
Oracle® Application Server 10g
Migrating from Oracle Application Server

10g (9.0.4)

Part No. B10424-01

October 2003

Oracle Application Server 10g Migrating from Oracle Application Server, 10g (9.0.4)

Part No. B10424-01

Copyright © 2002, 2003 Oracle Corporation. All rights reserved.

Primary Author: Priya Darshane

Contributors: Kai Li, Song Lin, Stephen Mayer, Baogang Song

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software” and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are “restricted computer
software” and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Store, Oracle8i, Oracle9i, SQL*Plus, and PL/SQL are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments .. v

Preface... vii

Intended Audience .. viii
Documentation Accessibility ... viii
Organization... ix
Related Documentation ... x
Conventions.. xi

1 Introduction to Oracle Application Server 10g

What is Oracle Application Server 10g? ... 1-2
Oracle Application Server Component Migration Options ... 1-3
Enterprise Services Migration .. 1-4

Oracle HTTP Server .. 1-5
OC4J... 1-6
Migrating Certificates ... 1-8

2 Migrating JWeb Applications to OC4J

JWeb and OC4J Differences.. 2-2
JWeb Architecture ... 2-2
OC4J Architecture ... 2-3
Single Host Configuration ... 2-4
JWeb Life Cycle.. 2-5
OC4J Life Cycle.. 2-5

iv

JWeb Threading ... 2-6
OC4J Threading ... 2-6

Migration Strategies ... 2-8
Code Modifications for JWeb Applications ... 2-10

Session Timeout ... 2-11
JWeb Toolkit Packages (JWeb API)... 2-12

3 Migrating Oracle Application Server Cartridges

Cartridge Types and Corresponding Oracle Application Server 10g Modules 3-2
PL/SQL Migration... 3-3
Perl Migration.. 3-7

Differences between Cartridge Scripts and CGI Scripts .. 3-7
Oracle Application Server 10g Perl Environment... 3-8
Perl Modules .. 3-8
Namespace Collision... 3-10
Using cgi-lib.pl ... 3-10
Pre-loading Modules... 3-10

LiveHTML Migration... 3-11
CWeb Migration .. 3-13

4 Migrating EJB, ECO/Java and JCORBA Applications

Migrating EJBs to OC4J ... 4-2
Migrating ECO/Java to OC4J .. 4-4
Migrating JCORBA to OC4J ... 4-5

Index

v

Send Us Your Comments

Oracle Application Server 10g Migrating from Oracle Application Server, 10g (9.0.4)

Part No. B10424-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com
■ FAX: 650-506-7375 Attn: Oracle Application Server Documentation Manager
■ Postal service:

Oracle Corporation
Oracle Application Server Documentation
500 Oracle Parkway, M/S 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

vi

vii

Preface

This guide describes the process of migrating your system from Oracle Application
Server to Oracle Application Server 10g.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

viii

Intended Audience
Oracle Application Server 10g Migrating from Oracle Application Server is intended for
system administrators and application developers who will migrate their systems
from Oracle Application Server to Oracle Application Server 10g.

To use this document, you need to be familiar with the configuration, operation,
and development of Oracle Application Server and other system administration
tasks.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

ix

Organization
This document contains:

Chapter 1, "Introduction to Oracle Application Server 10g"

This chapter provides an introduction to Oracle Application Server 10g and
migration options for Oracle Application Server users.

Chapter 2, "Migrating JWeb Applications to OC4J"

This chapter discusses migration of JWeb applications from Oracle Application
Server to OC4J in Oracle Application Server 10g.

Chapter 3, "Migrating Oracle Application Server Cartridges"

This chapter compares Oracle Application Server cartridge functionality to
corresponding functionality in Oracle Application Server 10g, and discusses
considerations for migrating cartridges to the Oracle Application Server 10g
Infrastructure.

Chapter 4, "Migrating EJB, ECO/Java and JCORBA Applications"

This chapter provides information on migrating EJB, ECO for Java and JCO
applications from Oracle Application Server to Oracle Application Server 10g OC4J.

x

Related Documentation
For more information, see these Oracle resources:

■ Oracle Application Server 10g Documentation Library CD-ROM

■ Oracle Application Server 10g Platform Specific Documentation on Oracle
Application Server 10g Disk 1

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

xi

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Microsoft Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example

xiii

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

Convention Meaning Example

xiv

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_
NAMETNSListener

xv

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin95 for Windows 95

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

xvi

Introduction to Oracle Application Server 10g 1-1

1
Introduction to Oracle Application Server

10g

This chapter provides a general discussion of the Oracle Application Server 10g
characteristics in comparison to those of Oracle Application Server. It includes a
mapping of Oracle Application Server components to their equivalent functionality
in Oracle Application Server 10g.

Topics discussed are:

■ What is Oracle Application Server 10g?

■ Oracle Application Server Component Migration Options

■ Enterprise Services Migration

What is Oracle Application Server 10g?

1-2 Oracle Application Server 10g Migrating from Oracle Application Server

What is Oracle Application Server 10g?
Oracle Application Server 10g provides full support for the Java 2 Platform
Enterprise Edition (J2EE), XML, and emerging Web services standards. With Oracle
Application Server 10g, you can simplify information access for your customers and
trading partners by delivering enterprise portals, which can be customized and
accessed from a network browser or wireless devices. It allows you to redefine your
business processes, and integrate your applications and data sources with those
from your customers or partners. You can deliver tailored customer experiences via
real-time personalization, and assess and correlate Web site traffic patterns using
Oracle Application Server 10g integrated business intelligence services.

You can also implement a centralized management, security, and directory
framework to manage and monitor all of your distributed systems and diverse user
communities. Oracle Application Server 10g allows you to save on Web site
infrastructure by deploying your fast, scalable Internet applications through built-in
Web caching, load balancing and clustering capabilities.

See Also: Oracle Application Server 10g Concepts

Oracle Application Server Component Migration Options

Introduction to Oracle Application Server 10g 1-3

Oracle Application Server Component Migration Options
Table 1–1 presents Oracle Application Server components and their corresponding
functionality in Oracle Application Server 10g, as well as the chapter in this guide
that contains detailed information regarding specific components. During the
migration process, you must migrate Oracle Application Server components to their
closest corresponding components in Oracle Application Server 10g.

Table 1–1 Comparison of Application Server Components

Oracle Application
Server Component

Closest Oracle Application Server 10g
Equivalent Component Reference

JWeb application Oracle Application Server Containers for J2EE
(OC4J) application

Chapter 2

JServlet application OC4J application Chapter 2

LiveHTML application Apache SSI and JavaServer Page (JSP) applications Chapter 3

Perl application mod_perl application Chapter 3

CWeb application Custom Apache Modules, Common Gateway
Interface (CGI), FastCGI, Java Native Interface (JNI)

Chapter 3

PL/SQL application mod_plsql application Chapter 3

ECO/Java application OC4J application Chapter 4

EJB application OC4J application Chapter 4

JCORBA application OC4J application Chapter 4

Enterprise Services Migration

1-4 Oracle Application Server 10g Migrating from Oracle Application Server

Enterprise Services Migration
This section discusses enterprise services and characteristics of a Web site of
concern to administrators and developers. The following topics are discussed:

■ Overview

■ Scalability

■ Availability and Fault Tolerance

■ Load Balancing

■ Administration

■ Security

■ Third Party Web Server Support

This section also describes whether migrating your Web site from Oracle
Application Server to Oracle Application Server 10g affects these characteristics.

Overview
Oracle Application Server consists of three layers, the HTTP listener layer, the
server layer, and the applications layer. The HTTP listener layer consists of listeners,
adapter interface, and dispatchers. The server layer provides a common set of
components for managing applications. These components include load balancing,
logging, automatic failure recovery, security, directory and transaction management
components. The application layer consists of applications, cartridges, and cartridge
servers. When a request arrives, the dispatcher routes the request to the application
server layer, and if a cartridge instance is available, the request is serviced by that
instance. Otherwise, a new instance is created.

