
Oracle® Application Server 10g
Migrating From WebSphere

10g (9.0.4)

Part No. B10426-01

November 2003

Oracle Application Server 10g Migrating From WebSphere, 10g (9.0.4)

Part No. B10426-01

Copyright © 2003 Oracle Corporation. All rights reserved.

Primary Author: Kai Li

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, Oracle Discoverer,
SQL*Plus, and PL/SQL are trademarks or registered trademarks of Oracle Corporation. Other names
may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface.. xiii

Intended Audience .. xiii
Documentation Accessibility ... xiii
Organization... xiv
Related Documents... xv
Conventions.. xvi

1 Overview

Overview of J2EE .. 1-2
What is the J2EE Application Model?.. 1-2
What is the J2EE Platform?.. 1-3

What is an Application Server?.. 1-4
Overview of Oracle Application Server ... 1-5

J2EE Application Migration Challenges.. 1-5
J2EE Application Architecture ... 1-6
Migration Issues.. 1-7

Portability .. 1-7
Dependence on Vendor Specific Implementation ... 1-8
Deviations from J2EE Specification.. 1-8

Migration Approach ... 1-8
Using this Guide ... 1-9
iii

2 Comparison of Oracle Application Server and WebSphere Features

Application Server Product Offerings Comparison... 2-1
WebSphere Product Offerings .. 2-1
WebSphere Standard Edition.. 2-1
WebSphere Advanced Edition.. 2-2
WebSphere Enterprise Edition.. 2-2

Oracle Application Server ... 2-2
Architecture Comparison .. 2-4

IBM WebSphere Components... 2-4
IBM HTTP Server... 2-4
Web Server Plug-in.. 2-4
Administrative Server... 2-4
Administrative Repository... 2-5
Application Server... 2-6

Oracle Application Server Components and Concepts .. 2-6
OracleAS Instance.. 2-6
Oracle HTTP Server... 2-7
OC4J Instances ... 2-7
Oracle Process Manager and Notification Server (OPMN) Server 2-8
Distributed Configuration Manager (DCM).. 2-8
Oracle Application Server Web Cache ... 2-9
Oracle Enterprise Manager Application Server Control ... 2-9
Oracle Application Server Infrastructure... 2-9

High Availability and Load balancing ... 2-14
WebSphere Suppport for High Availability and Load Balancing....................................... 2-14

Clustering in WebSphere.. 2-14
Load Balancing in WebSphere... 2-14

Oracle Application Server Support for High Availability and Load Balancing................ 2-15
Oracle Application Server Instance .. 2-15
Oracle Application Server Clusters (Middle Tier).. 2-16
OC4J Islands ... 2-17
Stateful Session EJB High Availability Using EJB Clustering....................................... 2-18
Java Object Cache .. 2-19
Oracle Application Server Web Cache Clusters.. 2-20
OracleAS Infrastructure High Availability Solutions .. 2-20
iv

J2EE Support Comparison... 2-22
WebSphere J2EE support... 2-22
Oracle Application Server J2EE support ... 2-22

Java Development and Deployment Tools .. 2-23
WebSphere Development and Deployment Tools .. 2-23

WebSphere Development Tools.. 2-24
WebSphere Studio... 2-24
WebSphere Administrative Console .. 2-24

Oracle Application Server Development and Deployment Tools....................................... 2-24
Development Tools ... 2-24
Assembly Tools.. 2-25
Administration Tools .. 2-26

3 Migrating Servlets

Overview of the Java Servlet API .. 3-1
Servlet Lifecycle .. 3-3

The init() Method... 3-3
The service() Method.. 3-4
The destroy() Method.. 3-4

Session Tracking ... 3-5
Cookies.. 3-5
URL rewriting .. 3-6
Hidden form fields in HTML .. 3-6

The HttpSession object.. 3-6
 J2EE Web Applications ... 3-7

Web Application Archive (WAR) ... 3-7
About the WEB-INF directory ... 3-8

 Differences between Servlet 2.0, 2.1 and 2.2 .. 3-8
Highlights of the Java Servlet API 2.1 .. 3-8
New Features in the Java Servlet API 2.2... 3-9
Servlet API 2.3.. 3-10
Filters and Servlet Chaining .. 3-10
Servlet Chains .. 3-11

