-9

en, eng English

eo, epo Esperanto

es, spa Spanish

et, est Estonian

eu, eus Basque

fa, fas Persian

ff, ful Fulah

fi, fin Finnish

fj, fij Fijian

fo, fao Faroese

fr, fra French

fy, fry Frisian

ga, gle Irish

gd, gla Scottish Gaelic

gl, glg Gallegan

gn, grn Guarani

gu, guj Gujarati

gv, glv Manx

ha, hau Hausa

he, heb Hebrew

hi, hin Hindi

ho, hmo Hiri Motu

hr, hrv Croatian

ht, hat Haitian

hu, hun Hungarian

hy, hye Armenian

hz, her Herero

ia, ina Interlingua

id, ind Indonesian

ie, ile Interlingue

ig, ibo Igbo

ii, iii Sichuan Yi

ik, ipk Inupiaq

in, ind Indonesian (old)

io, ido Ido

is, isl Icelandic

it, ita Italian

Table A–2 (Cont.) Languages and Abrreviations Used in Resource Bundle File Names

Language Abbreviation Language Name

A-10 Mobile Client Developer's Guide for Oracle Application Development Framework

iu, iku Inuktitut

iw, heb Hebrew (old)

ja, jpn Japanese

ji, yid Yiddish (old)

jv, jav Javanese

ka, kat Georgian

kg, kon Kongo

ki, kik Kikuyu

kj, kua Kwanyama

kk, kaz Kazakh

kl, kal Greenlandic

km, khm Khmer

kn, kan Kannada

ko, kor Korean

kr, kau Kanuri

ks, kas Kashmiri

ku, kur Kurdish

kv, kom Komi

kw, cor Cornish

ky, kir Kirghiz

la, lat Latin

lb, ltz Luxembourgish

lg, lug Ganda

li, lim Limburgish

ln, lin Lingala

lo, lao Lao

lt, lit Lithuanian

lu, lub Luba-Katanga

lv, lav Latvian

mg, mlg Malagasy

mh, mah Marshallese

mi, mri Maori

mk, mkd Macedonian

ml, mal Malayalam

mn, mon Mongolian

mo, mol Moldavian

mr, mar Marathi

Table A–2 (Cont.) Languages and Abrreviations Used in Resource Bundle File Names

Language Abbreviation Language Name

Language Abbreviations A-11

ms, msa Malay

mt, mlt Maltese

my, mya Burmese

na, nau Nauru

nb, nob Norwegian Bokm?l

nd, nde North Ndebele

ne, nep Nepali

ng, ndo Ndonga

nl, nld Dutch

nn, nno Norwegian Nynorsk

no, nor Norwegian

nr, nbl South Ndebele

nv, nav Navajo

ny, nya Nyanja

oc, oci Occitan

oj, oji Ojibwa

om, orm Oromo

or, ori Oriya

os, oss Ossetian

pa, pan Panjabi

pi, pli Pali

pl, pol Polish

ps, pus Pushto

pt, por Portuguese

qu, que Quechua

rm, roh Raeto-Romance

rn, run Rundi

ro, ron Romanian

ru, rus Russian

rw, kin Kinyarwanda

sa, san Sanskrit

sc, srd Sardinian

sd, snd Sindhi

se, sme Northern Sami

sg, sag Sango

si, sin Sinhalese

sk, slk Slovak

Table A–2 (Cont.) Languages and Abrreviations Used in Resource Bundle File Names

Language Abbreviation Language Name

A-12 Mobile Client Developer's Guide for Oracle Application Development Framework

sl, slv Slovenian

sm, smo Samoan

sn, sna Shona

so, som Somali

sq, sqi Albanian

sr, srp Serbian

ss, ssw Swati

st, sot Southern Sotho

su, sun Sundanese

sv, swe Swedish

sw, swa Swahili

ta, tam Tamil

te, tel Telugu

tg, tgk Tajik

th, tha Thai

ti, tir Tigrinya

tk, tuk Turkmen

tl, tgl Tagalog

tn, tsn Tswana

to, ton Tonga

tr, tur Turkish

ts, tso Tsonga

tt, tat Tatar

tw, twi Twi

ty, tah Tahitian

ug, uig Uighur

uk, ukr Ukrainian

ur, urd Urdu

uz, uzb Uzbek

ve, ven Venda

vi, vie Vietnamese

vo, vol Volapuk

wa, wln Walloon

wo, wol Wolof

xh, xho Xhosa

yi, yid Yiddish

yo, yor Yoruba

Table A–2 (Cont.) Languages and Abrreviations Used in Resource Bundle File Names

Language Abbreviation Language Name

Language Abbreviations A-13

za, zha Zhuang

zh, zho Chinese

zu, zul Zulu

Table A–2 (Cont.) Languages and Abrreviations Used in Resource Bundle File Names

Language Abbreviation Language Name

A-14 Mobile Client Developer's Guide for Oracle Application Development Framework

B

Advanced Topics B-1

BAdvanced Topics

This document includes the following sections:

■ Section B.1, "Adding Devices in the Page Designer"

B.1 Adding Devices in the Page Designer
The adfnmc-config.xml file (Example B–1) contains information about all of the
supported platforms and form factors within its platforms and form-factors
elements.

Using this XML file, you can create new platforms and form factors and map the
rendering kits (using in the rendering-kit-factory-mappings element). Only
update this file with devices supported by the ADF Mobile client runtime. This file
enables you to change the list of platforms and form factors without any changes to
the JDeveloper mobile client extension.

Example B–1 The adfnmc-config.xml File

<?xml version="1.0"?>
<adfnmc-config>
 <platforms>
 <platform id="WM" display-value="Windows Mobile" default="true"/>
 <platform id="RIM" display-value="RIM BlackBerry"/>
 </platforms>
 <form-factors>
 <form-factor width="240" height="320" default="true"/>
 <form-factor width="240" height="260"/>
 <form-factor width="240" height="240"/>
 <form-factor width="320" height="240"/>
 </form-factors>
 <rendering-kit-factory-mappings>
 <rendering-kit-factory-mapping idref="WM">
 <rendering-kit-factory-class>

Tip: This file is usually located at C:\Documents and
Settings\<USERNAME>\Application
Data\JDeveloper\<Build
Number>\o.adfnmc.dt\adfnmc-config.xml.