In Oracle Application Server 10g, Oracle HTTP Server handles load balancing,
routing servlet requests to OC4J through mod_oc4j, single sign-on authentication
and security context propagation through mod_osso and SSL. OC4J consists of
pure J2EE containers for running JSPs, servlets, and EJBs, and provides J2EE
container services. Both the Oracle HTTP Server and OC4J perform the same
functions as three layers in Oracle Application Server.

See Also: Oracle Application Server Overview and Glossary

Enterprise Services Migration

Introduction to Oracle Application Server 10g 1-5

Scalability
You can deploy Oracle Application Server in single or multiple host environments.
You can configure Oracle HTTP Server and OC4J for single or clustered host
environments.

Oracle HTTP Server
In Oracle Application Server, each listener accommodates a maximum number of
concurrent connections. This number varies based on operating system restrictions.
To distribute the request load on a site, you can create multiple listeners, each
listening on a different TCP port.

For Oracle Application Server 10g on UNIX, Oracle HTTP Server creates a pool of
child processes ready to handle incoming client requests during the startup. As the
requests load increases, the server spawns new processes for subsequent requests.
The initial and maximum size of the pool, and the minimum or maximum number
of spare server processes is configured with the StartServers, MaxClients,
MinSpareServers and MaxSpareServers directives, respectively.

For Oracle Application Server 10g on Windows, Oracle HTTP Server runs as a
multi-threaded process. The number of simultaneous connections is configured
with the ThreadsPerChild directive, which is analogous to both the
StartServers and MaxClients directives for UNIX.

You can configure Oracle Application Server through the Node Manager. For Oracle
Application Server 10g, you can configure Oracle HTTP Server using Oracle
Enterprise Manager Application Server Control, or by manually editing the
httpd.conf file, which is located at:

■ UNIX: ORACLE_HOME/Apache/Apache/conf/httpd.conf

■ Windows: ORACLE_HOME\Apache\Apache\conf\httpd.conf

See Also:

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server 10g Administrator’s Guide

Enterprise Services Migration

1-6 Oracle Application Server 10g Migrating from Oracle Application Server

OC4J
In Oracle Application Server, as the number of requests increases, the system
creates new cartridge servers and new instances.

In Oracle Application Server 10g, Oracle HTTP Server’s mod_oc4j receives
requests from the server and routes them to the OC4J servlet container.

Availability and Fault Tolerance
When a component, such as a listener or a cartridge server fails, Oracle Application
Server detects the failure and restarts the failed component. It restores any
preserved state information, when possible.

In Oracle HTTP Server, if there is more than one HTTP server host, or more than
one OC4J host, when one of the hosts stops, the system will still function as long as
one HTTP server and one OC4J are running, provided that J2EE components have
been deployed against the cluster of OC4J instances. Any Oracle HTTP Server
instance can route a request to any OC4J instance. Maintaining routing information
in cookies eliminates single point of failure.

Load Balancing
Oracle Application Server allocates system resources and prioritizes requests based
on two types of load balancing methods, priority-based method and minimum or
maximum-based method.

In priority mode, the system manages and allocates resources automatically, based
on the priority level you set for your applications and cartridges. The number of
processes, threads, and instances is automatically determined based on the request
load and priority level of the application and components.

In minimum or maximum mode, you set the number of instances, threads and
client parameters for each cartridge at the cartridge level.

See Also:

■ Oracle Application Server Containers for J2EE User’s Guide for
OC4J information.

■ Chapter 2, "Migrating JWeb Applications to OC4J"

■ Chapter 4, "Migrating EJB, ECO/Java and JCORBA
Applications"

Enterprise Services Migration

Introduction to Oracle Application Server 10g 1-7

In Oracle HTTP Server, you can define the number of hosts, and a logical set of
these hosts in your configuration file. The system assigns incoming requests to OC4J
instances.

Administration
Oracle Application Server provides GUI tools and built-in support for
administering and monitoring your site, listeners, and applications. The
configuration data from the Oracle Application Server Manager tool is stored in
various configuration files.

In Oracle HTTP Server, you can perform site administration and maintenance using
Oracle Enterprise Manager, or through a set of configuration files. Table 1–2
presents configuration files for the Oracle Application Server HTTP listener and
Oracle HTTP Server.

See Also:

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server 10g Administrator’s Guide.

Table 1–2 Configuration Files Comparison

Oracle Application Server HTTP
Listener

Oracle Application Server 10g Oracle HTTP
Server

owl.cfg: list of registered listeners and
their configuration settings

httpd.conf: primary (or sole) server-wide
configuration file

(You can choose to maintain file location and
translation information in srm.conf, and
security information in access.conf, or to
maintain all directives in one file.)

site.app: site configuration file (no equivalent)

svlistenerName.cfg: listener
configuration file

(no equivalent)

wrb.app: process and cartridge
configuration file

(no equivalent)

resources.ora: configuration file for
the ORB

(no equivalent)

Enterprise Services Migration

1-8 Oracle Application Server 10g Migrating from Oracle Application Server

Security
You must convert the certificate from Oracle Application Server to Oracle
Application Server 10g. The section below provides the required instructions.

Migrating Certificates
Protecting your site with SSL is one of the security measures you can take. If you
have done so and want to migrate your SSL certificate to Oracle Application Server
10g, you must convert it.

Oracle Application Server 10g contains two migration tools, pconvert and
ssl2ossl (UNIX) or osslconvert (Windows). Perform following steps to
migrate from the Oracle Application Server certificate to an Oracle Application
Server 10g certificate or wallet.

1. Convert Oracle Application Server private key to an Oracle Application Server
10g private key using the conversion tool, pconvert, which is located at:

■ UNIX: ORACLE_HOME/Apache/Apache/bin/pconvert

■ Windows: ORACLE_HOME\Apache\Apache\bin\pconvert.exe

The syntax for running pconvert is:

pconvert -s oas_private_key_file -d ias_private_key_file

For example:

prompt> pconvert -s privkey.der -d iaskey.pem

2. Generate an Oracle Application Server 10g wallet file using the Oracle
Application Server certificate file and the ias_private_key file that you
obtained from step 1 with the conversion tool, ssl2ossl or osslconvert.
The full paths to the tools are:

■ UNIX: ORACLE_HOME/Apache/Apache/bin/ssl2ossl

■ Windows: ORACLE_HOME\Apache\Apache\bin\osslconvert.exe

Enterprise Services Migration

Introduction to Oracle Application Server 10g 1-9

The syntax for running ssl2ossl on UNIX is:
 ssl2ossl -cert oas_certificate_file

-key ias_private_key_file
-wltpass password_for_wallet
-certpass password_for_oas_certificate_file
-chain oas_certificate_chain_file
-capath oas_certificate_authority_path
-cafile oas_certificate_authority_file
-wallet wallet_full_path
-ssowallet yes/no
-validate yes/no

The syntax for running osslconvert on Windows is:
 osslconvert.exe -cert oas_certificate_file

-key ias_private_key_file
-wltpass password_for_wallet
-certpass password_for_oas_certificate_file
-chain oas_certificate_chain_file
-capath oas_certificate_authority_path
-cafile oas_certificate_authority_file
-wallet wallet_full_path
-ssowallet yes/no
-validate yes/no

Enterprise Services Migration

1-10 Oracle Application Server 10g Migrating from Oracle Application Server

Table 1–3 summarizes the parameters and their associated requirements for the
ssl2ossl or osslconvert conversion tool.

Table 1–3 Summary of ssl2ossl or osslconvert Tool Parameters

Parameter Description Requirement

cert Oracle Application Server
certificate file

required

key ias_private_key_file
from step 1

required

certpass password for the certificate optional

wltpass password for the wallet optional

chain Oracle Application Server
certificate chain file

optional, but of chain, capath, or cafile, at
least one of these parameters are required.

capath Oracle Application Server
certificate authority path

optional, but of chain, capath, or cafile, at
least one of these parameters are required.

cafile Oracle Application Server
certificate authority file

optional, but of chain, capath, or cafile, at
least one of these parameters are required.

wallet full path of your wallet file optional, but the default path is ORACLE_
HOME/Apache/Apache/conf/ssl.wlt/0

ssowallet with a value of either yes or
no

optional, the default value is no

validate with a value of either yes or
no.If yes, then the tool will
not generate a wallet. If no,
the tool will generate a
wallet.

optional, the default value is no.

