Oracle® Application Server 10g
Migrating From WebLogic

109 (9.0.4)

Part No. B10425-01

November 2003

ORACLE

Oracle Application Server 10g Migrating From WebLogic, 10g (9.0.4)
Part No. B10425-01

Copyright © 2003 Oracle Corporation. All rights reserved.

Primary Author: Kai Li

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

SeNA US YOUT COMMEBNTS ...ttt vii
P I A C ...ttt ettt ettt ettt ettt ettt ettt iX
01T Lo (L0 I AN U o [11 0 o1 ISR iX
Documentation ACCESSIDIITYooviiiiiiii bbb iX
(@ o T= T 2= 11 o] o S SS S S X
REIATEA DOCUMIEBNTS.eiiiiiii ittt ettt e sttt e et e e bt e e e ab e e e sabee e s tbaeesabbesesabasessbeessabassesbbassssbesssnbasesares Xi
(©06] a1 VZ=T 011 To] o LT Xii

1 Overview

OVEIVIEW OF J2EE ...ttt ettt sttt s e et e e e e s e seeneenentennesrenen 1-2
What is the J2EE Application MOEI?.........cccoeiiiciccrce e e 1-2
What iS the J2EE PIatfOrM?........oeoeee bbb 1-3

What is an APPHCATION SEIVEI? ..ot 1-4

Overview of Oracle APPlIiCAtiON SEIVET ..o s 1-5
J2EE Application Migration Challenges.............cociiiiiiiiiiieee e 1-5

J2EE ApPPLIication AFCHITECTUIEciiiiiiiiiee et 1-6

YT L= L o] T ST U= 1-7
MiIGration APPFOACKH.ciiiii bbb ettt ettt be b b 1-8

MIGatioN ETFOITo bbbttt bbb 1-8

USING THIS GUITE ...ttt sttt s s e e eseeteeteebestestesresrenrs 1-8

2 Comparison of Oracle Application Server and WebLogic Server
Application Server Product OFferingS.......cccovviciiiiieiicise e 2-1

RVAV7=] o] o o oSSR 2-1

WWEBLOGIC SEIVET ...ttt bttt et ettt bbb ere e 2-2

RVA LT o I o [Tl = g =] o - PSSR 2-2
WWEDLOGIC EXPIESS ..otttk b bt b ettt e et be st b sne 2-3

Oracle APPIICATION SEIVETciiiiieiiitcist bbbt 2-3

W AN o o 1] =T (U = OT0] g] o T L £] o 2-4
RVAV/=] o] oo T TR T= V=1 SRS 2-4
Oracle Application Server Components and CONCEPLSccvrvevrvririiriieniierieeee s 2-6
Oracle Application SErver INSLANCEcccccvcveiie e 2-6

OFACIE HTTP SEIVET ...ttt bbb bbb ettt b et ebesbe e e 2-7

OCAT INSTANCES ...ttt sttt bbbt be e bt bt e b e st e sbe s e e sbe e b e sbeenbesbeebesbeenbenbeens 2-8

Oracle Process Management Notification (OPMN) SErvercccocvevvvveveieninsnsnnnens 2-8
Distributed Configuration Management (DCM)cccocviieii i siee e 2-8

Oracle Application Server Web Cache ... 2-9

Oracle Enterprise Manager Application Server Controlccccoceveveveivcesienie s 2-9

Oracle Application Server INfrastruCtUre....... ..o 2-10

Oracle Application Server Metadata RepOSItOrYcccccveirenneinienseneeseeee 2-11

Oracle Identity Management.........cccccoeiirereieieeeeiese e ene s 2-13

High Availability and Load BalanCingccccciiieiiiiiie e 2-14
WebLogic Server Support for High Availability and Load Balancingccccceeveniae 2-14
HTTP Session State Load Balancing and Failover (Servlet Clustering)ccccccv..... 2-15

EJB and RMI Object Load Balancing and FailOVercccccccoeviiieviecesn e, 2-15

Oracle Application Server Support for High Availability and Load Balancing................ 2-16
Oracle Application SErver INSLANCEcccveveviecicse e 2-16

Oracle Application Server Clusters (Middle Tier) ..., 2-17

(@ 107 N] F- g [0 SRS 2-18
Stateful Session EJB High Availability Using EJB CIUStEring........ccccccevvevveveivnvenennnn, 2-19

JNDI Namespace RepliCAtIONc..coevveiiiiiiiiiesessne s 2-20

JAVA ODJECT CACNE ..o 2-20

Oracle Application Server Web Cache CIUSEErS.........ccccvvviviininie i 2-21
OracleAS Infrastructure High Availability SOIUtIONS ... 2-22

Oracle Application Server Cold Failover CIUSEErScccooeoveinennenneeeeeee 2-22

Oracle Application Server ACtiVe CIUSTEIS........cccovvivivierie s 2-22

J2EE SUPPOIT COMPATTSONoueiiieiieieiiietieie ettt sttt ettt sttt be bt bbb b e e e ese e e ebe b e nbe e 2-23
Java Development and Deployment TOOISccouiiiiiiiiiicicereee e 2-24

WebLogic Development and Deployment TOOIS..........cccooiiiiiiiniineieeeeeeeee 2-24

WeDbLOGIC SErVEr WOIKSNOPc.viiiiiiiiieiicte e 2-24
WebLogic Server Administration CONSOIE........cccvccvvvieriiie v 2-24
Oracle Application Server Development and Deployment TOOIS...........cccceoviiiiininennne 2-25
DeVelopMENTt TOOIS ..ot 2-25
ASSEMDBIY TOOIS.....ceiiiciice et st se e e s e e e e eneeresreanens 2-26
AdMINISTrAtioN TOOIScviviiiiiies s 2-26

3 Migrating Java Servlets

TNEFOQUCTION ..ttt bbb bbb e bbb et e bt e bt e bt bt et e bbbt e 3-2
Differences Between WebLogic Server and Oracle Application Server Servlet
IMPIEMENTATIONS ...ttt b et bbbt nr bbb b sne e 3-2

OC4J Key Servlet ContaiNer FEAUIES........cccoieieieeeeie e se e seeseesie e e e e sne e e seens 3-2

Migrating @ SIMPIE SEIVIEL........coi et 3-2

Migrating @ WAR FITE ..ottt 3-6

Migrating an Exploded Web Application ... 3-8

Migrating Configuration and Deployment DeSCriplorsccoevereieneieieicceesese e 3-9
Oracle APPIICATION SEIVETciiiiiiise bbbt 3-9
RVAY (=] o] I Yo T Lo =T V7= SR 3-12

Migrating Cluster Aware APPLICAIONScoooiiiiiiiiii e 3-13

4 Migrating JSP Pages

TNEFOAUCTION ...ttt bbb bbb e bbbt e bt e bt et ebe et e bbb et e 4-2
Differences Between WebLogic Server and Oracle Application Server JSP

IMPIEMENTATIONS ...ttt bbbt et sr et sb e b besnene s 4-2

OCAJT ISP FRATUIES.cueetietisieeie ettt r b st e et se e b an b b nneas 4-3

Edge Side Includes for Java (JESI) TagS......ccccvveveiieeieiieeie et se e 4-4

WeD ODJECt CaChE TaGS ... iiveiieeiiieieie e 4-4

Oracle JDeveloper and OC4J JSP CONLAINETccvviviieierieierese e sre e 4-4

Migrating @ SIMPIE JSP PAge........couiiiiiieie ettt 4-5

Migrating a Custom JSP Tag LIDIary ... 4-7

Migrating from WebLogic CUSTOM TGS ...cvieveeieieeee e 4-11

WebLOgiC SErVer CAChE TaQ ..o iieiicieicece e 4-12

WeDLOQIC SEFVETN PIr OCESS TAQG «.veuvivieirieitiiieit ettt 4-12

WEDLOGIC SEIVEr I €PEAL TaAJ. . i e iviieriereeeerieese e sese s ettt e e e e sresresrenes 4-12

Precompiling JSP PAgES ...t 4-13

Using the WebLogic Server JSP COMPIIEE ... 4-13
Using the OCA4J JSP Pre-transIator...........ccccveveieiiieie st 4-14
Standard JSP Pre-translation Without Execution (based on the JSP 1.1 specification)..... 4-15
Configure the JSP Container for Execution with Binary Files Only..........cccocoiiiiiieenns 4-16

5 Migrating Enterprise JavaBean Components

vi

a1 u (oo 11 o] A o] o KOOSR 5-2
Comparison of WebLogic Server and Oracle Application Server EJB Features.................. 5-2
The following sections go into detail on some of the abovementioned features: 5-3

More Efficient Container Managed PersiStENCe..........ccovvreirieincirieence e 5-3

(O [UES] =T g T oo ST U] o] o o] o (PSS 5-4
Scalability and Performance ENhanCements............cccccveveviiiiie e 5-5
Security and LDAP INTEGrationcccoiiiiiiirieisieisese et 5-6
WEDLOGIC SEIVEI CAVEALS.......ecviiiieiiieiieiiirie ettt e et e e s nseseese e e enesresnennens 5-6

EJB Migration CoNSIAEratiONS...........cccviiiiiiiieie et e ettt sae e sre s 5-6
IMIEGEALION STEPS ...ttt bbbt bbb bbb bbbt bbbttt 5-7
Setting DeployMENt PrOPErtieS.ot sre s 5-7
Vendor-specific Deployment DeSCHIPTOIS.ccciiiiiiiiireiescse e 5-8
WWEBLOGIC SEIVET ...ttt bbbt 5-8

O] bbbttt et b e 5-8

Generating and Deploying EJB Container CIASSEScciiiirininine i 5-8
WWEBLOGIC SEIVET ...ttt bbbttt 5-9

L@ 10 OO SO STTRSTTT 5-9

Loading EJB Classes iNThe SEIVENccociiiieiecicece ettt st 5-9
WWEBLOGIC SEIVET ...ttt bbbt 5-9
O] bbbt ettt et et 5-9

Migrating EJBS iN @ EAR OF JAR FIlE ...oooiiiiec et 5-9
Migrating an Exploded EJB APPIICAtION ..ot 5-10
Configuring EJBs using Deployment DeSCriPLOrS.ccviviiviiiieiiesenene e 5-11
Writing Finders for RDBIMS PerSiStENCE.........c.cov ittt 5-14
WebLogic Query Language (WLQL) and EJB Query Language (EJB QL)c.cccvvvrrinnne. 5-15
MESSAGE DIFIVEN BEANSecviieiciicieie sttt ettt sttt st e teteseenseneeseeneeneerenneaneas 5-15
(O7o] 0} 1 o (ST o IS T=Tol U L 41 4SS 5-16
Migrating Cluster-Aware EJB Applications 10 OCAJccoeoviiiiriiiniicecee s 5-16

EJB Clustering in WEDLOGQIC SEIVELccv ittt 5-16

In-Memory Replication for Stateful Session EIBS.........cccocccveinciiniinciicicscne 5-16
Requirements and ConfiguIration ..o 5-17
EJB Clustering in Oracle ApPliCatioN SEIVET ... 5-18
L 0B BAIANCING ...vviictiieec bbbttt 5-18
R3] - Lo I TSol0 1 = oY S 5-19
DYNAMIC DISCOVEIY ..ottt sttt ettt e s te e sbeesae e e ste e e snennaens 5-19
FRITOVET ...ttt bbb bttt s et e st e bt et e be b sbe st e 5-19
StAteleSS SESSION EUBS......ciiiiiiriiiirieisietsie ettt 5-19
STAtEfUL SESSION EJBS ..ottt e 5-19
ENTILY EIBS ..ottt 5-20
JNDI Namespace RePICALIONcccccvevirieieeeeeeeese e nne 5-20

6 Migrating JDBC

INEFOAUCTION ..ottt b e bbbt bttt ettt 6-2
Differences between WebLogic and Oracle Application Server Database Access
IMPIEMENTATIONS ...t bbbttt ettt b et sbesb b e 6-2

OVErVIEW OF IDBC DIFIVEIS ..ottt ittt sttt sttt sne st nee e 6-2

MiIGrating Data SOUICESccvieiieiiierieseeeee e e et ste et te st e e e e e essesae e eneasessessesresrennenrens 6-4
Data Source ImMpPort STALEMENTScoiiieee e 6-4
Configuring Data Sources in the Application SErVer ... 6-4
Obtaining a Client Connection Using a Data Source ObjecCt.........ccccocevvrevreinivnnsinsiese s 6-7

Migrating ConNECtION POOIS...........ooiii et 6-7
Overview Of CONNECLION POOISoouiiiiece e 6-8
How Connection Pools Enhance Performance..........cccovieiiiininenesesesensc s 6-9

Overview Of CIUSTEred JDBC ...ttt ettt sbe bbb 6-9

Performance TUNING JDBC ..ottt 6-9

A Additional Feature Comparisons

Java MesSaging SErVICE (JIMS) ..ottt ettt A-1

L0 = Tod XY S (@ AV,) IS A-3
Y7 WO] o] =10t A O Ued o TSSOSO A-5
Dynamic Monitoring SYStem (DIMS)........cociiiiiiiiiiiciiese e A-6
Active Components FOr J2EE (ACA)) ..ottt sre e A-6

Vii

Oracle Application Server TopLink (OracleAS TopLink)

Index

viii

Send Us Your Comments

Oracle Application Server 10g Migrating From WebLogic, 10g (9.0.4)
Part No. B10425-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: appserverdocs_us@oracle.com

FAX: (650) 506-7375 Attn: Oracle Application Server Documentation Manager
Postal service:

Oracle Corporation

Oracle Application Server Documentation

500 Oracle Parkway, Mailstop 1op6

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Vii

viii

Preface

This preface contains these topics:
» Intended Audience

« Documentation Accessibility
« Organization

« Related Documents

« Conventions

Intended Audience

Oracle Application Server 10g Migrating From WebLogic is intended for administrators,
developers, and others whose role is to deploy and manage Oracle Application
Server with high availability requirements.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

ht t p: // waw or acl e. cont accessi bi | ity/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization

The following chapters make up this guide:

Chapter 1, "Overview"

This chapter provides an overview of the issues involved in migrating J2EE web
applications from WebLogic Server 7.0 to Oracle Application Server, and the effort
required.

Chapter 2, "Comparison of Oracle Application Server and WebLogic Server"
This chapter provides a comparison between Oracle Corporation’s implementation
of Sun Microsystems’ J2EE platform and component specifications and that of BEA
Systems.

Chapter 3, "Migrating Java Servlets"

This chapter provides the information you need to migrate Java servlets from
WebLogic Server 7.0 to Oracle Application Server. It addresses the migration of
simple servlets, WAR files, and exploded Web applications.

Chapter 4, "Migrating JSP Pages™

This chapter provides the information you need to migrate JavaServer pages from
WebLogic Server 7.0 to Oracle Application Server. It addresses the migration of
simple JSP pages, custom JSP tag libraries, and WebLogic custom tags.

Chapter 5, "Migrating Enterprise JavaBean Components"

This chapter provides the information you need to migrate Enterprise JavaBeans
from WebLogic Server 7.0 to Oracle Application Server. It addresses the migration
of stateful and stateless session beans and container-managed persistence and
bean-managed persistence entity beans.

Chapter 6, "Migrating JDBC"

This chapter provides the information you need to migrate database access code
from WebLogic Server 7.0 to Oracle Application Server. It addresses the migration
of JDBC drivers, data sources, and connection pooling.

Appendix A, "Additional Feature Comparisons"
This appendix summarizes additional features between Oracle Application Server
and WebLogic Server.

Related Documents
For more information, see these Oracle resources:
« Oracle Application Server Documentation Library

« Oracle Application Server Platform-Specific Documentation on Oracle
Application Server Disk 1

Printed documentation is available for sale in the Oracle Store at

http://oracl estore.oracle.com

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracl e. com menber shi p/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracl e. com docunent ati on/

For additional information, see:
« http://ibmconm for more information on WebLogic Server

« http://java.sun.com for more information on J2EE

Xi

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

« Conventions in Text
= Conventions in Code Examples

= Conventions for Microsoft Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUVBER
nonospace elements supplied by the system. Such column.

(fixed-w dth)
f ont

Xii

elements include parameters, privileges, .
datatypes, RMAN keywords, SOL You can back up the database by using the

keywords, SQL*Plus or utility commands, BACKUP command.
packages and methods, as well as Query the TABLE_NAME column in the USER _
system-supplied column names, database TABLES data dictionary view.

(r)ct))IJ:Scts and structures, usernames, and Use the DBVS_STATS.GENERATE_STATS
' procedure.

Convention Meaning Example
| ower case Lowercase monospace typeface indicates Enter sql pl us to open SQL*Plus.
nonospace executables, filenames, directory names,

(fixed-wi dth)
f ont

| ower case
italic
nonospace
(fixed-w dth)
font

and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Lowercase italic monospace font
represents placeholders or variables.

The password is specified in the or apwd file.

Back up the datafiles and control files in the
/ di sk1/ or acl e/ dbs directory.

The depart nment _i d, depar t ment _nane,
and | ocati on_i d columns are in the
hr . depart nent s table.

Set the QUERY_REWRI TE_ENABLED
initialization parameter tot r ue.

Connect as oe user.

The JRepUti | class implements these
methods.

You can specify the par al | el _cl ause.

Run Uol d_r el ease. SQL where ol d_
r el ease refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT usernanme FROM dba_users WHERE usernanme = ' M GRATE ;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Convention Meaning Example
[1 Brackets enclose one or more optional DECI MAL (digits [, precision])
items. Do not enter the brackets.
{} Braces enclose two or more items, one of { ENABLE | DI SABLE}
which is required. Do not enter the
braces.
| A vertical bar represents a choice of two { ENABLE | Dl SABLE}
or more options within brackets or braces. [COVPRESS | NOCOVPRESS]

Enter one of the options. Do not enter the
vertical bar.

Xiii

Convention Meaning Example
Horizontal ellipsis points indicate either:
« That we have omitted parts of the CREATE TABLE ... AS subquery;
code that are not directly related to
the example
« That you can repeat a portion of the SELECT CO', 1, col2, ..., coln FROM
enpl oyees;
code
Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.
Other notation You must enter symbols other than acct bal NUMBER(11, 2);
brackets, braces, vertical bars, and ellipsis acct CONSTANT NUMBER(4) : = 3:

Italics

UPPERCASE

| ower case

points as shown.

Italicized text indicates placeholders or
variables for which you must supply
particular values.

Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

CONNECT SYSTEM syst em passwor d
DB_NAME = dat abase_nane

SELECT | ast _nane,
enpl oyees;

SELECT * FROM USER _TABLES;
DROP TABLE hr. enpl oyees;

enpl oyee_i d FROM

SELECT | ast _nane,
enpl oyees;

enpl oyee_id FROM

sql plus hr/hr

CREATE USER nj ones | DENTI FI ED BY
t y3MU9;

Xiv

Conventions for Microsoft Windows Operating Systems

The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

Convention

Meaning

Example

Choose Start >

File and directory
names

C\>

HOVE_NANE

How to start a program.

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (), double
qguotation marks (™), slash (/), pipe (]),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (©). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

c:\winnt"\"systenB2 is the same as
C: \ W NNT\ SYSTEMB2

C.\oracl e\ or adat a>

C.\>exp scott/tiger TABLES=enp
QUERY=\ "WHERE j ob=" SALESMAN and
sal <1600\ "

C.\>i np SYSTEM password
FROMUSER=scott TABLES=(enp, dept)

C\> net start Oracl eHOVE_
NAMETNSLI st ener

XV

Convention Meaning Example

ORACLE_HOVE In releases prior to Oracle8i release 8.1.3, Go to the ORACLE_BASE\ ORACLE_
and ORACLE when you installed Oracle components, HOVE\ r dbns\ admi n directory.
BASE all subdirectories were located under a

top level ORACLE_HOVE directory that by
default used one of the following names:

. C.\ orant for Windows NT
« C:\oraw n95 for Windows 95
. C:. \ or awi n98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOVE directory. There is a
top level directory called ORACLE_BASE
that by defaultis C: \ or acl e. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is

C:\ oracl e\ or a90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

XVi

1

Overview

This chapter provides an overview of the issues involved in migrating J2EE Web
applications from WebLogic Server 7.0 to Oracle Application Server 10g (9.0.4), and
the effort required.

The chapter contains these topics:

Overview of J2EE

What is an Application Server?
Overview of Oracle Application Server
J2EE Application Architecture
Migration Issues

Migration Effort

Using This Guide

Overview 1-1

Overview of J2EE

Overview of J2EE

The application server market is evolving rapidly. In particular, the most significant
development over the last few years is the emergence of Sun Microsystems’ Java 2
Platform, Enterprise Edition (J2EE) Specification that promises to create a level of
cross-vendor standardization.

The J2EE platform and component specifications define, among other things, a
standard platform for developing and deploying multi-tier, web-based, enterprise
applications.

J2EE provides a solution to the problems encountered by companies moving to a
multi-tier computing model. The problems addressed include reliability, scalability,
security, application deployment, transaction processing, web interface design, and
timely software development. It builds upon the Java 2 Platform, Standard Edition
(J2SE) to enable Sun Microsystems’ "Write Once, Run Anywhere" paradigm for
multi-tier computing.

J2EE consists of the components described in Table 1-1:

Table 1-1 J2EE Standard Architecture Components

Component Description

J2EE Application Model An application model for developing
multi-tier, thin client services

J2EE Platform A platform for hosting J2EE applications

J2EE Compatibility Test Suite A compatibility test suite for verifying

that a J2EE platform product meets the
requirements set forth in the J2EE
platform and component specifications

J2EE Reference Implementation A reference implementation of the J2EE
platform

What is the J2EE Application Model?

The J2EE application model is a multi-tier application model. Application
components are managed in the middle tier by containers. A container is a standard
runtime environment that provides services, including life cycle management,
deployment, and security services, to application components. This container-based
model separates business logic from system infrastructure.

1-2 Oracle Application Server 10g Migrating From WebLogic

Overview of J2EE

What is the J2EE Platform?

The J2EE platform consists of a runtime environment and a standard set of services
that provide the necessary functionality for developing multi-tiered, web-based,
enterprise applications.

The J2EE platform consists of the components described in Table 1-2.

Table 1-2 J2EE Platform Components

Component Description

J2EE runtime environment
Application components

Application clients A Java program, typically used for a GUI,
that executes on a desktop computer

Applets A component of a Java program that
typically executes in a web browser

Servlets and JSP pages Servlet: A Java program, used to generate
dynamic content, that executes on a web
server

JSP page: A technology used to return
dynamic content to a client, typically a
web browser

Enterprise JavaBeans (EJB) An applications architecture for
component-based distributed computing

Containers An entity that provides services for
application components, including life
cycle management, deployment, and
security services

Resource manager drivers A system-level component that enables
network connectivity to external data
sources

Database A set of related files used for the storage
of business data and accessible through
the JDBC API

J2EE standard services

HTTP The standard protocol used by the
Internet to send and receive messages
between web servers and browsers

Overview 1-3

What is an Application Server?

Table 1-2 J2EE Platform Components (Cont.)

Component Description

HTTPS A protocol used by the Internet to send
and receive messages securely between
web servers and browsers

Java Transaction API (JTA) An API that allows applications and
application servers to access transactions

RMI-11OP RMI: A protocol that enables Java objects
to communicate remotely with other Java
objects

IIOP: A protocol that enables browsers
and servers to exchange things other than
text

RMI-IIOP is a version of RMI that uses
the CORBA 110OP protocol

JavalDL A standard language for interface
specification primarily used for CORBA
object interface definition

JDBC An API that provides connectivity
between databases and the J2EE platform

Java Message Service (JMS) An API that enables the use of enterprise
messaging systems

Java Naming and Directory Interface (JNDI) An API that provides directory and
naming services

JavaMail An API that provides the ability to send
and receive e-mail

JavaBeans Activation Framework (JAF) An API required by the JavaMail API

What is an Application Server?

An application server is software that runs between web-based client programs and
back-end databases and legacy applications. It helps separate system complexity
from business logic, enabling developers to focus on solving business problems. An
application server helps reduce the size and complexity of client programs by
enabling these programs to share capabilities and resources in an organized and
efficient way.

Application servers provide benefits in the areas of usability, flexibility, scalability,
maintainability, and interoperability.