Note: JDeveloper does not automatically generate
adfmnc-config.xml when you create an ADF Mobile client project.
Instead, you must create this file within the META-INF folder of the
MobileClient project.

Adding Devices in the Page Designer

B-2 Mobile Client Developer's Guide for Oracle Application Development Framework

oracle.adfnmc.imagerenderer.WMRenderingKitF
actory

</rendering-kit-factory-class>
 </rendering-kit-factory-mapping>
 <rendering-kit-factory-mapping idref="RIM">
 <rendering-kit-factory-class>

oracle.adfnmc.imagerenderer.RIMRenderingKit
Factory

</rendering-kit-factory-class>
 </rendering-kit-factory-mapping>
 </rendering-kit-factory-mappings>
 <image-repository-mappings>
 <image-repository-mapping idref="WM">
 <image-repository>c:\adf-nmc\controls\images\wm</image-repository>
 </image-repository-mapping >
 <image-repository-mapping idref="RIM">
 <image-repository>c:\adf-nmc\controls\images\rim</image-repository>
 </image-repository-mapping >
 </image-repository-mappings>
</adfnmc-config>

C

Troubleshooting C-1

CTroubleshooting

This document includes the following sections:

■ Section C.1, "Recovering from an mSync Failure"

■ Section C.2, "Errors When Testing Value Binding Queries"

■ Section C.3, "Receiving ActiveSync Connection Error Message on Deployment
Log"

■ Section C.4, "Windows Mobile 6.0 Limitations"

■ Section C.5, "Sync Agent Issues"

■ Section C.6, "Windows 7 Workarounds"

■ Section C.7, "SQLite Limitations"

■ Section C.8, "Font Usage Limitations"

C.1 Recovering from an mSync Failure
To recover from an mSync failure:

1. Delete the Oracle folder within the Device Memory folder and from the media
card.

2. Restart Mobile Server

3. Re-assign, or re-simulate a new SD card.

4. Restart the device and then re-start Mobile Server.

For issues at runtime, such as unable to login or invalid login credentials, perform the
following:

1. Verify that the IDE connection with the mobileadmin user exists in JDeveloper and
is a valid connection.

2. Verify that the database exists on the device’s SD card.

3. Verify that the SD card is connected and mounted on the device or simulator.

Note: The Mobile Server user name and credentials are specified in
the Application Data Publication page of the deployment profile.

Errors When Testing Value Binding Queries

C-2 Mobile Client Developer's Guide for Oracle Application Development Framework

C.2 Errors When Testing Value Binding Queries

Issue
JDeveloper generates the following error when you test a value binding query:

SQL Query Error Message: Missing IN or OUT parameter at index:: 1

Solution
This error occurred because you used the incorrect binding style. You can only use the
JDBC Positional binding style, which substitutes question mark symbols (?) for the
bind parameters names. See also Section 5.3.11, "Adding Bind Variables to View
Objects."

C.3 Receiving ActiveSync Connection Error Message on Deployment Log

Issue
The following message is written to the JDeveloper deployment log when:

■ The ActiveSync process was killed manually through the Windows Task Manager
and then restarted and reconnected.

■ ActiveSync crashes, hangs, or encounters other problems.

Connection with ActiveSync could not be established. Ensure that PC-to-device/
emulator connectivity is working correctly. Restarting JDeveloper may restore
communications. See the ADF Mobile client documentation on Troubleshooting if
problem persists.

Solution
Try the following to address this issue:

1. Restart the Windows Mobile emulator, Device Emulator Manager, and ActiveSync.

2. If you are deploying to a Windows Mobile device, disconnect the device and then
reconnect it.

3. If the problem persists, restart JDeveloper.

4. Stop and restart ActiveSync using the asreboot.exe utility.

5. If the problem continues after you restart JDeveloper, then restart the system.

C.4 Windows Mobile 6.0 Limitations
Because of a limit on the amount of memory available to all dynamic link libraries
(DLLs) on Windows Mobile 6.0, some components of ADF Mobile client or Oracle
Database Lite may fail to load when other DLLs have consumed that memory. If an
application fails to start, or a sync action fails with an error message pertaining to a
plugin library, it could indicate that this situation has occurred. You can determine
whether this has occurred by looking for the following messages in the application
logfile:

■ oseException(-12044): Could not find plugin library
"ospsqlite".

■ oracle.adfnmc.java.sql.SQLException: java.sql.SQLException:no
SQLite library found

Windows 7 Workarounds

Troubleshooting C-3

■ java.lang.UnsatisfiedLinkError: no eswt-converged.dll in
java.library.path

If one of these errors has occurred, first verify that the ADF Mobile client runtime is
installed and that Oracle Lite is installed (if you are using it). This situation is
indistinguishable from a missing DLL, and these error messages reflect that.

Once the installation is verified, try to free up the memory available to DLLs by
stopping other running applications. Use the Running Programs List to stop them
(accessed through Settings > System tab > Memory > Running Programs tab) then
try the application again.

If the application continues to fail with one of these errors, restart the device and try
the application again. If it continues to fail, check the Running Programs list to stop
any applications that may have been launched at start-up, and try again.

If it continues to fail, it is possible that applications or utilities are being launched at
start-up that do not show themselves in the Running Programs list, and these
programs are consuming the memory available to DLLs.

Check the contents of the \Windows\StartUp directory. Nearly all Windows Mobile
devices will have a shortcut named poutlook which is used by the built-in Inbox
application. Others may be applications installed by cell phone carriers, or utilities that
make use of the features of industrial devices. Do not move or delete any of the files
here, but if you recognize the application that any of them belong to, and the
application is not necessary, you can try uninstalling the application using Settings >
System tab > Remove Programs. The device will restart (or you may restart it
manually). Then try running the ADF Mobile client application.

If the failure continues to occur, the remaining work-around requires careful attention.
You can move items in the StartUp folder to other directories to prevent their
execution at start-up, which could adversely affect applications or device functionality
that depends on those programs running, but it may free enough memory for the ADF
Mobile client application to run.

You can also upgrade the operating system of the device if an upgrade has been made
available by the device manufacturer. Windows Mobile 6.1 and later releases do not
have this problem, thanks to a large increase in the amount of memory made available
to DLLs.

