

Oracle® Fusion Middleware
Programming Advanced Features of JAX-WS Web Services for
Oracle WebLogic Server

11g Release 1 (10.3.5)

E13734-04

April 2011

This document is a resource for software developers who
program advanced features of WebLogic Web services using
JAX-WS.

Oracle Fusion Middleware Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic
Server, 11g Release 1 (10.3.5)

E13734-04

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Documentation Accessibility ... xi
Related Documents ... xi
Conventions .. xii

1 Introduction

2 Roadmaps for Developing Web Service Clients

2.1 Roadmap for Developing Web Service Clients .. 2-1
2.2 Roadmap for Developing Asynchronous Web Service Clients ... 2-4

3 Invoking Web Services Asynchronously

3.1 Overview of Asynchronous Web Service Invocation.. 3-1
3.2 Steps to Invoke Web Services Asynchronously.. 3-5
3.3 Configuring Your Servers for Asynchronous Web Service Invocation 3-6
3.4 Building the Client Artifacts for Asynchronous Web Service Invocation.......................... 3-7
3.5 Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport) 3-9
3.5.1 Enabling and Configuring the Asynchronous Client Transport Feature................. 3-10
3.5.1.1 Configuring the Address of the Asynchronous Response Endpoint................. 3-11
3.5.1.2 Configuring the ReplyTo and FaultTo Headers of the Asynchronous Response

Endpoint ... 3-12
3.5.1.3 Configuring the Context Path of the Asynchronous Response Endpoint 3-13
3.5.1.4 Publishing the Asynchronous Response Endpoint .. 3-14
3.5.1.5 Configuring Asynchronous Client Transport for Synchronous Operations 3-15
3.5.2 Developing the Asynchronous Handler Interface ... 3-15
3.5.3 Propagating User-defined Request Context to the Response 3-17
3.6 Using Asynchronous Web Service Clients From Behind a Firewall

(MakeConnection).. 3-17
3.6.1 Enabling and Configuring MakeConnection on a Web Service 3-19
3.6.1.1 Creating the Web Service MakeConnection WS-Policy File (Optional) 3-19
3.6.1.2 Programming the JWS File to Enable MakeConnection 3-21
3.6.2 Enabling and Configuring MakeConnection on a Web Service Client..................... 3-23
3.6.2.1 Configuring the Expiration Time for Sending MakeConnection Messages 3-24
3.6.2.2 Configuring the Polling Interval ... 3-24
3.6.2.3 Configuring the Exponential Backoff ... 3-25

iv

3.6.2.4 Configuring MakeConnection as the Transport for Synchronous Methods 3-25
3.7 Using the JAX-WS Reference Implementation .. 3-26
3.8 Propagating Request Context to the Response.. 3-29
3.9 Monitoring Asynchronous Web Service Invocation... 3-30
3.10 Clustering Considerations for Asynchronous Web Service Messaging 3-30

4 Roadmap for Developing Reliable Web Services and Clients

4.1 Roadmap for Developing Reliable Web Service Clients ... 4-1
4.2 Roadmap for Developing Reliable Web Services... 4-6
4.3 Roadmap for Accessing Reliable Web Services from Behind a Firewall

(MakeConnection)... 4-7
4.4 Roadmap for Securing Reliable Web Services.. 4-8

5 Using Web Services Reliable Messaging

5.1 Overview of Web Services Reliable Messaging.. 5-1
5.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions 5-2
5.1.2 Supported Transport Types for Reliable Messaging .. 5-2
5.1.3 The Life Cycle of the Reliable Message Sequence... 5-3
5.1.4 Reliable Messaging Failure Recovery Scenarios ... 5-4
5.1.4.1 RM Destination Down Before Request Arrives ... 5-5
5.1.4.2 RM Source Down After Request is Made ... 5-6
5.1.4.3 RM Destination Down After Request Arrives ... 5-8
5.1.4.4 Failure Scenarios with Non-buffered Reliable Web Services.............................. 5-10
5.2 Steps to Create and Invoke a Reliable Web Service .. 5-10
5.3 Configuring the Source and Destination WebLogic Server Instances 5-12
5.4 Creating the Web Service Reliable Messaging WS-Policy File.. 5-13
5.4.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions

Versions 1.2 and 1.1 .. 5-15
5.4.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions

Version 1.0 (Deprecated) ... 5-17
5.4.3 Using Multiple Policy Alternatives.. 5-18
5.5 Programming Guidelines for the Reliable JWS File.. 5-19
5.6 Invoking a Reliable Web Service from a Web Service Client .. 5-21
5.7 Configuring Reliable Messaging ... 5-22
5.7.1 Configuring Reliable Messaging on WebLogic Server ... 5-23
5.7.1.1 Using the Administration Console ... 5-23
5.7.1.2 Using WLST.. 5-24
5.7.2 Configuring Reliable Messaging on the Web Service Endpoint................................ 5-24
5.7.3 Configuring Reliable Messaging on Web Service Clients .. 5-25
5.7.4 Configuring the Base Retransmission Interval... 5-25
5.7.4.1 Configuring the Base Retransmission Interval on WebLogic Server or the Web

Service Endpoint.. 5-26
5.7.4.2 Configuring the Base Retransmission Interval on the Web Service Client 5-26
5.7.5 Configuring the Retransmission Exponential Backoff .. 5-27
5.7.5.1 Configuring the Retransmission Exponential Backoff on WebLogic Server or Web

Service Endpoint.. 5-27

v

5.7.5.2 Configuring the Retransmission Exponential Backoff on the
Web Service Client... 5-28

5.7.6 Configuring the Sequence Expiration.. 5-29
5.7.6.1 Configuring the Sequence Expiration on WebLogic Server or Web Service

Endpoint ... 5-29
5.7.6.2 Configuring Sequence Expiration on the Web Service Client 5-30
5.7.7 Configuring Inactivity Timeout.. 5-30
5.7.7.1 Configuring the Inactivity Timeout on WebLogic Server or Web Service

Endpoint ... 5-31
5.7.7.2 Configuring the Inactivity Timeout on the Web Service Client 5-31
5.7.8 Configuring a Non-buffered Destination for a Web Service...................................... 5-32
5.7.9 Configuring the Acknowledgement Interval ... 5-33
5.8 Implementing the Reliability Error Listener.. 5-35
5.9 Managing the Life Cycle of a Reliable Message Sequence... 5-36
5.9.1 Managing the Reliable Sequence.. 5-37
5.9.1.1 Getting and Setting the Reliable Sequence ID... 5-37
5.9.1.2 Accessing the State of the Reliable Sequence .. 5-38
5.9.2 Managing the Client ID.. 5-39
5.9.3 Managing the Acknowledged Requests.. 5-40
5.9.4 Accessing Information About a Message.. 5-40
5.9.5 Identifying the Final Message in a Reliable Sequence... 5-41
5.9.6 Closing the Reliable Sequence .. 5-42
5.9.7 Terminating the Reliable Sequence.. 5-43
5.9.8 Resetting a Client to Start a New Message Sequence.. 5-44
5.10 Monitoring Web Services Reliable Messaging .. 5-44
5.11 Grouping Messages into Business Units of Work (Batching).. 5-44
5.12 Client Considerations When Redeploying a Reliable Web Service.................................. 5-49
5.13 Interoperability with WebLogic Web Service Reliable Messaging................................... 5-50

6 Managing Web Service Persistence

6.1 Overview of Web Service Persistence.. 6-1
6.2 Roadmap for Configuring Web Service Persistence.. 6-3
6.3 Configuring Web Service Persistence .. 6-3
6.3.1 Configuring the Logical Store.. 6-5
6.3.2 Configuring Web Service Persistence for a Web Service Endpoint 6-6
6.3.3 Configuring Web Service Persistence for Web Service Clients..................................... 6-6
6.4 Using Web Service Persistence in a Cluster .. 6-6
6.5 Cleaning Up Web Service Persistence ... 6-8

7 Configuring Message Buffering for Web Services

7.1 Overview of Message Buffering ... 7-1
7.2 Configuring Messaging Buffering.. 7-1
7.2.1 Configuring the Request Queue .. 7-2
7.2.2 Configuring the Response Queue ... 7-2
7.2.3 Configuring Message Retry Count and Delay .. 7-2

vi

8 Managing Web Services in a Cluster

8.1 Overview of Web Services Cluster Routing.. 8-1
8.2 Cluster Routing Scenarios.. 8-3
8.2.1 Scenario 1: Routing a Web Service Response to a Single Server................................... 8-3
8.2.2 Scenario 2: Routing Web Service Requests to a Single Server Using Routing

Information ... 8-4
8.2.3 Scenario 3: Routing Web Service Requests to a Single Server Using an ID 8-4
8.3 How Web Service Cluster Routing Works.. 8-5
8.3.1 Adding Routing Information to Outgoing Requests.. 8-6
8.3.2 Detecting Routing Information in Incoming Requests .. 8-6
8.3.3 Routing Requests Within the Cluster ... 8-6
8.3.4 Maintaining the Routing Map on the Front-end SOAP Router 8-7
8.3.4.1 X-weblogic-wsee-storetoserver-list HTTP Response Header 8-7
8.3.4.2 X-weblogic-wsee-storetoserver-hash HTTP Response Header 8-7
8.4 Configuring Web Services in a Cluster.. 8-8
8.4.1 Setting Up the WebLogic Cluster .. 8-8
8.4.2 Configuring the Domain Resources Required for Web Service Advanced Features in a

Clustered Environment... 8-8
8.4.3 Extending the Front-end SOAP Router to Support Web Services................................ 8-9
8.4.4 Enabling Routing of Web Services Atomic Transaction Messages 8-9
8.4.5 Configuring the Identity of the Front-end SOAP Router ... 8-10
8.5 Monitoring Cluster Routing Performance ... 8-10

9 Using Web Services Atomic Transactions

9.1 Overview of Web Services Atomic Transactions ... 9-1
9.2 Configuring the Domain Resources Required for Web Service Advanced Features 9-3
9.3 Enabling Web Services Atomic Transactions on Web Services ... 9-3
9.3.1 Using the @Transactional Annotation in Your JWS File.. 9-5
9.3.1.1 Example: Using @Transactional Annotation on a Web Service Class 9-6
9.3.1.2 Example: Using @Transactional Annotation on a Web Service Method 9-7
9.3.1.3 Example: Using the @Transactional and the EJB @TransactionAttribute

Annotations Together .. 9-8
9.3.2 Enabling Web Services Atomic Transactions Starting From WSDL 9-9
9.4 Enabling Web Services Atomic Transactions on Web Service Clients............................. 9-10
9.4.1 Using @Transactional Annotation with the @WebServiceRef Annotation.............. 9-10
9.4.2 Passing the TransactionalFeature to the Client .. 9-12
9.5 Configuring Web Services Atomic Transactions Using the Administration Console... 9-15
9.5.1 Securing Messages Exchanged Between the Coordinator and Participant.............. 9-15
9.5.2 Enabling and Configuring Web Services Atomic Transactions................................. 9-15
9.6 Using Web Services Atomic Transactions in a Clustered Environment.......................... 9-16
9.7 More Examples of Using Web Services Atomic Transactions... 9-16

10 Publishing a Web Service Endpoint

11 Using Callbacks

11.1 Overview of Callbacks .. 11-1

vii

11.2 Example Callback Implementation ... 11-1
11.3 Steps to Program Callbacks .. 11-2
11.4 Programming Guidelines for Target Web Service .. 11-4
11.5 Programming Guidelines for the Callback Client Web Service.. 11-5
11.6 Programming Guidelines for the Callback Web Service.. 11-6
11.7 Updating the build.xml File for the Target Web Service ... 11-7

12 Optimizing Binary Data Transmission Using MTOM/XOP

12.1 Sending Binary Data Using MTOM/XOP ... 12-1
12.1.1 Annotating the Data Types ... 12-2
12.1.1.1 Annotating the Data Types: Start From Java... 12-2
12.1.1.2 Annotating the Data Types: Start From WSDL... 12-3
12.1.2 Enabling MTOM on the Web Service .. 12-3
12.1.2.1 Enabling MTOM on the Web Service Using Annotation 12-3
12.1.2.2 Enabling MTOM on the Web Services Using WS-Policy File 12-3
12.1.3 Enabling MTOM on the Client ... 12-5
12.1.4 Setting the Attachment Threshold ... 12-5
12.2 Streaming SOAP Attachments ... 12-5
12.2.1 Client Side Example ... 12-6
12.2.2 Server Side Example... 12-7
12.2.3 Configuring Streaming SOAP Attachments ... 12-8
12.2.3.1 Configuring Streaming SOAP Attachments on the Server 12-8
12.2.3.2 Configuring Streaming SOAP Attachments on the Client 12-9

13 Creating Dynamic Proxy Clients

13.1 Additional Considerations When Specifying WSDL Location ... 13-2

14 Using XML Catalogs

14.1 Overview of XML Catalogs .. 14-1
14.2 Defining and Referencing XML Catalogs... 14-3
14.2.1 Defining an External XML Catalog .. 14-3
14.2.1.1 Creating an External XML Catalog File.. 14-3
14.2.1.2 Referencing the External XML Catalog File .. 14-4
14.2.2 Embedding an XML Catalog... 14-4
14.2.2.1 Creating an Embedded XML Catalog .. 14-4
14.2.2.2 Referencing an Embedded XML Catalog... 14-5
14.3 Disabling XML Catalogs in the Client Runtime .. 14-5
14.4 Getting a Local Copy of XML Resources.. 14-6

15 Creating and Using SOAP Message Handlers

15.1 Overview of SOAP Message Handlers ... 15-1
15.2 Adding Server-side SOAP Message Handlers: Main Steps... 15-2
15.3 Adding Client-side SOAP Message Handlers: Main Steps ... 15-2
15.4 Designing the SOAP Message Handlers and Handler Chains ... 15-3
15.4.1 Server-side Handler Execution ... 15-4

viii

15.4.2 Client-side Handler Execution.. 15-5
15.5 Creating the SOAP Message Handler... 15-5
15.5.1 Example of a SOAP Handler... 15-6
15.5.2 Example of a Logical Handler... 15-7
15.5.3 Implementing the Handler.handleMessage() Method.. 15-8
15.5.4 Implementing the Handler.handleFault() Method.. 15-8
15.5.5 Implementing the Handler.close() Method .. 15-9
15.5.6 Using the Message Context Property Values and Methods....................................... 15-9
15.5.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ .. 15-10
15.5.7.1 The SOAPPart Object .. 15-11
15.5.7.2 The AttachmentPart Object .. 15-11
15.5.7.3 Manipulating Image Attachments in a SOAP Message Handler 15-12
15.6 Configuring Handler Chains in the JWS File... 15-12
15.7 Creating the Handler Chain Configuration File.. 15-13
15.8 Compiling and Rebuilding the Web Service ... 15-14
15.9 Configuring the Client-side SOAP Message Handlers .. 15-14

16 Operating at the XML Message Level

16.1 Overview of Web Service Provider-based Endpoints and Dispatch Clients 16-1
16.2 Usage Modes and Message Formats for Operating at the XML Level 16-2
16.3 Developing a Web Service Provider-based Endpoint .. 16-2
16.3.1 Example of a JWS File That Implements a Web Service Provider-based Endpoint 16-3
16.3.2 Specifying the Message Format .. 16-5
16.3.3 Specifying that the JWS File Implements a Web Service Provider

(@WebServiceProvider Annotation) .. 16-5
16.3.4 Specifying the Usage Mode (@ServiceMode Annotation).. 16-6
16.3.5 Defining the invoke() Method .. 16-6
16.3.6 Starting from WSDL... 16-7
16.4 Developing a Web Service Dispatch Client ... 16-7
16.4.1 Example of a Web Service Dispatch Client ... 16-7
16.4.2 Creating a Dispatch Instance .. 16-9
16.4.3 Invoking a Web Service Operation .. 16-9

17 Programming RESTful Web Services

17.1 Overview of RESTful Web Services .. 17-1
17.2 Using the Jersey JAX-RS Reference Implementation.. 17-1
17.2.1 Registering the Jersey JAX-RS RI Shared Libraries With Your WebLogic Server

Instances... 17-4
17.2.2 Configuring the Web Application to Use the Jersey JAX-RS RI 17-4
17.2.2.1 Updating web.xml to Delegate Web Requests to the Jersey Servlet 17-4
17.2.2.2 Updating weblogic.xml to Reference the Shared Libraries................................. 17-5
17.2.3 Creating JAX-RS Web Services and Clients .. 17-6
17.2.3.1 A Simple RESTful Web Service ... 17-6
17.2.3.2 A Simple RESTful Client .. 17-7
17.2.4 Registering a More Recent Version of the Jersey JAX-RS Shared Libraries............. 17-7
17.3 Programming Web Services Using XML Over HTTP .. 17-8
17.3.1 Programming Guidelines for the Web Service Using XML Over HTTP.................. 17-9

ix

17.3.2 Accessing the Web Service from a Client.. 17-12
17.3.3 Securing Web Services that Use XML Over HTTP .. 17-12

18 Programming Stateful JAX-WS Web Services Using HTTP Session

18.1 Overview of Stateful Web Services ... 18-1
18.2 Accessing HTTP Session on the Server... 18-1
18.3 Enabling HTTP Session on the Client ... 18-2
18.4 Developing Stateful Services in a Cluster Using Session State Replication 18-3
18.5 A Note About the JAX-WS RI @Stateful Extension .. 18-3

19 Publishing and Finding Web Services Using UDDI

19.1 Overview of UDDI... 19-1
19.1.1 UDDI and Web Services .. 19-2
19.1.2 UDDI and Business Registry... 19-2
19.1.3 UDDI Data Structure.. 19-3
19.2 WebLogic Server UDDI Features .. 19-3
19.3 UDDI 2.0 Server ... 19-3
19.3.1 Configuring the UDDI 2.0 Server ... 19-4
19.3.2 Configuring an External LDAP Server ... 19-4
19.3.2.1 51acumen.ldif File Contents... 19-5
19.3.3 Description of Properties in the uddi.properties File.. 19-8
19.4 UDDI Directory Explorer.. 19-13
19.5 UDDI Client API .. 19-14
19.6 Pluggable tModel ... 19-14
19.6.1 XML Elements and Permissible Values... 19-15
19.6.2 XML Schema for Pluggable tModels ... 19-15
19.6.3 Sample XML for a Pluggable tModel... 19-16

A Pre-packaged WS-Policy Files for Web Services Reliable Messaging and
MakeConnection

A.1 DefaultReliability1.2.xml (WS-Policy File)... A-3
A.2 DefaultReliability1.1.xml (WS-Policy File)... A-4
A.3 DefaultReliability.xml WS-Policy File (WS-Policy) [Deprecated] A-4
A.4 LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated] A-5
A.5 Mc1.1.xml (WS-Policy File)... A-5
A.6 Mc.xml (WS-Policy File).. A-6
A.7 Reliability1.2_ExactlyOnce_WithMC1.1.xml (WS-Policy File).. A-6
A.8 Reliability1.2_SequenceSTR.xml (WS-Policy File) .. A-6
A.9 Reliability1.1_SequenceSTR.xml (WS-Policy File) .. A-7
A.10 Reliability1.2_SequenceTransportSecurity.xml (WS-Policy File) A-7
A.11 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File) A-8
A.12 Reliability1.0_1.2.xml (WS-Policy File) ... A-8
A.13 Reliability1.0_1.1.xml (WS-Policy.xml File) ... A-9

B Example Client Wrapper Class for Batching Reliable Messages

x

xi

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic
Server

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more information, see the following documents in the Oracle Other Product One
Release 7.0 documentation set or in the Oracle Other Product Two Release 6.1
documentation set:

■ Oracle Other Product One Release Notes

xii

■ Oracle Other Product One Configuration Guide

■ Oracle Other Product Two Getting Started Guide

■ Oracle Other Product Two Reference Guide

■ Oracle Other Product Two Tuning and Performance Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction 1-1

1Introduction

This document is a resource for software developers who program advanced features
for WebLogic Web services using JAX-WS. The advanced features described are
summarized in the following table.

Table 1–1 Programming Advanced Features Using JAX-WS

Advanced Features Description

Chapter 2, "Roadmaps for
Developing Web Service Clients"

Review best practices for developing Web service clients.

Chapter 3, "Invoking Web Services
Asynchronously"

Invoke a Web service asynchronously.

Chapter 4, "Roadmap for
Developing Reliable Web Services
and Clients"

Review best practices for developing asynchronous and
reliable applications together.

Chapter 5, "Using Web Services
Reliable Messaging"

Use Web service reliable messaging to enable an
application running on one application server to reliably
invoke a Web service running on another application
server, assuming that both servers implement the
WS-ReliableMessaging specification.

Chapter 6, "Managing Web Service
Persistence"

Manage persistence for Web services. Web service
persistence is used by advanced features to support long
running requests and to survive server restarts.

Chapter 7, "Configuring Message
Buffering for Web Services"

Configure message buffering for Web services.

Chapter 8, "Managing Web
Services in a Cluster"

Review best practices for using Web services in a cluster.

Chapter 9, "Using Web Services
Atomic Transactions"

Use Web services atomic transactions to enable
interoperability with other external transaction processing
systems.

Chapter 10, "Publishing a Web
Service Endpoint"

Publish a Web service endpoint at runtime, without
deploying the Web service.

Chapter 11, "Using Callbacks" Notify a client of a Web service that an event has
happened by programming a callback.

Chapter 12, "Optimizing Binary
Data Transmission Using
MTOM/XOP"

Send binary data using MTOM/XOP and/or streaming
SOAP attachments to optimize transmission of binary
data.

Chapter 13, "Creating Dynamic
Proxy Clients"

Invoke a Web service based on a service endpoint interface
(SEI) dynamically at run-time without using clientgen.

Chapter 14, "Using XML Catalogs" Use XML catalogs to resolve network resources to versions
that are stored locally.

1-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

For an overview of WebLogic Web services, standards, samples, and related
documentation, see Introducing Web Services.

JAX-WS supports Web Services Security (WS-Security) 1.1. For information about
WebLogic Web service security, see Securing WebLogic Web Services for Oracle WebLogic
Server.

Chapter 15, "Creating and Using
SOAP Message Handlers"

Create and configure SOAP message handlers for a Web
service.

Chapter 16, "Operating at the
XML Message Level"

Develop Web service provider-based endpoints and
dispatch clients to operate at the XML message level.

Chapter 17, "Programming
RESTful Web Services"

Create a Web service that follows the RESTful design
paradigm.

Chapter 18, "Programming
Stateful JAX-WS Web Services
Using HTTP Session"

Create a Web service that maintains state between service
calls.

Chapter 19, "Publishing and
Finding Web Services Using
UDDI"

Use the UDDI features of WebLogic Web service.

Appendix A, "Pre-packaged
WS-Policy Files for Web Services
Reliable Messaging and
MakeConnection"

Review the pre-packaged WS-Policy files that contain
typical reliable messaging assertions that you can use to
support reliable messaging.

Appendix B, "Example Client
Wrapper Class for Batching
Reliable Messages"

Provides an example client wrapper class that can be used
for batching reliable messaging.

Note: The JAX-WS implementation in Oracle WebLogic Server is
extended from the JAX-WS Reference Implementation (RI) developed
by the Glassfish Community (see
https://jax-ws.dev.java.net/). All features defined in the
JAX-WS specification (JSR-224) are fully supported by Oracle
WebLogic Server.

The JAX-WS RI also contains a variety of extensions, provided by
Glassfish contributors. Unless specifically documented, JAX-WS RI
extensions are not supported for use in Oracle WebLogic Server.

Table 1–1 (Cont.) Programming Advanced Features Using JAX-WS

Advanced Features Description

2

Roadmaps for Developing Web Service Clients 2-1

2Roadmaps for Developing Web Service
Clients

The following sections present best practices for developing Web service clients.

■ Section 2.1, "Roadmap for Developing Web Service Clients"

■ Section 2.2, "Roadmap for Developing Asynchronous Web Service Clients"

2.1 Roadmap for Developing Web Service Clients
Table 2.1 provides best practices for developing Web service clients, including an
example that illustrates the best practices presented. For additional best practices
when developing asynchronous Web service clients, see Section 2.2, "Roadmap for
Developing Asynchronous Web Service Clients".

Note: It is assumed that you are familiar with the general concepts
for developing Web service clients, as described "Invoking Web
Services" in Getting Started With JAX-WS Web Services for Oracle
WebLogic Server.

For best practices for developing reliable Web service clients, see
Chapter 4, "Roadmap for Developing Reliable Web Services and
Clients."

In the following sections, client instance can be a port or a Dispatch
instance.

Roadmap for Developing Web Service Clients

2-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The following example illustrates best practices for developing Web service clients.

Example 2–1 Web Service Client Best Practices Example

import java.io.IOException;
import java.util.*;

import javax.servlet.*;
import javax.xml.ws.*;

import weblogic.jws.jaxws.client.ClientIdentityFeature;

/**
 * Example client for invoking a Web service.
 */
public class BestPracticeClient
 extends GenericServlet {

 private BackendServiceService _service;
 private WebServiceFeature[] _features;
 private ClientIdentityFeature _clientIdFeature;

 @Override
 public void init()
 throws ServletException {

 // Create a single instance of a Web service as it is expensive to create repeatedly.
 if (_service == null) {
 _service = new BackendServiceService();
 }

 // Best Practice: Use a stored list of features, per client ID, to create client instances.
 // Define all features for the Web service client instance, per client ID, so that they are

Table 2–1 Roadmap for Developing Web Service Clients

Best Practice Description

Synchronize use of client
instances.

Create client instances as you need them; do not store them long term.

Use a stored list of features,
including client ID, to create
client instances.

Define all features for the Web service client instance, including client ID, so that
they are consistent each time the client instance is created. For example:

_service.getBackendServicePort(_features);

Explicitly define the client ID. Use the ClientIdentityFeature to define the client ID explicitly. This client
ID is used to group statistics and other monitoring information, and for
reporting runtime validations, and so on. For more information, see "Managing
Client Identity" in Getting Started With JAX-WS Web Services for Oracle WebLogic
Server.

Note: Oracle strongly recommends that you define the client ID explicitly. If not
explicitly defined, the server generates the client ID automatically, which may
not be user-friendly.

Explicitly close client instances
when processing is complete.

For example:

((java.io.Closeable)port).close();

If not closed explicitly, the client instance will be closed automatically when it
goes out of scope.

Note: The client ID remains registered and visible until the container (Web
application or EJB) is deactivated. For more information, see "Client Identity
Lifecycle" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Roadmap for Developing Web Service Clients

Roadmaps for Developing Web Service Clients 2-3

 // consistent each time the client instance is created. For example:
 // _service.getBackendServicePort(_features);

 List<WebServiceFeature> features = new ArrayList<WebServiceFeature>();

 // Best Practice: Explicitly define the client ID.
 // TODO: Maybe allow ClientIdentityFeature to store other features, and
 // then create new client instances simply by passing the
 // ClientIdentityFeature (and the registered features are used).
 _clientIdFeature = new ClientIdentityFeature("MyBackendServiceClient");
 features.add(_clientIdFeature);

 // Set the features used when creating clients with
 // the client ID "MyBackendServiceClient". The features are stored in an array to
 // reinforce that the list should be treated as immutable.
 _features = features.toArray(new WebServiceFeature[features.size()]);
 }

 @Override
 public void service(ServletRequest req, ServletResponse res)
 throws ServletException, IOException {

 // ... Read the servlet request ...

 // Best Practice: Synchronize use of client instances.
 // Create a Web service client instance to talk to the backend service.
 // Note, at this point the client ID is 'registered' and becomes
 // visible to monitoring tools such as the Administration Console and WLST.
 // The client ID *remains* registered and visible until the container
 // (the Web application hosting our servlet) is deactivated (undeployed).
 //
 // A client ID can be used when creating multiple client instances (port or Dispatch client).
 // The client instance should be created with the same set of features each time, and should
 // use the same service class and refer to the same port type.
 // A given a client ID should be used for a given port type, but not across port types.
 // It can be used for both port and Dispatch clients.
 BackendService port =
 _service.getBackendServicePort(_features);

 // Set the endpoint address for BackendService.
 ((BindingProvider)port).getRequestContext().
 put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://localhost:7001/BestPracticeService/BackendService");

 // Print out the explicit client ID, and compare it to the client ID
 // that would have been generated automatically for the client instance.
 showClientIdentity();

 // Make the invocation on our real port
 String request = "Make a cake";
 System.out.println("Invoking DoSomething with request: " + request);
 String response = port.doSomething(request);
 System.out.println("Got response: " + response);
 res.getWriter().write(response);

 // Best Practice: Explicitly close client instances when processing is complete.
 // If not closed, the client instance will be closed automatically when it goes out of
 // scope. Note, this client ID will remain registered and visible until our
 // container (Web application) is undeployed.
 ((java.io.Closeable)port).close();

Roadmap for Developing Asynchronous Web Service Clients

2-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 }

 /**
 // Print out the client’s full ID, which is a combination of
 // the client ID provided above and qualifiers from the application and
 // Web application that contain the client. Then compare this with the client ID that
 // would have been generated for the client instance if not explicitly set.
 //
 private void showClientIdentity()
 throws IOException {

 System.out.println("Client Identity is: " + _clientIdFeature.getClientId());

 // Create a client instance without explicitly defining the client ID to view the
 // client ID that is generated automatically.
 ClientIdentityFeature dummyClientIdFeature =
 new ClientIdentityFeature(null);
 BackendService dummyPort =
 _service.getBackendServicePort(dummyClientIdFeature);
 System.out.println("Generated Client Identity is: " +
 dummyClientIdFeature.getClientId());
 // Best Practice: Explicitly close client instances when processing is complete.
 // If not closed, the client instance will be closed automatically when it goes out of
 // scope. Note, this client ID will remain registered and visible until our
 // container (Web application) is undeployed.
 ((java.io.Closeable)dummyPort).close();
 }

 @Override
 public void destroy() {
 }
}

2.2 Roadmap for Developing Asynchronous Web Service Clients
Table 2.2 provides best practices for developing asynchronous Web service clients,
including an example that illustrates the best practices presented. These guidelines
should be used in conjunction with the general guidelines provided in Section 2.1,
"Roadmap for Developing Web Service Clients".

Roadmap for Developing Asynchronous Web Service Clients

Roadmaps for Developing Web Service Clients 2-5

The following example illustrates best practices for developing asynchronous Web
service clients.

Example 2–2 Asynchronous Web Service Client Best Practices Example

import java.io.*;
import java.util.*;

import javax.servlet.*
import javax.xml.ws.*

import weblogic.jws.jaxws.client.ClientIdentityFeature;
import weblogic.jws.jaxws.client.async.AsyncClientHandlerFeature;
import weblogic.jws.jaxws.client.async.AsyncClientTransportFeature;

import com.sun.xml.ws.developer.JAXWSProperties;

/**
 * Example client for invoking a Web service asynchronously.
 */
public class BestPracticeAsyncClient
 extends GenericServlet {

 private static final String MY_PROPERTY = "MyProperty";

Table 2–2 Roadmap for Developing Asynchronous Web Service Clients

Best Practice Description

Define a port-based asynchronous
callback handler,
AsyncClientHandlerFeature, for
asynchronous and dispatch callback
handling.

Use of AsyncClientHandlerFeature is recommended as a best
practice when using asynchronous invocation due to its scalability and
ability to survive a JVM restart. It can be used by any client (survivable
or not.) For information, see Section 3.5.2, "Developing the
Asynchronous Handler Interface".

Define a singleton port instance and
initialize it when the client container
initializes (upon deployment).

Creation of the singleton port:

■ Triggers the asynchronous response endpoint to be published upon
deployment.

■ Supports failure recovery by re-initializing the singleton port
instance after VM restart.

Within a cluster, initialization of a singleton port will ensure that all
member servers in the cluster publish an asynchronous response
endpoint.This ensures that the asynchronous response messages can be
delivered to any member server and optionally forwarded to the correct
server via in-place cluster routing. For complete details, see Section 3.10,
"Clustering Considerations for Asynchronous Web Service Messaging.".

If using MakeConnection for clients
behind a firewall, set the
MakeConnection polling interval to a
value that is realistic for your scenario.

The MakeConnection polling interval should be set as high as possible to
avoid unnecessary polling overhead, but also low enough to allow
responses to be retrieved in a timely fashion. A recommended value for
the MakeConnection polling interval is one-half of the expected average
response time of the Web service being invoked. For more information
setting the MakeConnection polling interval, see Section 3.6.2.2,
"Configuring the Polling Interval."

Note: This best practice is not demonstrated in Example 2–2.

If using the JAX-WS Reference
Implementation (RI), implement the
AsyncHandler<T> interface.

Use of the AsyncHandler<T> interface is more efficient than the
Response<T> interface. For more information and an example, see
Section 3.7, "Using the JAX-WS Reference Implementation".

Note: This best practice is not demonstrated in Example 2–2.

Roadmap for Developing Asynchronous Web Service Clients

2-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 private BackendServiceService _service;
 private WebServiceFeature[] _features;
 private BackendService _singletonPort;

 private static String _lastResponse;
 private static int _requestCount;

 @Override
 public void init()
 throws ServletException {

 // Only create the Web service object once as it is expensive to create repeatedly.
 if (_service == null) {
 _service = new BackendServiceService();
 }

 // Best Practice: Use a stored list of features, including client ID, to create client
 // instances.
 // Define all features for the Web service client instance, including client ID, so that they
 // are consistent each time the client instance is created. For example:
 // _service.getBackendServicePort(_features);

 List<WebServiceFeature> features = new ArrayList<WebServiceFeature>();

 // Best Practice: Explicitly define the client ID.
 ClientIdentityFeature clientIdFeature =
 new ClientIdentityFeature("MyBackendServiceAsyncClient");
 features.add(clientIdFeature);

 // Asynchronous endpoint
 AsyncClientTransportFeature asyncFeature =
 new AsyncClientTransportFeature(getServletContext());
 features.add(asyncFeature);

 // Best Practice: Define a port-based asynchronous callback handler,
 // AsyncClientHandlerFeature, for asynchronous and dispatch callback handling.
 BackendServiceAsyncHandler handler =
 new BackendServiceAsyncHandler() {
 // This class is stateless and should not depend on
 // having member variables to work with across restarts.
 public void onDoSomethingResponse(Response<DoSomethingResponse> res) {
 // ... Handle Response ...
 try {
 DoSomethingResponse response = res.get();
 res.getContext();
 _lastResponse = response.getReturn();
 System.out.println("Got async response: " + _lastResponse);
 // Retrieve the request property. This property can be used to
 // 'remember' the context of the request and subsequently process
 // the response.
 Map<String, Serializable> requestProps =
 (Map<String, Serializable>)
 res.getContext().get(JAXWSProperties.PERSISTENT_CONTEXT);
 String myProperty = (String)requestProps.get(MY_PROPERTY);
 System.out.println("Got MyProperty value propagated from request: "+
 myProperty);
 } catch (Exception e) {
 _lastResponse = e.toString();
 e.printStackTrace();
 }

Roadmap for Developing Asynchronous Web Service Clients

Roadmaps for Developing Web Service Clients 2-7

 }
 };
 AsyncClientHandlerFeature handlerFeature =
 new AsyncClientHandlerFeature(handler);
 features.add(handlerFeature);

 // Set the features used when creating clients with
 // the client ID "MyBackendServiceAsyncClient".

 _features = features.toArray(new WebServiceFeature[features.size()]);

 // Best Practice: Define a singleton port instance and initialize it when
 // the client container initializes (upon deployment).
 // The singleton port will be available for the life of the servlet.
 // Creation of the singleton port triggers the asynchronous response endpoint to be published
 // and it will remain published until our container (Web application) is undeployed.
 // Note, the destroy() method will be called before this.
 // The singleton port ensures proper/robust operation in both
 // recovery and clustered scenarios.
 _singletonPort = _service.getBackendServicePort(_features);
 }

 @Override
 public void service(ServletRequest req, ServletResponse res)
 throws ServletException, IOException {

 // TODO: ... Read the servlet request ...

 // For this simple example, echo the _lastResponse captured from
 // an asynchronous DoSomethingResponse response message.

 if (_lastResponse != null) {
 res.getWriter().write(_lastResponse);
 _lastResponse = null; // Clear the response so we can get another
 return;
 }

 // Set _lastResponse to NULL to to support the invocation against
 // BackendService to generate a new response.

 // Best Practice: Synchronize use of client instances.
 // Create another client instance using the *exact* same features used when creating _
 // singletonPort. Note, this port uses the same client ID as the singleton port
 // and it is effectively the same as the singleton
 // from the perspective of the Web services runtime.
 // This port will use the asynchronous response endpoint for the client ID,
 // as it is defined in the _features list.
 BackendService anotherPort =
 _service.getBackendServicePort(_features);

 // Set the endpoint address for BackendService.
 ((BindingProvider)anotherPort).getRequestContext().
 put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://localhost:7001/BestPracticeService/BackendService");

 // Add a persistent context property that will be retrieved on the
 // response. This property can be used as a reminder of the context of this
 // request and subsequently process the response. This property will *not*
 // be passed over the wire, so the properties can change independent of the
 // application message.

Roadmap for Developing Asynchronous Web Service Clients

2-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 Map<String, Serializable> persistentContext =
 (Map<String, Serializable>)((BindingProvider)anotherPort).
 getRequestContext().get(JAXWSProperties.PERSISTENT_CONTEXT);
 String myProperty = "Request " + (++_requestCount);
 persistentContext.put(MY_PROPERTY, myProperty);
 System.out.println("Request being made with MyProperty value: " +
 myProperty);

 // Make the asychronous invocation. The asynchronous handler implementation (set
 // into the AsyncClientHandlerFeature above) receives the response.
 String request = "Dance and sing";
 System.out.println("Invoking DoSomething asynchronously with request: " +
 request);
 anotherPort.doSomethingAsync(request);

 // Return a canned string indicating the response was not received
 // synchronously. Client will need to invoke the servlet again to get
 // the response.
 res.getWriter().write("Waiting for response...");

 // Best Practice: Explicitly close client instances when processing is complete.
 // If not closed explicitly, the port will be closed automatically when it goes out of scope.
 ((java.io.Closeable)anotherPort).close();
 }

 @Override
 public void destroy() {

 try {
 // Best Practice: Explicitly close client instances when processing is complete.
 // Close the singleton port created during initialization. Note, the asynchronous
 // response endpoint generated by creating _singletonPort *remains*
 // published until our container (Web application) is undeployed.
 ((java.io.Closeable)_singletonPort).close();

 // Upon return, the Web application is undeployed, and the asynchronous
 // response endpoint is stopped (unpublished). At this point,
 // the client ID used for _singletonPort will be unregistered and will no longer be
 // visible from the Administration Console and WLST.
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

3

Invoking Web Services Asynchronously 3-1

3Invoking Web Services Asynchronously

The following sections describe how to invoke Web services asynchronously:

■ Section 3.1, "Overview of Asynchronous Web Service Invocation"

■ Section 3.2, "Steps to Invoke Web Services Asynchronously"

■ Section 3.3, "Configuring Your Servers for Asynchronous Web Service Invocation"

■ Section 3.4, "Building the Client Artifacts for Asynchronous Web Service
Invocation"

■ Section 3.5, "Developing Scalable Asynchronous JAX-WS Clients (Asynchronous
Client Transport)"

■ Section 3.6, "Using Asynchronous Web Service Clients From Behind a Firewall
(MakeConnection)"

■ Section 3.7, "Using the JAX-WS Reference Implementation"

■ Section 3.8, "Propagating Request Context to the Response"

■ Section 3.9, "Monitoring Asynchronous Web Service Invocation"

■ Section 3.10, "Clustering Considerations for Asynchronous Web Service
Messaging"

3.1 Overview of Asynchronous Web Service Invocation
To support asynchronous Web services invocation, WebLogic Web services can use an
asynchronous client programming model, asynchronous transport, or both.

Table 3–1 provides a description and key benefits of the asynchronous client
programming model and transport types, and introduces the configuration options
available to support asynchronous Web service invocation.

Note: See also Section 2, "Roadmaps for Developing Web Service
Clients".

Note: The method of generating a WSDL for the asynchronous Web
service containing two one-way operations defined as two
portTypes—one for the asynchronous operation and one for the
callback operation—is not supported in the current release.

Overview of Asynchronous Web Service Invocation

3-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Table 3–2 summarizes the transport types that WebLogic Server supports for invoking
a Web service asynchronously (or synchronously, if configured) from a Web service
client.

Table 3–1 Support for Asynchronous Web Service Invocation

Type Description Benefits

Client programming model Describes the invocation semantics used to call a
Web service operation: synchronous or
asynchronous.

When you invoke a Web service synchronously,
the invoking client application waits for the
response to return before it can continue with its
work. In cases where the response returns
immediately, this method of invoking the Web
service might be adequate. However, because
request processing can be delayed, it is often
useful for the client application to continue its
work and handle the response later on.

By calling a Web service asynchronously, the
client can continue its processing, without
interruption, and be notified when the
asynchronous response is returned.

To support asynchronous invocation, you
generate automatically an asynchronous flavor
of each operation on a Web service port using
the clientgen Ant task, as described later in
Section 3.4, "Building the Client Artifacts for
Asynchronous Web Service Invocation." Then,
you add methods in your client, including your
business logic, that handle the asynchronous
response or failures when it returns later on.
Finally, to invoke a Web service asynchronously,
rather than invoking the operation directly, you
invoke the asynchronous flavor of the operation.
For example, rather than invoking an operation
called addNumbers directly, you would invoke
addNumbersAsync instead.

Asynchronous invocation
enables Web service clients to
initiate a request to a Web
service, continue processing
without blocking, and receive
the response at some point in
the future.

Transport There are three transport types: asynchronous
client transport, MakeConnection transport, and
synchronous transport. For a comparison of each
transport type, see Table 3–2.

Asynchronous client transport
and MakeConnection transport
deliver the following key
benefits:

■ Improves fault tolerance in
the event of network
outages.

■ Enables servers to absorb
more efficiently spikes in
traffic.

Configuration Configure Web service persistence and buffering
(optional) to support asynchronous Web service
invocation.

For more information, see Section 3.3,
"Configuring Your Servers for Asynchronous
Web Service Invocation."

Benefits of configuring the Web
service features include:

■ Persistence supports long
running requests and
provides the ability to
survive server restarts.

■ Buffering enables all
requests to a Web service to
be handled asynchronously.

Overview of Asynchronous Web Service Invocation

Invoking Web Services Asynchronously 3-3

Table 3–2 Transport Types for Invoking Web Services Asynchronously

Transport Types Description

Asynchronous Client Transport Provides a scalable asynchronous client programming model
through the use of an addressable client-side asynchronous response
endpoint and WS-Addressing.

Asynchronous client transport decouples the delivery of the
response message from the initiating transport request used to
send the request message. The response message is sent to the
asynchronous response endpoint using a new connection
originating from the Web service. The client correlates request and
response messages through WS-Addressing headers.

Asynchronous client transport provides improved fault tolerance
and enables servers to better absorb spikes in server load.

For details about using asynchronous client transport, see
Section 3.5, "Developing Scalable Asynchronous JAX-WS Clients
(Asynchronous Client Transport)."

Asynchronous client transport supports the following
programming models:

■ Asynchronous and dispatch callback handling using one of
the following methods:

- Port-based asynchronous callback handler,
AsyncClientHandlerFeature, described in Section 3.5.2,
"Developing the Asynchronous Handler Interface." This is
recommended as a best practice when using asynchronous
invocation due to its scalability and ability to survive a JVM
restart.

- Per-request asynchronous callback handler, as described in
Section 3.7, "Using the JAX-WS Reference Implementation."

■ Asynchronous polling, as described in Section 3.7, "Using the
JAX-WS Reference Implementation."

■ Synchronous invocation by enabling a flag, as described in
Section 3.5.1.5, "Configuring Asynchronous Client Transport
for Synchronous Operations."

Overview of Asynchronous Web Service Invocation

3-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

MakeConnection Transport Enables asynchronous Web service invocation from behind a
firewall using Web Services MakeConnection 1.1 or 1.0.

MakeConnection is a client polling mechanism that provides an
alternative to asynchronous client transport. As with
asynchronous client transport, MakeConnection enables the
decoupling of the response message from the initiating transport
request used to send the request message. However, unlike
asynchronous client transport which requires an addressable
asynchronous response endpoint to forward the response to, with
MakeConnection typically the sender of the request message is
non-addressable and unable to accept an incoming connection. For
example, when the sender is located behind a firewall.

MakeConnection transport provides improved fault tolerance and
enables servers to better absorb spikes in server load.

For details about MakeConnection transport, see Section 3.6,
"Using Asynchronous Web Service Clients From Behind a Firewall
(MakeConnection)."

MakeConnection transport is recommended as a best practice
when using asynchronous invocation from behind a firewall due
to its scalability and ability to survive a JVM restart. It supports the
following programming models:

■ Asynchronous and dispatch callback handling using one of
the following methods:

- Port-based asynchronous callback handler,
AsyncClientHandlerFeature, described in Section 3.5.2,
"Developing the Asynchronous Handler Interface".

- Per-request asynchronous callback handler, as described in
Section 3.7, "Using the JAX-WS Reference Implementation"

■ Asynchronous polling, as described in Section 3.7, "Using the
JAX-WS Reference Implementation".

■ Synchronous invocation by enabling a flag, as described in
Section 3.6.2.4, "Configuring MakeConnection as the
Transport for Synchronous Methods".

Use of MakeConnection transport with
AsyncClientHandlerFeature is recommended as a best
practice when using asynchronous invocation due to its scalability
and ability to survive a JVM restart.

Synchronous Transport Provides support for synchronous and asynchronous Web service
invocation with very limited support for WS-Addressing. For
details, see Section 3.7, "Using the JAX-WS Reference
Implementation".

Synchronous transport is recommended when using synchronous
invocation. It can be used for asynchronous invocation, as well,
though this is not considered a best practice. It supports the
following programming models:

■ Asynchronous and dispatch callback handling on a per
request basis using the standard JAX-WS RI implementation,
described in Section 3.7, "Using the JAX-WS Reference
Implementation".

■ Asynchronous polling, as described in Section 3.7, "Using the
JAX-WS Reference Implementation".

■ Synchronous invocation.

Table 3–2 (Cont.) Transport Types for Invoking Web Services Asynchronously

Transport Types Description

Steps to Invoke Web Services Asynchronously

Invoking Web Services Asynchronously 3-5

3.2 Steps to Invoke Web Services Asynchronously
This section describes the steps required to invoke Web services asynchronously.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the
jwsc Ant task and deploying the Web services. For more information, see Getting
Started With JAX-WS Web Services for Oracle WebLogic Server.

Table 3–3 Steps to Invoke Web Services Asynchronously

Step Description

1 Configure Web service
persistence to support
asynchronous Web
service invocation.

Configure Web service persistence on the servers hosting the
Web service and client to retain context information required
for processing a message at the Web service or client. For more
information, see Section 3.3, "Configuring Your Servers for
Asynchronous Web Service Invocation".

Note: This step is not required if you are programming the
Web service client using the standard JAX-WS RI
implementation and synchronous transport (in Step 3), as
described in Section 3.7, "Using the JAX-WS Reference
Implementation".

2 Configure Web service
buffering to enable the
Web service to process
requests asynchronously.
(Optional)

This step is optional. To configure the Web service to process
requests asynchronously, configure buffering on the server
hosting the Web service. Buffering enables you to store
messages in a JMS queue for asynchronous processing by the
Web service. For more information, see Section 3.3,
"Configuring Your Servers for Asynchronous Web Service
Invocation".

3 Build the client artifacts
required for
asynchronous
invocation.

To generate asynchronous polling and asynchronous callback
handler methods in the service endpoint interface, create an
external binding declarations that enables asynchronous
mappings and pass the bindings file as an argument to the
clientgen when compiling the client. See Section 3.4,
"Building the Client Artifacts for Asynchronous Web Service
Invocation".

4 Implement the Web
service client based on
the transport and
programming model
required.

Refer to one of the following sections based on the transport
and programming model required:

■ Use asynchronous client transport, as described in
Section 3.5, "Developing Scalable Asynchronous JAX-WS
Clients (Asynchronous Client Transport)".
(Recommended as a best practice.)

■ Enable asynchronous access from behind a firewall using
MakeConnection. See Section 3.6, "Using Asynchronous
Web Service Clients From Behind a Firewall
(MakeConnection)".

■ Implement standard JAX-WS programming models, such
as asynchronous polling or per-request asynchronous
callback handling, using synchronous transport. See
Section 3.7, "Using the JAX-WS Reference
Implementation".

When using Web services in a cluster, review the guidelines
described in Section 3.10, "Clustering Considerations for
Asynchronous Web Service Messaging".

5 Compile the Web service
client and package the
client artifacts.

For more information, see "Compiling and Running the Client
Application" in Getting Started With JAX-WS Web Services for
Oracle WebLogic Server.

Configuring Your Servers for Asynchronous Web Service Invocation

3-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

3.3 Configuring Your Servers for Asynchronous Web Service Invocation

To support asynchronous Web service invocation, you need to configure the features
defined in the following table on the servers to which the Web service and client are
deployed.

6 Deploy the Web service
client.

See "Deploying and Undeploying WebLogic Web Services" in
Getting Started With JAX-WS Web Services for Oracle WebLogic
Server.

7 Monitor the Web service
client.

You can monitor runtime information for clients that invoke
Web services asynchronously, such as number of invocations,
errors, faults, and so on, using the Administration Console or
WLST. See Section 3.9, "Monitoring Asynchronous Web
Service Invocation".

Note: This step is not required if you are programming the Web
service client using the standard JAX-WS RI implementation and
synchronous transport, as described in Section 3.7, "Using the JAX-WS
Reference Implementation".

Table 3–4 Configuration for Asynchronous Web Service Invocation

Feature Description

Persistence Web service persistence is used to save the following types of
information:

■ Client identity and properties

■ SOAP message, including its headers and body

■ Context properties required for processing the message at the
Web service or client (for both asynchronous and synchronous
messages)

The MakeConnection transport protocol makes use of Web service
persistence as follows:

■ Web service persistence configured on the MC Receiver (Web
service) persists response messages that are awaiting
incoming MakeConnection messages for the MakeConnection
anonymous URI to which they are destined. Messages are
persisted until either they are returned as a response to an
incoming MakeConnection message or the message reaches
the maximum lifetime for a persistent store object, resulting in
the message being cleaned from the store.

■ Web service persistence configured on the MC Initiator (Web
service client) is used with the asynchronous client handler
feature to recover after a VM restart.

You can configure Web service persistence using the Configuration
Wizard to extend the WebLogic Server domain using a Web
services-specific extension template. Alternatively, you can
configure the resources required for these advanced features using
the Oracle WebLogic Administration Console or WLST. For
information about configuring Web service persistence, see
Section 6.3.3, "Configuring Web Service Persistence for Web
Service Clients". For information about the APIs available for
persisting client and message information, see Section 3.8,
"Propagating Request Context to the Response".

Table 3–3 (Cont.) Steps to Invoke Web Services Asynchronously

Step Description

Building the Client Artifacts for Asynchronous Web Service Invocation

Invoking Web Services Asynchronously 3-7

3.4 Building the Client Artifacts for Asynchronous Web Service
Invocation

Using the WebLogic Server client-side tooling (for example, clientgen), you can
generate automatically the client artifacts required for asynchronous Web service
invocation. Specifically, the following artifacts are generated:

■ Service endpoint interfaces for invoking the Web service asynchronously with or
without a per-request asynchronous callback handler. For example, if the Web
service defined the following method:

public int addNumbers(int opA, int opB) throws MyException

Then the following methods will be generated:

public Future<?> addNumbersAsync(int opA, int opB,
 AsyncHandler<AddNumbersResponse>)
public Response<AddNumbersResponse> addNumbersAsync(int opA, int opB)

■ Asynchronous handler interface for implementing a handler and setting it on the
port using AsyncClientHandlerFeature. The asynchronous handler interface
is named as follows: portInterfaceNameAsyncHandler, where
portInterfaceName specifies the name of the port interface.

For example, for a Web service with a port type name AddNumbersPortType, an
asynchronous handler interface named AddNumbersPortTypeAsyncHandler is
generated with the following method:

public void onAddNumbersResponse(Response<AddNumbersResponse>)

The AsyncClientHandlerFeature is described later, in Section 3.5.2,
"Developing the Asynchronous Handler Interface".

To generate asynchronous client artifacts in the service endpoint interface when the
WSDL is compiled, enable the jaxws:enableAsyncMapping binding declaration in
the WSDL file.

Alternatively, you can create an external binding declarations file that contains all
binding declarations for a specific WSDL or XML Schema document. Then, pass the
binding declarations file to the <binding> child element of the wsdlc, jwsc, or
clientgen Ant task. For more information, see "Creating an External Binding
Declarations File Using JAX-WS Binding Declarations" in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server.

The following provides an example of a binding declarations file
(jaxws-binding.xml) that enables the jaxws:enableAsyncMapping binding
declaration:

Message buffering When a buffered operation is invoked by a client, the request is
stored in a JMS queue and WebLogic Server processes it
asynchronously. If WebLogic Server goes down while the request
is still in the queue, it will be processed as soon as WebLogic
Server is restarted. Message buffering is configured on the server
hosting the Web service. For configuration information, see
Chapter 7, "Configuring Message Buffering for Web Services".

Note: Message buffering is enabled automatically on the Web
service client.

Table 3–4 (Cont.) Configuration for Asynchronous Web Service Invocation

Feature Description

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

3-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

<bindings
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="AddNumbers.wsdl"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions">
 <package name="examples.webservices.async"/>
 <enableAsyncMapping>true</enableAsyncMapping>
 </bindings>
</bindings>

Then, to update the build.xml file to generate client artifacts necessary to invoke a
Web service operation asynchronously:

1. Use the taskdef Ant task to define the full classname of the clientgen Ant
tasks.

2. Add a target that includes a reference to the external binding declarations file
containing the asynchronous binding declaration, as defined above. In this case,
the clientgen Ant task generates both synchronous and asynchronous flavors of
the Web service operations in the JAX-WS stubs.

For example:

<taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

<target name="build_client">

<clientgen
 type="JAXWS"
 wsdl="AddNumbers.wsdl"
 destDir="${clientclasses.dir}"
 packageName="examples.webservices.async.client">
 <binding file="jaxws-binding.xml" />
 </clientgen>
 <javac
 srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
 includes="**/*.java"/>
 <javac
 srcdir="src" destdir="${clientclass-dir}"
 includes="examples/webservices/async/client/**/*.java"/>

</target>

3.5 Developing Scalable Asynchronous JAX-WS Clients (Asynchronous
Client Transport)

The asynchronous client transport feature provides a scalable asynchronous client
programming model. Specifically, this feature:

■ Publishes a client-side asynchronous response endpoint, shown in Figure 3–1.

■ Creates and publishes a service implementation that invokes the requested
asynchronous handler implementation.

■ Automatically adds WS-Addressing non-anonymous ReplyTo headers to all
non-one-way, outbound messages. This header references the published response
endpoint.

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

Invoking Web Services Asynchronously 3-9

■ Correlates asynchronous request and response messages using the facilities listed
above.

When the asynchronous client transport feature is enabled, all other JAX-WS client
programming models (such as asynchronous polling, callback handler, dispatch, and
so on) continue to be supported. Synchronous Web service operations will, by default,
use synchronous transport, unless explicitly configured to use asynchronous client
transport feature when enabling the feature.

The following figure shows the message flow used by the asynchronous client
transport feature.

Figure 3–1 Asynchronous Client Transport Feature

As shown in the previous figure:

1. The client enables the asynchronous client transport feature on the client proxy
and invokes an asynchronous Web service operation.

2. The Web service operation is invoked via the client proxy.

3. The Web service processes the request and sends a response message (at some time
in the future) back to the client. The response message is sent to the client’s
asynchronous response endpoint. The address of the asynchronous response
endpoint is maintained in the WS-Addressing headers.

4. The response message is forwarded to the appropriate client via the client proxy.

5. The client asynchronous handler is invoked to handle the response message.

The following sections describe how to develop scalable asynchronous JAX-WS clients
using asynchronous client transport:

■ Section 3.5.1, "Enabling and Configuring the Asynchronous Client Transport
Feature"

■ Section 3.5.2, "Developing the Asynchronous Handler Interface"

■ Section 3.5.3, "Propagating User-defined Request Context to the Response"

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

3-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

3.5.1 Enabling and Configuring the Asynchronous Client Transport Feature

To enable the asynchronous client transport feature on a client, pass an instance of
weblogic.jws.jaxws.client.async.AsyncClientTransportFeature as a
parameter when creating the Web service proxy or dispatch. The following sections
describe how to enable and configure the asynchronous client transport feature on a
client:

■ Section 3.5.1.1, "Configuring the Address of the Asynchronous Response
Endpoint"

■ Section 3.5.1.2, "Configuring the ReplyTo and FaultTo Headers of the
Asynchronous Response Endpoint"

■ Section 3.5.1.3, "Configuring the Context Path of the Asynchronous Response
Endpoint"

■ Section 3.5.1.4, "Publishing the Asynchronous Response Endpoint"

■ Section 3.5.1.5, "Configuring Asynchronous Client Transport for Synchronous
Operations"

The asynchronous response endpoint described by the
AsyncClientTransportFeature is used by all client instances that share the same
client ID and is in effect from the time the first client instance using the client ID is
published. The asynchronous response endpoint remains published until the client ID
is explicitly disposed or the container for the client is deactivated (for example, the
host Web application or EJB is undeployed). For more information about managing the
client ID, see "Managing Client Identity" in Getting Started With JAX-WS Web Services
for Oracle WebLogic Server.

The asynchronous response endpoint address is generated automatically using the
following format:

http://contextAddress:port/context/targetPort-AsyncResponse

In the above:

■ contextAddress:port—Specifies one of the following:

– If clustered application, cluster address and port.

– If not clustered application, default WebLogic Server address and port for the
selected protocol.

– If no default address is defined, first network channel address for the given
protocol. For more information about network channels, see "Configuring
Network Resources" in Configuring Server Environments for Oracle WebLogic
Server.

■ context—Current servlet context, if running within an existing context.
Otherwise, a new context named by the UUID and scoped to the application.

Note: The MakeConnection and asynchronous client transport
features are mutually exclusive. If you attempt to enable both features
on the same Web service client, an error is returned. For more
information about MakeConnection, see Section 3.6, "Using
Asynchronous Web Service Clients From Behind a Firewall
(MakeConnection)".

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

Invoking Web Services Asynchronously 3-11

■ targetPort-AsyncResponse—Port name of the service accessed by the client
appended by -AsyncResponse.

You can configure the asynchronous client transport feature, as described in the
following sections:

■ Section 3.5.1.1, "Configuring the Address of the Asynchronous Response
Endpoint"

■ Section 3.5.1.2, "Configuring the ReplyTo and FaultTo Headers of the
Asynchronous Response Endpoint"

■ Section 3.5.1.3, "Configuring the Context Path of the Asynchronous Response
Endpoint"

■ Section 3.5.1.4, "Publishing the Asynchronous Response Endpoint"

■ Section 3.5.1.5, "Configuring Asynchronous Client Transport for Synchronous
Operations"

For more information about the AsyncClientTransportFeature() constructor
formats, see the WebLogic Server Javadoc.