1-4 Oracle Application Server 10g Migrating From WebLogic

Overview of Oracle Application Server

Overview of Oracle Application Server

Oracle Application Server is a comprehensive, integrated application server that
provides all of the infrastructure and functionality needed to run every successful
e-business. All development teams face a similar set of challenges—the need to
rapidly deliver web sites and applications that run fast over any network and on
every device; while providing business intelligence to support operational
adjustments and strategic decisions. Oracle Application Server enables teams to
address all of these e-business challenges.

Oracle Application Server has generated a great deal of interest in the application
server market, and many organizations are embracing it to deploy their web-based,
enterprise applications.

Oracle Application Server offers the only integrated infrastructure to develop,
deploy, and secure web sites and applications. It provides a complete J2EE platform
for developing enterprise Java applications. Oracle Application Server enables
developers to develop web applications in any language including Java, Perl,
PL/SQL, XML, and Forms. It enables the reduction of development and
deployment costs through a single, unified platform for Java, XML, and SQL.

The J2EE server implementation in Oracle Application Server is called Oracle
Application Server Containers for J2EE (OC4J). OC4J runs on the standard JDK and
is extremely lightweight, provides high performance and scalability, and is simple
to deploy and manage. With Oracle Application Server 10g (9.0.4), OC4J supports
J2EE 1.3 APIs.

This migration guide seeks to help you understand the migration challenges you
may face when migrating your J2EE applications from WebLogic Server 7.0 to
Oracle Application Server 10g (9.0.4).

Note: In this document, where WebLogic Server is mentioned
without a version number, WebLogic Server 7.0 is implied.
Otherwise, for other versions of WebLogic Server, a version
number is specifically mentioned.

J2EE Application Migration Challenges

The varying degrees of compliance to J2EE standards can make migrating
applications from one application server to another a daunting task. Some of the
challenges in migrating J2EE applications from one application server to another
are:

Overview 1-5

J2EE Application Architecture

« Though in theory, any J2EE application can be deployed on any J2EE-compliant
application server, in practice, this is not strictly true.

« Lack of knowledge of the implementation details of the given J2EE application.

« Ambiguity in the meaning of "J2EE-compliant’ (usually, this means the
application server has J2EE compliant features, not code-level compatibility
with the J2EE specification).

« The number of vendor-supplied extensions to the J2EE standards in use, which
differ in deployment methods and reduce portability of Java code from one
application server to another.

« Differences in clustering, load balancing, and failover implementations among
application servers; these differences are sparsely documented, and are thus an
even bigger challenge to the migration process.

These challenges make the migration path daunting, uncertain, and difficult to
reliably plan and schedule. This chapter addresses the challenges in migrating your
applications from WebLogic Server to Oracle Application Server, providing an
approach to migration with solutions based on the J2EE version 1.3 specification.

J2EE Application Architecture

The J2EE platform provides a multi-tiered, distributed application model. Central to
the J2EE component-based development model is the notion of containers.
Containers are standardized runtime environments that provide specific services to
components. Thus, Enterprise JavaBeans (EJB) developed for a specific purpose in
any organization can expect generic services such as transaction and EJB life cycle
management to be available on any J2EE platform from any vendor.

Containers also provide standardized access to enterprise information systems; for
example, providing RDBMS access through the JDBC API. Containers also provide
a mechanism for selecting application behavior at assembly or deployment time.

As shown in Figure 1-1, the J2EE application architecture is a multi-tiered
application model. In the middle tier, components are managed by containers; for
example, J2EE web containers invoke servlet behavior, and EJB containers manage
life cycle and transactions for EJBs. The container-based model separates business
logic from system infrastructure.

1-6 Oracle Application Server 10g Migrating From WebLogic

Migration Issues

Figure 1-1 J2EE Architecture

Client Tier Middle Tier Enterprise Information
Systems Tier

)
@
2
[N

EJB Container
Enterpnse Enterpnse J DBC
Beans Beans l
Enterprise Enterprise a| RDBMS
Beans Beans

A

- ﬁ@

% EJB Container
E HTML, XML JDBC Legacy
D = p | Serviet | Application
— «— Servlet
= Legacy
= Application
; JNDI _
— = A

Migration Issues

In quantifying the migration effort, it is helpful to examine the application
components to be migrated with the following issues in mind:

Portability

Code may not be portable because it contains embedded references to
vendor-specific extensions to the J2EE specification. Evaluating and planning
for code modifications may be a significant part of the migration effort.

Proprietary extensions

If vendor-specific extensions are in use, migration of those components
becomes difficult or unfeasible. Complete redesign toward J2EE specifications is
not addressed in this document. If vendor-specific extensions are in use, they
may need to be redesigned and reimplemented, rather than being identified as
migration candidates.

Overview 1-7

Migration Effort

« Deviations from J2EE specification.

If a component is largely non-compliant with the J2EE specification, this guide
will not be helpful in determining the migration path to Oracle Application
Server. If the J2EE specification version of the component is not of version 1.3
(the version on which this guide is based), then the specification
implementation differences will need to be addressed.

Migration Approach

The approach in developing this migration guide was to document our experience
migrating web application components from WebLogic Server to Oracle
Application Server. Examples shipped with WebLogic Server were selected, tested
on WebLogic Server, and migrated to Oracle Application Server. Issues encountered
in the migration of these examples are the basis for this document.

Migration Effort

Moving from WebLogic Server to Oracle Application Server is a relatively simple
process. Standard J2EE applications, using no proprietary APIs, can be deployed
with no required code changes. The only actions required are configuration and
deployment. Those applications using proprietary utilities or APIs can be ported
easily.

Using This Guide

This guide details the migration of components from WebLogic Server to Oracle
Application Server. While it does not claim to be an exhaustive source of solutions
for every possible configuration, it provides solutions for some of the migration
issues listed above, which will surface, along with others, in your migration effort.
The information in this guide helps you to assess the WebL ogic Server applications
and plan and execute their migration to Oracle Application Server. The material in
this guide supports these high-level tasks:

« Survey the components according to the issues listed above
« ldentify migration candidates
« Prepare the migration environment and tools

« Migrate and test the candidate components

1-8 Oracle Application Server 10g Migrating From WebLogic

2

Comparison of Oracle Application Server

and WebLogic Server

Although WebLogic Server and Oracle Application Server are both J2EE servers
that support J2EE 1.3 features respectively, both application servers have intrinsic
differences ranging from product packaging to runtime architecture. This chapter
seeks to discuss these differences and is organized as follows:

Application Server Product Offerings
Architecture Comparison

High Availability and Load balancing
J2EE Support Comparison

Java Development and Deployment Tools

Application Server Product Offerings

WebLogic Server is a component of the WebLogic Platform, which includes several
other WebLogic products mentioned below. Oracle Application Server also includes
many component products, which are discussed below.

WebLogic

WebLogic Server is available in the following product configurations:

WebLogic Server
WebLogic Enterprise
WebLogic Express

Comparison of Oracle Application Server and WebLogic Server 2-1

Application Server Product Offerings

WebLogic Server

WebLogic Server provides the core services and infrastructure for J2EE applications.
It supports J2EE 1.3 features. These J2EE 1.3 features include JSP 1.2, Servlets 2.3,
EJB 2.0, and JCA 1.0.

WebLogic Server allows Java applications and components to be deployed as web
services through SOAP, UDDI, and WSDL. CORBA support is available through
BEA Tuxedo.

Each WebL ogic Server can be configured as a web server utilizing its own HTTP
listener, which supports HTTP 1.1. Alternatively, Apache, Microsoft IIS, and
Netscape web servers can also be used. This web server configuration allows
WebLogic Server to service requests for static HTML content in addition to dynamic
content generated by servlets or JSPs.

A WebLogic Server node can be deployed as an administration server. This node
provides administrative services to other WebLogic Servers, called managed
servers, in the WebLogic domain. A WebLogic domain is a set of WebLogic Servers
and clusters of WebLogic Servers managed by an administration server, inclusive of
the latter. The administration server provides a web-based GUI for management of
the entire domain. In each domain, WebLogic Servers can be clustered together or
are standalone. Refer to "Oracle Application Server Support for High Availability
and Load Balancing" for more clustering information.

Note: For a list of J2EE 1.3 APIs supported by WebLogic Server,
refer to the section "J2EE Support Comparison” in this chapter.

WebLogic Enterprise

WebLogic Enterprise consists of WebLogic Server and BEA Tuxedo. Tuxedo is a
distributed transaction management platform that enables distributed transactions
across multiple databases. Tuxedo integrates with WebLogic Server through the
latter’s connector architecture.

WebLogic Enterprise supports multiple application environments including Java,
C++, C, and COBOL. WebLogic Enterprise also supports CORBA applications and
allows single sign-on to disparate application environments. Additionally, through
Tuxedo, WebLogic Enterprise supports industry standard SNMP MIBS allowing
WebLogic Server to be monitored by third-party tools.

2-2 Oracle Application Server 10g Migrating From WebLogic

Application Server Product Offerings

WebLogic Express

WebLogic Express is a "lightweight"version of WebLogic Server. It is not J2EE
compliant as it does not have support for EJBs and JMS. It does support JSPs,
servlets, JIDBC, and RMI, and it also includes a web server. Hence, WebLogic
Express can be used to build rudimentary web applications with simple database
access using JDBC (no support for two-phase transactions).

Oracle Application Server

Oracle Application Server is a platform-independent J2EE application server that
can host multi-tier, web-enabled enterprise applications for the Internet and
intranets, and which is accessible from browsers and standalone clients. It includes
Oracle Application Server Containers for J2EE (OC4J) a lightweight, scalable J2EE
container written in Java, and is J2EE 1.3 certified. Hence, OC4J provides support
for the following J2EE 1.3 APIs:

« Servlets 2.3

« JSP1.2

« EB20

« JNDI1.2

« JavaMail 1.1.2
« JAF10

« JAXP11

« JCA10

« JAAS10

« JMS10

« JTA10

= JDBC 2.0 Extension

Oracle Application Server is designed specifically for running large-scale, highly
available distributed Java enterprise applications, including Internet commerce
sites, enterprise portals and high volume transactional applications. It adds
considerable value beyond the J2EE standards in areas critical to the
implementation of real world applications, providing an entire suite of integrated
solutions that encompass:

= Web services

Comparison of Oracle Application Server and WebLogic Server 2-3

Architecture Comparison

« Business intelligence

« Management and security
« E-business integration

« Support for wireless clients
« Enterprise portals

« Performance caching

To enable these solutions to be implemented in a reliable and scalable
infrastructure, Oracle Application Server can be deployed in a redundant
architecture using clustering mechanisms and several high availability solutions.

The sections "Architecture Comparison” and "Oracle Application Server Support for
High Availability and Load Balancing” in this chapter detail the components and
characteristics of Oracle Application Server.

Architecture Comparison

This section describes and compares the overall architectures of WebLogic Server
and Oracle Application Server.

WebLogic Server

WebLogic Server has several components and concepts peculiar to it. Each
WebLogic Server can be configured and deployed either as a Managed Server or an
Administration Server. A Managed Server hosts and executes the application logic
deployed in it when requests are received from clients. An Administration Server
configures and monitors Managed Servers. Figure 2-1 depicts the components in
WebLogic Server and their interactions.

2-4 Oracle Application Server 10g Migrating From WebLogic

Architecture Comparison

Figure 2-1 WebLogic Server Components

Client

r—— - - - -—"""""—"Y¥F -V - — — — =/ — 1
| Hode 1 |
| hanaged ﬂ |
| . Sener 1 ™ Administration Sencer |
i de— A\
| e L] h;anag;_d Manager %W.'\ |
Bnrer
| Apache ¥ |
> 5 |
| Metscape Node 2 & E |
i
| hdlicrozoft J_ffdh + |
o] Mlanaged Hoda admin
| Manager ;“gm'm”'g Consale | |
| |
| |

In any node, more than one Managed Server can exist. Each Managed Server is a
Java process (JVM) executing J2EE containers (web and EJB). An Administration
Server, which is also a Java process, is required to propagate configuration
information to Managed Servers when they start-up. The configuration information
is stored in the filesystem on the Administration Server node.

The Administration Server is also used to monitor and log information about
individual Managed Servers and the entire WebLogic domain. A WebLogic domain
can consist of standalone Managed Servers, clusters of Managed Servers, and one
Administration Server. If the Administration Server goes offline, client requests can
still be serviced by the Managed Servers. However, configuration information is not
available for new Managed Servers to start-up, and monitoring services are not
available for server clusters. The Administration Server does not have automatic
failover or replication. Configuration data for the WebLogic domain has to be
manually backed up. The Administration Server functions can be accessed through
a console GUI (remotely over HTTP) or a command line utility.

In order for the Administration Server to start Managed Servers remotely, a Node
Manager must be running on each node where there are Managed Servers. This

Comparison of Oracle Application Server and WebLogic Server 2-5

Architecture Comparison

Node Manager is a Java program executing in the background as a UNIX daemon
or Windows service. With the Node Manager, the Administration Server can also
kill a Managed Server if the latter hangs or does not respond to commands from the
former.

WebLogic Server can also be set up to run as a web server. In this mode, it supports
HTTP 1.1 and resolves client requests to Managed Servers based on the settings in
the XML configuration files. Instead of WebL ogic Server, third-party proxy plug-ins
can also be used for servicing HTTP requests. Supported plug-ins are Apache,
Netscape, and Microsoft 1IS.

Oracle Application Server Components and Concepts

This section describes components and several concepts peculiar to Oracle
Application Server. The discussion here provides an overview scope.

See Also:

Oracle Application Server 10g Concepts,

Oracle Application Server 10g Administrator’s Guide,
Oracle Application Server 10g High Availability Guide

Oracle Application Server Containers for J2EE User’s Guide.

Oracle Application Server Instance

An OracleAS instance is a runtime occurrence of an installation of Oracle
Application Server. An Oracle Application Server installation has a corresponding
"Oracle Home" where the Oracle Application Server files are installed. Each Oracle
Application Server installation can provide only one OracleAS instance at runtime,
which can be a middle tier instance or Infrastructure instance. A physical node can
have multiple "Oracle Homes", and hence, more than one Oracle Application Server
installation and OracleAS instance.

Each OracleAS instance consists of several interoperating components that enable
Oracle Application Server to service user requests in a reliable and scalable manner.
These components are:

« Oracle HTTP Server
« OC4] Instances
« Oracle Process Management Notification (OPMN) Server

« Distributed Configuration Management (DCM))

2-6 Oracle Application Server 10g Migrating From WebLogic

Architecture Comparison

« Oracle Application Server Web Cache
« Oracle Enterprise Manager Application Server Control

« Oracle Application Server Infrastructure

Oracle HTTP Server

Oracle Application Server contains two listeners: Oracle HTTP Server (based on the
Apache open source project) and the listener that is part of OC4J, which runsin a
separate thread of execution. Each OracleAS instance has one Oracle HTTP Server.

The OCA4J listener listens to requests coming from the nod_oc4j module of the
Oracle HTTP Server and forwards them to the appropriate OC4J process. From a
functional viewpoint, the Oracle HTTP Server acts as a proxy server to OC4J,
wherein all servlet or JSP requests are redirected to OC4J processes.

nod_oc4j communicates with the OCA4] listener using the Apache JServ Protocol
version 1.3 (AJP 1.3). nod_oc4j works with the Oracle HTTP Server as an Apache
module. The OC4J listener can also accept HTTP and RMI requests, in addition to
AJP 1.3 requests.

The following diagram depicts Oracle HTTP Server and other Oracle Application
Server runtime components in a single instance of Oracle Application Server for a
J2EE and Web Cache installation type.

Figure 2-2 Components of an OracleAS Instance

D OracleAs

Oracless
Oracla Infrastructure

HTTF

ieb Cache

—

-
b 4

OracleAS Instance

— . — . . process management messages

----------- configuration change messages

Comparison of Oracle Application Server and WebLogic Server 2-7

Architecture Comparison

0OC4J Instances

An OC4J instance is a logical instantiation of the OC4J implementation in Oracle
Application Server. This implementation is Java 2 Enterprise Edition (J2EE)
complete and written entirely in Java. It executes on the standard Java Development
Kit (JDK) 1.4 Java Virtual Machine, which is installed with Oracle Application
Server (JDK 1.3 is supported). It has a lower disk and memory footprint than other
Java application servers. Note that each OC4J instance can consist of more than one
JVM process where each process can be executing multiple J2EE containers. The
number of JVM processes can be specified for each OC4J instance using the Oracle
Enterprise Manager Application Server Control GUI.

Oracle Application Server allows several OC4J instances to be clustered together as
part of an Oracle Application Server Cluster for scalability and high availability
purposes. When OC4J instances are clustered together, they have a consistent
configuration and the same applications deployed throughout the instances. A
more in-depth discussion on clustering is found in the section "Oracle Application
Server Support for High Availability and Load Balancing" below.

Oracle Process Management Notification (OPMN) Server

Each OracleAS instance has an OPMN component, which performs monitoring and
process management functions within that instance. This service communicates
messages between the components in an OracleAS instance to enable startup,
death-detection and recovery of components. This communication extends to other
OPMN services in other OracleAS instances belonging to the same OracleAS
Cluster as well, thereby allowing other instances in a cluster to be aware of active
OC4J and Oracle HTTP server processes in other OracleAS instances (in the same
cluster).

The OPMN service also communicates and interfaces with Application Server
Control to provide a consolidated interface for monitoring, configurating, and
managing Oracle Application Server. Oracle Application Server components,
Oracle HTTP Server, OC4J instances, and Distributed Configuration Management
(described below), use a subscribe-publish messaging mechanism to communicate
with the OPMN server. For failover and availability, the process that implements
the OPMN server has a shadow process that restarts the OPMN process if it fails.

Distributed Configuration Management (DCM)

In order to manage and track configuration changes in the various components in
each OracleAS instance, a DCM process exists in each OracleAS instance to perform
those tasks. Each configuration change made to any of the components in a
OracleAS instance is communicated to the DCM. DCM in turn takes note of the

2-8 Oracle Application Server 10g Migrating From WebLogic

Architecture Comparison

change and records it in the Oracle Application Server Metadata Repository in the
Infrastructure database. This repository contains the configuration information for
all the OracleAS instances connected to it. All OracleAS instances connecting to the
same Oracle Application Server Metadata Repository in this way belong to the
same OracleAS Farm. If any of the OracleAS instances fail, the configuration
information can be retrieved from the Metadata Repository for the purpose of
restarting these instances.

Each DCM also communicates with the OPMN in their respective instances to send
notification events on changes in repository data. This allows OPMN to make the
corresponding adjustments to the Oracle Application Server components.

Oracle Application Server Web Cache

Oracle Application Server provides a caching solution with the unique capability to
cache both static and dynamically generated web content. Oracle Application
Server Web Cache (OracleAS Web Cache) significantly improves the performance
and scalability of heavily loaded Oracle Application Server hosted web sites by
reducing the number of round trips to the Oracle HTTP Server. In addition,
OracleAS Web Cache provides a number of features to ensure consistent and
predictable responses. These features include page fragment caching, dynamic
content assembly, web server load balancing, OracleAS Web Cache clustering, and
failover. OracleAS Web Cache can be used as a load balancer for OracleAS instances
in a cluster. OracleAS Web Cache can itself be deployed in its own cluster. Refer to
the Oracle Application Server Web Cache Administrator’s Guide.

Oracle Enterprise Manager Application Server Control

Oracle Enterprise Manager Application Server Control (Application Server Control)
provides a web-based interface for managing Oracle Application Server
components and applications. Using the Application Server Control, you can do the
following:

« monitor OracleAS components, OracleAS middle tier and Infrastructure
instances, OracleAS middle tier clusters, and deployed J2EE applications and
their components

« configure Oracle Application Server components, instances, clusters, and
deployed applications

« operate OracleAS components, instances, clusters, and deployed applications

« manage security for OracleAS components and deployed applications

Comparison of Oracle Application Server and WebLogic Server 2-9

Architecture Comparison

For more information on Oracle Enterprise Manager and its two frameworks, see
Oracle Enterprise Manager Concepts.

See Also: Oracle Application Server Administrator’s Guide - provides
descriptions on Application Server Control and instructions on
how to use it.

Oracle Application Server Infrastructure
Oracle Application Server provides a completely integrated infrastructure and

framework for development and deployment of enterprise applications. An Oracle

Application Server Infrastructure installation type provides centralized product
metadata, security and management services, and configuration information and
data repositories for the Oracle Application Server middle tier. By integrating the
Infrastructure services required by the middle tier, time and effort required to
develop enterprise applications are reduced. In turn, the total cost of developing
and deploying these applications is reduced, and the deployed applications are

more reliable.

The Oracle Application Server Infrastructure provides the following overall
services:

Product Metadata Service

Oracle Application Server Infrastructure stores all application server metadata
required by Oracle Application Server middle tier instances. This data is stored
in an Oracle9i database, thereby leveraging the robustness of the database to
provide a reliable, scalable, and easy-to-manage metadata repository.

Security Service

The security service provides a consistent security model and identity
management for all applications deployed on Oracle Application Server. The
service enables centralized authentication using single sign-on, Web-based
administration through the Oracle Delegated Administration Services, and
centralized storage of user authentication credentials. The Oracle Internet
Directory is used as the underlying repository for this service.

Management Service

This service is used by Distributed Configuration Management to manage and
administer Oracle Application Server middle tier instances and the Oracle
Application Server Infrastructure. It is also used to administer clustering
services for the middle tier. Application Server Control reduces the total

2-10 Oracle Application Server 10g Migrating From WebLogic

Architecture Comparison

administrative cost by centralizing the management of deployed J2EE
applications.

The components in OracleAS Infrastructure which implement the above services
are:

« Oracle Application Server Metadata Repository

« Oracle Identity Management

Oracle Application Server Metadata Repository Oracle Application Server Metadata
Repository is an Oracle9i Enterprise Edition database server and stores
component-specific information that is accessed by the Oracle Application Server
middle tier or Infrastructure components as part of their application deployment.
The end user or the client application does not access this data directly. For
example, a Portal application on the middle tier accesses the Portal metadata as part
of the Portal page assembly aggregation. Metadata also includes demo data for
many Oracle Application Server components, such as data used by the Order
Management Demo for BC4J.

Oracle Application Server metadata and customer or application data can co-exist
in the Oracle Application Server Metadata Repository, the difference is in which
applications are allowed to access them.

The Oracle Application Server Metadata Repository stores three main types of
metadata corresponding to the three main Infrastructure services described in the
section "Oracle Application Server Infrastructure”. These types of metadata are:

« product metadata

« identity management metadata

=« Management metadata

Table 2-1 shows the Oracle Application Server components that store and use these
types of metadata during application deployment.

Table 2-1 Metadata and Infrastructure Components

Type of Metadata Infrastructure Components Involved

Product metadata Oracle Application Server Metadata Repository

(includes demo data)

Identity Management OracleAS Single Sign-On, Oracle Internet Directory,
metadata Oracle Application Server Certificate Authority

Comparison of Oracle Application Server and WebLogic Server 2-11

Architecture Comparison

Table 2-1 Metadata and Infrastructure Components

Type of Metadata Infrastructure Components Involved
Management metadata Distributed Configuration Management, Oracle Enterprise
Manager

Oracle Application Server Metadata Repository (OracleAS Metadata Repository) is
needed for all application deployments except for those using the J2EE and Web
Cache installation type. Oracle Application Server provides three middle tier
installation options:

« J2EE and Web Cache: Installs Oracle HTTP Server, Oracle Application Server
Containers for J2EE (OC4J), Oracle Application Server Web Cache (OracleAS
Web Cache), Web Services, Oracle Business Components for Java (BC4J), and
Application Server Control.

« Portal and Wireless: Installs all components of J2EE and OracleAS Web Cache,
plus UDDI, Oracle Application Server Portal (OracleAS Portal), Oracle
Application Server Syndication Services (OracleAS Syndication Services),
Oracle Ultra Search, and Oracle Application Server Wireless (OracleAS
Wireless).

« Business Intelligence and Forms: Installs all components of J2EE and OracleAS
Web Cache, OracleAS Portal and Oracle Application Server Wireless, plus
Oracle Application Server Forms Services, Oracle Application Server Reports
Services, Oracle Application Server Discoverer, and Oracle Application Server
Personalization.

Integration components, such as Oracle Application Server ProcessConnect, Oracle
Application Server InterConnect, and Oracle Workflow are installed on top of any
of these middle tier install options.