For more information, see the Microsoft Knowledge Base article at:
http://support.microsoft.com/kb/326163

C.5 Sync Agent Issues
If you face issues with the sync agent, a hard reset of the device may be required.

C.6 Windows 7 Workarounds
Some workarounds may be required when Developing ADF Mobile client applications
in a Windows 7 development environment may require some workarounds:

■ '\Program Files (x86)'—On 64-bit editions of Windows 7, 32-bit programs are
installed to \Program Files (x86) by default rather than the \Program
Files directory. Most components required for ADF Mobile client application
development are 32-bit applications, so ensure you use the correct folder when
specifying settings and searching for programs to run.

Windows 7 Workarounds

C-4 Mobile Client Developer's Guide for Oracle Application Development Framework

■ Run as Administrator— Most common problems can be solved by right-clicking
the executable, selecting the Compatibility tab (shown in Figure C–1), and
checking Run this program as an administrator.

Figure C–1 Compatibility Tab

This may be necessary for many development components, including JDeveloper.
If the executable is a batch file, it may be necessary to open a command prompt as
an administrator and run the batch file directly from the command line.

■ BlackBerry Remote Debug Server—On 64-bit editions of Windows 7, this
application may display an error dialog as shown in Figure C–2 about missing
components.

Figure C–2 Missing Components Error

This error occurs when the wrong javaw executable appears earlier in your PATH
than the javaw executable from your installed JDK. You can fix this by adjusting
your PATH so that the bin subdirectory of your JDK installation appears first in
your PATH. Another solution is to install BlackBerry JDE 6 to a non-standard
location, outside of Program Files (x86).

■ BlackBerry Simulator Not Rendering Correctly—On some configurations, the
BlackBerry simulator may not display correctly. Ensure the you are using the latest
drivers for your video card. If this does not address the problem, disable or reduce
the level of graphics acceleration in the simulator. To do this, from the BlackBerry

Font Usage Limitations

Troubleshooting C-5

simulator menu, select View then Graphics Acceleration, and choose a different
level than the default as shown in Figure C–3.

Figure C–3 Adjusting the Graphics Acceleration Level

■ Installing Oracle Lite Mobile Development Kit—It may be necessary to set the
environment variable OPATCH_PLATFORM_ID=912 before running the installer.

C.7 SQLite Limitations
SQLite does not allow you to publish an application’s data if the application’s entity
objects have different primary keys but belong to the same table. All entity objects
belonging to the same table must have the same primary key (or virtual primary key)
structure.

To enable the publication with SQLite:

1. In the Mobile Workbench, remove the existing publication items based on the table
in question.

2. In JDeveloper, republish the data.

3. On the device, navigate to the location of the client database (such as
\OraCE\sqlite_db\<name>\<name>.db) and then delete this client database
file.

4. Re-synchronize.

C.8 Font Usage Limitations
When defining properties for ADF Mobile client UI components, consider the
following limitations of font usage:

Font Usage Limitations

C-6 Mobile Client Developer's Guide for Oracle Application Development Framework

■ If the fontStyle attribute of a component is set to italic, the last character in a
text will not be visible. This limitation is present in both Windows Mobile and
BlackBerry platforms, and affects all components that display text (for example,
Command Button and Output Text).

Setting the fontFamily attribute to one of the following fonts enhances
readability of the italicized text:

– Verdana

– Century

– Times New Roman

D

Sample Code D-1

DSample Code

This document shows examples of the OperationProvider and
OperationDelegate which provide an older means of simulating dynamic method
bindings. These interfaces have been superseded and are included in this document
for backward compatibility. Currently, the ADF Mobile runtime uses
MethodDispatch, as described Chapter 7, "Extending ADF Mobile Client
Applications with Java" instead.

This document includes the following sections:

■ Section D.1, "Using the OperationProvider and OperationDelegate Interfaces"

D.1 Using the OperationProvider and OperationDelegate Interfaces
Example D–2 illustrates a sample implementation of an OperationProvider and
OperationDelegater to call custom methods. Example D–1 illustrates the
corresponding metadata in the page definition file.

Example D–1 The bindings Metadata

</bindings>
...
<methodAction id="Foo" InstanceName="AppModuleDataControl.dataProvider"

DataControl="AppModuleDataControl" RequiresUpdateModel="true"
Action="invokeMethod" MethodName="Foo"
IsViewObjectMethod="false">

<NamedData NDName="text" NDValue="testString" NDType="java.lang.String"/>
</methodAction>

</bindings>

Example D–2 Using OperationProvider and OperationDelegate

package oracle.apps.sales.mobile.view;

import oracle.adfnmc.bindings.DataControl;
import oracle.adfnmc.bindings.OperationDelegate;
import oracle.adfnmc.bindings.dbf.OperationProvider;
import oracle.adfnmc.java.util.List;

import oracle.apps.sales.mobile.model.entities.LeadEOImpl;
import oracle.apps.sales.mobile.uiModel.views.LeadVOImpl;

import oracle.jbo.server.ApplicationModuleImpl;

public class CustomOperationProvider implements OperationProvider

Using the OperationProvider and OperationDelegate Interfaces

D-2 Mobile Client Developer's Guide for Oracle Application Development Framework

{
 public CustomOperationProvider()
 {
 }

 public OperationDelegate getCustomOperation(Object module, String instanceName, String
methodName)
 {
 if (instanceName.equals("AppModuleDataControl.dataProvider"))
 {
 if (methodName.equals("testMethod"))
 {
 return new testMethodDelegate();
 }
 else
 {
 // etc...
 }
 }
 else if (instanceName.equals("AppModuleDataControl.LeadVO1"))
 {
 if (methodName.equals("convertLeadToOpty"))
 {
 return new convertLeadToOptyDelegate();
 }
 else
 {
 // etc...
 }
 }
 else if (instanceName.equals("AppModuleDataControl.OptyVO1"))
 {
 // etc...
 }

 return null;
 }

 private static final class convertLeadToOptyDelegate implements OperationDelegate
 {
 public Object execute(Object instance, List params)
 {
 ((LeadVOImpl)instance).convertLeadToOpty();
 return null;
 }
 }

 private static final class testMethodDelegate implements OperationDelegate
 {
 public Object execute(Object instance, List params)
 {
 String arg0 = (String)params.get(0);
 return ((ApplicationModuleImpl)instance).testMethod(arg0);
 }
 }
}