See Also: Oracle Application Server 10g Security Guide for details on
ssowallet and other security information

Enterprise Services Migration

Introduction to Oracle Application Server 10g 1-11

Third Party Web Server Support
Oracle Application Server 10g uses Oracle HTTP Server, and Oracle Application
Server uses HTTP Server as their Web listeners. However, many companies only
use Microsoft Internet Information Services (IIS), or SUN One as their corporate
standard Web server.

Both Oracle Application Server and Oracle Application Server 10g support third
party Web servers, such as IIS and Sun ONE.

Enterprise Services Migration

1-12 Oracle Application Server 10g Migrating from Oracle Application Server

Migrating JWeb Applications to OC4J 2-1

2
Migrating JWeb Applications to OC4J

This chapter discusses migration of JWeb applications from Oracle Application
Server to OC4J in Oracle Application Server 10g.

Topics discussed are:

■ JWeb and OC4J Differences

■ Migration Strategies

■ Code Modifications for JWeb Applications

JWeb and OC4J Differences

2-2 Oracle Application Server 10g Migrating from Oracle Application Server

JWeb and OC4J Differences
This section provides background information on JWeb and OC4J. It also describes
the differences between JWeb and OC4J applications.

Architecture
JWeb applications execute within the Oracle Application Server cartridge
infrastructure, while OC4J runs on a standard virtual machine.

JWeb Architecture
In Oracle Application Server, the HTTP listener receives a request for a JWeb
cartridge. The listener passes the request to the dispatcher, which communicates
with the Security or Web Request Broker (WRB). The WRB uses a URL mapping to
identify the cartridge instance to which the request should be sent. If no cartridge
instances exist for the requested cartridge, the cartridge server factory creates a
cartridge server process to instantiate the cartridge. In JWeb, the cartridge server
process loads a JVM, which runs a JWeb application (of the Oracle Application
Server application paradigm). Figure 2–1 depicts this process graphically.

Figure 2–1 Oracle Application Server Cartridge Infrastructure

JWeb and OC4J Differences

Migrating JWeb Applications to OC4J 2-3

OC4J Architecture
OC4J consists of a Web container including servlet and JSP engines, EJB container,
J2EE services APIs (JNDI, JTA, JMS, and JAAS), and enterprise information systems
APIs (JDBC, SQLJ, J2EE connector architecture).

mod_oc4j is a dynamically loaded module of Oracle HTTP Server with the
purpose of routing requests through Oracle HTTP Server to OC4J processes. mod_
oc4j takes into account OC4J sessions information to route requests back to the
original OC4J process and to re-route failed session requests to other members of
the same OC4J Island when the original OC4J process is unreachable.

The mod_oc4j interacts with two components, Oracle Process Manager and
Notification Server (OPMN) and OC4J. mod_oc4j interacts with OC4J by routing
requests to it. OPMN starts Oracle HTTP Server (which starts mod_oc4j)and starts
all OC4J processes. OPMN monitors each process that it starts and periodically
verifies that each process is reachable. If a process dies, or becomes unreachable,
OPMN restarts that process. In addition, OPMN communicates OC4J process status
to mod_oc4j so that mod_oc4j knows when OC4J processes are started and
stopped. The mod_oc4j uses this information to maintain an internal OC4J process
table for rapid request routing.

Figure 2–2 illustrates a one-to-many configuration.

Figure 2–2 OC4J Architecture (one-to-many example)

See Also:

■ Oracle Application Server Containers for J2EE User’s Guide

■ Oracle HTTP Server Administrator’s Guide

JWeb and OC4J Differences

2-4 Oracle Application Server 10g Migrating from Oracle Application Server

A one-to-many configuration, consists of one Oracle HTTP Server listener and
multiple OC4J instances. In the figure below, a single Oracle HTTP Server instance
is communicating with two OC4J hosts. OC4J Host 1 is running two servlet
containers, and OC4J Host 2 is running one servlet container. Three connections are
open between the servlet containers and a single mod_oc4j in the OC4J instance.

A servlet container provides the runtime environment to execute servlets
implementing the servlet 2.3 Application Programming Interface (API)
specifications. It runs in a JVM process in the same or different host as mod_oc4j.
Each JVM has one servlet container, and the number of servlet containers is not
proportional to the number of Web servers (mod_oc4j modules). One mod_oc4j
can work with more than one servlet container and vice versa. Or, multiple mod_
oc4j modules can work with multiple servlet containers.

Single Host Configuration
When a servlet container is located on the same machine as the Web server, you can
set up the mod_oc4j module to start or stop the servlet container and JVM when
the Web server starts or stops, respectively. The module performs all the necessary
tasks to gracefully shut down the JVM. In this scenario, mod_oc4j can also perform
failover by checking JVM status regularly and starting another JVM if the first one
becomes unavailable.

JWeb and OC4J Differences

Migrating JWeb Applications to OC4J 2-5

Life Cycle
JWeb classes and OC4J applications have different life cycles.

JWeb Life Cycle
JWeb classes use the standard main() entry point to start their execution logic.
Their life cycle resembles that of a standard Java class in loading, linking,
initializing, and invoking main().

OC4J Life Cycle
In OC4J, servlet life cycle is in compliance with servlet 2.3 specifications. The life
cycle is defined by the javax.servlet.servlet interface, which is implemented
directly or indirectly by all servlets. This interface has methods which are called at
specific times by the servlet engine in a particular order during a servlet’s lifecycle.
The init() and destroy() methods are invoked once per servlet lifetime, while
the service() method is called multiple times to execute the servlet’s logic.

Figure 2–3 illustrates the servlet life cycle.

Figure 2–3 Servlet Life Cycle

See Also: http://java.sun.com/docs for information on
Java Virtual Machines.

JWeb and OC4J Differences

2-6 Oracle Application Server 10g Migrating from Oracle Application Server

Threading
The JWeb cartridge and OC4J servlet container support single or multiple threads of
execution, but the threading implementations are different.

JWeb Threading
Threading for the JWeb cartridge is defined in the Oracle Application Server
cartridge configuration by toggling the Stateless parameter. If the stateless
parameter is set to true, then a cartridge instance is shared by more than one
client. If the stateless perimeter is set to false, then it is not shared, and only one
client can access it at any one time. Also, if Oracle Application Server is in min/max
mode, the min/max cartridge servers and min/max threads values can be varied to
change the way multi-threading is implemented for the cartridge.

OC4J Threading
The OC4J servlet container is multi-threaded by default. The OC4J servlet container
manages the threads that service client requests. Each instance of a servlet class can
be given multiple threads of execution. In this case, a servlet instance is shared
between more than one client. Alternatively, you can specify a class to execute only
one thread at a time by having that class implement the
javax.servlet.SingleThread interface. In this case, a pool of instances of this
servlet class is maintained and each instance is assigned to one client only at any
one time (instances are not shared).

Sessions
In the JWeb cartridge, you can enable client sessions using the Oracle Application
Server Node Manager. In OC4J, in accordance with servlet 2.3 specifications, only
programmable sessions are available. Consequently, if you are migrating a JWeb
application that was session-enabled by means other than code, you must
implement the session mechanism programmatically using the servlet session API.

See Also: "Session Control" on page 2-10

JWeb and OC4J Differences

Migrating JWeb Applications to OC4J 2-7

Dynamic Content Generation in HTML Pages
A JWeb Toolkit feature is available for generating dynamic content in HTML pages.
The JWeb Toolkit embeds special placeholders in an HTML page. When this file is
imported into a JWeb class as an oracle.html.HtmlFile object, the
setItemAt() method places the data generated from the code at the placeholder
locations.

Since this is a JWeb-specific feature, it is not available in Oracle Application Server
10g. If you would like to embed dynamic information in HTML pages (scripting),
consider using JSP in Oracle Application Server 10g.

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide

Migration Strategies

2-8 Oracle Application Server 10g Migrating from Oracle Application Server

Migration Strategies
OC4J provides complete support for J2EE 1.2, as well as support for major J2EE 1.3,
such as complete servlet 2.3, partial EJB 2.0 (message-driven beans), complete JAAS
and JCA support. If you have JWeb or JServlet applications deployed on Oracle
Application Server 4.x and wish to migrate to Oracle Application Server 10g, you
must modify your JWeb or JServlet applications to comply with applicable
specifications for OC4J.