3.5.1.1 Configuring the Address of the Asynchronous Response Endpoint
You can configure an address for the asynchronous response endpoint by passing it as
an argument to the AsyncClientTransportFeature, as follows:

String responseAddress = "http://myserver.com:7001/myReliableService/myClientCallback";
AsyncClientTransportFeature asyncFeature = new AsyncClientTransportFeature(responseAddress);
BackendService port = _service.getBackendServicePort(asyncFeature);

The specified address must be a legal address for the server or cluster (including the
network channels or proxy addresses). Ephemeral ports are not supported. The
specified context must be scoped within the current application or refer to an unused
context; it cannot refer to a context that is scoped to another deployed application,
otherwise an error is thrown.

The following tables summarizes the constructors that can be used to configure the
address of the asynchronous response endpoint.

Table 3–5 Constructors for Configuring the Address of the Asynchronous Response Endpoint

Constructor Description

AsyncClientTransportFeature(java.lang.Str
ing address)

Configures the address of the asynchronous response
endpoint.

AsyncClientTransportFeature(java.lang.Str
ing address, boolean doPublish)

Configures the following:

■ Address of the asynchronous response endpoint.

■ Whether to publish the endpoint at the specified
address. For more information, see Section 3.5.1.4,
"Publishing the Asynchronous Response Endpoint".

AsyncClientTransportFeature(java.lang.Str
ing address, boolean doPublish, boolean
useAsyncWithSyncInvoke)

Configures the following:

■ Address of the asynchronous response endpoint.

■ Whether to publish the endpoint at the specified
address. For more information, see Section 3.5.1.4,
"Publishing the Asynchronous Response Endpoint".

■ Whether to enable asynchronous client transport
for synchronous operations. For more information,
see Section 3.5.1.5, "Configuring Asynchronous
Client Transport for Synchronous Operations".

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

3-12 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

3.5.1.2 Configuring the ReplyTo and FaultTo Headers of the Asynchronous
Response Endpoint
You can configure the address to use for all outgoing ReplyTo and FaultTo headers of
type javax.xml.ws.wsaddressing.W3CEndpointReference for the
asynchronous response endpoint by passing them as arguments to the
AsyncClientTransportFeature.

For example, to configure only the ReplyTo header address:

W3CEndpointReference replyToAddress =
"http://myserver.com:7001/myReliableService/myClientCallback";
AsyncClientTransportFeature asyncFeature = new AsyncClientTransportFeature(replyToAddress);
BackendService port = _service.getBackendServicePort(asyncFeature);

To configure both the ReplyTo and FaultTo header addresses:

W3CEndpointReference replyToAddress =
"http://myserver.com:7001/myReliableService/myClientCallback";
W3CEndpointReference faultToAddress = "http://myserver.com:7001/myReliableService/FaultTo";
AsyncClientTransportFeature asyncFeature = new AsyncClientTransportFeature(replyToAddress,
faultToAddress);
BackendService port = _service.getBackendServicePort(asyncFeature);

The following tables summarizes the constructors that can be used to configure the
endpoint reference address for the outgoing ReplyTo and FaultTo headers.

Table 3–6 Constructors for Configuring the ReplyTo and FaultTo Headers

Constructor Description

AsyncClientTransportFeature(javax.xml.ws.
wsaddressing.W3CEndpointReference
replyTo)

Configures the endpoint reference address for the
outgoing ReplyTo headers.

AsyncClientTransportFeature(javax.xml.ws.
wsaddressing.W3CEndpointReference
replyTo, boolean doPublish)

Configures the following:

■ Endpoint reference address for the outgoing
ReplyTo headers.

■ Whether to publish the endpoint at the specified
address. For more information, see Section 3.5.1.4,
"Publishing the Asynchronous Response Endpoint".

AsyncClientTransportFeature(javax.xml.ws.
wsaddressing.W3CEndpointReference
replyTo, boolean doPublish, boolean
useAsyncWithSyncInvoke)

Configures the following:

■ Endpoint reference address for the outgoing
ReplyTo headers.

■ Whether to publish the endpoint at the specified
address. For more information, see Section 3.5.1.4,
"Publishing the Asynchronous Response Endpoint".

■ Whether to enable asynchronous client transport
for synchronous operations. For more information,
see Section 3.5.1.5, "Configuring Asynchronous
Client Transport for Synchronous Operations".

AsyncClientTransportFeature(javax.xml.ws.
wsaddressing.W3CEndpointReference
replyTo,
javax.xml.ws.wsaddressing.W3CEndpointRefe
rence faultTo)

Configures the endpoint reference address for the
outgoing ReplyTo and FaultTo headers

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

Invoking Web Services Asynchronously 3-13

3.5.1.3 Configuring the Context Path of the Asynchronous Response Endpoint
When a client is running within a servlet or Web application-based Web service, it can
use its ServletContext and context path to construct the asynchronous response
endpoint. You pass the information as an argument to the
AsyncClientTransportFeature, as follows:

■ When running inside a servlet:

AsyncClientTransportFeature asyncFeature =
 new AsyncClientTransportFeature(getServletContext());

■ When running inside a Web service or an EJB-based Web service:

import com.sun.xml.ws.api.server.Container;
...
Container c = ContainerResolver.getInstance().getContainer();
ServletContext servletContext = c.getSPI(ServletContext.class);
AsyncClientTransportFeature asyncFeature =
 new AsyncClientTransportFeature(servletContext);

The specified context must be scoped within the current application or refer to an
unused context; it cannot refer to a context that is scoped to another deployed
application.

The following tables summarizes the constructors that can be used to configure the
context path of the asynchronous response endpoint.

AsyncClientTransportFeature(javax.xml.ws.
wsaddressing.W3CEndpointReference
replyTo,
javax.xml.ws.wsaddressing.W3CEndpointRefe
rence faultTo, boolean doPublish)

Configures the following:

■ Endpoint reference address for the outgoing
ReplyTo and FaultTo headers.

■ Whether to publish the endpoint at the specified
address. For more information, see Section 3.5.1.4,
"Publishing the Asynchronous Response Endpoint".

AsyncClientTransportFeature(javax.xml.ws.
wsaddressing.W3CEndpointReference
replyTo,
javax.xml.ws.wsaddressing.W3CEndpointRefe
rence faultTo, boolean doPublish, boolean
useAsyncWithSyncInvoke)

Configures the following:

■ Endpoint reference address for the outgoing
ReplyTo and FaultTo headers.

■ Whether to publish the endpoint at the specified
address. For more information, see Section 3.5.1.4,
"Publishing the Asynchronous Response Endpoint".

■ Whether to enable asynchronous client transport
for synchronous operations. For more information,
see Section 3.5.1.5, "Configuring Asynchronous
Client Transport for Synchronous Operations".

Note: When you use the empty constructor for
AsyncClientTransportFeature, the Web services runtime
attempts to discover the container in which the current feature was
instantiated and publish the endpoint using any available container
context.

Table 3–6 (Cont.) Constructors for Configuring the ReplyTo and FaultTo Headers

Constructor Description

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

3-14 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

3.5.1.4 Publishing the Asynchronous Response Endpoint
You can configure whether to publish the asynchronous response endpoint by passing
the doPublish boolean value as an argument to
AsycnClientTransportFeature() when configuring the following properties:

■ Address of the asynchronous response endpoint. See Table 3–5.

■ ReplyTo and FaultTo headers. See Table 3–6.

■ Context path of the asynchronous response endpoint. See Table 3–7.

If doPublish is set to false, then the asynchronous response endpoint is not
published automatically, but WS-Addressing headers will be added to outbound
non-one-way messages. This scenario supports the following programming models:

■ Asynchronous polling (with no attempt to access the Response object)

■ Dispatch asynchronous polling (with no attempt to access the Response object)

■ Dispatch one-way invocation

■ Synchronous invocation using synchronous transport option (default)

For all other asynchronous programming models, the availability of a asynchronous
response endpoint is required and the Web service client is responsible for publishing
it prior to making outbound requests if doPublish is set to false.

The following example configures the asynchronous response endpoint address and
publishes the asynchronous response endpoint:

String responseAddress = "http://localhost:7001/myReliableService/myReliableResponseEndpoint";
boolean doPublish = true;
AsyncClientTransportFeature asyncFeature =
 new AsyncClientTransportFeature(responseAddress, doPublish);
BackendService port = _service.getBackendServicePort(asyncFeature);

3.5.1.5 Configuring Asynchronous Client Transport for Synchronous Operations
You can enable or disable asynchronous client transport for synchronous operations
using the useAsyncWithSyncInvoke boolean flag when configuring the following
properties:

■ Address of the asynchronous response endpoint. See Table 3–5.

■ ReplyTo and FaultTo headers. See Table 3–6.

■ Context path of the asynchronous response endpoint. See Table 3–7.

Table 3–7 Constructors for Configuring the Context Path of the Asynchronous Response Endpoint

Constructor Description

AsyncClientTransportFeature(java.lang.Obj
ect context)

Configures the context path of the asynchronous
response endpoint.

AsyncClientTransportFeature(java.lang.Obj
ect context, boolean
useAsyncWithSyncInvoke)

Configures the following:

■ Context path of the asynchronous response
endpoint.

■ Whether to enable asynchronous client transport
for synchronous operations. For more information,
see Section 3.5.1.5, "Configuring Asynchronous
Client Transport for Synchronous Operations".

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

Invoking Web Services Asynchronously 3-15

The following example configures the asynchronous response endpoint address and
enables use of asynchronous client transport for synchronous operations:

String responseAddress = "http://localhost:7001/myReliableService/myReliableResponseEndpoint";
boolean useAsyncWithSyncInvoke = true;
AsyncClientTransportFeature asyncFeature =
 new AsyncClientTransportFeature(responseAddress, useAsyncWithSyncInvoke);
BackendService port = _service.getBackendServicePort(asyncFeature);

3.5.2 Developing the Asynchronous Handler Interface

As described in Section 3.4, "Building the Client Artifacts for Asynchronous Web
Service Invocation", the asynchronous handler interface,
weblogic.jws.jaxws.client.async.AsyncClientHandlerFeature, sets a
single asynchronous handler instance on the port rather than on a per-request basis.

For example, when you build the client classes using clientgen, as described in
Section 3.4, "Building the Client Artifacts for Asynchronous Web Service Invocation",
the asynchronous handler interface is generated, as shown below.

Example 3–1 Example of the Asynchronous Handler Interface

import javax.xml.ws.Response;

/**
 * This class was generated by the JAX-WS RI.
 * Oracle JAX-WS 2.1.5
 * Generated source version: 2.1
 *
 */
public interface BackendServiceAsyncHandler {

 /**
 *
 * @param response
 */
 public void onDoSomethingResponse(Response<DoSomethingResponse> response);

}

The asynchronous handler interface is generated as part of the same package as the
port interface and represents the methods required to accept responses for any
operation defined on the service. You can import and implement this interface in your
client code to provide a way to receive and process asynchronous responses in a
strongly-typed manner.

To set a single asynchronous handler instance on the port, pass an instance of the
weblogic.jws.jaxws.client.async.AsyncClientHandlerFeature as a

Note: If you set a single asynchronous handler instance on the port,
as described in this section, and subsequently attempt to configure a
per-request asynchronous handler, as described in Section 3.7, "Using
the JAX-WS Reference Implementation", then a runtime exception is
returned.

Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

3-16 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

parameter when creating the Web service proxy or dispatch. You specify the name of
the asynchronous handler that will be invoked when a response message is received.

The following example shows how to develop an asynchronous handler interface. The
example demonstrates how to initialize the AsyncClientHandlerFeature to
connect the asynchronous handler implementation to the port used to make
invocations on the backend service. This example is excerpted from Example 2–2,
"Asynchronous Web Service Client Best Practices Example".

Example 3–2 Example of Developing the Asynchronous Handler Interface

import weblogic.jws.jaxws.client.async.AsyncClientHandlerFeature;
...
 BackendServiceAsyncHandler handler = new BackendServiceAsyncHandler() {
 public void onDoSomethingResponse(Response<DoSomethingResponse> res) {
 // ... Handle Response ...
 try {
 DoSomethingResponse response = res.get();
 _lastResponse = response.getReturn();
 System.out.println("Got async response: " + _lastResponse);
 } catch (Exception e) {
 _lastResponse = e.toString();
 e.printStackTrace();
 }
 }
 };
 AsyncClientHandlerFeature handlerFeature = new AsyncClientHandlerFeature(handler);
 features.add(handlerFeature);
 _features = features.toArray(new WebServiceFeature[features.size()]);
 BackendService anotherPort = _service.getBackendServicePort(_features);
...
 // Make the invocation. Our asynchronous handler implementation (set
 // into the AsyncClientHandlerFeature above) receives the response.
 String request = "Dance and sing";
 System.out.println("Invoking DoSomething asynchronously with request: " + request);
 anotherPort.doSomethingAsync(request);

3.5.3 Propagating User-defined Request Context to the Response
The weblogic.wsee.jaxws.JAXWSProperties API defines the following
properties that enables users to propagate user-defined request context information to
the response message, without relying on the asynchronous handler instance state.

The asynchronous handler instance may be created at any time; for example, if the
client’s server goes down and is restarted. Therefore, storing request context in the
asynchronous handler interface will not be useful.

The JAXWSProperties properties are defined in the following table.

Table 3–8 Properties Supported by the JAXWSProperties API

This property . . . Specifies . . .

MESSAGE_ID Message ID for the request. The client can set this property on the request context
to override the auto-generation of the per-request Message ID header.

Using Asynchronous Web Service Clients From Behind a Firewall (MakeConnection)

Invoking Web Services Asynchronously 3-17

In addition, Web service clients can persist context properties, as long as they are
Serializable, for the request message. Context properties can include those required by
the client or the communication channels. Message properties can be stored as part of
the weblogic.wsee.jaxws.JAXWSProperties.PERSISTENT_CONTEXT Map
property and retrieved after the response message is returned. For complete details,
see Section 3.8, "Propagating Request Context to the Response".

3.6 Using Asynchronous Web Service Clients From Behind a Firewall
(MakeConnection)

Web Services MakeConnection is a client polling mechanism that provides an
alternative to asynchronous client transport, typically to provide support for clients
that are behind a firewall. WebLogic Server supports WS-Make Connection version
1.1, as described in the MakeConnection specification at:
http://docs.oasis-open.org/ws-rx/wsmc/200702, and is backwards
compatible with version 1.0.

Specifically, MakeConnection:

■ Enables the decoupling of the response message from the initiating transport
request used to send the request message (similar to asynchronous client
transport).

■ Supports Web service clients that are non-addressable and unable to accept an
incoming connection (for example, clients behind a firewall).

■ Enables a Web service client to act as an MC-Initiator and the Web service to act as
an MC-Receiver, as defined by the WS-MakeConnection specification.

The following figure, borrowed from the Web Services MakeConnection specification,
shows a typical MakeConnection message flow.

PERSISTENT_CONTEXT Context properties required by the client or the communication channels. Web
service clients can persist context properties, as long as they are Serializable, for the
request message. These properties will be available in the response context map
available from the Response object when the asynchronous handler is invoked.
For more information, see Section 3.8, "Propagating Request Context to the
Response".

RELATES_TO Message ID to which the response correlates.

REQUEST_TIMEOUT For synchronous operations using asynchronous client transport, maximum
amount of time to block and wait for a response. This property default to 0
indicating no timeout.

Table 3–8 (Cont.) Properties Supported by the JAXWSProperties API

This property . . . Specifies . . .

Using Asynchronous Web Service Clients From Behind a Firewall (MakeConnection)

3-18 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Figure 3–2 MakeConnection Message Flow

As shown in the previous figure, the MakeConnection message flow is as follows:

1. The getQuote() request message is sent from the Web service client (MC
Initiator) to the Web service (MC Receiver). The ReplyTo header contains a
MakeConnection anonymous URI that specifies the UUID for the MC Initiator.

The MC Receiver receives the getQuote() message. The presence of the
MakeConnection anonymous URI in the ReplyTo header indicates that the
response message can be sent back on the connection’s back channel or the client
will use MakeConnection polling to retrieve it.

2. The MC Receiver closes the connection by sending back an empty response (HTTP
202) to the MC Initiator.

Upon receiving an empty response, the MC Initiator initializes and starts its
polling mechanism to enable subsequent polls to be sent to the MC Receiver.
Specifically, the MC Initiator polling mechanism starts a timer with expiration set
to the interval configured for the time between successive polls.

3. Upon timer expiration, the MC Initiator sends a MakeConnection message to the
MC Receiver with the same MakeConnection anonymous URI information in its
message.

4. As the MC Receiver has not completed process the getQuote() operation, no
response is available to send back to the MC Initiator. As a result, the MC Receiver
closes the connection by sending back another empty response (HTTP 202)
indicating that no responses are available at this time.

Upon receipt of the empty message, the MC Initiator restarts the timer for the
MakeConnection polling mechanism.

Before the timer expires, the getQuote() operation completes. Since the original
request contained a MakeConnection anonymous URI in its ReplyTo header, the
MC Receiver stores the response and waits to receive the next MakeConnection
message with a matching address.

5. Upon timer expiration, the MC Initiator sends a MakeConnection message to the
MC Receiver with the same MakeConnection anonymous URI information in its
message.

6. Upon receipt of the MakeConnection message, the MC Receiver retrieves the
stored response message and sends it as a response to the received
MakeConnection message.

Using Asynchronous Web Service Clients From Behind a Firewall (MakeConnection)

Invoking Web Services Asynchronously 3-19

The MC Initiator receives the response message and terminates the
MakeConnection polling mechanism.

MakeConnection transport is recommended when using asynchronous invocation
from behind a firewall. For a list of programming models supported, see Table 3–2,
" Transport Types for Invoking Web Services Asynchronously".

The following sections describe how to enable and configure MakeConnection on a
Web service and client:

■ Section 3.6.1, "Enabling and Configuring MakeConnection on a Web Service"

■ Section 3.6.2, "Enabling and Configuring MakeConnection on a Web Service
Client"

3.6.1 Enabling and Configuring MakeConnection on a Web Service
MakeConnection can be enabled by attaching a MakeConnection policy assertion to
the Web service and then calling its methods from a client using the standard JAX-WS
client APIs. A policy can be attached to a Web service in one of the following ways:

■ Adding an @Policy annotation to the JWS file. You can attach a MakeConnection
policy at the class level only.

■ Adding reference to the policy to the Web service WSDL.

The following sections describe the steps required to enable MakeConnection on a
Web service:

■ Section 3.6.1.1, "Creating the Web Service MakeConnection WS-Policy File
(Optional)"

■ Section 3.6.1.2, "Programming the JWS File to Enable MakeConnection"

3.6.1.1 Creating the Web Service MakeConnection WS-Policy File (Optional)
A WS-Policy file is an XML file that contains policy assertions that comply with the
WS-Policy specification. In this case, the WS-Policy file contains Web service
MakeConnection policy assertions.

WebLogic Server includes pre-packaged WS-Policy files that contain typical
MakeConnection assertions that you can use if you do not want to create your own
WS-Policy file. The pre-packaged WS-Policy files that support MakeConnection are
listed in the following table. In some cases, both reliable messaging and
MakeConnection are enabled by the policy. For more information, see Appendix A,
"Pre-packaged WS-Policy Files for Web Services Reliable Messaging and
MakeConnection".

Note: You can attach MakeConnection policies at the class level only;
you cannot attach the MakeConnection policies at the method level.

Table 3–9 Pre-packaged WS-Policy Files That Support MakeConnection

Pre-packaged WS-Policy File Description

Mc1.1.xml Enables MakeConnection support on the Web service and specifies usage as
optional on the Web service client. The WS-Policy 1.5 protocol is used. See
Section A.5, "Mc1.1.xml (WS-Policy File)".

Using Asynchronous Web Service Clients From Behind a Firewall (MakeConnection)

3-20 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

You can use one of the pre-packaged MakeConnection WS-Policy files included in
WebLogic Server; these files are adequate for most use cases. You cannot modify the
pre-packaged files. If the values do not suit your needs, you must create a custom
WS-Policy file. For example, you may wish to configure support of MakeConnection
as required on the Web service client side. The MakeConnection policy assertions
conform to the WS-PolicyAssertions specification at
http://www.ibm.com/developerworks/library/specification/ws-polas
.

To create a custom WS-Policy file that contains MakeConnection assertions, use the
following guidelines:

■ The root element of a WS-Policy file is always <wsp:Policy>.

■ To configure Web service MakeConnection, you simply add a
<wsmc:MCSupported> child element to define the Web service MakeConnection
support.

■ The <wsmc:MCSupported> child element contains one policy attribute,
Optional, that specifies whether MakeConnection must be configured on the
Web service client. This attribute can be set to true or false, and is set to true
by default. If set to false, then use of MakeConnection is required and both the
ReplyTo and FaultTo (if specified) headers must contain MakeConnection
anonymous URIs.

The following example enables MakeConnection on the Web service and specifies that
MakeConnection must be enabled on the Web service client. In this example, the
WS-Policy 1.5 protocol is used.

<?xml version="1.0"?>
<wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy"
 xmlns:wsmc="http://docs.oasis-open.org/ws-rx/wsmc/200702">
 <wsmc:MCSupported wsp15:Optional="false" />
</wsp15:Policy>

Mc.xml Enables MakeConnection support on the Web service and specifies usage as
optional on the Web service client. The WS-Policy 1.2 protocol is used. See
Section A.6, "Mc.xml (WS-Policy File)".

Reliability1.2_ExactlyOnce_
WithMC1.1.xml

Specifies policy assertions related to quality of service. It enables
MakeConnection support on the Web service and specifies usage as
optional on the Web service client. See Section A.7, "Reliability1.2_
ExactlyOnce_WithMC1.1.xml (WS-Policy File)".

Reliability1.2_
SequenceSTR.xml

Specifies that in order to secure messages in a reliable sequence, the runtime
will use the wsse:SecurityTokenReference that is referenced in the
CreateSequence message. It enables MakeConnection support on the
Web service and specifies usage as optional on the Web service client. See
Section A.8, "Reliability1.2_SequenceSTR.xml (WS-Policy File)".

Reliability1.0_1.2.xml Combines 1.2 and 1.0 WS-Reliable Messaging policy assertions. The policy
assertions for the 1.2 version MakeConnection support on the Web service
and specifies usage as optional on the Web service client. This sample relies
on smart policy selection to determine the policy assertion that is applied at
runtime. See Section A.12, "Reliability1.0_1.2.xml (WS-Policy File)".

Table 3–9 (Cont.) Pre-packaged WS-Policy Files That Support MakeConnection

Pre-packaged WS-Policy File Description

Using Asynchronous Web Service Clients From Behind a Firewall (MakeConnection)

Invoking Web Services Asynchronously 3-21

3.6.1.2 Programming the JWS File to Enable MakeConnection
This section describes how to enable MakeConnection on the Web service using a
pre-packaged or custom MakeConnection WS-Policy file. For information about
creating a custom policy file, see Section 3.6.1.1, "Creating the Web Service
MakeConnection WS-Policy File (Optional)".

Use the @Policy annotation in your JWS file to specify that the Web service has a
WS-Policy file attached to it that contains MakeConnection assertions. WebLogic
Server delivers a set of pre-packaged WS-Policy files, as described in Appendix A,
"Pre-packaged WS-Policy Files for Web Services Reliable Messaging and
MakeConnection".

Refer to the following guidelines when using the @Policy annotation for Web service
reliable messaging:

■ You can attach the MakeConnection policy at the class level only; you cannot
attach the MakeConnection policy at the method level.

■ Use the uri attribute to specify the build-time location of the policy file, as
follows:

– If you have created your own WS-Policy file, specify its location relative to the
JWS file. For example:

@Policy(uri="McPolicy.xml", attachToWsdl=true)

In this example, the McPolicy.xml file is located in the same directory as the
JWS file.

– To specify one of the pre-packaged WS-Policy files or a WS-Policy file that is
packaged in a shared Java EE library, use the policy: prefix along with the
name and path of the policy file. This syntax tells the jwsc Ant task at
build-time not to look for an actual file on the file system, but rather, that the
Web service will retrieve the WS-Policy file from WebLogic Server at the time
the service is deployed.

– To specify that the policy file is published on the Web, use the http: prefix
along with the URL, as shown in the following example:

@Policy(uri="http://someSite.com/policies/mypolicy.xml"
 attachToWsdl=true)

■ Set the attachToWsdl attribute of the @Policy annotation to specify whether
the policy file should be attached to the WSDL file that describes the public
contract of the Web service. Typically, you want to publicly publish the policy so
that client applications know the reliable messaging capabilities of the Web
service. For this reason, the default value of this attribute is true.

Note: Shared Java EE libraries are useful when you want to share a
WS-Policy file with multiple Web services that are packaged in
different Enterprise applications. As long as the WS-Policy file is
located in the META-INF/policies or WEB-INF/policies
directory of the shared Java EE library, you can specify the policy file
in the same way as if it were packaged in the same archive at the Web
service. See "Creating Shared Java EE Libraries and Optional
Packages" in Developing Applications for Oracle WebLogic Server for
information about creating libraries and setting up your environment
so the Web service can locate the policy files.

Using Asynchronous Web Service Clients From Behind a Firewall (MakeConnection)

3-22 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

For more information about the @Policy annotation, see "weblogic.jws.Policy" in
WebLogic Web Services Reference for Oracle WebLogic Server.

The following example shows a simple JWS file that enables MakeConnection; see the
explanation after the example for coding guidelines that correspond to the Java code in
bold.

package examples.webservices.async

import javax.jws.WebMethod;
import javax.jws.WebService;
import weblogic.jws.Policy;

/**
 * Simple reliable Web Service.
 */

@WebService(name="HelloWorldPortType",
 serviceName="HelloWorldService")

@Policy(uri="McPolicy.xml", attachToWsdl=true)
public class HelloWorldImpl {
 private static String onewaySavedInput = null;

/**
 * A one-way helloWorld method that saves the given string for later
 * concatenation to the end of the message passed into helloWorldReturn.
 */
 @WebMethod()
 public void helloWorld(String input) {
 System.out.println(" Hello World " + input);
 onewaySavedInput = input;
 }

/**
 * This echo method concatenates the saved message from helloWorld
 * onto the end of the provided message, and returns it.
 */
 @WebMethod()
 public String echo(String input2) {
 System.out.println(" Hello World " + input2 + onewaySavedInput);
 return input + onewaySavedInput;
 }
}

As shown in the previous example, the custom McPolicy.xml policy file is attached
to the Web service at the class level, which means that the policy file is applied to all
public operations of the Web service. You can attach a MakeConnection policy at the
class level only; you cannot attach a MakeConnection policy at the method level.

The policy file is attached to the WSDL file. For information about the pre-packaged
policies available and creating a custom policy, see Section 3.6.1.1, "Creating the Web
Service MakeConnection WS-Policy File (Optional)".

The echo() method has been marked with the @WebMethod JWS annotation, which
means it is a public operation called echo. Because of the @Policy annotation, the
operation using MakeConnection transport protocol.

Using Asynchronous Web Service Clients From Behind a Firewall (MakeConnection)

Invoking Web Services Asynchronously 3-23

3.6.2 Enabling and Configuring MakeConnection on a Web Service Client

To enable MakeConnection on a Web service client, pass an instance of the
weblogic.wsee.mc.api.McFeature as a parameter when creating the Web service
proxy or dispatch. A simple example of how to enable MakeConnection is shown
below.

package examples.webservices.myservice.client;

import weblogic.wsee.mc.api.McFeature;
...
 List<WebServiceFeature> features = new ArrayList<WebServiceFeature>();
...
 McFeature mcFeature = new McFeature();
 features.add(mcFeature);
...
 // ... Implement asynchronous handler interface as described in
 // Section 3.5.2, "Developing the Asynchronous Handler Interface."
 //
 AsyncClientHandlerFeature handlerFeature = new AsyncClientHandlerFeature(handler);
 features.add(handlerFeature);
 _features = features.toArray(new WebServiceFeature[features.size()]);
 BackendService port = _service.getBackendServicePort(_features);
...
 // Make the invocation. Our asynchronous handler implementation (set
 // into the AsyncClientHandlerFeature above) receives the response.
 String request = "Dance and sing";
 System.out.println("Invoking DoSomething asynchronously with request: " + request);
 anotherPort.doSomethingAsync(request);
..
 }
}

To configure specific features of MakeConnection on the Web service client, as
described in the following sections.

■ Section 3.6.2.1, "Configuring the Expiration Time for Sending MakeConnection
Messages"

Note: The MakeConnection and asynchronous client transport
features are mutually exclusive. If you attempt to enable both features
on the same Web service client, an error is returned. For more
information about asynchronous client transport, see Section 3.5,
"Developing Scalable Asynchronous JAX-WS Clients (Asynchronous
Client Transport)".

It is recommended that you use the asynchronous handler feature,
AsyncClientHandlerFeature when using the asynchronous
callback handler programming model. For more information, see
Section 3.5.2, "Developing the Asynchronous Handler Interface".

Note: This example will use synchronous transport for synchronous
methods. To configure MakeConnection as the transport for
synchronous methods, see Section 3.6.2.4, "Configuring
MakeConnection as the Transport for Synchronous Methods."

Using Asynchronous Web Service Clients From Behind a Firewall (MakeConnection)

3-24 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Section 3.6.2.2, "Configuring the Polling Interval"

■ Section 3.6.2.3, "Configuring the Exponential Backoff"

■ Section 3.6.2.4, "Configuring MakeConnection as the Transport for Synchronous
Methods"

3.6.2.1 Configuring the Expiration Time for Sending MakeConnection Messages
Table 3–10 defines that McFeature methods for configuring the maximum interval of
time before an MC Initiator stops sending MakeConnection messages to an MC
Receiver.

3.6.2.2 Configuring the Polling Interval
Table 3–11 defines that McFeature methods for configuring the interval of time that
must pass before a MakeConnection message is sent by an MC Initiator to an MC
Receiver after the receipt of an empty response message. If the MC Initiator does not
receive a non-empty response for a given message within the specified interval, the
MC Initiator sends another MakeConnection message.

In the following example, the polling interval is set to 36 hours.

...
 McFeature mcFeature = new McFeature();
 mcFeature.setInterval("P0DT36H")
 MyService port = service.getMyServicePort(mcFeature);

Table 3–10 Methods for Configuring the Expiration Time for Sending MakeConnection Messages

Method Description

String getsExpires() Returns the expiration value currently
configured.

void setExpires(String expires) Set the expiration time.

The value specified must be a positive value
and conform to the XML schema duration
lexical format, PnYnMnDTnHnMnS, where nY
specifies the number of years, nM specifies
the number of months, nD specifies the
number of days, T is the date/time
separator, nH specifies the number of hours,
nM specifies the number of minutes, and nS
specifies the number of seconds. This value
defaults to P1D (1 day).

Table 3–11 Methods for Configuring the Polling Interval

Method Description

String getInterval() Gets the polling interval.

void setInterval(String pollingInterval) Set the polling interval.

The value specified must be a positive value
and conform to the XML schema duration
lexical format, PnYnMnDTnHnMnS, where nY
specifies the number of years, nM specifies
the number of months, nD specifies the
number of days, T is the date/time
separator, nH specifies the number of hours,
nM specifies the number of minutes, and nS
specifies the number of seconds. This value
defaults to P0DT5S (5 seconds).

Using Asynchronous Web Service Clients From Behind a Firewall (MakeConnection)

Invoking Web Services Asynchronously 3-25

...

3.6.2.3 Configuring the Exponential Backoff
Table 3–12 defines the McFeature methods for configuring the exponential backoff
flag. This flag specifies whether the polling interval, described in Section 3.6.2.2,
"Configuring the Polling Interval", will be adjusted using the exponential backoff
algorithm. In this case, if the MC Initiator does not receive a non-empty response for
the time interval specified by the polling interval, the exponential backoff algorithm is
used for timing successive retransmissions by the MC Initiator, should the response
not be received.

The exponential backoff algorithm specifies that successive polling intervals should
increase exponentially, based on the polling interval. For example, if the polling
interval is 2 seconds, and the exponential backoff element is set, successive polling
intervals if the response is not received are 2, 4, 8, 16, 32, and so on.

This value defaults to false, the same polling interval is used in successive retries; the
interval does not increase exponentially.

In the following example, enables the exponential backoff flag.

...
 McFeature mcFeature = new McFeature();
 mcFeature.setMessageInterval(P0DT36H)
 mcFeature.setExponentialBackoff(true);
 MyService port = service.getMyServicePort(mcFeature);
...

3.6.2.4 Configuring MakeConnection as the Transport for Synchronous Methods
By default, synchronous methods use synchronous transport even when
MakeConnection is enabled on the client. You can configure your client to use
MakeConnection as the transport for synchronous methods. In this case,
MakeConnection messages are sent by the MC Initiator based on the configured
polling interval (described in Section 3.6.2.2, "Configuring the Polling Interval") until a
non-empty response message is received.

To configure MakeConnection as the transport protocol to use for synchronous
methods, use one of the following methods:

■ When instantiating a new McFeature() object, you can pass as a parameter a
boolean value that specifies whether MakeConnection should be used as the
transport protocol for synchronous methods. For example:

...
 McFeature mcFeature = new McFeature(true);
 MyService port = service.getMyServicePort(mcFeature);
...

Table 3–12 Methods for Configuring the Exponential Backoff

Method Description

boolean isExponentialBackoff() Returns a boolean value indicating whether
exponential backoff is enabled.

void setExponentialBackoff(boolean backoff) Set the exponential backoff flag. Valid
values are true and false. This flag
defaults to false.

Using the JAX-WS Reference Implementation

3-26 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Use the McFeature methods defined in Table 3–13. For example:

...
 McFeature mcFeature = new McFeature();
 mcFeature.setUseMCWithSyncInvoke(true);
 MyService port = service.getMyServicePort(mcFeature);
...

You can set the maximum amount of time a synchronous method will block and wait
for a response using the weblogic.wsee.jaxws.JAXWSProperties.REQUEST_
TIMEOUT property. This property default to 0 indicating no timeout. For more
information about setting message properties, see Section 3.5.3, "Propagating
User-defined Request Context to the Response".

3.7 Using the JAX-WS Reference Implementation
The JAX-WS Reference Implementation (RI) supports the following programming
models:

■ Asynchronous client polling through use of the
java.util.concurrent.Future interface.

■ Asynchronous callback handlers on a per request basis. The calling client specifies
the callback handler at invocation time. When the response is available, the
callback handler is invoked to process the response.

Unlike with asynchronous client transport feature, the JAX-WS RI provides very
limited support for WS-Addressing, including:

■ Manual support for adding client-side outbound WS-Addressing headers.

■ Manual support for publishing the client-side endpoint to receive responses.

■ No support for detecting incorrect client-side programming model (resulting in
synchronous call hanging, for example).

■ No support for surviving a client-side or service-side restart.

The following example shows a simple client file, AsyncClient, that has a single
method, AddNumbersTestDrive, that asynchronously invokes the
AddNumbersAsync method of the AddNumbersService service. The Java code in
bold is described following the code sample.

package examples.webservices.async.client;

import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;

import javax.xml.ws.BindingProvider;

Table 3–13 Methods for Configuring Synchronous Method Support

Method Description

boolean isUseMCWithSyncInvoke() Returns a boolean value indicating whether
synchronous method support is enabled.

void setUseMCWithSyncInvoke(boolean
useMCWithSyncInvoke)

Sets the synchronous method support flag.
Valid values are true and false. This flag
defaults to false.

Using the JAX-WS Reference Implementation

Invoking Web Services Asynchronously 3-27

import java.util.concurrent.Future;
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

public class AsyncClient {

 private AddNumbersPortType port = null;
 protected void setUp() throws Exception {
 AddNumbersService service = new AddNumbersService();
 port = service.getAddNumbersPort();
 String serverURI = System.getProperty("wls-server");
 ((BindingProvider) port).getRequestContext().put(
 BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://" + serverURI + "/JAXWS_ASYNC/AddNumbersService");
 }

/**
*
* Asynchronous callback handler
*/
 class AddNumbersCallbackHandler implements AsyncHandler<AddNumbersResponse> {
 private AddNumbersResponse output;
 public void handleResponse(Response<AddNumbersResponse> response) {
 try {
 output = response.get();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 AddNumbersResponse getResponse() {
 return output;
 }
 }

 public void AddNumbersTestDrive() throws Exception {
 int number1 = 10;
 int number2 = 20;

 // Asynchronous Callback method
 AddNumbersCallbackHandler callbackHandler =
 new AddNumbersCallbackHandler();
 Future<?> resp = port.addNumbersAsync(number1, number2,
 callbackHandler);
 // For the purposes of a test, block until the async call completes
 resp.get(5L, TimeUnit.MINUTES);
 int result = callbackHandler.getResponse().getReturn();

 // Polling method
 Response<AddNumbersResponse> addNumbersResp =
 port.AddNumbersAsync(number1, number2);
 while (!addNumbersResp.isDone()) {
 Thread.sleep(100);
 }
 AddNumbersResponse reply = addNumbersResp.get();
 System.out.println("Server responded through polling with: " +
 reply.getResponseType());
 }
}

Using the JAX-WS Reference Implementation

3-28 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The example demonstrates the steps to implement both the asynchronous polling and
asynchronous callback handler programming models.

To implement an asynchronous callback handler:

1. Create an asynchronous handler that implements the
javax.xml.ws.AsyncHandler<T> interface (see
http://download.oracle.com/javaee/5/api/javax/xml/ws/AsyncHan
dler.html). The asynchronous handler defines one method, handleResponse,
that enables clients to receive callback notifications at the completion of service
endpoint operations that are invoked asynchronously. The type should be set to
AddNumberResponse.

class AddNumbersCallbackHandler implements AsyncHandler<AddNumbersResponse> {
 private AddNumbersResponse output;

 public void handleResponse(Response<AddNumbersResponse> response) {
 try {
 output = response.get();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();

 }
 }

 AddNumbersResponse getResponse() {
 return output;
 }
}

2. Instantiate the asynchronous callback handler.

AddNumbersCallbackHandler callbackHandler =
 new AddNumbersCallbackHandler();

3. Instantiate the AddNumbersService Web service and call the asynchronous
version of the Web service method, addNumbersAsync, passing a handle to the
asynchronous callback handler.

AddNumbersService service = new AddNumbersService();
port = service.getAddNumbersPort();
...

Future<?> resp = port.addNumbersAsync(number1, number2,
 callbackHandler);

java.util.concurrent.Future (see
http://download.oracle.com/javase/1.5.0/docs/api/java/util/co
ncurrent/Future.html) represents the result of an asynchronous computation
and provides methods for checking the status of the asynchronous task, getting
the result, or canceling the task execution.

4. Get the result of the asynchronous computation. In this example, a timeout value
is specified to wait for the computation to complete.

resp.get(5L, TimeUnit.MINUTES);

5. Use the callback handler to access the response message.

Propagating Request Context to the Response

Invoking Web Services Asynchronously 3-29

int result = callbackHandler.getResponse().getReturn();

To implement an asynchronous polling mechanism:

1. Instantiate the AddNumbersService Web service and call the asynchronous
version of the Web service method, addNumbersAsync.

Response<AddNumbersResponse> addNumbersResp =
 port.AddNumbersAsync(number1, number2);

2. Sleep until a message is received.

while (!addNumbersResp.isDone()) {
 Thread.sleep(100);

3. Poll for a response.

AddNumbersResponse reply = addNumbersResp.get();

3.8 Propagating Request Context to the Response
WebLogic Server provides a powerful facility that enables you to attach your business
context—for example, a business-level message ID—to the request message and access
it when the response is returned, regardless of what the request and response
messages convey over the wire. For example, you may have a business-level message
ID that will not otherwise be available in the response message. By propagating this
information with the message, you can access it when the response message is
returned.

Web service clients can store any request message context property, as long as it is
Serializable. Message context properties can be stored as part of the
weblogic.wsee.jaxws.JAXWSProperties.PERSISTENT_CONTEXT Map
property and retrieved after the response message is returned.

The following example shows how to use the PERSISTENT_CONTEXT Map property
to define and set a message context property.

Example 3–3 Setting Message Context Properties

import weblogic.wsee.jaxws.JAXWSProperties;
. . .
MyClientPort port = myService.getPort();
Map<String, Serializable> clientPersistProps =
 port.getRequestContext().get(JAXWSProperties.PERSISTENT_CONTEXT);
Serializable obj = <my_property>;
clientPersistProps.put("MyProperty", obj);

port.myOperationAsync(<args>, new AsyncHandler<MyOperationResponse>() {
 public void handleResponse(Response<MyOperationResponse> res) {
 try {
 // Get the actual response
 MyOperationResponse response = res.get().getReturn();

 // Get the property stored when making request. Note, this property did not get
 // passed over the wire with the reuqest. The Web services runtime stores it.
 Map<String, Serializable> clientPersistProps =
 res.getContext().get(JAXWSProperties.PERSISTENT_CONTEXT);
 Serializable obj = clientPersistProps.get("MyProperty");
 // Do something with MyProperty
 } catch (Exception e) {

Monitoring Asynchronous Web Service Invocation

3-30 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 // Error handling
 }
 }
});
...

3.9 Monitoring Asynchronous Web Service Invocation
You can monitor runtime information for clients that invoke Web services
asynchronously, such as number of invocations, errors, faults, and so on, using the
Administration Console. To monitor Web service clients, click on the Deployments
node in the left pane and, in the Deployments table that appears in the right pane,
locate the Enterprise application in which the Web service client is packaged. Expand
the application by clicking the + node and click on the application module within
which the Web service client is located. Click the Monitoring tab, then click the Web
Service Clients tab.

If you use the MakeConnection transport protocol, you can monitor the
MakeConnection anonymous endpoints for a Web service or client. For each
anonymous endpoint, runtime monitoring information is displayed, such as the
number of messages received, the number of messages pending, and so on.

You can customize the information that is shown in the table by clicking Customize
this table.

To monitor MakeConnection anonymous endpoints for a Web service, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the Web service is packaged.
Expand the application by clicking the + node; the Web services in the application are
listed under the Web Services category. Click on the name of the Web service and
select Monitoring> Ports> Make Connection.

To monitor MakeConnection anonymous endpoints for a Web service client, click on
the Deployments node in the left pane and, in the Deployments table that appears in
the right pane, locate the Enterprise application in which the Web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the Web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab. Then click Monitoring> Servers> Make
Connection.

3.10 Clustering Considerations for Asynchronous Web Service
Messaging

When a Web service client runs in a cluster, you need to make special allowances to
ensure that the response messages can be delivered properly to the asynchronous
response endpoint for asynchronous calls. You defined the asynchronous response
endpoint with the AsyncClientTransportFeature, as described in Section 3.5.1,
"Enabling and Configuring the Asynchronous Client Transport Feature".

Consider the scenario shown in the following figure.

Clustering Considerations for Asynchronous Web Service Messaging

Invoking Web Services Asynchronously 3-31

Figure 3–3 Clustering Scenario Resulting in an Error

In the scenario shown in the previous figure:

■ A two-node cluster hosts the client application; the nodes are named Server1 and
Server2. The cluster has a simple load-balancing front-end proxy.

■ The client application is a Web application called ClientWebApp which is
deployed homogeneously to the cluster. In other words, the Web application runs
on both member servers in the cluster.

■ External clients of the ClientWebApp application make requests through the
cluster front-end address.

Now consider the following sequence:

1. An external client requests a page from ClientWebApp via the cluster front-end.

2. The cluster front-end load balances the page request and sends it to the
ClientWebApp on Server1.

3. ClientWebApp on Server1 creates an instance of a Web service client,
BackendServiceClient, to communicate with its back-end service, BackendService.
The creation of BackendServiceClient causes an asynchronous response endpoint
to be published to receive asynchronous responses whenever
BackendServiceClient is used to make an asynchronous request.

4. ClientWebApp on Server1 calls
BackendServiceClient.doSomethingAsync() to perform an operation on
the backend service. The address of the asynchronous response endpoint is
included in the ReplyTo address. This address starts with the address of the cluster
front end, and not the address of Server1.

Clustering Considerations for Asynchronous Web Service Messaging

3-32 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

5. The cluster receives the response to the doSomething operation.

6. The cluster load balances the message, this time to Server2.

7. The message delivery fails because there is no asynchronous response endpoint on
Server2 to receive the response.

You can use one of the following to resolve this problem:

■ Use a SOAP-aware cluster front-end proxy plug-in, such as WebLogic Server
HttpClusterServlet. For more information, see "Configure Proxy Plug-ins" in Using
Clusters for Oracle WebLogic Server. This option may not be feasible, for example if
your company has standardized on a cluster front-end technology.

■ Ensure that all member servers in a cluster publish an asynchronous response
endpoint so that the asynchronous response messages can be delivered to any
member server and optionally forwarded to the correct server via in-place cluster
routing.

To implement the second option, it is recommended that you define a singleton port
instance and initialize it when the client container initializes (upon deployment). For
an example illustrating the recommended method for initializing the asynchronous
response endpoint in a cluster, see Example 2–2, "Asynchronous Web Service Client
Best Practices Example".

Note: You may choose to initialize the endpoint in different ways
depending on the container type. For example, if the client is hosted in
a Web service, a method on the Web service container could be
annotated with @PostConstruct and that method could initialize
the singleton port. In an EJB container, you could use the
ejbCreate() method as the trigger point for creating the singleton
port.

4

Roadmap for Developing Reliable Web Services and Clients 4-1

4Roadmap for Developing Reliable Web
Services and Clients

The following sections present best practices for developing Web services and clients.

■ Section 4.1, "Roadmap for Developing Reliable Web Service Clients"

■ Section 4.2, "Roadmap for Developing Reliable Web Services"

■ Section 4.3, "Roadmap for Accessing Reliable Web Services from Behind a Firewall
(MakeConnection)"

■ Section 4.4, "Roadmap for Securing Reliable Web Services"

4.1 Roadmap for Developing Reliable Web Service Clients
Table 4–1 provides best practices for developing reliable Web service clients, including
an example that illustrates the best practices presented. These guidelines should be
used in conjunction with the guidelines provided in Chapter 2, "Roadmaps for
Developing Web Service Clients.".

Note: It is assumed that you are familiar with the general concepts
for developing Web services and clients, as described in Getting Started
With JAX-WS Web Services for Oracle WebLogic Server.

See also Section 6.2, "Roadmap for Configuring Web Service
Persistence.".

Table 4–1 Roadmap for Developing Reliable Web Service Clients

Best Practice Description

Always implement a reliability error
listener.

For more information, see Section 5.8, "Implementing the Reliability
Error Listener."

Group messages into units of work. Rather than incur the RM sequence creation and termination protocol
overhead for every message sent, you can group messages into business
units of work—also referred to as batching. For more information, see
Section 5.11, "Grouping Messages into Business Units of Work
(Batching)".

Note: This best practice is not demonstrated in Example 4–1.

Roadmap for Developing Reliable Web Service Clients

4-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The following example illustrates best practices for developing reliable Web service
clients.

Example 4–1 Reliable Web Service Client Best Practices Example

import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.xml.bind.JAXBContext;
import javax.xml.ws.*;

import weblogic.jws.jaxws.client.ClientIdentityFeature;
import weblogic.jws.jaxws.client.async.AsyncClientHandlerFeature;
import weblogic.jws.jaxws.client.async.AsyncClientTransportFeature;
import weblogic.wsee.reliability2.api.ReliabilityErrorContext;
import weblogic.wsee.reliability2.api.ReliabilityErrorListener;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;

import com.sun.xml.ws.developer.JAXWSProperties;

/**
 * Example client for invoking a reliable Web service asynchronously.
 */
public class BestPracticeAsyncRmClient
 extends GenericServlet {

 private BackendReliableServiceService _service;
 private BackendReliableService _singletonPort;
 private WebServiceFeature[] _features;

 private static int _requestCount;
 private static String _lastResponse;
 private static final String MY_PROPERTY = "MyProperty";

 @Override
 public void init()
 throws ServletException {

 _requestCount = 0;
 _lastResponse = null;

 // Only create the Web service object once as it is expensive to create repeatedly.

Set the acknowledgement interval to a
realistic value for your particular
scenario.

The recommended setting is two times the nominal interval between
requests. For more information, see Section 5.7.9, "Configuring the
Acknowledgement Interval."

Note: This best practice is not demonstrated in Example 4–1.

Set the base retransmission interval to a
realistic value for your particular
scenario.

The recommended setting is two times the acknowledgement interval or
nominal response time, whichever is greater. For more information, see
Section 5.7.4, "Configuring the Base Retransmission Interval."

Note: This best practice is not demonstrated in Example 4–1.

Set timeouts (inactivity and sequence
expiration) to realistic values for your
particular scenario.

For more information, see Section 5.7.7, "Configuring Inactivity Timeout"
and Section 5.7.6, "Configuring the Sequence Expiration."

Note: This best practice is not demonstrated in Example 4–1.

Table 4–1 (Cont.) Roadmap for Developing Reliable Web Service Clients

Best Practice Description

Roadmap for Developing Reliable Web Service Clients

Roadmap for Developing Reliable Web Services and Clients 4-3

 if (_service == null) {
 _service = new BackendReliableServiceService();
 }

 // Best Practice: Use a stored list of features, per client ID, to create client instances.
 // Define all features for the Web service port, per client ID, so that they are
 // consistent each time the port is called. For example:
 // _service.getBackendServicePort(_features);

 List<WebServiceFeature> features = new ArrayList<WebServiceFeature>();

 // Best Practice: Explicitly define the client ID.
 ClientIdentityFeature clientIdFeature =
 new ClientIdentityFeature("MyBackendServiceAsyncRmClient");
 features.add(clientIdFeature);

 // Best Practice: Always implement a reliability error listener.
 // Include this feature in your reusable feature list. This enables you to determine
 // a reason for failure, for example, RM cannot deliver a request or the RM sequence fails in
 // some way (for example, client credentials refused at service).
 WsrmClientInitFeature rmFeature = new WsrmClientInitFeature();
 features.add(rmFeature);
 rmFeature.setErrorListener(new ReliabilityErrorListener() {
 public void onReliabilityError(ReliabilityErrorContext context) {

 // At a *minimum* do this
 System.out.println("RM sequence failure: " +
 context.getFaultSummaryMessage());
 _lastResponse = context.getFaultSummaryMessage();

 // And optionally do this...

 // The context parameter conveys whether a request or the entire
 // sequence has failed. If a sequence fails, you will get a notification
 // for each undelivered request (if any) on the sequence.
 if (context.isRequestSpecific()) {
 // Single request failure (possibly as part of a larger sequence failure).
 // Retrieve the original request.
 String operationName = context.getOperationName();
 System.out.println("Failed to deliver request for operation '" +
 operationName + "'. Fault summary: " +
 context.getFaultSummaryMessage());
 if ("DoSomething".equals(operationName)) {
 try {
 String request = context.getRequest(JAXBContext.newInstance(),
 String.class);
 System.out.println("Failed to deliver request for operation '" +
 operationName + "' with content: " +
 request);
 Map<String, Serializable> requestProps =
 context.getUserRequestContextProperties();
 if (requestProps != null) {
 // Retrieve the request property. Use MyProperty
 // to describe the request that failed and print this value
 // during the simple 'error recovery' below.
 String myProperty = (String)requestProps.get(MY_PROPERTY);
 System.out.println("Got MyProperty value propagated from request: "+
 myProperty);
 System.out.println(myProperty + " failed!");
 }

Roadmap for Developing Reliable Web Service Clients

4-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 } else {
 // The entire sequence has encountered an error.
 System.out.println("Entire sequence failed: " +
 context.getFaultSummaryMessage());

 }
 }
 });

 // Asynchronous endpoint.
 AsyncClientTransportFeature asyncFeature =
 new AsyncClientTransportFeature(getServletContext());
 features.add(asyncFeature);

 // Best Practice: Define a port-based asynchronous callback handler,
 // AsyncClientHandlerFeature, for asynchronous and dispatch callback handling.
 BackendReliableServiceAsyncHandler handler =
 new BackendReliableServiceAsyncHandler() {
 public void onDoSomethingResponse(Response<DoSomethingResponse> res) {
 // ... Handle Response ...
 try {
 // Show getting the MyProperty value back.
 DoSomethingResponse response = res.get();
 _lastResponse = response.getReturn();
 System.out.println("Got (reliable) async response: " + _lastResponse);
 // Retrieve the request property. This property can be used to
 // 'remember' the context of the request and subsequently process
 // the response.
 Map<String, Serializable> requestProps =
 (Map<String, Serializable>)
 res.getContext().get(JAXWSProperties.PERSISTENT_CONTEXT);
 String myProperty = (String)requestProps.get(MY_PROPERTY);
 System.out.println("Got MyProperty value propagated from request: "+
 myProperty);
 } catch (Exception e) {
 _lastResponse = e.toString();
 e.printStackTrace();
 }
 }
 };
 AsyncClientHandlerFeature handlerFeature =
 new AsyncClientHandlerFeature(handler);
 features.add(handlerFeature);

 // Set the features used when creating clients with
 // the client ID "MyBackendServiceAsyncRmClient."

 _features = features.toArray(new WebServiceFeature[features.size()]);

 // Best Practice: Define a singleton port instance and initialize it when
 // the client container initializes (upon deployment).
 // The singleton port will be available for the life of the servlet.
 // Creation of the singleton port triggers the asynchronous response endpoint to be published
 // and it will remain published until our container (Web application) is undeployed.
 // Note, we will get a call to destroy() before this.
 _singletonPort = _service.getBackendReliableServicePort(_features);

Roadmap for Developing Reliable Web Service Clients

Roadmap for Developing Reliable Web Services and Clients 4-5

 }

 @Override
 public void service(ServletRequest req, ServletResponse res)
 throws ServletException, IOException {

 // TODO: ... Read the servlet request ...

 // For this simple example, echo the _lastResponse captured from
 // an asynchronous DoSomethingResponse response message.

 if (_lastResponse != null) {
 res.getWriter().write(_lastResponse);
 _lastResponse = null; // Clear the response so we can get another
 return;
 }

 // Set _lastResponse to NULL in order to make a new invocation against
 // BackendService to generate a new response

 // Best Practice: Synchronize use of client instances.
 // Create another port using the *exact* same features used when creating _singletonPort.
 // Note, this port uses the same client ID as the singleton port and it is effectively the
 // same as the singleton from the perspective of the Web services runtime.
 // This port will use the asynchronous response endpoint for the client ID,
 // as it is defined in the _features list.
 // NOTE: This is *DEFINITELY* not best practice or ideal because our application is
 // incurring the cost of an RM handshake and sequence termination
 // for *every* reliable request sent. It would be better to send
 // multiple requests on each sequence. If there is not a natural grouping
 // for messages (a business 'unit of work'), then you could batch
 // requests onto a sequence for efficiency. For more information, see
 // Section 5.11, "Grouping Messages into Business Units of Work (Batching)."
 BackendReliableService anotherPort =
 _service.getBackendReliableServicePort(_features);

 // Set the endpoint address for BackendService.
 ((BindingProvider)anotherPort).getRequestContext().
 put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://localhost:7001/BestPracticeReliableService/BackendReliableService");

 // Make the invocation. Our asynchronous handler implementation (set
 // into the AsyncClientHandlerFeature above) receives the response.
 String request = "Protect and serve";
 System.out.println("Invoking DoSomething reliably/async with request: " +
 request);
 // Add a persistent context property that will be returned on the response.
 // This property can be used to ’remember’ the context of this
 // request and subsequently process the response. This property will *not*
 // get passed over wire, so the properties can change independent of the
 // application message.
 Map<String, Serializable> persistentContext =
 (Map<String, Serializable>)((BindingProvider)anotherPort).
 getRequestContext().get(JAXWSProperties.PERSISTENT_CONTEXT);
 String myProperty = "Request " + (++_requestCount);
 persistentContext.put(MY_PROPERTY, myProperty);
 System.out.println("Request being made (reliably) with MyProperty value: " +
 myProperty);
 anotherPort.doSomethingAsync(request);

Roadmap for Developing Reliable Web Services

4-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 // Return a canned string indicating the response was not received
 // synchronously. Client needs to invoke the servlet again to get
 // the response.
 res.getWriter().write("Waiting for response...");

 // Best Practice: Explicitly close client instances when processing is complete.
 // If not closed, the port will be closed automatically when it goes out of scope.
 // This will force the termination of the RM sequence we created when sending the first
 // doSomething request. For a better way to handle this, see
 // Section 5.11, "Grouping Messages into Business Units of Work (Batching)."
 // NOTE: Even though the port is closed explicitly (or even if it goes out of scope)
 // the reliable request sent above will still be delivered
 // under the scope of the client ID used. So, even if the service endpoint
 // is down, RM retries the request and delivers it when the service endpoint
 // available. The asynchronous resopnse will be delivered as if the port instance was
 // still available.
 ((java.io.Closeable)anotherPort).close();
 }

 @Override
 public void destroy() {

 try {
 // Best Practice: Explicitly close client instances when processing is complete.
 // Close the singleton port created during initialization. Note, the asynchronous
 // response endpoint generated by creating _singletonPort *remains*
 // published until our container (Web application) is undeployed.
 ((java.io.Closeable)_singletonPort).close();
 // Upon return, the Web application is undeployed, and our asynchronous
 // response endpoint is stopped (unpublished). At this point,
 // the client ID used for _singletonPort will be unregistered and will no longer be
 // visible from the Administration Console and WLST.
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

4.2 Roadmap for Developing Reliable Web Services
Table 4–2 provides best practices for developing reliable Web services. For best
practices when accessing reliable Web services from behind a firewall, see Section 4.3,
"Roadmap for Accessing Reliable Web Services from Behind a Firewall
(MakeConnection)."

Roadmap for Accessing Reliable Web Services from Behind a Firewall (MakeConnection)

Roadmap for Developing Reliable Web Services and Clients 4-7

4.3 Roadmap for Accessing Reliable Web Services from Behind a
Firewall (MakeConnection)

Table 4–3 provides best practices for accessing reliable Web services from behind a
firewall using MakeConnection. These guidelines should be used in conjunction with
the general guidelines provided in Section 4.2, "Roadmap for Developing Reliable Web
Services" and Section 2.2, "Roadmap for Developing Asynchronous Web Service
Clients."

Table 4–2 Roadmap for Developing Reliable Web Services

Best Practice Description

Set the base retransmission interval to a
realistic value for your particular
scenario.

For more information, see Section 5.7.4, "Configuring the Base
Retransmission Interval."

Set the acknowledgement interval to a
realistic value for your particular
scenario.

The recommended setting is two times the nominal interval between
requests. For more information, see Section 5.7.9, "Configuring the
Acknowledgement Interval."

Set timeouts (inactivity and sequence
expiration) to realistic values for your
particular scenario.

Consider the following:

■ For very short-lived exchanges, the default timeouts may be too
long and sequence state might be maintained longer than necessary.

■ Set timeouts to two times the expected lifetime of a given business
unit of work. This allows the sequence to live long enough

For more information, see Section 5.7.7, "Configuring Inactivity Timeout"
and Section 5.7.6, "Configuring the Sequence Expiration."