Index-1

Index

A
ADF Business Components

usage by ADF Mobile client, 5-1
ADF Mobile client

infrastructure requirements, 1-3
overview, 1-1
run-time architecture, 1-4

ADF Mobile client applications
as extensions of ADF server-side applications, 4-7

ADF Mobile client environment
overview, 2-1

ADF Mobile client sample application
browsing page components, 3-10
described, 3-1
edit function, 3-15
installing sample client database for, 3-3
MCX pages used in, 3-10
MobileClient and model projects of, 3-8
order details page components, 3-14
running on BlackBerry smartphone

simulator, 3-7
running on Windows Mobile device

emulator, 3-5
schema tables, 3-4
search functions, 3-17
starting from home.mcx page, 3-10

ADF Mobile client task flows
adding, 6-4
supported activities, 6-2

ADF Mobile transaction replay service
authentication and, 5-44
data control, 5-43
enabling an ADF application for, 5-35
enabling and disabling for an entity object, 5-24

ADF Read-Only Table. See tables
ADF Table. See table components
adfnmc-config.xml file

usage for adding devices, B-1
ALX files

creating, 8-11
deploying, 8-11

application developement
typical stages, 1-8

application development
architecture, 1-7

overview, 1-7
application modules

definition, 5-3
application workspaces

auto-generated artifacts, 4-6
creating, 4-3

attributes
setting using Property Inspector, 6-20

authentication
using the AuthenticationManager

class, 5-44
AuthenticationManager class

authenticating with transaction replay
service, 5-44

B
binding containers

referencing, 6-70
BlackBerry Signature Tool

setting launching options for, 8-9
BlackBerry simulator

enabling error logging, 10-15
bounded task flows

creating, 6-2
Business Component Browser

testing application modules with, 5-31

C
CAB files

creating, 8-18
deploying, 8-18

COD files
creating, 8-11
deploying, 8-11

commandButton component
procedures for using, 6-45

commandLink component
procedures for using, 6-47
used in ADF Mobile client sample

application, 3-13
Component Palette

ADF Mobile client components and, 6-13
control hints

ADF Mobile client support of, 5-25

Index-2

convertDateTime component
attributes, 6-38
described, 6-38
procedures for using, 6-38

convertNumber component
attributes, 6-38
described, 6-37
procedures for using, 6-38

creating application
prerequisites, 2-2

D
data and transaction sync

overview, 1-5
data controls

adding to MCX pages, 6-16
used in ADF Mobile client sample

application, 3-17
data sync publications

creating, 8-3
data synchronization

overview, 1-6
database locations

non synchronizing applications and, 8-19
setting fully qualified path to a device’s

database, 8-22
specifying local database, 8-19, 11-1

databases
supported, 1-10

debugging
BlackBerry platform on, 10-9, 10-11
configuring BlackBerry smartphone for, 10-9
configuring Window Mobile device for, 10-2
configuring Window Mobile emulator, 10-2
deploying to BlackBerry smartphone for, 10-10
deploying to Window Mobile device or emulator

for, 10-3
described, 10-1
described for Windows Mobile, 10-2
run configurations for BlackBerry, 10-14
Window Mobile platform, 10-5

declarative validation rules
adding, 5-19

demo application
setup, 2-17

deploying ADF Mobile client applications
deployment profiles for, 8-6

deployment
creating CAB files, 8-18
creating COD and ALX files, 8-11
creating data sync publications, 8-3
creating deployment profiles for BlackBerry

applications, 8-7
creating deployment profiles for Windows Mobile

applications, 8-13
deploying runtime components, 8-2
icons for BlackBerry applications and, 8-10
icons for Windows Mobile applications and, 8-16
prerequisites, 2-3

deployment profiles
BlackBerry applications and, 8-7
BlackBerry Signature Tool and, 8-9
creating, 8-6
custom icons for BlackBerry icons and, 8-10
custom icons for Windows Mobile applications

and, 8-16
localization and, 8-25
setting database locations, 8-19
Windows Mobile applications and, 8-13

Desktop Software for BlackBerry
setup, 2-14

development tools for BlackBerry
setup, 2-13

development tools for Windows Mobile
setup, 2-7

devices
supported, 1-10

dynamic tables, 6-41

E
EL Events

described, 6-73
EL expressions

used for authentication, 5-44
EL nodes

described, 6-70
supported nodes, 7-15

emulator
connecting, 2-9
setup, 2-8

entity objects
adding transient attributes to, 5-13
creating subsets of server-side entity objects, 5-4
definition, 5-2
display hints, 5-26
editing transient attributes of, 5-8
enabling and disabling transaction replay

service, 5-24
error logging

in code, 10-23
event listeners

using, 6-66
Expression Language

support for, 1-11

F
form component

creating declaratively, 6-21
defined, 6-21
procedures for using, 6-21

forms
creating, 6-21

Fusion Order Demo application
installing, 3-1

G
geometry management

Index-3

commandButton component, 6-46
commandLink component, 6-47
image component, 6-39
inputDate component, 6-31
inputNumberSpinbox component, 6-32
inputText component, 6-30
outputText component, 6-37
selectBooleanCheckbox component, 6-34
selectOneChoice component, 6-35

I
icons

adding to BlackBerry applications, 8-10
adding to Windows Mobile applications, 8-16

image component
procedures for using, 6-38
supported file formats, 6-39

input components
form, 6-21
inputDate component, 6-30

inputDate component
described, 6-30
locale, 6-30

inputNumberSpinbox component
procedures for using, 6-32

inputText component
procedures for using, 6-29

J
Java classes

generated by JDeveloper, 5-30
methods not supported by ADF Mobile

client, 5-30
Java reflection classes

using MethodDispatch as an alternative to, 7-2
JDE BlackBerry

setup, 2-13
JDeveloper

Component Palette, 6-13
creating

MCX pages, 6-11
task flows, 6-3

Property Inspector, 6-20
setup, 2-5

JDeveloper for BlackBerry
setup, 2-15

JVM
setup, 2-12

L
layout components

listed, 6-21
locale

inputDate component and, 6-30
localization

languages and countries in resource bundles, A-1
resource bundles and, 5-28, 8-25