The Distributed Configuration Management (DCM) component enables middle tier
management, and stores its metadata in the OracleAS Metadata Repository for both
the Portal and Wireless, and the Business Intelligence and Forms install options. For
the J2EE and Web Cache installation type, by default, DCM uses a file-based
repository. If you choose to associate the J2EE and Web Cache installation type with
an Infrastructure, the file-based repository is moved into the OracleAS Metadata
Repository.

See Also: Oracle Application Server Installation Guide for
information on the OracleAS installation details.

2-12 Oracle Application Server 10g Migrating From WebLogic

Architecture Comparison

Oracle Identity Management The Oracle Identity Management components provide an
infrastructure for the security lifecycle of applications and entities in OracleAS. The
components that make up Identity Management are:

Oracle Internet Directory

Oracle Internet Directory is Oracle’s implementation of a directory service using
the Lightweight Directory Access Protocol (LDAP) version 3. It runs as an
application on the Oracle9i database and utilizes the database’s high
performance, scalability, and high availability.

Oracle Internet Directory provides a centralized repository for creating and
managing users for the rest of the Oracle Application Server components such
as OC4J, Oracle Application Server Portal, or Oracle Application Server
Wireless. Central management of user authorization and authentication enables
users to be defined centrally in Oracle Internet Directory and shared across all
Oracle Application Server components.

Oracle Internet Directory is provided with a Java-based management tool
(Oracle Directory Manager), a Web-based administration tool (Oracle Delegated
Administration Services) for trusted proxy-based administration, and several
command-line tools. Oracle Delegated Administration Services provide a
means of provisioning end users in the Oracle Application Server environment
by delegated administrators who are not the Oracle Internet Directory
administrator. It also allows end users to modify their own attributes.

Oracle Internet Directory also enables Oracle Application Server components to
synchronize data about users and group events, so that those components can
update any user information stored in their local application instances.

See Also: Oracle Internet Directory Administrator’s Guide

OracleAS Single Sign-On

OracleAS Single Sign-On is a multi-part environment which is made up of both
middle tier and database functions allowing for a single user authentication
across partner applications. A partner application can be achieved either by
using the SSOSDK or via the Apache nod_osso module. This module allows
Apache (and subsequently URLS) to be made partner applications.

OracleAS Single Sign-On is fully integrated with Oracle Internet Directory,
which stores user information. It supports LDAP-based user and password
management through Oracle Internet Directory.

Comparison of Oracle Application Server and WebLogic Server 2-13

High Availability and Load balancing

OracleAS Single Sign-On supports Public Key Infrastructure (PKI) client
authentication, which enables PKI authentication to a wide range of Web
applications. Additionally, it supports the use of X.509 digital client certificates
and Kerberos Security Tickets for user authentication.

By means of an API, OracleAS Single Sign-On can integrate with third-party
authentication mechanisms such as Netegrity Site Minder.

See Also: Oracle Application Server Single Sign-On Administrator’s
Guide

« OracleAS Certificate Authority

OracleAS Certificate Authority (OCA) is a component of the Oracle public key
infrastructure (PKI) offering that allows you to create and manage X.509v3
digital certificates for use in Oracle or third-party software. OCA is fully
standards-compliant, and is fully integrated with OracleAS Single Sign-On and
Oracle Internet Directory. OracleAS Certificate Authority provides web-based
certificate management and administration, as well as XML-based
configuration. It leverages the Identity Management infrastructure, high
availability, and scalability of the Oracle9i platform.

See Also: Oracle Application Server Certificate Authority
Administrator’s Guide

High Availability and Load balancing

This section describes high availability and load balancing and their importance to
application server operation. It compares the methodologies for each in WebLogic
Server and Oracle Application Server.

WebLogic Server Support for High Availability and Load Balancing

One or more WebLogic Servers can be grouped together as a cluster. Applications
can be deployed commonly in all servers in a cluster, through cluster-wide
deployment, to allow client requests to be load balanced across the cluster and the
applications to have failover capabilities. In a WebLogic cluster, the entities that
benefit from clustering are HTTP session states, and EJB and RMI objects. Several
load balancing algorithms are used by WebLogic. These are round-robin,
weight-based, and parameter-based.

2-14 Oracle Application Server 10g Migrating From WebLogic

High Availability and Load balancing

HTTP Session State Load Balancing and Failover (Servlet Clustering)

Clients making requests to a WebLogic cluster can have their requests load balanced
across the servers in the cluster. For this to work, a web server installed with the
WebLogic proxy plug-in or a hardware load balancer must be used. The WebLogic
proxy plug-in uses a round-robin load balancing mechanism to distribute the
request load. If a hardware load balancer is used, the cluster can be load balanced
using the hardware’s mechanism.

WebLogic Server achieves failover for servlets and JSPs by replicating the HTTP
session states of clients. When a WebLogic Server receives the very first request for a
servlet or JSP, it replicates the servlet’s session state to another server. The replicated
session state is always kept up-to-date with the original. The WebLogic proxy
plug-in returns the names of the two servers to the client through a cookie or by
rewriting the URL. If the server hosting the original session state fails, the WebLogic
proxy plug-in uses the information in the cookie or URL to redirect the client to the
server with the replicated session state. At any one time, the cluster maintains an
original and replica of each active session state. In this scenario, the session state is
replicated in memory. WebL ogic Server also supports replication to the file system
or a database through JDBC, however, the failover is not automatic for these
replication methods.

EJB and RMI Object Load Balancing and Failover

WebLogic Server provides load balancing and failover for EJB and RMI objects by
using a JNDI service and client stubs which are both cluster-aware.

Each WebLogic Server in a cluster maintains a local INDI tree. This tree contains
information on objects deployed on the local server and around the cluster (for
objects that are clusterable). If a clusterable object is deployed on more than one
server, each JNDI tree reflects the existence of that object on those servers. When a
clusterable object is deployed on a server, that server, through multicast, notifies the
other servers in the cluster of the new deployment. The other servers’ update their
JNDI trees accordingly. Note that the server with the deployed object also sends the
object’s stub to the other servers.

When a client looks up a clusterable object in the JNDI service, the server servicing
the request returns a stub of the object to the client. This stub contains information
about which server(s) the object is actually deployed in. The stub also has load
balancing logic to balance method calls to the object. The load balancing algorithms
available are round-robin, weight-based, random, and parameter-based. From the
client’s point-of-view, the cluster is transparent. The JNDI look ups and load
balancing are done without the client knowing that it is working with a clustered
object at the server end.

Comparison of Oracle Application Server and WebLogic Server 2-15

High Availability and Load balancing

In the case where a clustered object is stateful, for example, a stateful session EJB,
the object’s state is replicated to a second server. The replication is achieved in a
similar manner as for HTTP session state. The server that is chosen to service a
client’s very first request replicates the object’s state to another server. The client
stub is updated to reflect this. If the first server fails, the stub receives an exception
when it tries to invoke a method. The stub then redirects the invocation to the
server with the replicated object state. This server instantiates the object with the
replicated state and executes the method invocation. The server also selects another
server to replicate the state to since the original server is down. Failover of stateful
objects is achieved this way.

Failover of stateless objects is more straightforward to achieve as state need not be
replicated. Upon receiving an exception indicating that a server has failed, the client
stub simply selects another server which is hosting another instance of the called
object and redirects the method invocation there.

Oracle Application Server Support for High Availability and Load Balancing

Oracle Application Server is designed with several high availability and load
balancing mechanisms. These mechanisms ensure that failover and scalability are
achieved at the Infrastructure and middle tier levels. For failover, clusters of similar
OracleAS components can be created. These clusters offer redundancy for similar
components.

This section describes the clustering and load balancing concepts and capabilities of
applicable components in Oracle Application Server.

See Also: Oracle Application Server 10g High Availability Guide

Oracle Application Server Instance

The Oracle Application Server architecture supports high availability in the middle
tier that in many cases can prevent unplanned down time for deployed
applications. This section provides an overview of the architecture of an Oracle
Application Server instance and shows some of the mid-tier high availability
features.

Within each Oracle Application Server instance, the following features provide high
availability within the instance, and for any clusters that the instance is a part of:

« Process Monitoring — Using the Oracle Process Manager and Notification Server
system provides for process death detection and process restarting in the event
that problems are detected for monitored processes.

2-16 Oracle Application Server 10g Migrating From WebLogic

High Availability and Load balancing

« Configuration Cloning — Using the Distributed Configuration Management
features that uses a Oracle Application Server Metadata Repository for
configuration information provides distributed and managed configuration for
Oracle Application Server instances and for Oracle Application Server instances
that are part of a cluster.

« Data Replication — Using OC4J instances with OC4J islands that provide Web
application level stateful session replication, and using EJB sessions, data is
replicated across processes within an Oracle Application Server instance and
across different Oracle Application Server instances that may reside on different
hosts when using Oracle Application Server Clusters. This allows stateful
session based applications to remain available even when processes within an
Oracle Application Server instance become unavailable or fail.

« Smart Routing — Oracle Application Server Web Cache and Oracle HTTP Server
(mod_oc4j) provide configurable and intelligent routing for incoming
requests. Requests are routed only to processes and components that nod_oc4J
determines to be alive, through communication with the Oracle Process
Manager and Notification Server system.

Oracle Application Server Clusters (Middle Tier)

An Oracle Application Server Cluster (OracleAS Cluster) is made up of one or more
OracleAS instances (see Figure 2-3). All OracleAS instances in the cluster have the
same configuration. The first OracleAS instance to join a cluster has its
configuration replicated to the second and later instances when they join. In
addition to the configuration, deployed OC4J applications are also replicated to the
newer instances. Information for the replicated configuration and applications is
retrieved from the OracleAS Metadata Repository used by the cluster.

Within each cluster, there is no mechanism to load balance or failover the OracleAS
instances. That is, there is no internal mechanism in the cluster to load balance or
failover requests to the Oracle HTTP Server component in the instances. A separate
load balancer such as OracleAS Web Cache or hardware load balancing product can
be used to load balance the OracleAS instances in the cluster and failover the Oracle
HTTP Server instances in the cluster.

Several OracleAS Clusters and standalone OracleAS instances can be further
grouped into an OracleAS Farm. The clusters and instances in this farm share the
same OracleAS Metadata Repository. For further information on OracleAS Farms,
refer to the Oracle Application Server 10g Administrator’s Guide.

Comparison of Oracle Application Server and WebLogic Server 2-17

High Availability and Load balancing

Figure 2-3 An OracleAS Cluster Using OracleAS Web Cache for Load Balancing

Oracless
ik Cache

I

I

I

| OracleAs OracleAS OracleAS
: Instance Instance Instance
I

|

|

OracleAs Cluster

0OC4J Islands

An important function of clustering technology in Oracle Application Server is that
of reducing multicast traffic. With every server sharing its session state with every
other server in the cluster, a lot of CPU cycles is consumed as overhead to replicate
the session state across all nodes in the cluster. Oracle Application Server solves this
problem by introducing the concept of OC4J islands, where OC4J processes (JVMSs)
in an OracleAS Cluster can be sub-grouped into islands. Session state of
applications is replicated only to OC4J processes belonging to the same island
rather than all OC4J processes in the OracleAS Cluster. Hence, state is replicated to
a smaller number of processes. OC4J islands are typically configured to span across
physical nodes, thereby allowing failover of application state if a node goes down.

Consider an OracleAS Cluster with four OC4J processes running in two nodes, two
processes per node (see Figure 2-4). When the state of an application changes,
which could occur at every request from the same client, multicast messages are
sent between all four processes to update the state of that application in each
process. If these four processes were to be divided into two islands of two processes
across two nodes, state replication of the application would only have to occur
between processes within the same island. Multicast messages would be required
only between the two processes in the island instead of four, reducing replication
overhead by half. As a result, network traffic and CPU cycles are reduced.

2-18 Oracle Application Server 10g Migrating From WebLogic

High Availability and Load balancing

Figure 2-4 0OCA4J Islands

b ocad acal
4 Process Process

{ OC4d Island 1

P oo
i Frocess

' OC4d Island 2

OC4] Instance

OracleAS Instance OracleAS Instance

I_I:IracleﬁaLS Clustar

When configuring OC4J islands, you can specify the number of OC4J processes for
each node that belong to each island. By doing so, you can increase or decrease the
number of processes based on the capabilities of the hardware and operating
system of each node. For instructions on how to configure OracleAS Clusters and
OC4J islands, refer to Oracle Application Server 10g High Availability Guide.

Stateful Session EJB High Availability Using EJB Clustering

Using OCA4J, stateful session EJBs can be configured to provide state replication
across OC4J processes running within an application server instance or across an
OracleAS Cluster. This EJB replication configuration provides high availability for
stateful session EJBs by using multiple OC4J processes to run instances of the same
stateful session EJB.

Comparison of Oracle Application Server and WebLogic Server 2-19

High Availability and Load balancing

Note: Use of EJB replication (EJB clusters) for high availability is
independent of OracleAS Clusters and can involve multiple
application server instances installed across nodes that are or are
not part of OracleAS Clusters.

EJB clusters provide high availability for stateful session EJBs. They allow for
failover of these EJBs across multiple OC4J processes that communicate over the
same multicast address. Thus, when stateful session EJBs use replication, this can
protect against process and node failures and can provide for high availability of
stateful session EJBs running on Oracle Application Server.

See Also:

« Oracle Application Server 10g High Availability Guide
« Oracle Application Server Containers for J2EE User’s Guide

« Oracle Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide

JNDI Namespace Replication When EJB clustering is enabled, INDI namespace
replication is also enabled between the OC4J instances in an OracleAS Cluster. New
bindings to the JNDI namespace in one OC4J instance are propagated to other OC4J
instances in the OracleAS Cluster. Rebindings and unbindings are not replicated.

The replication is done outside the scope of OC4J islands. In other words, multiple
islands in an OC4J instance have visibility into the same replicated JNDI
namespace.

See Also: Oracle Application Server Containers for J2EE Services
Guide

Java Object Cache

Oracle Application Server Java Object Cache provides a distributed cache that can
serve as a high availability solution for applications deployed to OC4J. The Java
Object Cache is an in-process cache of Java objects that can be used on any Java
platform by any Java application. It allows applications to share objects across
requests and across users, and coordinates the life cycle of the objects across
processes.

Java Object Cache enables data replication among OC4J processes even if they do
not belong to the same OC4]J island, application server instance, or Oracle
Application Server Cluster.

2-20 Oracle Application Server 10g Migrating From WebLogic

High Availability and Load balancing

By using Java Object Cache, performance can be improved since shared Java objects
are cached locally, regardless of which application produces the objects. This also
improves availability; in the event that the source for an object becomes
unavailable, the locally cached version will still be available.

Oracle Application Server Web Cache Clusters

Two or more OracleAS Web Cache instances can be clustered together to create a
single logical cache. Physically, the cache can be distributed amongst several nodes.
If one node fails, a remaining node in the same cluster can fulfill the requests
serviced by the failed node. The failure is detected by the remaining nodes in the
cluster who take over ownership of the cacheable content of the failed member. The
load balancing mechanism in front of the OracleAS Web Cache cluster, for example,
a hardware load balancing appliance, redirects the requests to the live OracleAS
Web Cache nodes.

OracleAS Web Cache clusters also add to the availability of OracleAS instances. By
caching static and dynamic content in front of the OracleAS instances, requests can
be serviced by OracleAS Web Cache reducing the need for the requests to be
fulfilled by OracleAS instances, particularly for Oracle HTTP Servers. The load and
stress on OracleAS instances is reduced, thereby increasing availability of the
components in the instances.

Oracle Application Server Web Cache can also perform a stateless or stateful load
balancing role for Oracle HTTP Servers. Load balancing is done based on the
percentage of the available capacity of each Oracle HTTP Server, or, in other words,
the weighted available capacity of each Oracle HTTP Server. If the weighted
available capacity is equal for several Oracle HTTP Servers, OracleAS Web Cache
uses round robin to distribute the load. Refer to Oracle Application Server Web Cache
Administrator’s Guide for the formula to calculate weighted available capacity.

In the case of failure of a Oracle HTTP Server, OracleAS Web Cache redistributes
the load to the remaining Oracle HTTP Servers and polls the failed server
intermittently until it comes back online. Thereafter, OracleAS Web Cache
recalculates the load distribution with the revived Oracle HTTP Server in scope.

See Also: Oracle Application Server Web Cache Administrator’s Guide
OracleAS Infrastructure High Availability Solutions

Several solutions exist to enable high availability for the OracleAS Infrastructure.
These solutions allow for intrasite failover. They are:

Comparison of Oracle Application Server and WebLogic Server 2-21

J2EE Support Comparison

Oracle Application Server Cold Failover Clusters The cold failover cluster solution offers
a two-node hardware cluster, which are identically configured. One node is active
whilst the other is passive. A hardware interconnect exists between both nodes,
which run with an operating system that has clustering features. Both of these
nodes access a common shared storage. A single logical IP address is also shared
between the two nodes. (A unique physical IP address also exists for each node. But
only the single logical IP address is visible and used by the middle tier to access the
Infrastructure on the cold failover cluster.

During OracleAS Infrastructure installation, the "Oracle Home" for the installation
is installed on the shared storage together with the database files. During operation,
only one node is mounted on the shared storage at any one time. In the event that
the active node fails, the clustering software of the passive node detects the failure
and "takes over" the logical IP address. The passive node becomes the active node,
mounts the shared storage, and services requests from the middle tier.

The cold failover cluster nodes can also be installed with the middle tier. In this
scenario, the nodes are active-active for the middle tier and active-passive for the
Infrastructure.

See Also: Oracle Application Server 10g High Availability Guide

Oracle Application Server Active Clusters Whilst the cold failover cluster offers an
active-passive availability configuration for the Infrastructure, the Oracle
Application Server Active Clusters (OracleAS Active Clusters) solution offers
active-active availability. The OracleAS Active Clusters solution is based on
Oracle9i Real Application Clusters technology. It allows more than two nodes to be
active in a cluster. The underlying hardware used for each node also utilizes
hardware cluster technology. But the IP address take over mechanism is not used.
Instead, a hardware load balancer appliance is configured in front of the OracleAS
Active Clusters nodes to load balance requests to them. This load balancer has a
logical IP name and address, which is/are used by the middle tier to access the
Infrastructure. Oracle Net connections bypass this hardware load balancer by using
an address list of nodes in the cluster. Both the hardware load balancer appliance
and Oracle Net manage the failover of requests to active nodes if a node fails.

See Also: Oracle Application Server 10g High Availability Guide

J2EE Support Comparison

This section outlines the differences in the level of support of J2EE specifications
between WebLogic Server 7.0 and Oracle Application Server 10g (9.0.4).

2-22 Oracle Application Server 10g Migrating From WebLogic

J2EE Support Comparison

Oracle Application Server OC4l is fully certified with J2EE 1.3, having passed Sun
Microsystems’ Certification Test Suite (CTS). The CTS includes over 5,000 tests
designed to assess application portability and the overall quality of a J2EE
implementation. WebLogic Server is also J2EE 1.3 certified.

Table 2-2 lists the J2EE technologies and the level of support provided by Oracle
Application Server and WebLogic Server:

Table 2-2 J2EE Support

Version Supported by
Version Supported by Oracle Application

J2EE Technology WebLogic Server 7.0 Server 10g (9.0.4)
JDK 1.3 l4and 13
Servlets 2.3 2.3

JSPs 1.2 1.2

EJBs 2.0 2.0

JDBC 2.0 2.0 Extension
JNDI 1.2 1.2

JTA 1.01 1.01

IMS 1.0.2 1.0.2
JavaMail 11 112

JAF None 1.0.1

JAXP 11 11

IJCA 1.0 1.0

JAAS 1.0 1.0

Note: Oracle Application Server OC4] is installed with JDK 1.4.1.
However, OC4J can also work with JDK 1.3.x for this version, 10g
(9.0.4), of Oracle Application Server.

In addition to supporting these standards, Oracle Application Server provides a
well thought out, integrated architecture for building real world J2EE applications,

Comparison of Oracle Application Server and WebLogic Server 2-23

Java Development and Deployment Tools

including implementation of standard deployment archives: JAR files for EJBs, Web
Archives (WARs) for servlets and JSPs, and Enterprise Archives (EARS) for
applications. This ensures smooth interoperability with other standards-compliant
application servers.

Java Development and Deployment Tools

This section compares the Java tools offered by the WebLogic Platform and Oracle
Application Server.

WebLogic Development and Deployment Tools

The WebLogic development environment and Administration Console are
described below.

WebLogic Server Workshop

WebLogic Workshop is a visual development environment for building and
deploying Web services using Java and XML. Workshop provides a framework and
set of controls to interact with EJBs, databases, JMS topics and queues, and other
Web services and applications. Several of these controls are proprietary to the
WebLogic Platform, in addition to the Java Web Services (JWS) file definition. A JWS
file contains the logic to implement a Web service on WebLogic Server. However,
JWS is not a J2EE or Web services standard and is not portable to other application
services.

WebLogic Server Administration Console

The WebLogic Server administrative console provides a GUI for managing the
WebLogic Server domain. A WebLogic Server domain consists of one or more
WebLogic Server instances (where each instance runs one or more applications) or
clusters of instances. The administrative console connects to the designated
administrative server running in the domain and can be used to change the
configuration or run-time state on any machine in a domain. The administrative
console is used to define clusters, add servers, deploy applications, configure
applications, and manage web servers, services, and resources in the domain.

Oracle Application Server Development and Deployment Tools

This section describes development and deployment tools for creating J2EE
applications. The tools are part of the Oracle Developer Suite.

2-24 Oracle Application Server 10g Migrating From WebLogic

Java Development and Deployment Tools

Development Tools

Application developers can use the tools in Oracle JDeveloper to build J2EE-
compliant applications for deployment on OC4J. JDeveloper is a component in
Oracle Internet Developer Suite, a full-featured, integrated development
environment for creating multi-tier Java applications. It enables you to develop,
debug, and deploy Java client applications, dynamic HTML applications, web and
application server components and database stored procedures based on
industry-standard models. For creating multi-tier Java applications, JDeveloper has
the following features:

« Oracle Business Components for Java (BC4J)

« Web application development

« Java client application development

« Javain the database

« Component-Based Development with JavaBeans
« Simplified database access

« Visual Integrated Development Environment

« Complete J2EE 1.3 support

« Automatic generation of . ear files, . war files, ej b-j ar. xm file, and
deployment descriptors.

You can build applications with Oracle JDeveloper and deploy them manually,
using Application Server Control, or with the OC4J Administration Console. Also
note that you are not restricted to using JDeveloper to build applications; you can
deploy applications built with IBM VisualAge or Borland JBuilder on OC4J.

Note: In addition to JDeveloper, Oracle Application Server
TopLink, an object-relational mapping tool, also comes with Oracle
Application Server. See Oracle Application Server TopLink Application
Developer’s Guide.

Assembly Tools

Oracle Application Server provides a number of assembly tools to configure and
package J2EE Applications. The output from these tools is compliant with J2EE
standards and is not specific to OC4J. These include:

Comparison of Oracle Application Server and WebLogic Server 2-25

Java Development and Deployment Tools

« A WAR file assembly tool to assemble JSP, servlets, tag libraries and static
content into WAR files.

« An EJB assembler, which packages an EJB home, remote interface, deployment
descriptor, and the EJB into a standard JAR file.

« AnEAR file assembly tool, which assembles WAR Files and EJB JARs into
standard EAR files.

« Atag library assembly tool, which assembles JSP tag libraries into standard JAR
files.

Administration Tools

Oracle Application Server also provides two different administration facilities to
configure, monitor, and administer its components.

« A graphical management tool, Oracle Enterprise Manager Application Server
Control, which provides a single point of administration across OracleAS
Clusters, Farms, and OC4J containers.

« A command line tool for performing administrative tasks locally or remotely
from a command prompt. (Application Server Control is the preferred
administration environment over this command line tool as it provides a more
integrated set of administration services.)

2-26 Oracle Application Server 10g Migrating From WebLogic

3

Migrating Java Servlets

This chapter provides the information you need to migrate Java servlets from
WebL ogic Server to Oracle Application Server. It covers the migration of simple
servlets, WAR files, and exploded web applications.

This chapter contains these topics:

Introduction

Migrating a Simple Servlet

Migrating Configuration and Deployment Descriptors
Migrating a WAR File

Migrating an Exploded Web Application

Migrating Cluster Aware Applications

Migrating Java Servlets 3-1

Introduction

Introduction

Migrating Java servlets from WebLogic Server to Oracle Application Server is
straightforward, requiring little or no code changes to the servlets migrated.