Comparison of Compliance Standards
Table 2–1 presents the comparison of compliance standards between the JWeb and
JServlet cartridges in Oracle Application Server and OC4J in Oracle Application
Server 10g. When migrating JWeb or JServlet from Oracle Application Server to
OC4J servlet in Oracle Application Server 10g, you must modify the code to comply
with servlet 2.3 specifications.

Key JWeb and Servlet Methods
In order to migrate, you must understand and use the following key methods:

JWeb: contains a Java class with a main() method, also known as JWeb cartridge.
The infrastructure of JWeb maps a URL to this method.

Servlet: contains a Java class that includes a few doGet() and doPut() methods,
specified by Sun Microsystems Inc., which map to a URL.

Table 2–1 Comparison of Compliance Standards for JWeb, JServlet, and OC4J

Standard Complied JWeb JServlet OC4J

Servlet Specifications NA 2.3 2.3

JSP Specifications NA NA 1.2

See Also: http://java.sun.com for more information
regarding servlet specifications.

Migration Strategies

Migrating JWeb Applications to OC4J 2-9

Migration Approach
As a primary migration approach, you can call the main() method of the JWeb
cartridge in the corresponding doGet() servlet method.

Specifically, you must focus on the following aspects:

■ Logging APIs: Oracle Application Server 10g does not support the Oracle
Application Server logging APIs. Instead, it uses the servlet logging APIs.
Therefore, you must modify your code in JWeb cartridge to reflect the changes
in logging APIs.

■ Utility APIs: Use JSP to write your utility APIs. Currently, oracle.html.*.
package is not available.

■ WRB Calls: You must use the standard servlet APIs to write your security code
since Oracle Application Server 10g does not support most WRB APIs. For
example, you can use methods getClientCertificate()and getLogin().

■ Session: see "Session Control" on page 2-10.

■ Application Thread: see "Application Threads" on page 2-11.

■ Logging: see "Logging" on page 2-11.

See Also: http://jakarta.apache.org/ecs/index.html
for more information regarding html.*. packages.

Code Modifications for JWeb Applications

2-10 Oracle Application Server 10g Migrating from Oracle Application Server

Code Modifications for JWeb Applications
To migrate JWeb applications to OC4J, you must modify code in these areas:

■ Session Control

■ Application Threads

■ Logging

Session Control
You can session-enable a JWeb application with the cartridge’s Client Session
parameter in the “Node Manager Web Parameters” form. This allows the static
parameters of an invoked class to contain per client data across calls. In OC4J, as per
the servlet 2.3 API, session state is not kept in static variables of servlet classes.
Instead, a session object is explicitly obtained to store session state using named
attributes.

In OC4J, there is no support for configurable sessions. Therefore, you must enable
sessions in code using the getSession() method in
javax.servlet.http.HttpServletRequest, as shown below:

HttpSession session = request.getSession(true);

State information for a session can be stored subsequently and retrieved, for
example, by the setAttribute(java.lang.String, java.lang.Object)
and getAttribute(java.lang.String) methods of
javax.servlet.http.HttpSession, respectively.

session.setAttribute(“List”, new Vector());
Vector list = (Vector) session.getAttribute(“List”);

Note: Do not use static data members to maintain session state in
OC4J (although this is a common practice in JWeb). Instead, use the
servlet session API. The latter allows the servlet container to use
memory more efficiently.

Code Modifications for JWeb Applications

Migrating JWeb Applications to OC4J 2-11

Session Timeout
The default session timeout for an OC4J container can be specified in the
session.config element in the XML deployment descriptors. You can use the
getMaxInactiveInterval method in the HTTPSession interface. To set the
time-out value for a container, use setMaxInactiveInterval method.

The JWeb session time-out callback is not available in OC4J.

Application Threads
In JWeb, an application can manage threads using the
oracle.owas.wrb.WRBRunnable class. This class allows application threads to
access request and response information. For OC4J, you only need standard Java
thread management to manage application threads (the java.lang.Runnable
interface is used). For both JWeb and OC4J, using application threads is not
recommended because multi-threaded applications limit the effectiveness of the
load balancer.

Logging
In Oracle Application Server, JWeb applications log messages using the logger
service provided by the WRB. This service allows applications to write messages to
a central repository, such as a file system or database. The
oracle.owas.wrb.services.logger.OutputLogStream class interfaces
with the logger service.

In Oracle Application Server 10g, OC4J generates diagnostic messages associated
with servlet logging APIs. These logging files are located at ORACLE_
HOME/j2ee/home/log/digit digit_island-name/server.log.

Note: OC4J does not have log levels.

Code Modifications for JWeb Applications

2-12 Oracle Application Server 10g Migrating from Oracle Application Server

JWeb Toolkit Packages (JWeb API)
Oracle Application Server includes a JWeb toolkit containing proprietary Java
packages. If you used any of those packages in JWeb applications that you are
migrating to Oracle Application Server, you must modify the code to use servlet 2.3
equivalent classes and methods. If no equivalent functionality is available, you
must rewrite the code to implement the functionality provided by the JWeb
packages.

Because some of the JWeb toolkit packages were designed specifically to interact
with Oracle Application Server components such as the WRB, the functionality in
these packages is not reproducible in the standard servlet API. Consequently, the
migration process may also include some redesign of applications.

Table 2–2 through Table 2–8 list JWeb methods and their functional equivalents for
the following servlet API classes.

Table 2–2 lists JWeb equivalents for
javax.servlet.http.HttpServletRequest Class Methods.

Table 2–2 JWeb Equivalents for javax.servlet.http.HttpServletRequest Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getHeader(String) getHeader(string)

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“AUTH_TYPE”) getAuthType()

oracle.owas.wrb.services.http.HTTP.getHeaders()1

1 return a hashtable of header names and values

getHeaderNames()2

2 return an enumeration of header names

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“PATH_INFO”) getPathInfo()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“PATH_TRANSLATED”) getPathTranslated()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“QUERY_STRING”) getQueryString()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REQUEST_METHOD”) getMethod()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REMOTE_USER”) getRemoteUser()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SCRIPT_NAME”) getServletPath()

Code Modifications for JWeb Applications

Migrating JWeb Applications to OC4J 2-13

Table 2–3 lists JWeb equivalents for javax.servlet.ServletRequest Class
Methods.

Table 2–3 JWeb equivalents for javax.servlet.ServletRequest Class Methods

Table 2–4 lists JWeb equivalents for javax.servlet.ServletResponse Class
Methods.

Table 2–5 lists JWeb equivalents for javax.servlet.ServletContext Class
Methods.

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“CONTENT_TYPE”) getContentType()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“CONTENT_LENGTH”) getContentLength()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SERVER_PROTOCOL”) getProtocol()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REMOTE_ADDR”) getRemoteAddr()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“REMOTE_HOST”) getRemoteHost()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SERVER_NAME”) getServerName()

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment(“SERVER_PORT”) getServerPort()

oracle.owas.wrb.services.http.HTTP.getPreferredAcceptCharset() getCharacterEncoding()

oracle.owas.wrb.services.http.HTTP.getURLParameter(name) getParameter(string)

oracle.owas.wrb.services.http.HTTP.getURLParameters(name) getParameterValues(string)

Table 2–4 JWeb Equivalents for javax.servlet.ServletResponse Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.WRBWriter getWriter()

Table 2–5 JWeb Equivalents for javax.servlet.ServletContext Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getCGIEnvironment("SERVER_SOFTWARE") getServerInfo()

oracle.OAS.Services.Logger package log(Exception, String)

log(String)

Code Modifications for JWeb Applications

2-14 Oracle Application Server 10g Migrating from Oracle Application Server

Table 2–6 lists JWeb equivalents for javax.servlet.http.HttpUtils Class
Methods.

Table 2–7 lists JWeb equivalents for Javax.servlet.ServletOutputStream
Class Methods.

Table 2–8 lists JWeb equivalents for javax.servlet.ServletInputStream
Class Methods.