logging

Window Mobile platform on, 10-8
logging facility

usage, 10-19

M
managed beans

adding to ADF Mobile client applications, 7-4
MethodDispatch and, 7-4

MCX pages
basic structure, 6-10
creating

in JDeveloper, 6-11
creating a synchronization page, 9-8
generated code for, 6-12
procedures for creating, 6-11

menu
adding event listeners, 6-66
Alt, 6-56, 6-57
commandMenuItem component, 6-58
creating for BlackBerry devices, 6-61
creating for Windows Mobile devices, 6-64
described, 6-55
design-time usage, 6-65
Main, 6-56
menu component, 6-58
menuControl component, 6-58
menuGroup component, 6-58
subMenu component, 6-59
types, 6-55
used in ADF Mobile client sample

application, 3-17
method binding

using MethodDispatch for, 7-2
using superseded methods OperationProvider

and OperationDelegate methods
for, D-1

MethodDispatch
dynamic method binding and, 7-2
implementing in managed beans, 7-4

mobile device
connecting, 2-9
setup, 2-8

Mobile Server
login credentials for, 9-2
requirements for synchronization, 9-4
synchronizing with, 8-3

MobileClient-task-flow.xml file
creating task flows, 6-3
diagrammer, using for, 6-2

mSync
deploying as runtime component, 8-2
failure recovery for, C-1
testing against SQL databases created by, 5-33

multi-language support, 8-25

O
Oracle Database

setup, 2-6

Index-4

Oracle Database Lite
setup, 2-6

Oracle Database Lite client
setup, 2-11

outputText component
procedures for using, 6-36

P
panelFormLayout component

attributes, 6-27
procedures for using, 6-27

panelGroupLayout component
attributes, 6-22
procedures for using, 6-21
used in ADF Mobile client sample

application, 3-13
panelLabelAndMessage component

attributes, 6-28
procedures for using, 6-28
used in ADF Mobile client sample

application, 3-16
positional binding variables

view objects and, 5-27
preinstalled components

described, 2-4
Property Inspector

described, 6-20
procedures for using, 6-20

proxy settings on BlackBerry
setup, 2-16

R
read-only tables, 6-42
resource bundles

adding to ADF Mobile client applications, 8-25
enabling localization, 5-28
languages and countries, A-1
.properties format, 5-28
supported classes, 7-11
XLFF format, 5-28

runtime
on-device SQLite database created by, 9-4

runtime components
deploying, 8-2

S
sample application

prerequisites, 2-2
scanner component

described, 6-49
procedures for using, 6-49

selectBooleanCheckbox component
procedures for using, 6-33

selectItem component
described, 6-36

selectItems component
described, 6-35

selectOneChoice component

procedures for using, 6-34
used in ADF Mobile client sample

application, 3-13, 3-17
sequencing

described, 6-75
server-side ADF applications

basing ADF Mobile client applications on, 4-2
data subsetting of, 4-7
deployment as model project, 4-2

settings facility
configuring logging using, 10-23
usage, 10-17

simulator
setup, 2-14

smartphone
setup, 2-14

SQLite
overview, 1-10

SQLite databases
created on device by runtime, 9-4
enabling data publication on, C-5
initiating with a script, 11-2
synchronization with, 11-1

SQLite Mobile Sync client on BlackBerry
setup, 2-17

sync user
creation of, 9-3

synchronization
enabled after startup, 9-5
enabled at startup, 9-5
entity objects and, 5-24
Mobile Server-related requirements for, 9-4
populating local databases through, 9-5
testing, 10-16
with SQLite databases, 11-1

T
table

read-only, 6-41
table component

creating, 6-41
described, 6-39
user interaction model, 6-44

tables
dynamic, 6-41
widgets for, 6-41

task flows
creating, using diagrammer, 6-3

testing
described, 10-2
overview, 10-1
synchronization, 10-16

transaction replay service data control
use for diagnosing synchronization conflicts, 5-43

Transaction synchronization
overview, 1-6

Index-5

V
validation rules

declarative
adding, 5-19

validators
ADF Mobile client support of, 5-15

view
life cycle, 1-9

view accessors
ADF Mobile client support of, 5-25
hints, 5-25

view objects
adding positional binding variables, 5-27
creating subsets of server-side view objects, 5-4
definition, 5-2
supported, 1-11

W
web services

creating connection, 12-3
creating data control, 12-2
modifying endpoint, 12-3
overview, 12-1
security, 12-3
usage, 12-1

WYSIWYG support, 6-15

Z
Zentus SQLite driver

use in testing against mSync-generated
database, 5-33

Index-6

	Contents
	Preface
	Documentation Accessibility
	Audience
	Related Documents
	Conventions

	1 Introduction to ADF Mobile Client
	1.1 Introduction to ADF Mobile Client
	1.1.1 Understanding Differences Between ADF Mobile Client Applications and ADF Faces Web Applications

	1.2 Infrastructure Requirements for Developing ADF Mobile Client Applications
	1.3 Run-Time Architecture of ADF Mobile Client
	1.4 Data and Transaction Synchronization
	1.4.1 Data Synchronization
	1.4.2 Transaction Synchronization

	1.5 Introduction to ADF Mobile Client Application Development
	1.5.1 Application Architecture
	1.5.2 Typical Development Stages
	1.5.3 The Lifecycle of a View
	1.5.4 Supported Devices and the Supported Database
	1.5.4.1 What You May Need to Know About SQLite

	1.5.5 Supported ADF Components and Attributes
	1.5.6 Support for ADF View Objects
	1.5.7 Support for Expression Language

	2 Setting Up the ADF Mobile Client Environment
	2.1 Introduction to the ADF Mobile Client Environment
	2.2 Prerequisites for Developing ADF Mobile Client Applications
	2.2.1 What You Need to Get Started With the ADF Mobile Client Sample Application
	2.2.2 What You Need to Create an ADF Mobile Client Application
	2.2.3 What You Need to Deploy an ADF Mobile Client Application to a Development Environment
	2.2.4 What You May Need to Know About Pre-Installed Components