Both application servers are fully compliant with Sun Microsystem’s J2EE Servlet
specification, version 2.3. All servlets written to the standard specification will work
correctly and require minimal migration effort.

The primary tasks involved in migrating servlets to a new environment are
configuration and deployment. The use of proprietary extensions, such as
htmlKona, will require additional tasks and complicate the migration effort.

The tasks involved in migrating servlets also depend on how the servlets have been
packaged and deployed. Servlets can be deployed as a simple servlet, as a web
application packaged with other resources in a standard directory structure, or as a
web archive (WAR) file.

Differences Between WebLogic Server and Oracle Application Server Servlet
Implementations

Oracle Application Server and WebLogic Server both support the Servlet 2.3
specification. Hence, migrating a servlet from WebLogic Server to Oracle
Application Server is straightforward.

0C4J Key Servlet Container Features

One of the key distinguishing features of OC4J is the seamless integration with
Single Sign-On (SSO) and Oracle Internet Directory (OID). This is achieved through
Oracle’s implementation of the Java Authentication and Authorization Service
(JAAS) standard - JAAS provider is integrated with OC4J.

Migrating a Simple Servlet

Simple servlets are easily configured and deployed in OC4J. The manual process
used to deploy a servlet is the same in both WebLogic Server and OC4J.

3-2 Oracle Application Server 10g Migrating From WebLogic

Migrating a Simple Servlet

Note: The recommended and preferred way to deploy a servlet is
by packaging it in a WAR or EAR file and using Oracle Enterprise
Manager Application Server Control or the dcntt | command line
utility. The manual processes described in this chapter of editing
XML files and starting OC4J at the command line using the j ava
command should be used for development purposes only and is
for discussion purposes only.

A servlet must be registered and configured as part of a web application. To register
and configure a servlet, several entries must be added to the web application
deployment descriptor.

The overall steps to deploy a simple servlet are as follows (detailed steps are in
Table 3-1):

1. Update the web application deployment descriptor (web. xm) with the name
of the servlet class and the URL pattern used to resolve requests for the servlet.

2. Copy the servlet class file to the WEB- | NF/ cl asses/ directory. If the servlet
class file contains a package statement, create additional subdirectories for each
level of the package statement. The servlet class file must then be placed in the
lowest subdirectory created for that package.

3. Invoke the servlet from your browser by entering its URL.

To determine the effort involved in migrating servlets, we selected and migrated
example servlets provided with WebLogic Server. We chose examples that did not
use proprietary extensions.

Table 3-1 presents the manual process for migrating a simple servlet, HellowWorld,
from WebLogic Server to Oracle Application Server OC4J.

Migrating Java Servlets 3-3

Migrating a Simple Servlet

Table 3-1 Migrating a Simple Servlet

Step Description Process
1 Modify the web application Add the descriptor information below to the web. xni file located in
deployment descriptor the following directory in your Oracle Application Server
installation:

For UNIX, web. xm can be found in:

<ORACLE_HOWMVE>/ j 2ee/ hone/ def aul t - web- app/ VEEB- | NF/
For Windows, web. xm can be found in:

<ORACLE_HOVE>\ j 2ee\ hone\ def aul t - web- app\ VEEB- | NF\
The descriptor information to be entered is:

<servl et >
<ser vl et - nane>
Hel | oVWr | dSer vl et
</ ser vl et - nanme>
<servl et - cl ass>
exanpl es. servl ets. Hel | oWbr | dSer vl et
</ servl et - cl ass>
</servl et>
<ser vl et - mappi ng>
<servl et - nane>
Hel | oWr | dSer vl et
</ servl et - nane>
<url -pattern>
/Hel 1 oVeérl dM grat e/ *
< url -pattern>
</ servl et - nappi ng>

3-4 Oracle Application Server 10g Migrating From WebLogic

Migrating a Simple Servlet

Table 3-1 Migrating a Simple Servlet (Cont.)

Step

Description

Process

2

Copy the servlet class file to the
appropriate directory

After running the samples that came with WebLogic, copy

Hel | oWor | dSer vl et . cl ass from a directory in your WebLogic
Server installation to the appropriate directory in Oracle Application
Server as follows:

In UNIX, from:

<BEA HOVE>/ webl ogi c700/ sanpl es/ server/ confi g/
exanpl es/ appl i cati ons/ exanpl es\WebApp/ VEB- | NF/
cl asses/ exanpl es/ servl et s/

to:

<CORACLE_HQOVE>/ j 2ee/ hone/ def aul t - web- app/ VEB- | NF/
cl asses/ exanpl es/ servl ets/

In Windows, from:

<BEA_HOVE>\ webl ogi ¢700\ sanpl es\ server\ confi g\
exanpl es\ appl i cati ons\ exanpl esWebApp\ VIEB- | NF\
cl asses\ exanpl es\ servl et s\

to:

<ORACLE_HQOVE>\ j 2ee\ hone\ def aul t - web- app\ VEB- | NF\
cl asses\ exanpl es\ servl et s\

NOTE:

This servlet provided with the WebL ogic Server installation belongs
to a package called exanpl es. ser vl et s. When copying its class
file to Oracle Application Server, you need to create the
corresponding package subdirectories (for example,

exanpl es/ servl ets/).

Restart the hone OC4)
instance, or start it if it is not
currently running

Use the Oracle Enterprise Manager Application Server Control
administration web pages or the following dcntt| command:

dentt| start|restart -i <appsvr_i nstance_nane> -ct oc4j
-co hone

where <appsvr _i nst ance_nane> is the name of your Oracle
Application Server instance

Run the servlet from your web
browser

Access the servlet from your web browser using the URL
http://1 ocal host: 7777/ j 2ee/ Hel | oVWr | dM gr at e

(Substitute "l ocal host " with your OC4J instance’s host name if
using the browser from another machine.)

Migrating Java Servlets 3-5

Migrating a WAR File

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide for detailed information on configuring and
deploying servlets.

Migrating a WAR File

A web application can be configured and deployed as a WAR file. This is easily
accomplished in OC4J by using the Application Server Control administration GUI
or manually copying the WAR file to the appropriate directory. This is also true for
WebLogic Server. We will illustrate the process using Application Server Control to
deploy an example WAR file from WebLogic Server.

Note: Manually copying a WAR file to the appropriate directory
to deploy it should only be done in a development environment
where OC4J is in standalone mode (not a component of an Oracle
Application Server instance).

Production web applications are typically deployed using WAR or EAR files
through Application Server Control or the dcntt | utility. During the development
of a web application, it may be faster to deploy and test edited code using an
exploded directory format.

Table 3-3 presents the typical process for migrating a WAR file from WebLogic
Server to OCA4J.

Table 3-2 Migrating a WAR File

Step Description Process

1 Create the WAR file for If you have not run all the WebLogic Server samples that
the sample application. came with that product, build the cookie sample web
application in the following WebLogic Server directory
(UNIX is shown but Windows has an equivalent):

<BEA_HOVE>/ webl ogi c700/ sanpl es/ server/src/
exanpl es/ webapp/ cooki e

In this directory, build the application by typing ant

When built, a WAR file for this application is created in the
following directory:

<BEA HOVE>/ sanpl es/ server/ confi g/ exanmpl es/
appl i cations/

3-6 Oracle Application Server 10g Migrating From WebLogic

Migrating a WAR File

Table 3-2 Migrating a WAR File (Cont.)

Step Description Process
2 Deploy the sample 1. On the machine where the cooki e. war file is
application. located, open a browser and go to the

Application Server Control URL. For example:
ht t p: / / <host nane>; 1810

2. Enter your administrator username and
password if prompted. Click the name of the
Oracle Application Server instance you want to
deploy your application to.

3. Click the hone OC4J component, which brings
up its settings page.

4. Click "Applications". In the applications page of
the hone OC4J instance, click "Deploy WAR
file". The "Deploy Web Application” page
appears.

5. Click the "Browse" button and enter the location
of the cooki e. war file.

6. Inthe "Application Name" and "Map to URL"
text boxes, enter "cookie" and "/cookie"
respectively. Click "Deploy".

7. The cookie application should appear in the list
of deployed applications.

3

Test the deployed In a browser, enter the following URL:

application. ht t p: / / <host nane>: 7777/ cooki e

where <host name> is the Oracle Application Server host
where you deployed the cookie sample application.

See Also: Oracle Application Server Containers for J2EE Servlet
Developer’s Guide and Oracle Application Server Containers for J2EE
User’s Guide for detailed information on deploying WAR and EAR
files.

Migrating Java Servlets 3-7

Migrating an Exploded Web Application

Migrating an Exploded Web Application

Web applications can also be configured and deployed as a collection of files stored
in a standard directory structure or exploded directory format. This can be
accomplished in OC4J by manually copying the contents of the standard directory
structure to the appropriate directory in the OC4J installation. The same method can
also be used for WebLogic Server. In this section, we will describe the manual
process for deploying an exploded web application.

See Also: Oracle Application Server 10g Administrator’s Guide for
detailed information on using the Oracle Enterprise Manager
administration GUI.

Deploying a web application in exploded directory format is used primarily during
the development of a web application. It provides a fast and easy way to deploy
and test changes. When deploying a production web application, package the web
application in a WAR file and deploy the WAR file using Application Server
Control.

To manually deploy an exploded web application in WebLogic Server, copy the
top-level directory containing the exploded web application files into the following
directories of your WebL ogic Server installation:

(UNIX) <BEA HOVE>/ confi g/ <domai n_nanme>/ appl i cati ons
(Windows) <BEA_HOVE>\ conf i g\ <donmai n_nane>\ appl i cati ons

Once the top-level directory is copied to the appropriate directory, create an empty
file with the name "REDEPLOY" within the top-level directory. WebLogic Server
detects this file and deploys the web application. (WebLogic Server reads the
timestamp of this file every few minutes to determine if the application needs
redeploying. Hence, whenever an application file is updated, the REDEPLOY file’s
timestamp has to be updated to redeploy the file. In UNIX, this can be done by
using the t ouch command.)

Manually deploying an exploded web application in OC4J varies slightly. Copy the
top-level directory containing the exploded web application into the following
directory of your OC4J installation:

(UNIX) <ORACLE_HOVE>/ j 2ee/ hore/ appl i cati ons
(Windows) <ORACLE_HOVE>\ j 2ee\ hone\ appl i cati ons

Then, modify the following application deployment descriptor to include the web
application:

3-8 Oracle Application Server 10g Migrating From WebLogic

Migrating Configuration and Deployment Descriptors

(UNIX) <ORACLE_HQVE>/ confi g/ appli cati on. xm
(Windows) <ORACLE_HOVE>\ confi g\ appl i cati on. xm

Bind the web application to your website by adding an entry in the following
website XML file (or the corresponding XML file if a non-default website is used):

(UNIX) <ORACLE_HQOVE>/ confi g/ def aul t - web-si t e. xm
(Windows) <ORACLE_HOVE>\ confi g\ def aul t - web-site. xm

Finally, register the new application by adding a new <appl i cat i on> tag entry in
the following files:

(UNIX) <ORACLE_HOVE>/ confi g/ server. xm
(Windows) <ORACLE_HQOVE>\ confi g\ server. xm

When you modify server. xml and save it, OC4J detects the timestamp change of
this file and deploys the application automatically. OC4J need not be restarted.

Migrating Configuration and Deployment Descriptors

Since WebLogic Server and Oracle Application Server fully support J2EE 1.3, there
is a standard set of XML configuration files supported by both application servers.
These are:

« web. xm (found in the VEEB- | NF directory of a web application’s WAR file)

« application.xm (foundinthe META- | NF directory of a web application’s
WAR file)

« ejb-jar.xm (found in the META- | NF directory of an EJB module’s exploded
directory hierarchy)

In addition to the standard files, each application server has specific files used only
by their respective environments. These are:

Oracle Application Server

= server.xn
Found in

(UNIX) <ORACLE_HOVE>/| 2ee/ hone/ confi g/
(Windows) <ORACLE_HQOVE>\ j 2ee\ hone\ confi g\

This is the overall OC4J runtime configuration file. It defines attributes such as
the deployed applications directory, the server log file path and name, path and

Migrating Java Servlets 3-9

Migrating Configuration and Deployment Descriptors

names of other XML files, names of applications and their EAR files, paths to
runtime libraries, etc.

« application.xm
Found in

(UNIX) <ORACLE_HOVE>/ | 2ee/ horre/ confi g\
(Windows) <ORACLE_HQOVE>\ j 2ee\ hone\ confi g\

This is the global configuration file common settings for all applications
deployed on a particular OC4] installation. Note that this is different from the
application.xm inaJ2EE WAR file.

« <website_nane>-web-site.xn
Found in

(UNIX) <ORACLE_HOVE>/ | 2ee/ horre/ confi g\
(Windows) <ORACLE_HQOVE>\ j 2ee\ hone\ confi g\

This file defines a website and specifies attributes such as host name, HTTP
listener port number, web applications it services and their URL contexts, and
HTTP access log file and path. Note that the name and path of each
*-web-site. xm file has to be specified in the ser ver . xni file for OC4J to
configure the defined website at runtime.

« data-sources. xni
Found in

(UNIX) <ORACLE_HOVE>/ | 2ee/ hore/ confi g/
(Windows) <ORACLE_HQOVE>\ j 2ee\ hone\ confi g\

This file contains configuration information for data sources used by the OC4J
runtime. Information in this file include: JDBC drivers used, JNDI binding for
each data source, username and password for each data source, database

schemas to use, maximum connections to each database, and time out values.

« principals.xm
Found in

(UNIX) <ORACLE_HOVE>/ | 2ee/ hore/ confi g/
(Windows) <ORACLE_HQOVE>\ j 2ee\ hone\ confi g\

This file contains the user repository for the default XM_User Manager class.
Groups, users belonging to them, and group permissions are defined in this file.
The mapping of groups to roles is defined in the global appl i cati on. xn file.

« orion-application.xn
Found in

3-10 Oracle Application Server 10g Migrating From WebLogic

Migrating Configuration and Deployment Descriptors

UNIX:
<ORACLE_HOVE>/ | 2eel/ hone/ appl i cati on- depl oynent s/ <app_nane>

or

Windows:
<ORACLE_HOVE>\ | 2ee\ hone\ appl i cati on- depl oynent s\ <app_nane>

This file contains OC4J-specific information for an application (<app_nane>)
deployed on an OC4J installation. Web and EJB module names and security
information for the application are included in the file. This file is generated by
OC4)J at deploy time.

gl obal - web-appl i cati on. xm
Found in

(UNIX) <ORACLE_HOVE>/ | 2eel/ horre/ confi g/
(Windows) <ORACLE_HQVE>\ j 2ee\ hone\ confi g\

This file contains servlet configuration information used internally by the OC4J
runtime. An example is the JSP translator servlet.

ori on-web. xm
Found in

UNIX:
<ORACLE_HOVE>/ | 2eel/ hone/ appl i cati on- depl oynent s/
<app_nane>/ <web_app_nane>/

or

Windows:
<ORACLE_HOVE>\ | 2ee\ hone\ appl i cati on- depl oynent s\
<app_nane>\ <web_app_nane>\

OC4J internal JSP and servlet information for <web_app_nane> is specified in
this file. This file is generated by OC4J at deploy time.

orion-ejb-jar.xn
Found in

UNIX:
<ORACLE_HOVE>/ | 2eel/ hone/ appl i cati on- depl oynent s/
<app_nane>/<ejb_jarfil e_name>/

or

Migrating Java Servlets 3-11

Migrating Configuration and Deployment Descriptors

WebLogic Server

Windows:
<ORACLE_HOVE>\j 2ee\ home\ appl i cat i on- depl oyment s\
<app_nane>\<ej b_jarfil e_name>\

This file contains OC4J internal deployment information for EJBs in the JAR file
specified by <ej b_j arfi | e_name> belonging to the application
<app_nane>. This file is generated by OC4J at deploy time.

oc4j - connect ors. xm
Found in

(UNIX) <ORACLE_HOVE>/ | 2ee/ hone/ confi g/
(Windows) <ORACLE_HQOVE>\ j 2ee\ hone\ confi g\

This file contains connector information for the OC4J installation.

config.xm
Found in

(UNIX) <BEA HOVE>/ confi g/ <domai n_name>/
(Windows) <BEA HQOVE>\ confi g\ <donmai n_nane>\

This file contains configuration information for an entire WebLogic Server
domain. Information specified in this file include the domain administration
server’s host name and admin port number, INDI mappings to data sources,
JDBC connection pool information, applications deployed to all nodes in the
domain, SSL certificate information,

webl ogi ¢. xm
Found in

UNIX:
<BEA HOVE>/ confi g/ <donmai n_name>/ appl i cati ons/
<web_app_nane>/ VIEB | NF/

or

Windows:
<BEA HOVE>\ confi g\ <donmai n_nanme>\ appl i cati ons\
<web_app_nanme>\ VIEB | NF\

This file defines JSP properties, INDI mappings, resource references, security
role mappings, and HTTP session and cookie parameters for a Web application.
This file is WebLogic Server-specific but is created manually.

3-12 Oracle Application Server 10g Migrating From WebLogic

Migrating Cluster Aware Applications

« webl ogic-ejb-jar.xm
Found in an EJB module’s META-INF subdirectory. This file maps WebLogic
Server resources to EJBs. These resources include security role names, data
sources, JMS connections, and other EJBs. This file also has performance
attributes for caching and clustering for the EJBs defined in the corresponding
ej b-jar.xm file.

Note: The files mentioned above are not an exhaustive list of all
XML configuration file used by each application server. They are
files which are relevant to the configuration and deployment of
servlet applications. Other XML files also exist to configure
components such as HTTP listeners, RMI, security.

Migrating Cluster Aware Applications

Oracle Application Server provides more comprehensive clustering features than
WebLogic Server.

WebLogic Server provides two primary cluster services, HTTP session state
clustering and object clustering. The focus of this section is on HTTP session state
clustering or web application clustering.

WebLogic Server supports clustering for servlets and JSP pages by replicating the
HTTP session state of clients accessing clustered servlets and JSP pages. To benefit
from HTTP session state clustering, you must ensure that the HTTP session state is
persistent by configuring either in-memory replication, filesystem persistence, or
JDBC persistence.

Oracle Application Server provides clustering support similar to that of WebLogic
Server. In addition, Oracle Application Server provides:

« Servlet Clustering—OC4J] provides facilities to cluster servlets without
requiring any changes to the web application. The changes necessary are
deployment configuration modifications that are transparent to the web
application and allows session failover to multiple OC4J processes.

« Clustering Architecture and Simplicity—An important differentiator for
Oracle Application Server is the ease with which different instances can be
clustered and the robustness of the architecture used for clustering.

« Clustering Simplicity—Oracle Enterprise Manager Application Server Control
provides a GUI to configure various OracleAS instances to belong to a single
cluster, whether they are multiple servers with load balancing on a single

Migrating Java Servlets 3-13

Migrating Cluster Aware Applications

machine or on different machines. Alternatively, you can also edit a single XML
file. In contrast, it is more complex to configure WebLogic Server clusters with
load balancing either with multiple instances on one machine or on multiple
machines.

« Superior Clustering Architecture—OC4] uses dynamic IP addresses to register
instances as part of a cluster. Any standard load balancer such as Cisco Local
Director or BiglP has the ability to use a variety of load balancing mechanisms
to route requests to different Oracle Application Server instances. Additionally,
nod_oc4j intelligently routes requests from Oracle HTTP Server to OC4]
processes using one of several load balancing algorithms. In contrast, WebLogic
Server uses static IP addresses to configure clustering. Static IP addresses
preclude the use of a load balancer to distribute requests across instances. As a
result, you get either clustering or load balancing with WebLogic Server but not
both.

See Also: Oracle Application Server 10g High Availability Guide

Each OracleAS Farm consists of multiple OC4J islands and each island can consist
of multiple applications. The sharing of session state for failover is within a
particular island.

For instructions on how to set up OracleAS Clusters and OC4J islands, refer to the
Oracle Application Server 10g High Availability Guide.

3-14 Oracle Application Server 10g Migrating From WebLogic

A

Migrating JSP Pages

This chapter provides the information you need to migrate JavaServer pages from
WebL ogic Server to Oracle Application Server. It covers the migration of simple JSP
pages, custom JSP tag libraries, and WebLogic custom tags.

This chapter contains these topics:

« Introduction

« Migrating a Simple JSP Page

« Migrating a Custom JSP Tag Library
« Precompiling JSP Pages

Migrating JSP Pages 4-1

Introduction

Introduction

Migrating JSP pages from WebLogic Server to Oracle Application Server is straight
forward and requires little or no code changes.

Both application servers are fully compliant with Sun Microsystem’s JavaServer
Page specifications, version 1.1 and 1.2. All JSP pages written to the standard
specification will work correctly and require minimal migration effort.

The primary tasks involved in migrating JSP pages to a new environment are
configuration and deployment. The use of proprietary extensions and tag libraries
will require additional tasks and complicate the migration effort.

The tasks involved in migrating JSP pages also depend on how the JSP pages have
been packaged and deployed. JSP pages can be deployed as a simple JSP page, as a
web application packaged with other resources in a standard directory structure
(WAR file), or as a enterprise application archive (EAR) file. The migration of web
applications in exploded directory format and WAR files is addressed in Chapter 3,
"Migrating Java Servlets".

Differences Between WebLogic Server and Oracle Application Server JSP
Implementations

Since both WebLogic Server and Oracle Application Server Containers for J2EE
(OC4J) have implemented the same versions of the Java Server Pages specifications,
there are no differences between the two in the core JSP specification areas. There
are differences in areas outside the core specifications. These are listed in Table 4-1.

Table 4-1 JSP feature comparison

Oracle
Application
Feature Server WebLogic Server
JSP Version Support 1.2 1.2
Basic JSP Tag Libraries Yes Yes
Advanced JSP Tag Libraries Yes No
JSP Source Level Debugging Yes No
ASP to JSP Source Level Conversion Yes No

Each vendor provides their own custom JSP tags. WebLogic Server provides four
specialized JSP tags that you can use in your JSP pages. OC4J also provides various

4-2 Oracle Application Server 10g Migrating From WebLogic

Introduction

JSP tags - Oracle JSP Markup Language (JML) Custom Tag Library, tags for XML
and XSL integration, and several JSP utility tags. A comprehensive discussion of
these tags can be found in Oracle Application Server Containers for J2EE JSP Tag
Libraries and Utilities Reference.

0C4J JSP Features

Oracle Application Server provides one of the fastest JSP engines on the market.
Further, it also provides several value-added features and enhancements such as
support for globalization and SQLJ. If you are familiar with Oracle9iAS 1.0.2.2, the
first release of Oracle Application Server to include OC4J, there were two JSP
containers: a container developed by Oracle and formerly known as OracleJSP and
a container licensed from Ironflare AB and formerly known as the "Orion JSP
container".

In Oracle Application Server, these have been integrated into a single JSP container,
referred to as the "OC4J JSP container"”. This new container offers the best features of
both previous versions, runs efficiently as a servlet in the OC4] servlet container,
and is well integrated with other OC4J containers. The integrated container
primarily consists of the OracleJSP translator and the Orion container runtime
running with a new simplified dispatcher and the OC4J 1.0.2.2 core runtime classes.
The result is one of the fastest JSP engines on the market with additional
functionality over the standard JSP specifications.

OC4J JSP provides extended functionality through custom tag libraries and custom
JavaBeans and classes that are generally portable to other JSP environments:

« Extended types implemented as JavaBeans that can have a specified scope
« JspScopeli st ener for event handling

« Integration with XML and XSL through custom tags

« Data-access JavaBeans

« The Oracle JSP Markup Language (JML) custom tag library, which reduces the
level of Java proficiency required for JSP development

« OC4JJSP includes connection pooling tags, XML tags, EJB tags, file access tags,
email tags, caching tags, OracleAS Personalization tags, OracleAS Ultrasearch
tags, and a custom tag library for SQL functionality. WebLogic only has four:
cache, process, r epeat, and form validation.

« JESI (Edge Side Includes for Java) tags and Web Object Cache tags and API that
work with content delivery network edge servers to provide an intelligent
caching solution for web content (see the following sub-sections).