Use an reliable messaging policy that
reflects the minimum delivery
assurance (or quality of service)
required.

By default, the delivery assurance is set to Exactly Once, In Order. If you
do not require ordering, it can increase performance to set the delivery
assurance to simply Exactly Once. Similarly, if your service can tolerate
duplicate requests, delivery assurance can be set to At Least Once.

For more information about delivery assurance for reliable messaging,
see Table 5–1, " Delivery Assurances for Reliable Messaging" and
Section 5.4, "Creating the Web Service Reliable Messaging WS-Policy
File."

Roadmap for Securing Reliable Web Services

4-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

4.4 Roadmap for Securing Reliable Web Services
Table 4–4 provides best practices for securing reliable Web services using
WS-SecureConversation. These guidelines should be used in conjunction with the
guidelines provided in Section 4.2, "Roadmap for Developing Reliable Web Services."

Table 4–3 Roadmap for Accessing Reliable Web Services from Behind a Firewall (MakeConnection)

Best Practice Description

Coordinate the MakeConnection
polling interval with the reliable
messaging base retransmission interval.

The polling interval you set for MakeConnection transport sets the lower
limit for the amount of time it takes for reliable messaging protocol
messages to make the round trip between the client and service. If you
set the reliable messaging base retransmission interval to a value near to
the MakeConnection polling interval, it will be unlikely that a reliable
messaging request will be received by the Web service, and the
accompanying RM acknowledgement sent for that request (at best one
MakeConnection polling interval later) before the reliable messaging
runtime attempts to retransmit the request. Setting the reliable
messaging base retransmission interval to a value that is too low results
in unnecessary retransmissions for requests, and potentially a cascading
load on the service side as it attempts to process redundant incoming
requests and MakeConnection poll messages to retrieve the responses
from those requests.

Oracle recommends setting the base retransmission interval to a value
that is at least two times the MakeConnection polling interval.

Note: When Web services reliable messaging and MakeConnection are
used together, the MakeConnection polling interval value will be
adjusted at runtime, if necessary, to ensure that the value is set at least 3
seconds less than the reliable messaging base transmission interval. If the
base transmission interval is three seconds or less, the MakeConnection
polling interval is set to the value of the base retransmission interval.

For more information setting the MakeConnection polling interval and
reliable messaging base retransmission interval, see Section 3.6.2.2,
"Configuring the Polling Interval" and Section 5.7.4, "Configuring the
Base Retransmission Interval", respectively.

Table 4–4 Roadmap for Securing Reliable Web Services

Best Practice Description

Coordinate the WS-SecureConversation
lifetime with the reliable messaging
base retransmission and
acknowledgement intervals.

A WS-SecureConversation lifetime that is set to a value near to or less
than the reliable messaging base retransmission and acknowledgement
intervals may result in the WS-SecureConversation token expiring before
the reliable messaging handshake message can be sent to the Web
service. For this reason, Oracle recommends setting the
WS-SecureConversation lifetime to a value that is at least two times the
base retransmission interval.

For more information setting the base retransmission interval, see
Section 5.7.4, "Configuring the Base Retransmission Interval."

5

Using Web Services Reliable Messaging 5-1

5Using Web Services Reliable Messaging

The following sections describe how to use Web Services reliable messaging.

■ Section 5.1, "Overview of Web Services Reliable Messaging"

■ Section 5.2, "Steps to Create and Invoke a Reliable Web Service"

■ Section 5.3, "Configuring the Source and Destination WebLogic Server Instances"

■ Section 5.4, "Creating the Web Service Reliable Messaging WS-Policy File"

■ Section 5.5, "Programming Guidelines for the Reliable JWS File"

■ Section 5.6, "Invoking a Reliable Web Service from a Web Service Client"

■ Section 5.7, "Configuring Reliable Messaging"

■ Section 5.8, "Implementing the Reliability Error Listener"

■ Section 5.9, "Managing the Life Cycle of a Reliable Message Sequence"

■ Section 5.10, "Monitoring Web Services Reliable Messaging"

■ Section 5.11, "Grouping Messages into Business Units of Work (Batching)"

■ Section 5.12, "Client Considerations When Redeploying a Reliable Web Service"

■ Section 5.13, "Interoperability with WebLogic Web Service Reliable Messaging"

5.1 Overview of Web Services Reliable Messaging
Web service reliable messaging is a framework that enables an application running on
one application server to reliably invoke a Web service running on another application
server, assuming that both servers implement the WS-ReliableMessaging specification.
Reliable is defined as the ability to guarantee message delivery between the two
endpoints (Web service and client) in the presence of software component, system, or
network failures.

WebLogic Web services conform to the WS-ReliableMessaging 1.2 specification
(February 2009) at http://docs.oasis-open.org/ws-rx/wsrm/200702 (and
supports version 1.1). This specification describes how two endpoints (Web service
and client) on different application servers can communicate reliably. In particular, the
specification describes an interoperable protocol in which a message sent from a source
endpoint (or client Web service) to a destination endpoint (or Web service whose

Note: See also Section 4, "Roadmap for Developing Reliable Web
Services and Clients".

Overview of Web Services Reliable Messaging

5-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

operations can be invoked reliably) is guaranteed either to be delivered, according to
one or more delivery assurances, or to raise an error.

A reliable WebLogic Web service provides the following delivery assurances.

This document describes how to create reliable Web services and clients and how to
configure WebLogic Server instances to which the Web services are deployed.

5.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions
WebLogic Web services use WS-Policy files to enable a destination endpoint to
describe and advertise its Web service reliable messaging capabilities and
requirements. The WS-Policy files are XML files that describe features such as the
version of the supported WS-ReliableMessaging specification and quality of service
requirements. The WS-Policy specification (http://www.w3.org/TR/ws-policy/)
provides a general purpose model and syntax to describe and communicate the
policies of a Web service.

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions, as described in Section A, "Pre-packaged WS-Policy Files for
Web Services Reliable Messaging and MakeConnection". If the pre-packaged
WS-Policy files do not suit your needs, you must create your own WS-Policy file. See
Section 5.4, "Creating the Web Service Reliable Messaging WS-Policy File" for details.
See "Web Service Reliable Messaging Policy Assertion Reference" in the WebLogic Web
Services Reference for Oracle WebLogic Server for reference information about the reliable
messaging policy assertions.

5.1.2 Supported Transport Types for Reliable Messaging
You can use Web service reliable messaging asynchronously or synchronously. When
delivering messages asynchronously, you can configure buffering to support
automatic message delivery retries, if desired.

The following table summarizes the transport type support for Web services reliable
messaging. For information about transport type support for Web service clients, see
Section 5.6, "Invoking a Reliable Web Service from a Web Service Client". For failure
recovery information, see Section 5.1.4, "Reliable Messaging Failure Recovery
Scenarios"

Table 5–1 Delivery Assurances for Reliable Messaging

Delivery Assurance Description

At Most Once Messages are delivered at most once, without duplication. It is
possible that some messages may not be delivered at all.

At Least Once Every message is delivered at least once. It is possible that some
messages are delivered more than once.

Exactly Once Every message is delivered exactly once, without duplication.

In Order Messages are delivered in the order that they were sent. This delivery
assurance can be combined with one of the preceding three
assurances.

Note: Message buffering is configurable for Web services, as
described in Chapter 7, "Configuring Message Buffering for Web
Services.". For Web service clients, message buffering is enabled by
default.

Overview of Web Services Reliable Messaging

Using Web Services Reliable Messaging 5-3

5.1.3 The Life Cycle of the Reliable Message Sequence
The following figure shows a one-way reliable message exchange.

Table 5–2 Transport Types for Web Services Reliable Messaging

Transport Type Features

Asynchronous transport For buffered Web services:

■ Most robust usage mode, but requires the most overhead.

■ Automatically retries message delivery.

■ Survives network outages.

■ Enables restart of the source or destination endpoint.

■ Uses non-anonymous ReplyTo.

■ Employs asynchronous client transport enabling a single thread to service
multiple requests, absorbing load more efficiently. For more information, see
Section 3.5, "Developing Scalable Asynchronous JAX-WS Clients
(Asynchronous Client Transport)."

■ Web service clients can use asynchronous or synchronous invocation semantics
to invoke the Web service. For more information, see Table 3–1, " Support for
Asynchronous Web Service Invocation".

For non-buffered Web services:

■ Less overhead than asynchronous, buffered usage mode.

■ Persists sequence state only.

■ Uses non-anonymous ReplyTo.

■ Web service clients can use asynchronous or synchronous invocation semantics
to invoke the Web service. For more information, see Table 3–1, " Support for
Asynchronous Web Service Invocation".

Synchronous transport ■ Offers the least overhead and simplest programming model.

■ Uses anonymous ReplyTo.

■ Web service clients can use asynchronous or synchronous invocation semantics
to invoke the Web service. For more information, see Table 3–1, " Support for
Asynchronous Web Service Invocation".

■ If a Web service client invokes a buffered Web service using synchronous
transport, one of following will result:

- If this is the first request of the sequence, the destination sequence will be set
to be non-buffered (as though the Web service configuration was set as
non-buffered).

- If this is not the first request of the sequence (that is, the client sent a request
using asynchronous transport previously), then the request is rejected and a
fault returned.

Overview of Web Services Reliable Messaging

5-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Figure 5–1 Web Service Reliable Message Exchange

A reliable message sequence is used to track the progress of a set of messages that are
exchanged reliably between an RM source and RM destination. A sequence can be
used to send zero or more messages, and is identified by a string identifier. This
identifier is used to reference the sequence when using reliable messaging.

The Web service client application sends a message for reliable delivery which is
transmitted by the RM source to the RM destination. The RM destination
acknowledges that the reliable message has been received and delivers it to the Web
service application. The message may be retransmitted by the RM source until the
acknowledgement is received. The RM destination, if configured to buffer requests,
may redeliver the request to the Web service if the Web service fails to process the
request.

A Web service client sends messages to a target Web service by invoking methods on
the client instance (port or Dispatch instance). A port is associated with the port type of
the reliable Web service and represents a programmatic interface to that service. The
port is created by the <clientgen> child element of the jwsc Ant task. A Dispatch
instance is a loosely-typed, general-purpose interface for delivering whole messages
from the client to the Web service. For more information about Dispatch clients, see
Section 16.4, "Developing a Web Service Dispatch Client.".

WebLogic stores the identifier for the reliable message sequence within this client
instance. This causes the reliable message sequence to be connected to a single client
instance. All messages that are sent using a given client instance will use the same
reliable messaging sequence, regardless of the number of messages that are sent.
(Unless you using batching, as described in Section 5.11, "Grouping Messages into
Business Units of Work (Batching).")

Because WebLogic Server retains resources associated with the reliable sequence, it is
recommended that you take steps to release these resources in a timely fashion. this
can be done by managing the lifecycle of the client instance itself, or by using the
weblogic.wsee.reliability2.api.WsrmClient API. Use the WsrmClient
API to perform common tasks such as set configuration options, get the sequence id,
and terminate a reliable sequence. For more information, see Section 5.9, "Managing
the Life Cycle of a Reliable Message Sequence."

5.1.4 Reliable Messaging Failure Recovery Scenarios
The following sections outline reliable messaging failure recovery for various
scenarios.

Overview of Web Services Reliable Messaging

Using Web Services Reliable Messaging 5-5

■ Section 5.1.4.1, "RM Destination Down Before Request Arrives"

■ Section 5.1.4.2, "RM Source Down After Request is Made"

■ Section 5.1.4.3, "RM Destination Down After Request Arrives"

■ Section 5.1.4.4, "Failure Scenarios with Non-buffered Reliable Web Services"

The first three scenarios assume that buffering is enabled on both the Web service and
client. The last scenario describes reliable messaging failure recovery for non-buffered
Web services. Buffering is enabled on Web service client by default. To configure
buffering on the Web service, see Chapter 7, "Configuring Message Buffering for Web
Services."

5.1.4.1 RM Destination Down Before Request Arrives
Table 5–3 describes the reliable messaging failure recovery scenario when an RM
destination is unavailable before a request from the RM source arrives.

It is assumed that Web service buffering is enabled on both the Web service and client.
Buffering is enabled on Web service client by default. To configure buffering on the
Web service, see Chapter 7, "Configuring Message Buffering for Web Services."

Table 5–3 Reliable Messaging Failure Recovery Scenario—RM Destination Down Before Request Arrives

Transport Type Scenario Description

Asynchronous Transport 1. Client invokes an asynchronous method.

2. Reliable messaging runtime accepts the request; client returns to do
other work.

3. Reliable messaging runtime attempts to deliver the request and fails
because the RM destination is down.

4. Reliable messaging runtime waits for the retry interval and tries to
send the request again. The request delivery fails again.

5. RM destination comes up.

6. Reliable messaging runtime waits for the retry interval and tries to
send the request again. The request delivery succeeds.

7. Acknowledgement is sent to the client which includes the message
number of the request. The reliable messaging runtime removes the
message from the retry list.

8. Response arrives and the client processes it.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Section 5.9,
"Managing the Life Cycle of a Reliable Message Sequence".

Overview of Web Services Reliable Messaging

5-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

5.1.4.2 RM Source Down After Request is Made
Table 5–4 describes the reliable messaging failure recovery scenario when an RM
source goes down after a request is made.

It is assumed that Web service buffering is enabled on both the Web service and client.
Buffering is enabled on Web service clients by default. To configure buffering on the
Web service, see Chapter 7, "Configuring Message Buffering for Web Services."

Synchronous Transport 1. Client invokes a synchronous method.

2. Reliable messaging runtime accepts the request and blocks the client
thread.

3. Reliable messaging runtime attempts to deliver the request and fails
because the RM destination is down.

4. Reliable messaging runtime waits for the retry interval and tries to
send the request again. The request delivery fails again.

5. RM destination comes up.

6. Reliable messaging runtime waits for the retry interval and tries to
send the request again. The request delivery succeeds.

7. Response and acknowledgement are sent to the client via the transport
back-channel. The acknowledgement includes the message number of
the request. The reliable messaging runtime removes the message from
the retry list.

8. Reliable messaging runtime unblocks the client thread and returns the
response.

9. Client receives the response as the return value of the method
invocation, and processes the response.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Section 5.9,
"Managing the Life Cycle of a Reliable Message Sequence".

Note: To achieve true reliability with synchronous transport, it is
recommended that you use MakeConnection. For more information, see
Section 3.6, "Using Asynchronous Web Service Clients From Behind a
Firewall (MakeConnection)."

Table 5–3 (Cont.) Reliable Messaging Failure Recovery Scenario—RM Destination Down Before Request

Transport Type Scenario Description

Overview of Web Services Reliable Messaging

Using Web Services Reliable Messaging 5-7

Table 5–4 Reliable Messaging Failure Recovery Scenario—RM Source Down After Request is Made

Transport Type Scenario Description

Asynchronous Transport 1. Client invokes an asynchronous method.

2. Reliable messaging runtime accepts the request; client returns to do
other work.

3. Client (RM source) goes down.

4. Client comes up. Client must re-initialize the client instance using the
same client ID. The runtime will use this client ID to retrieve the
reliable sequence ID that was active for the client. For more
information, see Section 5.9.2, "Managing the Client ID".

5. Reliable messaging runtime detects the reliable sequence ID that was in
use prior to the client going down and recovers the accepted requests.

Note: This step is accomplished only after the client re-initializes the
client instance that was used to send the request because delivery of
the request depends on resources provided by the client instance. It is
recommended that clients initialize the client instance in a static block,
or use a @PostConstruct annotation or other mechanism to ensure
early initialization of the client instance. For more information, see the
best practices examples presented in Section 2, "Roadmaps for
Developing Web Service Clients."

6. Reliable messaging runtime sends the request and succeeds.

7. Acknowledgement is sent to the client which includes the message
number of the request. The reliable messaging runtime removes the
message from the retry list.

8. Response arrives and the client processes it.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Section 5.9,
"Managing the Life Cycle of a Reliable Message Sequence".

Overview of Web Services Reliable Messaging

5-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

5.1.4.3 RM Destination Down After Request Arrives
Table 5–5 describes the reliable messaging failure recovery scenario when an RM
destination is unavailable after a request has been accepted from the RM source.

It is assumed that Web service buffering is enabled on both the Web service and client.
Buffering is enabled on Web service client by default. To configure buffering on the
Web service, see Chapter 7, "Configuring Message Buffering for Web Services."

Synchronous Transport 1. Client invokes a synchronous method.

2. Reliable messaging runtime accepts the request and blocks the client
thread.

3. Reliable messaging runtime attempts to deliver the request. The
request delivery succeeds.

4. Before response can be sent, the client (RM source) goes down. Client
thread is lost as the VM exits, along with the invocation state and
calling stack of the client itself.

5. Client (RM source) comes up. Client must re-initialize the client
instance (port or Dispatch) using the same client ID. For more
information, see Section 5.9.2, "Managing the Client ID"

6. Reliable messaging runtime detects the previous sequence ID for the
client, and sees that the last request was made synchronously.

7. Reliable messaging runtime delivers a permanent failure notification
for this request, and fails the entire RM sequence associated with the
client instance. Any ReliabilityErrorListener associated with
the client instance will be called at this point.

8. Client is responsible for retrieving the original request (via some
client-specific mechanism) and resending it by re-invoking the client
instance with the request.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Section 5.9,
"Managing the Life Cycle of a Reliable Message Sequence".

Note: To achieve true reliability with synchronous transport, it is
recommended that you use MakeConnection. For more information, see
Section 3.6, "Using Asynchronous Web Service Clients From Behind a
Firewall (MakeConnection)."

Table 5–4 (Cont.) Reliable Messaging Failure Recovery Scenario—RM Source Down After Request is Made

Transport Type Scenario Description

Overview of Web Services Reliable Messaging

Using Web Services Reliable Messaging 5-9

Table 5–5 Reliable Messaging Failure Recovery Scenario—RM Destination Down After Request Arrives

Transport Type Scenario Description

Asynchronous Transport 1. Client invokes an asynchronous method.

2. Reliable messaging runtime accepts the request; client returns to do
other work.

3. Reliable messaging runtime attempts to deliver the request and
succeeds.

4. The RM destination accepts the request and send an acknowledgement
on the back channel.

5. Reliable messaging runtime sees the acknowledgement and removes
the message from the retry list.

6. RM destination goes down.

7. Reliable messaging runtime on RM source retries any pending requests
during this time.

8. RM destination comes up.

9. RM destination recovers the stored request, processes it, and sends the
response.

10. Response arrives and the client processes it.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Section 5.9,
"Managing the Life Cycle of a Reliable Message Sequence".

Synchronous Transport Note: If you attempt to invoke a buffered Web service using synchronous
transport, one of following will result:

■ If this is the first request of the sequence, the destination sequence will
be set to be non-buffered (as though the Web service configuration was
set as non-buffered).

■ If this is not the first request of the sequence (that is, the client sent a
request using asynchronous transport previously), then the request is
rejected and a fault returned.

The following describes the sequence of this scenario:

1. Client invokes a synchronous method.

2. Reliable messaging runtime accepts the request and blocks the client
thread.

3. Reliable messaging runtime attempts to deliver the request. The
request delivery succeeds.

4. RM destination accepts the request and sends an acknowledgement via
the transport back channel.

5. Client (RM source) detects the acknowledgement and removes the
request from the retry list.

6. RM destination goes down.

7. Client thread remains blocked.

8. RM Destination comes up, recovers, and processes the request, and
sends the response to the client.

9. Reliable messaging runtime unblocks the client thread and returns the
response.

10. Client receives the response as the return value of the method
invocation, and processes the response.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Section 5.9,
"Managing the Life Cycle of a Reliable Message Sequence".

Steps to Create and Invoke a Reliable Web Service

5-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

5.1.4.4 Failure Scenarios with Non-buffered Reliable Web Services
A non-buffered Web service operates differently than a buffered Web service in that it
does not buffer a request to hardened storage before acknowledging it and attempting
to process it. A non-buffered Web service will not attempt to reprocess a request if the
service logic fails, whereas a buffered Web service will attempt to reprocess the
request. In both cases, buffered or non-buffered, any response generated by the Web
service will be buffered before it is sent back to the client.

A non-buffered Web service may be useful in the following cases:

■ Web service operates against non-transactional resources and should not process
any request more than once (because rolling back the transaction that dequeued
the buffered request cannot roll back the side effects of the non-transactional
service).

■ Web service is relatively light weight, and does not take very long to process
requests.

■ Web service performance is of paramount importance and risk of losing request or
response is acceptable. Non-buffered Web services will not incur the overhead of
buffering the request to a store, and thus can deliver better throughput than a
buffered Web service. The performance gain is dependent on how much time and
resources are required to buffer the requests (for example, very large request
messages may take significant time and resources to buffer).

A non-buffered Web service is operationally similar to a buffered Web service in most
failure scenarios. The exceptions are cases where the service (RM destination) itself
fails. For example, in all the RM source failure scenarios described, the behavior is the
same for a buffered or a non-buffered Web service (RM destination). For non-buffered
Web services the failure window is open between the following two points:

■ The request is accepted for processing.

■ The response from the Web service is registered for delivery to the client (RM
source).

If the Web service (RM destination) fails between these two points, the RM source will
assume the request has been successfully processed (since it has been acknowledged)
but will never receive a response, and the request may never have been processed.

Carefully consider this failure window before configuring a Web service to run as
non-buffered.

5.2 Steps to Create and Invoke a Reliable Web Service
Configuring reliable messaging for a WebLogic Web service requires standard JMS
tasks such as creating JMS servers and Store and Forward (SAF) agents, as well as Web
service-specific tasks, such as adding additional JWS annotations to your JWS file.
Optionally, you create custom WS-Policy files that describe the reliable messaging
capabilities of the reliable Web service if you do not use the pre-packaged ones.

If you are using the WebLogic client APIs to invoke a reliable Web service, the client
application must run on WebLogic Server. Thus, configuration tasks must be
performed on both the source WebLogic Server instance on which the Web service
client code is deployed, as well as the destination WebLogic Server instance on which
the reliable Web service itself is deployed.

Table 5–6 summarizes the steps to create a reliable Web service and a client that
invokes an operation of the reliable Web service. The procedure describes how to
create the JWS files that implement the Web service and client from scratch; if you

Steps to Create and Invoke a Reliable Web Service

Using Web Services Reliable Messaging 5-11

want to update existing JWS files, use this procedure as a guide. The procedure also
describes how to configure the source and destination WebLogic Server instances.

It is assumed that you have completed the following tasks:

■ You have created the destination and source WebLogic Server instances. You deploy
the reliable Web service to the destination WebLogic Server instance, and the client
that invokes the reliable Web service to the source WebLogic Server instance.

■ You have set up an Ant-based development environment.

■ You have working build.xml files that you can edit, for example, to add targets
for running the jwsc Ant task and deploying the generated reliable Web service.

For more information, see "Developing WebLogic Web Services" in Getting Started With
JAX-WS Web Services for Oracle WebLogic Server. For best practices for developing
asynchronous and reliable Web services and clients, see Section 4, "Roadmap for
Developing Reliable Web Services and Clients".

Table 5–6 Steps to Create and Invoke a Reliable Web Service

Step Description

1 Configure the destination
and source WebLogic Server
instances.

You deploy the reliable Web service to the destination WebLogic Server instance,
and the client that invokes the reliable Web service to the source WebLogic
Server instance. For information about configuring the destination WebLogic
Server instance, see Section 5.3, "Configuring the Source and Destination
WebLogic Server Instances."

2 Create the WS-Policy file.
(Optional)

Using your favorite XML or plain text editor, optionally create a WS-Policy file
that describes the reliable messaging capabilities of the Web service running on
the destination WebLogic Server. For details about creating your own WS-Policy
file, see Section 5.4, "Creating the Web Service Reliable Messaging WS-Policy
File."

Note: This step is not required if you plan to use one of the WS-Policy files that
are included in WebLogic Server; see Appendix A, "Pre-packaged WS-Policy
Files for Web Services Reliable Messaging and MakeConnection" for more
information.

3 Create or update the JWS
file that implements the
reliable Web service.

This Web service will be deployed to the destination WebLogic Server instance.
See Section 5.5, "Programming Guidelines for the Reliable JWS File."

For examples demonstrating best practices, see Section 4, "Roadmap for
Developing Reliable Web Services and Clients."

4 Update the build.xml file
that is used to compile the
reliable Web services.

Update your build.xml file to include a call to the jwsc Ant task which will
compile the reliable JWS file into a Web service.

See "Running the jwsc WebLogic Web Services Ant Task" in Getting Started With
JAX-WS Web Services for Oracle WebLogic Server for general information about
using the jwsc task.

5 Compile and deploy the
reliable JWS file.

Compile the reliable JWS file by calling the appropriate target and deploy to the
destination WebLogic Server. For example:

prompt> ant build-reliableService deploy-reliableService

6 Create or update the Web
service client.

The Web service client invokes the reliable Web service and will be deployed to
the source WebLogic Server. See Section 5.6, "Invoking a Reliable Web Service
from a Web Service Client".

7 Configure reliable
messaging. (Optional)

Configure reliable messaging for the reliable Web service using the
Administration Console. The WS-Policy file attached to the reliable Web service
provides the initial configuration settings. See Section 5.7, "Configuring Reliable
Messaging".

8 Implement a reliability
error listener. (Optional)

Implement a reliability error listener to receive notifications if a reliable delivery
fails. See Section 5.8, "Implementing the Reliability Error Listener".

Configuring the Source and Destination WebLogic Server Instances

5-12 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Each of these steps is described in more detail in the following sections. In addition,
the following topics are discussed:

■ Section 5.11, "Grouping Messages into Business Units of Work
(Batching)"—Describes how to group messages into business units of work—also
called batching—to improve performance when using reliable messaging.

■ Section 5.12, "Client Considerations When Redeploying a Reliable Web
Service"—Describes client considerations for when you deploy a new version of an
updated reliable WebLogic Web service alongside an older version of the same
Web service.

■ Section 5.13, "Interoperability with WebLogic Web Service Reliable
Messaging"—Provides recommendations for interoperating with WebLogic Web
services reliable messaging.

5.3 Configuring the Source and Destination WebLogic Server Instances
You need to configure Web service persistence on the destination and source WebLogic
Server instances. You deploy the reliable Web service to the destination WebLogic
Server instance, and the client that invokes the reliable Web service to the source
WebLogic Server instance.

When using Web services reliable messaging, the Web services reliable messaging
sequence is saved to the Web service persistent store any time its state changes.
Examples of state change include:

■ Reliable messaging state is updated (creating, created, terminating, terminated,
and so on).

■ Security property is updated (such as security context token)

■ Message is sent on the reliable messaging sequence (if message buffering is
enabled)

■ Acknowledgement when a message arrives

You can configure Web service persistence using the Configuration Wizard to extend
the WebLogic Server domain using a Web services-specific extension template.

9 Manage the life cycle of a
reliable message sequence.
(Optional)

WebLogic Server provides a client API,
weblogic.wsee.reliability2.api.WsrmClient, for use with the Web
service reliable messaging. Use this API to perform common life cycle tasks
such as set configuration options, get the reliable sequence id, and terminate a
reliable sequence. See Section 5.9, "Managing the Life Cycle of a Reliable
Message Sequence".

10 Update the build.xml file
that is used to compile the
client Web service.

Update your build.xml file to include a call to the jwsc Ant task which will
compile the reliable JWS file into a Web service.

See "Running the jwsc WebLogic Web Services Ant Task" in Getting Started With
JAX-WS Web Services for Oracle WebLogic Server for general information about
using the jwsc task.

11 Compile and deploy the
Web service client file.

Compile your client file by calling the appropriate target and deploy to the
source WebLogic Server. For example:

prompt> ant build-clientService deploy-clientService

12 Monitor Web services
reliable messaging.

Use the Administration Console to monitor Web services reliable messaging.
See Section 5.10, "Monitoring Web Services Reliable Messaging".

Table 5–6 (Cont.) Steps to Create and Invoke a Reliable Web Service

Step Description

Creating the Web Service Reliable Messaging WS-Policy File

Using Web Services Reliable Messaging 5-13

Alternatively, you can configure the resources required for these advanced features
using the Oracle WebLogic Administration Console or WLST. For information about
configuring Web service persistence, see Section 6.3, "Configuring Web Service
Persistence."

You may also wish to configure buffering for Web services. For considerations and
steps to configure message buffering, see Chapter 7, "Configuring Message Buffering
for Web Services."

5.4 Creating the Web Service Reliable Messaging WS-Policy File
A WS-Policy file is an XML file that contains policy assertions that comply with the
WS-Policy specification. In this case, the WS-Policy file contains Web service reliable
messaging policy assertions.

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions that you can use if you do not want to create your own
WS-Policy file.

The pre-packaged WS-Policy files are listed in the following table. This table also
specifies whether the WS-Policy file can be attached at the method level; if the value in
this column is no, then the WS-Policy file can be attached at the class level only. For
more information, see Appendix A, "Pre-packaged WS-Policy Files for Web Services
Reliable Messaging and MakeConnection"

Note: The DefaultReliability.xml and
LongRunningReliability.xml files are deprecated in this release.
Use of the DefaultReliability1.2.xml, Reliability1.2_
SequenceTransportSecurity, or Reliability1.0_1.2.xml
file is recommended and required to comply with the 1.2 version of
the WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.
2-spec-os.pdf.

Table 5–7 Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description
Method Level
Attachment?

DefaultReliability1.2.xml Specifies policy assertions related to delivery assurance.
The Web service reliable messaging assertions are based on
WS Reliable Messaging Policy Assertion 1.2 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02. See Section A.2, "DefaultReliability1.1.xml (WS-Policy
File)".

Yes

DefaultReliability1.1.xml Specifies policy assertions related to quality of service. The
Web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02/wsrmp-1.1-spec-os-01.html. See Section A.2,
"DefaultReliability1.1.xml (WS-Policy File)".

Yes

Reliability1.2_ExactlyOnce_
WithMC1.1.xml

Specifies policy assertions related to quality of service. It
enables MakeConnection support on the Web service and
specifies usage as optional on the Web service client. See
Section A.7, "Reliability1.2_ExactlyOnce_WithMC1.1.xml
(WS-Policy File)".

No

Creating the Web Service Reliable Messaging WS-Policy File

5-14 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Reliability1.2_
SequenceSTRSecurity

Specifies that in order to secure messages in a reliable
sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in
the CreateSequence message. It enables
MakeConnection support on the Web service and specifies
usage as optional on the Web service client. The Web
service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.2 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02. See Section A.10, "Reliability1.2_
SequenceTransportSecurity.xml (WS-Policy File)".

No

Reliability1.1_
SequenceSTRSecurity

The Web service reliable messaging assertions are based on
WS Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02/wsrmp-1.1-spec-os-01.html. See Section A.11,
"Reliability1.1_SequenceTransportSecurity.xml (WS-Policy
File)"

Yes

Reliability1.2_
SequenceTransportSecurity

Specifies policy assertions related to transport-level
security and quality of service. The Web service reliable
messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02. See Section A.10, "Reliability1.2_
SequenceTransportSecurity.xml (WS-Policy File)".

Yes

Reliability1.1_
SequenceTransportSecurity

Specifies policy assertions related to transport-level
security and quality of service. The Web service reliable
messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02/wsrmp-1.1-spec-os-01.html. See Section A.11,
"Reliability1.1_SequenceTransportSecurity.xml (WS-Policy
File)".

Yes

Reliability1.0_1.2.xml Combines 1.2 and 1.0 WS-Reliable Messaging policy
assertions. The policy assertions for the 1.2 version
MakeConnection support on the Web service and specifies
usage as optional on the Web service client. This sample
relies on smart policy selection to determine the policy
assertion that is applied at runtime. See Section A.12,
"Reliability1.0_1.2.xml (WS-Policy File)".

No

Table 5–7 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description
Method Level
Attachment?

Creating the Web Service Reliable Messaging WS-Policy File

Using Web Services Reliable Messaging 5-15

You can use one of the pre-packaged reliable messaging WS-Policy files included in
WebLogic Server; these files are adequate for most use cases. You cannot modify the
pre-packaged files. If the values do not suit your needs, you must create a custom
WS-Policy file. The following sections describe how to create a custom WS-Policy file.

■ Section 5.4.1, "Creating a Custom WS-Policy File Using WS-ReliableMessaging
Policy Assertions Versions 1.2 and 1.1"

■ Section 5.4.2, "Creating a Custom WS-Policy File Using WS-ReliableMessaging
Policy Assertions Version 1.0 (Deprecated)"

■ Section 5.4.3, "Using Multiple Policy Alternatives"

5.4.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Versions 1.2 and 1.1

This section describes how to create a custom WS-Policy file that contains Web service
reliable messaging assertions that are based on the following specifications:

■ WS Reliable Messaging Policy Assertion Version 1.2 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-
os.html

■ WS Reliable Messaging Policy Assertion Version 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-
os-01.html

The root element of the WS-Policy file is <Policy> and it should include the
following namespace declaration:

Reliability1.0_1.1.xml Combines 1.1 and 1.0 WS Reliable Messaging policy
assertions. See Section A.13, "Reliability1.0_1.1.xml
(WS-Policy.xml File)".

Yes

DefaultReliability.xml Deprecated. The Web service reliable messaging assertions
are based on WS Reliable Messaging Policy Assertion
Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/WS
-RMPolicy.pdf. In this release, many of the reliable
messaging policy assertions are managed through JWS
annotations or configuration.

Specifies typical values for the reliable messaging policy
assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base
retransmission interval of 3 seconds. See Section A.3,
"DefaultReliability.xml WS-Policy File (WS-Policy)
[Deprecated]".

Yes

LongRunningReliability.xml Deprecated. The Web service reliable messaging assertions
are based on WS Reliable Messaging Policy Assertion
Version 1.0 for long running processes. In this release,
many of the reliable messaging policy assertions are
managed through JWS annotations or configuration.

Similar to the preceding default reliable messaging
WS-Policy file, except that it specifies a much longer
activity timeout interval (24 hours.) See Section A.4,
"LongRunningReliability.xml WS-Policy File (WS-Policy)
[Deprecated]".

Yes

Table 5–7 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description
Method Level
Attachment?

Creating the Web Service Reliable Messaging WS-Policy File

5-16 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">

You wrap all Web service reliable messaging policy assertions inside of a
<wsrmp:RMAssertion> element. This element should include the following
namespace declaration for using Web service reliable messaging policy assertions:

<wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">

The following table lists the Web service reliable messaging assertions that you can
specify in the WS-Policy file. The order in which the assertions appear is important.
You can specify the following assertions; the order they appear in the following list is
the order in which they should appear in your WS-Policy file:

The following example shows a simple Web service reliable messaging WS-Policy file:

<?xml version="1.0"?>

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceTransportSecurity/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

For more information about Reliable Messaging policy assertions in the WS-Policy file,
see "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server.

Table 5–8 Web Service Reliable Messaging Assertions (Versions 1.2 and 1.1)

Assertion Description

<wsrmp:SequenceSTR> To secure messages in a reliable sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in the
CreateSequence message. You can only specify one security
assertion; that is, you can specify wsrmp:SequenceSTR or
wsrmp:SequenceTransportSecurity, but not both.

<wsrmp:SequenceTransportSecurity> To secure messages in a reliable sequence, the runtime will use the
SSL transport session that is used to send the CreateSequence
message. This assertion must be used in conjunction with the
sp:TransportBinding assertion that requires the use of some
transport-level security mechanism (for example, sp:HttpsToken).
You can only specify one security assertion; that is, you can specify
wsrmp:SequenceSTR or wsrmp:SequenceTransportSecurity,
but not both.

<wsrm:DeliveryAssurance> Delivery assurance (or quality of service) of the Web service. Valid
values are AtMostOnce, AtLeastOnce, ExactlyOnce, and
InOrder. You can set one of the delivery assurances defined in the
following table. If not set, the delivery assurance defaults to
ExactlyOnce. For more information about delivery assurance, see
Table 5–1.

Creating the Web Service Reliable Messaging WS-Policy File

Using Web Services Reliable Messaging 5-17

5.4.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Version 1.0 (Deprecated)

This section describes how to create a custom WS-Policy file that contains Web service
reliable messaging assertions that are based on WS Reliable Messaging Policy
Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf.

The root element of the WS-Policy file is <Policy> and it should include the
following namespace declarations for using Web service reliable messaging policy
assertions:

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy">

You wrap all Web service reliable messaging policy assertions inside of a
<wsrm:RMAssertion> element. The assertions that use the wsrm: namespace are
standard ones defined by the WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01
.pdf. The assertions that use the beapolicy: namespace are WebLogic-specific. See
"Web Service Reliable Messaging Policy Assertion Reference" in the WebLogic Web
Services Reference for Oracle WebLogic Server for details.

The following table lists the Web service reliable messaging assertions that you can
specify in the WS-Policy file. All Web service reliable messaging assertions are
optional, so only set those whose default values are not adequate. The order in which
the assertions appear is important. You can specify the following assertions; the order
they appear in the following list is the order in which they should appear in your
WS-Policy file,

Note: Many of the reliable messaging policy assertions described in
this section are managed through JWS annotations or configuration.

Table 5–9 Web Service Reliable Messaging Assertions (Version 1.0)

Assertion Description

<wsrm:InactivityTimeout> Number of milliseconds, specified with the Milliseconds
attribute, which defines an inactivity interval. After this amount of
time, if the destination endpoint has not received a message from
the source endpoint, the destination endpoint may consider the
sequence to have terminated due to inactivity. The same is true for
the source endpoint. By default, sequences never timeout.

<wsrm:BaseRetransmissionInterval> Interval, in milliseconds, that the source endpoint waits after
transmitting a message and before it retransmits the message if it
receives no acknowledgment for that message. Default value is set
by the SAF agent on the source endpoint's WebLogic Server
instance.

<wsrm:ExponentialBackoff> Specifies that the retransmission interval will be adjusted using the
exponential backoff algorithm. This element has no attributes.

Creating the Web Service Reliable Messaging WS-Policy File

5-18 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The following example shows a simple Web service reliable messaging WS-Policy file:

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >
 <wsrm:RMAssertion>
 <wsrm:InactivityTimeout
 Milliseconds="600000" />
 <wsrm:BaseRetransmissionInterval
 Milliseconds="500" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval
 Milliseconds="2000" />
 </wsrm:RMAssertion>
</wsp:Policy>

For more information about reliable messaging policy assertions in the WS-Policy file,
see "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server.

5.4.3 Using Multiple Policy Alternatives
You can configure multiple policy alternatives—also referred to as smart policy
alternatives—for a single Web service by creating a custom policy file. At runtime,
WebLogic Server selects which of the configured policies to apply. It excludes policies
that are not supported or have conflicting assertions and selects the appropriate policy,
based on your configured preferences, to verify incoming messages and build the
response messages.

The following example provides an example of a security policy that supports both 1.2
and 1.0 WS-Reliable Messaging. Each policy alternative is enclosed in a <wsp:All>
element.

<wsrm:AcknowledgmentInterval> Maximum interval, in milliseconds, in which the destination
endpoint must transmit a stand-alone acknowledgement. The
default value is set by the SAF agent on the destination endpoint's
WebLogic Server instance.

<beapolicy:Expires> Amount of time after which the reliable Web service expires and
does not accept any new sequence messages. The default value is to
never expire. This element has a single attribute, Expires, whose
data type is an XML Schema duration type (see
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
/#duration). For example, if you want to set the expiration time to
one day, use the following: <beapolicy:Expires
Expires="P1D" />.

<beapolicy:QOS> Delivery assurance level, as described in Table 5–1. The element has
one attribute, QOS, which you set to one of the following values:
AtMostOnce, AtLeastOnce, or ExactlyOnce. You can also
include the InOrder string to specify that the messages be in order.
The default value is ExactlyOnce InOrder. This element is
typically not set.

Table 5–9 (Cont.) Web Service Reliable Messaging Assertions (Version 1.0)

Assertion Description

Programming Guidelines for the Reliable JWS File

Using Web Services Reliable Messaging 5-19

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsrmp10:RMAssertion
 xmlns:wsrmp10="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp10:InactivityTimeout Milliseconds="1200000"/>
 <wsrmp10:BaseRetransmissionInterval Milliseconds="60000"/>
 <wsrmp10:ExponentialBackoff/>
 <wsrmp10:AcknowledgementInterval Milliseconds="800"/>
 </wsrmp10:RMAssertion>
 </wsp:All>
 <wsp:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:AtMostOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

For more information about multiple policy alternatives, see "Smart Policy Selection"
in Securing WebLogic Web Services for Oracle WebLogic Server.

5.5 Programming Guidelines for the Reliable JWS File

Use the @Policy annotation in your JWS file to specify that the Web service has a
WS-Policy file attached to it that contains reliable messaging assertions. WebLogic
Server delivers a set of pre-packaged WS-Policy files, as described in Appendix A,
"Pre-packaged WS-Policy Files for Web Services Reliable Messaging and
MakeConnection".

Follow the following guidelines when using the @Policy annotation for Web service
reliable messaging:

■ Use the uri attribute to specify the build-time location of the policy file, as
follows:

– If you have created your own WS-Policy file, specify its location relative to the
JWS file. For example:

@Policy(uri="ReliableHelloWorldPolicy.xml",
 direction=Policy.Direction.both,
 attachToWsdl=true)

Note: The 1.0 Web service reliable messaging assertions are prefixed
by wsrmp10.

Note: For best practices for developing reliable Web services, see
Chapter 4, "Roadmap for Developing Reliable Web Services and
Clients."

Programming Guidelines for the Reliable JWS File

5-20 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

In this example, the ReliableHelloWorldPolicy.xml file is located in the
same directory as the JWS file.

– To specify one of the pre-packaged WS-Policy files or a WS-Policy file that is
packaged in a shared Java EE library, use the policy: prefix along with the
name and path of the policy file. This syntax tells the jwsc Ant task at
build-time not to look for an actual file on the file system, but rather, that the
Web service will retrieve the WS-Policy file from WebLogic Server at the time
the service is deployed.

– To specify that the policy file is published on the Web, use the http: prefix
along with the URL, as shown in the following example:

@Policy(uri="http://someSite.com/policies/mypolicy.xml"
 direction=Policy.Direction.both,
 attachToWsdl=true)

■ By default, WS-Policy files are applied to both the request (inbound) and response
(outbound) SOAP messages. You can change this default behavior with the
direction attribute by setting the attribute to Policy.Direction.inbound
or Policy.Direction.outbound.

■ You can specify whether the Web service requires the operations to be invoked
reliably and have the responses delivered reliably using the wsp:optional
attribute within the policy file specified by uri.

Please note:

– If the client uses synchronous transport to invoke a Web service, and the
inbound direction of the operation requires reliability (optional attribute is
false), the client must provide an offer sequence (<wsrm: Offer...> as
described in the WS-ReliableMessaging specification at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec
-os-01.pdf) for use when sending reliable responses.

– If the client uses asynchronous transport, the client is not required to send an
offer sequence. If a request is made reliably, and the outbound direction has
any RM policy (optional or not), the reliable messaging runtime will enforce
the handshaking of a new RM sequence for sending the response. This new
sequence will be associated with the request sequence, and all responses from
that point onward are sent on the new response sequence. The response
sequence is negotiated with the endpoint indicated by the ReplyTo address of
the request.

■ Set the attachToWsdl attribute of the @Policy annotation to specify whether
the policy file should be attached to the WSDL file that describes the public
contract of the Web service. Typically, you want to publicly publish the policy so

Note: Shared Java EE libraries are useful when you want to share a
WS-Policy file with multiple Web services that are packaged in
different Enterprise applications. As long as the WS-Policy file is
located in the META-INF/policies or WEB-INF/policies
directory of the shared Java EE library, you can specify the policy file
in the same way as if it were packaged in the same archive at the Web
service. See "Creating Shared Java EE Libraries and Optional
Packages" in Developing Applications for Oracle WebLogic Server for
information about creating libraries and setting up your environment
so the Web service can locate the policy files.

Invoking a Reliable Web Service from a Web Service Client

Using Web Services Reliable Messaging 5-21

that client applications know the reliable messaging capabilities of the Web
service. For this reason, the default value of this attribute is true.

For more information about the @Policy annotation, see "weblogic.jws.Policy" in
WebLogic Web Services Reference for Oracle WebLogic Server.

Example 5–1shows a simple JWS file that implements a reliable Web service.

Example 5–1 Example of a Reliable Web Service

import javax.jws.WebService;

import weblogic.jws.Policies;
import weblogic.jws.Policy;

/**
 * Example Web service for reliable client best practice examples
 */
@WebService
// Enable RM on this service.
@Policies({ @Policy(uri = "policy:DefaultReliability1.2.xml") })
public class BackendReliableService {

 public String doSomething(String what) {

 System.out.println("BackendReliableService doing: " + what);

 return "Did (Reliably) '" + what + "' at: " + System.currentTimeMillis();
 }
}

In the example, the predefined DefaultReliability1.2.xml policy file is attached
to the Web service at the class level, which means that the policy file is applied to all
public operations of the Web service—the doSomething() operation can be invoked
reliably. The policy file is applied to both request and response by default. For
information about the pre-packaged policies available and creating a custom policy,
see Section 5.4, "Creating the Web Service Reliable Messaging WS-Policy File".

5.6 Invoking a Reliable Web Service from a Web Service Client

The following table summarizes how to invoke a reliable Web service from a Web
service client based on the transport type that you want to employ. For a description of
transport types, see Table 5–2.

Note: For best practices for developing reliable Web service clients,
see Section 4.1, "Roadmap for Developing Reliable Web Service
Clients."

Configuring Reliable Messaging

5-22 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

For additional control on the client side, you may wish to perform one or more of the
following tasks:

■ Configure reliable messaging on the client side, as described in Section 5.7,
"Configuring Reliable Messaging".

■ Implement the reliability error listener to receive notifications if a reliable delivery
fails, as described in Section 5.8, "Implementing the Reliability Error Listener".
Oracle recommends that you always implement the reliability error listener as a
best practice.

■ Perform common life cycle tasks on the reliable messaging sequence, such as set
configuration options, get the reliable sequence id, and terminate a reliable
sequence, as described in Section 5.9, "Managing the Life Cycle of a Reliable
Message Sequence"

5.7 Configuring Reliable Messaging

Table 5–10 Invoking a Reliable Web Service Based on Transport Type

Transport Type Description

Asynchronous transport To use asynchronous transport, perform the following steps:

1. Implement the Web service client, as described in Table 3–3, " Steps to Invoke
Web Services Asynchronously".

In step 3 of Table 3–3, implement one of the following transport mechanisms,
depending on whether the client is behind a firewall or not:

-Asynchronous client transport feature, as described in Section 3.5, "Developing
Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)".

- MakeConnection if the client is behind a firewall, as described in Section 3.6,
"Using Asynchronous Web Service Clients From Behind a Firewall
(MakeConnection)".

2. Invoke the Web service using either asynchronous or synchronous invocation
semantics.

Note: You can invoke synchronous operations when asynchronous client
transport or MakeConnection is enabled, as described in Section 3.5.1.5,
"Configuring Asynchronous Client Transport for Synchronous Operations" and
Section 3.6.2.4, "Configuring MakeConnection as the Transport for Synchronous
Methods".

Synchronous transport To use synchronous transport, invoke an asynchronous or synchronous method on
the reliable messaging service port instance using the standard JAX-WS Reference
Implementation, as described in Section 3.7, "Using the JAX-WS Reference
Implementation".

Note: If you attempt to invoke a buffered Web service using synchronous transport,
one of following will result:

■ If this is the first request of the sequence, the destination sequence will be set to
be non-buffered (as though the Web service configuration was set as
non-buffered).

■ If this is not the first request of the sequence (that is, the client sent a request
using asynchronous transport previously), then the request is rejected and a
fault returned.

Note: For best practices for configuring reliable Web services, see
Chapter 4, "Roadmap for Developing Reliable Web Services and
Clients."

Configuring Reliable Messaging

Using Web Services Reliable Messaging 5-23

You can configure properties for a reliable Web service and client at the WebLogic
Server, Web service endpoint, or Web service client level.

The properties that you define at the WebLogic Server level apply to all reliable Web
services and clients on that server. For information about configuring reliable
messaging at the WebLogic Server level, see Section 5.7.1, "Configuring Reliable
Messaging on WebLogic Server".

If desired, you can override the reliable message configuration options defined at the
server level, as follows:

■ At the Web service endpoint level by updating the application deployment plan. The
deployment plan associates new values with specific locations in the descriptors
for your application, and is stored in the weblogic-webservices.xml
descriptor. At deployment time, a deployment plan is merged with the descriptors
in the application by applying the values in its variable assignments to the
locations in the application descriptors to which the variables are linked. For more
information, see Section 5.7.2, "Configuring Reliable Messaging on the Web Service
Endpoint"

■ At the Web service client level, as described in Section 5.7.3, "Configuring Reliable
Messaging on Web Service Clients"

The following sections describe how to configure reliable messaging at the WebLogic
Server, Web service endpoint, and Web service client levels.

■ Section 5.7.1, "Configuring Reliable Messaging on WebLogic Server"

■ Section 5.7.2, "Configuring Reliable Messaging on the Web Service Endpoint"

■ Section 5.7.3, "Configuring Reliable Messaging on Web Service Clients"

■ Section 5.7.4, "Configuring the Base Retransmission Interval"

■ Section 5.7.5, "Configuring the Retransmission Exponential Backoff"

■ Section 5.7.6, "Configuring the Sequence Expiration"

■ Section 5.7.7, "Configuring Inactivity Timeout"

■ Section 5.7.8, "Configuring a Non-buffered Destination for a Web Service"

■ Section 5.7.9, "Configuring the Acknowledgement Interval"

■ Section 5.8, "Implementing the Reliability Error Listener"

5.7.1 Configuring Reliable Messaging on WebLogic Server
You can configure reliable messaging on WebLogic Server using the Administration
Console or WLST, as described in the following sections.

■ Section 5.7.1.1, "Using the Administration Console"

■ Section 5.7.1.2, "Using WLST"

5.7.1.1 Using the Administration Console
To configure reliable messaging for WebLogic Server using the Administration
Console:

1. Invoke the Administration Console, as described in "Using the WebLogic Server
Administration Console" in Getting Started With JAX-WS Web Services for Oracle
WebLogic Server.

2. In the left navigation pane, select Environment, then Servers.

Configuring Reliable Messaging

5-24 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

3. Select the Configuration tab and in the Server tables, click on the name of the
server for which you want to configure reliable messaging.

4. Click the Configuration tab, then the Web Services tab, then the Reliable
Message tab.

5. Edit the reliable messaging properties, as described in the following sections:

■ Section 5.7.4.1, "Configuring the Base Retransmission Interval on WebLogic
Server or the Web Service Endpoint"

■ Section 5.7.5.1, "Configuring the Retransmission Exponential Backoff on
WebLogic Server or Web Service Endpoint"

■ Section 5.7.6.1, "Configuring the Sequence Expiration on WebLogic Server or
Web Service Endpoint"

■ Section 5.7.7.1, "Configuring the Inactivity Timeout on WebLogic Server or
Web Service Endpoint"

■ Section 5.7.8, "Configuring a Non-buffered Destination for a Web Service"

■ Section 5.7.9, "Configuring the Acknowledgement Interval"

6. Click Save.

For more information, see "Web Service Reliable Messaging" in the Oracle WebLogic
Server Administration Console Help.

5.7.1.2 Using WLST
Alternatively, you can use WLST to configure reliable messaging. For information
about using WLST to extend the domain, see "Configuring Existing Domains" in Oracle
WebLogic Scripting Tool.

5.7.2 Configuring Reliable Messaging on the Web Service Endpoint
By default, Web service endpoints use the reliable messaging configuration defined for
the server. You can override the reliable messaging configuration used by the Web
service endpoint using the Administration Console, as follows:

1. Invoke the Administration Console, as described in "Invoking the Administration
Console" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

2. In the left navigation pane, select Deployments.

3. Click the name of the Web service in the Deployments table.

4. Select the Configuration tab, then the Port Components tab.

5. Click the name of the Web service endpoint in the Ports table.

6. Select the Reliable Message tab.

7. Click Customize Reliable Message Configuration and follow the instructions to
save the deployment plan, if required.

8. Edit the reliable messaging properties, as described in the following sections:

Note: Alternatively, you can use WLST to configure reliable
messaging. For information about using WLST to extend the domain,
see "Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

Configuring Reliable Messaging

Using Web Services Reliable Messaging 5-25

■ Section 5.7.4.1, "Configuring the Base Retransmission Interval on WebLogic
Server or the Web Service Endpoint"

■ Section 5.7.5.1, "Configuring the Retransmission Exponential Backoff on
WebLogic Server or Web Service Endpoint"

■ Section 5.7.6.1, "Configuring the Sequence Expiration on WebLogic Server or
Web Service Endpoint"

■ Section 5.7.7.1, "Configuring the Inactivity Timeout on WebLogic Server or
Web Service Endpoint"

■ Section 5.7.8, "Configuring a Non-buffered Destination for a Web Service"

■ Section 5.7.9, "Configuring the Acknowledgement Interval"

9. Click Save.

For more information, see "Configure Web Service Reliable Messaging" in the Oracle
WebLogic Server Administration Console Help.

5.7.3 Configuring Reliable Messaging on Web Service Clients
For general information about configuring reliable messaging on Web service clients,
see "Configuring Web Service Clients" in Getting Started With JAX-WS Web Services for
Oracle WebLogic Server.

For information about using the
weblogic.wsee.reliability2.api.WsrmClientInitFeature when creating
a Web services reliable messaging client, refer to the following sections:

■ Section 5.7.4.2, "Configuring the Base Retransmission Interval on the Web Service
Client"

■ Section 5.7.5.2, "Configuring the Retransmission Exponential Backoff on the Web
Service Client"

■ Section 5.7.6.2, "Configuring Sequence Expiration on the Web Service Client"

■ Section 5.7.7.2, "Configuring the Inactivity Timeout on the Web Service Client"

5.7.4 Configuring the Base Retransmission Interval
If the source endpoint does not receive an acknowledgement for a given message
within the specified base retransmission interval, the source endpoint retransmits the
message. The source endpoint can modify this retransmission interval at any point
during the lifetime of the sequence of messages.

This interval can be used in conjunction with the retransmission exponential backoff,
described in Section 5.7.5, "Configuring the Retransmission Exponential Backoff", to
specify the algorithm that is used to adjust the retransmission interval.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMnDTnHnMnS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, nH specifies the number of hours, nM specifies the number of minutes, and
nS specifies the number of seconds. This value defaults to P0DT5S (5 seconds).

The following sections describe how to configure the base retransmission interval:

■ Section 5.7.4.1, "Configuring the Base Retransmission Interval on WebLogic Server
or the Web Service Endpoint"

Configuring Reliable Messaging

5-26 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Section 5.7.4.2, "Configuring the Base Retransmission Interval on the Web Service
Client"

5.7.4.1 Configuring the Base Retransmission Interval on WebLogic Server or the
Web Service Endpoint
To configure the retransmission exponential backoff on WebLogic Server or the Web
service endpoint level using the Administration Console, perform the following steps:

1. Invoke the Administration Console and access the Web service reliable messaging
pages at the server-level or Web service endpoint level, as described in the
following sections, respectively:

■ Section 5.7.1, "Configuring Reliable Messaging on WebLogic Server"

■ Section 5.7.2, "Configuring Reliable Messaging on the Web Service Endpoint"

2. Set the Base Retransmission Interval value, as required.

5.7.4.2 Configuring the Base Retransmission Interval on the Web Service Client

Table 5–11 defines that
weblogic.wsee.reliability2.api.WsrmClientInitFeature methods for
configuring the interval of time that must pass before a message is retransmitted to the
RM destination.

In the following example, the base retransmission interval is set to 3 hours.

import java.xml.ws.WebService;
import java.xml.ws.WebServiceRef;
import wsrm_jaxws.example.client_service.*;
import wsrm_jaxws.example.client_service.EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;
...
@WebService
public class ClientServiceImpl {
...
 @WebServiceRef(name="ReliableEchoService")
 private ReliableEchoService service;
 private ReliableEchoPortType port = null;
 WsrmClientInitFeature initFeature = new WsrmClientInitFeature(true);

Note: Alternatively, you can use WLST to configure reliable
messaging. For information about using WLST to extend the domain,
see "Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

Note: For more information about configuring Web service clients,
see "Configuring Web Service Clients" in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server.

Table 5–11 Methods for Configuring the Base Retransmission Interval

Method Description

String getBaseRetransmissionInterval() Gets the base retransmission interval.

void setBaseRetransmissionInterval(String interval) Sets the base retransmission interval.

Configuring Reliable Messaging

Using Web Services Reliable Messaging 5-27

 initFeature.setBaseRetransmissionInterval("P0DT3H");
 port = service.getMyReliableServicePort(initFeature);
...

The base retransmission interval configuration appears in the weblogic.xml file as
follows:

<service-reference-description>
...
 <port-info>
 <stub-property>
 <name>weblogic.wsee.wsrm.BaseRetransmissionInterval</name>
 <value>PT30S</value>
 </stub-property>
...
 </port-info>
</service-reference-description>

5.7.5 Configuring the Retransmission Exponential Backoff
The retransmission exponential backoff is used in conjunction with the base
retransmission interval, described in Section 5.7.4, "Configuring the Base
Retransmission Interval". If a destination endpoint does not acknowledge a sequence
of messages for the time interval specified by the base retransmission interval, the
exponential backoff algorithm is used for timing successive retransmissions by the
source endpoint, should the message continue to go unacknowledged.

The exponential backoff algorithm specifies that successive retransmission intervals
should increase exponentially, based on the base retransmission interval. For example,
if the base retransmission interval is 2 seconds, and the exponential backoff element is
set, successive retransmission intervals if messages continue to go unacknowledged
are 2, 4, 8, 16, 32, and so on.

By default, this flag is disabled (false), indicating that the same retransmission interval
is used in successive retries; the interval does not increase exponentially.

The following sections describe how to configure the retransmission exponential
backoff:

■ Section 5.7.5.1, "Configuring the Retransmission Exponential Backoff on WebLogic
Server or Web Service Endpoint"

■ Section 5.7.5.2, "Configuring the Retransmission Exponential Backoff on the Web
Service Client"

5.7.5.1 Configuring the Retransmission Exponential Backoff on WebLogic Server
or Web Service Endpoint
To configure the retransmission exponential backoff on WebLogic Server or the Web
service endpoint level using the Administration Console, perform the following steps:

1. Invoke the Administration Console and access the Web service reliable messaging
pages at the server-level or Web service endpoint level, as described in the
following sections, respectively:

Note: Alternatively, you can use WLST to configure reliable
messaging. For information about using WLST to extend the domain,
see "Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

Configuring Reliable Messaging

5-28 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Section 5.7.1, "Configuring Reliable Messaging on WebLogic Server"

■ Section 5.7.2, "Configuring Reliable Messaging on the Web Service Endpoint"

2. Set the Enable Retransmission Exponential Backoff flag, as required.

5.7.5.2 Configuring the Retransmission Exponential Backoff on the Web Service
Client

Table 5–12 defines the
weblogic.wsee.reliability2.api.WsrmClientInitFeature methods for
configuring whether the message retransmission interval will be adjusted using the
retransmission exponential backoff algorithm.