Table 2–6 JWeb Equivalents for javax.servlet.http.HttpUtils Class Methods

JWeb Method Servlet Method

oracle.owas.wrb.services.http.HTTP.getURLParameters(Hashtable) parsePostData(int, ServletInputStream)

oracle.owas.wrb.services.http.HTTP.getURLParameters(Hashtable) parseQueryString(String)

Table 2–7 JWeb Equivalents for Javax.servlet.ServletOutputStream Class Methods

JWeb Method Servlet Method

oracle.html.HtmlStream.print() javax.servlet.ServletOutputStream.print()

oracle.html.HtmlStream.println() javax.servlet.ServletOutputStream.println()

Table 2–8 JWeb Equivalents for javax.servlet.ServletInputStream Class Method

JWeb Method Servlet Method

oracle.owas.wrb.services.http.MultipartElement() javax.servlet.ServletInputStream.readLine()

Migrating Oracle Application Server Cartridges 3-1

3
Migrating Oracle Application Server

Cartridges

This chapter compares Oracle Application Server cartridge functionality to
corresponding functionality in Oracle Application Server 10g, and discusses
considerations for migrating cartridges to Oracle Application Server 10g.

Topics discussed are:

■ Cartridge Types and Corresponding Oracle Application Server 10g Modules

■ PL/SQL Migration

■ Perl Migration

■ LiveHTML Migration

■ CWeb Migration

Cartridge Types and Corresponding Oracle Application Server 10g Modules

3-2 Oracle Application Server 10g Migrating from Oracle Application Server

Cartridge Types and Corresponding Oracle Application Server 10g
Modules

Table 3–1 presents the equivalent Oracle Application Server cartridge types and
their Oracle Application Server 10g components.

The migration strategy for each application cartridge is detailed in the sections
below.

Table 3–1 Cartridge Types

Oracle Application Server Cartridge Type Oracle Application Server 10g Equivalent

PL/SQL mod_plsql

Perl mod_perl

LiveHTML Apache SSI and JSP

CWeb Custom Apache Modules, FastCGI, CGI,
Java JNI and PL/SQL Callouts

Note: Oracle Application Server uses Perl version 5.004_01, while
Oracle Application Server 10g uses Perl version 5.6.1. When code
modification is required, use the appropriate Perl version.

PL/SQL Migration

Migrating Oracle Application Server Cartridges 3-3

PL/SQL Migration
You can migrate Oracle Application Server PL/SQL cartridge applications to Oracle
Application Server 10g mod_plsql. Both mod_plsql and PL/SQL cartridge
applications provide similar support for building and deploying PL/SQL-based
applications on the Web.

mod_plsql runs as an Oracle HTTP Server module. It delegates the servicing of
HTTP requests to PL/SQL programs, which execute their logic inside Oracle
databases.

Support for several Oracle Application Server PL/SQL cartridge features has
changed in Oracle Application Server 10g PL/SQL. The rest of this section provides
details on how to migrate Oracle Application Server applications that use these
features.

File Upload and Download
Table 3–2 summarizes the file upload and download features supported by Oracle
Application Server and Oracle Application Server 10g.

See Also: Oracle Application Server 10g mod_plsql User’s Guide if
you are planning to migrate PL/SQL applications from Oracle
Application Server to Oracle Application Server 10g.

Table 3–2 Comparison of File Upload and Download Features

File Upload/Download Features
Oracle Application
Server Support

Oracle Application
Server 10g Support

Upload/Download of file as raw
byte streams without any character
conversion

Yes Yes

Upload of file into column type:
LONG RAW

Yes Yes

Upload of file into column type:
BLOB

No Yes

Upload of file into column type:
CLOB, NCLOB

No Yes

Specify tables for upload of file for
each database access descriptor
(DAD)

No. Uploads into
WEBSYS schema only

Yes

PL/SQL Migration

3-4 Oracle Application Server 10g Migrating from Oracle Application Server

Uploaded File Document Format
Oracle Application Server PL/SQL cartridge and Oracle Application Server 10g
mod_plsql both support uploading files. However, they use different document
table schemas. Table 3–3 shows how the columns in the Oracle Application Server
10g document table derive their values from Oracle Application Server.

The content from Oracle Application Server is always be stored in the BLOB_
CONTENT column of the Oracle Application Server 10g document table. The tool
also ensures that the data loaded into the Oracle Application Server 10g document
table is always uncompressed data. To do this, if the data is compressed (this is
verified by checking the entries in the OWS_ATTRIBUTES table), the data is
uncompressed using the zlib library, and then loaded to the document table in
Oracle Application Server 10g.

Compression/Decompression of file
during file upload or download

Yes No

Upload multiple files per form
submission

Yes Yes

See Also: Oracle Application Server 10g mod_plsql User’s Guide

Table 3–3 Derived Column Values

Column in Oracle Application Server 10g
Document Table

Oracle Application Server table.column
Value

NAME ows_object.name

MIME_TYPE ows_fixed_attrib.content_type

DOC_SIZE ows_content.length

DAD_CHARSET ows_fixed_attrib.character_set

LAST_UPDATED ows_object.last_modified

CONTENT_TYPE “BLOB”

CONTENT NULL

BLOB_CONTENT OWS_CONTENT.content

Table 3–2 Comparison of File Upload and Download Features (Cont.)

File Upload/Download Features
Oracle Application
Server Support

Oracle Application
Server 10g Support

PL/SQL Migration

Migrating Oracle Application Server Cartridges 3-5

Custom Authentication
Custom authentication is used in Oracle Application Server for applications that
want to control the access themselves (that is within the application itself). The
application authenticates the users in its own level and not within the database
level.

mod_plsql also supports custom authentication.

Flexible Parameter Passing
The flexible parameter passing scheme enables you to overload PL/SQL
procedures. This allows you to reuse the same procedure name but change the
procedure’s behavior depending on how many parameters a form passes to the
procedure.

Both Oracle Application Server and Oracle Application Server 10g support flexible
parameter passing. To use flexible parameter passing in the mod_plsql, prefix the
procedure name with an exclamation point (!) in the invoking URL.

For example, if the following URL invokes your Oracle Application Server
procedure:

http://host/virtual_path/procedure?x=1&y=2

Then the URL that invokes your mod_plsql procedure will be:

http://host/virtual_path/!procedure?x=1&y=2

Positional Parameter Passing
Oracle Application Server PL/SQL cartridge supports a positional parameter
passing scheme. This feature is not supported in Oracle Application Server 10g and
cannot be used.

See Also: Oracle Application Server 10g mod_plsql User’s Guide

See Also: Oracle Application Server 10g mod_plsql User’s Guide

See Also: Oracle Application Server 10g mod_plsql User’s Guide

PL/SQL Migration

3-6 Oracle Application Server 10g Migrating from Oracle Application Server

Executing SQL Files
In addition to running PL/SQL procedures stored in the database, the Oracle
Application Server PL/SQL cartridge can run PL/SQL source files from the file
system. The source file contains an anonymous PL/SQL block that does not define a
function or procedure. This feature enables users to execute PL/SQL statements
without storing them in the database. This is useful when prototyping PL/SQL
code since it saves having to reload procedures into the database each time they are
edited.

Oracle Application Server 10g does not support this feature. You must assign names
to the anonymous blocks and compile them as stored procedures in the database.

Perl Migration

Migrating Oracle Application Server Cartridges 3-7

Perl Migration
This section explains how Perl cartridge applications are implemented in the Oracle
Application Server, and how you can migrate them to Oracle Application Server
10g. Topics include:

■ Perl Applications under Oracle Application Server

■ Migrating Perl Cartridge Scripts

■ Variations from Oracle Application Server Perl Cartridge

Perl Applications under Oracle Application Server
There are two types of Perl applications that can run under Oracle Application
Server:

■ Perl scripts running as a CGI scripts

■ Perl scripts using the Perl cartridge

Perl scripts that run under Oracle Application Server as CGI scripts use a standard
Perl interpreter that must be installed on the system as a Perl executable, separate
from the Oracle Application Server installation.