Migrating JSP Pages 4-3

Introduction

See Also: Oracle Application Server Containers for J2EE JSP Tag
Libraries and Utilities Reference for detailed information on custom
JSP tag libraries.

The OC4J JSP container also offers several important features such as the ability to
switch modes for automatic page recompilation and class reloading, JSP instance
pooling, and tag handler instance pooling.

Edge Side Includes for Java (JESI) Tags OC4J provides fine-grained control allowing
developers to cache fragments of JSP pages down to each individual tag - these can
be cached in OracleAS Web Cache and are automatically invalidated and refreshed
when a JSP changes. The technology behind this is Edge Side Includes (ESI), a W3C
standard XML schema/markup language that allows dynamic content to be cached
in a Web Cache or to be assembled in an edge network. By caching this dynamic
content, it reduces the need to execute JSPs or Servlets, thereby improving
performance, off loading the application servers, and reducing latency. JESI (JSP to
ESI) tags are layered on top of an Edge Side Includes (ESI) framework to provide
ESI caching functionality in a JSP application. JESI tags enable the user to break
down dynamic content of JSP pages into cacheable components or fragments.

Web Object Cache Tags The Web Object Cache is an Oracle Application Server feature
that allows Web applications written in Java to capture, store, reuse, post-process,
and maintain the partial and intermediate results generated by JSPs or Servlets. For
programming interfaces, it provides a tag library (for use in JSP pages) and a Java
API (for use in Servlets). Cached objects might consist of HTML or XML fragments,
XML DOM obijects, or Java serializable objects. By caching these objects in memory,
various operations can be carried out on the cached objects including:

« Applying a different XSLT based on user profile or device characteristics on the
stored XML

« Re-using a cached object outside HTTP, such as SMTP to send e-mail to clients.

Oracle JDeveloper and OC4J JSP Container

Oracle JDeveloper is integrated with the OC4J JSP container to support the full JSP
application development cycle - editing, source-level debugging, and running JSP
pages. It also provides an extensive set of data-enabled and web-enabled JavaBeans,
known as JDeveloper web beans and a JSP element wizard which offers a
convenient way to add predefined web beans to a page. JDeveloper also provides a
distinct feature that is very popular with developers. It allows you to set
breakpoints within JSP page source and can follow calls from JSP pages into

4-4 Oracle Application Server 10g Migrating From WebLogic

Migrating a Simple JSP Page

JavaBeans. This is much more convenient than manual debugging techniques, such
as adding print statements within the JSP page to output state into the response
stream for display on browser or to the server log.

Migrating a Simple JSP Page

JSP pages do not require specific mappings as do HTTP servlets. To deploy a simple
JSP page, you can copy the JSP page and any files required by the JSP page to the
appropriate directories. No additional registrations are required.

Note: Application Server Control should be used to deploy any
type of applications including JSPs. But for the purpose of
illustration, the JSP files in the following example are copied
manually without using Application Server Control.

The deployment process has been simplified in OC4J by providing a J2EE web
application and various configuration files by default.

To determine the effort involved in migrating JSP pages, we selected and migrated
example JSP pages provided with WebLogic Server. We chose examples that did not
use proprietary extensions.

Table 4-2 presents the typical process for migrating a simple JSP page from
WebLogic Server to OC4J.

Table 4-2 Migrating a Simple JSP Page

Step Description Process

1 Start an instance of Gotohttp://<host name>: 1810 and select the OC4J
OC4), if none are instance you want to start (<host nane> is the name of
currently running. your Oracle Application Server host). Or, use the

following dcntt| command:

dentt!| start -i <appsvr_instance_nane> - ct
oc4j -co hone

where <appsvr _i nst ance_nane> is the name of your
Oracle Application Server instance.

Migrating JSP Pages 4-5

Migrating a Simple JSP Page

Table 4-2 Migrating a Simple JSP Page (Cont.)

Step

Description

Process

2

Copy the JSP page to
the appropriate
directory

Copy Hel | oWor | d. j sp from its directory in your
WebLogic Server installation to the appropriate directory
inOracl e Application Server as follows:

In UNIX, from:

<BEA_ HOVE>/ webl ogi c700/ sanpl es/ server/src/
exanpl es/j sp/

to:
<ORACLE_HOVE>/ j 2ee/ hone/ def aul t - web- app/

In Windows, from:

<BEA_ HOVE>\ webl ogi ¢700\ sanpl es\ server\ src\
exanpl es\j sp\

to:
<CRACLE_HQOVE>\ j 2ee\ hone\ def aul t - web- app\

3

Copy any files
required by the JSP
page

Copy BEA _Butt on_Fi nal _web. gi f from its directory
in your WebLogic Server installation to the appropriate
directory in Oracle Application Server as follows:

In UNIX, from:

<BEA HOVE>/ webl ogi ¢700/ sanpl es/
server/ src/ exanpl es/ i mages/

to:

<ORACLE_HOVE>/ | 2ee/ hone/ def aul t - web- app/
i mges/

In Windows, from:

<BEA_ HOVE>\ webl ogi c700\ sanpl es\ server\ src\
exanpl es\i nages\

to:

<ORACLE_HQOVE>\ j 2ee\ hone\ def aul t - web- app\
i mages\

Note: You may have to create the i mages directory

4-6 Oracle Application Server 10g Migrating From WebLogic

Migrating a Custom JSP Tag Library

Table 4-2 Migrating a Simple JSP Page (Cont.)

Step Description Process

4 Request the JSP page From a web browser, request the JSP page through the
from your web URL:
browser

http://<hostnane>: 7777/ 2ee/ Hel | oWorl d. j sp

where <host name> is the Oracle Application Server host
you copied the JSP file to.

See Also: Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide and Oracle Application Server
Containers for J2EE User’s Guide for detailed information on
configuring and deploying JSP pages.

Migrating a Custom JSP Tag Library

WebLogic Server and OC4J provide the ability to create and use custom JSP tags.
The process used to deploy a custom JSP tag library is similar for both WebLogic
Server and OC4J.

Tag libraries can be packaged and deployed as part of a web application, and are
declared in a specific section of the web application deployment descriptor.

To determine the effort involved in migrating custom JSP tag libraries, we selected
and migrated example JSP pages provided with WebLogic Server. We chose
examples that did not use proprietary extensions.

Table 4-3 presents the typical process for migrating a JSP page that utilizes a custom
JSP tag library from WebLogic Server to OC4J.

Migrating JSP Pages 4-7

Migrating a Custom JSP Tag Library

Table 4-3 Migrating a Custom JSP Tag Library

Step Description

Process

1 Copy the tag library file to
the appropriate directory

Copycounter.tldfrom

UNIX:

<BEA_HOME>/ webl ogi ¢700/ sanpl es/
server/src/ exanpl es/ jsp/tagext/
counter/

Windows:

<BEA_HOME>\webl ogi c700\ sanpl es\
server\src\exanpl es\jsp\tagext\
counter\

of your WebLogic Server installation to the
following directory in your OC4J installation:

UNIX:
<ORACLE_HOME>/ j 2ee/ hone/
def aul t - web- app/ VEB- | NF/

Windows:
<ORACLE_HOME>\ j 2ee\ hone\
def aul t - web- app\ VEB- | NF\

2 Copy the JSP file that uses
the tag library to the
appropriate directory

Copy pagehi ts.j sp from

UNIX:

<BEA_ HOVE>/ webl ogi ¢700/ sanpl es/
server/src/ exanpl es/jsp/tagext/
counter/

Windows:
<BEA_HOVE>\ webl ogi ¢700\ sanpl es\
server\src\exanpl es\jsp\tagext\
count er\

of your WebLogic Server installation to the
following directory in your OC4J installation:

UNIX:
<CORACLE_HOVE>/ j 2eel/ hone/
def aul t - web- app/

Windows:
<CORACLE_HQOVE>\ j 2ee\ hone\
def aul t - web- app\

4-8 Oracle Application Server 10g Migrating From WebLogic

Migrating a Custom JSP Tag Library

Table 4-3 Migrating a Custom JSP Tag Library (Cont.)

Step

Description

Process

3

Copy any class files
required by the tag library
and used by the JSP file to
the appropriate directory

Copy Count . cl ass, Di spl ay. cl ass, and
I ncrenment . cl ass from

UNIX:

<BEA_ HOVE>/ webl ogi ¢700/ sanpl es/ server/
confi g/ exanpl es/ appl i cati ons/

exanmpl esWebApp/ VEB- | NF/ cl asses/

exanpl es/j sp/ t agext/ counter/

Windows:

<BEA HOVE>\ webl ogi c700\ sanpl es\ server\
confi g\ exanpl es\ appl i cati ons\

exanpl esWebApp\ VEB- | NF\ cl asses\

exanpl es\j sp\tagext\ counter\

of your WebLogic Server installation to the
following directory in your OC4J installation:

UNIX:

<ORACLE_HOVE>/ j 2ee/ hone/

def aul t - web- app/ VEB- | NF/

cl asses/ exanpl es/ j sp/ tagext/counter/

Windows:

<ORACLE_HQOVE>\ j 2ee\ hone\

def aul t - web- app\ VEB- | NF\

cl asses\ exanpl es\ j sp\tagext\counter\

of your OC4]J installation

Note that these . cl ass files provided with the
WebLogic server installation belong to a package
called exanpl es. j sp. t agext . count er. You
may need to create the

exanpl es/ j sp/ t agext/ count er/ directory (or
Windows equivalent).

Migrating JSP Pages 4-9

Migrating a Custom JSP Tag Library

Table 4-3 Migrating a Custom JSP Tag Library (Cont.)

Step Description

Process

4 Copy image files used by
the JSP file

Copy the directory containing the image files from

UNIX:

<BEA_HOVE>/ webl ogi c700/ sanpl es/ server/
src/ exanpl es/j sp/ tagext/counter/

i mages/ nunber s/

Windows:

<BEA_HOVE>\ webl ogi ¢700\ sanpl es\ server\
src\ exanpl es\j sp\tagext\counter\

i mages\ nunber s\

of the WebL ogic Server installation to the following
directory in your OC4J installation:

UNIX:
<ORACLE_HOVE>/ j 2ee/ hone/
def aul t - web- app/ i mages/ nunber s/

Windows:
<ORACLE_HOVE>\ j 2ee\ hone\
def aul t - web- app\ i mages\ nunber s\

Note that you may have to create the
i mages/ nunber s (or Windows equivalent)
directory

5 Modify the appropriate web
application deployment
descriptor and save the
changes

Add the directive entry below to the web. xm file
located in the following directory of your OC4J
installation:

UNIX:
<ORACLE_HOVE>/ | 2ee/ hone/
def aul t - web- app/ VEB- | NF/

Windows:
<ORACLE_HQOVE>\ j 2ee\ hone\
def aul t - web- app\ VEB- | NF\

Directive entry (<t agl i b> is a child element of
<web- app>):
<taglib>
<taglib-uri>
count er
</taglib-uri>
<tagl i b-1 ocati on>
/\W¥EB- | N/ counter. tld
</taglib-1ocation>
</taglib>

4-10 Oracle Application Server 10g Migrating From WebLogic

Migrating a Custom JSP Tag Library

Table 4-3 Migrating a Custom JSP Tag Library (Cont.)

Step Description Process
6 Restart or start the OC4] Gotohttp://<hostnane>: 1810 and
instance, if itis not currently restart/start the home OC4J instance. Or, use the
running. following dcnct | command:
dentt| restart|start -i <appsvr_instance_

nane> -ct oc4j -co hone

where <appsvr _i nst ance_nane> and
<host name> are the names of your Oracle
Application Server instance and host respectively.

7 Request the JSP file from From your web browser, access the URL
your web browser http://<host nane>: 7777/ j 2eel
pagehits.jsp

where <host name> is the Oracle Application
Server host you copied the files to.

See Also:

« Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide for detailed information on
configuring and deploying JSP pages.

« Oracle Application Server Containers for J2EE JSP Tag Libraries and
Utilities Reference for detailed information on custom JSP tag
libraries.

Migrating from WebLogic Custom Tags

If WebLogic custom tags are used extensively throughout your web application,
then the best migration option is to use the WebLogic tag library by deploying it on
OC4J. This option was discussed in the previous section, "Migrating a Custom JSP
Tag Library". You can then migrate to the OC4J JSP tags if required.

If WebLogic custom tags are used sparingly throughout your web application, then
the best migration option is to modify the JSP pages to use the OC4J JSP tag library.
This option is discussed below.

WebLogic Server provides three specialized JSP tags for use in JSP pages. They are
cache, process, andr epeat .

Migrating JSP Pages 4-11

Migrating a Custom JSP Tag Library

WebLogic Server cache Tag

OC4J provides a superset of the WebLogic Server cache tag in the form of Web
Object Cache Tags. These tags provide additional functionality over the WebLogic
cache tag. Further, the Web Object Cache Tags of OC4J are well integrated with
other tag libraries such as the XML tag library. For example, the cacheXM.Cbj tag
is well integrated with OC4J’'s XML tags.

One feature which does not have direct functionality mapping is "async". However,
Edge Side Includes (ESI) and Edge Side Includes for Java (JESI) can provide similar
functionality to it.

See Also: Oracle Application Server Containers for J2EE JSP Tag
Libraries and Utilities Reference for detailed information on Web
Object Cache tags and JESI tags.

WebLogic Server pr ocess Tag

OC4J does not have an exact equivalent for the pr ocess tag. The closest option is
tousethej m : useFormandj m : i f tags. from Oracle’s JSP Markup Language
(IML).

See Also: Bean Binding Tag Descriptions and Logic and Flow
Control Tag Descriptions subsections in the JSP Markup Language
(JML) Tag Descriptions section of Chapter 3 of Oracle Application
Server Containers for J2EE JSP Tag Libraries and Utilities Reference for
detailed information on these JML tags.

Alternatively, you could write Java code to implement the tag.

WebLogic Server r epeat Tag

The OC4J equivalent for this tag is the j m : f or each tag. This tag provides the
ability to iterate over a homogeneous set of values. The body of the tag is executed
once per element in the set. This tag currently supports iterations over the following
types of data structures:

« Javaarray
« java.util.Enuneration
« java.util.Vector

However, these tags do not cover data structures such as Iterators, Collections, and
the keys of a hashtable.

4-12 Oracle Application Server 10g Migrating From WebLogic

Precompiling JSP Pages

See Also: The Logic and Flow Control Tag Descriptions
subsection in the JSP Markup Language (JML) Tag Descriptions
section of Chapter 3 of Oracle Application Server Containers for J2EE
JSP Tag Libraries and Utilities Reference for detailed information on
this JML tag.

For Resul t Set s and Resul t Set Met aDat a, OC4J provides tags called the SQL
Tags for Data Access. These tags provide functionality very similar to that provided
by the WebLogic Server r epeat tag. The dbNext Rowtag is the tag that you are
likely to be most interested in. This tag can be used to process each row of a result
set obtained in a dbQuer y tag and associated with the specified quer yI d. Place the
processing code in the tag body, between the dbNext Rowstart and end tags. The
code in the body is executed for each row of the result set.

See Also:

« The Custom Data-Access Tag Library subsection in the SQL
Tags for Data Access section of Chapter 4 of Oracle Application
Server Containers for J2EE JSP Tag Libraries and Utilities Reference
for detailed information on these JML tags.

« Oracle Application Server Containers for J2EE Support for
JavaServer Pages Developer’s Guide for detailed information
about the standard JSP tag library framework and
tag-extra-info classes.

Precompiling JSP Pages

JSP pages are compiled automatically by the JSP compiler. However, when testing
and debugging JSP pages, you may want to access the JSP compiler directly.

The JSP compiler parses a . j sp fileinto a. j ava file. The standard Java compiler is
then used to compile the . j ava fileinto a . cl ass file.

Using the WebLogic Server JSP Compiler

To start the WebLogic Server JSP compiler, type the following command in your
WebLogic Server command line environment:

java webl ogic.jspc -options fil eNanme

The f i | eName parameter refers to the name of the JSP page to be compiled.
Options may be specified before or after the JSP page name. The following example

Migrating JSP Pages 4-13

Precompiling JSP Pages

demonstrates the use of the - d option to compile nyFi | e. j sp into the destination
directory webl ogi c/ cl asses:

java webl ogic.jspc -d /webl ogi c/ cl asses nyFile.jsp

Using the OC4J JSP Pre-translator

In addition to the standard j sp_pr econpi | e mechanism, OC4J provides a
command-line utility called oj spc for pre-translating JSP pages.

Consider the example where the JSP page, Hel | oWor | d. j sp, is located in the
following OC4J default web application directory (copy the Hel | oWor | d. j sp file
from <ORACLE_HOVE>/]j 2ee/ hone/ def aul t - web- app/, or the Windows
equivalent, to this subdirectory):

UNIX:
<ORACLE_HOME>/ | 2eel/ hone/ def aul t - web- app/ exanpl es/ j sp/

Windows:
<ORACLE_HOME>\ | 2ee\ hone\ def aul t - web- app\ exanpl es\ j sp\

To pre-translate this JSP page, set your current directory to the application root
directory, then, in 0] spc, set the _pages directory as the output base directory
using the - d option. This results in the appropriate package name and file
hierarchy. To illustrate:

Note: Ensure that the <ORACLE_HOVE>/ j dk/ bi n is set in the
path environment variable so that the correct j ava executable is
used for oj spc.

In UNIX (assume %is a UNIX prompt):

% cd j 2ee/ hone/ def aul t - web- app
%o0j spc -d ../application-depl oynent s/ def aul t / def aul t VébApp/ per si st ence/ _pages
exanpl es/ j sp/ Hel | oVérl d. j sp

In Windows (in a command prompt window and where Or acl e is the Oracle
Home for your Oracle Application Server installation):

C\>cd Gacl e\j 2ee\ hone\ def aul t - web- app
C\>0jspc -d ../application-depl oynent s/ def aul t/ def aul t VébApp/ per si st ence/ _pages
exanpl es/ j sp/ Hel | oVérl d. j sp

4-14 Oracle Application Server 10g Migrating From WebLogic

Precompiling JSP Pages

The directory structure above specifies an application-relative path of
exanpl es/j sp/ Hel | oWbr | d. j sp. The translated JSP can be found in
<ORACLE_HOVE>/ | 2eel/ hone/ appl i cati on- depl oynent s/ def aul t/
def aul t WebApp/ per si st ence/ _pages/ _exanpl es/ _j sp/ for UNIX

or

<ORACLE_HOVE>\ | 2ee\ hone\ appl i cati on- depl oynent s\ def aul t\
def aul t WebApp\ per si st ence\ _pages\ _exanpl es\ _j sp\ for Windows.

At execution time, the JSP container looks for compiled JSP files in the _pages
subdirectory. The _exanpl es/ _j sp/ subdirectory would be created
automatically by oj spc if run as in the above example.

Invoke the JSP page through the URL
htt p: // <host nane>: 7777/ | 2eel exanpl es/ j sp/ Hel | oWor | d. j sp. Notice
that response time is faster than without pre-translating.

See Also: The chapter JSP Translation and Deployment in Oracle
Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide.

Standard JSP Pre-translation Without Execution (based on the JSP 1.1 specification)

You can specify JSP pre-translation, without execution, by enabling the standard
j sp_precomnpi | e request parameter when invoking a JSP page from the browser.
For instance, ht t p: / / <host nane>: <port >/ f 00.] sp?j sp_preconpi | e=true

Using the <ORACLE_HOVE>/ | 2ee/ hone/ def aul t - web- app/ Hel | oWor | d. j sp
file (or Windows equivalent) as an example, erase all the "_Hel | oWér | d* " files in:

UNIX:
<ORACLE_HOVE>/ | 2ee/ hone/ appl i cati on-depl oynent s/ def aul t/
def aul t WebApp/ per si st ence/ _pages/

Windows:
<ORACLE_HOVE>\ | 2ee\ hone\ appl i cat i on- depl oynent s\ def aul t\
def aul t WebApp\ per si st ence\ _pages\

Then, invoke the URL

htt p:// <host nane>: 7777/ | 2eel/ Hel | oWor | d. j sp?j sp_

pr econpi | e=t r ue. The pre-translation is performed but the page does not appear
on your browser. Check the _pages subdirectory for the translated files.

Migrating JSP Pages 4-15

Precompiling JSP Pages

Configure the JSP Container for Execution with Binary Files Only

You can avoid exposing your JSP page source, for proprietary or security reasons,
by pre-translating the pages and deploying only the translated and compiled binary
files. JSP pages that are pre-translated, either from previous execution in an
on-demand translation scenario or by using oj spc, can be deployed to any
standard J2EE environment.

For further details, refer to the Oracle Application Server Containers for J2EE Support
for JavaServer Pages Developer’s Guide.

4-16 Oracle Application Server 10g Migrating From WebLogic

D

Migrating Enterprise JavaBean
Components

This chapter provides the information you need to migrate Enterprise JavaBean
components from WebLogic Server to Oracle Application Server. It addresses the
migration of simple EJB JARs, as well as J2EE web applications in the form of EAR
files or in an exploded directory format.

This chapter contains these topics:

Introduction

Migration Steps

Migrating EJBs in a EAR or JAR File

Migrating an Exploded EJB Application

Configuring EJBs using Deployment Descriptors

Writing Finders for RDBMS Persistence

WebLogic Query Language (WLQL) and EJB Query Language (EJB QL)
Message Driven Beans

Configuring Security

Migrating Cluster-Aware EJB Applications to OC4J

Migrating Enterprise JavaBean Components 5-1

Introduction

Introduction

Migrating Enterprise JavaBeans (EJB) from WebLogic Server to Oracle Application
Server is straightforward, requiring little or no code changes to the EJBs migrated.
Both application servers support the EJB 2.0 specification.

All EJBs written and designed to the EJB 2.0 specifications should work correctly
and require minimal migration effort. The primary effort goes into configuring and
deploying the applications in the new environment. Only in cases where
proprietary extensions are used will the migration effort get complex.

In this chapter we cover the migration of EJBs deployed in the form of EAR files or
in an exploded directory format.

Comparison of WebLogic Server and Oracle Application Server EJB Features

Since both WebLogic Server and Oracle Application Server Containers for J2EE
(OC4J) have implemented the same versions of the Enterprise JavaBeans
specifications, there are no differences between the two in the core areas. The
following table summarizes the EJB features available from both application
servers:

Table 5-1 Comparison of EJB features

Oracle Application Server

Feature 10g WebLogic Server 7.0
Session Beans Available Available
Container Managed Available Available
Persistence Entity Beans

(CMP)

Bean Managed Persistence Available Available
Entity Beans (BMP)

Message Driven Beans Available Available
JTA Transactions Available Available
JCA Enterprise Connectivity Available Available
IMS Messaging Available Available
Dynamic EJB Stub Generation Available Available
Full EAR File Based Available Available
Deployment

5-2 Oracle Application Server 10g Migrating From WebLogic

Introduction

Table 5-1 Comparison of EJB features(Cont.)

Oracle Application Server

Feature 10g WebLogic Server 7.0
Automatic Deployment of Available Available

EJB Applications

Stateless and Stateful EJB Available Available

Clustering

Local Interfaces for Enterprise Available Available

JavaBeans

EJB Query Language (EJBQL) Awvailable Available

- Automatic Code Generation

- Oracle and Non
Oracle Database Support

- CMP with Relationships

RMI-over-110P Support Available Available
CMP with Relationships Available Available
Concurrency Control Available Available

- Read-Only Locking
- Pessimistic Locking
- Optimistic Locking

The following sections go into detail on some of the abovementioned features:

More Efficient Container Managed Persistence

There are two specific facts that reflect the significant performance advantages in
using OC4J’s container-managed persistence (CMP) implementation compared to
WebLogic Server’s implementation:

« Automatic Detection of Modified EJBs—When using CMP, Oracle Application
Server’s J2EE container can automatically detect whether you have modified an
EJB and writes the EJB’s state to the database; it does an ej bSt or e only when
necessary. WebLogic Server does not provide such automatic detection
requiring a user to code i s- nodi fi ed methods which the WebLogic Server
container uses to know whether or not to do the ej bSt or e operation.

« Simple and Complex Database mapping for CMP—When using CMP, Oracle
Application Server’s J2EE container supports both simple (1:1, 1:many) and

Migrating Enterprise JavaBean Components 5-3

Introduction

complex (many:many) database field mappings very efficiently. In contrast,
WebLogic Server provides rudimentary support for simple CMP database field
mapping (1:many). For instance, it is difficult to qualify a wher e clause string in
WebLogic Server and this results in doing unnecessary full table scans.

