
1

Oracle® Fusion Middleware
Monitoring and Managing With the Java EE Management APIs for Oracle WebLogic Server

12c Release 1 (12.1.1)

E24447-01

December 2011

This document describes the Java EE Management APIs which enable a software
developer to create a single Java program that can discover and browse resources,
such as JDBC connection pools and deployed applications, on any Java EE Web
application server.

1 Introduction and Roadmap
The Java EE Management specification describes a standard data model for
monitoring and managing the run-time state of any Java EE Web application server
and its resources. It includes standard mappings of the model through a Java EE
Management EJB Component (MEJB).

The following sections describe the contents and organization of this
guide—Monitoring and Managing With the Java EE Management APIs for Oracle WebLogic
Server:

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

1.1 Document Scope and Audience
This document is a resource for software developers who develop management
services for Java EE applications and for software vendors who develop
JMX-compatible management systems. It also contains information that is useful for
business analysts and system architects who are evaluating WebLogic Server or
considering the use of JMX for a particular application.

The information in this document is relevant during the design and development
phases of a software project. The document does not address production phase
administration, monitoring, or performance tuning topics. For links to WebLogic
Server documentation and resources for these topics, see Section 1.3, "Related
Documentation".

It is assumed that the reader is familiar with Java EE and general application
management concepts. This document emphasizes a hands-on approach to developing
a limited but useful set of JMX management services. For information on applying
JMX to a broader set of management problems, refer to the JMX specification or other
documents listed in Section 1.3, "Related Documentation".

2

1.2 Guide to This Document
This document is organized as follows:

■ This section, Section 1, "Introduction and Roadmap," describes the scope and
organization of this guide.

■ Section 2, "Using the Java EE Management APIs on WebLogic Server," introduces
JMX and describes common ways to use it in conjunction with other WebLogic
Server management features.

■ Section 3, "WebLogic Server Extensions," describes WebLogic-specific extensions to
JSR 77.

1.3 Related Documentation
Oracle has a Web site that provides links to books, white papers, and additional
information on JMX:
http://www.oracle.com/technetwork/java/javase/tech/javamanagemen
t-140525.html.

To view the JMX 1.2 specification and API documentation, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index3.ht
ml.

To view the JMX Remote API 1.0 specification and API documentation, download it
from
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.htm
l.

For guidelines on developing other types of management services for WebLogic Server
applications, see the following documents:

■ Using WebLogic Logging Services for Application Logging describes WebLogic support
for internationalization and localization of log messages, and shows you how to
use the templates and tools provided with WebLogic Server to create or edit
message catalogs that are locale-specific.

■ Configuring and Using the WebLogic Diagnostic Framework describes how system
administrators can collect application monitoring data that has not been exposed
through JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see the
following documents:

■ Developing Applications with WebLogic Server is a guide to developing WebLogic
Server applications.

■ Developing Manageable Applications with JMX describes how to create and register
custom MBeans.

2 Using the Java EE Management APIs on WebLogic Server
The Java EE Management APIs enable a software developer to create a single Java
program that can discover and browse resources, such as JDBC connection pools and
deployed applications, on any Java EE Web application server. The APIs are part of the
Java EE Management Specification, which requires all Java EE Web application servers
to describe their resources in a standard data model.

3

The following sections describe how to use the Java EE Management APIs on
WebLogic Server:

■ Section 2.1, "Understanding the Java EE Management Model and APIs"

■ Section 2.2, "The Java EE Management Model on WebLogic Server"

■ Section 2.3, "Accessing the MEJB on WebLogic Server"

2.1 Understanding the Java EE Management Model and APIs
In the Java EE Management data model, each instance of a Web application server
resource type is represented by a Java EE Managed Object (JMO). The Java EE
Management Specification describes exactly which types of resources must be
represented by a JMO. JMOs themselves contain only a limited set of attributes, which
are used to describe the location of the object in the data model.

Download the Java EE Management Specification from
http://jcp.org/aboutJava/communityprocess/final/jsr077/index.htm
l.

2.1.1 JMO Hierarchy
The data model organizes JMOs hierarchically in a tree structure. The root JMO is
J2EEDomain, which represents a collection of Web application server instances that
are logically related. J2EEDomain contains the object names for all instances of the
J2EEServer JMO, each of which represents a server instance in the collection.

Java applications can browse the hierarchy of JMOs, recursively querying for object
names and looking up the JMOs that are named by the query results.

2.1.2 JMO Object Names
Each JMO instance is identified by a unique object name of type
javax.management.ObjectName. The names follow this pattern:

domain:name=j2eeType=value,name=value,parent-j2eeType[,property=value]*

For example, mydomain:J2EEtype=J2EEDomain,name=mydomain

The Java EE Management Specification describes exactly which name/value pairs
must be in the object names for each JMO type.

The object name for each child JMO contains name/value pairs from its parent JMO's
object name. For example, if the JMO for a server instance is named

mydomain:j2eeType=J2EEServer,name=myserver

then the JMO for a servlet that is part of an application deployed on that server
instance would be named:

mydomain:J2EEApplication=myapplication,J2EEServer=myserver,WebModule=myapp_
mywebmodule,j2eeType=Servlet,name=myservlet_name

The name/value pairs can appear in any order.

2.1.3 Optional Features of JMOs
The Java EE Management Specification, version 1.0, requires only that Web application
servers implement JMOs and provide API access to the JMOs.

4

Optionally, you can implement the JMOs to provide performance statistics,
management operations, and to emit notifications when specified events occur.