Perl scripts that run under Oracle Application Server using the Perl cartridge use a
Perl interpreter contained in the cartridge, and based on standard Perl version
5.004_01. The interpreter is built as the following:

■ UNIX: libperlctx.so: a shared object

■ Windows: perlnt40.dll: a shared library

The Perl cartridge links with the shared object or library at runtime.

Differences between Cartridge Scripts and CGI Scripts
Scripts written for the Perl cartridge differ from scripts written for a CGI
environment, because of how the cartridge runs the interpreter. The Perl cartridge

■ maintains a persistent interpreter, and pre-compiles and caches Perl scripts
(thus achieving better performance).

■ redirects stdin and stdout to the WRB client input/output (for example, the
browser).

■ redirects stderr to the WRB logger.

Perl Migration

3-8 Oracle Application Server 10g Migrating from Oracle Application Server

■ returns additional CGI environment variables to the Perl interpreter whenever
it calls for system environment variables.

■ supports the system call instead of the fork call. The system call modifies the
implementation of the Perl interpreter to redirect child process output to the
WRB client input/output.

■ supports error logging.

■ supports performance instrumentation.

You can run your Perl scripts developed for Oracle Application Server under the
CGI environment in Oracle Application Server 10g CGI environment, as well, after
modifying the interpreter line of your Perl scripts. You may also modify your Perl
scripts for Perl cartridge in Oracle Application Server in order to run under Oracle
Application Server 10g.

Migrating Perl Cartridge Scripts
This section discusses Oracle Application Server and Oracle Application Server 10g
Perl implementations, and code modifications for migrating Perl scripts to Oracle
Application Server 10g.

Oracle Application Server 10g Perl Environment
Oracle Application Server 10g Perl environment is based on mod_perl. Like Oracle
Application Server implementation, mod_perl provides a persistent Perl
interpreter embedded in the server and a code caching feature that loads and
compiles modules and scripts only once, serving them from the cache. Like the
Oracle Application Server Perl cartridge, mod_perl redirects stdout to the
listener.

Perl Modules
Table 3–4 presents comparisons of the third party Perl modules associated with both
Oracle Application Server and Oracle Application Server 10g. In order to migrate
applications that use these modules from Oracle Application Server to Oracle
Application Server 10g, you must acquire these modules and install them. The files
are available from:

http://www.cpan.org

Perl Migration

Migrating Oracle Application Server Cartridges 3-9

Table 3–4 Comparison of Third Party Perl Modules

Perl Module
Version in Oracle
Application Server

Version in Oracle Application
Server 10g

DBI 0.79 1.20

DBD::Oracle 0.44 1.12

LWP or libwww-perl 5.08 5.53_94

CGI 2.36 2.752

MD5 1.7 2.14

IO 1.15 1.20

NET 1.0502 1.0703

Data-Dumper 2.07 NA

Apache DBI NA 0.88

Devel::Symdump NA 2.01

Digest::HMAC NA 1.01

Digest::MD2 NA 2.00

Digest::SHA1 NA 2.00

HTML::Parser NA 3.25

MIME::Base64 NA 2.12

PlRPC NA 0.2015

Storable NA 1.0.12

Net::Daemon NA 0.35

Time::HiRes NA 1.20

URI NA 1.15

Perl Migration

3-10 Oracle Application Server 10g Migrating from Oracle Application Server

Variations from Oracle Application Server Perl Cartridge
The following points should be noted between the Oracle Application Server Perl
cartridge and mod_perl in Oracle Application Server 10g.

Namespace Collision
Both Oracle Application Server and Oracle Application Server 10g cache compiled
Perl scripts. If not properly handled, the caching of multiple Perl scripts can lead to
namespace collisions. To avoid this, both Oracle Application Server and Oracle
Application Server 10g translate the Perl script file name into a unique packaging
name, and then compile the code into the package using eval. The script is then
available to the Perl application in compiled form, as a subroutine in the unique
package name.

Oracle Application Server and Oracle Application Server 10g form the package
name differently. Oracle Application Server cannot cache subroutines with the same
name. Oracle Application Server 10g creates the package name by prepending
Apache::ROOT:: and the path of the URL (substituting "::" for “/”).

Using cgi-lib.pl
Oracle Application Server Perl scripts that use cgi-lib.pl must be modified to
use a version of the library customized for the Perl cartridge. This is not necessary
for Oracle Application Server 10g.

Pre-loading Modules
Oracle Application Server Perl scripts may contain instructions that need not be
executed repetitively for each request of the script. Performance improves if these
instructions are run only once, and only the necessary portion is run for each
request of the Perl script.

In Oracle Application Server, perlinit.pl pre-loads modules and performs
initial tasks. This file is executed only once when the cartridge instance starts up. By
default, there are no executable statements in this file. This file is specified by the
initialization script parameter in the Perl cartridge Configuration form.

The corresponding pre-load script for Oracle Application Server 10g is
startup.pl.

See Also: http://perl.apache.org for more information on
mod_starup.pl

LiveHTML Migration

Migrating Oracle Application Server Cartridges 3-11

LiveHTML Migration
In Oracle Application Server, you can generate dynamic content using the
LiveHTML cartridge by embedding Server-Side Includes (SSI) and scripts in HTML
pages, or by using Perl for scripting. If you are migrating LiveHTML applications to
Oracle Application Server 10g, you must migrate LiveHTML SSI to Apache SSI.
Currently the only equivalent to LiveHTML embedded scripts in Oracle
Application Server 10g is JSP.

SSI
Table 3–5 lists the SSIs available in Apache and LiveHTML.

The syntax for specifying an SSI in Apache or LiveHTML is the same. For example:

<!--#config sizefmt="bytes" -->

SSI in Apache is implemented by the mod_include module. This module is
compiled into Oracle HTTP Server by default.

In addition to the elements shown in the table above, Apache SSI also includes
variable substitution and flow control elements.

Table 3–5 List of SSIs in Apache and LiveHTML

Apache SSIs LiveHTML SSIs

config config

echo echo

exec exec

fsize fsize

flastmod flastmod

include include

printenv not available

set not available

not available request

Note: The space before the closing terminator (-->) is required.

LiveHTML Migration

3-12 Oracle Application Server 10g Migrating from Oracle Application Server

Scripts
In Oracle Application Server, you can use the LiveHTML cartridge to embed Perl
scripts in HTML files. There is no equivalent functionality in Oracle Application
Server 10g. However, you have the following choices to do so.

1. Keep the logic in Perl and use mod_perl, for example, you can change the
HTML piece to printf().

2. Keep the HTML, but change the programming language to PL/SQL.

3. Download tools from the Web that allow using Perl as a scripting language with
HTML, for example at http://perl.apache.org.

4. Keep the HTML, but change the programming language to Java, for example
JSP. Oracle Application Server 10g complies with JSP 1.2 specifications. To
migrate your LiveHTML application to Oracle Application Server 10g, you
must do the following:

a. Migrate from the LiveHTML application model to the JSP application
model.

b. Migrate LiveHTML tags to JSP tags.

c. Rewrite the Perl code as Java code.

Note: The tools run on top of mod_perl. Therefore, this
migration approach is the easiest, comparing to other three
approaches listed in this section.

Note: If your LiveHTML application uses Web Application
Objects in Oracle Application Server, you must implement this
functionality as embedded Java code, or as JavaBean classes, and
declare them with the <jsp:useBean> tag in JSP.

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide

Note: Oracle Application Server 10g does not provide WRB APIs.

CWeb Migration

Migrating Oracle Application Server Cartridges 3-13

CWeb Migration
In Oracle Application Server, you can use the CWeb cartridge to

■ create custom cartridges.

■ develop applications that other cartridges invoke.

The migration paths from Oracle Application Server CWeb cartridges to Oracle
Application Server 10g include

■ using FastCGI.

■ creating a custom Oracle Application Server 10g module.

Using FastCGI
CWeb cartridge is essentially a .dll or a .so library. You can integrate it into the
Oracle Application Server environment by specifying the entry point of this library
in an administration page and map it to a Web URL. The Oracle Application Server
infrastructure invokes the entry point of the library (CWeb cartridge) when a
browser requests that URL. In addition, the CWEB cartridge makes several API
from the WRB infrastructure available to access the client information, and other
environment information.