	2.3 Setting Up JDeveloper
	2.4 Setting Up Oracle Database
	2.5 Setting Up Oracle Database Lite
	2.6 Setting Up Development Tools for Windows Mobile Platform
	2.6.1 How to Set Up the Windows Mobile Device
	2.6.2 How to Install and Set Up the Windows Mobile Emulator
	2.6.3 How to Connect the Mobile Device or Emulator
	2.6.4 How to Install the Oracle Database Lite Client on the Mobile Device or Emulator
	2.6.5 How to Install Java Runtime Environment on the Mobile Device or Emulator
	2.6.6 What You May Need to Know About Limitations of Windows Mobile Platform Usage

	2.7 Setting Up Development Tools for BlackBerry Platform
	2.7.1 How to Install BlackBerry JDE
	2.7.1.1 What You May Need to Know About BlackBerry Mobile Data Service Simulator

	2.7.2 How to Install BlackBerry Desktop Software
	2.7.3 How to Set Up a BlackBerry Smartphone
	2.7.4 How to Set Up a BlackBerry Smartphone Simulator
	2.7.5 How to Configure JDeveloper for BlackBerry Development
	2.7.6 How to Configure Proxy Settings
	2.7.7 What You May Need to Know About BlackBerry File Browser System
	2.7.8 What You May Need to Know About Limitations of BlackBerry Platform Usage

	2.8 Installing SQLite Mobile Sync Client on BlackBerry Smartphone or Simulator
	2.9 Setting Up the Fusion Order Demo Mobile Client Application

	3 Introduction to the ADF Mobile Client Sample Application
	3.1 About the Fusion Order Demo Mobile Client Application
	3.2 Installing the Fusion Order Demo Schema
	3.2.1 Mounting the Sample Client Database
	3.2.1.1 How to Mount the Sample Client Database on Windows Mobile Devices
	3.2.1.2 How to Mount the Sample Client Database on a BlackBerry Smartphone Simulator

	3.3 Overview of the Fusion Order Demo Mobile Client Application Schema
	3.4 Running the Fusion Order Demo Mobile Client Application
	3.4.1 How to Run the Demo Application on a Windows Mobile Device Emulator
	3.4.2 Running the Sample Application on a BlackBerry Smartphone Simulator
	3.4.2.1 How to Start the Demo Application on a BlackBerry Smartphone Simulator

	3.5 Taking a Look at the Fusion Order Demo Mobile Client Application
	3.5.1 Design Time Components
	3.5.1.1 MobileClient Project
	3.5.1.2 Model Project

	3.5.2 Runtime Components
	3.5.3 Browsing Orders
	3.5.4 Viewing Order Details
	3.5.5 Editing or Adding an Order
	3.5.6 Viewing Ordered Items

	4 Getting Started with ADF Mobile Client
	4.1 About Declarative Development with JDeveloper
	4.2 About Developing an ADF Mobile Client Application
	4.3 Deploying the Model Project of the Base Application as an ADF Library
	4.3.1 How to Deploy the Model Project

	4.4 Creating an Application Workspace
	4.4.1 How to Create an Application Workspace
	4.4.2 What Happens When You Create a Mobile Client Application Workspace

	4.5 Extending the Base Application for the Mobile Client Application

	5 Developing the ADF Mobile Client Data Model
	5.1 Building Business Services for ADF Mobile Client Applications
	5.1.1 Support for the Core ADF Business Components
	5.1.2 Support for Mobile Database Transactions

	5.2 Extending an ADF Application to Mobile Client
	5.2.1 How to Create Subsets of Entity Objects and View Objects
	5.2.2 What Happens When You Create a Subset of Entity Objects and View Objects

	5.3 Editing Mobile Entity Objects
	5.3.1 About Using the Overview Editors for Mobile Objects
	5.3.2 About Editing Entity Objects
	5.3.3 How to Add Attributes to an Entity Object
	5.3.4 How to Add Transient Attributes
	5.3.5 Adding Validation Rules
	5.3.5.1 How to Add a Validation Rule to an Entity or Attribute

	5.3.6 Overriding Default Validation Error Handling
	5.3.6.1 How to Show the Error Message as a Message Box
	5.3.6.2 How to Show the Error Message as Output Text

	5.3.7 About Synchronization for Entity Objects
	5.3.7.1 How to Enable or Disable Synchronization for Entity Objects

	5.3.8 View Accessor Support for Entity Objects and View Objects
	5.3.9 Using List UI Hints for View Objects
	5.3.10 Using Display Hints for Entity Objects
	5.3.11 Adding Bind Variables to View Objects
	5.3.12 Working with Resource Bundles

	5.4 The Entity Object and View Object Extension
	5.4.1 Supported Constructs
	5.4.2 Unsupported Methods

	5.5 Testing Application Modules
	5.6 Interacting Directly with SQLite
	5.6.1 Differences Between SQLite and Other Relational Databases
	5.6.1.1 Concurrency
	5.6.1.2 SQL Support
	5.6.1.3 Data Types
	5.6.1.4 Foreign Keys
	5.6.1.5 Database Transactions

	5.7 Configuring JDeveloper to Connect to and Test Against a SQLite Database
	5.7.1 How to Test Against a SQLite Database

	5.8 Enabling ADF Mobile Transaction Replay Service for an ADF Application
	5.8.1 How to Add the ADF Mobile Transaction Replay Service Technology to an ADF Application
	5.8.2 What Happens When You Add the ADF Mobile Transaction Replay Service Technology to an Application
	5.8.3 What Happens When JDeveloper Creates an ADF Mobile Transaction Replay Service-Enabled Application
	5.8.4 How to Create a Transaction Replay Type
	5.8.5 What Happens When JDeveloper Creates a Transaction Replay Type

	5.9 Authentication
	5.9.1 What You May Need to Know About the AuthenticationManager Class
	5.9.1.1 Public Accessors
	5.9.1.2 Public Methods
	5.9.1.3 The AuthenticationCallback Class

	5.9.2 What You May Need to Know About SecurityContext EL Expressions
	5.9.2.1 Using EL Expressions for Authentication

	6 Creating the ADF Mobile Client User Interface
	6.1 Introduction to Creating the ADF Mobile Client User Interface
	6.2 Creating Task Flows
	6.2.1 How to Create a Task Flow
	6.2.2 How to Create an Additional Task Flow
	6.2.3 How to Use the Mobile Client Task Flow Creation Wizard
	6.2.4 What Happens When You Create a Mobile Client Task Flow
	6.2.5 What You May Need to Know About Supported Activities and Control Flows
	6.2.6 What You May Need to Know About the MobileClient-task-flow.xml File
	6.2.7 What You May Need to Know About the Mobile Client Task Flow Diagrammer
	6.2.8 How to Add Mobile Client Activities
	6.2.9 How to Add View Activities
	6.2.10 How to Add a Wildcard Control Flow Rule
	6.2.11 How to Enable Page Navigation Using Control Flow Case