WebSphere Servlet API Support .. 3-11
WebSphere Advanced Edition 3.5.3 Compatibility Mode .. 3-11
v

Full Servlet 2.2 Compliance Mode .. 3-11
Servlet 2.2 API Support... 3-12
WebSphere Extensions to the Servlet API ... 3-13

Oracle Application Server Servlet API Suport ... 3-14
Migrating Standalone Servlets to OC4J ... 3-14

Sample .servlet file: SnoopServlet.servlet .. 3-16
Migrating Cluster-Aware applications to OC4J ... 3-16

Configuring an OC4J Island (in OC4J standalone mode).. 3-17
How OC4J Island Works (in OC4J standalone mode) ... 3-20

4 Migrating JSPs

Overview of JSP Pages ... 4-1
Parts of a JSP Page .. 4-2

Directives .. 4-2
What is a JSP container?... 4-3
Life Cycle of a JSP Page.. 4-3

WebSphere Support for the JSP API ... 4-4
WebSphere-Specific Features .. 4-4

Batch JSP Compiler.. 4-4
HTML Template Extensions in JSP 0.91 ... 4-4
WebSphere Extensions to JSP 1.0 .. 4-5

OC4J JSP Features ... 4-6
Edge Side Includes for Java (JESI) Tags ... 4-7
Web Object Cache Tags .. 4-7
Oracle JDeveloper and OC4J JSP Container .. 4-8

Migrating from WebSphere JSP 0.91... 4-8
The <REPEATGROUP> Tag... 4-8

Migrating WebSphere Extensions to OC4J .. 4-10
<REPEAT> or <tsx:repeat> tag:... 4-10

5 Migrating Enterprise Java Beans

Overview of Enterprise JavaBeans .. 5-1
EJB Migration Considerations.. 5-2
EJB Functionality and Components .. 5-3

The EJB Server ... 5-4
vi

EJB container ... 5-4
EJB Specification Roles... 5-4

Enterprise Bean Provider ... 5-4
Application Assembler ... 5-4
Deployer ... 5-5
EJB Server Provider... 5-5
EJB Container Provider .. 5-5
System Administrator... 5-5

Session Beans... 5-5
Stateful Session Beans... 5-6
Stateless Session Beans ... 5-8

Entity Beans ... 5-9
Container-managed Persistence (CMP) Entity Beans.. 5-9
Bean-managed Persistence (BMP) Entity Beans ... 5-9
The Entity Beans Life Cycle ... 5-10

Object-relational (O-R) Mapping and Persistence ... 5-11
EJB Transactions and Concurrency.. 5-12

The Java Transaction API(JTA) ... 5-13
Transaction Boundaries .. 5-14
Client-Managed Transactions.. 5-14
Container-Managed Transactions (CMT) .. 5-14
Bean Managed Transactions (BMT).. 5-14

Transaction Isolation and Concurrency .. 5-15
EJB Caching ... 5-16

WebSphere 3.5.x Support for the EJB API ... 5-17
Read-only Methods .. 5-17
EJB Finder-Helper Interface .. 5-18
CMP in WebSphere .. 5-18
Transactions... 5-19
EJB Inheritance.. 5-19
Distributed Exceptions... 5-19
Access Beans.. 5-19
Associations Between Enterprise Beans.. 5-20

Migrating EJB Applications from WebSphere to OC4J .. 5-20
EJB Code Changes .. 5-21
vii

Client Level Code Changes ... 5-24
Changes in Transactional Semantics.. 5-26
Object-relational (O-R) Mapping.. 5-27
Deployment of EJBs.. 5-27
OC4J EJB Container Setting... 5-29

6 Migrating JDBC Applications

The JDBC API .. 6-1
Database Drivers ... 6-2

The DriverManager Class .. 6-3
Registering JDBC Drivers ... 6-3

The DataSource Class ... 6-4
Configuring Data Sources ... 6-5
Configuring OC4J with DB2 Database .. 6-7
Obtaining a Data Source Object.. 6-8

Connection Pooling .. 6-9
Migrating WebSphere Connection Pooling to Oracle Application Server......................... 6-10