In the following example, the retransmission exponential backoff is enabled.

import java.xml.ws.WebService;
import java.xml.ws.WebServiceRef;
import wsrm_jaxws.example.client_service.*;
import wsrm_jaxws.example.client_service.EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;
...
@WebService
public class ClientServiceImpl {
...
 @WebServiceRef(name="ReliableEchoService")
 private ReliableEchoService service;
 private ReliableEchoPortType port = null;
 WsrmClientInitFeature initFeature = new WsrmClientInitFeature(true);
 initFeature.setBaseRetransmissionInterval("P0DT3H");
 initFeature.setBaseRetransmissionExponentialBackoff(true);
 port = service.getMyReliableServicePort(initFeature);
...

The retransmission exponential backoff configuration appears in the weblogic.xml
file as follows:

<service-reference-description>
...
 <port-info>
 <stub-property>
 <name>weblogic.wsee.wsrm.RetransmissionExponentialBackoff</name>
 <value>true</value>
 </stub-property>
...

Note: For more information about configuring Web service clients,
see "Configuring Web Service Clients" in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server.

Table 5–12 Methods for Configuring the Retransmission Exponential Backoff

Method Description

Boolean isRetransmissionExponentialBackoff() Indicates whether retransmission
exponential backoff is enabled.

void
setBaseRetransmissionExponentialBackoff(boolean
value)

Specifies whether base retransmission
exponential backoff is enabled. Valid values
are true or false.

Configuring Reliable Messaging

Using Web Services Reliable Messaging 5-29

 </port-info>
</service-reference-description>

5.7.6 Configuring the Sequence Expiration
The sequence expiration specifies the expiration time for a sequence regardless of
activity.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMnDTnHnMnS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, nH specifies the number of hours, nM specifies the number of minutes, and
nS specifies the number of seconds. This value defaults to P1D (1 day).

The following sections describe how to configure the sequence expiration:

■ Section 5.7.6.1, "Configuring the Sequence Expiration on WebLogic Server or Web
Service Endpoint"

■ Section 5.7.6.2, "Configuring Sequence Expiration on the Web Service Client"

5.7.6.1 Configuring the Sequence Expiration on WebLogic Server or Web Service
Endpoint
To configure the sequence expiration on WebLogic Server or the Web service endpoint
level using the Administration Console, perform the following steps:

1. Invoke the Administration Console and access the Web service reliable messaging
pages at the server-level or Web service endpoint level, as described in the
following sections, respectively:

■ Section 5.7.1, "Configuring Reliable Messaging on WebLogic Server"

■ Section 5.7.2, "Configuring Reliable Messaging on the Web Service Endpoint"

2. Set the Sequence Expiration value, as required.

5.7.6.2 Configuring Sequence Expiration on the Web Service Client

Table 5–13 defines that
weblogic.wsee.reliability2.api.WsrmClientInitFeature methods for
expiration time for a sequence regardless of activity.

Note: Alternatively, you can use WLST to configure reliable
messaging. For information about using WLST to extend the domain,
see "Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

Note: For more information about configuring Web service clients,
see "Configuring Web Service Clients" in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server.

Table 5–13 Methods for Configuring Sequence Expiration

Method Description

String getSequenceExpiration() Returns the sequence expiration currently
configured.

Configuring Reliable Messaging

5-30 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

In the following example, the sequence expiration is set to 36 hours.

import java.xml.ws.WebService;
import java.xml.ws.WebServiceRef;
import wsrm_jaxws.example.client_service.*;
import wsrm_jaxws.example.client_service.EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;
...
@WebService
public class ClientServiceImpl {
...
 @WebServiceRef(name="ReliableEchoService")
 private ReliableEchoService service;
 private ReliableEchoPortType port = null;
 WsrmClientInitFeature initFeature = new WsrmClientInitFeature(true);
 initFeature.setSequenceExpiration("P0DT36H");
 port = service.getMyReliableServicePort(initFeature);
...

The sequence expiration configuration appears in the weblogic.xml file as follows:

<service-reference-description>
...
 <port-info>
 <stub-property>
 <name>weblogic.wsee.wsrm.SequenceExpiration</name>
 <value>PT10M</value>
 </stub-property>
...
 </port-info>
</service-reference-description>

5.7.7 Configuring Inactivity Timeout
If, during the inactivity timeout interval, an endpoint (the RM source or destination)
has not received messages application or protocol messages, the endpoint may
consider the RM sequence to have been terminated due to inactivity.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMnDTnHnMnS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, nH specifies the number of hours, nM specifies the number of minutes, and
nS specifies the number of seconds. This value defaults to P0DT600S (600 seconds).

The following sections describe how to configure the inactivity timeout:

■ Section 5.7.7.1, "Configuring the Inactivity Timeout on WebLogic Server or Web
Service Endpoint"

■ Section 5.7.7.2, "Configuring the Inactivity Timeout on the Web Service Client"

void setSequenceExpiration(String expiration) Expiration time for a sequence regardless of
activity.

Table 5–13 (Cont.) Methods for Configuring Sequence Expiration

Method Description

Configuring Reliable Messaging

Using Web Services Reliable Messaging 5-31

5.7.7.1 Configuring the Inactivity Timeout on WebLogic Server or Web Service
Endpoint
To configure the inactivity timeout on WebLogic Server or the Web service endpoint
level using the Administration Console, perform the following steps:

1. Invoke the Administration Console and access the Web service reliable messaging
pages at the server-level or Web service endpoint level, as described in the
following sections, respectively:

■ Section 5.7.1, "Configuring Reliable Messaging on WebLogic Server"

■ Section 5.7.2, "Configuring Reliable Messaging on the Web Service Endpoint"

2. Set the Inactivity Timeout value, as required.

5.7.7.2 Configuring the Inactivity Timeout on the Web Service Client

Table 5–14 defines that
weblogic.wsee.reliability2.api.WsrmClientInitFeature methods for
configuring the inactivity timeout.

In the following example, the inactivity timeout interval is set to 1 hour.

import java.xml.ws.WebService;
import java.xml.ws.WebServiceRef;
import wsrm_jaxws.example.client_service.*;
import wsrm_jaxws.example.client_service.EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;
...
@WebService
public class ClientServiceImpl {
...
 @WebServiceRef(name="ReliableEchoService")
 private ReliableEchoService service;
 private ReliableEchoPortType port = null;
 WsrmClientInitFeature initFeature = new WsrmClientInitFeature(true);
 initFeature.setInactivityTimeout("P0DT1H");
 port = service.getMyReliableServicePort(initFeature);
...

Note: Alternatively, you can use WLST to configure reliable
messaging. For information about using WLST to extend the domain,
see "Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

Note: For more information about configuring Web service clients,
see "Configuring Web Service Clients" in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server.

Table 5–14 Methods for Configuring Inactivity Timeout

Method Description

String getInactivityTimeout() Returns the inactivity timeout currently
configured.

void setInactivityTimeout(String timeout) Sets the inactivity timeout.

Configuring Reliable Messaging

5-32 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The inactivity timeout configuration appears in the weblogic.xml file as follows:

<service-reference-description>
...
 <port-info>
 <stub-property>
 <name>weblogic.wsee.wsrm.InactivityTimeout</name>
 <value>PT5M</value>
 </stub-property>
...
 </port-info>
</service-reference-description>

5.7.8 Configuring a Non-buffered Destination for a Web Service
You can control whether you want to disable message buffering on a particular
destination server to control whether buffering is used when receiving messages. You
can configure non-buffering on the destination server at the WebLogic Server or Web
service endpoint level only, not at the Web service client level (buffering is enabled by
default on a Web service client).

To configure the destination server to disable message buffering, on WebLogic Server
or the Web service endpoint level using the Administration Console, perform the
following steps:

1. Invoke the Administration Console and access the Web service reliable messaging
pages at the server-level or Web service endpoint level, as described in the
following sections, respectively:

Note: If you configure a non-buffered destination, any Web service
client that uses @WebServiceRef to define a reference to the
configuration will receive responses without buffering them.

The non-buffered destination configuration appears in the
weblogic.xml file as follows:

<service-reference-description>
...
 <port-info>
 <stub-property>
 <name>weblogic.wsee.wsrm.NonBufferedDestination</name>
 <value>true</value>
 </stub-property>
...
 </port-info>
</service-reference-description>

For more information about @WebServiceRef, see "Defining a Web
Service Reference Using the @WebServiceRef Annotation" in Getting
Started With JAX-WS Web Services for Oracle WebLogic Server.

Note: Alternatively, you can use WLST to configure reliable
messaging. For information about using WLST to extend the domain,
see "Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

Configuring Reliable Messaging

Using Web Services Reliable Messaging 5-33

■ Section 5.7.1, "Configuring Reliable Messaging on WebLogic Server"

■ Section 5.7.2, "Configuring Reliable Messaging on the Web Service Endpoint"

2. Set the Non-buffered Destination value, to configure the destination server,
respectively, as required.

5.7.9 Configuring the Acknowledgement Interval
The acknowledgement interval specifies the maximum interval during which the
destination endpoint must transmit a stand-alone acknowledgement. You can
configure the acknowledgement interval at the WebLogic Server or Web service
endpoint level only, not at the Web service client level.

A destination endpoint can send an acknowledgement on the return message
immediately after it has received a message from a source endpoint, or it can send one
separately as a stand-alone acknowledgement. If a return message is not available to
send an acknowledgement, a destination endpoint may wait for up to the
acknowledgement interval before sending a stand-alone acknowledgement. If there
are no unacknowledged messages, the destination endpoint may choose not to send an
acknowledgement.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMnDTnHnMnS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, nH specifies the number of hours, nM specifies the number of minutes, and
nS specifies the number of seconds. This value defaults to P0DT0.2S (0.2 seconds).

Note: On the source server, message buffering should always be
enabled. That is, the Non-buffered Source value should always be
disabled.

Note: A Web service client that uses @WebServiceRef to define a
reference to the Web service uses the acknowledgement interval value
to control the amount of time that the client’s response handling will
wait until acknowledging responses that it receives. In other words,
the client acts like an RM destination when receiving response
messages.

The non-buffered destination configuration appears in the
weblogic.xml file as follows:

<service-reference-description>
...
 <port-info>
 <stub-property>
 <name>weblogic.wsee.wsrm.AcknowledgementInterval</name>
 <value>PT5S</value>
 </stub-property>
...
 </port-info>
</service-reference-description>

For more information about @WebServiceRef, see "Defining a Web
Service Reference Using the @WebServiceRef Annotation" in Getting
Started With JAX-WS Web Services for Oracle WebLogic Server.

Implementing the Reliability Error Listener

5-34 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

To configure the acknowledgement interval, on WebLogic Server or the Web service
endpoint level using the Administration Console, perform the following steps:

1. Invoke the Administration Console and access the Web service reliable messaging
pages at the server-level or Web service endpoint level, as described in the
following sections, respectively:

■ Section 5.7.1, "Configuring Reliable Messaging on WebLogic Server"

■ Section 5.7.2, "Configuring Reliable Messaging on the Web Service Endpoint"

2. Set the Acknowledgement Interval value, as required.

5.8 Implementing the Reliability Error Listener
To receive notifications related to reliability delivery failures in the event that a request
cannot be delivered, you can implement the following
weblogic.wsee.reliability2.api.ReliabilityErrorListener interface:

public interface ReliablityErrorListener {

 public void onReliabilityError(ReliabilityErrorContext context);
}

Table 5–15 defines that
weblogic.wsee.reliability2.api.WsrmClientInitFeature methods for
configuring the reliability error listener.

The following provides an example of how to implement and use a reliability error
listener in your Web service client. This example is excerpted from Example 4–1,
"Reliable Web Service Client Best Practices Example".

import weblogic.wsee.reliability2.api.ReliabilityErrorListener;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;
...
@WebService
public class ClientServiceImpl {
...
 WsrmClientInitFeature rmFeature = new WsrmClientInitFeature();
 features.add(rmFeature);

 ReliabilityErrorListener listener = new ReliabilityErrorListener() {
 public void onReliabilityError(ReliabilityErrorContext context) {

 // At a *minimum* do this

Note: Alternatively, you can use WLST to configure reliable
messaging. For information about using WLST to extend the domain,
see "Configuring Existing Domains" in Oracle WebLogic Scripting Tool.

Table 5–15 Methods for Configuring the Reliability Error Listener

Method Description

ReliabilityErrorListener getReliabilityListener() Gets the reliability listener currently
configured.

void setErrorListener(ReliabilityErrorListener
errorListener)

Sets the reliability error listener.

Managing the Life Cycle of a Reliable Message Sequence

Using Web Services Reliable Messaging 5-35

 System.out.println("RM sequence failure: " +
 context.getFaultSummaryMessage());
 _lastResponse = context.getFaultSummaryMessage();

 // And optionally do this...

 // The context parameter tells you whether a request or the entire
 // sequence has failed. If a sequence fails, you'll get a notification
 // for each undelivered request (if any) on the sequence.
 if (context.isRequestSpecific()) {
 // We have a single request failure (possibly as part of a larger
 // sequence failure).
 // We can get the original request back like this:
 String operationName = context.getOperationName();
 System.out.println("Failed to deliver request for operation '" +
 operationName + "'. Fault summary: " +
 context.getFaultSummaryMessage());
 if ("DoSomething".equals(operationName)) {
 try {
 String request = context.getRequest(JAXBContext.newInstance(),
 String.class);
 System.out.println("Failed to deliver request for operation '" +
 operationName + "' with content: " +
 request);
 Map<String, Serializable> requestProps =
 context.getUserRequestContextProperties();
 if (requestProps != null) {
 // Fetch back any property you sent in
 // JAXWSProperties.PERSISTENT_CONTEXT when you sent the
 // request.
 String myProperty = (String)requestProps.get(MY_PROPERTY);
 System.out.println(myProperty + " failed!");
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 } else {
 // The entire sequence has encountered an error.
 System.out.println("Entire sequence failed: " +
 context.getFaultSummaryMessage());

 }
 }
 };

 rmFeature.setReliabilityErrorListener(listener);

 _features = features.toArray(new WebServiceFeature[features.size()]);

 BackendReliableService anotherPort =
 _service.getBackendReliableServicePort(_features);
...

5.9 Managing the Life Cycle of a Reliable Message Sequence
WebLogic Server provides a client API,
weblogic.wsee.reliability2.api.WsrmClient, for use with the Web service

Managing the Life Cycle of a Reliable Message Sequence

5-36 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

reliable messaging. Use this API to perform common life cycle tasks such as set
configuration options, get the reliable sequence id, and terminate a reliable sequence.

An instance of the WsrmClient API can be accessed from the reliable Web service
port using the weblogic.wsee.reliability2.api.WsrmClientFactory
method, as follows:

package wsrm_jaxws.example;
import java.xml.ws.WebService;
import java.xml.ws.WebServiceRef;
import wsrm_jaxws.example.client_service.*;
import wsrm_jaxws.example.client_service.EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;
...
@WebService
public class ClientServiceImpl {
...
 @WebServiceRef(name="ReliableEchoService")
 private ReliableEchoService service;
 private ReliableEchoPortType port = null;
 port = service.getReliableEchoPort();
 WsrmClient wsrmClient = WsrmClientFactory.getWsrmClientFromPort(port);
...

The following sections describe how to manage the life cycle of a reliable message
sequence using WsrmClient.

■ Section 5.9.1, "Managing the Reliable Sequence"

■ Section 5.9.2, "Managing the Client ID"

■ Section 5.9.3, "Managing the Acknowledged Requests"

■ Section 5.9.4, "Accessing Information About a Message"

■ Section 5.9.5, "Identifying the Final Message in a Reliable Sequence"

■ Section 5.9.6, "Closing the Reliable Sequence"

■ Section 5.9.7, "Terminating the Reliable Sequence"

■ Section 5.9.8, "Resetting a Client to Start a New Message Sequence"

For complete details on the Web service reliable messaging client API, see
weblogic.wsee.reliability2.api.WsrmClient in Oracle WebLogic Server API
Reference.

5.9.1 Managing the Reliable Sequence
To manage the reliable sequence, you can perform one or more of the following tasks.

■ Get and set the reliable sequence ID, as described in Section 5.9.1.1, "Getting and
Setting the Reliable Sequence ID".

■ Access the state of the reliable sequence, for example, to determine if it is active or
terminated, as described in Section 5.9.1.2, "Accessing the State of the Reliable
Sequence".

5.9.1.1 Getting and Setting the Reliable Sequence ID
The sequence ID is used to identify a specific reliable sequence. You can get and set the
sequence ID using the
weblogic.wsee.reliability2.api.WsrmClient.getSequenceID() and
weblogic.wsee.reliability2.api.WsrmClient.setSequenceID()

Managing the Life Cycle of a Reliable Message Sequence

Using Web Services Reliable Messaging 5-37

methods, respectively. If no messages have been sent when you issue the
getSequenceID() method, the value returned is null.

For example:

import weblogic.wsee.reliability2.api.WsrmClientFactory;
import weblogic.wsee.reliability2.api.WsrmClient;
...
 _service = new BackendReliableServiceService();
...
 features.add(... some features ...);
 _features = features.toArray(new WebServiceFeature[features.size()]);
...
 BackendReliableService anotherPort =
 _service.getBackendReliableServicePort(_features);
...
 WsrmClient rmClient = WsrmClientFactory.getWsrmClientFromPort(anotherPort);
...
 // Will be null
 String sequenceId = rmClient.getSequenceId();
 // Send first message
 anotherPort.doSomething("Bake a cake");
 // Will be non-null
 sequenceId = rmClient.getSequenceId();

During recovery from a server failure, you can set the reliable sequence on a newly
created Web service port or dispatch instance after a client or server restart. Setting the
sequence ID for a client instance is an advanced feature. Advanced clients may use
setSequenceId to connect a client instance to a known RM sequence.

5.9.1.2 Accessing the State of the Reliable Sequence
To access the state of a sequence, use
weblogic.wsee.reliability2.api.WsrmClient.getSequenceState(). This
method returns an java.lang.Enum constant of the type
weblogic.wsee.reliability2.api.SequenceState.

The following table defines valid values that may be returned for sequence state.

Table 5–16 Sequence State Values

Sequence State Description

CLOSED Reliable sequence is closed.

Note: Closing a sequence should be considered a last resort, and
only to prepare to close down a reliable messaging sequence for
which you do not expect to receive the full range of requests. For
more information, see Section 5.9.6, "Closing the Reliable
Sequence"

CLOSING Reliable sequence is in the process of being closed.

Note: Closing a sequence should be considered a last resort, and
only to prepare to close down a reliable messaging sequence for
which you do not expect to receive the full range of requests. For
more information, see Section 5.9.6, "Closing the Reliable
Sequence"

CREATED Reliable sequence has been created and the initial handshaking
is complete.

CREATING Reliable sequence is being created; the initial handshaking is in
progress.

Managing the Life Cycle of a Reliable Message Sequence

5-38 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

For example:

import weblogic.wsee.reliability2.api.WsrmClientFactory;
import weblogic.wsee.reliability2.api.WsrmClient;
import weblogic.wsee.reliability2.api.SequenceState;
...
 _service = new BackendReliableServiceService();
...
 features.add(... some features ...);
 _features = features.toArray(new WebServiceFeature[features.size()]);
...
 BackendReliableService anotherPort =
 _service.getBackendReliableServicePort(_features);
...
 WsrmClient rmClient = WsrmClientFactory.getWsrmClientFromPort(anotherPort);
...
 SequenceState rmState = rmClient.getSequenceState();
 if (rmState == SequenceState.TERMINATED) {
 ... Do some work or log a message ...
 }
...

5.9.2 Managing the Client ID
The client ID identifies the Web service client. Each client has its own unique ID. The
client ID can be used to access saved requests that may exist for a reliable sequence
after a client or server restart.

The client ID is configured automatically by WebLogic Server. You can set the client ID
to a custom value when creating the port using the
weblogic.wsee.jaxws.persistence.ClientIdentityFeature. For more
information, see "Managing Client Identity" in Getting Started With JAX-WS Web
Services for Oracle WebLogic Server.

LAST_MESSAGE Deprecated. WS-ReliableMessaging 1.0 only. The last message in
the sequence has been received.

LAST_MESSAGE_PENDING Deprecated. WS-ReliableMessaging 1.0 only. The last message in
the sequence is pending.

NEW Reliable sequence is in its initial state. Initial handshaking has
not started.

TERMINATED Reliable sequence is terminated.

Under normal processing, after all messages up to and including
the final message are acknowledged, the reliable message
sequence is terminated. Though not recommended, you can
force the termination of a reliable sequence, as described in
Section 5.9.7, "Terminating the Reliable Sequence".

TERMINATING Reliable sequence is in the process of being terminated.

Under normal processing, after all messages up to and including
the final message are acknowledged, the reliable message
sequence is terminated. Though not recommended, you can
force the termination of a reliable sequence, as described in
Section 5.9.7, "Terminating the Reliable Sequence".

Table 5–16 (Cont.) Sequence State Values

Sequence State Description

Managing the Life Cycle of a Reliable Message Sequence

Using Web Services Reliable Messaging 5-39

Reliable messaging uses the client ID to find any requests that were sent prior to a VM
restart that were not sent before the VM exited. When you establish the first client
instance using the prior client ID, reliable messaging uses the resources associated
with that port to begin sending requests on behalf of the restored client ID.

You can get the client ID using the
weblogic.wsee.reliability2.api.WsrmClient.getID() method.

For example:

import weblogic.wsee.reliability2.api.WsrmClientFactory;
import weblogic.wsee.reliability2.api.WsrmClient;
...
 _service = new BackendReliableServiceService();
...
 features.add(... some features ...);
 _features = features.toArray(new WebServiceFeature[features.size()]);
...
 BackendReliableService anotherPort =
 _service.getBackendReliableServicePort(_features);
...
 WsrmClient rmClient = WsrmClientFactory.getWsrmClientFromPort(anotherPort);
...
 String clientId = rmClient.getId();
...

5.9.3 Managing the Acknowledged Requests
Use the weblogic.wsee.reliability2.api.WsrmClient.ackRanges()
method to display the requests that have been acknowledged during the life cycle of a
reliable message sequence. The ackRanges() method returns a set of
weblogic.wsee.reliability.MessageRange objects.

After reviewing the range of requests that have been acknowledged, the client may
choose to:

■ Send an acknowledgement request to the RM destination using the
weblogic.wsee.reliability2.api.WsrmClient.requestAcknowledgem
ent() method.

■ Close the sequence (see Section 5.9.6, "Closing the Reliable Sequence") and
perform error handling to account for unacknowledged messages after a specific
amount of time.

Note: Clients may call getAckRanges() repeatedly, to keep track of the reliable
message sequence over time. However, you should take into account that there is a
certain level of additional overhead associated each call.

5.9.4 Accessing Information About a Message
Use the weblogic.wsee.reliability2.api.WsrmClient.getMessageInfo()
method to get information about a reliable message sent from the client based on the
message number. This method accepts a long value representing the sequential
message number of a request message sent from the client instance, and returns
information about the message of type
weblogic.wsee.reliability2.sequence.SourceMessageInfo. You can use
the WsrmClient.getMostRecentMessageNumber() method to determine the
maximum value of the message number value to pass to getMessageInfo().

Managing the Life Cycle of a Reliable Message Sequence

5-40 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The returned SourceMessageInfo object should be treated as immutable, and only
the get methods should be used.

The following table list the SourceMessageInfo methods that you can use to access
specific details about the source message.

The following table lists the DestinationMessageInfo methods that you can use to
access specific details about the destination message.

The getMessageInfo() method can be used in conjunction with
weblogic.wsee.reliability2.api.WsrmClient.getMostRecentMessageNu
mber() to obtain information about the most recently sent reliable message. This
method returns a monotonically increasing long value, starting from 1. This method
will return -1 in the following circumstances:

■ If the reliable sequence ID has not been established (getSequenceID() returns
null).

■ The first reliable message has not been sent yet.

■ The reliable sequence has been terminated.

5.9.5 Identifying the Final Message in a Reliable Sequence
Because WebLogic Server retains resources associated with the reliable sequence, it is
recommended that you take steps to release these resources in a timely fashion. Under
normal circumstances, a reliable sequence should be retained until all messages have
been sent and acknowledged by the RM destination. To facilitate the timely and proper
termination of a sequence, it is recommended that you identify the final message in a
reliable message sequence. Doing so indicates you are done sending messages to the
RM destination and that WebLogic Server can begin looking for the final
acknowledgement before automatically terminating the reliable sequence. Indicate the
final message using the
weblogic.wsee.reliability2.api.WsrmClient.setFinalMessage()
method.

Table 5–17 Methods for SourceMessageInfo()

Method Description

getMessageID() Gets the message ID as a String value.

getMessageNum() Gets the number of the message as a long value.

getResponseMessageInf
o()

Returns a
weblogic.wsee.reliability2.sequence.Destination
MessageInfo object representing the response that has been
correlated to the request represented by the current
SourceMessageInfo() object. Returns NULL if no response
has been received for this request or if none is expected (for
example, request was one way).

isAck() Indicates whether the message has been acknowledged.

Table 5–18 Methods for DestinationMessageInfo()

Method Description

getMessageID() Gets the message ID as a String value.

getMessageNum() Gets the number of the message as a long value.

Managing the Life Cycle of a Reliable Message Sequence

Using Web Services Reliable Messaging 5-41

When you identify a final message, after all messages up to and including the final
message are acknowledged, the reliable message sequence is terminated, and all
resources are released. Otherwise, the sequence is terminated automatically after the
configured sequence expiration period is reached.

For example:

import weblogic.wsee.reliability2.api.WsrmClientFactory;
import weblogic.wsee.reliability2.api.WsrmClient;
...
 _service = new BackendReliableServiceService();
 ...
 features.add(... some features ...);
 _features = features.toArray(new WebServiceFeature[features.size()]);
...
 BackendReliableService anotherPort =
 _service.getBackendReliableServicePort(_features);
...
 WsrmClient rmClient = WsrmClientFactory.getWsrmClientFromPort(anotherPort);
...
 anotherPort.doSomething("One potato");
 anotherPort.doSomething("Two potato");
 anotherPort.doSomething("Three potato");
 // Indicate this next invoke marks the 'final' message for the sequence
 rmClient.setFinalMessage();
 anotherPort.doSomething("Four");
...

5.9.6 Closing the Reliable Sequence
Use the weblogic.wsee.reliability2.api.WsrmClient.closeMessage() to
close a reliable messaging sequence.

When a reliable messaging sequence is closed, no new messages will be accepted by
the RM destination or sent by the RM source. A closed sequence is still tracked by the
RM destination and continues to service acknowledgment requests against it. It allows
the RM source to get a full and final accounting of the reliable messaging sequence
before terminating it.

Note: Closing a sequence should be considered a last resort, and only to prepare to
close down a reliable messaging sequence for which you do not expect to receive the
full range of requests. For example, after reviewing the range of requests that have
been acknowledged (see Section 5.9.3, "Managing the Acknowledged Requests"), the
client may decide it necessary to close the sequence and perform error handling to
account for unacknowledged messages after a specific amount of time.

Once a reliable messaging sequence is closed, it is up to the client to terminate the
sequence; it will no longer be terminated automatically by the server after a configured
timeout has been reached. See Section 5.9.7, "Terminating the Reliable Sequence".

For example:

import weblogic.wsee.reliability2.api.WsrmClientFactory;
import weblogic.wsee.reliability2.api.WsrmClient;
...

Note: This method is valid for WS-ReliableMessaging 1.1 only; it is
not supported for WS-ReliableMessaging 1.0.

Managing the Life Cycle of a Reliable Message Sequence

5-42 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 _service = new BackendReliableServiceService();
...
 features.add(... some features ...);
 _features = features.toArray(new WebServiceFeature[features.size()]);
...
 BackendReliableService anotherPort =
 _service.getBackendReliableServicePort(_features);
...
 WsrmClient rmClient = WsrmClientFactory.getWsrmClientFromPort(anotherPort);
...
 anotherPort.doSomething("One potato");
 anotherPort.doSomething("Two potato");
 // ... Wait some amount of time, and check for acks
 // ... using WsrmClient.getAckRanges() ...
 // ... If we don't find all of our acks ...
 rmClient.closeSequence();
 // ... Do some error recovery like telling our
 // ... client we couldn't deliver all requests ...
 rmClient.terminateSequence();
...

5.9.7 Terminating the Reliable Sequence
Although not recommended, you can terminate the reliable message sequence
regardless of whether all messages have been acknowledged using the
weblogic.wsee.reliability2.api.WsrmClient.terminateSequence()
method.

Terminating a sequence causes the RM source and RM destination to remove all state
associated with that sequence. The client can no longer perform any action on a
terminated sequence. When a sequence is terminated, any pending requests being
delivered through server-side retry (SAF agents) for the sequence are rejected and sent
as a notification on the ReliablityErrorListener.

For example:

import weblogic.wsee.reliability2.api.WsrmClientFactory;
import weblogic.wsee.reliability2.api.WsrmClient;
...
 _service = new BackendReliableServiceService();
...
 features.add(... some features ...);
 _features = features.toArray(new WebServiceFeature[features.size()]);
...
 BackendReliableService anotherPort =
 _service.getBackendReliableServicePort(_features);
...
 WsrmClient rmClient = WsrmClientFactory.getWsrmClientFromPort(anotherPort);
...

Note: It is recommended that, instead, you use the
setFinalMessage() method to identify the final message in a
reliable sequence. When you identify a final message, after all
messages up to and including the final message are acknowledged,
the reliable message sequence is terminated, and all resources are
released. For more information, see Section 5.9.5, "Identifying the Final
Message in a Reliable Sequence".

Grouping Messages into Business Units of Work (Batching)

Using Web Services Reliable Messaging 5-43

 anotherPort.doSomething("One potato");
 anotherPort.doSomething("Two potato");
 // ... Wait some amount of time, and check for acks
 // ... using WsrmClient.getAckRanges() ...
 // ... If we don't find all of our acks ...
 rmClient.closeSequence();
 // ... Do some error recovery like telling our
 // ... client we couldn't deliver all requests ...
 rmClient.terminateSequence();
...

5.9.8 Resetting a Client to Start a New Message Sequence
Use the weblogic.wsee.reliability2.api.WsrmClient.reset() method to
clear all RequestContext properties related to reliable messaging that do not need to
be retained once the reliable sequence is closed. Typically, this method is called when
you want to initiate another sequence of reliable messages from the same client.

For an example of using reset(), see Example B–1, "Example Client Wrapper Class
for Batching Reliable Messages".

5.10 Monitoring Web Services Reliable Messaging
You can monitor reliable messaging sequences for a Web service or client using the
Administration Console. For each reliable messaging sequence, runtime monitoring
information is displayed, such as the sequence state, the source and destination
servers, and so on. You can customize the information that is shown in the table by
clicking Customize this table.

In particular, you can use the monitoring pages to determine:

■ Whether or not you are cleaning up sequences in a timely fashion. If you view a
large number of sequences in the monitoring tab, you may wish to review your
client code to determine why.

■ Whether an individual sequence has unacknowledged requests, or has not
received expected responses.

To monitor reliable messaging sequences for a Web service, click on the Deployments
node in the left pane and, in the Deployments table that appears in the right pane,
locate the Enterprise application in which the Web service is packaged. Expand the
application by clicking the + node; the Web services in the application are listed under
the Web Services category. Click on the name of the Web service and select
Monitoring> Ports> Reliable Messaging.

To monitor reliable messaging sequences for a Web service client, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the Web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the Web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab. Then click Monitoring> Servers> Reliable
Messaging.

5.11 Grouping Messages into Business Units of Work (Batching)
Often, the messages flowing between a Web service client and service are part of a
single business transaction or unit of work. An example might be a travel agency

Grouping Messages into Business Units of Work (Batching)

5-44 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

reservation process that requires messages between the agency, airline, hotel, and
rental car company. All of the messages flowing between any two endpoints could be
considered a business unit of work.

Reliable messaging is tailored to handling messages related to a unit of work by
grouping them into an RM sequence. The entire unit of work (or sequence) is treated
as a whole, and error recovery, and so on can be applied to the entire sequence (see the
IncompleteSequenceBehavior element description in the WS-ReliableMessaging
1.2 specification (February 2009) at
http://docs.oasis-open.org/ws-rx/wsrm/200702). For example, an RM
sequence can be configured to discard requests that occur after a gap in the sequence,
or to discard the entire sequence of requests if any request is missing from the
sequence.

You can indicate that a message is part of a business unit of work by creating a new
client instance before sending the first message in the unit, and by disposing of the
client instance after the last message in the unit. Alternatively, you can use the
WsrmClient API (obtained by passing a client instance to the
WsrmClientFactory.getWsrmClientFromPort() method) to identify the final
request in a sequence is about to be sent. This is done by calling
WsrmClient.setFinalMessage() just before performing the invoke on the client
instance, as described in Section 5.9.5, "Identifying the Final Message in a Reliable
Sequence."

There is some significant overhead associated with the RM protocol. In particular,
creating and terminating a sequence involves a round-trip message exchange with the
service (RM destination). This means that four messages must go across the wire to
establish and then terminate an RM sequence. For this reason, it is to your advantage
to send the requests within a single business unit of work on a single RM sequence.
This allows you to amortize the cost of the RM protocol overhead over a number of
business messages.

In some cases, the client instance being used to talk to the reliable service runs in an
environment where there is no intrinsic notion of the business unit of work to which
the messages belong. An example of this is an intermediary such as a message broker.
In this case, the broker is often aware only of the message itself, and not the context in
which the message is being sent. The broker may not do anything to demarcate the
start and end of a business unit of work (or sequence); as a result, when using reliable
messaging to send requests, the broker will incur the RM sequence creation and
termination protocol overhead for every message it sends. This can result in a serious
negative performance impact.

In cases where no intrinsic business unit of work is known for a message, you can
choose to arbitrarily group (or batch) messages into an artificially created unit of work
(called a batch). Batching of reliable messages can overcome the performance impact
described above and can be used to tune and optimize network usage and throughput
between a reliable messaging client and service. Testing has shown that batching
otherwise unrelated requests into even small batches (say 10 requests) can as much as
triple the throughput between the client and service when using reliable messaging
(when sending small messages).

Grouping Messages into Business Units of Work (Batching)

Using Web Services Reliable Messaging 5-45

The following code excerpt shows an example class called
BatchingRmClientWrapper that can be used to make batching of RM requests
simple and effective. This class batches requests into groups of a specified number of
requests. It allows you to create a dynamic proxy that takes the place of your regular
client instance. When you make invocations on the client instance, the batching
wrapper seamlessly groups the outgoing requests into batches, and assigns each batch
its own RM sequence. The batching wrapper also takes a duration specification that
indicates the maximum lifetime of any given batch. This allows incomplete batches to
be completed in a timely fashion even if there are not enough outgoing requests to
completely fill a batch. If the batch has existed for the maximum lifetime specified, it
will be closed as if the last message in the batch had been sent.

An example of the client wrapper class that can be used for batching reliable
messaging is provided in Appendix B, "Example Client Wrapper Class for Batching
Reliable Messages". You can use this class as-is in your own application code, if
desired.

Example 5–2 Example of Grouping Messages into Units of Work (Batching)

import java.io.IOException;
import java.util.*;
import java.util.*;

import javax.servlet.*;
import javax.xml.ws.*;

import weblogic.jws.jaxws.client.ClientIdentityFeature;
import weblogic.jws.jaxws.client.async.AsyncClientHandlerFeature;
import weblogic.jws.jaxws.client.async.AsyncClientTransportFeature;
import weblogic.wsee.reliability2.api.ReliabilityErrorContext;
import weblogic.wsee.reliability2.api.ReliabilityErrorListener;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;

/**
 * Example client for invoking a reliable Web service and 'batching' requests
 * artificially into a sequence. A wrapper class called
 * BatchingRmClientWrapper is called to begin and end RM sequences for each batch of
 * requests. This avoids per-message RM sequence handshaking
 * and termination overhead (delivering better performance).
 */
public class BestPracticeAsyncRmBatchingClient
 extends GenericServlet {

Note: Oracle does not recommend batching requests that already
have an association with a business unit of work. This is because error
recovery can become complicated when RM sequence boundaries and
unit of work boundaries do not match. For example, when you add a
ReliabilityErrorListener to your client instance (via
WsrmClientInitFeature), as described in Section 5.8,
"Implementing the Reliability Error Listener," this listener can be used
to perform error recovery for single requests in a sequence or
whole-sequence failures. When batching requests, this error recovery
logic would need to store some information about each request in
order to properly handle the failure of a request. A client that does not
employ batching will likely have more context about the request given
the business unit of work it belongs to.

Grouping Messages into Business Units of Work (Batching)

5-46 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 private BackendReliableServiceService _service;
 private BackendReliableService _singletonPort;
 private BackendReliableService _batchingPort;

 private static int _requestCount;
 private static String _lastResponse;

 @Override
 public void init()
 throws ServletException {

 _requestCount = 0;
 _lastResponse = null;

 // Only create the Web service object once as it is expensive to create repeatedly.
 if (_service == null) {
 _service = new BackendReliableServiceService();
 }

 // Best Practice: Use a stored list of features, per client ID, to create client instances.
 // Define all features for the Web service port, per client ID, so that they are
 // consistent each time the port is called. For example:
 // _service.getBackendServicePort(_features);

 List<WebServiceFeature> features = new ArrayList<WebServiceFeature>();

 // Best Practice: Explicitly define the client ID.
 ClientIdentityFeature clientIdFeature =
 new ClientIdentityFeature("MyBackendServiceAsyncRmBatchingClient");
 features.add(clientIdFeature);

 // Best Practice: Always implement a reliability error listener.
 // Include this feature in your reusable feature list. This enables you to determine
 // a reason for failure, for example, RM cannot deliver a request or the RM sequence fails in
 // some way (for example, client credentials refused at service).
 WsrmClientInitFeature rmFeature = new WsrmClientInitFeature();
 features.add(rmFeature);
 rmFeature.setErrorListener(new ReliabilityErrorListener() {
 public void onReliabilityError(ReliabilityErrorContext context) {
 // At a *minimum* do this
 System.out.println("RM sequence failure: " +
 context.getFaultSummaryMessage());
 _lastResponse = context.getFaultSummaryMessage();
 }
 });

 // Asynchronous endpoint
 AsyncClientTransportFeature asyncFeature =
 new AsyncClientTransportFeature(getServletContext());
 features.add(asyncFeature);

 // Best Practice: Define a port-based asynchronous callback handler,
 // AsyncClientHandlerFeature, for asynchronous and dispatch callback handling.
 BackendReliableServiceAsyncHandler handler =
 new BackendReliableServiceAsyncHandler() {
 public void onDoSomethingResponse(Response<DoSomethingResponse> res) {
 // ... Handle Response ...
 try {
 DoSomethingResponse response = res.get();
 _lastResponse = response.getReturn();

Grouping Messages into Business Units of Work (Batching)

Using Web Services Reliable Messaging 5-47

 System.out.println("Got reliable/async/batched response: " + _lastResponse);
 } catch (Exception e) {
 _lastResponse = e.toString();
 e.printStackTrace();
 }
 }
 };
 AsyncClientHandlerFeature handlerFeature =
 new AsyncClientHandlerFeature(handler);
 features.add(handlerFeature);

 // Set the features used when creating clients with
 // this client ID "MyBackendServiceAsyncRmBatchingClient"

 WebServiceFeature[] featuresArray =
 features.toArray(new WebServiceFeature[features.size()]);

 // Best Practice: Define a singleton port instance and initialize it when
 // the client container initializes (upon deployment).
 // The singleton port will be available for the life of the servlet.
 // Creation of the singleton port triggers the asynchronous response endpoint to be published
 // and it will remain published until our container (Web application) is undeployed.
 // Note, we will get a call to destroy() before this.
 _singletonPort = _service.getBackendReliableServicePort(featuresArray);

 // Create a wrapper class to 'batch' messages onto RM sequences so
 // a client with no concept of which messages are related as a unit can still achieve
 // good performance from RM. The class will send a given number of requests on
 // the same sequence, and then terminate that sequence before starting
 // another to carry further requests. A batch has both a max size and
 // lifetime so no sequence is left open for too long.
 // The example batches 10 messages or executes for 20 seconds, whichever comes
 // first. Assuming there were 15 total requests to send, the class would start and complete
 // one full batch of 10 requests, then send the next batch of five requests.
 // Once the batch of five requests has been open for 20 seconds, it will be closed and the
 // associated sequence terminated (even though 10 requests were not sent to fill the batch).
 BackendReliableService batchingPort =
 _service.getBackendReliableServicePort(featuresArray);
 BatchingRmClientWrapper<BackendReliableService> batchingSeq
 = new BatchingRmClientWrapper<BackendReliableService>(batchingPort,
 BackendReliableService.class,
 10, "PT20S",
 System.out);
 _batchingPort = batchingSeq.createProxy();
 }

 @Override
 public void service(ServletRequest req, ServletResponse res)
 throws ServletException, IOException {

 // TODO: ... Read the servlet request ...

 // For this simple example, echo the _lastResponse captured from
 // an asynchronous DoSomethingResponse response message.

 if (_lastResponse != null) {
 res.getWriter().write(_lastResponse);
 System.out.println("Servlet returning _lastResponse value: " + _lastResponse);
 _lastResponse = null; // Clear the response so we can get another
 return;

Grouping Messages into Business Units of Work (Batching)

5-48 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 }

 // Synchronize on _batchingPort since it is a class-level variable and it might
 // be in this method on multiple threads from the servlet engine.

 synchronized(_batchingPort) {

 // Use the 'batching' port to send the requests instead of creating a
 // new request each time.
 BackendReliableService port = _batchingPort;

 // Set the endpoint address for BackendService.
 ((BindingProvider)port).getRequestContext().
 put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 "http://localhost:7001/BestPracticeReliableService/BackendReliableService");

 // Make the invocation. Our asynchronous handler implementation (set
 // into the AsyncClientHandlerFeature above) receives the response.
 String request = "Protected and serve " + (++_requestCount);
 System.out.println("Invoking DoSomething reliably/async/batched with request: " +
 request);
 port.doSomethingAsync(request);
 }

 // Return a canned string indicating the response was not received
 // synchronously. Client needs to invoke the servlet again to get
 // the response.
 res.getWriter().write("Waiting for response...");
 }

 @Override
 public void destroy() {

 try {
 // Best Practice: Explicitly close client instances when processing is complete.
 // Close the singleton port created during initialization. Note, the asynchronous
 // response endpoint generated by creating _singletonPort *remains*
 // published until our container (Web application) is undeployed.
 ((java.io.Closeable)_singletonPort).close();
 // Best Practice: Explicitly close client instances when processing is complete.
 // Close the batching port created during initialization. Note, this will close
 // the underlying client instance used to create the batching port.
 ((java.io.Closeable)_batchingPort).close();

 // Upon return, the Web application is undeployed, and the asynchronous
 // response endpoint is stopped (unpublished). At this point,
 // the client ID used for _singletonPort will be unregistered and will no longer be
 // visible from the Administration Console and WLST.
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Interoperability with WebLogic Web Service Reliable Messaging

Using Web Services Reliable Messaging 5-49

5.12 Client Considerations When Redeploying a Reliable Web Service
WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated reliable WebLogic Web service alongside an older
version of the same Web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the Web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
Web service. If the client is connected to a reliable Web service, its work is considered
complete when the existing reliable message sequence is explicitly ended by the client
or as a result of a timeout.

For additional information about production redeployment and Web service clients,
see "Client Considerations When Redeploying a Web service" in Getting Started With
JAX-WS Web Services for Oracle WebLogic Server.

5.13 Interoperability with WebLogic Web Service Reliable Messaging
The WebLogic Web services reliable messaging implementation will interoperate with
the Web service reliable messaging implementations provided by the following
third-party vendor Web services: IBM and Microsoft .NET. For best practices when
interoperating with Microsoft .NET, see "Interoperability with Microsoft WCF/.NET"
in Introducing WebLogic Web Services for Oracle WebLogic Server.

To enhance interoperability with Oracle SOA services that use Web services reliable
messaging, please consider the following interoperability guidelines:

■ Do no use MakeConnection for asynchronous transport, as described in
Section 3.6, "Using Asynchronous Web Service Clients From Behind a Firewall
(MakeConnection)." Reliable SOA services do not support MakeConnection.

■ Do no use WS-SecureConversation to secure reliable Web services. SOA services
do not support the use of Web services reliable messaging and
WS-SecureConversation together.

■ For reliable WebLogic Web service clients that are accessing reliable SOA services:

– Use synchronous (anonymous WS-Addressing ReplyTo EPR) request-reply or
one-way MEP (Message exchange pattern).

– Do not use asynchronous (non-anonymous WS-Addressing ReplyTo EPR)
request-reply MEP (Message exchange pattern).

■ For reliable SOA clients that are accessing reliable WebLogic Web services, use one
of the following:

– Synchronous (anonymous WS-Addressing ReplyTo EPR) request-reply or
one-way MEP (Message exchange pattern).

– Asynchronous (non-anonymous WS-Addressing ReplyTo EPR) request-reply
MEP (Message exchange pattern).

Interoperability with WebLogic Web Service Reliable Messaging

5-50 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

6

Managing Web Service Persistence 6-1

6Managing Web Service Persistence

The following sections describe how to manage Web service persistence.

■ Section 6.1, "Overview of Web Service Persistence"

■ Section 6.2, "Roadmap for Configuring Web Service Persistence"

■ Section 6.3, "Configuring Web Service Persistence"

■ Section 6.4, "Using Web Service Persistence in a Cluster"

■ Section 6.5, "Cleaning Up Web Service Persistence"

6.1 Overview of Web Service Persistence
WebLogic Server provides a default Web service persistence configuration that
provides a built-in, high-performance storage solution for Web services. Web service
persistence is used by the following advanced features to support long running
requests and to survive server restarts:

■ Asynchronous Web service invocation using asynchronous client transport or
MakeConnection

■ Web services reliable messaging

■ Message buffering

■ Security using WS-SecureConversation

Specifically, Web service persistence is used to save the following types of information:

■ Client identity and properties

■ SOAP message, including its headers and body

■ Context properties required for processing the message at the Web service or client
(for both asynchronous and synchronous messages)

The following figure illustrates an example Web service persistence configuration.

Overview of Web Service Persistence

6-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Figure 6–1 Example Web Service Persistence Configuration

The following table describes the components of Web service persistence, shown in the
previous figure.

When configuring Web service persistence, you associate:

■ A logical store with a buffering queue.

■ A buffering queue that is associated with a physical store via JMS configuration.

The association between the logical store and buffering queue is used to infer the
association between the logical store and physical store. The default logical store is
named WseeStore and is created automatically when a domain is created using the
WebLogic Advanced Web Services for JAX-WS Extension template (wls_
webservices_jaxws.jar). By default, the physical store that is configured for the
server is associated with the buffering queue. This strategy ensures that the same
physical store is used for all Web service persistence and buffering. Using a single
physical store ensures a more efficient, single-phase XA transaction and facilitates
migration.

You can configure one or more logical stores for use within your application
environment. In Table 6–1, the servers Server1 and Server2 use the same logical
store. This configuration allows applications that are running in a cluster to be
configured globally to access a single store name. As described later in Section 6.3,
"Configuring Web Service Persistence", you can configure Web service persistence at

Table 6–1 Components of the Web Service Persistence

Component Description

Logical Store Provides the configuration requirements and connects the Web service to the physical
store and buffering queue.

Physical store Handles the I/O operations to save and retrieve data from the physical storage (such
as file, DBMS, and so on). The physical store can be a WebLogic Server persistent
store, as configured using the WebLogic Server Administration Console or WLST, or
in-memory store.

Note: When using a WebLogic Server persistent store as the physical store for a
logical store, the names of the request and response buffering queues are taken from
the logical store configuration and not the buffering configuration.

Buffering queue Stores buffered requests and responses for the Web service.

Configuring Web Service Persistence

Managing Web Service Persistence 6-3

various levels for fine-grained management. Best practices are provided in Section 6.2,
"Roadmap for Configuring Web Service Persistence."

6.2 Roadmap for Configuring Web Service Persistence
Table 6–2 provides best practices for configuring Web service persistence to support
Web service reliable messaging.

The best practices defined in Table 6–2 facilitates maintenance, and failure recovery
and resource migration.

For example, assume Company X is developing Web services for several departments,
including manufacturing, accounts payable, accounts receivable. Following best
practices, Company X defines a minimum of three logical stores, one for each
department.

Furthermore, assume that the manufacturing department has a service-level
agreement with the IT department that specifies that it can tolerate system outages
that are no longer than a few minutes in duration. The accounts payable and
receivable departments, on the other hand, have a more relaxed service-level
agreement, tolerating system outages up to one hour in duration. If the systems that
host Web services and clients for the manufacturing department become unavailable,
the IT department is responsible for ensuring that any resources required by those
Web services and clients are migrated to new active servers within minutes of the
failure. Because separate logical stores were defined, the IT department can migrate
the file store, JMS servers, and so on, associated with the manufacturing department
logical store independently of the resources required for accounts payables and
receivables.

6.3 Configuring Web Service Persistence
The following table summarizes the information that you can configure for each of the
Web service persistence components.

Table 6–2 Roadmap for Configuring Web Service Persistence

Best Practice Description

Define a logical store for each
administrative unit (for example,
business unit, department, and so on).

By defining separate logical stores, you can better manage the
service-level agreements for each administrative unit. For more
information, see Section 6.3.1, "Configuring the Logical Store."

Use the correct logical store for each
client or service related to the
administrative unit.

You can configure the logical store at the WebLogic Server, Web service,
or Web service client level. For more information, see Section 6.3,
"Configuring Web Service Persistence."

Define separate physical stores and
buffering queues for each logical store.

For more information, see Section 6–1, "Example Web Service Persistence
Configuration."

Configuring Web Service Persistence

6-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

You can configure Web service persistence at the levels defined in the following table.

The following sections provide more information about configuring Web service
persistence:

■ Section 6.3.1, "Configuring the Logical Store"

Table 6–3 Summary of the Web Service Persistence Component Configuration

Component Summary of Configuration Requirements

Logical Store You configure the following information for each logical store:

■ Name of the logical store.

■ Maximum lifetime of an object in the store.

■ The cleaner thread that removes stale objects from the store. For more
information, see Section 6.5, "Cleaning Up Web Service Persistence".

■ Accessibility from other servers in a network.

■ Request and response buffering queues. The request buffering queue is used to
infer the physical store by association.

Physical store You configure the following information for the physical store:

■ Name of the physical store.

■ Type and performance parameters.

■ Location of the store.

Note: You configure the physical store or buffering queue, but not both. If the
buffering queue is configured, then the physical store information is inferred.

Buffering queue You configure the following information for the buffering queue:

■ Request and response queue details

■ Retry counts and delays

Table 6–4 Configuring Web Service Persistence

Level Description

WebLogic Server The Web service persistence configured at the server level defines the default
configuration for all Web services and clients running on that server. To configure
Web service persistence for WebLogic Server, use one of the following methods:

■ When creating or extending a domain using Configuration Wizard, you can
apply the WebLogic Advanced Web Services for JAX-WS Extension template
(wls_webservices_jaxws.jar) to configure automatically the resources
required to support Web services persistence.

Although use of this extension template is not required, it makes the
configuration of the required resources much easier.

■ Configure the resources required for Web service persistence using the Oracle
WebLogic Administration Console or WLST. For more information, see:

- Administration Console: "Configure Web service persistence" in Oracle WebLogic
Server Administration Console Help

- WLST: "Configuring Existing Domains" in Oracle WebLogic Scripting Tool

For more information, see "Configuring Your Domain for Advanced Web Services
Features" in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

Web service endpoint Configure the default logical store used by the Web service endpoint, as described in
Section 6.3.2, "Configuring Web Service Persistence for a Web Service Endpoint."

Web service client Configure the default logical store used by the Web service client, as described in
Section 6.3.3, "Configuring Web Service Persistence for Web Service Clients."

Configuring Web Service Persistence

Managing Web Service Persistence 6-5

■ Section 6.3.2, "Configuring Web Service Persistence for a Web Service Endpoint"

■ Section 6.3.3, "Configuring Web Service Persistence for Web Service Clients"

6.3.1 Configuring the Logical Store
You can configure one or more logical stores for use within your application
environment, and identify the logical store that is used as the default.

The default logical store, WseeStore, is generated automatically when you create or
extend a domain using the WebLogic Advanced Web Services for JAX-WS Extension
template (wls_webservices_jaxws.jar), as described in "Configuring Your
Domain for Advanced Web Services Features" in Getting Started With JAX-WS Web
Services for Oracle WebLogic Server.

You can configure the logical store using the Administration Console, see "Configure
Web service persistence" in Oracle WebLogic Server Administration Console Help.
Alternatively, you can use WLST to configure the resources. For information about
using WLST to extend the domain, see "Configuring Existing Domains" in Oracle
WebLogic Scripting Tool.

The following table summarizes the properties that you define for the logical store.

Table 6–5 Configuration Properties for the Logical Store

Property Description

Logical Store Name Name of the logical store. The name must begin with an alphabetical character and
can contain alphabetical characters, spaces, dashes, underscores, and numbers only.

This field defaults to LogicalStore_n. This field is required.

If you create or extend a single server domain using the Web service extension
template, a logical store named WseeStore is created by default.

Default Logical Store Flag that specifies whether the logical store is used, by default, to persist state of all
Web services on the server.

Only one logical store can be set as the default. If you enable this flag on the current
logical store, the flag is disabled on the current default store.

Persistence strategy Persistence strategy. Select one of the following values from the drop-down menu.

■ Local Access Only—Accessible to the local server only.

■ In Memory—Accessible by the local VM only. In this case, the buffering queue
and physical store configuration information is ignored.

Request Buffering Queue
JNDI Name

JNDI name for the request buffering queue. The request buffering queue is used to
infer the physical store by association. If this property is not set, then the default
physical store that is configured for the server is used.

Note: You configure the physical store or buffering queue, but not both. If the
buffering queue is configured, then the physical store information is inferred.

It is recommended that the same physical storage resource be used for both persistent
state and message buffering to allow for a more efficient, single-phase XA transaction
and facilitate service migration. By setting this value, you ensure that the buffering
queue and physical store reference the same physical storage resource.

If you create or extend a domain using the Web service extension template, a
buffering queue named weblogic.wsee.RequestBufferedRequestQueue is
created by default.

Note: This property is ignored if Persistence strategy is set to In Memory.

Using Web Service Persistence in a Cluster

6-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

6.3.2 Configuring Web Service Persistence for a Web Service Endpoint
By default, Web service endpoints use the Web service persistent store defined for the
server. You can override the logical store used by the Web service endpoint using the
Administration Console. For more information, see "Configure Web service
persistence" in Oracle WebLogic Server Administration Console Help.

6.3.3 Configuring Web Service Persistence for Web Service Clients
For information about configuring persistence for Web service clients, see
"Configuring Web Service Clients" in Getting Started With JAX-WS Web Services for
Oracle WebLogic Server.

6.4 Using Web Service Persistence in a Cluster
The following provides some considerations for using Web services persistence in a
cluster:

■ If you create or extend a clustered domain using the WebLogic Advanced Web
Services for JAX-WS Extension template (wls_webservices_jaxws.jar), the
resources required to support Web services persistence in a cluster are
automatically created. For more information, see "Configuring Your Domain for
Advanced Web Services Features" in Getting Started With JAX-WS Web Services for
Oracle WebLogic Server

Response Buffering
Queue JNDI Name

JNDI name for the response buffering queue.

If this property is not set, then the request queue is used, as defined by the Request
Buffering Queue JNDI Name property.

If you create or extend a domain using the Web service extension template, a
buffering queue named
weblogic.wsee.RequestBufferedRequestErrorQueue is created by default.

Note: This property is ignored if Persistence strategy is set to In Memory.

Cleaner Interval Interval at which the logical store will be cleaned. For more information, see
Section 6.5, "Cleaning Up Web Service Persistence"

The value specified must be a positive value and conform to the XML schema
duration lexical format, PnYnMnDTnHnMnS, where nY specifies the number of years,
nM specifies the number of months, nD specifies the number of days, T is the
date/time separator, nH specifies the number of hours, nM specifies the number of
minutes, and nS specifies the number of seconds. This value defaults to PT10M (10
minutes).

Note: This field is available when editing the logical store only. When creating the
logical store, the field is set to the default, PT10M (10 minutes).

Default Maximum Object
Lifetime

Default value used as the maximum lifetime of an object. This value can be
overridden by the individual objects saved to the logical store.

The value specified must be a positive value and conform to the XML schema
duration lexical format, PnYnMnDTnHnMnS, where nY specifies the number of years,
nM specifies the number of months, nD specifies the number of days, T is the
date/time separator, nH specifies the number of hours, nM specifies the number of
minutes, and nS specifies the number of seconds. This value defaults to P1D (one
day).

Note: This field is available when editing the logical store only. When creating the
logical store, the field is set to the default, P1D (one day).

Table 6–5 (Cont.) Configuration Properties for the Logical Store

Property Description

Using Web Service Persistence in a Cluster

Managing Web Service Persistence 6-7

■ To facilitate service migration, it is recommended that the same physical storage
resource be used for both persistent state and message buffering. To ensure that
the buffering queue and physical store reference the same physical storage
resource, you configure the Request Buffering Queue JNDI Name property of the
logical store, as described in Section 6.3.1, "Configuring the Logical Store".

■ It is recommended that the buffering queues be defined as JMS uniform
distributed destinations (UDDs). JMS defines a member queue for the UDD on
each JMS Server that you identify. Because a logical store is associated with a
physical store through the defined buffering queue, during service migration, this
allows a logical store to use the new physical stores seamlessly for the member
queues that migrate onto the new server.

■ It is recommended that you target the JMS Server, store-and-forward (SAF) service
agent, and physical store (file store) resources to migrateable targets. For more
information, see "Resources Required by Advanced Web Service Features" in
Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

For example, consider the two-node cluster configuration shown in Figure 6–2. The
domain resources are configured and targeted using the guidelines provided above.

Figure 6–2 Example of a Two-Node Cluster Configuration (Before Migration)

The following figure shows how the resources on Server1 can be easily migrated to
Server2 in the event Server1 fails.

Cleaning Up Web Service Persistence

6-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Figure 6–3 Example of a Two-Node Cluster Configuration (After Migration)

6.5 Cleaning Up Web Service Persistence
The persisted information is cleaned up periodically to remove expired or stale objects.
Typically, an object is associated with a specific expiration time or a maximum lifetime.
In addition, a stale object may represent a request for which no response was received
or a reliable messaging sequence that was not explicitly terminated.

You configure the interval of time at which Web service persistence will be cleaned by
setting the Cleaner Interval configuration property on the logical store. For more
information about setting this property, see Section 6.3.1, "Configuring the Logical
Store".

7

Configuring Message Buffering for Web Services 7-1

7Configuring Message Buffering for Web
Services

The following sections describe how to configure message buffering for Web services.