	6.3 Creating Mobile Views
	6.3.1 How to Work With MCX Pages
	6.3.1.1 Interpreting the MCX Page Structure
	6.3.1.2 Creating MCX Pages
	6.3.1.3 What Happens When You Create an MCX Page

	6.3.2 How to Add Mobile Client Components and Data Controls to an MCX Page
	6.3.2.1 Adding UI Components
	6.3.2.2 Using the Visual Editor
	6.3.2.3 Adding Data Controls to the View
	6.3.2.4 Configuring UI Components

	6.4 Designing the Layout of the Page
	6.4.1 How to Use a Form Component
	6.4.1.1 How to Add a Form to a Page

	6.4.2 How to Use a Panel Group Layout Component
	6.4.2.1 What You May Need to Know About Geometry Management and the Panel Group Layout Component

	6.4.3 How to Use a Panel Form Layout Component
	6.4.3.1 What You May Need to Know About Geometry Management and the Panel Form Layout Component

	6.4.4 How to Use a Panel Label And Message Component
	6.4.4.1 What You May Need to Know About Arranging Labels

	6.5 Creating and Using Input Components
	6.5.1 How to Use the Input Text Component
	6.5.1.1 What You May Need to Know About Geometry Management and the Input Text Component

	6.5.2 How to Use the Input Date Component
	6.5.2.1 What You May Need to Know About Geometry Management and the Input Date Component

	6.5.3 How to Use the Input Number Spinbox Component
	6.5.3.1 What You May Need to Know About Geometry Management and the Input Number Spinbox Component

	6.5.4 How to Use the Select Boolean Checkbox Component
	6.5.4.1 What You May Need to Know About Geometry Management and the Select Boolean Checkbox Component

	6.5.5 How to Use the Select One Choice Component
	6.5.5.1 What You May Need to Know About Geometry Management and the Select One Choice Component
	6.5.5.2 What You May Need to Know About Differences Between Select Items and Select Item Components

	6.5.6 What You May Need to Know About Event Listeners and Input Components

	6.6 Creating and Using Output Components
	6.6.1 How to Use the Output Text Component
	6.6.1.1 What You May Need to Know About Geometry Management and the Output Text Component
	6.6.1.2 Converting Numerical Values
	6.6.1.3 Converting Date and Time Values

	6.7 Displaying Images
	6.7.1 How to Display an Image
	6.7.2 What You May Need to Know About Supported Image File Formats
	6.7.3 What You May Need to Know About Geometry Management and the Image Component

	6.8 Creating and Using Tables
	6.8.1 How to Use the Table Component
	6.8.2 What Happens When You Create a Table
	6.8.3 What You May Need to Know About Event Listeners and Table Components
	6.8.4 What You May Need to Know About the Table User Interaction Model
	6.8.5 What You May Need to Know About Using a Databound Select One Choice Component Within a Table

	6.9 Using Buttons and Links
	6.9.1 How to Use the Button Component
	6.9.1.1 What You May Need to Know About Event Listeners and Button Components
	6.9.1.2 What You May Need to Know About Geometry Management of Button Components

	6.9.2 How to Use the Link Component
	6.9.2.1 What You May Need to Know About Event Listeners and Link Components
	6.9.2.2 What You May Need to Know About Geometry Management of Link Components

	6.9.3 How to Enable the Back Button Navigation

	6.10 Creating and Using Scanners
	6.10.1 How to Use the Scanner Component
	6.10.2 What You May Need to Know About Event Listeners and Scanner Components
	6.10.3 How to Integrate a Barcode Scanner Into a Mobile Client Application
	6.10.3.1 Creating a Barcode Scanner Data Control
	6.10.3.2 What Happens When You Create a Scanner Data Control
	6.10.3.3 Enabling Scanning in Mobile Client Applications

	6.11 Creating and Using Menus
	6.11.1 Menu Types
	6.11.1.1 Main
	6.11.1.2 Alt

	6.11.2 Menu Components
	6.11.2.1 Menu
	6.11.2.2 Menu Item
	6.11.2.3 Menu Group
	6.11.2.4 Menu Control
	6.11.2.5 Sub Menu

	6.11.3 How to Associate Menus with UI Components
	6.11.4 How to Create Menus for BlackBerry Smartphones
	6.11.4.1 Defining a BlackBerry Full Menu

	6.11.5 How to Create Menus for Windows Mobile Devices
	6.11.6 What You May Need to Know About Design-Time Menu Usage
	6.11.7 What You May Need to Know About Event Listeners and Menus

	6.12 Using Event Listeners
	6.13 Localizing UI Components
	6.14 Understanding EL Support
	6.14.1 Supported EL Nodes
	6.14.2 What You May Need to Know About ADF Mobile Client EL Implementation
	6.14.2.1 Immediate and Deferred Evaluation
	6.14.2.2 Enumerated Types

	6.14.3 How to Reference Binding Containers
	6.14.4 EL Events

	6.15 Understanding Binding Layer Components
	6.15.1 What You May Need to Know About Sequencing

	7 Extending ADF Mobile Client Applications with Java
	7.1 About Invoking Custom Methods Through EL Expressions
	7.1.1 Adding Invocation Code for Custom Methods in Application Modules and View Objects

	7.2 Java Support for Business Components
	7.2.1 Support for Reflection
	7.2.2 JDK 1.3 Compliance
	7.2.3 Alternate Package Names
	7.2.4 Supported Java Extension Points for Business Components
	7.2.4.1 Unsupported Methods

	7.3 Using a Managed Bean in an ADF Mobile Client Application
	7.3.1 About MethodDispatch and PropertyDispatch
	7.3.2 About PropertyValueChangeSource and Notifications

	7.4 Resource Bundle Support
	7.4.1 Managing Locales Using the List ResourceBundle and PropertyResourceBundle Classes
	7.4.2 Supporting Localization through XLFF Resource Bundles