Migrating from WebSphere JDBC 2.0 connection pooling:... 6-10
IBM Extensions.. 6-10

Data Access Beans... 6-10
Connection Pool Manager ... 6-11

A Migrating from WebSphere 4.0

Feature Differences Between WebSphere Advanced Edition 3.5.3 and 4.0 7-1
J2EE Specification Differences Between WebSphere Advanced Edition 4.0 and Oracle
Application Server .. 7-2
Migrating WebSphere 4.0 Servlets to Oracle Application Server ... 7-3

WebSphere Specific Servlet Extensions ... 7-3
WebSphere-Specific Deployment Descriptors.. 7-4
Deprecated 3.5.3 API (Supported in WebSphere 4.0).. 7-4

Migrating WebSphere 4.0 JSPs to Oracle Application Server.. 7-4
Migrating WebSphere 4.0 EJBs to Oracle Application Server ... 7-5
Other Considerations ... 7-5

Dynamic Fragment Cache ... 7-5
viii

Data Access and Sources ... 7-5

Index
ix

x

xi

Send Us Your Comments

Oracle Application Server 10g Migrating From WebSphere, 10g (9.0.4)

Part No. B10426-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com
■ FAX: (650) 506-7375 Attn: Oracle Application Server Documentation Manager
■ Postal service:

Oracle Corporation
Oracle Application Server Documentation
500 Oracle Parkway, Mailstop 1op6
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

xii

xiii

Preface

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documents

■ Conventions

Intended Audience
Oracle Application Server 10g Migrating From WebSphere is intended for
administrators, developers, and others whose role is to deploy and manage Oracle
Application Server with high availability requirements.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

xiv

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
The following chapters make up this guide:

Chapter 1, "Overview"
This chapter provides you with an overview of the J2EE platform, application
servers, and Oracle Application Server. In addition, it provides you with an
understanding of what is involved in migrating from WebSphere to Oracle
Application Server.

Chapter 2, "Comparison of Oracle Application Server and WebSphere
Features"
This chapter provides a comparison between Oracle Corporation’s implementation
of Sun Microsystems’ J2EE platform and component specifications and that of
IBM’s.

Chapter 3, "Migrating Servlets"
This chapter provides you with an overview of Sun Microsystems’ Java Servlet
technology and its implementation in Oracle Application Server. In addition, the
issues involved in migrating servlets from WebSphere to Oracle Application Server
are presented.

Chapter 4, "Migrating JSPs"
This chapter provides you with an overview of Sun Microsystems’ JavaServer Pages
(JSP) technology and its implementation in Oracle Application Server. In addition,

xv

the issues involved in migrating JSP pages from WebSphere to Oracle Application
Server are presented.

Chapter 5, "Migrating Enterprise Java Beans"
This chapter provides you with an overview of Sun Microsystems’ Enterprise
JavaBeans (EJB) architecture and its implementation in Oracle Application Server.
In addition, the issues involved in migrating EJB components from WebSphere to
Oracle Application Server are presented.

Chapter 6, "Migrating JDBC Applications"
This chapter provides you with an overview of Sun Microsystems’ JDBC technology
and its implementation in Oracle Application Server. In addition, the issues
involved in migrating database access code from WebSphere to Oracle Application
Server are presented.

Appendix A, "Migrating from WebSphere 4.0"
This chapter provides the migration strategy and tips for migrating applications
from WebSphere Advanced Edition 4.0 to Oracle Application Server.

Related Documents
For more information, see these Oracle resources:

■ Oracle Application Server Documentation Library

■ Oracle Application Server Platform-Specific Documentation on Oracle
Application Server Disk 1

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

xvi

For additional information, see:

■ http://ibm.com/ for more information on WebSphere

■ http://java.sun.com/ for more information on J2EE

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Microsoft Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xvii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example

xviii

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating
systems and provides examples of their use.

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY
ty3MU9;

Convention Meaning Example

xix

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start OracleHOME_
NAMETNSListener

xx

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin95 for Windows 95

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle. If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90. The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle9i Database Getting Starting
for Windows for additional information
about OFA compliances and for
information about installing Oracle
products in non-OFA compliant
directories.