■ Section 7.1, "Overview of Message Buffering"

■ Section 7.2, "Configuring Messaging Buffering"

7.1 Overview of Message Buffering
When an operation on a buffered Web service is invoked, the message representing
that invocation is stored in a JMS queue. WebLogic Server processes this buffered
message asynchronously. If WebLogic Server goes down while the message is still in
the queue, it will be processed as soon as WebLogic Server is restarted.

WebLogic Server then processes the request message on a separate thread obtained
from a pre-configured and managed pool of threads. This allows WebLogic Server to
absorb spikes in client load, and continue to process the requests in an orderly fashion
over a period of time. Message buffering is a powerful tool to avoid denial of service
attacks and general overload conditions on the server.

To assist you in determining whether to configure message buffering on the Web
service, it is recommended that you review Section 5.1.4.4, "Failure Scenarios with
Non-buffered Reliable Web Services."

7.2 Configuring Messaging Buffering
You can configure message buffering for Web services at the WebLogic Server or Web
service endpoint levels. The message buffering configured at the server level defines
the default message buffering defined for all Web services and clients running on that
server, unless explicitly overridden at the Web service endpoint level.

For detailed steps to configure message buffering for Web services at the WebLogic
Server or Web service endpoint level using the WebLogic Server Administration
Console, see "Configure message buffering for Web services" in Oracle WebLogic Server
Administration Console Help.

When you configure message buffering at the Web service endpoint level, select
Customize Buffering Configuration to indicate that you want to customize the
buffering configuration defined in the Web service descriptor or deployment plan at
the Web service endpoint level. If not checked, the buffering configuration specified at
the WebLogic Server level is used.

Configuring Messaging Buffering

7-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Alternatively, you can use WLST to configure message buffering. For information
about using WLST to extend the domain, see "Configuring Existing Domains" in Oracle
WebLogic Scripting Tool.

The following sections describe message buffering configuration properties:

■ Section 7.2.1, "Configuring the Request Queue"

■ Section 7.2.2, "Configuring the Response Queue"

■ Section 7.2.3, "Configuring Message Retry Count and Delay"

7.2.1 Configuring the Request Queue
The following table summarizes the properties used to configure the request queue.

7.2.2 Configuring the Response Queue
The following table summarizes the properties used to configure the response queue.

7.2.3 Configuring Message Retry Count and Delay
The following table summarizes the properties used to configure the message retry
count and delay.

Table 7–1 Configuring the Request Queue

Property Description

Request Queue Enabled Flag that specifies whether the request queue is enabled. By default, the request
queue is disabled. The request queue name is defined by the logical store enabled at
this level.

When using a WebLogic Server persistent store as the physical store for a logical store,
the names of the request and response buffering queues are taken from the logical
store configuration and not the buffering configuration.

Request Queue
Connection Factory JNDI
Name

JNDI name of the connection factory to use for request message buffering. This value
defaults to the default JMS connection factory defined by the server.

Request Queue
Transaction Enabled

Flag that specifies whether transactions should be used when storing and retrieving
messages from the request buffering queue. This flag defaults to false.

Table 7–2 Configuring the Response Queue

Property Description

Response Queue Enabled Flag that specifies whether the response queue is enabled. By default, the response
queue is disabled. The response queue name is defined by the logical store enabled at
this level.

When using a WebLogic Server persistent store as the physical store for a logical store,
the names of the request and response buffering queues are taken from the logical
store configuration and not the buffering configuration.

Response Queue
Connection Factory JNDI
Name

JNDI name of the connection factory to use for response message buffering. This
value defaults to the default JMS connection factory defined by the server.

Response Queue
Transaction Enabled

Flag that specifies whether transactions should be used when storing and retrieving
messages from the response buffering queue. This flag defaults to false.

Configuring Messaging Buffering

Configuring Message Buffering for Web Services 7-3

Table 7–3 Configuring Message Retry Count and Delay

Property Description

Retry Count Number of times that the JMS queue on the invoked WebLogic Server instance
attempts to deliver the message to the Web service implementation until the
operation is successfully invoked. This value defaults to 3.

Retry Delay Amount of time between retries of a buffered request and response. Note, this value is
only applicable when RetryCount is greater than 0.

The value specified must be a positive value and conform to the XML schema
duration lexical format, PnYnMnDTnHnMnS, where nY specifies the number of years,
nM specifies the number of months, nD specifies the number of days, T is the
date/time separator, nH specifies the number of hours, nM specifies the number of
minutes, and nS specifies the number of seconds. This value defaults to P0DT30S (30
seconds).

Configuring Messaging Buffering

7-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

8

Managing Web Services in a Cluster 8-1

8Managing Web Services in a Cluster

The following sections describe how to manage Web services in a cluster.

■ Section 8.1, "Overview of Web Services Cluster Routing"

■ Section 8.2, "Cluster Routing Scenarios"

■ Section 8.3, "How Web Service Cluster Routing Works"

■ Section 8.4, "Configuring Web Services in a Cluster"

■ Section 8.5, "Monitoring Cluster Routing Performance"

8.1 Overview of Web Services Cluster Routing
Clustering of stateless Web services—services that do not require knowledge of state
information from prior invocations—is straightforward and works with existing
WebLogic HTTP routing features on a third-party HTTP load balancer.

Clustering of Web services that require state information be maintained provides more
challenges. Each instance of such a Web service is associated with state information
that must be managed and persisted. The cluster routing decision is based on whether
the message is bound to a specific server in the cluster. For example, if a particular
server stores state information that is needed to process the message, and that state
information is available only locally on that server.

In addition to ensuring that the Web service requests are routed to the appropriate
server, the following general clustering requirements must be satisfied:

■ The internal topology of a cluster must be transparent to clients. Clients interact
with the cluster only through the front-end host, and do not need to be aware of
any particular server in the cluster. This enables the cluster to scale over time to
meet the demands placed upon it.

Note: For considerations specific to using Web service persistence in
a cluster, see Section 6.4, "Using Web Service Persistence in a Cluster."

Note: Services that use session state replication to maintain their
state are a separate class of problem from those that make use of
advanced Web service features, such as Reliable Secure Profile. The
latter require a more robust approach to persistence that may include
storing state that may be available only from the local server. For more
information, see Section , "A Note About Persistence."

Overview of Web Services Cluster Routing

8-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Cluster migration must be transparent to clients. Resources within the cluster
(including persistent stores and other resources required by a Web service or Web
service client) can be migrated from one server to another as the cluster evolves,
responds to failures, and so on.

To meet the above requirements, the following methods are available for routing Web
services in a cluster:

■ In-place SOAP router—Assumes request messages arrive on the correct server
and, if not, forwards the messages to the correct server ("at most one additional
hop"). The routing decision is made by the Web service that receives the message.
This routing strategy is the simplest to implement and requires no additional
configuration. Though, it is not as robust as the next option.

■ Front-end SOAP router (HTTP cluster servlet only)—Message routing is managed
by the front-end host that accepts messages on behalf of the cluster and forwards
them onto a selected member server of the cluster. For Web services, the front-end
SOAP router inspects information in the SOAP message to determine the correct
server to which it should route messages.

This routing strategy is more complicated to configure, but is the most efficient
since messages are routed directly to the appropriate server (avoiding any
"additional hops").

This chapter describes how to configure your environment to optimize the routing of
Web services within a cluster. Use of the HTTP cluster servlet for the front-end SOAP
router is described. The in-place SOAP router is also enabled and is used in the event
the HTTP cluster servlet is not available or has not yet been initialized.

A Note About Persistence
While it is possible to maintain state for a Web service using the HttpSession as
described in Section 18, "Programming Stateful JAX-WS Web Services Using HTTP
Session," in some cases this simple persistence may not be robust enough. Advanced
Web services features like reliable messaging, MakeConnection, secure conversation,
and so on, have robust persistence requirements that cannot be met by using the
HttpSession alone. Advanced Web service features use a dedicated persistence
implementation based on the concept of a logical store. For more information, see
Section 6, "Managing Web Service Persistence."

At this time, these two approaches to persistence of Web service state are not
compatible with each other. If you choose to write a clustered stateful Web service
using HttpSession persistence and then use the advanced Web service features from
that service (either as a client or service), Oracle cannot guarantee correct operation of
your service in a cluster. This is because HttpSession replication may make the
HttpSession available on a different set of servers than are hosting the persistence for
advanced Web service features.

Note: When using MakeConnection, as described in Section 3.6,
"Using Asynchronous Web Service Clients From Behind a Firewall
(MakeConnection)", only front-end SOAP routing can guarantee
proper routing of all messages related to a given MakeConnection
anonymous URI.

Cluster Routing Scenarios

Managing Web Services in a Cluster 8-3

8.2 Cluster Routing Scenarios
The following sections illustrate several scenarios for routing Web service request and
response messages within a clustered environment:

■ Section 8.2.1, "Scenario 1: Routing a Web Service Response to a Single Server"

■ Section 8.2.2, "Scenario 2: Routing Web Service Requests to a Single Server Using
Routing Information"

■ Section 8.2.3, "Scenario 3: Routing Web Service Requests to a Single Server Using
an ID"

8.2.1 Scenario 1: Routing a Web Service Response to a Single Server
In this scenario, an incoming request is load balanced to a server. Any responses to
that request must be routed to that same server, which maintains state information on
behalf of the original request.

Figure 8–1 Routing a Web Service Response to a Single Server

As shown in the previous figure:

1. The front-end SOAP router routes an incoming HTTP request and sends it to
Server2 using standard load balancing techniques.

2. Server2 calls Myservice at the Web service endpoint address. The ReplyTo header
in the SOAP message contains a pointer back to the front-end SOAP router.

3. MyService returns the response to the front-end SOAP router.

4. The front-end SOAP router must determine where to route the response. Because
Server2 maintains state information that is relevant to the response, the front-end
SOAP router routes the response to Server2.

Cluster Routing Scenarios

8-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

8.2.2 Scenario 2: Routing Web Service Requests to a Single Server Using Routing
Information

In this scenario, an incoming request is load balanced to a server. The response
contains routing information that targets the original server for any subsequent
requests

Figure 8–2 Routing Web Service Requests to a Single Server

As shown in the previous figure:

1. The front-end SOAP router routes an incoming HTTP request (Request1) and
sends it to Server 2 using standard load balancing techniques. The request has no
routing information.

2. Server2 calls the Myservice at the Web service endpoint address. The ReplyTo
header in the SOAP message contains a pointer back to the front-end SOAP router.

3. MyService returns the response to the caller. The response contains routing
information that targets Server2 for any subsequent requests. The caller is
responsible for passing the routing information contained in the response in any
subsequent requests (for example, Request2).

4. The front-end SOAP router uses the routing information passed with Request2 to
route the request to Server2.

8.2.3 Scenario 3: Routing Web Service Requests to a Single Server Using an ID
In this scenario, an incoming SOAP request contains an identifier, but no routing
information. All subsequent requests with the same identifier must go to the same
server.

How Web Service Cluster Routing Works

Managing Web Services in a Cluster 8-5

Figure 8–3 Routing Web Service Requests to a Single Server Using an ID

As shown in the previous figure:

1. A request comes from a Web service client that includes an ID (MakeConnection
anonymous URI) that will be shared by future requests that are relevant to
Request1. The form of this ID is protocol-specific.

2. The front-end SOAP router detects an ID in Request1 and checks the affinity store
to determine if the ID is associated with a particular server in the cluster. In this
case, there is no association defined.

3. The front-end SOAP router load balances the request and sends it to Server 2 for
handling.

4. The MyService Web service instance on Server2 handles the request (generating a
response, if required). Unlike in Section 8.2.2, "Scenario 2: Routing Web Service
Requests to a Single Server Using Routing Information", routing information
cannot be propagated in this case.

5. Request2 arrives at the front-end SOAP router using the same ID as that used in
Request1.

6. The front-end SOAP router detects the ID and checks the affinity store to
determine if the ID is associated with a particular server. This time, it determines
that the ID is mapped to Server2.

7. Based on the affinity information, the front-end SOAP router routes Request2 to
Server2.

8.3 How Web Service Cluster Routing Works
The following sections describe how Web service cluster routing works:

■ Section 8.3.1, "Adding Routing Information to Outgoing Requests"

■ Section 8.3.2, "Detecting Routing Information in Incoming Requests"

■ Section 8.3.3, "Routing Requests Within the Cluster"

■ Section 8.3.4, "Maintaining the Routing Map on the Front-end SOAP Router"

How Web Service Cluster Routing Works

8-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

8.3.1 Adding Routing Information to Outgoing Requests
The Web services runtime adds routing information to the SOAP header of any
outgoing message to ensure proper routing of messages in the following situations:

■ The request is sent from a Web service client that uses a store that is not accessible
from every member server in the cluster.

■ The request requires in-memory state information used to process the response.

When processing an outgoing message, the Web services runtime:

■ Creates a message ID for the outgoing request, if one has not already been
assigned, and stores it in the RelatesTo/MessageID SOAP header using the
following format:

uuid:WLSformat_version:store_name:uniqueID

Where:

– format_version specifies the WebLogic Server format version, for example
WLS1.

– store_name specifies the name of the persistent store, which specifies the
store in use by the current Web service or Web service client sending the
message. For example, Server1Store. This value may be a
system-generated name, if the default persistent store is used, or an empty
string if no persistent store is configured.

– unique_ID specifies the unique message ID. For example:
68d6fc6f85a3c1cb:-2d3b89ab8:12068ad2e60:-7feb

■ Allows other Web service components to inject routing information into the
message before it is sent.

8.3.2 Detecting Routing Information in Incoming Requests
The SOAP router (in-place or front-end) inspects incoming requests for routing
information. In particular, the SOAP router looks for a RelatesTo/MessageID
SOAP header to find the name of the persistent store and routes the message back to
the server that hosts that persistent store.

In the event that there is an error in determining the correct server using front-end
SOAP routing, then the message is sent to any server within the cluster and the
in-place SOAP router is used. If in-place SOAP routing fails, then the sender of the
message receives a fault on the protocol-specific back channel.

8.3.3 Routing Requests Within the Cluster
To assist in making a routing determination, the SOAP router (in-place or front-end)
uses a dynamic map of store-to-server name associations. This dynamic map
originates on the Managed Servers within a cluster and is accessed in memory by the
in-place SOAP router and via HTTP response headers by the front-end SOAP router.
The HTTP response headers are included automatically by WebLogic Server in every
HTTP response sent by a Web service in the cluster.

Note: SOAP message headers that contain routing information must
be presented in clear text; they cannot be encrypted.

How Web Service Cluster Routing Works

Managing Web Services in a Cluster 8-7

Initially, the dynamic map is empty. It is only initialized after receiving its first
response back from a Managed Server in the cluster. Until it receives back its first
response with the HTTP response headers, the front-end SOAP router simply load
balances the requests, and the in-place SOAP router routes the request to the
appropriate server.

In the absence of SOAP-based routing information, it defers to the base routing that
includes HTTP-session based routing backed by simple load balancing (for example,
round-robin).

8.3.4 Maintaining the Routing Map on the Front-end SOAP Router
As noted in Section 8.3.3, "Routing Requests Within the Cluster", to assist in making a
routing determination, the SOAP router (in-place or front-end) uses a dynamic map of
store-to-server name associations.

To generate this dynamic map, two new HTTP response headers are provided, as
described in the following sections. These headers are included automatically by
WebLogic Server in every HTTP response sent by a Web service in the cluster.

8.3.4.1 X-weblogic-wsee-storetoserver-list HTTP Response Header
A complete list of store-to-server mappings is maintained in the
X-weblogic-wsee-storetoserver-list HTTP response header. The front-end
SOAP router uses this header to populate a mapping that can be referenced at runtime
to route messages.

The X-weblogic-wsee-storetoserver-list HTTP response header has the
following format:

storename1:host_server_spec | storename2:host_server_spec |
storename3:host_server_spec

In the above:

■ storename specifies the name of the persistent store.

■ host_server_spec is specifies using the following format:
servername:host:port:sslport. If not known, the sslport is set to -1.

8.3.4.2 X-weblogic-wsee-storetoserver-hash HTTP Response Header
A hash mapping of the store-to-server list is provided in
X-weblogic-wsee-storetoserver-hash HTTP response header. This header
enables you to determine whether the new mapping list needs to be refreshed.

The X-weblogic-wsee-storetoserver-hash HTTP response header contains a
String value representing the hash value of the list contained in the
X-weblogic-wsee-storetoserver-list HTTP response header. By keeping

Note: For more information about the HTTP response headers, see
Section 8.3.4, "Maintaining the Routing Map on the Front-end SOAP
Router".

Note: When implementing a third-party front-end to include the
HTTP response headers described below, clients should send an HTTP
request header with the following variable set to any value:
X-weblogic-wsee-request-storetoserver-list

Configuring Web Services in a Cluster

8-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

track of the last entry in the list, it can be determined whether the list needs to be
refreshed.

8.4 Configuring Web Services in a Cluster
The following table summarizes the steps to configure Web services in a cluster.

8.4.1 Setting Up the WebLogic Cluster
Set up the WebLogic cluster, as described in "Setting up WebLogic Clusters" in Using
Clusters for Oracle WebLogic Server. Please note:

■ To configure the clustered domain, see Section 8.4.2, "Configuring the Domain
Resources Required for Web Service Advanced Features in a Clustered
Environment."

■ To enable SOAP-based front-end SOAP routing, configure an HTTP cluster servlet,
as described in "Set Up the HttpClusterServlet" in Using Clusters for Oracle
WebLogic Server.

8.4.2 Configuring the Domain Resources Required for Web Service Advanced Features
in a Clustered Environment

When creating or extending a domain using Configuration Wizard, you can apply the
WebLogic Advanced Web Services for JAX-WS Extension template (wls_
webservices_jaxws.jar) to configure automatically the resources required to
support the advanced Web service features in a clustered environment. Although use
of this extension template is not required, it makes the configuration of the required
resources much easier. Alternatively, you can configure the resources required for
these advanced features using the Oracle WebLogic Administration Console or WLST.

Table 8–1 Steps to Manage Web Services in a Cluster

Step Description

1 Set up the WebLogic cluster. See Section 8.4.1, "Setting Up the WebLogic Cluster.".

2 Configure the clustered domain resources required
for advanced Web service features.

You can configure automatically the clustered domain
resources required using the cluster extension
template script. Alternatively, you can configure the
resources using the Oracle WebLogic Administration
Console or WLST. See Section 8.4.2, "Configuring the
Domain Resources Required for Web Service
Advanced Features in a Clustered Environment.".

3 Extend the front-end SOAP router to support Web
services.

Note: This step is required only if you are using the
front-end SOAP router.

The Web services routing servlet extends the
functionality of the WebLogic HTTP cluster servlet to
support routing of Web services in a cluster. See
Section 8.4.3, "Extending the Front-end SOAP Router
to Support Web Services.".

4 Enable routing of Web services atomic transaction
messages.

See Section 8.4.4, "Enabling Routing of Web Services
Atomic Transaction Messages."

5 Configure the identity of the front-end SOAP router. Each WebLogic Server instance in the cluster must be
configured with the address and port of the front-end
SOAP router. See Section 8.4.5, "Configuring the
Identity of the Front-end SOAP Router.".

Configuring Web Services in a Cluster

Managing Web Services in a Cluster 8-9

In addition, the template installs scripts into the domain directory that can be used to
manage the resource required for advanced Web services in-sync as the domain
evolves (for example, servers are added or removed, and so on).

For more information about how to configure the domain and run the scripts to
manage resources, see "Configuring Your Domain for Advanced Web Service Features"
in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

8.4.3 Extending the Front-end SOAP Router to Support Web Services

You extend the front-end SOAP router to support Web services by specifying the
RoutingHandlerClassName parameter shown in the following example (in bold),
as part of the WebLogic HTTP cluster servlet definition.

<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <servlet>
 <servlet-name>HttpClusterServlet</servlet-name>
 <servlet-class>weblogic.servlet.proxy.HttpClusterServlet</servlet-class>
 <init-param>
 <param-name>WebLogicCluster</param-name>
 <param-value>Server1:7001|Server2:7001</param-value>
 </init-param>
 <init-param>
 <param-name>RoutingHandlerClassName</param-name>
 <param-value>
 weblogic.wsee.jaxws.cluster.proxy.SOAPRoutingHandler
 </param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>HttpClusterServlet</servlet-name>
 <url-pattern>/</url-pattern>
 </servlet-mapping>
. . .
</web-app>

8.4.4 Enabling Routing of Web Services Atomic Transaction Messages
High availability and routing of Web services atomic transaction messages is
automatically enabled in Web service clustered environments. However, if the
WebLogic HTTP cluster servlet is being used as the front-end server, you need to set
the following system property to false on the server hosting the WebLogic HTTP
cluster servlet:

weblogic.wsee.wstx.wsat.deployed=false

In addition, when using a WebLogic Server plugin, you should configure the
WLIOTimeoutSecs parameter value appropriately. This parameter defines the
amount of time the plug-in waits for a response to a request from WebLogic Server. If
the value is less than the time the servlets take to process, then you may see

Note: If you are not using the front-end SOAP router, then this step
is not required.

Monitoring Cluster Routing Performance

8-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

unexpected results. For more information about the WLIOTimeoutSecs parameter,
see "General Parameters for Web Server Plug-ins" in Using Web Server Plug-Ins with
Oracle WebLogic Server.

8.4.5 Configuring the Identity of the Front-end SOAP Router
Each WebLogic Server instance in the cluster must be configured with the address and
port of the front-end SOAP router. Network channels enable you to provide a
consistent way to access the front-end address of a cluster. For more information about
network channels, see "Understanding Network Channels" in Configuring Server
Environments for Oracle WebLogic Server.

For each server instance:

1. Create a network channel for the protocol you use to invoke the Web service. You
must name the network channel weblogic-wsee-proxy-channel-XXX, where
XXX refers to the protocol. For example, to create a network channel for HTTPS,
call it weblogic-wsee-proxy-channel-https.

See "Configure custom network channels" in Oracle WebLogic Server Administration
Console Help for general information about creating a network channel.

2. Configure the network channel, updating the External Listen Address and
External Listen Port fields with the address and port of the proxy server,
respectively.

8.5 Monitoring Cluster Routing Performance
You can monitor the following cluster routing statistics to evaluate the application
performance:

■ Total number of requests and responses.

■ Total number of requests and responses that were routed specifically to the server.

■ Routing failure information, including totals and last occurrence.

You can use the WebLogic Server Administration Console or WLST to monitor cluster
routing performance. For information about using WebLogic Server Administration
Console to monitor cluster routing performance, see "Monitor Web services" and
"Monitor Web service clients,", in Oracle WebLogic Server Administration Console Help.

9

Using Web Services Atomic Transactions 9-1

9Using Web Services Atomic Transactions

This section describes how to use Web services atomic transactions to enable
interoperability with other external transaction processing systems.

■ Section 9.1, "Overview of Web Services Atomic Transactions"

■ Section 9.2, "Configuring the Domain Resources Required for Web Service
Advanced Features"

■ Section 9.3, "Enabling Web Services Atomic Transactions on Web Services"

■ Section 9.4, "Enabling Web Services Atomic Transactions on Web Service Clients"

■ Section 9.5, "Configuring Web Services Atomic Transactions Using the
Administration Console"

■ Section 9.6, "Using Web Services Atomic Transactions in a Clustered Environment"

■ Section 9.7, "More Examples of Using Web Services Atomic Transactions"

9.1 Overview of Web Services Atomic Transactions
WebLogic Web services enable interoperability with other external transaction
processing systems, such as Websphere, JBoss, Microsoft .NET, and so on, through the
support of the following specifications:

■ Web Services Atomic Transaction (WS-AtomicTransaction) Versions 1.0, 1.1, and
1.2:
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wst
x-wsat-1.2-spec-cs-01.html

■ Web Services Coordination (WS-Coordination) Versions 1.0, 1.1, and 1.2:
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/w
stx-wscoor-1.2-spec-cs-01.html

These specifications define an extensible framework for coordinating distributed
activities among a set of participants. The coordinator, shown in the following figure,
is the central component, managing the transactional state (coordination context) and
enabling Web services and clients to register as participants.

Overview of Web Services Atomic Transactions

9-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Figure 9–1 Web Services Atomic Transactions Framework

The following table describes the components of Web services atomic transactions,
shown in the previous figure.

The following figure shows two instances of WebLogic Server interacting within the
context of a Web services atomic transaction. For simplicity, two WebLogic Web service
applications are shown.

Figure 9–2 Web Services Atomic Transactions in WebLogic Server Environment

Please note the following:

■ Using the local JTA transaction manager, a transaction can be imported to or
exported from the local JTA environment as a subordinate transaction, all within the
context of a Web service request.

■ Creation and management of the coordination context is handled by the local JTA
transaction manager.

Table 9–1 Components of Web Services Atomic Transactions

Component Description

Coordinator Manages the transactional state (coordination context) and
enables Web services and clients to register as participants.

Activation Service Enables the application to activate a transaction and create a
coordination context for an activity. Once created, the
coordination context is passed with the transaction flow.

Registration Service Enables an application to register as a participant.

Application Protocol X, Y Supported coordination protocols, such as
WS-AtomicTransaction.

Enabling Web Services Atomic Transactions on Web Services

Using Web Services Atomic Transactions 9-3

■ All transaction integrity management and recovery processing is done by the local
JTA transaction manager.

For more information about JTA, see Programming JTA for Oracle WebLogic Server.

The following describes a sample end-to-end Web services atomic transaction
interaction, illustrated in Figure 9–2:

1. Application A begins a transaction on the current thread of control using the JTA
transaction manager on Server A.

2. Application A calls a Web service method in Application B on Server B.

3. Server A updates its transaction information and creates a SOAP header that
contains the coordination context, and identifies the transaction and local
coordinator.

4. Server B receives the request for Application B, detects that the header contains a
transaction coordination context and determines whether it has already registered
as a participant in this transaction. If it has, that transaction is resumed and if not,
a new transaction is started.

Application B executes within the context of the imported transaction. All
transactional resources with which the application interacts are enlisted with this
imported transaction.

5. Server B enlists itself as a participant in the WS-AtomicTransaction transaction by
registering with the registration service indicated in the transaction coordination
context.

6. Server A resumes the transaction.

7. Application A resumes processing and commits the transaction.

9.2 Configuring the Domain Resources Required for Web Service
Advanced Features

When creating or extending a domain, if you expect that you will be using other Web
service advanced features in addition to Web service atomic transactions (either now
or in the future), you can apply the WebLogic Advanced Web Services for JAX-WS
Extension template (wls_webservices_jaxws.jar) to configure automatically the
resources required to support the advanced Web service features. Although use of this
extension template is not required, it makes the configuration of the required resources
much easier. Alternatively, you can configure the resources required for these
advanced features using the Oracle WebLogic Administration Console or WLST. For
more information, see "Configuring Your Domain for Advanced Web Service Features"
in Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

9.3 Enabling Web Services Atomic Transactions on Web Services
To enable Web services atomic transactions on a Web service:

■ When starting from Java (bottom-up), add the
@weblogic.wsee.wstx.wsat.Transactional annotation to the Web service

Note: If you do not expect to use other Web service advanced
features with Web service atomic transactions, application of this
extension template is not required, minimizing start-up times and
memory footprint.

Enabling Web Services Atomic Transactions on Web Services

9-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

endpoint implementation class or method. For more information, see Section 9.3.1,
"Using the @Transactional Annotation in Your JWS File".

■ When starting from WSDL (top-down), use wsdlc to generate a Web service from
an existing WSDL file. In this case, The WS-AtomicTransaction policy assertions
that are advertised in the WSDL are carried forward and are included in the
WSDL file for the new Web service generated by wsdlc. See Section 9.3.2,
"Enabling Web Services Atomic Transactions Starting From WSDL".

■ At deployment time, enable and configure Web services atomic transactions at the
Web service endpoint or method level using the WebLogic Server Administration
Console. For more information, see Section 9.5, "Configuring Web Services Atomic
Transactions Using the Administration Console".

The following tables summarizes the configuration options that you can set when
enabling Web services atomic transactions.

The following table summarizes the valid values for flow type and their meaning on
the Web service and client. The table also summarizes the valid value combinations
when configuring web services atomic transactions for an EJB-style web service that
uses the @TransactionAttribute annotation.

Table 9–2 Web Services Atomic Transactions Configuration Options

Attribute Description

Version Version of the Web services atomic transaction coordination context that is used for
Web services and clients. For clients, it specifies the version used for outbound
messages only. The value specified must be consistent across the entire transaction.

Valid values include WSAT10, WSAT11, WSAT12, and DEFAULT. The DEFAULT value
for Web services is all three versions (driven by the inbound request); the DEFAULT
value for Web service clients is WSAT10.

Flow type Whether the Web services atomic transaction coordination context is passed with the
transaction flow. For valid values, see Table 9–3.

Enabling Web Services Atomic Transactions on Web Services

Using Web Services Atomic Transactions 9-5

9.3.1 Using the @Transactional Annotation in Your JWS File
To enable Web services atomic transactions, specify the
@weblogic.wsee.wstx.wsat.Transactional annotation on the Web service
endpoint implementation class or method.

Please note the following:

■ If you specify the @Transactional annotation at the Web service class level, the
settings apply to all two-way methods defined by the service endpoint interface.
You can override the flow type value at the method level; however, the version
must be consistent across the entire transaction.

■ You cannot explicitly specify the @Transactional annotation on a Web method
that is also annotated with @Oneway.

■ Web services atomic transactions cannot be used with the client-side asynchronous
programming model.

The format for specifying the @Transactional annotation is as follows:

@Transactional(
 version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFowType.[MANDATORY|SUPPORTS|NEVER]
)

Table 9–3 Flow Types Values

Value Web Service Client Web Service
Valid EJB @TransactionAttribute
Values

NEVER JTA transaction: Do not
export transaction
coordination context.

No JTA transaction: Do
not export transaction
coordination context.

Transaction flow exists: Do
not import transaction
coordination context. If the
CoordinationContext header
contains
mustunderstand="true",
a SOAP fault is thrown.

No transaction flow: Do not
import transaction
coordination context.

NEVER, NOT_SUPPORTED, REQUIRED,
REQUIRES_NEW, SUPPORTS

SUPPORTS
(Default)

JTA transaction: Export
transaction coordination
context.

No JTA transaction: Do
not export transaction
coordination context.

Transaction flow exists:
Import transaction context.

No transaction flow: Do not
import transaction
coordination context.

REQUIRED, SUPPORTS

MANDATORY JTA transaction: Export
transaction coordination
context.

No JTA transaction: An
exception is thrown.

Transaction flow exists:
Import transaction context.

No transaction flow:
Service-side exception is
thrown.

MANDATORY, REQUIRED, SUPPORTS

Note: This annotation is not to be mistaken with
weblogic.jws.Transactional, which ensures that the annotated
class or operation runs inside of a transaction, but not an atomic
transaction.

Enabling Web Services Atomic Transactions on Web Services

9-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

For more information about the version and flow type configuration options, see
Table 9–2.

The following sections provide examples of using the @Transactional annotation at
the Web service implementation class and method levels, and with the EJB
@TransactionAttribute annotation.

■ Section 9.3.1.1, "Example: Using @Transactional Annotation on a Web Service
Class"

■ Section 9.3.1.2, "Example: Using @Transactional Annotation on a Web Service
Method"

■ Section 9.3.1.3, "Example: Using the @Transactional and the EJB
@TransactionAttribute Annotations Together"

9.3.1.1 Example: Using @Transactional Annotation on a Web Service Class
The following example shows how to add @Transactional annotation on a Web
service class. Relevant code is shown in bold. As shown in the example, there is an
active JTA transaction.

package examples.webservices.jaxws.wsat.simple.service;
. . .
import weblogic.jws.Policy;
import javax.transaction.UserTransaction;
. . .
import javax.jws.WebService;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
 * This JWS file forms the basis of a WebLogic WS-Atomic Transaction Web Service with the
 * operations: createAccount, deleteAccount, transferMonet, listAccount
 *
 */

@WebService(serviceName = "WsatBankTransferService", targetNamespace = "http://tempuri.org/",
 portName = "WSHttpBindingIService")
@Transactional(value=Transactional.TransactionFlowType.MANDATORY,
 version=weblogic.wsee.wstx.wsat.Transactional.Version.WSAT10)
public class WsatBankTransferService {

 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-demoXA-2");
 String sql = "insert into wsat_acct_remote (acctno, amount) values (" + acctNo +
 ", " + amount + ")";

Note: The following excerpt is borrowed from the Web services
atomic transaction example that is delivered with the WebLogic Server
Samples Server. For more information, see Section 9.7, "More
Examples of Using Web Services Atomic Transactions".

Enabling Web Services Atomic Transactions on Web Services

Using Web Services Atomic Transactions 9-7

 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at remote.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at remote.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }
 public String deleteAccount(String acctNo) throws java.lang.Exception{
 ...
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 ...
 }
 public String listAccount() throws java.lang.Exception{
 ...
 }
}

9.3.1.2 Example: Using @Transactional Annotation on a Web Service Method
The following example shows how to add @Transactional annotation on a Web
service implementation method. Relevant code is shown in bold.

package examples.webservices.jaxws.wsat.simple.service;
. . .
import weblogic.jws.Policy;
import javax.transaction.UserTransaction;
. . .
import javax.jws.WebService;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
 * This JWS file forms the basis of a WebLogic WS-Atomic Transaction Web Service with the
 * operations: createAccount, deleteAccount, transferMonet, listAccount
 *
 */

@WebService(serviceName = "WsatBankTransferService", targetNamespace = "http://tempuri.org/",
 portName = "WSHttpBindingIService")
public class WsatBankTransferService {

@Transactional(value=Transactional.TransactionFlowType.MANDATORY,
 version=weblogic.wsee.wstx.wsat.Transactional.Version.WSAT10)
 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");

Enabling Web Services Atomic Transactions on Web Services

9-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-demoXA-2");
 String sql = "insert into wsat_acct_remote (acctno, amount) values (" + acctNo +
 ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at remote.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at remote.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }
 public String deleteAccount(String acctNo) throws java.lang.Exception{
 ...
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 ...
 }
 public String listAccount() throws java.lang.Exception{
 ...
 }
}

9.3.1.3 Example: Using the @Transactional and the EJB @TransactionAttribute
Annotations Together
The following example illustrates how to use the @Transactional and EJB
@TransactionAttribute annotations together. In this case, the flow type values
must be compatible, as outlined in Table 9–3. Relevant code is shown in bold.

package examples.webservices.jaxws.wsat.simple.service;
. . .
import weblogic.jws.Policy;
import javax.transaction.UserTransaction;
. . .
import javax.jws.WebService;
import javax.ejb.TransactionAttribute;
import javax.ejb.TransactionAttributeType;
import weblogic.wsee.wstx.wsat.Transactional;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
 * This JWS file forms the basis of a WebLogic WS-Atomic Transaction Web Service with the
 * operations: createAccount, deleteAccount, transferMonet, listAccount
 *
 */

@WebService(serviceName = "WsatBankTransferService", targetNamespace = "http://tempuri.org/",
 portName = "WSHttpBindingIService")
@Transactional(value=Transactional.TransactionFlowType.MANDATORY,

Enabling Web Services Atomic Transactions on Web Service Clients

Using Web Services Atomic Transactions 9-9

 version=weblogic.wsee.wstx.wsat.Transactional.Version.WSAT10)
@TransactionAttribute(TransactionAttributeType.REQUIRED
public class WsatBankTransferService {
. . .
}

9.3.2 Enabling Web Services Atomic Transactions Starting From WSDL
When enabled, Web services atomic transactions are advertised in the WSDL file using
a policy assertion.

Table 9–4 summarizes the WS-AtomicTransaction 1.2 policy assertions that correspond
to a set of common Web services atomic transaction flow type and EJB Transaction
attribute combinations. All other combinations result in a build-time error.

You can use wsdlc Ant task to generate, from an existing WSDL file, a set of artifacts
that together provide a partial Java implementation of the Web service described by
the WSDL file. The WS-AtomicTransaction policy assertions that are advertised in the
WSDL are carried forward and are included in the WSDL file for the new Web service
generated by wsdlc.

The wsdlc Ant tasks creates a JWS file that contains a partial (stubbed-out)
implementation of the generated JWS interface. You need to modify this file to include
your business code. After you have coded the JWS file with your business logic, run
the jwsc Ant task to generate a complete Java implementation of the Web service. Use
the compiledWsdl attribute of jwsc to specify the JAR file generated by the wsdlc
Ant task which contains the JWS interface file and data binding artifacts. By specifying
this attribute, the jwsc Ant task does not generate a new WSDL file but instead uses
the one in the JAR file. Consequently, when you deploy the Web service and view its
WSDL, the deployed WSDL will look just like the one from which you initially started
(with the WS-AtomicTransaction policy assertions).

For complete details about using wsdlc to generate a Web service from a WSDL file,
see "Developing WebLogic Web Services Starting From a WSDL File: Main Steps" in
Getting Started With JAX-WS Web Services for Oracle WebLogic Server.

9.4 Enabling Web Services Atomic Transactions on Web Service Clients
On a Web service client, enable Web services atomic transactions using one of the
following methods:

■ Add the @weblogic.wsee.wstx.wsat.Transactional annotation on the
Web service reference injection point for a client. For more information, see

Table 9–4 Web Services Atomic Transaction Policy Assertion Values (WS-AtomicTransaction 1.2)

Atomic Transaction Flow
Type

EJB
@TransactionAttribut
e WS-AtomicTransaction 1.2 Policy Assertion

MANDATORY MANDATORY, REQUIRED,
SUPPORTS

<wsat:ATAssertion/>

SUPPORTS REQUIRED, SUPPORTS <wsat:ATAssertion wsp:Optional="true"/>

NEVER REQUIRED, REQUIRES_
NEW, NEVER, SUPPORTS,
NOT_SUPPORTED

No policy advertisement

Enabling Web Services Atomic Transactions on Web Service Clients

9-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Section 9.4.1, "Using @Transactional Annotation with the @WebServiceRef
Annotation".

■ Pass an instance of the weblogic.wsee.wstx.wsat.TransactionalFeature
as a parameter when creating the Web service proxy or dispatch. For more
information, see Section 9.4.2, "Passing the TransactionalFeature to the Client".

■ At deployment time, enable and configure Web services atomic transactions at the
Web service client endpoint or method level using the WebLogic Server
Administration Console. For more information, see Section 9.5, "Configuring Web
Services Atomic Transactions Using the Administration Console".

■ At run-time, if the non-atomic transactional Web service client calls an atomic
transaction-enabled Web service, then based on the flow type advertised in the
WSDL:

– If the flow type is set to SUPPORTS or NEVER on the service-side, then the call
is included as part of the transaction.

– If the flow type is set to MANDATORY, then an exception is thrown.

For information about the configuration options that you can set when enabling Web
services atomic transactions, see Table 9–2.

9.4.1 Using @Transactional Annotation with the @WebServiceRef Annotation
To enable Web services atomic transactions, specify the
@weblogic.wsee.wstx.wsat.Transactional annotation on the Web service
client at the Web service reference (@WebServiceRef) injection point.

The format for specifying the @Transactional annotation is as follows:

@Transactional(
 version=Transactional.Version.[WSAT10|WSAT11|WSAT12|DEFAULT],
 value=Transactional.TransactionFlowType.[MANDATORY|SUPPORTS|NEVER]
)

For more information about the version and flow type configuration options, see
Table 9–2.

The following example illustrates how to annotate the Web service reference injection
point. Relevant code is shown in bold. As shown in the example, the active JTA
transaction becomes a part of the atomic transaction.

package examples.webservices.jaxws.wsat.simple.client;
. . .
import javax.servlet.*;
import javax.servlet.http.*;
. . .
import java.net.URL;
import javax.xml.namespace.QName;

import javax.transaction.UserTransaction;
import javax.transaction.SystemException;

Note: The following excerpt is borrowed from the Web services
atomic transaction example that is delivered with the WebLogic Server
Samples Server. For more information, see Section 9.7, "More
Examples of Using Web Services Atomic Transactions".

Enabling Web Services Atomic Transactions on Web Service Clients

Using Web Services Atomic Transactions 9-11

import javax.xml.ws.WebServiceRef;
import weblogic.wsee.wstx.wsat.Transactional;
*/

/**
 * This example demonstrates using a WS-Atomic Transaction to create or delete an account,
 * or transfer money via Web service as a single atomic transaction.
 */

public class WsatBankTransferServlet extends HttpServlet {
. . .
 String url = "http://localhost:7001";
 URL wsdlURL = new URL(url + "/WsatBankTransferService/WsatBankTransferService");
. . .
 DataSource ds = null;
 UserTransaction utx = null;

 try {
 ctx = new InitialContext();
 utx = (UserTransaction) ctx.lookup("javax.transaction.UserTransaction");
 utx.setTransactionTimeout(900);
 } catch (java.lang.Exception e) {
 e.printStackTrace();
 }

 WsatBankTransferService port = getWebService(wsdlURL);

 try {
 utx.begin();
 if (remoteAccountNo.length() > 0) {
 if (action.equals("create")) {
 result = port.createAccount(remoteAccountNo, amount);
 } else if (action.equals("delete")) {
 result = port.deleteAccount(remoteAccountNo);
 } else if (action.equals("transfer")) {
 result = port.transferMoney(remoteAccountNo, amount, direction);
 }
 }
 utx.commit();
 result = "The transaction is committed " + result;
 } catch (java.lang.Exception e) {
 try {
 e.printStackTrace();
 utx.rollback();
 result = "The transaction is rolled back. " + e.getMessage();
 } catch(java.lang.Exception ex) {
 e.printStackTrace();
 result = "Exception is caught. Check stack trace.";
 }
 }
 request.setAttribute("result", result);
 . . .
 @Transactional(value = Transactional.TransactionFlowType.MANDATORY,
 version = Transactional.Version.WSAT10)
 @WebServiceRef(wsdlLocation =
 "http://localhost:7001/WsatBankTransferService/WsatBankTransferService?WSDL", value =
 examples.webservices.jaxws.wsat.simple.service.WsatBankTransferService.class)
 WsatBankTransferService_Service service;
 private WsatBankTransferService getWebService() {
 return service.getWSHttpBindingIService();

Enabling Web Services Atomic Transactions on Web Service Clients

9-12 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 }

 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-dataSource-demoXAPool");
 String sql = "insert into wsat_acct_local (acctno, amount) values (
 " + acctNo + ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at local.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating.. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at local.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }

 public String deleteAccount(String acctNo) throws java.lang.Exception{
 . . .
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 . . .
 }
 public String listAccount() throws java.lang.Exception{
 . . .
 }
}

9.4.2 Passing the TransactionalFeature to the Client
To enable Web services atomic transactions on the client of the Web service, you can
pass an instance of the weblogic.wsee.wstx.wsat.TransactionalFeature as
a parameter when creating the Web service proxy or dispatch, as illustrated in the
following example. Relevant code is shown in bold.

package examples.webservices.jaxws.wsat.simple.client;
. . .
import javax.servlet.*;
import javax.servlet.http.*;
. . .

Note: The following excerpt is borrowed from the Web services
atomic transaction example that is delivered with the WebLogic Server
Samples Server. For more information, see Section 9.7, "More
Examples of Using Web Services Atomic Transactions".

Enabling Web Services Atomic Transactions on Web Service Clients

Using Web Services Atomic Transactions 9-13

import java.net.URL;
import javax.xml.namespace.QName;

import javax.transaction.UserTransaction;
import javax.transaction.SystemException;

import weblogic.wsee.wstx.wsat.TransactionalFeature;
import weblogic.wsee.wstx.wsat.Transactional.Version;
import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;
*/

/**
 * This example demonstrates using a WS-Atomic Transaction to create or delete an account,
 * or transfer money via Web service as a single atomic transaction.
 */

public class WsatBankTransferServlet extends HttpServlet {
. . .
 String url = "http://localhost:7001";
 URL wsdlURL = new URL(url + "/WsatBankTransferService/WsatBankTransferService");
. . .
 DataSource ds = null;
 UserTransaction utx = null;

 try {
 ctx = new InitialContext();
 utx = (UserTransaction) ctx.lookup("javax.transaction.UserTransaction");
 utx.setTransactionTimeout(900);
 } catch (java.lang.Exception e) {
 e.printStackTrace();
 }

 WsatBankTransferService port = getWebService(wsdlURL);

 try {
 utx.begin();
 if (remoteAccountNo.length() > 0) {
 if (action.equals("create")) {
 result = port.createAccount(remoteAccountNo, amount);
 } else if (action.equals("delete")) {
 result = port.deleteAccount(remoteAccountNo);
 } else if (action.equals("transfer")) {
 result = port.transferMoney(remoteAccountNo, amount, direction);
 }
 }
 utx.commit();
 result = "The transaction is committed " + result;
 } catch (java.lang.Exception e) {
 try {
 e.printStackTrace();
 utx.rollback();
 result = "The transaction is rolled back. " + e.getMessage();
 } catch(java.lang.Exception ex) {
 e.printStackTrace();
 result = "Exception is caught. Check stack trace.";
 }
 }
 request.setAttribute("result", result);
 . . .
 // Passing the TransactionalFeature to the Client

Configuring Web Services Atomic Transactions Using the Administration Console

9-14 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 private WsatBankTransferService getWebService(URL wsdlURL) {
 TransactionalFeature feature = new TransactionalFeature();
 feature.setFlowType(TransactionFlowType.MANDATORY);
 feature.setVersion(Version.WSAT10);
 WsatBankTransferService_Service service = new WsatBankTransferService_Service(wsdlURL,
 new QName("http://tempuri.org/", "WsatBankTransferService"));
 return service.getWSHttpBindingIService(new javax.xml.ws.soap.AddressingFeature(),
 feature);
 }

 public String createAccount(String acctNo, String amount) throws java.lang.Exception{
 Context ctx = null;
 UserTransaction tx = null;
 try {
 ctx = new InitialContext();
 tx = (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");
 try {
 DataSource dataSource = (DataSource)ctx.lookup("examples-dataSource-demoXAPool");
 String sql = "insert into wsat_acct_local (acctno, amount) values (
 " + acctNo + ", " + amount + ")";
 int insCount = dataSource.getConnection().prepareStatement(sql).executeUpdate();
 if (insCount != 1)
 throw new java.lang.Exception("insert fail at local.");
 return ":acctno=" + acctNo + " amount=" + amount + " creating.. ";
 } catch (SQLException e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new SQLException("SQL Exception during createAccount() at local.");
 }
 } catch (java.lang.Exception e) {
 System.out.println("**** Exception caught *****");
 e.printStackTrace();
 throw new java.lang.Exception(e);
 }
 }

 public String deleteAccount(String acctNo) throws java.lang.Exception{
 . . .
 }
 public String transferMoney(String acctNo, String amount, String direction) throws
 java.lang.Exception{
 . . .
 }
 public String listAccount() throws java.lang.Exception{
 . . .
 }
}

9.5 Configuring Web Services Atomic Transactions Using the
Administration Console

The following sections describe how to configure Web services atomic transactions
using the Administration Console.

■ Section 9.5.1, "Securing Messages Exchanged Between the Coordinator and
Participant"

■ Section 9.5.2, "Enabling and Configuring Web Services Atomic Transactions"

More Examples of Using Web Services Atomic Transactions

Using Web Services Atomic Transactions 9-15

9.5.1 Securing Messages Exchanged Between the Coordinator and Participant
Using transport-level security, you can secure messages exchanged between the Web
services atomic transaction coordinator and participant by configuring the properties
defined in the following table using the WebLogic Server Administration Console.
These properties are configured at the domain level. For detailed steps, see "Configure
Web services atomic transactions" in the Oracle WebLogic Server Administration Console
Help.

9.5.2 Enabling and Configuring Web Services Atomic Transactions
To enable Web services atomic transactions and configure the version and flow type,
you can customize the configuration at the endpoint or method level for the Web
service or client. For detailed steps, see "Configure Web services atomic transactions"
in the Oracle WebLogic Server Administration Console Help.

9.6 Using Web Services Atomic Transactions in a Clustered Environment
For considerations when using atomic transaction-enabled Web services in a clustered
environment, see Chapter 8, "Managing Web Services in a Cluster".

9.7 More Examples of Using Web Services Atomic Transactions
Refer to the following sections for additional examples of using Web services atomic
transactions:

■ For an example of how to sign and encrypt message headers exchanged during the
Web services atomic transaction, see "Securing Web Services Atomic Transactions"
in Securing WebLogic Web Services for Oracle WebLogic Server.

Table 9–5 Securing Web Services Atomic Transactions

Property Description

Web Services Transactions Transport Security Mode Specifies whether two-way SSL is used for the message
exchange between the coordinator and participant. This
property can be set to one of the following values:

■ SSL Not Required—All Web service transaction
protocol messages are exchanged over the HTTP
channel.

■ SSL Required—All Web service transaction protocol
messages are exchanged over the HTTPS channel. This
flag must be enabled when invoking Microsoft .NET
Web services that have atomic transactions enabled.

■ Client Certificate Required—All Web service
transaction protocol messages are exchanged over
HTTPS and a client certificate is required.

For more information, see "Configure two-way SSL" in the
Oracle WebLogic Server Administration Console Help.

Web Service Transactions Issued Token Enabled Flag the specifies whether to use an issued token to enable
authentication between the coordinator and participant.

The IssuedToken is issued by the coordinator and consists
of a security context token (SCT) and a session key used for
signing. The participant sends the signature, signed using
the shared session key, in its registration message. The
coordinator authenticates the participant by verifying the
signature using the session key.

More Examples of Using Web Services Atomic Transactions

9-16 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ A detailed example of Web services atomic transactions is provided as part of the
WebLogic Server sample application. For more information about running the
sample application and accessing the example, see "Sample Application and Code
Examples" in Information Roadmap for Oracle WebLogic Server .

Note: You can secure applications that enable Web service atomic
transactions using only WebLogic Web service security policies. You
cannot secure them using Oracle Web Services Manager (WSM)
policies.

10

Publishing a Web Service Endpoint 10-1

10Publishing a Web Service Endpoint

The javax.xml.ws.Endpoint API (see
http://download.oracle.com/javaee/5/api/javax/xml/ws/Endpoint.ht
ml) enables you to create a Web service endpoint at runtime without deploying the Web
service to a WebLogic Server instance.

The following table summarizes the steps to publish a Web service endpoint.

Table 10–1 Steps to Publish a Web Service Endpoint

Step Description

1 Create a Web service endpoint. Use the javax.xml.ws.Endpoint create()
method to create the endpoint, specify the
implementor (that is, the Web service implementation)
to which the endpoint is associated, and optionally
specify the binding type. If not specified, the binding
type defaults to SOAP1.1/HTTP. The endpoint is
associated with only one implementation object and
one javax.xml.ws.Binding, as defined at
runtime; these values cannot be changed.

For example, the following example creates a Web
service endpoint for the CallbackWS()
implementation.

Endpoint callbackImpl = Endpoint.create(new
CallbackWS());

2 Publish the Web service endpoint
to accept incoming requests.

Use the javax.xml.ws.Endpoint publish()
method to specify the server context, or the address
and optionally the implementor of the Web service
endpoint.

Note: If you wish to update the metadata documents
(WSDL or XML schema) associated with the
endpoint, you must do so before publishing the
endpoint.

For example, the following example publishes the
Web service endpoint created in Step 1 using the
server context.

Object sc
context.getMessageContext().get(MessageContex
t.SERVLET_CONTEXT);
callbackImpl.publish(sc);

10-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

For an example of publishing a Web service endpoint within the context of a callback
example, see Section 11.5, "Programming Guidelines for the Callback Client Web
Service".

In addition to the steps described in the previous table, you can defined the following
using the javax.xml.ws.Endpoint API methods:

■ Endpoint metadata documents (WSDL or XML schema) associated with the
endpoint. You must define metadata before publishing the Web service endpoint.

■ Endpoint properties.

■ java.util.concurrent.Executor that will be used to dispatch incoming
requests to the application (see
http://download.oracle.com/javase/1.5.0/docs/api/java/util/co
ncurrent/Executor.html).

For more information, see the javax.xml.ws.Endpoint Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/ws/Endpoint.ht
ml.

3 Stop the Web service endpoint to
shut it down and prevent
additional requests after
processing is complete.

Use the javax.xml.ws.Endpoint stop()
method to shut down the endpoint and stop
accepting incoming requests. Once stopped, an
endpoint cannot be republished.

For example:

callbackImpl.stop()

Table 10–1 (Cont.) Steps to Publish a Web Service Endpoint

Step Description

11

Using Callbacks 11-1

11Using Callbacks

The following sections describe how to use callbacks to notify clients of events:

■ Section 11.1, "Overview of Callbacks"

■ Section 11.2, "Example Callback Implementation"

■ Section 11.3, "Steps to Program Callbacks"

■ Section 11.4, "Programming Guidelines for Target Web Service"

■ Section 11.5, "Programming Guidelines for the Callback Client Web Service"

■ Section 11.6, "Programming Guidelines for the Callback Web Service"

11.1 Overview of Callbacks
A callback is a contract between a client and service that allows the service to invoke
operations on a client-provided endpoint during the invocation of a service method
for the purpose of querying the client for additional data, allowing the client to inject
behavior, or notifying the client of progress. The service advertises the requirements
for the callback using a WSDL that defines the callback port type and the client
informs the service of the callback endpoint address using WS-Addressing.

11.2 Example Callback Implementation
The example callback implementation described in this section consists of the
following three Java files:

■ JWS file that implements the callback Web service: The callback Web service
defines the callback methods. The implementation simply passes information back
to the target Web service that, in turn, passes the information back to the client
Web service.

In the example in this section, the callback Web service is called
CallbackService. The Web service defines a single callback method called
callback().

■ JWS file that implements the target Web service: The target Web service includes
one or more standard operations that invoke a method defined in the callback
Web service and sends the message back to the client Web service that originally
invoked the operation of the target Web service.

In the example, this Web service is called TargetService and it defines a single
standard method called targetOperation().

Steps to Program Callbacks

11-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ JWS file that implements the client Web service: The client Web service invokes
an operation of the target Web service. Often, this Web service will include one or
more methods that specify what the client should do when it receives a callback
message back from the target Web service via a callback method.

In the example, this Web service is called CallerService. The method that
invokes TargetService in the standard way is called call().

The following shows the flow of messages for the example callback implementation.

Figure 11–1 Example Callback Implementation

1. The call() method of the CallerService Web service, running in one
WebLogic Server instance, explicitly invokes the targetOperation() method of
the TargetService and passes a Web service endpoint to the
CallbackService. Typically, the TargetService service is running in a
separate WebLogic Server instance.

2. The implementation of the TargetService.targetOperation() method
explicitly invokes the callback() method of the CallbackService, which
implements the callback service, using the Web service endpoint that is passed in
from CallerService when the method is called.

3. The CallbackService.callback() method sends information back to the
TargetService Web service.

4. The TargetService.targetOperation() method, in turn, sends the
information back to the CallerService service, completing the callback
sequence.

11.3 Steps to Program Callbacks
The procedure in this section describes how to program and compile the three JWS
files that are required to implement callbacks: the target Web service, the client Web
service, and the callback Web service. The procedure shows how to create the JWS files
from scratch; if you want to update existing JWS files, you can also use this procedure
as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the
jwsc Ant task and deploying the Web services. For more information, see Getting
Started With JAX-WS Web Services for Oracle WebLogic Server.

Steps to Program Callbacks

Using Callbacks 11-3

Table 11–1 Steps to Program Callbacks

Step Description

1 Create a new JWS file, or
update an existing one,
that implements the
target Web service.

Use your favorite IDE or text editor. See Section 11.4,
"Programming Guidelines for Target Web Service".

Note: The JWS file that implements the target Web service
invokes one or more callback methods of the callback Web
service. However, the step that describes how to program the
callback Web service comes later in this procedure. For this
reason, programmers typically program the three JWS files at
the same time, rather than linearly as implied by this
procedure. The steps are listed in this order for clarity only.

2 Update your
build.xml file to
include a call to the
jwsc Ant task to
compile the target JWS
file into a Web service.

See Section 11.7, "Updating the build.xml File for the Target
Web Service".

3 Run the Ant target to
build the target Web
service.

For example:

prompt> ant build-target

4 Deploy the target Web
service as usual.

See "Deploying and Undeploying WebLogic Web Services" in
Getting Started With JAX-WS Web Services for Oracle WebLogic
Server.

5 Create a new JWS file, or
update an existing one,
that implements the
client Web service.

It is assumed that the client Web service is deployed to a
different WebLogic Server instance from the one that hosts the
target Web service. See Section 11.5, "Programming Guidelines
for the Callback Client Web Service".

6 Create the JWS file that
implements the callback
Web service.

See Section 11.6, "Programming Guidelines for the Callback
Web Service".

7 Update the build.xml
file that builds the client
Web service.

The jwsc Ant task that builds the client Web service also
compiles CallbackWS.java and includes the class file in
the WAR file using the Fileset Ant task element. For
example:

<clientgen
 type="JAXWS"
 wsdl="${awsdl}"
 packageName="jaxws.callback.client.add"/>
<clientgen
 type="JAXWS"
 wsdl="${twsdl}"
 packageName="jaxws.callback.client.target"/>
<FileSet dir="." >
 <include name="CallbackWS.java" />
</FileSet>

8 Run the Ant target to
build the client and
callback Web services.

For example:

prompt> ant build-caller

9 Deploy the client Web
service as usual.

See "Deploying and Undeploying WebLogic Web Services" in
Getting Started With JAX-WS Web Services for Oracle WebLogic
Server.

Programming Guidelines for Target Web Service

11-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

11.4 Programming Guidelines for Target Web Service
The following example shows a simple JWS file that implements the target Web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package examples.webservices.callback;

import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import examples.webservices.callback.callbackservice.*;

@WebService(
 portName="TargetPort",
 serviceName="TargetService",
 targetNamespace="http://example.oracle.com",
 endpointInterface=
 "examples.webservices.callback.target.TargetPortType",
 wsdlLocation="/wsdls/Target.wsdl")
@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class TargetImpl {
 public String targetOperation(String s, W3CEndpointReference callback)
 {
 CallbackService aservice = new CallbackService();
 CallbackPortType aport =
 aservice.getPort(callback, CallbackPortType.class);
 String result = aport.callback(s);
 return result + " processed by target";
 }
}

Follow these guidelines when programming the JWS file that implements the target
Web service. Code snippets of the guidelines are shown in bold in the preceding
example.

■ Import the packages required to pass the callback service endpoint and access the
CallbackService stub implementation.

import javax.xml.ws.wsaddressing.W3CEndpointReference;
import examples.webservices.callback.callbackservice.*;

■ Create an instance of the CallbackService implementation using the stub
implementation and get a port by passing the CallbackService service
endpoint, which is passed by the calling application (CallerService).