CGI is a standard supported by all Web servers, including Oracle Application
Server 10g. When a URL that maps to the “CGI program” is accessed, the Web
server starts that program and return its results to the browser.

Therefore, one simple way to migrate CWeb is to write a simple C program that
invokes the entry point of the CWeb cartridge during the start-up.

The WRB API and other Oracle Application Server infrastructure dependencies
will, of course, not be available in the new Oracle Application Server 10g
environment. If these WRB API or capabilities were used, the CWeb cartridge must
be modified to use alternative API.

From an infrastructure standpoint, the CWeb cartridges were load balanced. New
instances were not started on each request.

FastCGI is an “overloaded” term referring to the specifications, protocol, API, and
also the implementation. In summary, it spawns a separate process and keeps it
alive and independent of the life-style of the requests. FastCGI programs must
conform to certain standards for starting point and events to listen to, which is
similar to a Java servlet specification. Their life-cycle can, then, be controlled by the
infrastructure.

CWeb Migration

3-14 Oracle Application Server 10g Migrating from Oracle Application Server

Migrating a CWeb cartridge is similar to writing a FastCGI program, which
conforms to the specifications, and in turn calls the entry point of the CWeb
cartridge.

Creating a Custom Oracle Application Server 10g Module
If you used CWeb to create custom cartridges, you can also consider creating a
custom Oracle Application Server 10g module.

If you use CWeb to invoke C programs, you have the following options:

■ CGI scripts: stand-alone C programs generating Web content with println
statements.

■ Java JNI: Java Servlets or JSP that call CWeb routines from OC4J

■ PL/SQL Callouts: PL/SQL applications that call CWeb routines from Oracle
10G.

See Also: http://www.fastcgi.com for FastCGI examples

Note: Oracle Application Server 10g does not provide WRB and
CWeb APIs.

Migrating EJB, ECO/Java and JCORBA Applications 4-1

4
Migrating EJB, ECO/Java and JCORBA

Applications

This chapter provides information on migrating EJB, ECO for Java and JCO
applications from the Oracle Application Server to OC4J in Oracle Application
Server 10g.

Topics discussed are:

■ Migrating EJBs to OC4J

■ Migrating ECO/Java to OC4J

■ Migrating JCORBA to OC4J

Migrating EJBs to OC4J

4-2 Oracle Application Server 10g Migrating from Oracle Application Server

Migrating EJBs to OC4J
To migrate EJBs from Oracle Application Server 4.x to OC4J, you must modify code
in the following areas:

■ Deployment Descriptors

■ Client Code

■ Logging (Server Code) (if applicable)

The following sections describe these changes.

Deployment Descriptors
OC4J conforms to XML file configuration that complies to J2EE 1.2 specifications.

Client Code
Changes to the client code are made in the initial context call using JNDI. The
hashtable passed to the initial context call must contain all of the following
properties:

■ javax.naming.Context.URL_PKG_PREFIXES

■ javax.naming.Context.SECURITY_AUTHORIZATION

■ javax.naming.Context.SECURITY_PRINCIPAL

■ javax.naming.Context.SECURITY_CREDENTIALS

Note: Oracle Application Server EJB does not comply to EJB
standards, while Oracle Application Server 10g EJB complies with
complete EJB 2.0 specifications. Modify your code accordingly
during the migration.

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide

See Also: Oracle Application Server Containers for J2EE User’s Guide

Migrating EJBs to OC4J

Migrating EJB, ECO/Java and JCORBA Applications 4-3

You must also change the URL that accesses your EJB home to the OC4J:

ORMI://<host>:<port>/<path>/<bean>

For example:

ORMI://myhost:2481/test/myBean
ORMI://host/port/est/bean

Logging (Server Code)
If application logging was done in Oracle Application Server, remove all references
to oracle.oas.ejb.Logger from your EJB code.

Migrating ECO/Java to OC4J

4-4 Oracle Application Server 10g Migrating from Oracle Application Server

Migrating ECO/Java to OC4J
When migrating ECO for Java (ECO/Java) in Oracle Application Server to OC4J in
Oracle Application Server 10g, you must change server code described in this
section, as well as change deployment descriptors and client code described in the
previous section for EJB migration.

To make your ECO/Java components compatible with OC4J, you must modify the
implementation file, the remote interface file, the home interface file, and
deployment descriptors.

Remote Interface
Change the remote interface to extend javax.ejb.EJBObject instead of
oracle.oas.eco.ECOObject. Each method must throw
java.rmi.RemoteException.

Home Interface
Change the home interface to extend javax.ejb.EJBHome instead of
oracle.oas.eco.ECOHome.

The created method must throw javax.ejb.CreateException and
java.rmi.RemoteException instead of
oracle.oas.eco.CreateException.

Implementation Class
Make the following changes to the implementation class:

1. Remove all occurrences of, and references to, oracle.oas.eco.Logger.

2. Change all occurrences of oracle.oas.eco.* to javax.ejb.*.

3. Change ECOCreate method to ejbCreate method.

4. Change ECORemove method to ejbRemove method.

5. Change ECOActivate method to ejbActivate method.

6. Change ECOPassivate method to ejbPassivate method.

7. Since OC4J uses XML files for deployment, you have to create appropriate
deployment files.

Migrating JCORBA to OC4J

Migrating EJB, ECO/Java and JCORBA Applications 4-5

Migrating JCORBA to OC4J
Oracle Application Server versions 4.0.6 and 4.0.7 provided a component model,
Java CORBA Objects (JCO), which is a precursor to the ECO/Java model. Oracle
Application Server 10g does not support CORBA objects. You must recode your
CORBA objects as EJBs. This section discusses migration from JCO in Oracle
Application Server to OC4J in Oracle Application Server 10g.

To migrate to OC4J, you must modify the server and client code as discussed in this
section. To modify the server code, you must modify the remote interface, create a
home interface, modify the JCORBA object implementation, and make parameters
serializable.

Remote Interface
Make the following changes to the remote interface:

1. Convert all occurrences of org.omg.CORBA.Object or
oracle.oas.jco.JCORemote to javax.ejb.EJBObject.

2. Throw java.rmi.RemoteException for all methods in the interface.

Home Interface
You must to create a home interface, as defined in the EJB specification. The
following is an example.

import javax.ejb.*;
import java.rmi.RemoteException;
public interface ServerStackHome extends EJBHome
{

public ServerStackRemote create() throws CreateException, RemoteException;
}

See Also: You must also modify the deployment descriptors as
discussed in "Deployment Descriptors" on page 4-2.

Migrating JCORBA to OC4J

4-6 Oracle Application Server 10g Migrating from Oracle Application Server

Object Implementation
Complete the following steps to migrate the implementation class:

1. Change import oracle.oas.jco.* to import javax.ejb.*.

2. Check that the class implements javax.ejb.SessionBean, or
javax.ejb.EntityBean.

3. Remove any logger references.

4. Move any initialization operations to the ejbCreate() method.

5. Save the session context passed into the setSessionContext() method in an
instance variable.

6. Ensure that all public methods in the class throw
java.rmi.RemoteException.

7. Change any ObjectManager type to SessionContext type. Table 4–1 maps
the methods in the ObjectManager class to methods in the SessionContext
class.

Make Parameters Serializable
If any user-defined parameters are being passed in the remote interface, ensure that
the classes implement java.io.Serializable.

Note: The JCORBA Lifecycle is not supported within OC4J. If the
JCORBA object implements oracle.oas.jco.Lifecycle, you
must remove it.