2.1.4 Accessing JMOs
A Java application accesses the JMOs through
javax.management.j2ee.Management, which is the remote interface for the
Management Enterprise Java Bean (MEJB).

The Java EE Management Specification requires that the MEJB's home interface be
registered in a server's JNIDI tree as ejb.mgmt.MEJB.

See the API Reference for the javax.management.j2ee package:
http://download.oracle.com/javaee/6/api/javax/management/j2ee/pa
ckage-summary.html.

2.2 The Java EE Management Model on WebLogic Server
WebLogic Server implements only the required features of the Java EE Management
Specification, version 1.1. Therefore, the following limitations are in place:

■ None of the JMOs provide performance statistics, management operations, or emit
notifications.

■ There are no mappings to the Common Information Model (CIM).

■ There are no mappings to an SNMP Management Information Base (MIB).

The MEJB and JMOs are available only on the Administration Server. This is consistent
with the Java EE Management Model, which assumes that most Java EE Web servers
exist within some logically connected collection and that there is a central point within
the collection for accessing or managing the server instances. From the Administration
Server, a Java application can browse to the JMO that represents any resource on any
server instance in the WebLogic Server domain.

Because WebLogic Server implements its JMOs as a wrapper for its MBeans, any
changes in a WebLogic Server MBean that corresponds to a JMO is immediately
available through the Java EE Management APIs.

For all JMO object names on WebLogic Server, the domain: portion of the object name
corresponds to the name of the WebLogic Server domain.

2.3 Accessing the MEJB on WebLogic Server
To retrieve monitoring data through the MEJB:

1. Look up the javax.management.j2ee.ManagementHome interface through
the Administration Servers JNDI tree under the name ejb.mgmt.MEJB.

2. Use ManagementHome to construct an instance of
javax.management.j2ee.Management, which is the MEJB's remote interface.

2.3.1 Example: Querying Names of JMOs
The example class in Example 1 accesses the MEJB for a WebLogic Server domain and
invokes javax.management.j2ee.Management.queryNames method. This
method returns the object name for all JMOs in the domain.

Example 1 Querying Names of JMOs

import java.io.IOException;

5

import java.net.MalformedURLException;
import java.util.Iterator;
import java.util.Set;
import java.util.Properties;
import javax.management.j2ee.Management;
import javax.management.j2ee.ManagementHome;
import javax.management.AttributeNotFoundException;
import javax.management.InstanceNotFoundException;
import javax.management.ObjectName;
import javax.management.QueryExp;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.ejb.CreateException;
public class GetJMONames {
 static String url = "t3://localhost:7001";
 static String user = "weblogic";
 static String password = "weblogic";
 public static void main(String[] args) {
 try {
 getAllJMONames();
 }catch(Exception e){
 System.out.println(e);
 }
 }
 public static Management getMEJBRemote()
 throws IOException, MalformedURLException,
 NamingException,CreateException
 {
 Context context = getInitialContext();
 ManagementHome home = (ManagementHome)
 context.lookup("ejb.mgmt.MEJB");
 Management bean = home.create();
 return bean;
 }
 public static Context getInitialContext()
 throws NamingException
 {
 Properties p = new Properties();
 p.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 p.put(Context.PROVIDER_URL, url);
 if (user != null) {
 p.put(Context.SECURITY_PRINCIPAL, user);
 if (password == null)
 password = "";
 p.put(Context.SECURITY_CREDENTIALS, password);
 }
 return new InitialContext(p);
 }
 public static void getAllJMONames()
 {
 try {
 Management rhome = getMEJBRemote();
 String string = "";
 ObjectName name = new ObjectName(string);
 QueryExp query = null;
 Set allNames = rhome.queryNames(name, query);
 Iterator nameIterator = allNames.iterator();

6

 while(nameIterator.hasNext()) {
 ObjectName on = (ObjectName)nameIterator.next();
 System.out.println(on.getCanonicalName() + "\n");
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }
}

3 WebLogic Server Extensions
WebLogic Server implements an extension to JSR 77 that gives you access to
WebLogic-specific deployment descriptors using the MEJB, just like the standard J2EE
deployment descriptors. The productSpecificDeploymentDescriptor attribute
returns the XML contents of the WebLogic-specific descriptor file. Example 2
illustrates calling the method.

Example 2 productSpecificDeploymentDescriptor

// Get the WLS specific deployment descriptor.
// This is similar to the call for the standard descriptor
// (i.e., the "deploymentDescriptor" attribute)
//
dd = (String) managementBean.getAttribute(objName,
"productSpecificDeploymentDescriptor");

// It returns a string containing the contents of the WLS specific deployment
// descriptor. This is the XML file contents as a string.

4 Conventions
The following text conventions are used in this document:

5 Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

7

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Oracle Fusion Middleware Monitoring and Managing With the Java EE Management APIs for Oracle WebLogic Server, 12c Release 1 (12.1.1)
E24447-01

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them
to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions
and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use
in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered
trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

8

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation

	2 Using the Java EE Management APIs on WebLogic Server
	2.1 Understanding the Java EE Management Model and APIs
	2.1.1 JMO Hierarchy
	2.1.2 JMO Object Names
	2.1.3 Optional Features of JMOs
	2.1.4 Accessing JMOs

	2.2 The Java EE Management Model on WebLogic Server
	2.3 Accessing the MEJB on WebLogic Server
	2.3.1 Example: Querying Names of JMOs

	3 WebLogic Server Extensions
	4 Conventions
	5 Documentation Accessibility