CallbackService aservice = new CallbackService();
CallbackPortType aport =
 aservice.getPort(callback, CallbackPortType.class);

■ Invoke the callback operation of CallbackService using the port you
instantiated:

String result = aport.callback(s);

■ Return the result to the CallerService service.

return result + " processed by target";

Programming Guidelines for the Callback Client Web Service

Using Callbacks 11-5

11.5 Programming Guidelines for the Callback Client Web Service
The following example shows a simple JWS file for a client Web service that invokes
the target Web service described in Section 11.4, "Programming Guidelines for Target
Web Service"; see the explanation after the example for coding guidelines that
correspond to the Java code in bold.

package examples.webservices.callback;

import javax.annotation.Resource;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws.Endpoint;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.WebServiceException;
import javax.xml.ws.WebServiceRef;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.wsaddressing.W3CEndpointReference;

import examples.webservices.callback.target.*;

@WebService(
 portName="CallerPort",
 serviceName="CallerService",
 targetNamespace="http://example.oracle.com")
@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class CallerImpl
{
 @Resource
 private WebServiceContext context;

 @WebServiceRef()
 private TargetService target;

 @WebMethod()
 public String call(String s) {
 Object sc =
 context.getMessageContext().get(MessageContext.SERVLET_CONTEXT);
 Endpoint callbackImpl = Endpoint.create(new CallbackWS());
 callbackImpl.publish(sc);
 TargetPortType tPort = target.getTargetPort();
 String result = tPort.targetOperation(s,
 callbackImpl.getEndpointReference(W3CEndpointReference.class));
 callbackImpl.stop();
 return result;
 }
}

Follow these guidelines when programming the JWS file that invokes the target Web
service; code snippets of the guidelines are shown in bold in the preceding example:

■ Import the packages required to access the servlet context, publish the Web service
endpoint, and access the TargetService stub implementation.

import javax.xml.ws.Endpoint;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.wsaddressing.W3CEndpointReference;
import examples.webservices.callback.target.*;

Programming Guidelines for the Callback Web Service

11-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Get the servlet context using the WebServiceContext and MessageContext.
You will use the servlet context when publishing the Web service endpoint, later.

@Resource
private WebServiceContext context;
.
.
.
Object sc
 context.getMessageContext().get(MessageContext.SERVLET_CONTEXT);

For more information about accessing runtime information using
WebServiceContext and MessageContext, see "Accessing Runtime
Information About a Web service" in Getting Started With JAX-WS Web Services for
Oracle WebLogic Server.

■ Create a Web service endpoint to the CallbackService implementation and
publish that endpoint to accept incoming requests.

Endpoint callbackImpl = Endpoint.create(new CallbackWS());
callbackImpl.publish(sc);

For more information about Web service publishing, see Chapter 10, "Publishing a
Web Service Endpoint."

■ Access an instance of the TargetService stub implementation and invoke the
targetOperation operation of TargetService using the port you
instantiated. You pass the CallbackService service endpoint as a
javax.xml.ws.wsaddressing.W3CEndpointReference data type:

@WebServiceRef()
private TargetService target;
.
.
.
TargetPortType tPort = target.getTargetPort();
String result = tPort.targetOperation(s,
 callbackImpl.getEndpointReference(W3CEndpointReference.class));

■ Stop publishing the endpoint:

callbackImpl.stop();

11.6 Programming Guidelines for the Callback Web Service
The following example shows a simple JWS file for a callback Web service. The
callback operation is shown in bold.

package examples.webservices.callback;

import javax.jws.WebService;
import javax.xml.ws.BindingType;

@WebService(
 portName="CallbackPort",
 serviceName="CallbackService",
 targetNamespace="http://example.oracle.com",
 endpointInterface=
 "examples.webservices.callback.callbackservice.CallbackPortType",
 wsdlLocation="/wsdls/Callback.wsdl")

Updating the build.xml File for the Target Web Service

Using Callbacks 11-7

@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

public class CallbackWS implements
 examples.webservices.callback.callbackservice.CallbackPortType {

 public CallbackWS() {
 }

 public java.lang.String callback(java.lang.String arg0) {
 return arg0.toUpperCase();
 }
}

11.7 Updating the build.xml File for the Target Web Service
You update a build.xml file to generate a target Web service that invokes the
callback Web service by adding taskdefs and a build-target target that looks
something like the following example. See the description after the example for details.

 <taskdef name="jwsc"
 classname="weblogic.wsee.tools.anttasks.JwscTask" />

 <target name="build-target">
 <jwsc srcdir="src" destdir="${ear-dir}" listfiles="true">
 <jws file="TargetImpl.java"
 compiledWsdl="${cowDir}/target/Target_wsdl.jar" type="JAXWS">
 <WLHttpTransport contextPath="target" serviceUri="TargetService"/>
 </jws>
 <clientgen
 type="JAXWS"
 wsdl="Callback.wsdl"
 packageName="examples.webservices.callback.callbackservice"/>
 </jwsc>
 <zip destfile="${ear-dir}/jws.war" update="true">
 <zipfileset dir="src/examples/webservices/callback" prefix="wsdls">
 <include name="Callback*.wsdl"/>
 </zipfileset>
 </zip>
 </target>

Use the taskdef Ant task to define the full classname of the jwsc Ant tasks. Update
the jwsc Ant task that compiles the client Web service to include:

■ <clientgen> child element of the <jws> element to generate and compile the
Service interface stubs for the deployed CallbackService Web service. The
jwsc Ant task automatically packages them in the generated WAR file so that the
client Web service can immediately access the stubs. You do this because the
TartgetImpl JWS file imports and uses one of the generated classes.

■ <zip> element to include the WSDL for the CallbackService service in the
WAR file so that other Web services can access the WSDL from the following URL:
http://${wls.hostname}:${wls.port}/callback/wsdls/Callback.ws
dl.

For more information about jwsc, see "Running the jwsc WebLogic Web Services Ant
Task" in Getting Started With JAX-RPC Web Services for Oracle WebLogic Server.

Updating the build.xml File for the Target Web Service

11-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

12

Optimizing Binary Data Transmission Using MTOM/XOP 12-1

12Optimizing Binary Data Transmission Using
MTOM/XOP

The following sections describe how to use MTOM/XOP to send binary data:

■ Section 12.1, "Sending Binary Data Using MTOM/XOP"

■ Section 12.2, "Streaming SOAP Attachments"

12.1 Sending Binary Data Using MTOM/XOP
SOAP Message Transmission Optimization Mechanism/XML-binary Optimized
Packaging (MTOM/XOP) defines a method for optimizing the transmission of XML
data of type xs:base64Binary or xs:hexBinary in SOAP messages. When the
transport protocol is HTTP, MIME attachments are used to carry that data while at the
same time allowing both the sender and the receiver direct access to the XML data in
the SOAP message without having to be aware that any MIME artifacts were used to
marshal the base64Binary or hexBinary data. The binary data optimization
process involves the following steps: 1) encode the binary data, 2) remove the binary
data from the SOAP envelope, 3) compress the binary data, 4) attach the binary data to
the MIME package, and 5) add references to the MIME package in the SOAP envelope.

MTOM/XOP support is standard in JAX-WS via the use of JWS annotations. The
MTOM specification does not require that, when MTOM is enabled, the Web service
runtime use XOP binary optimization when transmitting base64binary or
hexBinary data. Rather, the specification allows the runtime to choose to do so. This
is because in certain cases the runtime may decide that it is more efficient to send the
binary data directly in the SOAP Message; an example of such a case is when
transporting small amounts of data in which the overhead of conversion and transport
consumes more resources than just inlining the data as is.

The following Java types are mapped to the base64Binary XML data type, by
default: javax.activation.DataHandler, java.awt.Image, and
javax.xml.transform.Source. The elements of type base64Binary or
hexBinary are mapped to byte[], by default.

The following table summarizes the steps required to use MTOM/XOP to send
base64Binary or hexBinary attachments.

Sending Binary Data Using MTOM/XOP

12-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

12.1.1 Annotating the Data Types
Depending on your programming model, you can annotate your Java class or WSDL
to define the MIME content types that are used for sending binary data. This step is
optional.

The following table defines the mapping of MIME content types to Java types. In some
cases, a default MIME type-to-Java type mapping exists. If no default exists, the MIME
content types are mapped to DataHandler.

The following sections describe how to annotate the data types based on whether you
are starting from Java or WSDL.

■ Section 12.1.1.1, "Annotating the Data Types: Start From Java"

■ Section 12.1.1.2, "Annotating the Data Types: Start From WSDL"

12.1.1.1 Annotating the Data Types: Start From Java
When starting from Java, to define the content types that are used for sending binary
data, annotate the field that holds the binary data using the @XmlMimeType
annotation.

The field that contains the binary data must be of type DataHandler.

The following example shows how to annotate a field in the Java class that holds the
binary data.

@WebMethod
@Oneway
public void dataUpload(

Table 12–1 Steps to Use MTOM/XOP to Send Binary Data

Step Description

1 Annotate the data types that
you are going to use as an
MTOM attachment.
(Optional)

Depending on your programming model, you can
annotate your Java class or WSDL to define the content
types that are used for sending binary data. This step is
optional. By default, XML binary types are mapped to
Java byte[]. For more information, see Section 12.1.1,
"Annotating the Data Types".

2 Enable MTOM on the Web
service.

See Section 12.1.2, "Enabling MTOM on the Web Service".

3 Enable MTOM on the client of
the Web service.

See Section 12.1.3, "Enabling MTOM on the Client".

4 Set the attachment threshold. Set the attachment threshold to specify when the
xs:binary64 data is sent inline or as an attachment. See
Section 12.1.4, "Setting the Attachment Threshold".

Table 12–2 Mapping of MIME Content Types to Java Types

MIME Content Type Java Type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

text/xml or application/xml javax.xml.transform.Source

/ javax.activation.DataHandler

Sending Binary Data Using MTOM/XOP

Optimizing Binary Data Transmission Using MTOM/XOP 12-3

 @XmlMimeType("application/octet-stream") DataHandler data)
{
}

12.1.1.2 Annotating the Data Types: Start From WSDL
When starting from WSDL, to define the content types that are used for sending
binary data, annotate the WSDL element of type xs:base64Binary or
xs:hexBinary using one of the following attributes:

■ xmime:contentType - Defines the content type of the element.

■ xmime:expectedContentType - Defines the range of media types that are
acceptable for the binary data.

The following example maps the image element of type base64binary to
image/gif MIME type (which maps to the java.awt.Image Java type).

<element name="image" type="base64Binary"
xmime:expectedContentTypes="image/gif"
xmlns:xmime="http://www.w3.org/2005/05/xmlmime"/>

12.1.2 Enabling MTOM on the Web Service
You can enable MTOM on the Web service using an annotation or WS-Policy file, as
described in the following sections:

■ Enabling MTOM on the Web Service Using Annotation

■ Enabling MTOM on the Web Services Using WS-Policy File

12.1.2.1 Enabling MTOM on the Web Service Using Annotation
To enable MTOM in the Web service, specify the @java.xml.ws.soap.MTOM
annotation on the service endpoint implementation class, as illustrated in the
following example. Relevant code is shown in bold.

package examples.webservices.mtom;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.soap.MTOM;

@MTOM
@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")
public class MTOMImpl {
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);

 }
}

12.1.2.2 Enabling MTOM on the Web Services Using WS-Policy File
In addition to the @MTOM annotation, described in the previous section, support for
MTOM/XOP in WebLogic JAX-WS Web services is implemented using the
pre-packaged WS-Policy file Mtom.xml. WS-Policy files follow the WS-Policy
specification, described at http://www.w3.org/TR/ws-policy; this specification
provides a general purpose model and XML syntax to describe and communicate the

Sending Binary Data Using MTOM/XOP

12-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

policies of a Web service, in this case the use of MTOM/XOP to send binary data. The
installation of the pre-packaged Mtom.xml WS-Policy file in the types section of the
Web service WSDL is as follows (provided for your information only; you cannot
change this file):

<wsp:Policy wsu:Id="myService_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsoma:OptimizedMimeSerialization

xmlns:wsoma="http://schemas.xmlsoap.org/ws/2004/09/policy/optimizedmimeserializati
on" />
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will
automatically contain the following snippet that references the MTOM WS-Policy file;
the snippet indicates that the Web service uses MTOM/XOP:

<wsdl:binding name="BasicHttpBinding_IMtomTest"
 type="i0:IMtomTest">
 <wsp:PolicyReference URI="#myService_policy" />
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" />

You can associate the Mtom.xml WS-Policy file with a Web service at
development-time by specifying the @Policy metadata annotation in your JWS file.
Be sure you also specify the attachToWsdl=true attribute to ensure that the
dynamic WSDL includes the required reference to the Mtom.xml file; see the example
below.

You can associate the Mtom.xml WS-Policy file with a Web service at deployment time
by modifying the WSDL to add the Policy to the types section just before deployment.

In addition, you can attach the file at runtime using by the Administration Console; for
details, see "Associate a WS-Policy file with a Web service" in the Oracle WebLogic
Server Administration Console Help. This section describes how to use the JWS
annotation.

The following simple JWS file example shows how to use the
@weblogic.jws.Policy annotation in your JWS file to specify that the
pre-packaged Mtom.xml file should be applied to your Web service (relevant code
shown in bold):

package examples.webservices.mtom;
import javax.jws.WebMethod;
import javax.jws.WebService;
 import weblogic.jws.Policy;
@WebService(name="MtomPortType",
 serviceName="MtomService",
 targetNamespace="http://example.org")
@Policy(uri="policy:Mtom.xml", attachToWsdl=true)
public class MtomImpl {
 @WebMethod
 public String echoBinaryAsString(byte[] bytes) {
 return new String(bytes);
 }

Streaming SOAP Attachments

Optimizing Binary Data Transmission Using MTOM/XOP 12-5

12.1.3 Enabling MTOM on the Client
To enable MTOM on the client of the Web service, pass an instance of the
javax.xml.ws.soap.MTOMFeature as a parameter when creating the Web service
proxy or dispatch, as illustrated in the following example. Relevant code is shown in
bold.

package examples.webservices.mtom.client;

import javax.xml.ws.soap.MTOMFeature;

public class Main {
 public static void main(String[] args) {
 String FOO = "FOO";
 MtomService service = new MtomService()
 MtomPortType port = service.getMtomPortTypePort(new MTOMFeature());
 String result = null;
 result = port.echoBinaryAsString(FOO.getBytes());
 System.out.println("Got result: " + result);
 }
}

12.1.4 Setting the Attachment Threshold
You can set the attachment threshold to specify when the xs:binary64 data is sent
inline or as an attachment. By default, the attachment threshold is 0 bytes. All
xs:binary64 data is sent as an attachment.

To set the attachment threshold:

■ On the Web service, pass the threshold attribute to the
@java.xml.ws.soap.MTOM annotation. For example:

@MTOM(threshold=3072)

■ On the client of the Web service, pass the threshold value to
javax.xml.ws.soap.MTOMFeature. For example:

MtomPortType port = service.getMtomPortTypePort(new MTOMFeature(3072));

In each of the examples above, if a message is greater than or equal to 3 KB, it will be
sent as an attachment. Otherwise, the content will be sent inline, as part of the SOAP
message body.

12.2 Streaming SOAP Attachments

Using MTOM and the javax.activation.DataHandler and
com.sun.xml.ws.developer.StreamingDataHandler APIs you can specify
that a Web service use a streaming API when reading inbound SOAP messages that

Note: The
com.sun.xml.ws.developer.StreamingDataHandler API (see
https://jax-ws-architecture-document.dev.java.net/no
nav/doc/com/sun/xml/ws/developer/StreamingAttachment
.html) is supported as an extension to the JAX-WS RI, provided by
Sun Microsystems. Because this API is not provided as part of the
WebLogic software, it is subject to change.

Streaming SOAP Attachments

12-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

include attachments, rather than the default behavior in which the service reads the
entire message into memory. This feature increases the performance of Web services
whose SOAP messages are particularly large.

The following sections describe how to employ streaming SOAP attachments on the
client and server sides.

12.2.1 Client Side Example
The following provides an example that employs streaming SOAP attachments on the
client side.

package examples.webservices.mtomstreaming.client;

import java.util.Map;
import java.io.InputStream;
import javax.xml.ws.soap.MTOMFeature;
import javax.activation.DataHandler;
import javax.xml.ws.BindingProvider;
import com.sun.xml.ws.developer.JAXWSProperties;
import com.sun.xml.ws.developer.StreamingDataHandler;

public class Main {
 public static void main(String[] args) {
 MtomStreamingService service = new MtomStreamingService();
 MTOMFeature feature = new MTOMFeature();
 MtomStreamingPortType port = service.getMtomStreamingPortTypePort(
 feature);
 Map<String, Object> ctxt=((BindingProvider)port).getRequestContext();
 ctxt.put(JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE, 8192);
 DataHandler dh = new DataHandler(new
 FileDataSource("/tmp/example.jar"));
 port.fileUpload("/tmp/tmp.jar",dh);

 DataHandler dhn = port.fileDownload("/tmp/tmp.jar");
 StreamingDataHandler sdh = {StreamingDataHandler)dh;
 try{
 File file = new File("/tmp/tmp.jar");
 sdh.moveTo(file);
 sdh.close();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

The preceding example demonstrates the following:

■ To enable MTOM on the client of the Web service, pass an instance of the
javax.xml.ws.soap.MTOMFeature as a parameter when creating the Web
service proxy or dispatch.

■ Configure HTTP streaming support by enabling HTTP chunking on the MTOM
streaming client.

Note: Streaming MTOM cannot be used in conjunction with message
encryption.

Streaming SOAP Attachments

Optimizing Binary Data Transmission Using MTOM/XOP 12-7

Map<String, Object> ctxt = ((BindingProvider)port).getRequestContext();
 ctxt.put(JAXWSProperties.HTTP_CLIENT_STREAMING_CHUNK_SIZE, 8192);

■ Call the port.fileUpload method.

■ Cast the DataHandler to StreamingDataHandler and use the
StreamingDataHandler.readOnce() method to read the attachment.

12.2.2 Server Side Example
The following provides an example that employs streaming SOAP attachments on the
server side.

package examples.webservices.mtomstreaming;

import java.io.File;
import java.jws.Oneway;
import javax.jws.WebMethod;
import java.io.InputStream;
import javax.jws.WebService;
import javax.xml.bind.annotation.XmlMimeType;
import javax.xml.ws.WebServiceException;
import javax.xml.ws.soap.MTOM;
import javax.activation.DataHandler;
import javax.activation.FileDataSource;
import com.sun.xml.ws.developer.StreamingAttachment;
import com.sun.xml.ws.developer.StreamingDataHandler;

@StreamingAttachment(parseEagerly=true, memoryThreshold=40000L)
@MTOM
@WebService(name="MtomStreaming",
 serviceName="MtomStreamingService",
 targetNamespace="http://example.org",
 wsdlLocation="StreamingImplService.wsdl")
@Oneway
@WebMethod
public class StreamingImpl {

 // Use @XmlMimeType to map to DataHandler on the client side
 public void fileUpload(String fileName,
 @XmlMimeType("application/octet-stream")
 DataHandler data) {
 try {
 StreamingDataHandler dh = (StreamingDataHandler) data;
 File file = new File(fileName);
 dh.moveTo(file);
 dh.close();
 } catch (Exception e) {
 throw new WebServiceException(e);
 }

 @XmlMimeType("application/octet-stream")
 @WebMethod
 public DataHandler fileDownload(String filename)
 {
 return new DataHandler(new FileDataSource(filename));
 }
}

The preceding example demonstrates the following:

Streaming SOAP Attachments

12-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ The @StreamingAttachement annotation is used to configure the streaming
SOAP attachment. For more information, see "Configuring Streaming SOAP
Attachments" on page 12-8.

■ The @XmlMimeType annotation is used to map the DataHandler, as follows:

– If starting from WSDL, it is used to map the
xmime:expectedContentTypes="application/octet-stream" to
DataHandler in the generated SEI.

– If starting from Java, it is used to generate an appropriate schema type in the
generated WSDL.

■ Cast the DataHandler to StreamingDataHandler and use the
StreamingDataHandler.moveTo(File) method to store the contents of the
attachment to a file.

12.2.3 Configuring Streaming SOAP Attachments
You can configure streaming SOAP attachments on the client and server sides to
specify the following:

■ Directory in which large attachments are stored.

■ Whether to parse eagerly the streaming attachments.

■ Maximum attachment size (bytes) that can be stored in memory. Attachments that
exceed the specified number of bytes are written to a file.

12.2.3.1 Configuring Streaming SOAP Attachments on the Server

To configure streaming SOAP attachments on the server, add the
@StreamingAttachment annotation on the endpoint implementation. The following
example specifies that streaming attachments are to be parsed eagerly (read or write
the complete attachment) and sets the memory threshold to 4MB. Attachments under
4MB are stored in memory.

...
import com.sun.xml.ws.developer.StreamingAttachment;
import javax.jws.WebService;

@StreamingAttachment(parseEagerly=true, memoryThreshold=4000000L)
@WebService(name="HelloWorldPortType", serviceName="HelloWorldService")
public class StreamingImpl {
}

Note: The
com.sun.xml.ws.developer.StreamingAttachment API (see
https://jax-ws-architecture-document.dev.java.net/no
nav/doc/com/sun/xml/ws/developer/StreamingAttachment
.html) is supported as an extension to the JDK 6.0, provided by Sun
Microsystems. Because this API is not provided as part of the JDK 6.0
kit, it is subject to change.

Streaming SOAP Attachments

Optimizing Binary Data Transmission Using MTOM/XOP 12-9

12.2.3.2 Configuring Streaming SOAP Attachments on the Client

To configure streaming SOAP attachments on the client, create a
StreamingAttachmentFeature object and pass this as an argument when creating
the PortType stub implementation. The following example sets the directory in
which large attachments are stored to /tmp, specifies that streaming attachments are
to be parsed eagerly and sets the memory threshold to 4MB. Attachments under 4MB
are stored in memory.

...
import com.sun.xml.ws.developer.StreamingAttachmentFeature;
...
MTOMFeature mtom = new MTOMFeature();
StreamingAttachmentFeature stf = new StreamingAttachmentFeature("/tmp", true,
4000000L);
MtomStreamingService service = new MtomStreamingService();
MtomStreamingPortType port = service.getMtomStreamingPortTypePort(
 mtom, stf);
...

Note: The
com.sun.xml.ws.developer.StreamingAttachmentFeature
API (see
https://jax-ws-architecture-document.dev.java.net/no
nav/doc/com/sun/xml/ws/developer/StreamingAttachment
.html) is supported as an extension to the JDK 6.0, provided by Sun
Microsystems. Because this API is not provided as part of the JDK 6.0
kit, it is subject to change.

Streaming SOAP Attachments

12-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

13

Creating Dynamic Proxy Clients 13-1

13Creating Dynamic Proxy Clients

A dynamic proxy client enables a Web service client to invoke a Web service based on a
service endpoint interface (SEI) dynamically at run-time without using clientgen.

The steps to create a dynamic proxy client are outlined in the following table. For more
information, see the javax.xml.ws.Service Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/ws/Service.htm
l.

Table 13–1 Steps to Create a Dynamic Proxy Client

Step Description

1 Create the
javax.xml.ws.Service
instance.

Create the Service instance using the Service.create
method.

You must pass the service name and optionally the location
of the WSDL document. The method details are as follows:

public static Service create (QName serviceName)
throws javax.xml.ws.WebServiceException {}
public static Service create (URL
wsdlDocumentLocation, QName serviceName) throws
javax.xml.ws.WebServiceException {}

For example:

URL wsdlLocation = new
URL("http://example.org/my.wsdl");
QName serviceName = new
QName("http://example.org/sample", "MyService");
Service s = Service.create(wsdlLocation,
serviceName);

See Section 13.1, "Additional Considerations When
Specifying WSDL Location" for additional usage
information.

Additional Considerations When Specifying WSDL Location

13-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

13.1 Additional Considerations When Specifying WSDL Location
If you use HTTPS to get the Web service from the WSDL, and the hostname definition
in the WebLogic Server SSL certificate does not equal the hostname of the peer HTTPS
server or is not one of the following, the action fails with a hostname verification error:

■ localhost

■ 127.0.0.1

■ hostname of localhost

■ IP address of localhost

The hostname verification error is as follows:

EchoService service = new EchoService(https-wsdl, webservice-qName);
:
:
javax.xml.ws.WebServiceException: javax.net.ssl.SSLKeyException:
Security:090504 Certificate chain received from host.company.com - 10.167.194.63
failed hostname verification check. Certificate contained {....} but
check expected host.company.com

The recommended workaround is to use HTTP instead of HTTPS to get the Web
service from a WSDL when creating the service, and your own hostname verifier code
to verify the hostname after the service is created:

EchoService service = Service.create(http_wsdl, qname);
//get Port
EchoPort port = service.getPort(...);
//set self-defined hostname verifier
((BindingProvider) port).getRequestContext().put(
 com.sun.xml.ws.developer.JAXWSProperties.HOSTNAME_VERIFIER,
 new MyHostNameVerifier());
/*
*/

Optionally, you can ignore hostname verification by setting the binding provider
property:

((BindingProvider) port).getRequestContext().put(
 BindingProviderProperties.HOSTNAME_VERIFICATION_PROPERTY,

2 Create the proxy stub. Use the Service.getPort method to create the proxy
stub. You can use this stub to invoke operations on the
target service endpoint.

You must pass the service endpoint interface (SEI) and
optionally the name of the port in the WSDL service
description. The method details are as follows:

public <T> T getPort(QName portName, Class<T>
serviceEndpointInterface) throws
javax.xml.ws.WebServiceException {}
public <T> T getPort(Class<T>
serviceEndpointInterface) throws
javax.xml.ws.WebServiceException {}

For example:

MyPort port = s.getPort(MyPort.class);

Table 13–1 (Cont.) Steps to Create a Dynamic Proxy Client

Step Description

Additional Considerations When Specifying WSDL Location

Creating Dynamic Proxy Clients 13-3

 "true");

However, if you must use HTTPS to get the Web service from the WSDL, there are
several possible workarounds:

■ Turn off hostname verification if you are using the WebLogic Server HTTPS
connection. To do this, set the global system property to ignore hostname
verification:

weblogic.security.SSL.ignoreHostnameVerification=true

The system property does not work for service creation if the connection is a JDK
connection or other non-WebLogic Server connection.

■ Set your own hostname verifier for the connection before you get the Web service
from the WSDL, then use HTTPS to get the Web service from the WSDL:

//set self-defined hostname verifier
URL url = new URL(https_wsdl);
HttpsURLConnection connection = (HttpsURLConnection)url.openConnection();
connection.setHostnameVerifier(new MyHostNameVerifier());

//then initiate the service
EchoService service = Service.create(https_wsdl, qname);

//get port and set self-defined hostname verifier to binding provider
...

For the workarounds in which you set your own hostname verifier, an example
hostname verifier might be as follows:

public class MyHostnameVerifier implements HostnameVerifier {
 public boolean verify(String hostname, SSLSession session) {
 if (hostname.equals(“the host you want”))
 return true;
 else
 return false;
 }
}

Additional Considerations When Specifying WSDL Location

13-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

14

Using XML Catalogs 14-1

14Using XML Catalogs

The following sections describe how to use XML catalogs:

■ Section 3.1, "Overview of Asynchronous Web Service Invocation"

■ Section 14.2, "Defining and Referencing XML Catalogs"

■ Section 14.3, "Disabling XML Catalogs in the Client Runtime"

■ Section 14.4, "Getting a Local Copy of XML Resources"

14.1 Overview of XML Catalogs
An XML catalog enables your application to reference imported XML resources, such
as WSDLs and XSDs, from a source that is different from that which is part of the
description of the Web service. Redirecting the XML resources in this way may be
required to improve performance or to ensure your application runs properly in your
local environment.

For example, a WSDL may be accessible during client generation, but may no longer
be accessible when the client is run. You may need to reference a resource that is local
to or bundled with your application rather than a resource that is available over the
network. Using an XML catalog file, you can specify the location of the WSDL that will
be used by the Web service at runtime.

The following table summarizes how XML catalogs are supported in the WebLogic
Server Ant tasks.

Overview of XML Catalogs

14-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The following sections describe how to:

■ Define and reference an XML catalog to specify the XML resources that you want
to redirect. See Section 14.2, "Defining and Referencing XML Catalogs",

■ Disable XML catalogs in the client runtime. See Section 14.3, "Disabling XML
Catalogs in the Client Runtime".

■ Get a local copy of the WSDL and its imported XML resources using wsdlget.
These files can be packaged with your application and referenced from within an
XML catalog. See Section 14.4, "Getting a Local Copy of XML Resources".

Table 14–1 Support for XML Catalogs in WebLogic Server Ant Tasks

Ant Task Description

clientgen Define and reference XML catalogs in one of the following ways:

■ Use the catalog attribute to specify the name of the external XML
catalog file. For more information, see Section 14.2.1, "Defining an
External XML Catalog".

■ Use the <xmlcatalog> child element to reference an embedded XML
catalog file. For more information, see Section 14.2.2, "Embedding an
XML Catalog".

When you execute the clientgen Ant task to build the client (or the jwsc
Ant task if the clientgen task is embedded), the jax-ws-catalog.xml
file is generated and copied to the client runtime environment. The
jax-ws-catalog.xml file contains the XML catalog(s) that are defined in
the external XML catalog file(s) and/or embedded in the build.xml file.
This file is copied, along with the referenced XML targets, to the META-INF or
WEB-INF folder for Enterprise or Web applications, respectively.

Note: The contents of the XML resources are not impacted during this
process.

You can disable the jax-ws-catalog.xml file from being copied to the
client runtime environment, as described in Section 14.3, "Disabling XML
Catalogs in the Client Runtime".

wsdlc Define and reference XML catalogs in one of the following ways:

■ Use the catalog attribute to specify the name of the external XML
catalog file. For more information, see Section 14.2.1, "Defining an
External XML Catalog".

■ Use the <xmlcatalog> child element to reference an embedded XML
catalog file. For more information, see Section 14.2.2, "Embedding an
XML Catalog".

When you execute the wsdlc Ant task, the XML resources are copied to the
compiled WSDL JAR file or exploded directory.

wsdlget Define and reference XML catalogs in one of the following ways:

■ Use the catalog attribute to specify the name of the external XML
catalog file. For more information, see Section 14.2.1, "Defining an
External XML Catalog".

■ Use the <xmlcatalog> child element to reference an embedded XML
catalog file. For more information, see Section 14.2.2, "Embedding an
XML Catalog".

When you execute the wsdlget Ant task, the WSDL and imported resources
are downloaded to the specified directory.

Note: The contents of the XML resources are updated to reference the
resources defined in the XML catalog(s).

Defining and Referencing XML Catalogs

Using XML Catalogs 14-3

For more information about XML catalogs, see the Oasis XML Catalogs specification at
http://www.oasis-open.org/committees/download.php/14809/xml-cata
logs.html.

14.2 Defining and Referencing XML Catalogs
You define an XML catalog and then reference it from the clientgen or wsdlc Ant
task in your build.xml file in one of the following ways:

■ Define an external XML catalog - Define an external XML catalog file and
reference that file from the clientgen or wsdlc Ant tasks in your build.xml
file using the catalogs attribute. For more information, see Section 14.2.1,
"Defining an External XML Catalog".

■ Embed an XML catalog - Embed the XML catalog directly in the build.xml file
using the <xmlcatalog> element and reference it from the clientgen or wsdlc
Ant tasks in your build.xml file using the <xmlcatalog> child element. For
more information, see Section 14.2.2, "Embedding an XML Catalog".

In the event of a conflict, entries defined in an embedded XML catalog take precedence
over those defined in an external XML catalog.

14.2.1 Defining an External XML Catalog
To define an external XML catalog:

1. Create an external XML catalog file that defines the XML resources that you want
to be redirected. See Section 14.2.1.1, "Creating an External XML Catalog File".

2. Reference the XML catalog file from the clientgen or wsdlc Ant task in your
build.xml file using the catalogs attribute. See Section 14.2.1.2, "Referencing
the External XML Catalog File".

Each step is described in more detail in the following sections.

14.2.1.1 Creating an External XML Catalog File
The <catalog> element is the root element of the XML catalog file and serves as the
container for the XML catalog entities. To specify XML catalog entities, you can use the
system or public elements, for example.

The following provides a sample XML catalog file:

<catalog xmln="urn:oasis:names:tc:entity:xmlns:xml:catalog"
 prefer="system">
 <system systemId="http://foo.org/hello?wsdl"
 uri="HelloService.wsdl" />
 <public publicId="ISO 8879:1986//ENTITIES Added Latin 1//EN"
 uri="wsdl/myApp/myApp.wsdl"/>
</catalog>

In the above example:

■ The <catalog> root element defines the XML catalog namespace and sets the
prefer attribute to system to specify that system matches are preferred.

Note: You can use the wsdlget Ant task to get a local copy of the
XML resources, as described in Section 14.3, "Disabling XML Catalogs
in the Client Runtime".

Defining and Referencing XML Catalogs

14-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ The <system> element associates a URI reference with a system identifier.

■ The <public> element associates a URI reference with a public identifier.

For a complete description of the XML catalog file syntax, see the Oasis XML Catalogs
specification at
http://www.oasis-open.org/committees/download.php/14809/xml-cata
logs.html.

14.2.1.2 Referencing the External XML Catalog File
To reference the XML catalog file from the clientgen or wsdlc Ant task in your
build.xml file, use the catalogs attribute.

The following example shows how to reference an XML catalog file using clientgen.
Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml"/>
</clientgen>
</target>

14.2.2 Embedding an XML Catalog
To embed an XML catalog:

1. Create an embedded XML catalog in the build.xml file. See Section 14.2.2.1,
"Creating an Embedded XML Catalog".

2. Reference the embedded XML catalog from the clientgen or wsdlc Ant task
using the xmlcatalog child element. See Section 14.2.2.2, "Referencing an
Embedded XML Catalog".

Each step is described in more detail in the following sections.

14.2.2.1 Creating an Embedded XML Catalog
The <xmlcatalog> element enables you to embed an XML catalog directly in the
build.xml file. The following shows a sample of an embedded XML catalog in the
build.xml file.

<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

For a complete description of the embedded XML catalog syntax, see the Oasis XML
Catalogs specification at
http://www.oasis-open.org/committees/download.php/14809/xml-cata
logs.html.

Note: In the event of a conflict, entries defined in an embedded XML
catalog take precedence over those defined in an external XML
catalog.

Disabling XML Catalogs in the Client Runtime

Using XML Catalogs 14-5

14.2.2.2 Referencing an Embedded XML Catalog
The <xmlcatalog> child element of the clientgen or wsdlc Ant tasks enables you
to reference an embedded XML catalog. To specify the <xmlcatalog> element, use
the following syntax:

<xmlcatalog refid="id"/>

The id referenced by the <xmlcatalog> child element must match the ID of the
embedded XML catalog.

The following example shows how to reference an embedded XML catalog using
clientgen. Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml"/>
 <xmlcatalog refid="wsimportcatalog"/>
</clientgen>
</target>
<xmlcatalog id="wsimportcatalog">
 <entity publicid="http://helloservice.org/types/HelloTypes.xsd"
 location="${basedir}/HelloTypes.xsd"/>
</xmlcatalog>

14.3 Disabling XML Catalogs in the Client Runtime
By default, when you define and reference XML catalogs in your build.xml file, as
described in Section 14.2, "Defining and Referencing XML Catalogs", when you
execute the clientgen Ant task to build the client, the jax-ws-catalog.xml file is
generated and copied to the client runtime environment. The jax-ws-catalog.xml
file contains the XML catalog(s) that are defined in the external XML catalog file(s)
and/or embedded in the build.xml file. This file is copied, along with the referenced
XML targets, to the META-INF or WEB-INF folder for Enterprise or Web applications,
respectively.

You can disable the generation of the XML catalog artifacts in the client runtime
environment by setting the genRuntimeCatalog attribute of the clientgen to
false. For example:

<clientgen
 type="JAXWS"
 wsdl="${wsdl}"
 destDir="${clientclasses.dir}"
 packageName="xmlcatalog.jaxws.clientgen.client"
 catalog="wsdlcatalog.xml"
 genRuntimeCatalog="false"/>

In this case, the jax-ws-catalog.xml file will not be copied to the runtime
environment.

If you generated your client with the genRuntimeCatalog attribute set to false, to
subsequently enable the XML catalogs in the client runtime, you will need to create the
jax-ws-catalog.xml file manually and copy it to the META-INF or WEB-INF
folder for Enterprise or Web applications, respectively. Ensure that the
jax-ws-catalog.xml file contains all of the entries defined in the external XML
catalog file(s) and/or embedded in the build.xml file.

Getting a Local Copy of XML Resources

14-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

14.4 Getting a Local Copy of XML Resources
The wsdlget Ant task enables you to get a local copy of XML resources, such as
WSDL and XSD files. Then, you can refer to the local version of the XML resources
using an XML catalog, as described in Section 14.2, "Defining and Referencing XML
Catalogs".

The following excerpt from an Ant build.xml file shows how to use the wsdlget
Ant task to download a WSDL and its XML resources. The XML resources will be
saved to the wsdl folder in the directory from which the Ant task is run.

<target name="wsdlget"
 <wsdlget
 wsdl="http://host/service?wsdl"
 destDir="./wsdl/"
 />
</target>

15

Creating and Using SOAP Message Handlers 15-1

15Creating and Using SOAP Message Handlers

The following sections provide information about creating and using SOAP message
handlers:

■ Section 15.1, "Overview of SOAP Message Handlers"

■ Section 15.2, "Adding Server-side SOAP Message Handlers: Main Steps"

■ Section 15.3, "Adding Client-side SOAP Message Handlers: Main Steps"

■ Section 15.4, "Designing the SOAP Message Handlers and Handler Chains"

■ Section 15.5, "Creating the SOAP Message Handler"

■ Section 15.6, "Configuring Handler Chains in the JWS File"

■ Section 15.7, "Creating the Handler Chain Configuration File"

■ Section 15.8, "Compiling and Rebuilding the Web Service"

■ Section 15.9, "Configuring the Client-side SOAP Message Handlers"

15.1 Overview of SOAP Message Handlers
Web services and their clients may need to access the SOAP message for additional
processing of the message request or response. You can create SOAP message handlers
to enable Web services and clients to perform this additional processing on the SOAP
message. A SOAP message handler provides a mechanism for intercepting the SOAP
message in both the request and response of the Web service.

A simple example of using handlers is to access information in the header part of the
SOAP message. You can use the SOAP header to store Web service specific
information and then use handlers to manipulate it.

You can also use SOAP message handlers to improve the performance of your Web
service. After your Web service has been deployed for a while, you might discover that
many consumers invoke it with the same parameters. You could improve the
performance of your Web service by caching the results of popular invokes of the Web
service (assuming the results are static) and immediately returning these results when
appropriate, without ever invoking the back-end components that implement the Web
service. You implement this performance improvement by using handlers to check the
request SOAP message to see if it contains the popular parameters.

JAX-WS supports two types of SOAP message handlers: SOAP handlers and logical
handlers. SOAP handlers can access the entire SOAP message, including the message
headers and body. Logical handlers can access the payload of the message only, and
cannot change any protocol-specific information (like headers) in a message.

Adding Server-side SOAP Message Handlers: Main Steps

15-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

15.2 Adding Server-side SOAP Message Handlers: Main Steps
The following procedure describes the high-level steps to add SOAP message handlers
to your Web service.

It is assumed that you have created a basic JWS file that implements a Web service and
that you want to update the Web service by adding SOAP message handlers and
handler chains. It is also assumed that you have set up an Ant-based development
environment and that you have a working build.xml file that includes a target for
running the jwsc Ant task. For more information, see in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server:

■ Use Cases and Examples

■ Developing WebLogic Web Services

■ Programming the JWS File

■ Invoking Web Services

15.3 Adding Client-side SOAP Message Handlers: Main Steps
You can configure client-side SOAP message handlers for both stand-alone clients and
clients that run inside of WebLogic Server. You create the actual Java client-side
handler in the same way you create a server-side handler (by creating a Java class that
implements the SOAP message handler interface). In many cases you can use the exact
same handler class on both the Web service running on WebLogic Server and the client
applications that invoke the Web service. For example, you can write a generic logging
handler class that logs all sent and received SOAP messages, both for the server and
for the client.

Note: If SOAP handlers are used in conjunction with policies
(security, WS-ReliableMessaging, MTOM, and so on), for inbound
messages, the policy interceptors are executed before the user-defined
message handlers. For outbound messages, this order is reversed.

Table 15–1 Steps to Add SOAP Message Handlers to a Web Service

Step Description

1 Design the handlers and
handler chains.

Design SOAP message handlers and group them together
in a handler chain. See Section 15.4, "Designing the SOAP
Message Handlers and Handler Chains".

2 For each handler in the
handler chain, create a Java
class that implements the
SOAP message handler
interface.

See Section 15.5, "Creating the SOAP Message Handler".

3 Update your JWS file, adding
annotations to configure the
SOAP message handlers.

See Section 15.6, "Configuring Handler Chains in the JWS
File".

4 Create the handler chain
configuration file.

See Section 15.7, "Creating the Handler Chain
Configuration File".

5 Compile all handler classes in
the handler chain and rebuild
your Web service.

See Section 15.8, "Compiling and Rebuilding the Web
Service".

Designing the SOAP Message Handlers and Handler Chains

Creating and Using SOAP Message Handlers 15-3

The following procedure describes the high-level steps to add client-side SOAP
message handlers to the client application that invokes a Web service operation.

It is assumed that you have created the client application that invokes a deployed Web
service, and that you want to update the client application by adding client-side SOAP
message handlers and handler chains. It is also assumed that you have set up an
Ant-based development environment and that you have a working build.xml file
that includes a target for running the clientgen Ant task. For more information, see
"Invoking a Web service from a Stand-alone Client: Main Steps" in Getting Started With
JAX-WS Web Services for Oracle WebLogic Server.

When you next run the client application, the SOAP messaging handlers listed in the
configuration file automatically execute before the SOAP request message is sent and
after the response is received.

15.4 Designing the SOAP Message Handlers and Handler Chains
When designing your SOAP message handlers, you must decide:

■ The number of handlers needed to perform the work.

■ The sequence of execution.

You group SOAP message handlers together in a handler chain. Each handler in a
handler chain may define methods for both inbound and outbound messages.

Table 15–2 Steps to Use Client-side SOAP Message Handlers

Step Description

1 Design the handlers and
handler chains.

This step is similar to designing the server-side SOAP
message handlers, except the perspective is from the
client application, rather than a Web service. See
Section 15.4, "Designing the SOAP Message Handlers and
Handler Chains".

2 For each handler in the
handler chain, create a Java
class that implements the
SOAP message handler
interface.

This step is similar to designing the server-side SOAP
message handlers, except the perspective is from the
client application, rather than a Web service. See
Section 15.5, "Creating the SOAP Message Handler" for
details about programming a handler class.

3 Update your client to
programmatically configure
the SOAP message handlers.

See Section 15.9, "Configuring the Client-side SOAP
Message Handlers".

4 Update the build.xml file that
builds your application,
specifying to the clientgen
Ant task the customization
file.

See Section 15.8, "Compiling and Rebuilding the Web
Service".

5 Rebuild your client
application by running the
relevant task.

prompt> ant build-client

Note: You do not have to update your actual client application to
invoke the client-side SOAP message handlers; as long as you specify
to the clientgen Ant task the handler configuration file, the
generated interface automatically takes care of executing the handlers
in the correct sequence.

Designing the SOAP Message Handlers and Handler Chains

15-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Typically, each SOAP message handler defines a separate set of steps to process the
request and response SOAP message because the same type of processing typically
must happen for the inbound and outbound message. You can, however, design a
handler that processes only the SOAP request and does no equivalent processing of
the response. You can also choose not to invoke the next handler in the handler chain
and send an immediate response to the client application at any point.

15.4.1 Server-side Handler Execution
When invoking a Web service, WebLogic Server executes handlers as follows:

1. The inbound methods for handlers in the handler chain are all executed in the
order specified by the JWS annotation. Any of these inbound methods might
change the SOAP message request.

2. When the last handler in the handler chain executes, WebLogic Server invokes the
back-end component that implements the Web service, passing it the final SOAP
message request.

3. When the back-end component has finished executing, the outbound methods of
the handlers in the handler chain are executed in the reverse order specified by the
JWS annotation. Any of these outbound methods might change the SOAP message
response.

4. When the first handler in the handler chain executes, WebLogic Server returns the
final SOAP message response to the client application that invoked the Web
service.

For example, assume that you are going to use the @HandlerChain JWS annotation
in your JWS file to specify an external configuration file, and the configuration file
defines a handler chain called SimpleChain that contains three handlers, as shown in
the following sample:

<?xml version="1.0" encoding="UTF-8" ?>
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-class>
 Handler1
 </handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>
 Handler2
 </handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>
 Handler3
 </handler-class>
 </handler>
 </handler-chain>
</handler-chains>

The following graphic shows the order in which WebLogic Server executes the
inbound and outbound methods of each handler.

Creating the SOAP Message Handler

Creating and Using SOAP Message Handlers 15-5

Figure 15–1 Order of Execution of Handler Methods

15.4.2 Client-side Handler Execution
In the case of a client-side handler, the handler executes twice:

■ Directly before the client application sends the SOAP request to the Web service

■ Directly after the client application receives the SOAP response from the Web
service

15.5 Creating the SOAP Message Handler
There are two types of SOAP message handlers that you can create, as defined in the
following table.

Each type of message handler extends the javax.xml.ws.Handler interface (see
http://download.oracle.com/javaee/5/api/javax/xml/ws/handler/Han
dler.html), which defines the methods defined in the following table.

Table 15–3 Types of SOAP Message Handlers

Handler Type Description

SOAP handler Enables you to access the full SOAP message including headers.
SOAP handlers are defined using the
javax.xml.ws.handler.soap.SOAPHandler interface. They
are invoked using the import
javax.xml.ws.handler.soap.SOAPMessageContext which
extends javax.xml.ws.handler.MessageContext The
SOAPMessageContext.getMessage() method returns a
javax.xml.soap.SOAPMessage.

Logical handlers Provides access to the payload of the message. Logical handlers
cannot change any protocol-specific information (like headers) in a
message. Logical handlers are defined using the
javax.xml.ws.handler.LogicalHandler interface (see
http://download.oracle.com/javaee/5/api/javax/xml
/ws/handler/LogicalHandler.html). They are invoked using
the javax.xml.ws.handler.LogicalMessageContext which
extends javax.xml.ws.handler.MessageContext The
LogicalMessageContext.getMessage() method returns a
javax.xml.ws.LogicalMessage.

The payload can be accessed either as a JAXB object or as a
javax.xml.transform.Source object (see
http://download.oracle.com/javaee/5/api/javax/xml
/ws/LogicalMessage.html).

Creating the SOAP Message Handler

15-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

In addition, you can use the @javax.annotation.PostConstruct and
@javax.annotation.PreDestroy annotations to identify methods that must be
executed after the handler is created and before the handler is destroyed, respectively.

Sometimes you might need to directly view or update the SOAP message from within
your handler, in particular when handling attachments, such as image. In this case, use
the javax.xml.soap.SOAPMessage abstract class, which is part of the SOAP With
Attachments API for Java 1.1 (SAAJ) specification at
http://java.sun.com/webservices/saaj/docs.html For details, see
Section 15.5.7, "Directly Manipulating the SOAP Request and Response Message Using
SAAJ".

15.5.1 Example of a SOAP Handler
The following example illustrates a simple SOAP handler that returns whether the
message is inbound or outbound along with the message content.

package examples.webservices.handler;

import java.util.Set;
import java.util.Collections;
import javax.xml.namespace.QName;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import javax.xml.soap.SOAPMessage;

public class Handler1 implements SOAPHandler<SOAPMessageContext>
{
 public Set<QName> getHeaders()
 {
 return Collections.emptySet();
 }

 public boolean handleMessage(SOAPMessageContext messageContext)
 {
 Boolean outboundProperty = (Boolean)
 messageContext.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);

 if (outboundProperty.booleanValue()) {
 System.out.println("\nOutbound message:");
 } else {
 System.out.println("\nInbound message:");
 }

Table 15–4 Handler Interface Methods

Method Description

handleMessage() Manages normal processing of inbound and outbound messages. A
property in the MessageContext object is used to determine if the
message is inbound or outbound. See Section 15.5.3, "Implementing
the Handler.handleMessage() Method".

handleFault() Manages fault processing of inbound and outbound messages. See
Section 15.5.4, "Implementing the Handler.handleFault() Method".

close() Concludes the message exchange and cleans up resources that were
accessed during processing. See Section 15.5.5, "Implementing the
Handler.close() Method".

Creating the SOAP Message Handler

Creating and Using SOAP Message Handlers 15-7

 System.out.println("** Response: "+messageContext.getMessage().toString());
 return true;
 }

 public boolean handleFault(SOAPMessageContext messageContext)
 {
 return true;
 }

 public void close(MessageContext messageContext)
 {
 }
}

15.5.2 Example of a Logical Handler
The following example illustrates a simple logical handler that returns whether the
message is inbound or outbound along with the message content.

package examples.webservices.handler;

import java.util.Set;
import java.util.Collections;
import javax.xml.namespace.QName;
import javax.xml.ws.handler.LogicalHandler;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.LogicalMessageContext;
import javax.xml.ws.LogicalMessage;
import javax.xml.transform.Source;

public class Handler2 implements LogicalHandler<LogicalMessageContext>
{
 public Set<QName> getHeaders()
 {
 return Collections.emptySet();
 }

 public boolean handleMessage(LogicalMessageContext messageContext)
 {
 Boolean outboundProperty = (Boolean)
 messageContext.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 if (outboundProperty.booleanValue()) {
 System.out.println("\nOutbound message:");
 } else {
 System.out.println("\nInbound message:");
 }

 System.out.println("** Response: "+messageContext.getMessage().toString());
 return true;
 }

 public boolean handleFault(LogicalMessageContext messageContext)
 {
 return true;
 }

 public void close(MessageContext messageContext)
 {
 }
}

Creating the SOAP Message Handler

15-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

15.5.3 Implementing the Handler.handleMessage() Method
The Handler.handleMessage() method is called to intercept a SOAP message
request before and after it is processed by the back-end component. Its signature is:

public boolean handleMessage(C context)
 throws java.lang.RuntimeException, java.xml.ws.ProtocolException {}

Implement this method to perform such tasks as encrypting/decrypting data in the
SOAP message before or after it is processed by the back-end component, and so on.

C extends javax.xml.ws.handler.MessageContext (see
http://download.oracle.com/javaee/5/api/javax/xml/ws/handler/Mes
sageContext.html). The MessageContext properties allow the handlers in a
handler chain to determine if a message is inbound or outbound and to share
processing state. Use the SOAPMessageContext or LogicalMessageContext
sub-interface of MessageContext to get or set the contents of the SOAP or logical
message, respectively. For more information, see Section 15.5.6, "Using the Message
Context Property Values and Methods".

After you code all the processing of the SOAP message, code one of the following
scenarios:

■ Invoke the next handler on the handler request chain by returning true.

The next handler on the request chain is specified as the next <handler>
subelement of the <handler-chain> element in the configuration file specified
by the @HandlerChain annotation.

■ Block processing of the handler request chain by returning false.

Blocking the handler request chain processing implies that the back-end
component does not get executed for this invoke of the Web service. You might
want to do this if you have cached the results of certain invokes of the Web service,
and the current invoke is on the list.

Although the handler request chain does not continue processing, WebLogic
Server does invoke the handler response chain, starting at the current handler.

■ Throw the java.lang.RuntimeException or
java.xml.ws.ProtocolException for any handler-specific runtime errors.

WebLogic Server catches the exception, terminates further processing of the
handler request chain, logs the exception to the WebLogic Server log file, and
invokes the handleFault() method of this handler.

15.5.4 Implementing the Handler.handleFault() Method
The Handler.handleFault() method processes the SOAP faults based on the
SOAP message processing model. Its signature is:

public boolean handleFault(C context)
 throws java.lang.RuntimeException, java.xml.ws.ProtocolException{}

Implement this method to handle processing of any SOAP faults generated by the
handleMessage() method, as well as faults generated by the back-end component.

C extends javax.xml.ws.handler.MessageContext (see
http://download.oracle.com/javaee/5/api/javax/xml/ws/handler/Mes
sageContext.html). The MessageContext properties allow the handlers in a
handler chain to determine if a message is inbound or outbound and to share
processing state.Use the LogicalMessageContext or SOAPMessageContext

Creating the SOAP Message Handler

Creating and Using SOAP Message Handlers 15-9

sub-interface of MessageContext to get or set the contents of the logical or SOAP
message, respectively. For more information, see Section 15.5.6, "Using the Message
Context Property Values and Methods".

After you code all the processing of the SOAP fault, do one of the following:

■ Invoke the handleFault() method on the next handler in the handler chain by
returning true.

■ Block processing of the handler fault chain by returning false.

15.5.5 Implementing the Handler.close() Method
The Handler.close() method concludes the message exchange and cleans up
resources that were accessed during processing. Its signature is:

public boolean close(MessageContext context) {}

15.5.6 Using the Message Context Property Values and Methods
The following context objects are passed to the SOAP message handlers.

Each context object extends javax.xml.ws.handler.MessageContext, which
enables you to access a set of runtime properties of a SOAP message handler from the
client application or Web service, or directly from the
javax.xml.ws.WebServiceContext from a Web service (see
https://jax-ws.dev.java.net/nonav/jax-ws-20-pfd/api/javax/xml/ws
/WebServiceContext.html).

For example, the MessageContext.MESSAGE_OUTBOUND_PROPERTY holds a
Boolean value that is used to determine the direction of a message. During a request,
you can check the value of this property to determine if the message is an inbound or
outbound request. The property would be true when accessed by a client-side
handler or false when accessed by a server-side handler.

For more information about the MessageContext property values that are available,
see "Using the MessageContext Property Values" in Getting Started With JAX-WS Web
Services for Oracle WebLogic Server.

The LogicalMessageContext class defines the following method for processing the
Logical message. For more information, see the
java.xml.ws.handler.LogicalMessageContext Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/ws/handler/Log
icalMessageContext.html.

Table 15–5 Message Context Property Values

Message Context Property Values Description

javax.xml.ws.handler.LogicalMessageContext Context object for logical
handlers.

javax.xml.ws.handler.soap.SOAPMessageContext Context object for SOAP
handlers.

Table 15–6 LogicalMessageContext Class Method

Method Description

getMessage() Gets a javax.xml.ws.LogicalMessage object that contains the SOAP
message.

Creating the SOAP Message Handler

15-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

The SOAPMessageContext class defines the following methods for processing the
SOAP message. For more information, see the
java.xml.ws.handler.soap.SOAPMessageContext Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/ws/handler/soa
p/SOAPMessageContext.html.

15.5.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ
The javax.xml.soap.SOAPMessage abstract class is part of the SOAP With
Attachments API for Java 1.1 (SAAJ) specification at
http://java.sun.com/webservices/saaj/docs.html. You use the class to
manipulate request and response SOAP messages when creating SOAP message
handlers. This section describes the basic structure of a SOAPMessage object and some
of the methods you can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPart object (which contains the actual
SOAP XML document) and zero or more attachments.

Refer to the SAAJ Javadocs for the full description of the SOAPMessage class.

15.5.7.1 The SOAPPart Object

The SOAPPart object contains the XML SOAP document inside of a SOAPEnvelope
object. You use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a
MessageContext object, provided by the Handler class, and get at its parts:

SOAPMessage soapMessage = messageContext.getMessage();
SOAPPart soapPart = soapMessage.getSOAPPart();

Note: The SOAP message itself is stored in a
javax.xml.soap.SOAPMessage object at
http://download.oracle.com/javaee/5/api/javax/xml/so
ap/SOAPMessage.html. For detailed information on this object, see
Section 15.5.7, "Directly Manipulating the SOAP Request and
Response Message Using SAAJ".

Table 15–7 SOAPMessageContext Class Methods

Method Description

getHeaders() Gets headers that have a particular qualified name from the message in the
message context.

getMessage() Gets a javax.xml.soap.SOAPMessage object that contains the SOAP
message.

getRoles() Gets the SOAP actor roles associated with an execution of the handler
chain.

setMessage() Sets the SOAP message.

Note: The setContent and getContent methods of the
SOAPPart object support
javax.xml.transform.stream.StreamSource content only; the
methods do not support javax.xml.transform.dom.DOMSource
content.

Creating the SOAP Message Handler

Creating and Using SOAP Message Handlers 15-11

SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
SOAPBody soapBody = soapEnvelope.getBody();
SOAPHeader soapHeader = soapEnvelope.getHeader();

15.5.7.2 The AttachmentPart Object
The javax.xml.soap.AttachmentPart object (see
http://download.oracle.com/javaee/5/api/javax/xml/soap/Attachmen
tPart.html) contains the optional attachments to the SOAP message. Unlike the rest
of a SOAP message, an attachment is not required to be in XML format and can
therefore be anything from simple text to an image file.

Use the following methods of the SOAPMessage class to manipulate the attachments.
For more information, see the javax.xml.soap.SOAPMessage Javadoc at
http://download.oracle.com/javaee/5/api/javax/xml/soap/SOAPMessa
ge.html.

15.5.7.3 Manipulating Image Attachments in a SOAP Message Handler
It is assumed in this section that you are creating a SOAP message handler that
accesses a java.awt.Image attachment and that the Image has been sent from a
client application that uses the client JAX-WS ports generated by the clientgen Ant
task.

In the client code generated by the clientgen Ant task, a java.awt.Image
attachment is sent to the invoked WebLogic Web service with a MIME type of
text/xml rather than image/gif, and the image is serialized into a stream of
integers that represents the image. In particular, the client code serializes the image
using the following format:

■ int width

■ int height

■ int[] pixels

This means that, in your SOAP message handler that manipulates the received Image
attachment, you must deserialize this stream of data to then re-create the original
image.

Note: If you are going to access a java.awt.Image attachment
from your SOAP message handler, see Section 15.5.7.3, "Manipulating
Image Attachments in a SOAP Message Handler" for important
information.

Table 15–8 SOAPMessage Class Methods to Manipulate Attachments

Method Description

addAttachmentPart() Adds an AttachmentPart object, after it has been
created, to the SOAPMessage.

countAttachments() Returns the number of attachments in this SOAP message.

createAttachmentPart() Create an AttachmentPart object from another type of
Object.

getAttachments() Gets all the attachments (as AttachmentPart objects)
into an Iterator object.

Configuring Handler Chains in the JWS File

15-12 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

15.6 Configuring Handler Chains in the JWS File
The @javax.jws.HandlerChain annotation (also called @HandlerChain in this
chapter for simplicity) enables you to configure a handler chain for a Web service. Use
the file attribute to specify an external file that contains the configuration of the
handler chain you want to associate with the Web service. The configuration includes
the list of handlers in the chain, the order in which they execute, the initialization
parameters, and so on.

The following JWS file shows an example of using the @HandlerChain annotation;
the relevant Java code is shown in bold:

package examples.webservices.handler;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.HandlerChain;
import javax.annotation.Resource;
import javax.xml.ws.WebServiceContext;
@WebService(name = "Handler", targetNamespace = "http://example.org")
@HandlerChain(file="handler-chain.xml")
public class HandlerWS
{
 @Resource
 WebServiceContext ctx;
 @WebMethod()
 public String getProperty(String propertyName)
 {
 return (String) ctx.getMessageContext().get(propertyName);
 }
}

Before you use the @HandlerChain annotation, you must import it into your JWS
file, as shown above.