Go to the ORACLE_BASE\ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

Overview 1-1

1
Overview

This chapter provides you with an overview of the J2EE platform, application
servers, and the Oracle Application Server. In addition, it provides you with an
understanding of what is involved in migrating from WebSphere Advanced Edition
3.5.3 to Oracle Application Server 10g (9.0.4).

The chapter contains these topics:

■ Overview of J2EE

■ What is an Application Server?

■ Overview of Oracle Application Server

■ J2EE Application Architecture

■ Migration Issues

■ Migration Approach

■ Using this Guide

Overview of J2EE

1-2 Oracle Application Server 10g Migrating From WebSphere

Overview of J2EE
The application server market is evolving rapidly. In particular, the most significant
development over the last few years is the emergence of Sun Microsystems’ Java 2
Platform, Enterprise Edition (J2EE) Specification that promises to create a level of
cross-vendor standardization.

The J2EE platform and component specifications define, among other things, a
standard platform for developing and deploying multi-tier, web-based enterprise
applications.

J2EE provides a solution to the problems encountered by companies moving to a
multi-tier computing model. The problems addressed include reliability, scalability,
security, application deployment, transaction processing, web interface design, and
timely software development. It builds upon the Java 2 Platform, Standard Edition
(J2SE) to enable Sun Microsystems’ "Write Once, Run Anywhere" paradigm for
multi-tier computing.

J2EE consists of the components described in Table 1–1:

What is the J2EE Application Model?
The J2EE application model is a multi-tier application model. Application
components are managed in the middle tier by containers. A container is a standard
runtime environment that provides services, including life cycle management,
deployment, and security services, to application components. This container-based
model separates business logic from system infrastructure.

Table 1–1 J2EE Standard Architecture Components

Component Description

J2EE Application Model An application model for developing
multi-tier, thin client services

J2EE Platform A platform for hosting J2EE applications

J2EE Compatibility Test Suite A compatibility test suite for verifying
that a J2EE platform product meets the
requirements set forth in the J2EE
platform and component specifications

J2EE Reference Implementation A reference implementation of the J2EE
platform

Overview of J2EE

Overview 1-3

What is the J2EE Platform?
The J2EE platform consists of a runtime environment and a standard set of services
that provide the necessary functionality for developing multi-tiered, web-based
enterprise applications.

The J2EE platform consists of the components described in Table 1–2.

Table 1–2 J2EE Platform Components

Component Description

J2EE runtime application components

Application clients A Java program, typically used for a GUI,
that executes on a desktop computer

Applets A component of a Java program that
typically executes in a web browser

Servlets A Java program, used to generate
dynamic content, that executes on a web
server

JSPs A technology used to return dynamic
content to a client, typically a web
browser

Enterprise JavaBeans (EJB) An applications architecture for
component-based distributed computing

Containers An entity that provides services for
application components, including life
cycle management, deployment, and
security services

Resource manager drivers A system-level component that enables
network connectivity to external data
sources

Database A set of related files used for the storage
of business data and accessible through
the JDBC API

J2EE standard services

HTTP The standard protocol used by the
Internet to send and receive messages
between web servers and browsers

What is an Application Server?

1-4 Oracle Application Server 10g Migrating From WebSphere

What is an Application Server?
An application server is software that runs between web-based client programs and
back-end databases and legacy applications. They help separate system complexity
from business logic, enabling developers to focus on solving business problems.
They help reduce the size and complexity of client programs by enabling these
programs to share capabilities and resources in an organized and efficient way.

Application servers provide benefits in the areas of usability, flexibility, scalability,
maintainability, and interoperability.

HTTPS A protocol used by the Internet to send
and receive messages securely between
web servers and browsers

Java Transaction API (JTA) An API that allows applications and
application servers to access transactions

RMI-IIOP RMI: A protocol that enables Java objects
to communicate remotely with other Java
objects.

IIOP: A protocol that enables browsers
and servers to exchange things other than
text.