Table 4–1 ObjectManager and SessionContext Methods

SessionContext Method ObjectManager Method

getEnvironment() getEnvironment()

Parameter passed to setSessionContext() getObjectManager()

getEJBObject() getSelf()

getEJBObject().remove() revokeSelf()

getUserTransaction() getCurrentTransaction()

Index-1

Index
A
adapter interface, 1-4
administration, 1-7
Apache SSI, 1-3
application thread, 2-9
automatic failure recovery, 1-4
availability, 1-6

B
BLOB, 3-3

C
cafile, 1-10
capath, 1-10
cartridge

scripts, 3-7
types, 3-2

CWeb, 3-2
LiveHTML, 3-2
Perl, 3-2
PL/SQL, 3-2

cartridge servers, 1-4
cartridges, 1-4
cert, 1-10
certificates, 1-8
certpass, 1-10
CGI, 1-3, 3-13

scripts, 3-7, 3-14
cgi-lib.pl, 3-10
chain, 1-10
child processes, 1-5

CLOB, 3-3
component comparison, 1-3
CWeb, 1-3

cartridge, 3-13

D
destroy(), 2-5
directives, 1-5
dispatchers, 1-4
document table schemas, 3-4

BLOB_CONTENT, 3-4
CONTENT, 3-4
CONTENT_TYPE, 3-4
DAD_CHARSET, 3-4
DOC_SIZE, 3-4
LAST_UPDATED, 3-4
MIME_TYPE, 3-4
NAME, 3-4
NULL, 3-4
OWS_CONTENT.content, 3-4
ows_content.length, 3-4
ows_fixed_attrib.chracter_set, 3-4
ows_fixed_attrib.content_type, 3-4
ows_object.last_modified, 3-4
ows_object.name, 3-4

E
ECO/Java, 1-3
EJB, 1-3
eval, 3-10

Index-2

F
FastCGI, 1-3, 3-13
fault tolerance, 1-6
flexible parameter passing, 3-5

H
httpd.conf, 1-5, 1-7

I
ias_private_key, 1-8
IIS, 1-11
init(), 2-5
Internet Information Services, 1-11

J
J2EE connector architecture, 2-3
JAAS, 2-3
Java JNI, 3-14
javax.servet.servlet interface, 2-5
javax.servlet.SingleThread, 2-6
JCORBA, 1-3
JDBC, 2-3
JMS, 2-3
JNDI, 2-3
JNI, 1-3
JServlet, 1-3
JSP, 1-3, 3-11

specification, 2-8
JTA, 2-3
JWeb, 1-3, 2-8

APIs, 2-12
architecture, 2-2
life cycle, 2-5
methods, 2-8
threading, 2-6
toolkit, 2-7

K
key, 1-10

L
listener, 1-4
LiveHTML, 1-3
load balancing, 1-4, 1-6

maximum mode, 1-6
minimum mode, 1-6
priority mode, 1-6

logging, 1-4, 2-9
APIs, 2-9

LONG RAW, 3-3

M
MaxClients, 1-5
MaxSpareServers, 1-5
migrating

cartridges, 3-1
certificates, 1-8
CWeb, 3-13

using FastCGI, 3-13
ECO/Java, 4-4

home interface, 4-4
implementation class, 4-4
remote interface, 4-4

EJBs, 4-2
client code, 4-2
deployment descriptors, 4-2
logging, 4-3

enterprise services, 1-4
JCORBA, 4-5

home interface, 4-5
make parameters serializable, 4-6
object implementation, 4-6
remote interface, 4-5

JWeb, 2-1
application threads, 2-11
code modifications, 2-10
dynamic content generation in HTML

pages, 2-7
life cycle, 2-5
logging, 2-11
migrating strategies, 2-8
session control, 2-10
session timeout, 2-11

Index-3

sessions, 2-6
threading, 2-6

LiveHTML, 3-11
scripts, 3-12
SSI, 3-11

Perl, 3-7
cartridge scripts, 3-8

PL/SQL, 3-3
custom authentication, 3-5
executing SQL files, 3-6
file upload and download, 3-3
flexible parameter passing, 3-5
positional parameter passing, 3-5
uploaded file document format, 3-4

migration tools
osslconvert, 1-8
pconvert, 1-8
ssl2ossl, 1-8

MinSpareServers, 1-5
mod_include, 3-11
mod_oc4j, 1-4, 1-6, 2-3
mod_osso, 1-4
mod_perl, 1-3, 3-8
mod_plsql, 1-3, 3-3
multi-threaded process, 1-5

N
NCLOB, 3-3
Node Manager, 1-5, 2-6

O
OC4J, 1-3, 1-4, 1-6

architecture, 2-3
life cycle, 2-5
threading, 2-6

OPMN, 2-3
Oracle Application Server Manager tool, 1-7
Oracle Application Server10G

introduction, 1-2
Oracle Enterprise Manager Application Server

Control, 1-5
Oracle HTTP Server, 1-5
Oracle Process Management and Notification, 2-3

oracle.html.HtmlFile, 2-7
osslconvert, 1-8
overview, 1-4
owl.cfg, 1-7

P
pconvert, 1-8
Perl, 1-3

cartridge, 3-7
namespace collision, 3-10
pre-loading modules, 3-10
using cgi-lib.pl, 3-10

modules, 3-8
Oracle Application Server, 3-7
scripts, 3-7

Perl Interpreter, 3-7
perlinit.pl, 3-10
PL/SQL, 1-3

callouts, 3-14
printf(), 3-12
println, 3-14

R
resource.ora, 1-7

S
scalability, 1-5
security, 1-4, 1-8
service(), 2-5
servlet, 2-8

methods, 2-8
specification, 2-8

session, 2-9
setItemAt(), 2-7
single sign-on authentication, 1-4
site.app, 1-7
SQLJ, 2-3
SSL, 1-4
ssl2ossl, 1-8
ssowallet, 1-10
StartServers, 1-5
startup.pl, 3-10

Index-4

stateless, 2-6
stderr, 3-7
stdin, 3-7
stout, 3-7
SUN One, 1-11
svlistenerName, 1-7

T
TCP port, 1-5
third party Web server, 1-11

support, 1-11
ThreadsPerChild, 1-5
transaction management, 1-4

U
Utility APIs, 2-9

V
validate, 1-10

W
wallet, 1-8, 1-10
wltpass, 1-10
WRB

APIs, 3-12
calls, 2-9
logger, 3-7

wrb.app, 1-7

Z
zlib library, 3-4

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Related Documentation
	Conventions

	1 Introduction to Oracle Application Server 10g
	What is Oracle Application Server 10g?
	Oracle Application Server Component Migration Options
	Enterprise Services Migration
	Overview
	Scalability
	Oracle HTTP Server
	OC4J

	Availability and Fault Tolerance
	Load Balancing
	Administration
	Security
	Migrating Certificates

	Third Party Web Server Support

	2 Migrating JWeb Applications to OC4J
	JWeb and OC4J Differences
	Architecture
	JWeb Architecture
	OC4J Architecture
	Single Host Configuration

	Life Cycle
	JWeb Life Cycle
	OC4J Life Cycle

	Threading
	JWeb Threading
	OC4J Threading

	Sessions
	Dynamic Content Generation in HTML Pages

	Migration Strategies
	Comparison of Compliance Standards
	Key JWeb and Servlet Methods
	Migration Approach

	Code Modifications for JWeb Applications
	Session Control
	Session Timeout

	Application Threads
	Logging
	JWeb Toolkit Packages (JWeb API)

	3 Migrating Oracle Application Server Cartridges
	Cartridge Types and Corresponding Oracle Application Server 10g Modules
	PL/SQL Migration
	File Upload and Download
	Uploaded File Document Format
	Custom Authentication
	Flexible Parameter Passing
	Positional Parameter Passing
	Executing SQL Files

	Perl Migration
	Perl Applications under Oracle Application Server
	Differences between Cartridge Scripts and CGI Scripts

	Migrating Perl Cartridge Scripts
	Oracle Application Server 10g Perl Environment
	Perl Modules

	Variations from Oracle Application Server Perl Cartridge
	Namespace Collision
	Using cgi-lib.pl
	Pre-loading Modules

	LiveHTML Migration
	SSI
	Scripts

	CWeb Migration
	Using FastCGI
	Creating a Custom Oracle Application Server 10g Module

	4 Migrating EJB, ECO/Java and JCORBA Applications
	Migrating EJBs to OC4J
	Deployment Descriptors
	Client Code
	Logging (Server Code)

	Migrating ECO/Java to OC4J
	Remote Interface
	Home Interface
	Implementation Class

	Migrating JCORBA to OC4J
	Remote Interface
	Home Interface
	Object Implementation
	Make Parameters Serializable

	Index