Use the file attribute of the @HandlerChain annotation to specify the name of the
external file that contains configuration information for the handler chain. The value of
this attribute is a URL, which may be relative or absolute. Relative URLs are relative to
the location of the JWS file at the time you run the jwsc Ant task to compile the file.

For details about creating the external configuration file, see Section 15.7, "Creating the
Handler Chain Configuration File".

For additional detailed information about the standard JWS annotations discussed in
this section, see the Web services Metadata for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

15.7 Creating the Handler Chain Configuration File
As described in the previous section, you use the @HandlerChain annotation in your
JWS file to associate a handler chain with a Web service. You must create the handler
chain file that consists of an external configuration file that specifies the list of handlers
in the handler chain, the order in which they execute, the initialization parameters,
and so on.

Note: It is an error to specify more than one @HandlerChain
annotation in a single JWS file.

Compiling and Rebuilding the Web Service

Creating and Using SOAP Message Handlers 15-13

Because this file is external to the JWS file, you can configure multiple Web services to
use this single configuration file to standardize the handler configuration file for all
Web services in your enterprise. Additionally, you can change the configuration of the
handler chains without needing to recompile all your Web services.

The configuration file uses XML to list one or more handler chains, as shown in the
following simple example:

<?xml version="1.0" encoding="UTF-8"?>
<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler1</handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler2</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

In the example, the handler chain contains two handlers implemented with the class
names specified with the <handler-class> element. The two handlers execute in
forward order before the relevant Web service operation executes, and in reverse order
after the operation executes.

Use the <init-param> and <soap-role>child elements of the <handler> element
to specify the handler initialization parameters and SOAP roles implemented by the
handler, respectively.

You can include logical and SOAP handlers in the same handler chain. At runtime, the
handler chain is re-ordered so that all logical handlers are executed before SOAP
handlers for an outbound message, and vice versa for an inbound message.

For the XML Schema that defines the external configuration file, additional
information about creating it, and additional examples, see the Web services Metadata
for the Java Platform specification at
http://www.jcp.org/en/jsr/detail?id=181.

15.8 Compiling and Rebuilding the Web Service
It is assumed in this section that you have a working build.xml Ant file that
compiles and builds your Web service, and you want to update the build file to
include handler chain. See "Developing WebLogic Web Services" in Getting Started
With JAX-WS Web Services for Oracle WebLogic Server for information on creating this
build.xml file.

Follow these guidelines to update your development environment to include message
handler compilation and building:

■ After you have updated the JWS file with the @HandlerChain annotation, you
must rerun the jwsc Ant task to recompile the JWS file and generate a new Web
service. This is true anytime you make a change to an annotation in the JWS file.

If you used the @HandlerChain annotation in your JWS file, reran the jwsc Ant
task to regenerate the Web service, and subsequently changed only the external
configuration file, you do not need to rerun jwsc for the second change to take
affect.

Configuring the Client-side SOAP Message Handlers

15-14 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ The jwsc Ant task compiles SOAP message handler Java files into handler classes
(and then packages them into the generated application) if all the following
conditions are true:

– The handler classes are referenced in the @HandlerChain annotation of the
JWS file.

– The Java files are located in the directory specified by the sourcepath
attribute.

– The classes are not currently in your CLASSPATH.

If you want to compile the handler classes yourself, rather than let jwsc compile
them automatically, ensure that the compiled classes are in your CLASSPATH
before you run the jwsc Ant task.

■ You deploy and invoke a Web service that has a handler chain associated with it in
the same way you deploy and invoke one that has no handler chain. The only
difference is that when you invoke any operation of the Web service, the WebLogic
Web services runtime executes the handlers in the handler chain both before and
after the operation invoke.

15.9 Configuring the Client-side SOAP Message Handlers
You configure client-side SOAP message handlers in one of the following ways:

■ Set a handler chain directly on the javax.xml.ws.BindingProvider, such as a
port proxy or javax.xml.ws.Dispatch object. For example:

package examples.webservices.handler.client;

import javax.xml.namespace.QName;
import java.net.MalformedURLException;
import java.net.URL;

import javax.xml.ws.handler.Handler;
import javax.xml.ws.Binding;
import javax.xml.ws.BindingProvider;
import java.util.List;

import examples.webservices.handler.Handler1;
import examples.webservices.handler.Handler2;

public class Main {
 public static void main(String[] args) {
 HandlerWS test;
 try {
 test = new HandlerWS(new URL(args[0] + "?WSDL"), new
 QName("http://example.org", "HandlerWS"));
 } catch (MalformedURLException murl) { throw new
RuntimeException(murl); }
 HandlerWSPortType port = test.getHandlerWSPortTypePort();

 Binding binding = ((BindingProvider)port).getBinding();
 List<Handler> handlerList = binding.getHandlerChain();
 handlerList.add(new Handler1());
 handlerList.add(new Handler2());
 binding.setHandlerChain(handlerList);
 String result = null;
 result = port.sayHello("foo bar");
 System.out.println("Got result: " + result);

Configuring the Client-side SOAP Message Handlers

Creating and Using SOAP Message Handlers 15-15

 }
}

■ Implement a javax.xml.ws.handler.HandlerResolver on a Service
instance. For example:

 public static class MyHandlerResolver implements HandlerResolver {
 public List<Handler> getHandlerChain(PortInfo portInfo) {
 List<Handler> handlers = new ArrayList<Handler>();
 // add handlers to list based on PortInfo information
 return handlers;
 }
 }

Add a handler resolver to the Service instance using the
setHandlerResolver() method. In this case, the port proxy or Dispatch
object created from the Service instance uses the HandlerResolver to
determine the handler chain. For example:

test.setHandlerResolver(new MyHandlerResolver());

■ Create a customization file that includes a <binding> element that contains a
handler chain description. The schema for the <handler-chains> element is the
same for both handler chain files (on the server) and customization files. For
example:

<bindings xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="http://localhost:7001/handler/HandlerWS?WSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions"
 xmlns:jws="http://java.sun.com/xml/ns/javaee">
 <handler-chains>
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler1
 </handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <handler>
 <handler-class>examples.webservices.handler.Handler2
 </handler-class>
 </handler>
 </handler-chain>
 </handler-chains>
</bindings>

Use the <binding> child element of the clientgen command to pass the
customization file.

Configuring the Client-side SOAP Message Handlers

15-16 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

16

Operating at the XML Message Level 16-1

16Operating at the XML Message Level

The following sections describes how to develop Web service provider-based
endpoints and dispatch clients to operate at the XML message level:

■ Section 16.1, "Overview of Web Service Provider-based Endpoints and Dispatch
Clients"

■ Section 16.2, "Usage Modes and Message Formats for Operating at the XML Level"

■ Section 16.3, "Developing a Web Service Provider-based Endpoint"

■ Section 16.4, "Developing a Web Service Dispatch Client"

16.1 Overview of Web Service Provider-based Endpoints and Dispatch
Clients

Although the use of JAXB-generated classes is simpler, faster, and likely to be less error
prone, there are times when you may want to generate your own business logic to
manipulate the XML message content directly. Message-level access can be
accomplished on the server side using Web service Provider-based endpoints, and on
the client side using Dispatch clients.

A Web service Provider-based endpoint, implemented using the
javax.xml.ws.Provider<T> interface, offers a dynamic alternative to the Java
service endpoint interface (SEI)-based endpoint. Unlike the SEI-based endpoint that
abstracts the details of converting between Java objects and their XML representation,
the Provider interface enables you to access the content directly at the XML message
level—without the JAXB binding. The steps to develop a Web service Provider-based
endpoint are described in Section 16.3, "Developing a Web Service Provider-based
Endpoint.". For more information about the javax.xml.ws.Provider<T> interface,
see
http://download.oracle.com/javaee/5/api/javax/xml/ws/Provider.ht
ml.

A Web service Dispatch client, implemented using the
javax.xml.ws.Dispatch<T> interface, enables clients to work with messages at
the XML level. The steps to develop a Web service Dispatch client are described in
Section 16.4, "Developing a Web Service Dispatch Client". For more information about
the javax.xml.ws.Dispatch<T> interface, see
http://download.oracle.com/javaee/5/api/javax/xml/ws/Provider.ht
ml.

Dispatch clients and Provider endpoints can be used in combination with other
WebLogic Web services features as long as a WSDL is available, including:

■ WS-Security

Usage Modes and Message Formats for Operating at the XML Level

16-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ WS-ReliableMessaging

■ WS-MakeConnection

■ WS-AtomicTransaction

16.2 Usage Modes and Message Formats for Operating at the XML Level
When operating on messages at the XML level using Provider-based endpoints or
Dispatch clients, you use one of the usage modes defined in the following table. You
define the usage mode using the javax.xml.ws.ServiceMode annotation, as
described in Section 16.3.4, "Specifying the Usage Mode (@ServiceMode Annotation)."

Provider-based endpoints and Dispatch clients can receive and send messages using
one of the message formats defined in Table 16–2. This table also defines the valid
message format and usage mode combinations based on the configured binding type
(SOAP or XML over HTTP).

16.3 Developing a Web Service Provider-based Endpoint
A Web service Provider-based endpoint, implemented using the
javax.xml.ws.Provider<T> interface, enables you to access content directly at the
XML message level—without the JAXB binding.

The following procedure describes the typical steps for programming a JWS file that
implements a Web service provider.

Table 16–1 Usage Modes for Operating at the XML Message Level

Usage Mode Description

Message Operates directly with the entire message. For example, if a SOAP binding is used,
then the entire SOAP envelope is accessed.

Payload Operates on the payload of a message only. For example, if a SOAP binding is used,
then the SOAP body is accessed.

Table 16–2 Message Formats Supported for Operating at the XML Message Level

Message Format
Usage Mode Support for
SOAP/HTTP Binding

Usage Mode Support for
XML/HTTP Binding

javax.xml.transform.Source Message mode: SOAP envelope

Payload mode: SOAP body

Message mode: XML content as
Source

Payload mode: XML content as
Source

javax.activation.DataSource Not valid in either mode because
attachments in SOAP/HTTP
binding are sent using
SOAPMessage format.

Message mode: DataSource
object

Not valid in payload mode
because DataSource is used for
sending attachments.

javax.xml.soap.SOAPMessage Message mode: SOAPMessage
object

Not valid in payload mode
because the entire SOAP message
is received, not just the payload.

Not valid in either mode because
the client can send a non-SOAP
message in XML/HTTP binding.

Developing a Web Service Provider-based Endpoint

Operating at the XML Message Level 16-3

16.3.1 Example of a JWS File That Implements a Web Service Provider-based Endpoint
The following sample JWS file shows how to implement a simple Web service
provider. The sample is described in detail in the sections that follow.

To review the JWS file within the context of a complete sample, see "Creating JAX-WS
Web Services for Java EE" in the Web Services Samples distributed with Oracle
WebLogic Server.

Table 16–3 Steps to Develop a Web Service Provider-based Endpoint

Step Description

1 Import the JWS annotations
that will be used in your Web
service Provider-based JWS
file.

The standard JWS annotations for a Web service Provider-based JWS file
include:

import javax.xml.ws.Provider;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.ServiceMode;

Import additional annotations, as required. For a complete list of JWS
annotations that are supported, see "Web Service Annotation Support" in
WebLogic Web Services Reference for Oracle WebLogic Server.

2 Specify one of the message
formats supported, defined in
Table 16–2, when developing
the Provider-based
implementation class.

See Section 16.3.2, "Specifying the Message Format".

3 Add the standard required
@WebServiceProvider
JWS annotation at the class
level to specify that the Java
class exposes a Web service
provider.

See Section 16.3.3, "Specifying that the JWS File Implements a Web Service
Provider (@WebServiceProvider Annotation)."

4 Add the standard
@ServiceMode JWS
annotation at the class level to
specify whether the Web
service provider is accessing
information at the message or
message payload level.
(Optional)

See Section 16.3.4, "Specifying the Usage Mode (@ServiceMode Annotation)."

The service mode defaults to Service.Mode.Payload.

5 Define the invoke()
method.

The invoke() method is called and provides the message or message
payload as input to the method using the specified message format. See
Section 16.3.5, "Defining the invoke() Method."

Note: To start from WSDL and flag a port as a Web service provider,
see Section 16.3.6, "Starting from WSDL".

Note: RESTful Web Services can be built using XML/HTTP binding
based Provider endpoints. For an example of programming a
Provider-based endpoint within the context of a RESTful Web service,
see Section 17.3, "Programming Web Services Using XML Over
HTTP".

Developing a Web Service Provider-based Endpoint

16-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Example 16–1 Example of a JWS File that Implements a Web Service Provider

package examples.webservices.jaxws;

import org.w3c.dom.Node;

import javax.xml.transform.Source;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.Transformer;
import javax.xml.transform.dom.DOMResult;
import javax.xml.transform.stream.StreamSource;
import javax.xml.ws.Provider;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.Service;
import java.io.ByteArrayInputStream;

/**
 * A simple Provider-based Web service implementation.
 *
 * @author Copyright (c) 2010, Oracle and/or its affiliates.
 * All Rights Reserved.
 */
// The @ServiceMode annotation specifies whether the Provider instance
// receives entire messages or message payloads.
@ServiceMode(value = Service.Mode.PAYLOAD)

// Standard JWS annotation that configures the Provider-based Web service.
@WebServiceProvider(portName = "SimpleClientPort",
 serviceName = "SimpleClientService",
 targetNamespace = "http://jaxws.webservices.examples/",
 wsdlLocation = "SimpleClientService.wsdl")
public class SimpleClientProviderImpl implements Provider<Source> {

 //Invokes an operation according to the contents of the request message.
 public Source invoke(Source source) {
 try {
 DOMResult dom = new DOMResult();
 Transformer trans = TransformerFactory.newInstance().newTransformer();
 trans.transform(source, dom);
 Node node = dom.getNode();
 // Get the operation name node.
 Node root = node.getFirstChild();
 // Get the parameter node.
 Node first = root.getFirstChild();
 String input = first.getFirstChild().getNodeValue();
 // Get the operation name.
 String op = root.getLocalName();
 if ("invokeNoTransaction".equals(op)) {
 return sendSource(input);
 } else {
 return sendSource2(input);
 }
 }
 catch (Exception e) {
 throw new RuntimeException("Error in provider endpoint", e);
 }
 }

 private Source sendSource(String input) {

Developing a Web Service Provider-based Endpoint

Operating at the XML Message Level 16-5

 String body =
 "<ns:invokeNoTransactionResponse
 xmlns:ns=\"http://jaxws.webservices.examples/\"><return>"
 + "constructed:" + input
 + "</return></ns:invokeNoTransactionResponse>";
 Source source = new StreamSource(new ByteArrayInputStream(body.getBytes()));
 return source;
 }

 private Source sendSource2(String input) {
 String body =
 "<ns:invokeTransactionResponse
 xmlns:ns=\"http://jaxws.webservices.examples/\"><return>"
 + "constructed:" + input
 + "</return></ns:invokeTransactionResponse>";
 Source source = new StreamSource(new ByteArrayInputStream(body.getBytes()));
 return source;
 }

}

16.3.2 Specifying the Message Format
Specify one of the message formats supported, defined in Table 16–2, when developing
the Provider-based implementation class.

For example, in the Provider implementation example shown in Section 16.3.1,
"Example of a JWS File That Implements a Web Service Provider-based Endpoint", the
SimpleClientProviderImpl class implements the Provider<Source> interface,
indicating that both the input and output types are java.xml.transform.Source
objects.

public class SimpleClientProviderImpl implements Provider<Source> {
. . .
}

16.3.3 Specifying that the JWS File Implements a Web Service Provider
(@WebServiceProvider Annotation)

Use the standard javax.xml.ws.WebServiceProvider annotation to specify, at
the class level, that the JWS file implements a Web service provider, as shown in the
following code excerpt:

@WebServiceProvider(portName = "SimpleClientPort",
 serviceName = "SimpleClientService",
 targetNamespace = "http://jaxws.webservices.examples/",
 wsdlLocation = "SimpleClientService.wsdl")

In the example, the service name is SimpleClientService, which will map to the
wsdl:service element in the generated WSDL file. The port name is
SimpleClientPort, which will map to the wsdl:port element in the generated
WSDL. The target namespace used in the generated WSDL is
http://jaxws.webservices.examples/ and the WSDL location is local to the
Web service provider, at SimpleClientService.wsdl.

For more information about the @WebServiceProvider annotation, see
https://jax-ws.dev.java.net/nonav/2.1.5/docs/annotations.html.

Developing a Web Service Provider-based Endpoint

16-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

16.3.4 Specifying the Usage Mode (@ServiceMode Annotation)
The javax.xml.ws.ServiceMode annotation is used to specify whether the Web
service Provider-based endpoint receives entire messages (Service.Mode.MESSAGE)
or message payloads (Service.Mode.PAYLOAD) only.

For example:

@ServiceMode(value = Service.Mode.PAYLOAD)

If not specified, the @ServiceMode annotation defaults to Service.Mode.PAYLOAD.

For a list of valid message format and usage mode combinations, see Table 16–2.

For more information about the @ServiceMode annotation, see
https://jax-ws.dev.java.net/nonav/2.1.4/docs/annotations.html.

16.3.5 Defining the invoke() Method
The Provider<T> interface defines a single method that you must define in your
implementation class:

T invoke(T request)

When a Web service request is received, the invoke() method is called and provides
the message or message payload as input to the method using the specified message
format.

For example, in the Provider implementation example shown in Section 16.3.1,
"Example of a JWS File That Implements a Web Service Provider-based Endpoint", the
class defines an invoke method to take as input the Source parameter and return a
Source response.

 public Source invoke(Source source) {
 try {
 DOMResult dom = new DOMResult();
 Transformer trans = TransformerFactory.newInstance().newTransformer();
 trans.transform(source, dom);
 Node node = dom.getNode();
 // Get the operation name node.
 Node root = node.getFirstChild();
 // Get the parameter node.
 Node first = root.getFirstChild();
 String input = first.getFirstChild().getNodeValue();
 // Get the operation name.
 String op = root.getLocalName();
 if ("invokeNoTransaction".equals(op)) {
 return sendSource(input);
 } else {
 return sendSource2(input);
 }
 }
 catch (Exception e) {
 throw new RuntimeException("Error in provider endpoint", e);
 }
 }

16.3.6 Starting from WSDL
If the Provider-based endpoint is being generated from a WSDL file, the <provider>
WSDL extension can be used to mark a port as a provider. For example:

Developing a Web Service Dispatch Client

Operating at the XML Message Level 16-7

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bindings wsdlLocation="SimpleClientService.wsdl"
 xmlns="http://java.sun.com/xml/ns/jaxws">
<bindings node="wsdl:definitions" >
 <package name="provider.server"/>
 <provider>true</provider>
</bindings>

16.4 Developing a Web Service Dispatch Client
A Web service Dispatch client, implemented using the
javax.xml.ws.Dispatch<T> interface, enables clients to work with messages at
the XML level.

The following procedure describes the typical steps for programming a Web service
Dispatch client.

16.4.1 Example of a Web Service Dispatch Client
The following sample shows how to implement a basic Web service Dispatch client.
The sample is described in detail in the sections that follow.

Example 16–2 Example of a Web Service Dispatch Client

package jaxws.dispatch.client;

import java.io.ByteArrayOutputStream;
import java.io.OutputStream;
import java.io.StringReader;
import java.net.URL;

import javax.xml.soap.SOAPException;
import javax.xml.soap.SOAPMessage;
import javax.xml.transform.OutputKeys;
import javax.xml.transform.Source;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.transform.stream.StreamSource;

Table 16–4 Steps to Develop a Web Service Provider-based Endpoint

Step Description

1 Import the JWS annotations
that will be used in your Web
service Provider-based JWS
file.

The standard JWS annotations for a Web service Provider-based JWS file
include:

import javax.xml.ws.Service;
import javax.xml.ws.Dispatch;
import javax.xml.ws.ServiceMode;

Import additional annotations, as required. For a complete list of JWS
annotations that are supported, see "Web Service Annotation Support" in
WebLogic Web Services Reference for Oracle WebLogic Server.

2 Create a Dispatch instance. See Section 16.4.2, "Creating a Dispatch Instance".

3 Invoke a Web service
operation.

You can invoke a Web service operation synchronously (one-way or
two-way) or asynchronously (polling or asynchronous handler). See
Section 16.4.3, "Invoking a Web Service Operation".

Developing a Web Service Dispatch Client

16-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

import javax.xml.ws.Dispatch;
import javax.xml.ws.Service;
import javax.xml.ws.WebServiceException;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBElement;
import javax.xml.namespace.QName;
import javax.xml.ws.soap.SOAPBinding;

public class WebTest extends TestCase {
 private static String in_str = "wiseking";
 private static String request =
 "<ns1:sayHello xmlns:ns1=\"http://example.org\"><arg0>"+in_str+"</arg0></ns1:sayHello>";

 private static final QName portQName = new QName("http://example.org", "SimplePort");
 private Service service = null;

 protected void setUp() throws Exception {

 String url_str = System.getProperty("wsdl");
 URL url = new URL(url_str);
 QName serviceName = new QName("http://example.org", "SimpleImplService");
 service = Service.create(serviceName);
 service.addPort(portQName, SOAPBinding.SOAP11HTTP_BINDING, url_str);
 System.out.println("Setup complete.");

 }

 public void testSayHelloSource() throws Exception {
 setUp();
 Dispatch<Source> sourceDispatch =
 service.createDispatch(portQName, Source.class, Service.Mode.PAYLOAD);
 System.out.println("\nInvoking xml request: " + request);
 Source result = sourceDispatch.invoke(new StreamSource(new StringReader(request)));
 String xmlResult = sourceToXMLString(result);
 System.out.println("Received xml response: " + xmlResult);
 assertTrue(xmlResult.indexOf("HELLO:"+in_str)>=0);
 }

 private String sourceToXMLString(Source result) {
 String xmlResult = null;
 try {
 TransformerFactory factory = TransformerFactory.newInstance();
 Transformer transformer = factory.newTransformer();
 transformer.setOutputProperty(OutputKeys.OMIT_XML_DECLARATION, "yes");
 transformer.setOutputProperty(OutputKeys.METHOD, "xml");
 OutputStream out = new ByteArrayOutputStream();
 StreamResult streamResult = new StreamResult();
 streamResult.setOutputStream(out);
 transformer.transform(result, streamResult);
 xmlResult = streamResult.getOutputStream().toString();
 } catch (TransformerException e) {
 e.printStackTrace();
 }
 return xmlResult;
 }

}

Developing a Web Service Dispatch Client

Operating at the XML Message Level 16-9

16.4.2 Creating a Dispatch Instance
The javax.xml.ws.Service interface acts as a factory for the creation of Dispatch
instances. So to create a Dispatch instance, you must first create a Service instance.
Then, create the Dispatch instance using the Service.createDispatch() method.

For example:

...
 String url_str = System.getProperty("wsdl");
 QName serviceName = new QName("http://example.org", "SimpleImplService");
 service = Service.create(serviceName);
 service.addPort(portQName, SOAPBinding.SOAP11HTTP_BINDING, url_str);
 Dispatch<Source> sourceDispatch =
 service.createDispatch(portQName, Source.class, Service.Mode.PAYLOAD);
...

In the example above, the createDispatch() method takes three parameters:

■ Qualified name (QName) of the target service endpoint.

■ Class of the type parameter T. In this example, the
javax.xml.transform.Source format is used. For valid values, see
Table 16–2.

■ Usage mode. In this example, the message payload is specified. For valid usage
modes, see Table 16–1.

Alternatively, you can pass the JAXB context to operate on XML messages using
custom annotated JAXB classes. For more information about the valid parameters that
can be used to call the Service.createDispatch() method, see the
javax.xml.ws.Service Javadoc at:
https://jax-ws.dev.java.net/nonav/2.1.1/docs/api/javax/xml/ws/Se
rvice.html.

16.4.3 Invoking a Web Service Operation
Once the Dispatch instance is created, use it to invoke a Web service operation. You
can invoke a Web service operation synchronously (one-way or two-way) or
asynchronously (polling or asynchronous handler). For complete details about the
synchronous and asynchronous invoke methods, see the javax.xml.ws.Dispatch
Javadoc at:
https://jax-ws.dev.java.net/nonav/2.1.1/docs/api/javax/xml/ws/Di
spatch.html

For example, in the following code excerpt, the XML message is encapsulated as a
javax.xml.transform.stream.StreamSource object and passed to the
synchronous invoke() method. The response XML is returned in the result
variable as a Source object, and transformed back to XML. The
sourcetoXMLString() method used to transform the message back to XML is
shown in Example 16–2.

...
private static String request = "<ns1:sayHello xmlns:ns1=\"http://example.org\"><arg0>"+in_
str+"</arg0></ns1:sayHello>";
Source result = sourceDispatch.invoke(new StreamSource(new StringReader(request)));
String xmlResult = sourceToXMLString(result);
...

Developing a Web Service Dispatch Client

16-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

17

Programming RESTful Web Services 17-1

17Programming RESTful Web Services

The following sections describe how to program RESTful Web services:

■ Section 17.1, "Overview of RESTful Web Services"

■ Section 17.2, "Using the Jersey JAX-RS Reference Implementation"

■ Section 17.3, "Programming Web Services Using XML Over HTTP"

17.1 Overview of RESTful Web Services
Representational State Transfer (REST) describes any simple interface that transmits
data over a standardized interface (such as HTTP) without an additional messaging
layer, such as SOAP. REST provides a set of design rules for creating stateless services
that are viewed as resources, or sources of specific information, and can be identified by
their unique URIs. A client accesses the resource using the URI, a standardized fixed
set of methods, and a representation of the resource is returned. The client is said to
transfer state with each new resource representation.

WebLogic Server supports the following methods to enable the development of
RESTful Web services:

■ Register and use the set of pre-built shared libraries, delivered with WebLogic
Server, that are required to run Jersey JAX-RS Reference Implementation (RI)
Version 1.1.5.1. For information about the Jersey JAX-RS RI shared libraries, see
Section 17.2, "Using the Jersey JAX-RS Reference Implementation".

■ Use the standard JAX-WS RI to implement a RESTful using the HTTP protocol, as
described in Section 17.3, "Programming Web Services Using XML Over HTTP".

17.2 Using the Jersey JAX-RS Reference Implementation
WebLogic Server ships with a set of pre-built shared libraries, packaged as Web
applications, that are required to run applications that are based on the Jersey JAX-RS
Reference Implementation Version 1.1.5.1. The shared libraries are located in the
following directory: WL_HOME/common/deployable-libraries.

The following table summarizes the pre-built shared libraries that support Jersey
JAX-RS RI Web services, organized by the functionality that they support. The table
also indicates whether the shared library is required or optional.

Note: The Jersey JAX-RS RI provides an open source, production
quality Reference Implementation for building RESTful Web services;
it is recommended as a best practice over the standard JAX-WS HTTP
protocol method.

Using the Jersey JAX-RS Reference Implementation

17-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Table 17–1 Jersey JAX-RS Shared Libraries

Functionality Description Required?

Jersey ■ Shared Library Name: jersey-bundle

■ JAR Filename: jersey-bundle-1.1.5.1.jar

■ WAR Filename: jersey-bundle-1.1.5.1.war

■ Version: 1.1.5.1

■ License: SUN CDDL+GPL

Required

JAX-RS API ■ Shared Library Name: jsr311

■ JAR Filename: jsr311-api-1.1.1.jar

■ WAR Filename: jsr311-api-1.1.1.war

■ Version: 1.1.1

■ License: JSR311 license

Required

Java class introspector ■ Shared Library Name: jersey-bundle

■ JAR Filename: asm-3.1.jar

■ WAR Filename: asm-3.1.war

■ Version: 3.1

■ License: TBD

Required

JSON processing ■ Shared Library Name: jackson-core-asl

■ JAR Filename: jackson-core-asl-1.1.1.jar

■ WAR Filename: jackson-core-asl-1.1.1.war

■ Version: 1.1.1

■ License: Apache 2.0

Optional

JSON processing ■ Shared Library Name: jackson-jaxrs

■ JAR Filename: jackson-jaxrs-1.1.1.jar

■ WAR Filename: jackson-jaxrs-1.1.1.war

■ Version: 1.1.1

■ License: Apache 2.0

Optional

JSON processing ■ Shared Library Name: jackson-mapper-asl

■ JAR Filename: jackson-mapper-asl-1.1.1.jar

■ WAR Filename: jackson-mapper-asl-1.1.1.war

■ Version: 1.1.1

■ License: Apache 2.0

Optional

JSON streaming ■ Shared Library Name: jettison

■ JAR Filename: Jettison-1.1.jar

■ WAR Filename: Jettison-1.1.war

■ Version: 1.1

■ License: Apache 2.0

Optional

ATOM processing ■ Shared Library Name: rome

■ JAR Filename: Rome-1.0.jar

■ WAR Filename: Rome-1.0.war

■ Version: 1.0

■ License: Apache 2.0

Optional

Using the Jersey JAX-RS Reference Implementation

Programming RESTful Web Services 17-3

In addition, the following table lists the dependent JARs that are available on
WebLogic Server, and not required to be registered as shared libraries.

To use the Jersey JAX-RS RI, perform the following steps:

1. Register the Jersey JAX-RS RI shared libraries with one or WebLogic Server
instances. See Section 17.2.1, "Registering the Jersey JAX-RS RI Shared Libraries
With Your WebLogic Server Instances".

2. Configure the Web application that contains the RESTful Web service to use the
Jersey JAX-RS RI shared libraries. See Section 17.2.2, "Configuring the Web
Application to Use the Jersey JAX-RS RI".

3. Create the JAX-RS Web services and clients. See Section 17.2.3, "Creating JAX-RS
Web Services and Clients."

4. As required, you can build and deploy a more recent version of the Jersey JAX-RS
RI shared libraries. See Section 17.2.4, "Registering a More Recent Version of the
Jersey JAX-RS Shared Libraries".

For more information about the Jersey JAX-RS RI and examples of developing RESTful
Web service, see https://jersey.dev.java.net.

17.2.1 Registering the Jersey JAX-RS RI Shared Libraries With Your WebLogic Server
Instances

Shared Java EE libraries are registered with one or more WebLogic Server instances by
deploying them to the target servers and indicating that the deployments are to be
shared. Shared Java EE libraries must be targeted to the same WebLogic Server
instances you want to deploy applications that reference the libraries.

When a referencing application is deployed, WebLogic Server merges the shared
library files with the application. If you try to deploy a referencing application to a
server instance that has not registered a required library, deployment of the
referencing application fails.

Based on the functionality required by your application, you can register one or more
of the Jersey JAX-RS shared libraries defined in Table 17–1, as follows:

1. Determine which Jersey JAX-RS shared libraries, defined in Table 17–1, that you
are required by your application.

2. Determine the WebLogic Server targets to which you will register the shared
libraries. Shared libraries must be registered to the same WebLogic Server
instances on which you plan to deploy referencing applications. (You may
consider deploying libraries to all servers in a domain, so that you can later deploy
referencing applications as needed.)

Table 17–2 Dependent JARs (Available on WebLogic Server)

Functionality JAR Filename

EJB Version 3.0.1 API javax.ejb

jdom Version 1.0 API for ATOM processing com.bea.core.jdom_1.0.0.0_1-0.jar

JAXB Version 2.1.1 API javax.xml.bind_2.1.1.jar

JPA Version 1.0.2 API javax.persistence_1.0.0.0_1-0-2.jar

FastInfoSet Version 2.1.5 API (Glassfish) Glassfish.jaxws.fastinfoset_1.0.0.0_2-1-5.jar

Servlet Version 2.5 API Javax.servlet_1.0.0.0_2-5.jar

Using the Jersey JAX-RS Reference Implementation

17-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

3. Register a shared library by deploying the shared library files to the target servers
identified in Step 2, and identifying the deployment as a library using the
-library option.

The following shows an example of how to deploy the shared libraries that
provide support for the basic Jersey JAX-RS RI functionality and JAX-RS API. For
more information about the weblogic.Deployer, see "weblogic.Deployer
Command-Line Reference" in Deploying Applications to Oracle WebLogic Server.

weblogic.Deployer -verbose -noexit -source C:\myinstall\wlserver_
10.3\common\deployable-libraries\jersey-bundle-1.1.5.1.war -targets myserver
-adminurl t3://localhost:7001 -user system -password ******** -deploy -library

weblogic.Deployer -verbose -noexit -source C:\myinstall\wlserver_
10.3\common\deployable-libraries\jsr311-api-1.1.1.war -targets myserver
-adminurl t3://localhost:7001 -user system -password ******** -deploy -library

17.2.2 Configuring the Web Application to Use the Jersey JAX-RS RI
You need to configure the Web application that contains the RESTful Web services top
use the Jersey shared libraries. Specifically, you need to update the following two
deployment descriptor files that are associated with your application:

■ web.xml—Update to delegate Web requests to the Jersey servlet. See
Section 17.2.2.1, "Updating web.xml to Delegate Web Requests to the Jersey
Servlet".

■ weblogic.xml—Update to reference the shared libraries from Table 17–1 that are
required by your application. See Section 17.2.2.2, "Updating weblogic.xml to
Reference the Shared Libraries".

17.2.2.1 Updating web.xml to Delegate Web Requests to the Jersey Servlet
Update the web.xml file to delegate all Web requests to the Jersey Servlet,
com.sun.jersey.spi.container.servlet.ServletContainer. The
web.xml file is located in the WEB-INF directory in the root directory of your
application archive.

The following provides an example of how to update the web.xml file:

<web-app>
 <servlet>
 <display-name>My Jersey Application</display-name>
 <servlet-name>MyJerseyApp</servlet-name>
 <servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>myPackage.myJerseyApplication</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>MyJerseyApp</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

You need to define the following elements, as shown in the previous example:

Using the Jersey JAX-RS Reference Implementation

Programming RESTful Web Services 17-5

■ <servlet-class> element defines the servlet that is the entry point into the
Jersey JAX-RS RI. This value should always be set to
com.sun.jersey.spi.container.servlet.ServletContainer.

■ <init-param> element defines the class that extends the
javax.ws.rs.Application.

■ <servlet-mapping> element defines the base URL pattern that gets mapped to
the MyJerseyApp servlet. The portion of the URL after the
http://<host>:<port> +<webAppName> is compared to the <url-pattern>
by WebLogic Server. If the patterns match, the servlet mapped in this element will
be called.

For more information about the web.xml deployment descriptor, see "web.xml
Deployment Descriptor Elements" in Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

17.2.2.2 Updating weblogic.xml to Reference the Shared Libraries
Update the weblogic.xml file to reference the shared libraries that are required by
your application. The weblogic.xml file is located in the WEB-INF directory in the
root directory of your application archive.

The <exact-match> directive enables you to control whether the latest version of the
shared libraries that are deployed will be used. If set to true, then the version specified
in the weblogic.xml will be used, regardless of whether a newer version has been
deployed to WebLogic Server. If set to false, then the latest version deployed to
WebLogic Server will be used, regardless of what is specified in the weblogic.xml file.

For example, if you set the <exact-match> directive to false and register as a shared
library a more recent version of the Jersey software, as described in Section 17.2.4,
"Registering a More Recent Version of the Jersey JAX-RS Shared Libraries", then the
more recent version of the shared library will be used by your application
automatically; you do not have to edit the weblogic.xml file in this case to pick up
the latest version.

The following provides an example of how to update the weblogic.xml file. Not all
shared library references will be required for every Web application; the jersey-bundle
and jsr311 shared libraries are both required to use the Jersey JAX-RS RI. In this
example, <exact-match> is set to false specifying that the latest version of the
shared library deployed to WebLogic Server should be used.

<library-ref>
 <library-name>jersey-bundle</library-name>
 <specification-version>1.1.1</specification-version>
 <implementation-version>1.1.5.1</implementation-version>
 <exact-match>false</exact-match>
</library-ref>
<library-ref>
 <library-name>jsr311</library-name>
 <specification-version>1.1.1</specification-version>
 <implementation-version>1.1.1</implementation-version>
 <exact-match>false</exact-match>
</library-ref>
<library-ref>
 <library-name>jackson-core-asl</library-name>
 <specification-version>1.0</specification-version>
 <implementation-version>1.1.1</implementation-version>
 <exact-match>false</exact-match>
</library-ref>
<library-ref>

Using the Jersey JAX-RS Reference Implementation

17-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 <library-name>jettison</library-name>
 <specification-version>1.1</specification-version>
 <implementation-version>1.1</implementation-version>
 <exact-match>false</exact-match>
</library-ref>
<library-ref>
 <library-name>rome</library-name>
 <specification-version>1.0</specification-version>
 <implementation-version>1.0</implementation-version>
 <exact-match>false</exact-match>
</library-ref>

For more information about the weblogic.xml deployment descriptor, see
"weblogic.xml Deployment Descriptor Elements" in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

17.2.3 Creating JAX-RS Web Services and Clients
After you have registered the Jersey JAX-RS RI and configured your Web application,
you can start creating JAX-RS Web services and clients. The following sections show a
simple Web service and client.

For more information about JAX-RS and samples, you might find it helpful to review
the Jersey RI documentation at http://wikis.sun.com/display/Jersey/Main.

17.2.3.1 A Simple RESTful Web Service
The following provides a very simple example of a RESTful Web service:

package samples.helloworld;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;

// Specifies the path to the RESTful service
@Path("/helloworld")
public class helloWorld {

 // Specifies that the method processes HTTP GET requests
 @GET
 @Path("sayHello")
 @Produces("text/plain")
 public String sayHello() {
 return "Hello World!";
 }
}

17.2.3.2 A Simple RESTful Client
The following provides a simple RESTful client that calls the RESTful Web service
defined previously. This sample uses classes that are provided by the Jersey JAX-RS RI
specifically; they are not part of the JAX-RS standard.

package samples.helloworld.client;

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.WebResource;

public class helloWorldClient {

Using the Jersey JAX-RS Reference Implementation

Programming RESTful Web Services 17-7

 public helloWorldClient() {
 super();
 }

 public static void main(String[] args) {
 Client c = Client.create();
 WebResource resource =
c.resource("http://localhost:7101/RESTfulService-Project1-context-root/jersey/hell
oWorld");
 String response = resource.get(String.class);
 }
}

17.2.4 Registering a More Recent Version of the Jersey JAX-RS Shared Libraries
If you wish to use a more recent version of the Jersey JAX-RS RI shared libraries than
the version that is provided with WebLogic Server, you need to perform the following
steps:

1. Download the required version of the relevant Jersey JAR file from the Jersey Web
site at: https://jersey.dev.java.net.

2. Expand the JAR file downloaded in Step 1 and create a new shared library
following the steps described in "Creating Shared Java EE Libraries" in Developing
Applications for Oracle WebLogic Server.

3. Register the shared library by deploying the shared library files to the target
servers identified in Step 2, and identifying the deployment as a library using the
-library option. You must do the following:

■ Set the -name argument to match the standard Jersey JAX-RS RI shared
library name, defined in Table 17–1. For example, jersey-bundle.

■ Set the -libSpecVer and -libImplVer arguments to distinguish between
the different shared library versions.

The following shows an example of how to deploy the latest versions of the Jersey
JAX-RS RI functionality. For more information about the weblogic.Deployer, see
"weblogic.Deployer Command-Line Reference" in Deploying Applications to Oracle
WebLogic Server.

weblogic.Deployer -verbose -noexit -name jersey-bundle -source
C:\myinstall\wlserver_10.3\common\deployable-libraries\jersey-bundle-1.2.war
-targets myserver -adminurl t3://localhost:7001 -user system -password ********
-deploy -library -libspecver 1.2 -libimplver 1.2

4. Determine if you need to reconfigure your Web application.

If you set the <exact-match> directive to false in the weblogic.xml file when
configuring your Web application, as described in Section 17.2.2, "Configuring the
Web Application to Use the Jersey JAX-RS RI", then the shared library with the
most recent specification version will be used and you do not have to update your
Web application configuration.

If you set the <exact-match> directive to true or if you want to use a version of
the Jersey JAX-RS RI that is not the most recent version, then you will have to
update the weblogic.xml to reference the desired shared library. For more
information, see Section 17.2.2, "Configuring the Web Application to Use the Jersey
JAX-RS RI".

Programming Web Services Using XML Over HTTP

17-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

5. Redeploy any applications that needs to use the newly registered version of the
Jersey JAX-RS shared library.

17.3 Programming Web Services Using XML Over HTTP

When using the HTTP protocol to access Web service resources, the resource identifier
is the URL of the resource and the standard operation to be performed on that resource
is one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

You build RESTful-like endpoints using the invoke() method of the
javax.xml.ws.Provider<T> interface (see
http://download.oracle.com/javaee/5/api/javax/xml/ws/Provider.ht
ml). The Provider interface provides a dynamic alternative to building an service
endpoint interface (SEI).

The procedure in this section describes how to program and compile the JWS file
required to implement Web services using XML over HTTP. The procedure shows how
to create the JWS file from scratch; if you want to update an existing JWS file, you can
also use this procedure as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working build.xml file to which you can add targets for running the
jwsc Ant task and deploying the Web services. For more information, see Getting
Started With JAX-WS Web Services for Oracle WebLogic Server.

Note: As a best practice, it is recommended that you use the Jersey
JAX-RS RI shared library solution, described in Section 17.2, "Using
the Jersey JAX-RS Reference Implementation". The Jersey JAX-RS RI
provides an open source, production quality RI for building RESTful
Web services and supports all of the HTTP methods.

Note: In this JAX-WS implementation, the set of supported HTTP
methods is limited to GET and POST. DELETE, PUT, and HEAD are
not supported. Any HTTP requests containing these methods will be
rejected with a 405 Method Not Allowed error.

If the functionality of PUT and DELETE are required, the desired
action can be accomplished by tunneling the actual method to be
executed on the POST method. This is a workaround referred to as
overloaded POST. (A Web search on "REST overloaded POST" will
return a number of ways to accomplish this.

Table 17–3 Steps to Program RESTful Web Services

Step Description

1 Create a new JWS file, or
update an existing one, that
implements the Web service
using XML over HTTP.

Use your favorite IDE or text editor. See Section 17.3.1,
"Programming Guidelines for the Web Service Using
XML Over HTTP".

Programming Web Services Using XML Over HTTP

Programming RESTful Web Services 17-9

17.3.1 Programming Guidelines for the Web Service Using XML Over HTTP
The following example shows a simple JWS file that implements a Web service using
XML over HTTP; see the explanation after the example for coding guidelines that
correspond to the Java code in bold.

package examples.webservices.jaxws.rest;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.BindingType;
import javax.xml.ws.Provider;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.http.HTTPBinding;
import javax.xml.ws.http.HTTPException;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.annotation.Resource;
import java.io.ByteArrayInputStream;
import java.util.StringTokenizer;

@WebServiceProvider(
 targetNamespace="http://example.org",
 serviceName = "NearbyCityService")
@BindingType(value = HTTPBinding.HTTP_BINDING)

public class NearbyCity implements Provider<Source> {
 @Resource(type=Object.class)
 protected WebServiceContext wsContext;

 public Source invoke(Source source) {
 try {
 MessageContext messageContext = wsContext.getMessageContext();

 // Obtain the HTTP mehtod of the input request.
 javax.servlet.http.HttpServletRequest servletRequest =
 (javax.servlet.http.HttpServletRequest)messageContext.get(
 MessageContext.SERVLET_REQUEST);
 String httpMethod = servletRequest.getMethod();
 if (httpMethod.equalsIgnoreCase("GET"));
 {

2 Update your build.xml file
to include a call to the jwsc
Ant task to compile the JWS
file into a Web service.

For example:

 <jwsc srcdir="." destdir="output/restEar">
 <jws file="NearbyCity.java" type="JAXWS"/>
 </jwsc>

For more information, see "Running the jwsc WebLogic
Web Services Ant Task" in Getting Started With JAX-WS
Web Services for Oracle WebLogic Server.

3 Run the Ant target to build
the Web service.

For example:

prompt> ant build-rest

4 Deploy the Web service as
usual.

See "Deploying and Undeploying WebLogic Web
Services" in Getting Started With JAX-WS Web Services for
Oracle WebLogic Server.

5 Access the Web service from
your Web service client.

See Section 17.3.2, "Accessing the Web Service from a
Client".

Table 17–3 (Cont.) Steps to Program RESTful Web Services

Step Description

Programming Web Services Using XML Over HTTP

17-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 String query =
 (String)messageContext.get(MessageContext.QUERY_STRING);
 if (query != null && query.contains("lat=") &&
 query.contains("long=")) {
 return createSource(query);
 } else {
 System.err.println("Query String = "+query);
 throw new HTTPException(404);
 }
 } catch(Exception e) {
 e.printStackTrace();
 throw new HTTPException(500);
 }
 }
 } else {
 // This operation only supports "GET"
 throw new HTTPException405);
 }
 private Source createSource(String str) throws Exception {
 StringTokenizer st = new StringTokenizer(str, "=&/");
 String latLong = st.nextToken();
 double latitude = Double.parseDouble(st.nextToken());
 latLong = st.nextToken();
 double longitude = Double.parseDouble(st.nextToken());
 City nearby = City.findNearBy(latitude, longitude);
 String body = nearby.toXML();
 return new StreamSource(new ByteArrayInputStream(body.getBytes()));
 }

 static class City {
 String city;
 String state;
 double latitude;
 double longitude;
 City(String city, double lati, double longi, String st) {
 this.city = city;
 this.state = st;
 this.latitude = lati;
 this.longitude = longi;
 }

 double distance(double lati, double longi) {
 return Math.sqrt((lati-this.latitude)*(lati-this.latitude) +
 (longi-this.longitude)*(longi-this.longitude)) ;
 }

 static final City[] cities = {
 new City("San Francisco",37.7749295,-122.4194155,"CA"),
 new City("Columbus",39.9611755,-82.9987942,"OH"),
 new City("Indianapolis",39.7683765,-86.1580423,"IN"),
 new City("Jacksonville",30.3321838,-81.655651,"FL"),
 new City("San Jose",37.3393857,-121.8949555,"CA"),
 new City("Detroit",42.331427,-83.0457538,"MI"),
 new City("Dallas",32.7830556,-96.8066667,"TX"),
 new City("San Diego",32.7153292,-117.1572551,"CA"),
 new City("San Antonio",29.4241219,-98.4936282,"TX"),
 new City("Phoenix",33.4483771,-112.0740373,"AZ"),
 new City("Philadelphia",39.952335,-75.163789,"PA"),
 new City("Houston",29.7632836,-95.3632715,"TX"),

Programming Web Services Using XML Over HTTP

Programming RESTful Web Services 17-11

 new City("Chicago",41.850033,-87.6500523,"IL"),
 new City("Los Angeles",34.0522342,-118.2436849,"CA"),
 new City("New York",40.7142691,-74.0059729,"NY")};
 static City findNearBy(double lati, double longi) {
 int n = 0;
 for (int i = 1; i < cities.length; i++) {
 if (cities[i].distance(lati, longi) <
 cities[n].distance(lati, longi)) {
 n = i;
 }
 }
 return cities[n];
 }

 public String toXML() {
 return "<ns:NearbyCity xmlns:ns=\"http://example.org\"><City>"
 +this.city+"</City><State>"+ this.state+"</State><Lat>"
 +this.latitude +
 "</Lat><Lng>"+this.longitude+"</Lng></ns:NearbyCity>";
 }
 }
}

Follow these guidelines when programming the JWS file that implements the Web
service using XML over HTTP. Code snippets of the guidelines are shown in bold in
the preceding example.

■ Import the packages required to implement the Provider Web service.

import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.BindingType;
import javax.xml.ws.Provider;

■ Annotate the Provider implementation class and set the binding type to HTTP.

@WebServiceProvider(
 targetNamespace="http://example.org",
 serviceName = "NearbyCityService")
@BindingType(value = HTTPBinding.HTTP_BINDING)

■ Implement the invoke() method of the Provider interface.

public class NearbyCity implements Provider<Source> {
 @Resource(type=Object.class)
 protected WebServiceContext wsContext;

 public Source invoke(Source source) {
 ...
 }

■ Get the request string using the QUERY_STRING field in the
javax.xml.ws.handler.MessageContext for processing (see message URL
http://download.oracle.com/javaee/5/api/javax/xml/ws/handler/
MessageContext.html). The query string is then passed to the
createSource() method that returns the city, state, longitude, and latitude that
is closest to the specified values.

String query =
 (String)messageContext.get(MessageContext.QUERY_STRING);
.
.

Programming Web Services Using XML Over HTTP

17-12 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

.
return createSource(query);

17.3.2 Accessing the Web Service from a Client
To access the Web service from a Web service client, use the resource URI. For example:

URL url = new URL
(http://localhost:7001/NearbyCity/NearbyCityService?lat=35&long=-120);
HttpURLConnection conn = (HttpURLConnection)url.openConnection();
connection.setRequestMethod("POST");
// Get result
InputStream is = connection.getInputStream();

In this example, you set the latitude (lat) and longitude (long) values, as required, to
access the required resource.

17.3.3 Securing Web Services that Use XML Over HTTP
You can secure Web services that use XML over HTTP using the same methods that
you use to secure Web applications. For more information, see "Options for Securing
Web Application and EJB Resources" in Securing Resources Using Roles and Policies for
Oracle WebLogic Server.

18

Programming Stateful JAX-WS Web Services Using HTTP Session 18-1

18Programming Stateful JAX-WS Web
Services Using HTTP Session

This chapter describes how you can develop JAX-WS Web services that interact with
an Oracle database.

■ Overview of Stateful Web Services

■ Accessing HTTP Session on the Server

■ Enabling HTTP Session on the Client

■ Developing Stateful Services in a Cluster Using Session State Replication

■ A Note About the JAX-WS RI @Stateful Extension

18.1 Overview of Stateful Web Services
Normally, a JAX-WS Web service is stateless: that is, none of the local variables and
object values that you set in the Web service object are saved from one invocation to
the next. Even sequential requests from a single client are treated each as independent,
stateless method invocations.

There are Web service use cases where a client may want to save data on the service
during one invocation and then use that data during a subsequent invocation. For
example, a shopping cart object may be added to by repeated calls to the addToCart
web method and then fetched by the getCart web method. In a stateless Web service,
the shopping cart object would always be empty, no matter how many addToCart
methods were called. But by using HTTP Sessions to maintain state across Web service
invocations, the cart may be built up incrementally, and then returned to the client.

Enabling stateful support in a JAX-WS Web service requires a minimal amount of
coding on both the client and server.

18.2 Accessing HTTP Session on the Server
On the server, every Web service invocation is tied to an HttpSession object. This object
may be accessed from the Web service Context that, in turn, may be bound to the Web
service object using resource injection. Once you have access to your HttpSession
object, you can "hang" off of it any stateful objects you want. The next time your client
calls the Web service, it will find that same HttpSession object and be able to lookup
the objects previously stored there. Your Web service is stateful!

The steps required on the server:

1. Add the @Resource (defined by Common Annotations for the Java Platform, JSR
250) to the top of your Web service.

Enabling HTTP Session on the Client

18-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

2. Add a variable of type WebServiceContext that will have the context injected into
it.

3. Using the Web service context, get the HttpSession object.

4. Save objects in the HttpSession using the setAttribute method and retrieve saved
object using getAttribute. Objects are identified by a string value you assign.

The following snippet shows its usage:

Example 18–1 Accessing HTTP Session on the Server

@WebService
public class ShoppingCart {
 @Resource // Step 1
 private WebServiceContext wsContext; // Step 2
 public int addToCart(Item item) {
 // Find the HttpSession
 MessageContext mc = wsContext.getMessageContext(); // Step 3
 HttpSession session =
((javax.servlet.http.HttpServletRequest)mc.get(MessageContext.SERVLET_
REQUEST)).getSession();
 if (session == null)
 throw new WebServiceException("No HTTP Session found");
 // Get the cart object from the HttpSession (or create a new one)
 List<Item> cart = (List<Item>)session.getAttribute("myCart"); // Step 4
 if (cart == null)
 cart = new ArrayList<Item>();
 // Add the item to the cart (note that Item is a class defined
 // in the WSDL)
 cart.add(item);
 // Save the updated cart in the HTTPSession (since we use the same
 // "myCart" name, the old cart object will be replaced)
 session.setAttribute("myCart", cart);
 // return the number of items in the stateful cart
 return cart.size();
 }
}

18.3 Enabling HTTP Session on the Client
The client-side code is quite simple. All you need to do is set the SESSION_
MAINTAIN_PROPERTY on the request context. This tells the client to pass back the
HTTP Cookies that it receives from the Web service. The cookie contains a session ID
that allows the server to match the Web service invocation with the correct
HttpSession, providing access to any saved stateful objects.

Example 18–2 Enabling HTTP Session on the Client

ShoppingCart proxy = new CartService().getCartPort();
((BindingProvider)proxy).getRequestContext().put(BindingProvider.SESSION_MAINTAIN_
PROPERTY, true);
// Create a new Item object with a part number of '123456' and an item
// count of 4.
Item item = new Item('123456', 4);
// After first call, we'll print '1' (the return value is the number of objects
// in the Cart object)
System.out.println(proxy.addToCart(item));
// After the second call, we'll print '2', since we've added another
// Item to the stateful, saved Cart object.

A Note About the JAX-WS RI @Stateful Extension

Programming Stateful JAX-WS Web Services Using HTTP Session 18-3

System.out.println(proxy.addToCart(item));

18.4 Developing Stateful Services in a Cluster Using Session State
Replication

In a high-availability environment, a JAX-WS Web service may be replicated across
multiple server instances in a cluster. A stateful JAX-WS Web service is supported in
this environment through the use of the WebLogic Server HTTP Session State
Replication feature. For more information, see "HTTP Session State Replication" in
Using Clusters for Oracle WebLogic Server.

There are a variety of techniques and configuration requirements for setting up a
clustered environment using session state replication (for example, supported servers
and load balancers, and so on). From the JAX-WS programming perspective, the only
new consideration is that the objects you store in the HttpSession using the
HttpSession.setAttribute method (as in Example 18–1) must be Serializable. If they are
Serializable, then these stateful objects become available to the Web service on all
replicated Web service instances in the cluster, providing both load balancing and
failover capabilities for JAX-WS stateful Web services.

18.5 A Note About the JAX-WS RI @Stateful Extension
The JAX-WS 2.1 Reference Implementation (RI) contains a vendor extension that
supports a different model for stateful JAX-WS Web services using the @Stateful
annotation. It's implementation "pins" the state to a particular instance and is not
designed to be scalable or fault-tolerant. This feature is not supported for WebLogic
Server JAX-WS Web services.

A Note About the JAX-WS RI @Stateful Extension

18-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

19

Publishing and Finding Web Services Using UDDI 19-1

19Publishing and Finding Web Services Using
UDDI

The following sections provide information about publishing and finding Web
services through the UDDI registry:

■ Section 19.1, "Overview of UDDI"

■ Section 19.2, "WebLogic Server UDDI Features"

■ Section 19.3, "UDDI 2.0 Server"

■ Section 19.4, "UDDI Directory Explorer"

■ Section 19.5, "UDDI Client API"

■ Section 19.6, "Pluggable tModel"

19.1 Overview of UDDI
UDDI stands for Universal Description, Discovery, and Integration. The UDDI Project
is an industry initiative aims to enable businesses to quickly, easily, and dynamically
find and carry out transactions with one another.

A populated UDDI registry contains cataloged information about businesses; the
services that they offer; and communication standards and interfaces they use to
conduct transactions.

Built on the Simple Object Access Protocol (SOAP) data communication standard,
UDDI creates a global, platform-independent, open architecture space that will benefit
businesses.

The UDDI registry can be broadly divided into two categories:

■ Section 19.1.1, "UDDI and Web Services"

■ Section 19.1.2, "UDDI and Business Registry"

For details about the UDDI data structure, see Section 19.1.3, "UDDI Data Structure".

Note: The UDDI v2.0 registry and UDDIExplorer applications are
deprecated in this release. Customers are encouraged to consider
upgrading to Oracle Enterprise Repository or Oracle Service Registry,
which provide SOA visibility and governance. For more information,
see
http://www.oracle.com/technologies/soa/docs/enterpri
se-repository-svc-registry-datasheet.pdf.

Overview of UDDI

19-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

19.1.1 UDDI and Web Services
The owners of Web services publish them to the UDDI registry. Once published, the
UDDI registry maintains pointers to the Web service description and to the service.

The UDDI allows clients to search this registry, find the intended service, and retrieve
its details. These details include the service invocation point as well as other
information to help identify the service and its functionality.

Web service capabilities are exposed through a programming interface, and usually
explained through Web services Description Language (WSDL). In a typical
publish-and-inquire scenario, the provider publishes its business; registers a service
under it; and defines a binding template with technical information on its Web service.
The binding template also holds reference to one or several tModels, which represent
abstract interfaces implemented by the Web service. The tModels might have been
uniquely published by the provider, with information on the interfaces and URL
references to the WSDL document.

A typical client inquiry may have one of two objectives:

■ To find an implementation of a known interface. In other words, the client has a
tModel ID and seeks binding templates referencing that tModel.

■ To find the updated value of the invocation point (that is., access point) of a
known binding template ID.

19.1.2 UDDI and Business Registry
As a Business Registry solution, UDDI enables companies to advertise the business
products and services they provide, as well as how they conduct business transactions
on the Web. This use of UDDI complements business-to-business (B2B) electronic
commerce.

The minimum required information to publish a business is a single business name.
Once completed, a full description of a business entity may contain a wealth of
information, all of which helps to advertise the business entity and its products and
services in a precise and accessible manner.

A Business Registry can contain:

■ Business Identification - Multiple names and descriptions of the business,
comprehensive contact information, and standard business identifiers such as a
tax identifier.

■ Categories - Standard categorization information (for example a D-U-N-S business
category number).

■ Service Description - Multiple names and descriptions of a service. As a container
for service information, companies can advertise numerous services, while clearly
displaying the ownership of services. The bindingTemplate information
describes how to access the service.

■ Standards Compliance - In some cases it is important to specify compliance with
standards. These standards might display detailed technical requirements on how
to use the service.

■ Custom Categories - It is possible to publish proprietary specifications (tModels)
that identify or categorize businesses or services.

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 19-3

19.1.3 UDDI Data Structure
The data structure within UDDI consists of four constructions: a businessEntity
structure, a businessService structure, a bindingTemplate structure and a
tModel structure.

The following table outlines the difference between these constructions when used for
Web service or Business Registry applications.

19.2 WebLogic Server UDDI Features
WebLogic Server provides the following UDDI features:

■ Section 19.3, "UDDI 2.0 Server"

■ Section 19.4, "UDDI Directory Explorer"

■ Section 19.5, "UDDI Client API"

■ Section 19.6, "Pluggable tModel"

19.3 UDDI 2.0 Server
The UDDI 2.0 Server is part of WebLogic Server and is started automatically when
WebLogic Server is started. The UDDI Server implements the UDDI 2.0 server
specification at http://uddi.xml.org.

Table 19–1 UDDI Data Structure

Data Structure Web Service Business Registry

businessEntity Represents a Web service provider:

■ Company name

■ Contact detail

■ Other business information

Represents a company, a division or
a department within a company:

■ Company name(s)

■ Contact details

■ Identifiers and Categories

businessService A logical group of one or several
Web services.