Clustering Support

Application server clustering essentially means the use of a group of application
servers that coordinate their actions in order to provide scalable, highly available
services in a transparent manner.

From a comparative point of view, Oracle Application Server’s J2EE container
provides the following facilities:

Servlet Clustering—Oracle Application Server provides facilities to cluster
servlets without requiring any changes to the user’s application. The changes
are deployment configuration modifications which are transparent to the J2EE
application.

Clustering Architecture and Simplicity—An important differentiator for
Oracle Application Server’s J2EE container is the ease with which different
instances can be clustered and the robustness of the architecture used for
clustering. Specifically, Oracle Application Server requires modification of a
single XML file (can be done through Application Server Control) to configure
various OracleAS instances to belong to a single cluster/island whether they
are multiple servers with load balancing on a single machine or multiple
servers with load balancing on different machines.

In contrast, it is much more complex to configure WebLogic Server clusters with
load balancing either with multiple instances on one machine or on multiple
machines. For instance, if you indicate that your EJBs will be used in a cluster,
then you need to specify it during the time the EJB stubs are created using

ej bc, which then results in the creation of special cluster-aware classes that will
be used for deployment. Overall, Oracle Application Server’s J2EE container,
together with other Oracle Application Server components, provide a more
robust clustering architecture with better ease-of-use.

Stateless Session Bean Clustering—Oracle Application Server supports
clustering of stateless session beans.

Stateful Session Bean and Entity Bean Clustering—Oracle Application Server
supports clustering of stateful session beans and entity beans. Two aspects of
design are focused upon:

5-4 Oracle Application Server 10g Migrating From WebLogic

Introduction

Clustered Performance—EXxisting clustering facilities such as those in
WebLogic Server impose a severe performance penalty when running the
instances in a stateful fashion with clustering. As a result, most application
developers choose to keep their middle tier completely stateless and write
their state to a persistent store, such as a database. In delivering clustered
EJBs, Oracle is working on optimizing the EJB clustering implementation to
avoid introducing performance penalties.

Programmatic Simplicity—Additionally, unlike servlets which have a
natural session boundary at which to failover their state, EJBs do not have
such a clear boundary. As a result, Oracle Application Server provides
simple programmatic facilities to allow developers to use EJB clustering
without any changes to their applications.

Scalability and Performance Enhancements

Entity Bean Scalability—Oracle Application Server enhances entity beans
scalability by enabling multiple clients to concurrently look up and invoke
methods on the same entity bean instance, using a configurable pool of bean
wrapper instances per primary key value.

Better Concurrency Control—Oracle Application Server introduces a number
of new concurrency control options to improve scalability and performance of
large J2EE applications:

Read-Only Locking—For read-only beans that are not updating the
database, the bean developer can instruct the OC4J container to avoid
calling or generating ej bSt or e() . The appropriate isolation mode will be
selected, depending on whether the state of the bean can be updated by
external systems, such as non-EJB applications using SQL.

Pessimistic Locking—Oracle Application Server can serialize access to bean
state while providing each client with its own bean instance for
deterministic timeout and deadlock detection.

Optimistic Locking—Oracle Application Server also supports an alternate
locking scheme, which does not use row locking - data consistency will
depend on the isolation mode of the bean ("Non- Repeatable-Reads"” or
"Serializable™) and the order in which clients are updating the rows.

WebLogic Server provides a similar set of features.

Migrating Enterprise JavaBean Components 5-5

Introduction

Security and LDAP Integration

One of the key distinguishing features of OC4J is the seamless integration with
Single Sign On (SSO) and Oracle Internet Directory (OID). This is achieved through
Oracle’s implementation of the Java Authentication and Authorization Service
(JAAS) standard. See Oracle Application Server Containers for J2EE User’s Guide and
Oracle Application Server 10g Security Guide.

WebLogic Server Caveats
The following are additional notes on the WebLogic Server EJB implementation:

« The WebLogic Server implementation of BMP security is not in total compliance
with the J2EE specification. According to the specification, an exception needs
to be thrown when there is a violation in a BMP security role permission. While
OC4J throws an exception in compliance with the specification, WebLogic
Server does not do so.

« Unlike WebLogic Server, OC4J does not make it necessary for the developers to
create a proprietary XML file for EJB deployment such as the WebLogic Server
webl ogi c-ej b-j ar. xm . For OC4J,ori on-ej b-j ar. xm is created by the
OC4J container for internal purposes. Developers have the ability to modify this
file, if needed, but it is not necessary for developers to create this file. Hence,
OC4J has a simpler process for deployment of EJBs.

EJB Migration Considerations

One of the goals of the EJB initiative is to deliver component portability between
different environments not only at source code level, but also at a binary level, to
ensure portability of compiled, packaged components. While it is true that EJBs do
offer portability, there are still a number of non portable, implementation-specific
aspects that need to be addressed when migrating components from one platform
to another. Typically, an EJB component requires low level interfaces with the
container in the form of stub and skeleton classes that will need to stay
implementation-specific. In effect, a clear partitioning between portable and non
portable elements of an EJB component can be drawn.

Portable EJB elements include:

« The actual component implementation classes and interfaces (bean class, and
remote and home interfaces).

« The assembly and deployment descriptor that describes generic component
properties such as JINDI names and transactional attributes.

5-6 Oracle Application Server 10g Migrating From WebLogic

Migration Steps

Security attributes.

Implementation-specific elements include:

Low level helper implementation classes (stubs and skeletons) to interface with
the host container.

O-R mapping definitions for CMP entity beans, including search logic for
custom finder methods that are declared in an implementation-specific format
proprietary to each platform.

Every component has a set of properties that require systematic configuration at
deployment time. For example, mapping of security roles declared in an EJB
component to actual users and groups is a task that is systematically performed
at deployment time because mappings may not be known in advance. Also,
they may have dependencies on the structure and population of the user
directory on the target deployment server.

Migration Steps

The tasks involved in migrating EJBs are best analyzed by looking at the steps
required for deploying EJBs to an EJB container:

Setting the EJB deployment descriptors, particularly the vendor-specific
deployment descriptors

Generating EJB container classes
Loading EJB classes in the server

Deploying the EJBs in the form of an EAR file or in an exploded directory
format

Configuring the EJBs for deployment at startup

We can address the migration tasks along the same lines.

Setting Deployment Properties

The deployment process starts with a JAR file or a J2EE standard deployment
directory that contains the compiled EJB interfaces and implementation classes
created by the EJB provider. There should also be an EJB-compliant ej b-j ar . xmi
file that describes the bundled EJB(s). The ej b-j ar. xm file and other required
XML deployment files, typically the vendor-specific deployment descriptors, must
reside in a top level META- | NF directory of the JAR file or deployment directory as
follows:

Migrating Enterprise JavaBean Components 5-7

Migration Steps

Figure 5-1 EJB JAR File Contents and Structure

WeblLogic EJB JAR Structure Oracle Application Server EJB JAR Structure
<EFE Module Namer <EJE Module Name>

*.olass *.class

<remotex.class <remoter. class

<khomer>.class <home>.class

METAL-INF METL-INF

L—— ejb-jar.xml |———-Ejl:u—jar.:-cml
weblogic—ejb-Jar.xml orion-ejb-jar.xml

weblogic—cmp-rdbms-jar. x<ml

Vendor-specific Deployment Descriptors

WebLogic Server You would have first created and configured the WebL ogic
Server-specific and mandatory deployment descriptor, webl ogi c- ej b-j ar. xm ,
and then added the file to the deployment file or directory. The

webl ogi c-ej b-j ar. xm file is used for specifying caching, clustering, and
performance behavior.

If you were deploying an entity EJB that used container managed persistence, you
would have also included an additional deployment file for specifying the O-R
mapping details, or, in other words, the RDBMS-based persistence services in a file
called webl ogi c- cnp-rdbns-j ar. xn . A separate file would have been
required for each bean that used RDBMS persistence.

0C4J In the case of OC4J, only one file is required. Via Application Server Control,
the OC4J-specific and mandatory deployment descriptor, ori on-ej b-j ar. xm , is
created and added to the deployment file or directory. The or i on- ej b-j ar. xm
file is used for defining caching, clustering, and performance behavior. The details
on O-R mapping or the RDBMS-based persistence services are also specified in the
orion-ej b-jar.xnl file. This is different from WebLogic Server where two
separate files were required.

Generating and Deploying EJB Container Classes

The next step after compiling the EJB classes and adding the required XML
deployment descriptors (the J2EE deployment descriptor as well as the
vendor-specific deployment descriptors) is generation of the container classes that

5-8 Oracle Application Server 10g Migrating From WebLogic

Migrating EJBs in a EAR or JAR File

are used to access the EJB. The container classes include implementation of the
external interfaces (home and remote) that clients use, as well as the classes that the
application server uses, for the internal representation of the EJBs.

WebLogic Server In WebLogic Server, you would have used the ej bc compiler to
generate container classes according to the deployment properties specified in the
WebLogic Server-specific XML deployment files. For example, if you indicate that
your EJBs are to be used in a cluster, ej bc creates special cluster-aware classes that
will be used for deployment. You can also use ej bc directly from the command line
by supplying the required options and arguments.

Once the container classes have been generated, you need to package the classes
into a JAR or EAR file and deploy the classes using the console GUI.

0C4J For OC4J, explicit compilation is not required. The EJB JAR file is packaged
into a EAR file (together with a WAR file, if any). Then, you can use the Application
Server Control GUI to specify the EAR file for deployment. The container classes
are generated for OC4J and any J2EE Web application in the EAR file is bound to
the OC4lJ container. In lieu of the Application Server Control, you can also use the
dcnct | command to deploy the EAR file. Refer to Distributed Configuration
Management Reference Guide for more information.

Loading EJB Classes in the Server

WebLogic Server The final step in deploying an EJB involves loading the generated
container classes into WebLogic Server. However, you can prompt WebLogic Server
to automatically load EJB classes by starting WebLogic Server. This places the EJB in
the deployment directory where it is automatically deployed when the server is
started.

0C4J Similarly, you can specify classes belonging to an application to be loaded
when OC4J starts by specifying the aut o- st art ="t r ue" parameter in the
<appl i cation>taginserver.xm .

Migrating EJBs in a EAR or JAR File

EAR and JAR files containing EJBs which are deployed in WebLogic Server can be
migrated to Oracle Application Server. However, you should unarchive and
rearchive the EAR file to ensure its contents are complete and that the XML
descriptors have the correct entries. Use the following points as a guideline:

Migrating Enterprise JavaBean Components 5-9

Migrating an Exploded EJB Application

« Ensure that the EJB client XML descriptors specify the JNDI names of the EJB
stubs. If the client is a Web application, the JNDI names should be specified in
web. xm . If the client is standalone, the names should be specified in
application-client.xm.

« For the case where the EJB client is standalone, the client classes and XML
descriptor file, appl i cati on-cli ent.j ar, should be archived into a JAR file,
which in turn should be archived into the EAR file where the EJBs are.

« Ifthe EJB(S) to be migrated from WebLogic are in a JAR file, you need to
repackage them in a EAR file with the EAR’s appl i cati on. xm .

« Deploy the EAR file on Oracle Application Server using Application Server
Control ordcntt| .

« You do not need to pre-compile EJB stubs using ej bc, r m ¢, or other such
facilities into the client application. The OC4J EJB container generates EJB stubs
on demand as it needs them.

Migrating an Exploded EJB Application

EJB applications can also be deployed as a collection of files that use a standard
directory structure defined in the J2EE specification. This type of deployment
deploys applications in an exploded directory format. Deploying an EJB application
in exploded directory format is done most often whilst developing your application
and only for standalone OC4lJ instances. This is because the exploded directory
format is more suitable for developers to modify source files and test the
application quickly. In Oracle Application Server production environments,
however, the application should be packaged in a EAR file and deployed using
Application Server Control ordcntt | .

When deploying an exploded directory structure to WebL ogic Server, you would
have copied the top level directory containing an EJB application in exploded
directory format into the nydonmai n/ confi g/ appl i cati ons/ directory of your
WebLogic Server distribution (where nydonai n is the name of your WebLogic
Server domain). Once copied, WebLogic Server automatically deploys the EJB
application.

For OC4J, copy the top level directory containing the EJB application in exploded
directory format into the following directory in your OC4J installation:

UNIX:
<ORACLE_HOVE>/ | 2eel/ hone/ appl i cati ons/

5-10 Oracle Application Server 10g Migrating From WebLogic

Configuring EJBs using Deployment Descriptors

Windows:
<ORACLE_HOVE>\ | 2ee\ hone\ appl i cat i ons\

Then, modify the default J2EE application deployment descriptor, ser ver . xm ,
located in the <ORACLE_HOVE>/ j 2ee/ hone/ confi g/ directory in UNIX, or
<ORACLE_HOVE>\ | 2ee\ hone\ confi g\ in Windows, to include your EJB module.

In WebLogic Server, if a file is modified using the administration console, or
otherwise, it requires a server restart before the updated configuration is picked up.
In the case of OC4J, the timestamp change for ser ver . xm will cause OC4J to
effect the changes in the XML file.

Configuring EJBs using Deployment Descriptors

There are two deployment descriptors that are used to configure and deploy EJBs.
The first deployment descriptor, ej b-j ar. xm , is defined in the EJB specifications
and provides a standardized format that describes an EJB application. The second
deployment descriptor is a vendor-specific deployment descriptor that maps
resources defined in the ej b-j ar . xim file to resources in the application server. It
is also used to define other aspects of the EJB container such as EJB behavior,
caching, and vendor-specific features.

The WebLogic Server specific deployment descriptors are
webl ogi c-ej b-j ar. xm andwebl ogi c-cnp-rdbns-j ar. xn , and the
OC4J-specific deployment descriptor is ori on-ej b-j ar. xnl .

A typical J2EE application directory structure would look like this:

Migrating Enterprise JavaBean Components 5-11

Configuring EJBs using Deployment Descriptors

Figure 5-2 Directory Structure of a J2EE Application

fapp name>

—— META-IIF

application.=xml

— <2jb_module nams>

2jb cla=se file=s in
qualified package-directory
hisrarchy (my.ejb cla=s=
map= to mySejbhscla==)

HMETZ-TIIF

L—-ejb—jar.xml

— <web_module name:

-+ html
*oi=p
— HEB-INF

|— wab . xml

orion-wak =ml

—=arvlet classe=s in
gqualified package-directory
hisrarchy

— <client module npams:
HETZ-IME

L—-application—client.xml
orion-application-clisnt . xml

—t pclass

orion-gjb-jar . xml OR wzblogic-=jb-jar . xml
weblogic—cmp-rdbm=-jar xml

The WebLogic Server-specific deployment descriptor, webl ogi c-ej b-j ar. xn,
defines EJB deployment descriptor DTDs which are unique to WebLogic Server. The
DTD for webl ogi c- ej b-j ar. xm includes elements for enabling stateful session
EJB replication, configuring entity EJB locking behavior, and assigning JMS Queue

and Topic names for message-driven beans.

Elements configured in the EJB webl ogi c- ej b-j ar. xm include:

5-12 Oracle Application Server 10g Migrating From WebLogic

Configuring EJBs using Deployment Descriptors

« webl ogi c-enterprise-bean
- ej b-nane
- entity-descriptor
— statel ess-session-descriptor
— stateful -session-descriptor
- nessage-driven-descriptor
— transaction-descri ptor
- reference-descriptor
— enable-call-by-reference
— jndi-nane
« Security-rol e-assi gnment
« transaction-isolation

The WebLogic Server-specific deployment descriptor,
webl ogi c- cnp-rdbns-j ar. xnl , defines deployment properties for an entity EJB
that uses WebLogic Server RDBMS-based persistence services.

Each webl ogi c- cnp- rdbns-j ar. xm defines the following persistence options:
« EJB connection pools or data source for CMPs

« EJB field-to-database-element mappings

« Foreign key mappings for relationships

« WebLogic Server-specific deployment descriptors for queries

The OC4J-specific deployment descriptor, ori on-ej b-j ar. xm , contains
extended deployment information for session beans, entity beans, message driven
beans, and security.

An entity EJB can save its state in any transactional or non transactional persistent
storage (bean-managed persistence), or it can ask the container to save its
non-transient instance variables automatically (container-managed persistence).
WebLogic Server and OC4] allow both choices and a mixture of the two.

In the case of an EJB that uses container-managed persistence, the

webl ogi c-ej b-jar.xm ortheorion-ejb-jar.xn deployment descriptor
file specifies the type of persistence services that an EJB uses. In the case of
WebLogic Server, the automatic persistence services requires the use of additional

Migrating Enterprise JavaBean Components 5-13

Writing Finders for RDBMS Persistence

deployment files to specify their deployment descriptors, and to define entity EJB
finder methods. WebLogic Server RDBMS-based persistence services obtain
deployment descriptors and finder definitions from a particular bean using the
bean's webl ogi c- cnp-rdbns-j ar. xm file. This configuration file must be
referenced in the webl ogi c- ej b-j ar. xm file. In the case of OC4J, the type of
persistence service as well as the details regarding the RDBMS-based persistence
services are configured and obtained from the same deployment descriptor -
orion-ejb-jar.xm.

Some of the attributes such as Development Mode are unique to OC4J.

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide for more information on the attributes.

Writing Finders for RDBMS Persistence

For EJBs that use RDBMS persistence, WebLogic Server provides a way to write
dynamic finders. The EJB provider writes the method signature of a finder in the
EJBHon® interface, and defines the finder's query expressions in the ej b-j ar . xm
deployment file. The ej bc compiler creates implementations of the finder methods
at deployment time, using the queriesinej b-j ar. xm .

The key components of a finder for RDBMS persistence are:
« The finder method signature in EJBHore
« A query stanza defined within ej b-j ar . xm

« An optional WebLogic Server query stanza within
webl ogi c- cnp-rdbns-j ar. xnl

OC4J simplifies the whole process by automatically generating the finder methods.

Specifying the f i ndByPr i mar yKey method is easy to do in OC4J. All the fields for
defining a simple or complex primary key are specified within the ej b-j ar . xm
deployment descriptor. To define other finder methods in a CMP entity bean, do the
following:

1. Add the finder method to the home interface

2. Add the finder method definition to the OC4J-specific deployment
descriptor—the ori on-ej b-j ar. xm file

5-14 Oracle Application Server 10g Migrating From WebLogic

Message Driven Beans

WebLogic Query Language (WLQL) and EJB Query Language (EJB QL)

In WebLogic Server 5.1 and 6.0, each finder query stanza in the

webl ogi c-cnp-rdbns-j ar. xnl file had to include a WLQL string that defines
the query used to return EJBs. These releases of WebLogic Server implemented an
EJB 1.1 container and did not support standardized EJB QL.

With the emergence of EJB Query Language, which is a standard based on the EJB
2.0 specification, use of WLQL is deprecated. With WebLogic Server 7.0, its EJB
container is EJB 2.0 compliant and supports EJB QL. This EJB container additionally
provides a WLQL extension to EJB QL. This extension is proprietary to WebLogic
Server.

Oracle Application Server provides complete support for EJB QL including the
following features:

« Automatic Code Generation: EJB QL queries are defined in the deployment
descriptor of the entity bean. When the EJBs are deployed to Oracle Application
Server, the container automatically translates the queries into the SQL dialect of
the target data store. Because of this translation, entity beans with
container-managed persistence are portable -- their code is not tied to a specific
type of data store.

« Optimized SQL Code Generation: Further, in generating the SQL code, Oracle
Application Server makes several optimizations such as the use of bulk SQL
and batched statement dispatch to make database access efficient.

« Support for Oracle and Non-Oracle Databases: Oracle Application Server
provides the ability to execute EJB QL against any database - Oracle, MS
SQL-Server, IBM DB/2, Informix, and Sybase.

« CMP with Relationships: Oracle Application Server supports EJB QL for both
single entity beans and also with entity beans that have relationships, with
support for any type of multiplicity and directionality.

For more information on EJB QL in Oracle Application Server, refer to Oracle
Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Message Driven Beans

In WebLogic Server, in addition to the new ej b-j ar. xnl elements, the

webl ogi c-ej b-j ar. xm file includes only one new message-driven-descriptor
stanza to associate the message-driven bean with an actual destination in WebLogic
Server. The XML elementis dest i nati on-j ndi - nane.

Migrating Enterprise JavaBean Components 5-15

Configuring Security

In OC4J, to create a message-driven bean, you perform the following steps:
1. Implement a message-driven bean as defined in the EJB specification
2. Create the message-driven bean deployment descriptors

3. Configure the JMS Dest i nat i on type (queue or topic) in the OC4J JMS XML
file,j ms. xm .

4. Map the JMS Dest i nat i on type to the message-driven bean in the
OC4J-specific deployment descriptor, ori on- ej b-j ar. xm

5. If adatabase is involved in your message-driven bean application, configure the
data source that represents your database in dat a- sour ces. xm .

6. Create an EJB JAR file containing the bean and the deployment descriptor; once
created, configure the appl i cati on. xmi file, create an EAR file, and deploy
the EJB in OCA4J.

Configuring Security

Security can be handled by the application server, or it can be incorporated
programmatically into your EJB classes. Both WebLogic Server and OC4J provide
similar support for security such as authentication, authorization, and digital
certificates.

See Also: The configuring security chapter in Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Migrating Cluster-Aware EJB Applications to OC4J

Oracle Application Server provides clustering features that are superior to
WebLogic Server in performance as well as ease of use. Further, migrating
cluster-aware applications from WebLogic Server to OC4J is straightforward.

EJB Clustering in WebLogic Server

In-Memory Replication for Stateful Session EJBs

The WebLogic Server EJB container can replicate the state of an EJB across clustered
WebLogic Server instances.

5-16 Oracle Application Server 10g Migrating From WebLogic

Migrating Cluster-Aware EJB Applications to OC4J

Replication support for stateful session EJBs is transparent to clients of the EJB.
When a stateful session EJB is deployed, WebLogic Server creates a cluster-aware
EJBHon®e stub and a replica-aware EJBCbj ect stub for the stateful session EJB.
The EJBOhj ect stub maintains a list of the primary WebLogic Server instance on
which the EJB instance runs and the name of a secondary WebLogic Server to use
for replicating the bean's state.

Each time a client of the EJB commits a transaction that modifies the EJB's state,
WebLogic Server replicates the bean's state to the secondary server instance.
Replication of the bean's state occurs directly in memory, for best performance in a
clustered environment.

Should the primary server instance fail, the client's next method invocation is
automatically transferred to the EJB instance on the secondary server. The
secondary server becomes the primary WebLogic Server for the EJB instance, and a
new secondary server is used to account for the possibility of additional failovers.
Should the EJB's secondary server fail, WebLogic Server enlists a new secondary
server instance from the cluster.

By replicating the state of a stateful session EJB, clients are generally guaranteed to
have the last committed state of the EJB, even if the primary WebLogic Server
instance fails. However, in certain rare failover scenarios, the last committed state
may not be available. This can happen when:

« A client commits a transaction involving a stateful EJB, but the primary
WebLogic Server fails before the EJB's state is replicated. In this scenario, the
client's next method invocation will work against the previous committed state,
if available.

« Aclient creates an instance of a stateful session EJB and commits an initial
transaction, but the primary WebLogic Server fails before the EJB's initial state
can be replicated. In this scenario the client's next method invocation will fail to
locate the bean instance, because the initial state could not be replicated. The
client would need to recreate the EJB instance using the clustered EJBHone stub
and restart the transaction.

« Both the primary and secondary servers fail. In this scenario the client would
need to recreate the EJB instance and restart the transaction.

Requirements and Configuration

To replicate the state of a stateful session EJB in a WebLogic Server cluster, ensure
that the cluster is homogeneous for the EJB class. In other words, deploy the same
EJB class to every WebLogic Server instance in the cluster, using the same

Migrating Enterprise JavaBean Components 5-17

Migrating Cluster-Aware EJB Applications to OC4J

deployment descriptors. In-memory replication is not supported for heterogeneous
clusters.