	7.5 Supported EL Nodes
	7.5.1 Working with EL in Code

	7.6 Additional JavaSE Classes Provided by the ADF Mobile Client Framework

	8 Deploying ADF Mobile Client Components
	8.1 Introduction to Deployment
	8.1.1 Application Deployment Prerequisites

	8.2 Deploying the ADF Mobile Client Runtime
	8.2.1 How to Deploy the Runtime Components

	8.3 Creating Data Sync Publications on the Server
	8.3.1 How to Create Data Sync Publications
	8.3.2 What Happens When You Create a Database Connection

	8.4 Working with Application Deployment Profiles
	8.4.1 How to Create a Deployment Profile for BlackBerry Applications
	8.4.1.1 Setting and Modifying Application Details
	8.4.1.2 Setting the BlackBerry Digital Signature Tool Options
	8.4.1.3 Adding a Customized Icon to a BlackBerry Application
	8.4.1.4 Deploying BlackBerry Applications

	8.4.2 How to Create a Deployment Profile for Windows Mobile
	8.4.2.1 Setting the JAR File Options
	8.4.2.2 Adding Custom Icons to a Windows Mobile Application
	8.4.2.3 How to Add Custom Icons to a Windows Mobile Application
	8.4.2.4 Deploying a Windows Mobile Application

	8.5 Specifying the Client Database Location for an Application
	8.5.1 How to Specify the Client Database Location
	8.5.2 What Happens When You Specify a Client Database
	8.5.3 What Happens When Oracle Database Lite Mobile Server Manages an Application's Database
	8.5.4 How the ADF Mobile Client Framework Retrieves Mobile Server Credentials at Application Startup

	8.6 Deploying a Multi-Language ADF Mobile Client Application
	8.6.1 How to Select the Language Resource Bundles for an ADF Mobile Client Application
	8.6.2 What Happens When You Add Language Resource Bundles to a Deployment Profile
	8.6.3 Adding Language Resource Bundles for Multiple Base Application JAR Files
	8.6.3.1 How to Add Language Resource Bundles from Another Base Application
	8.6.3.2 Manually Adding Resource Bundles
	8.6.3.3 Adding Local Resource Bundles

	9 Synchronizing ADF Mobile Client Data and Transactions
	9.1 About Synchronizing Data with Oracle Mobile Server
	9.1.1 About ADF Mobile Transaction Replay Service
	9.1.2 About the Connection Between Client and Server
	9.1.3 About Publishing Data
	9.1.4 What Happens When You Make Changes to the Mobile Database
	9.1.5 What Happens When You Import Entity Objects into the Mobile Client Application

	9.2 Configuring Oracle Mobile Server
	9.3 Initiating Data Synchronization
	9.4 Enabling Data Synchronization at Application Startup
	9.4.1 How to Invoke Data Synchronization Programmatically
	9.4.1.1 Providing Parameters for Data Synchronization

	9.4.2 SQLite Database Locking and Mobile Server

	9.5 Customizing the Synchronization Setup
	9.5.1 Creating a Custom Page for Mobile Synchronization
	9.5.1.1 How to Create a Custom Synchronization Page
	9.5.1.2 Updating the Application Task Flow

	9.6 Setting Up ADF Mobile Transaction Replay Service

	10 Testing and Debugging ADF Mobile Client Applications
	10.1 Introduction to Testing and Debugging ADF Mobile Client Applications
	10.2 Testing ADF Mobile Client Applications
	10.3 Debugging ADF Mobile Client Applications for Windows Mobile Platform
	10.3.1 How to Configure a Window Mobile Device or Emulator for Debugging
	10.3.1.1 Increasing the Internal Storage Capacity of the Device or Emulator
	10.3.1.2 Configuring the Device or Emulator for Network Access

	10.3.2 How to Deploy the Application to the Window Mobile Device or Emulator for Debugging
	10.3.3 What Happens When You Choose to Generate the Debug Launcher
	10.3.4 How to Debug the Application on the Windows Mobile Platform
	10.3.5 How to Enable Error Logging on a Window Mobile Device or Emulator

	10.4 Debugging ADF Mobile Client Applications for BlackBerry Platform
	10.4.1 How to Configure a BlackBerry Smartphone Simulator for Debugging
	10.4.2 How to Deploy the Application to the BlackBerry Simulator for Debugging
	10.4.3 How to Debug the Application on BlackBerry Platform
	10.4.4 What You May Need to Know About Modifying the Deployment and Run Configurations
	10.4.5 How to Enable Error Logging on a BlackBerry Simulator

	10.5 Testing Synchronization
	10.6 Using the ADF Mobile Client Settings Facility
	10.6.1 How to Use the ADF Mobile Client Logging Facility
	10.6.2 How to Configure Logging Using the Settings Facility
	10.6.3 How to Enable Logging in Java Code

	11 Working Directly with the Database
	11.1 About Using a Client Database
	11.2 Enabling Applications to Use SQL Initialization Scripts
	11.2.1 Supported Column Data Type Declarations
	11.2.2 Literal Format for Date Types
	11.2.3 SQL Syntax
	11.2.4 Inserting Multiple Rows into a Table
	11.2.5 Commit Handling

	11.3 Adding the SQL Script as a Resource to the ADF Mobile Client Application

	12 Using Web Services in ADF Mobile Client Applications
	12.1 Introduction to Web Services in ADF Mobile Client Applications
	12.2 Creating and Using Web Service Data Controls
	12.2.1 How to Create a Web Service Data Control
	12.2.2 How to Adjust the Endpoint for a Web Service Data Control
	12.2.3 How to Create a New Web Service Connection

	12.3 Securing Web Service Data Controls

	A Language Abbreviations
	B Advanced Topics
	B.1 Adding Devices in the Page Designer

	C Troubleshooting
	C.1 Recovering from an mSync Failure
	C.2 Errors When Testing Value Binding Queries
	C.3 Receiving ActiveSync Connection Error Message on Deployment Log
	C.4 Windows Mobile 6.0 Limitations
	C.5 Sync Agent Issues
	C.6 Windows 7 Workarounds
	C.7 SQLite Limitations
	C.8 Font Usage Limitations

	D Sample Code
	D.1 Using the OperationProvider and OperationDelegate Interfaces

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	O
	P
	R
	S
	T
	V
	W
	Z