API(s) with a single name stored as a
child element, contained by the
business entity named above.

A group of services may reside in a
single businessEntity.

■ Multiple names and
descriptions

■ Categories

■ Indicators of compliancy with
standards

bindingTemplate A single Web service.

Technical information needed by
client applications to bind and
interact with the target Web service.

Contains access point (that is, the
URI to invoke a Web service).

Further instances of standards
conformity.

Access points for the service in form
of URLs, phone numbers, email
addresses, fax numbers or other
similar address types.

tModel Represents a technical specification;
typically a specifications pointer, or
metadata about a specification
document, including a name and a
URL pointing to the actual
specifications. In the context of Web
services, the actual specifications
document is presented in the form of
a WSDL file.

Represents a standard or technical
specification, either well established
or registered by a user for specific
use.

UDDI 2.0 Server

19-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

19.3.1 Configuring the UDDI 2.0 Server
To configure the UDDI 2.0 Server:

1. Stop WebLogic Server.

2. Update the uddi.properties file, located in the WL_HOME/server/lib
directory, where WL_HOME refers to the main WebLogic Server installation
directory.

3. Restart WebLogic Server.

Never edit the uddi.properties file while WebLogic Server is running. Should you
modify this file in a way that prevents the successful startup of the UDDI Server, refer
to the WL_HOME/server/lib/uddi.properties.booted file for the last known
good configuration.

To restore your configuration to its default, remove the uddi.properties file from
the WL_HOME/server/lib directory. Oracle strongly recommends that you move
this file to a backup location, because a new uddi.properties file will be created
and with its successful startup, the uddi.properties.booted file will also be
overwritten. After removing the properties file, start the server. Minimal default
properties will be loaded and written to a newly created uddi.properties file.

The following section describes the UDDI Server properties that you can include in the
uddi.properites file. The list of properties has been divided according to
component, usage, and functionality. At any given time, you do not need all these
properties to be present.

19.3.2 Configuring an External LDAP Server
The UDDI 2.0 Server is automatically configured with an embedded LDAP server.
You can, however, also configure an external LDAP Server by following the procedure
in this section.

To configure the SunOne Directory Server to be used with UDDI, follow these steps:

1. Create a file called 51acumen.ldif in the LDAP_DIR/Sun/MPS/slapd-LDAP_
INSTANCE_NAME/config/schema directory, where LDAP_DIR refers to the root
installation directory of your SunOne Directory Server and LDAP_INSTANCE_
NAME refers to the instance name.

2. Update the 51acumen.ldif file with the content described in Section 19.3.2.1,
"51acumen.ldif File Contents".

3. Restart the SunOne Directory Server.

4. Update the uddi.properties file of the WebLogic UDDI 2.0 Server, adding the
following properties:

Note: If your WebLogic Server domain was created by a user
different from the user that installed WebLogic Server, the WebLogic
Server administrator must change the permissions on the
uddi.properties file to give access to all users.

Note: Currently, WebLogic Server supports only the SunOne
Directory Server for use with the UDDI 2.0 Server.

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 19-5

datasource.ldap.manager.password
datasource.ldap.manager.uid
datasource.ldap.server.root
datasource.ldap.server.url

The value of the properties depends on the configuration of your SunOne
Directory Server. The following example shows a possible configuration that uses
default values:

datasource.ldap.manager.password=password
datasource.ldap.manager.uid=cn=Directory Manager
datasource.ldap.server.root=dc=beasys,dc=com
datasource.ldap.server.url=ldap://host:port

See Table 19–1 for information about these properties.

5. Restart WebLogic Server.

19.3.2.1 51acumen.ldif File Contents
Use the following content to create the 51acumen.ldif file:

dn: cn=schema
#
attribute types:
#
attributeTypes: (11827.0001.1.0 NAME 'uddi-Business-Key' DESC 'Business Key' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.1 NAME 'uddi-Authorized-Name' DESC 'Authorized Name for
publisher of data' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.2 NAME 'uddi-Operator' DESC 'Name of UDDI
Registry Operator' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.3 NAME 'uddi-Name' DESC 'Business Entity
Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.4 NAME 'uddi-Description' DESC 'Description of
Business Entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.7 NAME 'uddi-Use-Type' DESC 'Name of convention
that the referenced document follows' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.8 NAME 'uddi-URL' DESC 'URL' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.9 NAME 'uddi-Person-Name' DESC 'Name of Contact
Person' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.10 NAME 'uddi-Phone' DESC 'Telephone Number'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{50} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.11 NAME 'uddi-Email' DESC 'Email address'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.12 NAME 'uddi-Sort-Code' DESC 'Code to sort
addresses' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{10} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.13 NAME 'uddi-tModel-Key' DESC 'Key to reference a
tModel entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.14 NAME 'uddi-Address-Line' DESC 'Actual address lines
in free form text' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{80} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.15 NAME 'uddi-Service-Key' DESC 'Service Key' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.16 NAME 'uddi-Service-Name' DESC 'Service Name' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.17 NAME 'uddi-Binding-Key' DESC 'Binding Key' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')

UDDI 2.0 Server

19-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

attributeTypes: (11827.0001.1.18 NAME 'uddi-Access-Point' DESC 'A text field to
convey the entry point address for calling a web service' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255}
X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.19 NAME 'uddi-Hosting-Redirector' DESC 'Provides a Binding
Key attribute to redirect reference to a different binding template' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{41} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.20 NAME 'uddi-Instance-Parms' DESC 'Parameters to use a
specific facet of a bindingTemplate description' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.21 NAME 'uddi-Overview-URL' DESC 'URL reference to a
long form of an overview document' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.22 NAME 'uddi-From-Key' DESC 'Unique key reference
to first businessEntity assertion is made for' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.23 NAME 'uddi-To-Key' DESC 'Unique key reference
to second businessEntity assertion is made for' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{41}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.24 NAME 'uddi-Key-Name' DESC 'An attribute of the
KeyedReference structure' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.25 NAME 'uddi-Key-Value' DESC 'An attribute of the
KeyedReference structure' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.26 NAME 'uddi-Auth-Info' DESC 'Authorization
information' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{4096} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.27 NAME 'uddi-Key-Type' DESC 'The key for all UDDI
entries' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.28 NAME 'uddi-Upload-Register' DESC 'The upload register'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.29 NAME 'uddi-URL-Type' DESC 'The type for the
URL' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.30 NAME 'uddi-Ref-Keyed-Reference' DESC 'reference to a
keyedReference entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.31 NAME 'uddi-Ref-Category-Bag' DESC 'reference to a
categoryBag entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.32 NAME 'uddi-Ref-Identifier-Bag' DESC 'reference to a
identifierBag entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.33 NAME 'uddi-Ref-TModel' DESC 'reference to a
TModel entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
id names for each entry
attributeTypes: (11827.0001.1.34 NAME 'uddi-Contact-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.35 NAME 'uddi-Discovery-URL-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.36 NAME 'uddi-Address-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.37 NAME 'uddi-Overview-Doc-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.38 NAME 'uddi-Instance-Details-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.39 NAME 'uddi-tModel-Instance-Info-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.40 NAME 'uddi-Publisher-Assertions-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 19-7

attributeTypes: (11827.0001.1.41 NAME 'uddi-Keyed-Reference-ID' DESC 'Unique ID which will
serve as the Distinguished Name of each entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{16}
SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.42 NAME 'uddi-Ref-Attribute' DESC 'a reference to
another entry' SYNTAX 1.3.6.1.4.1.1466.115.121.1.12{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.43 NAME 'uddi-Entity-Name' DESC 'Business entity
Name' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.44 NAME 'uddi-tModel-Name' DESC 'tModel Name' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15{255} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.45 NAME 'uddi-tMII-TModel-Key' DESC 'tModel key
referneced in tModelInstanceInfo' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.46 NAME 'uddi-Keyed-Reference-TModel-Key' DESC 'tModel key
referneced in KeyedReference' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN
'acumen defined')
attributeTypes: (11827.0001.1.47 NAME 'uddi-Address-tModel-Key' DESC 'tModel key
referneced in Address' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.48 NAME 'uddi-isHidden' DESC 'a flag to indicate
whether an entry is hidden' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen
defined')
attributeTypes: (11827.0001.1.49 NAME 'uddi-Time-Stamp' DESC 'modification time
satmp' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{255} SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.50 NAME 'uddi-next-id' DESC 'generic counter'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.51 NAME 'uddi-tModel-origin' DESC 'tModel origin'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.52 NAME 'uddi-tModel-type' DESC 'tModel type' SYNTAX
1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.53 NAME 'uddi-tModel-checked' DESC 'tModel field to
check or not' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.54 NAME 'uddi-user-quota-entity' DESC 'quota for business
entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.55 NAME 'uddi-user-quota-service' DESC 'quota for business
services per entity' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.56 NAME 'uddi-user-quota-binding' DESC 'quota for binding
templates per service' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined'
)
attributeTypes: (11827.0001.1.57 NAME 'uddi-user-quota-tmodel' DESC 'quota for tmodels'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.58 NAME 'uddi-user-quota-assertion' DESC 'quota for publisher
assertions' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.59 NAME 'uddi-user-quota-messagesize' DESC 'quota for maximum
message size' SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.60 NAME 'uddi-user-language' DESC 'user language'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.61 NAME 'uddi-Name-Soundex' DESC 'name in soundex
format' SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{258} X-ORIGIN 'acumen defined')
attributeTypes: (11827.0001.1.62 NAME 'uddi-var' DESC 'generic variable'
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'acumen defined')
#
objectclasses:
#
objectClasses: (11827.0001.2.0 NAME 'uddi-Business-Entity' DESC 'Business Entity
object' SUP top STRUCTURAL MUST (uddi-Business-Key $ uddi-Entity-Name $ uddi-isHidden $
uddi-Authorized-Name) MAY (uddi-Name-Soundex $ uddi-Operator $ uddi-Description $
uddi-Ref-Identifier-Bag $ uddi-Ref-Category-Bag) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.1 NAME 'uddi-Business-Service' DESC 'Business Service
object' SUP top STRUCTURAL MUST (uddi-Service-Key $ uddi-Service-Name $ uddi-isHidden) MAY (
uddi-Name-Soundex $ uddi-Description $ uddi-Ref-Category-Bag) X-ORIGIN 'acumen defined')

UDDI 2.0 Server

19-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

objectClasses: (11827.0001.2.2 NAME 'uddi-Binding-Template' DESC 'Binding Template
object' SUP TOP STRUCTURAL MUST (uddi-Binding-Key $ uddi-isHidden) MAY (uddi-Description $
uddi-Access-Point $ uddi-Hosting-Redirector) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.3 NAME 'uddi-tModel' DESC 'tModel object' SUP
top STRUCTURAL MUST (uddi-tModel-Key $ uddi-tModel-Name $ uddi-isHidden $ uddi-Authorized-Name)
MAY (uddi-Name-Soundex $ uddi-Operator $ uddi-Description $ uddi-Ref-Identifier-Bag $
uddi-Ref-Category-Bag $ uddi-tModel-origin $ uddi-tModel-checked $ uddi-tModel-type) X-ORIGIN
'acumen defined')
objectClasses: (11827.0001.2.4 NAME 'uddi-Publisher-Assertion' DESC 'Publisher Assertion
object' SUP TOP STRUCTURAL MUST (uddi-Publisher-Assertions-ID $ uddi-From-Key $ uddi-To-Key $
uddi-Ref-Keyed-Reference) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.5 NAME 'uddi-Discovery-URL' DESC 'Discovery URL' SUP
TOP STRUCTURAL MUST (uddi-Discovery-URL-ID $ uddi-Use-Type $ uddi-URL) X-ORIGIN 'acumen
defined')
objectClasses: (11827.0001.2.6 NAME 'uddi-Contact' DESC 'Contact Information'
SUP TOP STRUCTURAL MUST (uddi-Contact-ID $ uddi-Person-Name) MAY (uddi-Use-Type $
uddi-Description $ uddi-Phone $ uddi-Email $ uddi-tModel-Key) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.7 NAME 'uddi-Address' DESC 'Address information
for a contact entry' SUP TOP STRUCTURAL MUST (uddi-Address-ID) MAY (uddi-Use-Type $
uddi-Sort-Code $ uddi-Address-tModel-Key $ uddi-Address-Line) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.8 NAME 'uddi-Keyed-Reference' DESC 'KeyedReference' SUP
TOP STRUCTURAL MUST (uddi-Keyed-Reference-ID $ uddi-Key-Value) MAY (uddi-Key-Name $
uddi-Keyed-Reference-TModel-Key) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.9 NAME 'uddi-tModel-Instance-Info' DESC 'tModelInstanceInfo'
SUP TOP STRUCTURAL MUST (uddi-tModel-Instance-Info-ID $ uddi-tMII-TModel-Key) MAY (
uddi-Description) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.10 NAME 'uddi-Instance-Details' DESC 'instanceDetails' SUP
TOP STRUCTURAL MUST (uddi-Instance-Details-ID) MAY (uddi-Description $ uddi-Instance-Parms)
X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.11 NAME 'uddi-Overview-Doc' DESC 'overviewDoc' SUP TOP
STRUCTURAL MUST (uddi-Overview-Doc-ID) MAY (uddi-Description $ uddi-Overview-URL) X-ORIGIN
'acumen defined')
objectClasses: (11827.0001.2.12 NAME 'uddi-Ref-Object' DESC 'an object class
conatins a reference to another entry' SUP TOP STRUCTURAL MUST (uddi-Ref-Attribute) X-ORIGIN
'acumen defined')
objectClasses: (11827.0001.2.13 NAME 'uddi-Ref-Auxiliary-Object' DESC 'an auxiliary type
object used in another structural class to hold a reference to a third entry' SUP TOP AUXILIARY
MUST (uddi-Ref-Attribute) X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.14 NAME 'uddi-ou-container' DESC 'an organizational
unit with uddi attributes' SUP organizationalunit STRUCTURAL MAY (uddi-next-id $ uddi-var)
X-ORIGIN 'acumen defined')
objectClasses: (11827.0001.2.15 NAME 'uddi-User' DESC 'a User with uddi
attributes' SUP inetOrgPerson STRUCTURAL MUST (uid $ uddi-user-language $ uddi-user-quota-entity $
uddi-user-quota-service $ uddi-user-quota-tmodel $ uddi-user-quota-binding $
uddi-user-quota-assertion $ uddi-user-quota-messagesize) X-ORIGIN 'acumen defined')

19.3.3 Description of Properties in the uddi.properties File
The following tables describe properties of the uddi.properties file, categorized by
the type of UDDI feature they describe:

■ Table 19–1, " UDDI Data Structure"

■ Table 19–2, " Basic UDDI Configuration"

■ Table 19–3, " UDDI User Defaults"

■ Table 19–4, " General Server Configuration"

■ Table 19–5, " Logger Configuration"

■ Table 19–6, " Connection Pools"

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 19-9

■ Table 19–7, " LDAP Datastore Configuration"

■ Table 19–8, " Replicated LDAP Datastore Configuration"

■ Table 19–9, " File Datastore Configuration"

■ Table 19–10, " General Security Configuration"

■ Table 19–11, " LDAP Security Configuration"

■ Table 19–12, " File Security Configuration"

Table 19–2 Basic UDDI Configuration

UDDI Property Key Description

auddi.discoveryurl DiscoveryURL prefix that is set for each saved business
entity. Typically this is the full URL to the uddilistener
servlet, so that the full DiscoveryURL results in the
display of the stored BusinessEntity data.

auddi.inquiry.secure Permissible values are true and false. When set to
true, inquiry calls to UDDI Server are limited to secure
https connections only. Any UDDI inquiry calls through a
regular http URL are rejected.

auddi.publish.secure Permissible values are true and false. When set to
true, publish calls to UDDI Server are limited to secure
https connections only. Any UDDI publish calls through a
regular http URL are rejected.

auddi.search.maxrows Maximum number of returned rows for search
operations. When the search results in a higher number of
rows then the limit set by this property, the result is
truncated.

auddi.search.timeout Timeout value for search operations. The value is
indicated in milliseconds.

auddi.siteoperator Name of the UDDI registry site operator. The specified
value will be used as the operator attribute, saved in all
future BusinessEntity registrations. This attribute will
later be returned in responses, and indicates which UDDI
registry has generated the response.

security.cred.life Credential life, specified in seconds, for authentication.
Upon authentication of a user, an AuthToken is assigned
which will be valid for the duration specified by this
property.

pluggableTModel.file.list UDDI Server is pre-populated with a set of Standard
TModels. You can further customize the UDDI server by
providing your own taxonomies, in the form of TModels.
Taxonomies must be defined in XML files, following the
provided XML schema. The value of this property a
comma-separated list of URIs to such XML files. Values
that refer to these TModels are checked and validated
against the specified taxonomy.

Table 19–3 UDDI User Defaults

UDDI Property Key Description

auddi.default.lang User's initial language, assigned to user profile by default
at the time of creation. User profile settings can be
changed at sign-up or later.

UDDI 2.0 Server

19-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

auddi.default.quota.assertion User's initial assertion quota, assigned to user profile by
default at the time of creation. The assertion quota is the
maximum number of publisher assertions that the user is
allowed to publish. To impose no limits, set a value of -1.
A user's profile settings can be changed at sign-up or
later.

auddi.default.quota.binding User's initial binding quota, assigned to user profile by
default at the time of creation. The binding quota is the
maximum number of binding templates that the user is
allowed to publish, per each business service. To impose
no limits, set a value of -1. A user's profile settings can be
changed at sign-up or later.

auddi.default.quota.entity User's initial business entity quota, assigned to user
profile by default at the time of creation. The entity quota
is the maximum number of business entities that the user
is allowed to publish. To impose no limits, set a value of
-1. A user's profile settings can be changed at sign-up or
later.

auddi.default.quota.messageSi
ze

User's initial message size limit, assigned to his user
profile by default at the time of creation. The message size
limit is the maximum size of a SOAP call that the user
may send to UDDI Server. To impose no limits, set a
value of -1. A user's profile settings can be changed at
sign-up or later.

auddi.default.quota.service User's initial service quota, assigned to user profile by
default at the time of creation. The service quota is the
maximum number of business services that the user is
allowed to publish, per each business entity. To impose
no limits, set a value of -1. A user's profile settings can be
changed at sign-up or later.

auddi.default.quota.tmodel User's initial TModel quota, assigned to user profile by
default at the time of creation. The TModel quota is the
maximum number of TModels that the user is allowed to
publish. To impose no limits, set a value of -1. A user's
profile settings can be changed at sign-up or later.

Table 19–4 General Server Configuration

UDDI Property Keys Description

auddi.datasource.type Location of physical storage of UDDI data. This value
defaults to WLS, which indicates that the internal LDAP
directory of WebLogic Server is to be used for data
storage. Other permissible values include LDAP,
ReplicaLDAP, and File.

auddi.security.type UDDI Server's security module (authentication). This
value defaults to WLS, which indicates that the default
security realm of WebLogic Server is to be used for UDDI
authentication. As such, a WebLogic Server user would be
an UDDI Server user and any WebLogic Server
administrator would also be an UDDI Server
administrator, in addition to members of the UDDI Server
administrator group, as defined in UDDI Server settings.
Other permissible values include LDAP and File.

Table 19–3 (Cont.) UDDI User Defaults

UDDI Property Key Description

UDDI 2.0 Server

Publishing and Finding Web Services Using UDDI 19-11

Table 19–5 Logger Configuration

UDDI Property Key Description

logger.file.maxsize Maximum size of logger output files (if output is sent to
file), in Kilobytes. Once an output file reaches maximum
size, it is closed and a new log file is created.

logger.indent.enabled Permissible values are true and false. When set to
true, log messages beginning with "+" and "-", typically
TRACE level logs, cause an increase or decrease of
indentation in the output.

logger.indent.size Size of each indentation (how many spaces for each
indent), specified as an integer.

logger.log.dir Absolute or relative path to a directory where log files are
stored.

logger.log.file.stem String that is prefixed to all log file names.

logger.log.type Determines whether log messages are sent to the screen,
to a file or to both destinations. Permissible values,
respectively, are: LOG_TYPE_SCREEN, LOG_TYPE_FILE,
and LOG_TYPE_SCREEN_FILE.

logger.output.style Determines whether logged output will simply contain
the message, or thread and timestamp information will be
included. Permissible values are OUTPUT_LONG and
OUTPUT_SHORT.

logger.quiet Determines whether the logger itself displays information
messages. Permissible values are true and false.

logger.verbosity Logger's verbosity level. Permissible values (case
sensitive) are TRACE, DEBUG, INFO, WARNING and ERROR,
where each severity level includes the following ones
accumulatively.

Table 19–6 Connection Pools

UDDI Property Key Description

datasource.ldap.pool.incremen
t

Number of new connections to create and add to the pool
when all connections in the pool are busy

datasource.ldap.pool.initials
ize

Number of connections to be stored at the time of creation
and initialization of the pool.

datasource.ldap.pool.maxsize Maximum number of connections that the pool may hold.

datasource.ldap.pool.systemma
xsize

Maximum number of connections created, even after the
pool has reached its capacity. Once the pool reaches its
maximum size, and all connections are busy, connections
are temporarily created and returned to the client, but not
stored in the pool. However, once the system max size is
reached, all requests for new connections are blocked
until a previously busy connection becomes available.

Table 19–7 LDAP Datastore Configuration

UDDI Property Key Description

datasource.ldap.manager.uid Back-end LDAP server administrator or privileged user
ID, (for example, cn=Directory Manager) who can save
data in LDAP.

UDDI 2.0 Server

19-12 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

datasource.ldap.manager.passw
ord

Password for the datasource.ldap.manager.uid,
establishes connections with the LDAP directory used for
data storage.

datasource.ldap.server.url "ldap://" URL to the LDAP directory used for data
storage.

datasource.ldap.server.root Root entry of the LDAP directory used for data storage
(e.g., dc=acumenat, dc=com).

Note: In a replicated LDAP environment, there are "m" LDAP
masters and "n" LDAP replicas, respectively numbered from 0 to (m-1)
and from 0 to (n-1). The fifth part of the property keys below, quoted
as "i", refers to this number and differs for each LDAP server instance
defined.

Table 19–8 Replicated LDAP Datastore Configuration

UDDI Property Key Description

datasource.ldap.server.master.i.manag
er.uid

Administrator or privileged user ID for this
"master" LDAP server node, (for example,
cn=Directory Manager) who can save data in
LDAP.

datasource.ldap.server.master.i.manag
er.password

Password for the
datasource.ldap.server.master.i.manager.uid,
establishes connections with the relevant
"master" LDAP directory to write data.

datasource.ldap.server.master.i.url "ldap://" URL to the corresponding LDAP
directory node.

datasource.ldap.server.master.i.root Root entry of the corresponding LDAP
directory node (for example, dc=acumenat,
dc=com).

datasource.ldap.server.replica.i.mana
ger.uid

User ID for this "replica" LDAP server node (for
example, cn=Directory Manager); this person
can read the UDDI data from LDAP.

datasource.ldap.server.replica.i.mana
ger.password

Password for
datasource.ldap.server.replica.i.manager.uid,
establishes connections with the relevant
"replica" LDAP directory to read data.

datasource.ldap.server.replica.i.url "ldap://" URL to the corresponding LDAP
directory node.

datasource.ldap.server.replica.i.root Root entry of the corresponding LDAP
directory node (for example, dc=acumenat,
dc=com).

Table 19–9 File Datastore Configuration

UDDI Property Key Description

datasource.file.directory Directory where UDDI data is stored in the file system.

Table 19–7 (Cont.) LDAP Datastore Configuration

UDDI Property Key Description

UDDI Directory Explorer

Publishing and Finding Web Services Using UDDI 19-13

19.4 UDDI Directory Explorer
The UDDI Directory Explorer allows authorized users to publish Web services in
private WebLogic Server UDDI registries and to modify information for previously
published Web services. The Directory Explorer provides access to details about the
Web services and associated WSDL files (if available.)

The UDDI Directory Explorer also enables you to search both public and private UDDI
registries for Web services and information about the companies and departments that
provide these Web services.

To invoke the UDDI Directory Explorer in your browser, enter:

http://host:port/uddiexplorer

where

■ host is the computer on which WebLogic Server is running.

■ port is the port number where WebLogic Server listens for connection requests.
The default port number is 7001.

You can perform the following tasks with the UDDI Directory Explorer:

Table 19–10 General Security Configuration

UDDI Property Key Description

security.custom.group.operators Security group name, where the members of this
group are treated as UDDI administrators.

Table 19–11 LDAP Security Configuration

UDDI Property Key Description

security.custom.ldap.manager.uid Security LDAP server administrator or privileged user
ID (for example, cn=Directory Manager); this person
can save data in LDAP.

security.custom.ldap.manager.pas
sword

The value of this property is the password for the
above user ID, and is used to establish connections
with the LDAP directory used for security.

security.custom.ldap.url The value of this property is an "ldap://" URL to the
LDAP directory used for security.

security.custom.ldap.root Root entry of the LDAP directory used for security
(for example, dc=acumenat, dc=com).

security.custom.ldap.userroot User's root entry on the security LDAP server. For
example, ou=People.

security.custom.ldap.group.root Operator entry on the security LDAP server. For
example, "cn=UDDI Administrators, ou=Groups".
This entry contains IDs of all UDDI administrators.

Table 19–12 File Security Configuration

UDDI Property Key Description

security.custom.file.userdir Directory where UDDI security information (users and
groups) is stored in the file system.

UDDI Client API

19-14 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

■ Search public registries

■ Search private registries

■ Publish to a private registry

■ Modify private registry details

■ Setup UDDI directory explorer

For more information about using the UDDI Directory Explorer, click the Explorer
Help link on the main page.

19.5 UDDI Client API
WebLogic Server includes an implementation of the client-side UDDI API that you can
use in your Java client applications to programmatically search for and publish Web
services.

The two main classes of the UDDI client API are Inquiry and Publish. Use the
Inquiry class to search for Web services in a known UDDI registry and the Publish
class to add your Web service to a known registry.

WebLogic Server provides an implementation of the following client UDDI API
packages:

■ weblogic.uddi.client.service

■ weblogic.uddi.client.structures.datatypes

■ weblogic.uddi.client.structures.exception

■ weblogic.uddi.client.structures.request

■ weblogic.uddi.client.structures.response

For detailed information on using these packages, see the UDDI API Javadocs.

19.6 Pluggable tModel
A taxonomy is basically a tModel used as reference by a categoryBag or identifierBag.
A major distinction is that in contrast to a simple tModel, references to a taxonomy are
typically checked and validated. WebLogic Server's UDDI Server takes advantage of
this concept and extends this capability by introducing custom taxonomies, called
"pluggable tModels". Pluggable tModels allow users (UDDI administrators) to add
their own checked taxonomies to the UDDI registry, or overwrite standard
taxonomies.

To add a pluggable tModel:

1. Create an XML file conforming to the specified format described in Section 19.6.2,
"XML Schema for Pluggable tModels", for each tModelKey/categorization.

2. Add the comma-delimited, fully qualified file names to the
pluggableTModel.file.list property in the uddi.properties file used to
configure UDDI Server. For example:

pluggableTModel.file.list=c:/temp/cat1.xml,c:/temp/cat2.xml

Note: To access the UDDI Directory Explorer pages, use your Oracle
WebLogic Server username and password.

Pluggable tModel

Publishing and Finding Web Services Using UDDI 19-15

See Section 19.3.1, "Configuring the UDDI 2.0 Server" for details about the
uddi.properties file.

3. Restart WebLogic Server.

The following sections include a table detailing the XML elements and their
permissible values, the XML schema against which pluggable tModels are validated,
and a sample XML.

19.6.1 XML Elements and Permissible Values
The following table describes the elements of the XML file that describes your
pluggable tModels.

19.6.2 XML Schema for Pluggable tModels
The XML Schema against which pluggable tModels are validated is as follows:

Table 19–13 Description of the XML Elements to Configure Pluggable tModels

Element/Attri
bute Required Role Values Comments

Taxonomy Required Root Element - -

checked Required Whether this
categorization is
checked or not.

true / false If false,
keyValue will
not be
validated.

type Required The type of the
tModel.

categorization /
identifier /
valid values as
defined in
uddi-org-types

See
uddi-org-types
tModel for valid
values.

applicability Optional Constraints on
where the
tModel may be
used.

- No constraint is
assumed if this
element is not
provided

scope Required if the
applicability
element is
included.

Constraints on
where the
tModel may be
used.

businessEntity /
businessService
/
bindingTemplat
e / tModel

tModel may be
used in
tModelInstanceI
nfo if scope
"bindingTempla
te" is specified.

tModel Required The actual
tModel,
according to the
UDDI data
structure.

Valid
tModelKey
must be
provided.

-

categories Required if
checked is set to
true.

- - -

category Required if
element
categories is
included

Holds actual
keyName and
keyValue pairs.

keyName /
keyValue pairs

category may be
nested for
grouping or tree
structure.

keyName Required - - -

keyValue Required - - -

Pluggable tModel

19-16 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

<simpleType name="type">
 <restriction base="string"/>
</simpleType>

<simpleType name="checked">
 <restriction base="NMTOKEN">
 <enumeration value="true"/>
 <enumeration value="false"/>
 </restriction>
</simpleType>

<element name="scope" type="string"/>

<element name = "applicability" type = "uddi:applicability"/>

<complexType name = "applicability">
 <sequence>
 <element ref = "uddi:scope" minOccurs = "1" maxOccurs = "4"/>
 </sequence>
</complexType>

<element name="category" type="uddi:category"/>

<complexType name = "category">
 <sequence>
 <element ref = "uddi:category" minOccurs = "0" maxOccurs = "unbounded"/>

 </sequence>
 <attribute name = "keyName" use = "required" type="string"/>
 <attribute name = "keyValue" use = "required" type="string"/>
</complexType>

<element name="categories" type="uddi:categories"/>

<complexType name = "categories">
 <sequence>
 <element ref = "uddi:category" minOccurs = "1" maxOccurs = "unbounded"/>
 </sequence>
</complexType>

<element name="Taxonomy" type="uddi:Taxonomy"/>

<complexType name="Taxonomy">
 <sequence>
 <element ref = "uddi:applicability" minOccurs = "0" maxOccurs = "1"/>
 <element ref = "uddi:tModel" minOccurs = "1" maxOccurs = "1"/>
 <element ref = "uddi:categories" minOccurs = "0" maxOccurs = "1"/>
 </sequence>
 <attribute name = "type" use = "required" type="uddi:type"/>
 <attribute name = "checked" use = "required" type="uddi:checked"/>
</complexType>

19.6.3 Sample XML for a Pluggable tModel
The following shows a sample XML for a pluggable tModel:

<?xml version="1.0" encoding="UTF-8" ?>

 <SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

Pluggable tModel

Publishing and Finding Web Services Using UDDI 19-17

 <SOAP-ENV:Body>

 <Taxonomy checked="true" type="categorization" xmlns="urn:uddi-org:api_v2" >
 <applicability>
 <scope>businessEntity</scope>
 <scope>businessService</scope>
 <scope>bindingTemplate</scope>
 </applicability>
 <tModel tModelKey="uuid:C0B9FE13-179F-41DF-8A5B-5004DB444tt2" >
 <name> sample pluggable tModel </name>
 <description>used for test purpose only </description>
 <overviewDoc>
 <overviewURL>http://www.abc.com </overviewURL>
 </overviewDoc>
 </tModel>
 <categories>
 <category keyName="name1 " keyValue="1">
 <category keyName="name11" keyValue="12">
 <category keyName="name111" keyValue="111">
 <category keyName="name1111" keyValue="1111"/>
 <category keyName="name1112" keyValue="1112"/>
 </category>
 <category keyName="name112" keyValue="112">
 <category keyName="name1121" keyValue="1121"/>
 <category keyName="name1122" keyValue="1122"/>
 </category>
 </category>
 </category>
 <category keyName="name2 " keyValue="2">
 <category keyName="name21" keyValue="22">
 <category keyName="name211" keyValue="211">
 <category keyName="name2111" keyValue="2111"/>
 <category keyName="name2112" keyValue="2112"/>
 </category>
 <category keyName="name212" keyValue="212">
 <category keyName="name2121" keyValue="2121"/>
 <category keyName="name2122" keyValue="2122"/>
 </category>
 </category>
 </category>
 </categories>
 </Taxonomy>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Pluggable tModel

19-18 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

A

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and MakeConnection A-1

APre-packaged WS-Policy Files for Web
Services Reliable Messaging and

MakeConnection

WebLogic Server includes pre-packaged WS-Policy files to support reliable messaging,
MakeConnection, or both features together.

You cannot change these pre-packaged files. If their values do not suit your needs, you
must create your own WS-Policy file. For details, see:

■ Section 5.4, "Creating the Web Service Reliable Messaging WS-Policy File"

■ Section 3.6.1.1, "Creating the Web Service MakeConnection WS-Policy File
(Optional)"

For reference information about the reliable messaging and MakeConnection policy
assertions, see:

■ "Web Service Reliable Messaging Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server

■ "Web Service MakeConnection Policy Assertion Reference" in WebLogic Web
Services Reference for Oracle WebLogic Server

The following table summarizes the pre-packaged WS-Policy files. This table also
specifies whether the WS-Policy file can be attached at the method level; if the value in
this column is no, then the WS-Policy file can be attached at the class level only.

A-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

Table A–1 Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description
Method Level
Attachment?

DefaultReliability1.2.xml Specifies policy assertions related to delivery assurance.
The Web service reliable messaging assertions are based on
WS Reliable Messaging Policy Assertion 1.2 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02. See Section A.1, "DefaultReliability1.2.xml (WS-Policy
File)".

Yes

DefaultReliability1.1.xml Specifies policy assertions related to quality of service. The
Web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02/wsrmp-1.1-spec-os-01.html. See Section A.2,
"DefaultReliability1.1.xml (WS-Policy File)".

Yes

DefaultRelibility.xml Deprecated. The Web service reliable messaging assertions
are based on WS Reliable Messaging Policy Assertion
Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/WS
-RMPolicy.pdf. In this release, many of the reliable
messaging policy assertions are managed through JWS
annotations or configuration.

Specifies typical values for the reliable messaging policy
assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base
retransmission interval of 3 seconds. See Section A.3,
"DefaultReliability.xml WS-Policy File (WS-Policy)
[Deprecated]".

Yes

LongRunningReliability.xml Deprecated. The Web service reliable messaging assertions
are based on WS Reliable Messaging Policy Assertion
Version 1.0 for long running processes. In this release,
many of the reliable messaging policy assertions are
managed through JWS annotations or configuration.

Similar to the preceding default reliable messaging
WS-Policy file, except that it specifies a much longer
activity timeout interval (24 hours.) See Section A.4,
"LongRunningReliability.xml WS-Policy File (WS-Policy)
[Deprecated]".

Yes

Mc1.1.xml Enables MakeConnection support on the Web service and
specifies usage as optional on the Web service client. The
WS-Policy 1.5 protocol is used. See Section A.5, "Mc1.1.xml
(WS-Policy File)".

No

Mc.xml Enables MakeConnection support on the Web service and
specifies usage as optional on the Web service client. The
WS-Policy 1.2 protocol is used. See Section A.6, "Mc.xml
(WS-Policy File)".

No

Reliability1.2_ExactlyOnce_
WithMC1.1.xml

Specifies policy assertions related to quality of service. It
enables MakeConnection support on the Web service and
specifies usage as optional on the Web service client. See
Section A.7, "Reliability1.2_ExactlyOnce_WithMC1.1.xml
(WS-Policy File)".

No

DefaultReliability1.2.xml (WS-Policy File)

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and MakeConnection A-3

A.1 DefaultReliability1.2.xml (WS-Policy File)
The DefaultRealiability1.2.xml WS-Policy file specifies policy assertions
related to delivery assurance. The Web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.2 at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.ht
ml.

<?xml version="1.0" encoding="UTF-8"?>
<wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <wsp15:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">

Reliability1.2_
SequenceSTRSecurity

Specifies that in order to secure messages in a reliable
sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in
the CreateSequence message. It enables MakeConnection
support on the Web service and specifies usage as optional
on the Web service client. The Web service reliable
messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02. See Section A.10, "Reliability1.2_
SequenceTransportSecurity.xml (WS-Policy File)".

No

Reliability1.1_
SequenceSTRSecurity

The Web service reliable messaging assertions are based on
WS Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02/wsrmp-1.1-spec-os-01.html. See Section A.11,
"Reliability1.1_SequenceTransportSecurity.xml (WS-Policy
File)"

Yes

Reliability1.2_
SequenceTransportSecurity

Specifies policy assertions related to transport-level
security and quality of service. The Web service reliable
messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02. See Section A.10, "Reliability1.2_
SequenceTransportSecurity.xml (WS-Policy File)".

Yes

Reliability1.1_
SequenceTransportSecurity

Specifies policy assertions related to transport-level
security and quality of service. The Web service reliable
messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/2007
02/wsrmp-1.1-spec-os-01.html. See Section A.11,
"Reliability1.1_SequenceTransportSecurity.xml (WS-Policy
File)".

Yes

Reliability1.0_1.2.xml Combines 1.2 and 1.0 WS-Reliable Messaging policy
assertions. The policy assertions for the 1.2 version
MakeConnection support on the Web service and specifies
usage as optional on the Web service client. This sample
relies on smart policy selection to determine the policy
assertion that is applied at runtime. See Section A.12,
"Reliability1.0_1.2.xml (WS-Policy File)".

No

Reliability1.0_1.1.xml Combines 1.1 and 1.0 WS Reliable Messaging policy
assertions. See Section A.13, "Reliability1.0_1.1.xml
(WS-Policy.xml File)".

Yes

Table A–1 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description
Method Level
Attachment?

DefaultReliability1.1.xml (WS-Policy File)

A-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 <wsrmp:DeliveryAssurance>
 <wsp15:Policy>
 <wsrmp:ExactlyOnce/>
 <wsrmp:InOrder/>
 </wsp15:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 </wsp15:All>
</wsp15:Policy>

A.2 DefaultReliability1.1.xml (WS-Policy File)
The DefaultRealiability1.1.xml WS-Policy file specifies policy assertions
related to quality of service. The Web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-
01.html.

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 >
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702"
 >
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce />
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

A.3 DefaultReliability.xml WS-Policy File (WS-Policy) [Deprecated]
This WS-Policy file is deprecated. The Web service reliable messaging assertions are
based on WS Reliable Messaging Policy Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/. In the current
release, many of the reliable messaging policy assertions are managed through JWS
annotations or configuration.

The DefaultReliability.xml WS-Policy file specifies typical values for the
reliable messaging policy assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base retransmission interval of 3
seconds.

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >

 <wsrm:RMAssertion >
 <wsrm:InactivityTimeout Milliseconds="600000" />

Mc1.1.xml (WS-Policy File)

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and MakeConnection A-5

 <wsrm:BaseRetransmissionInterval Milliseconds="3000" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval Milliseconds="200" />
 <beapolicy:Expires Expires="P1D" optional="true"/>
 </wsrm:RMAssertion>
</wsp:Policy>

A.4 LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated]
This WS-Policy file is deprecated. The Web service reliable messaging assertions are
based on WS Reliable Messaging Policy Assertion Version 1.0 at
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/. In the current
release, many of the reliable messaging policy assertions are managed through JWS
annotations or configuration.

The LongRunningRelibility.xml WS-Policy files specifies values that are similar
to the DefaultReliability.xml WS-Policy file, except that it specifies a much
longer activity timeout interval (24 hours). See Section A.4,
"LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated]".

<?xml version="1.0"?>

<wsp:Policy
 xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:beapolicy="http://www.bea.com/wsrm/policy"
 >
 <wsrm:RMAssertion >
 <wsrm:InactivityTimeout Milliseconds="86400000" />
 <wsrm:BaseRetransmissionInterval Milliseconds="3000" />
 <wsrm:ExponentialBackoff />
 <wsrm:AcknowledgementInterval Milliseconds="200" />
 <beapolicy:Expires Expires="P1M" optional="true"/>
 </wsrm:RMAssertion>
</wsp:Policy>

A.5 Mc1.1.xml (WS-Policy File)
The Mc1.1.xml WS-Policy file enables MakeConnection support on the Web service
and sets usage as optional on the Web service client. In this case, the WS-Policy 1.5
protocol is used. The assertions are based on the MakeConnection policy assertion
defined at
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.ht
ml.

<?xml version="1.0"?>
<wsp15:Policy
 xmlns:wsp15="http://www.w3.org/ns/ws-policy"
 xmlns:wsmc="http://docs.oasis-open.org/ws-rx/wsmc/200702">
 <wsmc:MCSupported wsp15:Optional="true" />
</wsp15:Policy>

Mc.xml (WS-Policy File)

A-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

A.6 Mc.xml (WS-Policy File)
The Mc.xml WS-Policy file enables MakeConnection support on the Web service and
sets usage as optional on the Web service client. The assertions are based on the
MakeConnection policy assertion defined at
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.ht
ml.

<?xml version="1.0"?>
<wsp:Policy
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wsmc="http://docs.oasis-open.org/ws-rx/wsmc/200702">
 <wsmc:MCSupported wsp:Optional="true" />
</wsp:Policy>

A.7 Reliability1.2_ExactlyOnce_WithMC1.1.xml (WS-Policy File)
The Reliability1.2_ExactlyOnce_WithMC1.1.xml WS-Policy file specifies
policy assertions related to quality of service. It enables MakeConnection support on
the Web service and specifies usage as optional on the Web service client.

The assertions are based on the following specifications:

■ Web service reliable messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os
.html.

■ MakeConnection assertions are based on the MakeConnection policy assertion
defined at
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os
.html.

<?xml version="1.0" encoding="UTF-8" ?>
<wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <wsp15:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:DeliveryAssurance>
 <wsp15:Policy>
 <wsrmp:ExactlyOnce />
 </wsp15:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 <wsmc:MCSupported
 xmlns:wsmc="http://docs.oasis-open.org/ws-rx/wsmc/200702"
 wsp15:Optional="true" />
 </wsp15:All>
</wsp15:Policy>

A.8 Reliability1.2_SequenceSTR.xml (WS-Policy File)
The Reliability1.2_SequenceSTR.xml file specifies that in order to secure
messages in a reliable sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in the CreateSequence
message. It enables MakeConnection support on the Web service and specifies usage
as optional on the Web service client.

Reliability1.2_SequenceTransportSecurity.xml (WS-Policy File)

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and MakeConnection A-7

The assertions are based on the following specifications:

■ Web service reliable messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os
.html.

■ MakeConnection assertions are based on the MakeConnection policy assertion
defined at
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os
.html.

<?xml version="1.0" encoding="UTF-8"?>
<wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <wsp15:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp15:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp15:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 <wsmc:MCSupported
 xmlns:wsmc="http://docs.oasis-open.org/ws-rx/wsmc/200702"
 wsp15:Optional="true"/>
 </wsp15:All>
</wsp15:Policy>

A.9 Reliability1.1_SequenceSTR.xml (WS-Policy File)
The Reliability1.1_SequenceSTR.xml file specifies that in order to secure
messages in a reliable sequence, the runtime will use the
wsse:SecurityTokenReference that is referenced in the CreateSequence
message. The Web service reliable messaging assertions are based on WS Reliable
Messaging Policy Assertion 1.1 at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-
01.html.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceSTR/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

A.10 Reliability1.2_SequenceTransportSecurity.xml (WS-Policy File)
The Reliability1.2_SequenceTransportSecurity.xml file specifies policy
assertions related to transport-level security and quality of service. The Web service
reliable messaging assertions are based on WS Reliable Messaging Policy Assertion 1.2

Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)

A-8 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

at
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.ht
ml.

<?xml version="1.0" encoding="UTF-8"?>
<wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <wsp15:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceTransportSecurity/>
 <wsrmp:DeliveryAssurance>
 <wsp15:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp15:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 </wsp15:All>
</wsp15:Policy>

A.11 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)
The Reliability1.1_SequenceTransportSecurity.xml file specifies policy
assertions related to transport-level security and quality of service. The Web service
reliable messaging assertions are based on WS Reliable Messaging Policy Assertion 1.1
at
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-
01.html.

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:SequenceTransportSecurity/>
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
</wsp:Policy>

A.12 Reliability1.0_1.2.xml (WS-Policy File)
The Reliability1.0_1.2.xml WS-Policy file combines 1.2 and 1.0 WS-Reliable
Messaging policy assertions.

This sample relies on smart policy selection to determine the policy assertion that is
applied at runtime. For more information about smart policy selection, see
Section 5.4.3, "Using Multiple Policy Alternatives".

<?xml version="1.0" encoding="UTF-8"?>
<wsp15:Policy xmlns:wsp15="http://www.w3.org/ns/ws-policy">
 <wsp15:ExactlyOne>
 <wsp15:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:DeliveryAssurance>
 <wsp15:Policy>
 <wsrmp:ExactlyOnce/>

Reliability1.0_1.1.xml (WS-Policy.xml File)

Pre-packaged WS-Policy Files for Web Services Reliable Messaging and MakeConnection A-9

 </wsp15:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 <wsmc:MCSupported
 xmlns:wsmc="http://docs.oasis-open.org/ws-rx/wsmc/200702"
 wsp15:Optional="true"/>
 </wsp15:All>
 <wsp15:All>
 <wsrmp10:RMAssertion
 xmlns:wsrmp10="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp10:InactivityTimeout Milliseconds="600000"/>
 <wsrmp10:BaseRetransmissionInterval Milliseconds="3000"/>
 <wsrmp10:ExponentialBackoff/>
 <wsrmp10:AcknowledgementInterval Milliseconds="200"/>
 </wsrmp10:RMAssertion>
 </wsp15:All>
 </wsp15:ExactlyOne>
</wsp15:Policy>

A.13 Reliability1.0_1.1.xml (WS-Policy.xml File)
The Reliability1.0_1.1.xml WS-Policy file combines 1.1 and 1.0 WS-Reliable
Messaging policy assertions. This sample relies on smart policy selection to determine
the policy assertion that is applied at runtime. For more information about smart
policy selection, see Section 5.4.3, "Using Multiple Policy Alternatives".

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <wsrmp:RMAssertion
 xmlns:wsrmp="http://docs.oasis-open.org/ws-rx/wsrmp/200702">
 <wsrmp:DeliveryAssurance>
 <wsp:Policy>
 <wsrmp:ExactlyOnce/>
 </wsp:Policy>
 </wsrmp:DeliveryAssurance>
 </wsrmp:RMAssertion>
 </wsp:All>
 <wsp:All>
 <wsrmp10:RMAssertion
 xmlns:wsrmp10="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp10:InactivityTimeout Milliseconds="600000"/>
 <wsrmp10:BaseRetransmissionInterval Milliseconds="3000"/>
 <wsrmp10:ExponentialBackoff/>
 <wsrmp10:AcknowledgementInterval Milliseconds="200"/>
 </wsrmp10:RMAssertion>
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

Note: The 1.0 Web service reliable messaging assertions are prefixed
by wsrmp10.

Reliability1.0_1.1.xml (WS-Policy.xml File)

A-10 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

B

Example Client Wrapper Class for Batching Reliable Messages B-1

BExample Client Wrapper Class for Batching
Reliable Messages

The following code provides an example client wrapper class that can be used for
batching reliable messaging. For more information about batching reliable messages,
see Section 5.11, "Grouping Messages into Business Units of Work (Batching)."

Example B–1 Example Client Wrapper Class for Batching Reliable Messages

import java.io.*;
import java.lang.*;
import java.util.*;
import javax.xml.*;

import weblogic.wsee.jaxws.JAXWSProperties;
import weblogic.wsee.jaxws.spi.ClientInstance;
import weblogic.wsee.reliability.MessageRange;
import weblogic.wsee.reliability2.api.WsrmClient;
import weblogic.wsee.reliability2.api.WsrmClientFactory;
import weblogic.wsee.reliability2.property.WsrmInvocationPropertyBag;
import weblogic.wsee.reliability2.tube.WsrmClientImpl;

/**
 * Example wrapper class to batch reliable requests into fixed size 'batches'
 * that can be sent using a single RM sequence. This class allows a client to
 * send requests that have no natural common grouping or
 * 'business unit of work' and not pay the costs associated with creating and
 * terminating an RM sequence for every message.
 * NOTE: This class is an *example* of how batching might be performed. To do
 * batching correctly, you should consider error recovery and how to
 * report sequence errors (reported via ReliabilityErrorListener) back
 * to the clients that made the original requests.
 * <p>
 * If your Web service client code knows of some natural business-oriented
 * grouping of requests (called a 'business unit of work'), it should make the
 * RM subsystem aware of this unit of work by using the
 * WsrmClient.setFinalMessage() method to demarcate the end of a unit (just
 * before sending the actual final request via an invocation on
 * the client instance). In some cases, notably when the client code represents
 * an intermediary in the processing of messages, the client code may not be
 * aware of any natural unit of work. In the past, if no business unit of work
 * could be determined, clients often just created the client instance, sent the

Note: This client wrapper class is example code only; it is not an
officially supported production class.

B-2 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 * single current message they had, and then allowed the sequence to terminate.
 * This is functionally workable, but very inefficient. These clients pay the
 * cost of an RM sequence handshake and termination for every message they send.
 * The BatchingRmClientWrapper class can be used to introduce an artificial
 * unit of work (a batch) when no natural business unit of work is available.
 * <p>
 * Each instance of BatchingRmClientWrapper is a wrapper instance around a
 * client instance (port or Dispatch instance). This wrapper can be used to
 * obtain a Proxy instance that can be used in place of the original client
 * instance. This allows this class to perform batching operations completely
 * invisibly from the perspective of the client code.
 * <p>
 * This class is used for batching reliable requests into
 * batches of a given max size that will survive for a given maximum
 * duration. If a batch fills up or times out, it is ended, causing the
 * RM sequence it represents to be ended/terminated. The timeout ensures that
 * if the flow of incoming requests stops the batch/sequence will still
 * end in a timely manner.
 */
public class BatchingRmClientWrapper<T>
 implements InvocationHandler {

 private Class<T> _clazz;
 private int _batchSize;
 private long _maxBatchLifetimeMillis;
 private T _clientInstance;
 private PrintWriter _out;
 private WsrmClient _rmClient;
 private int _numInCurrentBatch;
 private int _batchNum;
 private Timer _timer;
 private boolean _closed;
 private boolean _proxyCreated;

 /**
 * Create a wrapper instance for batching reliable requests into
 * batches of the given max size that will survive for the given maximum
 * duration. If a batch fills up or times out, it is ended, causing the
 * RM sequence it represents to be ended/terminated.
 * @param clientInstance The client instance that acts as the source object
 * for the batching proxy created by the createProxy() method. This
 * is the port/Dispatch instance returned from the call to
 * getPort/createDispatch. The BatchingRmClientWrapper will take over
 * responsibility for managing the interaction with and cleanup of
 * the client instance via the proxy created from createProxy.
 * @param clazz of the proxy instance created from createProxy.
 * This should be the class of the port/Dispatch instance you would
 * use to invoke operations on the service. BatchingRmClientWrapper will
 * create (via createProxy) a proxy of the given type that can be
 * used in place of the original client instance.
 * @param batchSize Max number of requests to put into a batch. If the
 * max number of requests are sent for a given batch, that batch is
 * ended (ending/terminating the sequence it represents) and a new
 * batch is started.
 * @param maxBatchLifetime A duration value (in the lexical form supported
 * by java.util.Duration, e.g. PT30S for 30 seconds) representing
 * the maximum time a batch should exist. If the batch exists longer
 * than this time, it is ended and a new batch is begun.
 * @param out A print stream that can be used to print diagnostic and
 * status messages.

Example Client Wrapper Class for Batching Reliable Messages B-3

 */
 public BatchingRmClientWrapper(T clientInstance, Class<T> clazz,
 int batchSize, String maxBatchLifetime,
 PrintStream out) {
 _clazz = clazz;
 _batchSize = batchSize;
 try {
 if (maxBatchLifetime == null) {
 maxBatchLifetime = "PT5M";
 }
 Duration duration =
 DatatypeFactory.newInstance().newDuration(maxBatchLifetime);
 _maxBatchLifetimeMillis = duration.getTimeInMillis(new Date());
 } catch (Exception e) {
 throw new RuntimeException(e.toString(), e);
 }
 _clientInstance = clientInstance;
 _out = new PrintWriter(out, true);
 _rmClient = WsrmClientFactory.getWsrmClientFromPort(_clientInstance);
 _closed = false;
 _proxyCreated = false;
 _timer = new Timer(true);
 _timer.schedule(new TimerTask() {
 @Override
 public void run() {
 terminateOrEndBatch();
 }
 }, _maxBatchLifetimeMillis);
 }

 /**
 * Creates the dynamic proxy that should be used in place of the client
 * instance used to create this BatchingRmClientWrapper instance. This method
 * should be called only once per BatchingRmClientWrapper.
 */
 public T createProxy() {
 if (_proxyCreated) {
 throw new IllegalStateException("Already created the proxy for this BatchingRmClientWrapper
instance which wraps the client instance: " + _clientInstance);
 }
 _proxyCreated = true;
 return (T) Proxy.newProxyInstance(getClass().getClassLoader(),
 new Class[] {
 _clazz,
 BindingProvider.class,
 java.io.Closeable.class
 }, this);
 }

 private void terminateOrEndBatch() {
 synchronized(_clientInstance) {
 if (_rmClient.getSequenceId() != null) {
 if (terminateBatchAllowed()) {
 _out.println("Terminating batch " + _batchNum + " sequence (" + _rmClient.getSequenceId()
+ ") for " + _clientInstance);
 try {
 _rmClient.terminateSequence();
 } catch (Exception e) {
 e.printStackTrace(_out);
 }

B-4 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 } else {
 _out.println("Batch " + _batchNum + " sequence (" + _rmClient.getSequenceId() + ") for "
+ _clientInstance + " timed out but has outstanding requests to send and cannot be terminated
now");
 }
 }
 endBatch();
 }
 }

 /**
 * Check to see if there are acknowledgements for all requests sent. If so,
 * terminate.
 */
 private boolean terminateBatchAllowed() {
 try {
 synchronized(_clientInstance) {
 if (_rmClient.getSequenceId() != null) {

 // TODO: Remove this workaround when getMostRecentMessageNumber is
 // fixed.
 // The following BUG is targeted for the next release, at which time
 // the workaround can be removed.
 // Bug 10382605 - WSRMCLIENT.GETMOSTRECENTMESSAGENUMBER() ALWAYS RETURNS 0
 //long maxMsgNum = _rmClient.getMostRecentMessageNumber();

 // --
 // Workaround: Start
 // *** Do *not* use this API in your own code. It is not
 // supported for customer use ***
 WsrmInvocationPropertyBag rmProps =
 (WsrmInvocationPropertyBag)((BindingProvider)_clientInstance).
 getRequestContext().get(WsrmInvocationPropertyBag.key);
 long maxMsgNum = rmProps != null ? rmProps.getMostRecentMsgNum() : 0;
 // Workaround: End
 // --

 if (maxMsgNum < 1) {
 // No messages sent, go ahead and terminate.
 return true;
 }
 SortedSet<MessageRange> ranges = _rmClient.getAckRanges();
 long maxAck = -1;
 boolean hasGaps = false;
 long lastRangeUpper = -1;
 for (MessageRange range: ranges) {
 if (lastRangeUpper > 0) {
 if (range.lowerBounds != lastRangeUpper + 1) {
 hasGaps = true;
 }
 } else {
 lastRangeUpper = range.upperBounds;
 }
 maxAck = range.upperBounds;
 }
 return !(hasGaps || maxAck < maxMsgNum);
 }
 }
 } catch (Exception e) {
 e.printStackTrace(_out);

Example Client Wrapper Class for Batching Reliable Messages B-5

 }
 return true;
 }

 private void endBatch() {
 synchronized(_clientInstance) {
 if (_numInCurrentBatch > 0) {
 _out.println("Ending batch " + _batchNum + " sequence (" + _rmClient.getSequenceId() + ")
for " + _clientInstance + "...");
 }
 resetWsrmClient(_rmClient, _clientInstance);
 _numInCurrentBatch = 0;
 if (!_closed) {
 _timer.schedule(new TimerTask() {
 @Override
 public void run() {
 terminateOrEndBatch();
 }
 }, _maxBatchLifetimeMillis);
 }
 }
 }

 /**
 * Resets a WsrmClient instance (and the client instance it represents)
 * so it can track a new WS-RM sequence for the next invoke on the client
 * instance. This method effectively *disconnects* the RM sequence from the
 * client instance and lets them continue/complete separately.
 * NOTE: You should use this method instead of WsrmClient.reset() alone due
 * to a bug in WsrmClient.reset that does not completely reset all state
 * stored on the client instance from the old sequence.
 */
 public static void resetWsrmClient(WsrmClient rmClient, Object clientInstance) {
 rmClient.reset();
 // TODO: Shouldn't have to do this, as _rmClient.reset should do it for
 // The following BUG is targeted for the next release, at which time
 // the workaround can be removed.
 // Bug 10382543 - WSRMCLIENT.RESET() FAILS TO RESET ALL NECESSARY STATE
 // --
 // Workaround: Start
 // *** Do *not* use this API in your own code. It is not
 // supported for customer use ***
 WeakReference<ClientInstance> clientInstanceRef =
 (WeakReference<ClientInstance>)
 ((BindingProvider)clientInstance).
 getRequestContext().get(JAXWSProperties.CLIENT_INSTANCE_WEAK_REF);
 ClientInstance instance = clientInstanceRef != null ?
 clientInstanceRef.get() : null;
 if (instance != null) {
 instance.getProps().
 remove(WsrmClientImpl.CLIENT_CURRENT_SEQUENCE_ID_PROP_NAME);
 }
 // Workaround: End
 // --
 }

 public Object invoke(Object proxy, Method method, Object[] args)
 throws Throwable {
 boolean operationInvoke = method.getDeclaringClass() == _clazz;
 boolean closeableInvoke = method.getDeclaringClass() ==

B-6 Programming Advanced Features of JAX-WS Web Services for Oracle WebLogic Server

 java.io.Closeable.class;
 boolean endOfBatch = false;
 if (operationInvoke) {
 synchronized(_clientInstance) {
 // Check our batch size
 if (_numInCurrentBatch == 0) {
 _batchNum++;
 }
 endOfBatch = _numInCurrentBatch >= _batchSize - 1;
 if (endOfBatch) {
 _rmClient.setFinalMessage();
 }
 _out.println("Making " + (endOfBatch ? "final " : "") + "invoke " + (_numInCurrentBatch+1)
+ " of batch " + _batchNum + " sequence (" + _rmClient.getSequenceId() + ") with operation: " +
method.getName());
 }
 } else if (closeableInvoke && method.getName().equals("close")) {
 synchronized(_clientInstance) {
 // Make sure we don't try to schedule the timer anymore
 _closed = true;
 _timer.cancel();
 }
 }
 Object ret = method.invoke(_clientInstance, args);
 if (operationInvoke) {
 synchronized(_clientInstance) {
 _numInCurrentBatch++;
 if (endOfBatch) {
 endBatch();
 }
 }
 }
 return ret;
 }
}