By default, WebLogic Server does not replicate the state of stateful session EJB
instances in a cluster. To enable replication, set the replication type deployment
parameter to | nMenory in the webl ogi c- ej b-j ar. xm deployment file. For
example:

<st at ef ul - sessi on-cl ust eri ng>

<repl i cation-type>l nMenory</replication-type>
</ st at ef ul - sessi on-cl ust eri ng>

EJB Clustering in Oracle Application Server

EJB clustering in Oracle Application Server provides EJB load balancing and
failover. For Oracle Application Server, the mechanisms used to achieve these are
different from HTTP session load balancing and failover. For EJBs, load balancing
redirection is performed by the EJB client stubs and state replication for failover is
done without using cluster islands (a future release of Oracle Application Server
will implement cluster islands for EJBs).

To create an EJB cluster, you need to specify which OC4J nodes are part of the
cluster and configure each of them with the same multicast address, username, and
password. The EJBs to be clustered can then be deployed to each of these nodes.
Configuring all nodes in the cluster with the same multicast username and
password allows authentication to all nodes with a single username/password
combination. If you use a different username/password combination with the same
multicast address, another cluster is actually defined. The Application Server
Control provides a user interface to specify the multicast username and password.

Load Balancing

Load balancing for EJBs is performed at the EJB client end. The client stubs obtain
the addresses of nodes in the cluster in one of two ways: static discovery or
dynamic discovery. Once all nodes in the same cluster are known, a client stub
selects one at random. Load balancing is performed using a random methodology.

Static and dynamic discovery is performed as follows:

5-18 Oracle Application Server 10g Migrating From WebLogic

Migrating Cluster-Aware EJB Applications to OC4J

Static Discovery At lookup time, the JNDI addresses of all nodes in the cluster are
provided in the lookup URL property. This requires knowledge of the node name
and or m port for each node. For example:

java.naming. provider.url = orm://serverA 23791/ ejb, orm://serverB: 23792/ g b,
orm://serverC 23791/ ej b;

Dynamic Discovery For dynamic discovery, at the first lookup made, the first node
that is contacted communicates with the other nodes with the same multicast
address and username/password. The or m addresses of these nodes are retrieved
and returned to the client stubs, which select one of the addresses at random. To
enable dynamic discovery, "I ookup: " is inserted before the or mi URL:

i c.l ookup("l ookup: orm://server A 23791/ ej b");

Failover

Depending on the type of EJB that is clustered, failover in an EJB cluster is achieved
by request redirection and state replication.

Stateless Session EJBs Load balancing and failover for stateless session EJBs is
performed by EJB client stubs by redirecting requests to randomly picked nodes
after the nodes have been discovered statically or dynamically. Because of the
stateless nature of the EJBs, replication of bean state is not required.

Stateful Session EJBs Load balancing for stateful session EJBs is the same as for
stateless session EJBs. For failover, state replication is required, and by default, is
replicated to all nodes in the cluster at the end of every method call to each EJB
instance. Though reliable, this obviously incurs a significant amount of CPU
overhead in all the nodes and degrades performance. Hence, two more replication
modes are provided to allow replication without compromising performance
significantly: JVM termination and stateful session context replication modes.

The JVM termination mode replicates the state of all stateful session EJBs to one
other node when the JVM executing these EJBs terminates gracefully. The
replication logic uses JDK termination hooks (JDK 1.3 or later is required). This
mode is the most performant among all because replication is done only once.
However, reliability is not the best as it is dependent on the JVM'’s ability to
shutdown properly.

Stateful session context mode replicates state programatically. An OC4J-proprietary
class,com ever m nd. server. ej b. st at ef ul Sessi onCont ext, is provided to
allow you to specify the information to be replicated. By setting this information as

Migrating Enterprise JavaBean Components 5-19

Migrating Cluster-Aware EJB Applications to OC4J

parameters for the set At t ri but e method, this information can be replicated to all
nodes in the EJB cluster. Hence, EJB providers have more control on when and what
to replicate.

Entity EJBs Replication for entity EJBs allows EJB state to be stored in a database.
Each time the state of an entity EJB changes, it is updated in the database. The entity
EJB that changes the state notifies the other nodes in the cluster that their equivalent
entity EJBs are out-of-date. If the node hosting the "up-to-date” EJB fails, the client
stub redirects to another node and the out-of-date entity EJB in that node
resynchronizes its state with the information in the database.

See Also: Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide for information on how to configure EJB
clustering.

JNDI Namespace Replication

When EJB clustering is enabled, INDI namespace replication is also enabled
between the OC4] instances that have a role in the EJB cluster. New bindings to the
JNDI namespace in one OC4] instance are propagated to other OC4J instances that
are participating in the EJB cluster. Rebindings and unbindings are not replicated.

JNDI replication is completed outside the scope of OC4lJ islands. In other words,
multiple islands in an OC4J instance have visibility into the same replicated JNDI
namespace. For more information see the Oracle Application Server Containers for
J2EE Services Guide.

5-20 Oracle Application Server 10g Migrating From WebLogic

6

Migrating JDBC

This chapter provides the information you need to migrate database access code
from WebLogic Server to Oracle Application Server. It addresses the migration of
JDBC drivers, data sources, and connection pooling.

This chapter contains these topics:

Introduction

Migrating Data Sources
Migrating Connection Pools
Overview of Clustered JDBC

Performance Tuning JDBC

Migrating JDBC 6-1

Introduction

Introduction

Migrating applications deployed on WebL ogic Server that use JDBC, specifically
WebLogic JDBC drivers, to OC4J and Oracle JDBC drivers is can be straightforward,
requiring little or no code changes to the applications migrated. Both application
servers support the same API levels for the JDBC API - full support for version 2.0
of the specification. All applications written to the standard JDBC specifications will
work correctly and require minimal migration effort. The primary effort goes into
configuring and deploying the applications in the new environment. Only in cases
where proprietary extensions are used will the migration effort get complex.

Differences between WebLogic and Oracle Application Server Database Access
Implementations

Both WebLogic Server and OC4J have fully J2EE 1.3 compliant containers that
permit the usage of all types of JDBC drivers to access several different databases.
Further, the JDBC drivers from BEA as well as Oracle support the same version of
the JDBC standard - version 2.0 specifications. Therefore, the differences between
the two servers are minimal, often differing primarily in the area of proprietary
extensions. Before analyzing any differences, an overview of JDBC Drivers is apt.

Overview of JDBC Drivers

JDBC defines standard API calls to a specified JDBC driver, a piece of software that
performs the actual data interface commands. The driver is considered the lower
level JIDBC API. The interfaces to the driver are database client calls, or database
network protocol commands that are serviced by a database server.

Depending on the interface type, there are four types of JDBC drivers that translate
JDBC API calls:

« Typel,JDBC-ODBC Bridge—Translates calls into ODBC API calls.

« Type 2, Native-API Driver—Translates calls into database native API calls. As
this driver uses native APIs, it is vendor dependent. The driver consists of two
parts: a Java language part that performs the translation, and a set of native API
libraries.

« Type 3, Net-Protocol—Translates calls into DBMS-independent network
protocol calls. The database server interprets these network protocol calls into
specific DBMS operations.

« Type 4, Native-Protocol—Translates calls into DBMS native network protocol
calls. The database server converts these calls into DBMS operations.

6-2 Oracle Application Server 10g Migrating From WebLogic

Introduction

BEA provides a variety of options for database access using the JDBC API
specification. These options include WebLogic jDrivers for the Oracle, Microsoft
SQL Server, and Informix database management systems (DBMS). In addition to the
Type 2 WebLogic jDriver for Oracle, WebLogic provides a Type 2 driver for Oracle
XA and three Type 3 drivers - RMI Driver, Pool Driver and JTS.

Similarly, Oracle Application Server provides a variety of options for database
access, particularly the best JDBC drivers for the Oracle database, and JDBC drivers
from partner Merant for accessing several other databases including DB2.

WebLogic jDriver for Oracle—The WebLogic jDriver for Oracle provides
connectivity to the Oracle database and requires an Oracle client installation
since it is based on OCI (Oracle Call Interface API). The WebLogic jDriver for
Oracle XA driver extends the WebLogic jDriver for Oracle for distributed
transactions.

The Oracle thick or JDBC OCI driver is the equivalent of WebLogic jDriver for
Oracle as well as WebLogic jDriver for Oracle XA since the JDBC OCI driver
provides XA functionality.

WebLogic Pool Driver—The WebLogic Pool driver enables utilization of
connection pools from server-side applications such as HTTP servlets or EJBs.

Oracle JDBC-OCI Driver—The Oracle JDBC-OCI driver allows J2EE
applications to use connection pools. This driver supports JDBC 2.0 connection
pool features fully.

WebLogic RMI Driver—The WebLogic RMI driver is a multitier, Type 3, Java
Data Base Connectivity (JDBC) driver that runs in WebLogic Server and can be
used with any two-tier JDBC driver to provide database access. Additionally,
when configured in a cluster of WebLogic Servers, the WebLogic RMI driver can
be used for clustered JDBC, allowing JDBC clients the benefits of load balancing
and fail-over provided by WebLogic Clusters.

WebLogic JTS Driver—The WebLogic JTS driver is a multitier, Type 3, JDBC
driver used in distributed transactions across multiple servers with one
database instance. The JTS driver is more efficient than the WebLogic jDriver for
Oracle XA driver when working with only one database instance because it
avoids two-phase commit.

Oracle Thin Driver—The two-tier Oracle Thin Type 4 driver provides
connectivity from WebLogic Server to Oracle DBMS.

If you are already using the Oracle OCI or Oracle thin JDBC drivers from your
WebLogic Server, your code will not require any changes and you can move to
the section on configuring data-sources in OC4J.

Migrating JDBC 6-3

Migrating Data Sources

Migrating Data Sources

The JDBC 2.0 specification introduced the j ava. sql . Dat asour ce class to make
the JDBC program 100% portable. In this version, the vendor-specific connection
URL and machine and port dependencies were removed. This version also
discourages using j ava. sql . Dri ver Manager, Dri ver, and

Dri ver Propertyl nf o classes. The data source facility provides a complete
replacement for the previous JDBC Dr i ver Manager facility. Instead of explicitly
loading the driver manager classes into the client applications runtime, the
centralized JNDI service lookup obtains the j ava. sql . Dat asour ce object. The
Dat asour ce object can also be used to connect to the database. According to the
JDBC 2.0 API specification, a data source is registered under the JDBC subcontext or
one of its child contexts. The JDBC context itself is registered under the root context.
A Dat aSour ce object is a connection factory to a data source.

WebLogic and OC4J both support the JDBC 2.0 data source API. A J2EE server
implicitly loads the driver based on the JDBC driver configuration, so no
client-specific code is needed to load the driver. The JNDI (Java Naming and
Directory Interface) tree provides the Dat aSour ce object reference.

Data Source Import Statements

Dat aSour ce objects, along with JNDI, provide access to connection pools for
database connectivity. Each data source requires a separate Dat aSour ce object,
which may be implemented as a Dat aSour ce class that supports either connection
pooling or distributed transactions.

To use the Dat aSour ce objects, import the following classes in your client code:

inport java.sql.*;
inport java.util.*;
inport javax.nam ng.*;

In the case of WebLogic Server, you would use the webl ogi c. j dbc. * packages
and in the case of OC4J, you would use or acl e. j dbc. * packages.

Configuring Data Sources in the Application Server

For Oracle Application Server, you configure data sources using the Application
Server Control web pages to specify the data source name, database name and
JDBC URL string. You can also define multiple data sources to use a single
connection pool, thereby allowing you to define both transaction and
non-transaction-enabled Dat aSour ce objects that share the same database.

6-4 Oracle Application Server 10g Migrating From WebLogic

Migrating Data Sources

The best way to configure and define data sources is through Application Server
Control. However, in this document we will examine the underlying infrastructure
and focus on direct manipulation of the configuration files. OC4J uses flat files to
configure data sources for all of its deployed applications. Data sources are
specified in the <ORACLE HOVE>/ j 2ee/ hone/ confi g/ dat a- sour ces. xni file.
Following is an sample data source configuration for an Oracle database. Each data
source specified in dat a- sour ces. xm (xa-| ocation, ej b-1ocati onand
pool ed- | ocat i on) must be unique.

<dat a- sour ce

cl ass="com ever m nd. sql . Dri ver Manager Dat aSour ce”

nane="Q acl e"

url ="j dbc: or acl e: t hi n@dat abase host nane><dat abase | i stener port
nunber >: <dat abase S D>"

pool ed- | ocati on="j dbc/ O acl ePool DS’

xa-| ocati on="j dbc/ xa/ O acl eXADS'

gj b-1 ocati on="j dbc/ O acl els'

connection-driver="oracl e.jdbc.driver.Qacl eDriver"

user nane="scott"

password="ti ger"

url ="j dbc: or acl e: t hi n@dat abase host nane><dat abase |i stener port
nunber >; <dat abase S D>"

schena="dat abase- schenas/ or acl e. xm "

i nactivity-ti neout =" 30"

nax- connect i ons="20"

/>

Table 6-1 describes all of the configuration parameters in dat a- sour ces. xni .
(Not all of the parameters are shown in the example above).

Table 6-1 Configuration Parameters in dat a- sour ces. xm File

Parameter Description
cl ass Class name of the data source.
connection-driver Class name of the JDBC.

connection-retry-int Number of seconds to wait before retrying a failed connection.

erval .
Default value is 1 second.

ej b-1ocation JNDI path for binding an EJB-aware, pooled version of this
data source; this version will participate in container-managed
transactions. This is the type of data source to use from within
EJBs and similar objects.

This parameter only applies to a Connect i onDat aSour ce.

Migrating JDBC 6-5

Migrating Data Sources

Table 6-1 Configuration Parameters in dat a- sour ces. xm File (Cont.)

Parameter Description

inactivity-tineout Number of seconds unused connections should be cached
before being closed.

| ocation JNDI path for binding this data source.

max- connect - at t enpt s Number of times to retry a failed connection.
Default is 3 times.

nax- connecti ons Maximum number of open connections for pooling data
sources.

m n- connecti ons Minimum number of open connections for pooling data
sources.

The default is zero.

nane Displayed name of the data source.
password User password for accessing the data source (optional).
pool ed-1 ocati on JNDI path for binding a pooled version of this data source.

This parameter only applies to a Connect i onDat aSour ce.

Relative or absolute path to a database-schema file for the
database connection.

sour ce-1| ocation Underlying data source of this specialized data source.

ur | JDBC URL for this data source (used by some data sources that

deal with j ava. sqgl . Connecti ons.
user nane User name for accessing the data source (optional).

wai t -t i meout Number of seconds to wait for a free connection if all
connections are used. Default is 60.

xa-| ocation JNDI path for binding a transactional version of this data
source.

This parameter only applies to a Connect i onDat aSour ce.

xa-sour ce-1| ocation Underlying XADat aSour ce of the specialized data source
(used by Or i onCMIDat aSour ce).

6-6 Oracle Application Server 10g Migrating From WebLogic

Migrating Connection Pools

Obtaining a Client Connection Using a Data Source Object

To obtain a connection from a JDBC client, you would use JNDI to look up and
locate the Dat aSour ce object. This is illustrated in the following code fragment
where you obtain a connection in WebLogic Server:

try
{

java. util.Properties parns = new java. util.Properties();
par ns. set Property(Qontext. | N Tl AL_GONTEXT_FACTCRY,
"webl ogi ¢. j ndi . W.I ni ti al Cont ext Factory");

j avax. nanming. Gontext ctx = new j avax. nam ng. I ni ti al Cont ext (par ns);
javax. sql . Dat aSource ds = (j avax. sql . Dat aSour ce) ct x. | ookup("j dbc/ Sanpl eDB") ;
java. sql . Gonnecti on conn = ds. get Gnnecti on();

/] process the results

}

To migrate the above code from WebLogic Server to OC4J, you need to change the
class that implements the initial context factory (Cont ext . | NI TI AL_CONTEXT _
FACTORY) of the JNDI tree from webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory,
which is the WebLogic-specific class, to

com everm nd. server. ApplicationC ientlnitial ContextFactory,
which is the OC4J specific class.

With this change, your code is ready for deployment on OC4J and to use the Oracle
JDBC drivers.

Migrating Connection Pools

Most web-based resources, such as servlets and application servers, access
information in a database. Each time a resource attempts to access a database, it
must establish a connection to the database, consume system resources to create the
connection, maintain it, and then release it when it is no longer in use. The resource
overhead is particularly high for web-based applications, because of the frequency
and volume of web users connecting and disconnecting. Often, more resources are
consumed in connecting and disconnecting than in the interactions themselves.

Connection pooling enables you to control connection resource usage by spreading
the connection overhead across many user requests. A connection pool is a cached
set of connection objects that multiple clients can share when they need to access a
database resource. The resources to create the connections in the pool are expended

Migrating JDBC 6-7

Migrating Connection Pools

only once for a specified number of connections, which are left open and re-used by
many client requests, instead of each client using resources to create its own
connection and closing it after its database operation is complete. Connection
pooling improves overall performance in the following ways:

« Reducing the load on the middle tier and server
« Minimizing resource usage by session create and session close operations

« Eliminating bottlenecks caused by socket and file descriptor limitations and 'n’
user license limitations.

The JDBC 2.0 specification allows you to define a pool of JDBC database
connections with the following objectives:

« Maximize the availability of connections to resources.
« Minimize the idle connections in the pool.

« Return orphan connections to the pool and make them available for reuse by
other servlets or application servers.

To meet these objectives, you:

1. Set the maximum connection pool size property equal to the maximum number
of concurrently active user requests expected.

2. Set the minimum connection pool size property equal to the minimum number
of concurrently active user requests expected.

The connection pooling properties ensure that as the number of user requests
decreases, connections are gradually removed from the pool. Likewise, as the
number of user requests begins to grow, new connections are created. The balance
of connections is maintained so that connection re-use is maximized and connection
creation overhead minimized. You can also use connection pooling to control the
number of concurrent database connections.

Overview of Connection Pools

Connection pools provide ready-to-use pools of connections to your DBMS. Since
these database connections are already established when the connection pool starts
up, the overhead of establishing database connections is eliminated. You can utilize
connection pools from server-side applications such as HTTP servlets or EJBs using
the pool driver or from stand-alone Java client applications.

One of the greatest advantages of connection pooling is that it saves valuable
program execution time and has almost no or very low overhead. Making a DMBS

6-8 Oracle Application Server 10g Migrating From WebLogic

Performance Tuning JDBC

connection is very slow. With connection pools, connections are established and
available to users before they are needed. The alternative is for application code to
make its own JDBC connections when needed. A DBMS runs faster with dedicated
connections than if it has to handle incoming connection attempts at runtime.

How Connection Pools Enhance Performance

Establishing a JDBC connection with a DBMS can be very slow. If your application
requires database connections that are repeatedly opened and closed, this can
become a significant performance issue. WebLogic Server and Oracle Application
Server connection pools offer an solution to this problem.

When WebLogic Server or Oracle Application Server starts, connections from the
connection pools are opened and are available to all clients. When a client closes a
connection from a connection pool, the connection is returned to the pool and
becomes available for other clients; the connection itself is not closed. There is little
cost to "open" and "close" pool connections.

How many connections should you create in the pool? A connection pool can grow
and shrink according to configured parameters, between a minimum and a
maximum number of connections. The best performance will always be when the
connection pool has as many connections as there are concurrent users.

Overview of Clustered JDBC

Relevant only in multitier configurations, clustered JDBC allows external JDBC
clients to reconnect and restart their JDBC connection without changing the
connection parameters, in case a serving cluster member fails. For WebLogic,
clustered JDBC requires data source objects and the WebLogic RMI driver to
connect to the DBMS. Data source objects are defined for each WebLogic Server
using the WebLogic Administration Console.

Oracle provides functionality that is similar to and more advanced than that
provided by the clustered JDBC by leveraging the TAF capabilities of OCI.

Performance Tuning JDBC

Performance tuning your JDBC application in OC4J is similar to that for WebLogic

Server. Connection pooling helps improve performance by avoiding the expensive

operation of creating new database connections. The guidelines on writing efficient
code hold true for Oracle Application Server and WebLogic Server.

Migrating JDBC 6-9

Performance Tuning JDBC

6-10 Oracle Application Server 10g Migrating From WebLogic

A

Additional Feature Comparisons

This appendix provides additional comparative information between WebL ogic
Server 7.0 and Oracle Application Server 10g. This information consists of:

Java Messaging Service (JMS)

Java Object Cache

Dynamic Monitoring System (DMS)

Active Components for J2EE (AC4J)

Oracle Application Server TopLink (OracleAS TopLink)

Java Messaging Service (JMS)

Oracle Application Server 10g and WebLogic Server 7.0 both support JMS 1.0.2.
Table F-2 highlights some of the key JMS features supported by both application
Servers.

Table F-2 JMS Feature Comparison Summary

Oracle Application Server

Feature 10g WebLogic Server 7.0
Pluggable JMS Providers Yes Yes

Message Retention and Yes Yes

Query Ability

Persistence of IMS Messages Yes Yes

Failover of Persisted IMS Yes No

Messages

Additional Feature Comparisons A-1

Java Messaging Service (JMS)

Table F—2 JMS Feature Comparison Summary(Cont.)

Oracle Application Server
Feature 10g WebLogic Server 7.0

Message Payloads: Yes Yes

Structured Datatypes,
Unstructured Datatypes,
Relational Data, Text, XML,
Objects, Multimedia Data

Message Transports: Yes Yes
SOAP, Net8

Secure Access Yes Yes
Abstraction of Business Logic, Yes No

Rules, and Routing into
Easily Maintainable Tables

Guaranteed Delivery Yes No

Ability to Cluster in a High Yes No
Availability Configuration

Interfacing with Java and Yes No
Non Java Clients

Oracle Application Server provides support for JMS in the following manner:

« Fast, Lightweight, Compliant - Oracle Application Server provides two
out-of-the-box JMS implementations.

The first is OracleJMS, which uses the Oracle databases integrated Advanced
Queuing (AQ) to offer secure, transactional, recoverable, and guaranteed
delivery of messages. Oracle Application Server also offers a fast and
lightweight, in-memory JMS that can be used to pass messages between
applications in the middle tier. In contrast, WebLogic provides a simple JMS
implementation.

« Pluggable JIMS Providers - Oracle Application Server J2EE applications can access
gueues and topics using the JIMS API. They can use an Oracle Application
Server specific JNDI namespace to look up JMS Connect i onFact or i es and
Desti nati ons.

Oracle Application Server defines a Resour cePr ovi der interface for
plugging in message providers and provides the implementation classes for
Oracle’s Advanced Queuing and for third-party messaging systems such as

A-2 Oracle Application Server 10g Migrating From WebLogic

Java Messaging Service (JMS)

MQSeries, SonicMQ and SwiftMQ. The Resour cePr ovi der interface allows
switching between message providers transparently to the JMS client. JMS
clients can mix messages from multiple messaging systems in the same
application, and switch between them by merely changing the JNDI mappings,
and without any changes in the source code.

WebLogic has lesser support for plugging-in other JMS providers. Its approach
to supporting IBM MQ Series is complicated. Developers need to use BEA
WebLogic MQ Series JMS classes, a separate library of classes, to plug in MQ
Series. Oracle Application Server, on the other hand, makes it extremely easy to
plug in, almost as simple as a Dat aSour ce.

OracleJMS (OJMS)

OJMS is the Java front-end for the Oracle database integrated Advanced Queuing
(AQ), which offers secure, transactional, recoverable, guaranteed delivery of
messages.

Advanced Queuing provides a number of important facilities. OJMS leverages the
Oracle database robustness, query-ability and DML operations, scalability and high
availability, and support for all data types in message payload, including relational
data, text, XML, and multimedia.

The following general features are discussed:

Message Retention and Query Ability - OJMS integrates a messaging system with
the Oracle Database leveraging the databases robustness, and providing
guaranteed message retention and auditing/tracking while eliminating the
need for 2-PC operations between the messaging system and the database.
Further, since the queues are stored in the Oracle Databases, they can be
gueried using standard SQL.

Message Payloads - OJMS can support a variety of structured and unstructured
datatypes as message payloads including relational data, text, XML, objects,
and multimedia data.

Message Transports - OJMS also provides support for reliable once-only, in-order
delivery of messages over a variety of transports including SOAP, Net8, and
others. It can also use other messaging providers such as MQ-Series for
transport.

Secure Access - Finally, OJMS provides stringent access control on individual
gueues and messages using the databases ACL mechanisms.

Additional Feature Comparisons A-3

Java Messaging Service (JMS)

WebLogic Server does not have the following set of capabilities that Oracle
Messaging (JMS) provides:

Abstraction of Business Logic, Rules, and Routing into Easily Maintainable Tables -
OJMS has extensive rules functionality. Rules can be used for efficient routing of
messages. You can specify rules as SQL expressions when defining your
subscriptions. Rules engine performs efficient rules evaluation. These SQL
expressions can contain any other PL/SQL, C or Java function. With the
Oracle9i Database (Release 2), you can also organize your rules in rule-sets and
use rules functionality independent of message queuing.

Guaranteed Delivery - OJMS provides guaranteed once and only once delivery.
This is a feature unique to OJMS. You can monitor messages in the queues
using SQL views. You can write a single SQL statement to find out exact
location of your message.

Ability to Cluster in a Highly Available Configuration - With Oracle Advanced
Queuing, you get benefits of the entire Oracle stack including persistence, high
availability and scalability with Real Application Clusters (RAC).

On the other hand, BEA WebLogic JMS clustering is not as robust. One of the
key considerations in the choice of IMS is reliability. WebLogic Server does not
have failover of persisted messages pertaining to a server failure. Further, it
provides failover only for JMS destinations. However, these JMS destinations
are not replicated. For example, you can deploy multiple persistent queues with
the same JNDI name across all nodes of a cluster. A client will hit just one until
that node fails, in which the cluster will transparently failover the client to the
next available node/queue.

However, what’s stored in the first queue remains in the first queue since it is
persistent until someone manually brings that node up again. Or, you need to
find some mechanism for retrieving the messages yourself. Oracle Application
Server and Oracle AQ, on the other hand, can leverage the high availability
capabilities of Oracle9i RAC to avoid this problem.

Interfacing with Java and Non Java Clients - The WebLogic Server implementation
of JMS does not allow sending messages to non Java clients. Oracle Application
Server JMS, through Oracle AQ, has four APIs - PL/SQL, Java (JMS), C, and
XML. This enables a message to be enqueued from any language and dequeued
from any other language, thereby providing the flexibility to integrate with
various heterogeneous systems including legacy systems.

A-4 Oracle Application Server 10g Migrating From WebLogic

Java Object Cache

Java Object Cache

The Java Object Cache is designed to improve access performance for shared Java
objects and to reduce SQL-to-Java overhead (database access overhead). The Java
Object Cache is distributed and can be accessed in-process, across process
boundaries on a single machine, and across processor/machine boundaries.

To improve performance, the creation of Java objects is distributed to avoid
bottlenecks. The cache is configurable, allowing objects to be grouped, pooled,
pinned, and paged as necessary. Finally, the Java Object Cache is clusterable with
updates that can be synchronized across clusters.

The goal of the HTTP-level (for servlets), and EJB clusters is to provide a load
balanced and fault tolerant system. The Java Object Cache focuses on providing
better performance by distributing pre-computed objects across the Oracle
Application Server instances so that expensive computation is done only once.

The Java Object Cache is an in-process cache of Java objects that can be used on any
Java platform and by any Java application. It allows applications to share objects
across requests, across users, and coordinates the life cycle of the objects across
processes. The Java Object Cache enables data replication amongst processes even if
they have no island, instance, or cluster relationship amongst each other. This
replication provides performance improvement by caching expensive (shared) Java
objects no matter which application produced them, and also provides availability
improvement in case the sources (for example, database, an external application)
required to re-create the Java objects are down. Further, if an object is updated or
invalidated in one process, it is also updated or invalidated in all other associated
processes. This distributed management allows a system of processes to stay
synchronized, without the overhead of centralized control. Moreover, the Java
Object Cache also supports versioning of objects, thus allowing different
applications to have different versions of an object, which is especially useful
during application upgrades.

The Java Object Cache supports two modes of operation: local mode and
distributed mode. Using local mode, objects are isolated to a single Java VM process
and are not shared. Using distributed mode, the Java Object Cache can propagate
object changes - including invalidations, destroys, and replaces- through the cache’s
messaging system to other communicating caches running either on a single system
or across a network (the Java Object Cache messaging system is built on top of
TCP/IP).

Thus, while the primary focus of the Java Object Cache is performance
improvement, it does indeed have the side effect of improved scalability and

Additional Feature Comparisons A-5

Dynamic Monitoring System (DMS)

availability, since the contents of the cache are available for results computation
even when the back-end server is down.

WebLogic Server does not have any feature comparable to the Java Object Cache.

Dynamic Monitoring System (DMS)

Gathering meaningful performance metrics on a deployed application server is
essential for an administrator to troubleshoot bottlenecks, identify resource
availability issues, and tune the application server. Oracle Application Server
provides such a monitoring framework called Dynamic Monitoring Service.

DMS has been instrumented into a number of Oracle Application Server
components including the Oracle HTTP Server, OC4J, OracleAS Portal, Oracle
SOAP, and JServ. By publishing key metrics within these components and others,
DMS provides a comprehensive view into the performance of applications managed
by Oracle Application Server.

For instance, metrics such as the number of currently active requests in the Oracle
HTTP Server, milliseconds required to parse the incoming request in the OC4J
Servlet Engine, total free memory in the JVM, and numerous operating system
metrics are published by DMS and displayed through Application Server Control.
Since clients such as OEM retrieve DMS data via HTTP connections, these metrics
can also be displayed through a browser.

While DMS is built into Oracle Application Server, it is also available as a
monitoring framework for developers to utilize when building their own
applications. DMS enables application developers to measure and export
customized application specific performance metrics, thus making the application
easier to support by administrators, developers, and support analysts.

There is a Java API called Java Management Extensions (JMX) that is in some ways
similar to DMS and in other ways complimentary to DMS. WebLogic Server has
been providing some support for IMX. Both DMS and JMX are being reviewed by
the Java Community for possible inclusion into specifications.

Active Components for J2EE (AC4J)

The existing J2EE framework provides a very productive and scalable environment
to author and deploy transaction-based, short-lived applications. However, it does
not yet fully address emerging E-business requirements of long-lived interactions
between autonomous applications. Further, as Web Services proliferate within
organizations, Web Services will need to communicate with other Web Services in a

A-6 Oracle Application Server 10g Migrating From WebLogic

Active Components for J2EE (AC4J)

loosely coupled environment, over a long period of time, without limiting
resources, and surviving abnormal system crashes. Long-lived interactions between
autonomous application components and Web Services require that all participants
act as peers and communicate in an asynchronous and reliable fashion. To address
these issues, Oracle Application Server introduces Active Components for J2EE
(AC4J), a programming framework for developing loosely coupled applications,
which are consistent, scalable, and recoverable.

AC4] introduces the concept of loosely coupled beans, known as Active Enterprise
Java Beans. An AC4J is a standard EJB with the following important features:

Autonomous Peer Model - With AC4J, each application, when interacting with
another application, exists as an autonomous peer. The responding application
may choose to ignore the request, or to execute one or more functions on behalf
of the requestor (possibly different than the one that the requestor asked for),
before responding to the initiating application. As peers, both applications can
make requests to each other, but neither can require submission from the other.
Neither application can assume control over the resources that its peer
application owns.

To support this programming model, Oracle Application Server provides
reliable asynchronous, disconnected, one way, or request/response type
interactions between Active EJBs.

Declarative Specification - AC4J makes this entire paradigm easy to program
allowing users to declaratively specify a number of pieces of information by
simply adding attributes to the EJB deployment descriptor. When deployed,
Oracle Application Server provides a runtime environment that automatically
provides a number of services for these components.

AC4] hides queues/topics and related JMS constructs from applications,
provides automatic definition of communication message formats, and
packs/unpacks messages, automatic routing of service requests to the
appropriate service provider, automatic security context propagation,
authorization and identity impersonation, automatic exception routing and
handling, which is integrated in the EJB framework and automatic tracking and
documenting of the computation progress of Active EJBs.

Transactional Data Driven Execution of EJB Applications - AC4J also provides
composite matching on available data based on specified rules, which describe
under which conditions these data can fire which EJB method. Coupled with
the transparent scheduling and activation of EJBs and execution of their
methods that this provides, AC4J enables transactional data driven execution of
EJBs.

Additional Feature Comparisons A-7

Oracle Application Server TopLink (OracleAS TopLink)

« Long-Running Transactions - Since the communication between the various
services and the associated tasks being performed can take a very long period
of time, AC4J provides automatic durability of J2EE computational state in a
portable way, automatically passivating and activating state as necessary.

« Sophisticated Capabilities - Further, with AC4J, Oracle Application Server
automatically manages load balancing and scalability transparently to the
applications, provides conversational state and globally visible identity
(ActiveHandle); supports parallel and incremental invocation of Active EJB
methods and synchronization on their results (fork and join operations); and
supports restart-ability of Active EJB business method(s) in the case of system
or application failures while monitoring and enforcement of application
consistency.

There is no AC4J-equivalent feature available in WebLogic Server.

Oracle Application Server TopLink (OracleAS TopLink)

In an enterprise Java environment, one of the most formidable challenges is storing
business objects and components in a relational database (RDB). OracleAS TopLink
makes application development more productive by offering an easy to use
mapping workbench that maps the Java objects to relational databases and by
simplifying one of the most difficult aspects of developing applications - persisting
information to the database. Using OracleAS TopL.ink, developers gain the
flexibility to map objects and Enterprise Java Beans to a relational database schema
with minimal impact on ideal application design or database integrity. The result:
developers focused on addressing business needs rather than building
infrastructure. OracleAS TopLink is built on JDBC and is portable across any
JDBC-compliant database, including Oracles Database, DB2, SQL Server, Sybase,
Informix, and Microsoft Access.

The OracleAS TopLink solution offers three key benefits:

« Mature Design, Flexibility and Performance - OracleAS TopLink provides a rich set
of performance optimization and scalability features. Performance is addressed
with caching techniques that minimize database and network traffic while
always leveraging optimizations provided by JDBC and the databases.

« Simplified Application Development - OracleAS TopLink makes application
development more productive by offering an easy to use mapping workbench
that maps the Java objects to relational databases and by simplifying one of the
most difficult aspects of developing applications - persisting information to the
database.

A-8 Oracle Application Server 10g Migrating From WebLogic

Oracle Application Server TopLink (OracleAS TopLink)

« Optimization of Resources - With OracleAS TopLink, an application
development team can focus on building the application rather than building
infrastructure.

In essence, OracleAS TopLink offers the best solution in the market to perform
Java-to-relational database object-relational mapping. With OracleAS TopLink,
Oracle has blended the Java world and the relational database world in the best
way possible, and solved one of the greatest challenges facing J2EE developers:
productively mapping their Java objects and entity beans to a relational database.

With Oracle Application Server 10g, OracleAS TopLink is an integrated component
of Oracle Application Server. Specifically, the OracleAS TopLink framework is
integrated with the Oracle Containers for J2EE, and the OracleAS TopLink mapping
Workbench is integrated with JDeveloper.

Additional Feature Comparisons A-9

Oracle Application Server TopLink (OracleAS TopLink)

A-10 Oracle Application Server 10g Migrating From WebLogic

A

Apache, 2-2,2-7

JServ Protocol, 2-7
application. xm, 3-9,3-10,5-16
authentication, 5-16, 5-18
authentication credentials, 2-10
authorization, 5-16

B

BEA Tuxedo, 2-2
Business Intelligence and Forms, 2-12

C

centralized repository, 2-13
client stubs, 2-15
clustering

JDBC, 6-9

servlets, 3-13

servlets and JSPs, 3-13
concurrent users, 6-8
configuration cloning, 2-17
connection pool, 6-7
console GUI, 5-9
CORBA, 2-2
CPU cycles, 2-18

D

data replication, 2-17
data sources, 6-4
dat a- sources. xnm , 3-10, 5-16, 6-5

Index

DCM, 2-10, 2-12, 2-17
file-based repository, 2-12
denctl, 3-3, 3-5, 3-6, 4-5, 4-11, 5-10
digital certificates, 5-16
directory service, 2-13
Distributed Configuration Manager (DCM), 2-8

E

EAR file, 2-26, 3-3, 4-2, 5-2, 5-7, 5-9, 5-16
Edge Side Includes (ESI), 4-12
Edge Side Includes for Java (JESI), 4-3,4-12
EJB
cluster, 2-20
replication, 2-20
stateful session, 2-19
EJB session, 2-17
ej bc, 5-4,5-9
ejb-jar.xm, 3-9,5-7,5-11, 5-14, 5-15
Enterprise JavaBeans, 5-2
clustering, 5-4
stateful session bean, 5-4
stateless session bean, 5-4
load balancing, 5-18
Query Language, 5-15
stateful session
replication, 5-17
entity EJB
replication, 5-20
simple and complex DB mapping, 5-3

F

failover, 2-16, 2-18,5-19

Index-1

file-based repository, 2-12
finder method, 5-14

G

gl obal - web- application.xm, 3-11

H

HelloWorld, 3-3
high availability, 2-8

HTTP
1.1, 2-2
Apache, 2-2
listener, 3-13

Microsoft 11S, 2-2
Netscape, 2-2
session state, 2-16

identity management metadata, 2-11
in-memory replication, 5-17
installation type
Business Intelligence and Forms, 2-12
J2EE and Web Cache, 2-12
Portal and Wireless, 2-12
intelligent routing, 2-17

J

J2EE
1.3, 2-1,2-2,2-23

supported component specifications, 2-3

application architecture, 1-6
application model, 1-2
Certification Test Suite, 2-23
components, 1-2
containers, 2-8
platform, 1-3

J2EE and Web Cache, 2-12

JAAS, 2-3,3-2

JAF, 2-3

JAR file, 2-26,5-7,5-9
Java Virtual Machine, 2-8, 2-18

Index-2

JavaBeans, 2-25,4-3,4-4
JavaMail, 2-3
JAXP, 2-3
JCA, 2-3
JDBC, 2-3,6-4
clustering, 6-9
Dri ver Manager, 6-4
drivers, 6-2
JMS, 2-3
jms.xm, 5-16
JNDI, 2-3,2-15, 5-6, 5-19, 6-4, 6-7
I NI TI AL_CONTEXT_FACTCORY, 6-7
JNDI namespace
replication, 2-20
JSP custom tags, 4-2,4-7,4-11
JSP pre-translation, 4-15

JTA, 2-3

VM, 5-19

K

Kerberos Security Tickets, 2-14
L

LDAP, 2-13

load balancer, 2-9, 2-15, 2-17

load balancing
parameter-based, 2-14, 2-15
random, 2-15
round-robin, 2-14, 2-15
weight-based, 2-14

M

management metadata, 2-11
management service, 2-10
message-driven bean, 5-15
metadata
identity management, 2-11
management, 2-11
product, 2-11
Microsoft IIS, 2-2
migration challenges, 1-5
mod_oc4j, 2-17

mod_oc4j, 2-7 third party authentication, 2-14

multicast, 2-18, 2-20, 5-18 Web Cache, 2-9, 2-17
JESI, 4-3
N Oracle Delegated Administration Services, 2-10,
2-13
Netegrity Site Minder, 2-14 Oracle Developer Suite, 2-25
Netscape, 2-2 Oracle Directory Manager, 2-13
Oracle Enterprise Manager, 2-12, 2-26, 5-9, 5-10,
e) 6-4
Application Server Control, 2-8
object-relational mapping, 5-7,5-8 Oracle HTTP Server, 2-17
oc4a stateful load balancing, 2-21
container, 2-26, 5-9 stateless load balancing, 2-21
failover, 2-18 Oracle Internet Directory, 2-10, 3-2
instance, 2-17, 2-20 Oracle JDeveloper, 4-4
instances, 2-7 Oracle OCl driver, 6-3
island, 2-17,2-18, 3-14 Oracle Process Management Notification
processes, 2-18 (OPMN), 2-8
whatis, 1-5 Oracle Workflow, 2-12
OC4 Oracle XA drivers, 6-3
island, 5-18 Oracle9i, 2-10,2-11
oc4j -connectors. xm, 3-12 OraclelSP, 4-3
oj spc, 4-14,4-16 Orion JSP container, 4-3
OPMN, 2-17 orion-application.xm, 3-10
Oracle orion-ejb-jar.xm, 3-11,5-7,5-11, 5-13, 5-14,
Business Components for Java, 2-25 5-16
HTTP Server, 2-7 ori on-web. xm , 3-11
Internet Developer Suite, 2-25 ormi, 5-19

JDeveloper, 2-25
Oracle Application Server

Certificate Authority, 2-11 P

Cluster, 2-16, 2-17, 2-19 portability, 1-7

components, 2-6 Portal and Wireless, 2-12
Oracle HTTP Server, 2-7 precompiling, 4-13

Farm, 2-17 principals.xnm, 3-10

Infrastructure, 2-10 process monitoring, 2-16

installation, 2-6 product metadata, 2-11

instance, 2-6, 2-16, 2-17, 2-21 product metadata service, 2-10

Integration, 2-12 proprietary extensions, 1-7

InterConnect, 2-12 Public Key Infrastructure, 2-14

JSP Markup Language (JML), 4-3,4-12

JSP pre-translator, 4-14 R

Metadata Repository, 2-12, 2-17

ProcessConnect, 2-12 RMI, 2-14, 2-15, 3-13

Single Sign-On, 2-11, 3-2 round-robin, 2-15

Index-3

S

scalability, 2-8, 2-16
security service, 2-10
server.xm, 5-9, 5-11
session state, 2-14, 2-15, 2-16, 2-18, 3-13, 3-14
single sign-on, 2-2,2-10
skeleton classes, 5-6
smart routing, 2-17
SNMP, 2-2
SOAP, 2-2
SQLJ, 4-3
SSOSDK, 2-13
state replication
database, 3-13
filesystem, 3-13
in-memory, 3-13
stateful session replication, 2-17
stub classes, 5-7,5-18
stubs, 2-15

T

tag library, 2-26
custom, 4-7

transactions
two-phase, 2-3

U

uUDDI, 2-2

W

WAR file, 2-26, 3-1, 3-2, 3-3, 3-6
Web Cache, 2-9
WebLogic Express, 2-2,2-3
WebLogic Server, 1-8
administration console, 2-24
Administration Server, 2-4
cluster, 2-14
clustering
servlets and JSPs, 3-13
components, 2-4
config.xm, 3-12
console GUI, 2-5,6-9

Index-4

domain, 2-2,2-5
Enterprise JavaBeans
field-to-database-element mapping, 5-13
in-memory replication, 5-18
failover, 2-15
htmlKona, 3-2
JDBC drivers, 6-2
jDriver, 6-3
JSP compiler, 4-13
JSP custom tags, 4-2, 4-11
load balancing, 2-15
parameter-based, 2-15
random, 2-15
round-robin, 2-15
weight-based, 2-15
Managed Server, 2-4
proxy plug-in, 2-15
round-robin, 2-15
session state, 2-15
state replication, 2-15, 3-13
webl ogi c-ej b-jar.xm, 3-13
webl ogi c. xm , 3-12
webl ogi c- cnmp-rdbns-j ar. xm, 5-7,5-11, 5-14
webl ogi c-ej b-jar.xm , 5-7,5-11, 5-13, 5-15,
5-18
web. xm, 3-3,3-9
WSDL, 2-2

X

X.509 certificate, 2-14

	Contents
	Send Us Your Comments
	1 Overview
	Overview of J2EE
	What is the J2EE Application Model?
	What is the J2EE Platform?

	What is an Application Server?
	Overview of Oracle Application Server
	J2EE Application Migration Challenges

	J2EE Application Architecture
	Migration Issues
	Migration Approach

	Migration Effort
	Using This Guide

	2 Comparison of Oracle Application Server and WebLogic Server
	Application Server Product Offerings
	WebLogic
	WebLogic Server
	WebLogic Enterprise
	WebLogic Express

	Oracle Application Server

	Architecture Comparison
	WebLogic Server
	Oracle Application Server Components and Concepts
	Oracle Application Server Instance
	Oracle HTTP Server
	OC4J Instances
	Oracle Process Management Notification (OPMN) Server
	Distributed Configuration Management (DCM)
	Oracle Application Server Web Cache
	Oracle Enterprise Manager Application Server Control
	Oracle Application Server Infrastructure
	Oracle Application Server Metadata Repository
	Oracle Identity Management

	High Availability and Load balancing
	WebLogic Server Support for High Availability and Load Balancing
	HTTP Session State Load Balancing and Failover (Servlet Clustering)
	EJB and RMI Object Load Balancing and Failover

	Oracle Application Server Support for High Availability and Load Balancing
	Oracle Application Server Instance
	Oracle Application Server Clusters (Middle Tier)
	OC4J Islands
	Stateful Session EJB High Availability Using EJB Clustering
	JNDI Namespace Replication

	Java Object Cache
	Oracle Application Server Web Cache Clusters
	OracleAS Infrastructure High Availability Solutions
	Oracle Application Server Cold Failover Clusters
	Oracle Application Server Active Clusters

	J2EE Support Comparison
	Java Development and Deployment Tools
	WebLogic Development and Deployment Tools
	WebLogic Server Workshop
	WebLogic Server Administration Console

	Oracle Application Server Development and Deployment Tools
	Development Tools
	Assembly Tools
	Administration Tools

	3 Migrating Java Servlets
	Introduction
	Differences Between WebLogic Server and Oracle Application Server Servlet Implementations
	OC4J Key Servlet Container Features

	Migrating a Simple Servlet
	Migrating a WAR File
	Migrating an Exploded Web Application
	Migrating Configuration and Deployment Descriptors
	Oracle Application Server
	WebLogic Server

	Migrating Cluster Aware Applications

	4 Migrating JSP Pages
	Introduction
	Differences Between WebLogic Server and Oracle Application Server JSP Implementations
	OC4J JSP Features
	Edge Side Includes for Java (JESI) Tags
	Web Object Cache Tags

	Oracle JDeveloper and OC4J JSP Container

	Migrating a Simple JSP Page
	Migrating a Custom JSP Tag Library
	Migrating from WebLogic Custom Tags
	WebLogic Server cache Tag
	WebLogic Server process Tag
	WebLogic Server repeat Tag

	Precompiling JSP Pages
	Using the WebLogic Server JSP Compiler
	Using the OC4J JSP Pre-translator
	Standard JSP Pre-translation Without Execution (based on the JSP 1.1 specification)
	Configure the JSP Container for Execution with Binary Files Only

	5 Migrating Enterprise JavaBean Components
	Introduction
	Comparison of WebLogic Server and Oracle Application Server EJB Features
	The following sections go into detail on some of the abovementioned features:
	More Efficient Container Managed Persistence
	Clustering Support
	Scalability and Performance Enhancements
	Security and LDAP Integration
	WebLogic Server Caveats

	EJB Migration Considerations

	Migration Steps
	Setting Deployment Properties
	Vendor-specific Deployment Descriptors
	WebLogic Server
	OC4J

	Generating and Deploying EJB Container Classes
	WebLogic Server
	OC4J

	Loading EJB Classes in the Server
	WebLogic Server
	OC4J

	Migrating EJBs in a EAR or JAR File
	Migrating an Exploded EJB Application
	Configuring EJBs using Deployment Descriptors
	Writing Finders for RDBMS Persistence
	WebLogic Query Language (WLQL) and EJB Query Language (EJB QL)
	Message Driven Beans
	Configuring Security
	Migrating Cluster-Aware EJB Applications to OC4J
	EJB Clustering in WebLogic Server
	In-Memory Replication for Stateful Session EJBs
	Requirements and Configuration

	EJB Clustering in Oracle Application Server
	Load Balancing
	Static Discovery
	Dynamic Discovery

	Failover
	Stateless Session EJBs
	Stateful Session EJBs
	Entity EJBs

	JNDI Namespace Replication

	6 Migrating JDBC
	Introduction
	Differences between WebLogic and Oracle Application Server Database Access Implementations
	Overview of JDBC Drivers

	Migrating Data Sources
	Data Source Import Statements
	Configuring Data Sources in the Application Server
	Obtaining a Client Connection Using a Data Source Object

	Migrating Connection Pools
	Overview of Connection Pools
	How Connection Pools Enhance Performance

	Overview of Clustered JDBC
	Performance Tuning JDBC

	A Additional Feature Comparisons
	Java Messaging Service (JMS)
	OracleJMS (OJMS)

	Java Object Cache
	Dynamic Monitoring System (DMS)
	Active Components for J2EE (AC4J)
	Oracle Application Server TopLink (OracleAS TopLink)

	Index