RMI-IIOP is a version of RMI that uses
the CORBA IIOP protocol

JavaIDL A standard language for interface
specification primarily used for CORBA
object interface definition

JDBC An API that provides connectivity
between databases and the J2EE platform

Java Message Service (JMS) An API that enables the use of enterprise
messaging systems

Java Naming and Directory Interface (JNDI) An API that provides directory and
naming services

JavaMail An API that provides the ability to send
and receive e-mail

JavaBeans Activation Framework (JAF) An API required by the JavaMail API

Table 1–2 J2EE Platform Components

Component Description

Overview of Oracle Application Server

Overview 1-5

Overview of Oracle Application Server
Oracle Application Server is a comprehensive, integrated application server that
provides all of the infrastructure and functionality needed to run every successful
e-business. All development teams face a similar set of challenges—the need to
rapidly deliver web sites and applications that run fast over any network and on
every device; while providing business intelligence to support operational
adjustments and strategic decisions. Oracle Application Server enables teams to
address all of these e-business challenges.

Oracle Application Server has generated a great deal of interest in the application
server market, and many organizations are embracing it to deploy their web-based
enterprise applications.

Oracle Application Server offers the only integrated infrastructure to develop and
deploy web sites and applications. It provides a complete J2EE platform for
developing enterprise Java applications. It enables developers to develop web
applications in any language including Java, Perl, PL/SQL, XML, and Oracle
Forms. It enables the reduction of development and deployment costs through a
single, unified platform for Java, XML, and SQL.

The J2EE server implementation in Oracle Application Server is called Oracle
Application Server Containers for J2EE (OC4J). OC4J is J2EE 1.3 compliant and runs
on the standard JDK version 1.4, which is installed with the product (JDK 1.3 is
supported). It is lightweight, provides high performance and scalability, and is
simple to deploy and manage. OC4J can be deployed in standalone mode, which is
ideal for development environments or with Oracle Enterprise Manager
Application Server Control (Application Server Control) to provide enterprise-level
monitoring and management facilities.

J2EE Application Migration Challenges
The varying degrees of compliance to J2EE standards can make migrating
applications from one application server to another a daunting task. Some of the
challenges in migrating J2EE applications from one application server to another
are:

■ Though in theory any J2EE application can be deployed on any J2EE-compliant
application server, in practice this is not strictly true.

■ Lack of knowledge of the implementation details of the given J2EE application.

J2EE Application Architecture

1-6 Oracle Application Server 10g Migrating From WebSphere

■ Ambiguity in the meaning of ’J2EE-compliant’ (usually, this means the
application server has J2EE-compliant features, not code-level compatibility
with the J2EE specification).

■ The number of vendor-supplied extensions to the J2EE standards in use, which
differ in deployment methods and reduce portability of Java code from one
application server to another. (For example, there are Websphere-specific
libraries associated with servlet engines, EJB containers, and JDBC and JNDI
interfaces).

■ Differences in clustering, load balancing, and failover implementations among
application servers. These differences are sparsely documented, and are thus an
even bigger challenge to the migration process.

These challenges make the migration work unpredictable and difficult to reliably
plan and schedule. This document addresses the challenges in migrating your
applications from WebSphere to Oracle Application Server, providing an approach
to migration with solutions based on the J2EE version 1.3 specification.

J2EE Application Architecture
The J2EE platform provides a multi-tiered distributed application model. Central to
the J2EE component-based development model is the notion of containers.
Containers are standardized runtime environments that provide specific services to
components. Thus, Enterprise Java Beans (EJB) developed for a specific purpose in
any organization can expect generic services such as transaction and EJB life cycle
management to be available on any J2EE platform from any vendor.

Containers also provide standardized access to enterprise information systems; for
example, providing RDBMS access through the JDBC API. Containers also provide
a mechanism for selecting application behavior at assembly or deployment time.

As shown in Figure 1–1, the J2EE application architecture is a multi-tiered
application model. In the middle tier, components are managed by containers; for
example, J2EE Web containers invoke servlet behavior, and EJB containers manage
life cycle and transactions for EJBs. The container-based model separates business
logic from system infrastructure.

Migration Issues

Overview 1-7

Figure 1–1 J2EE Architecture

Migration Issues
Given the inherent challenges outlined above, it is helpful to examine the
applications to be migrated in terms of the following before quantifying the
migration effort:

■ Portability

■ Dependence on Vendor Specific Implementation

■ Deviations from J2EE Specification

Portability
Code may not be portable because it contains embedded references to vendor-
specific extensions to the J2EE specification. In such cases, runtime exceptions, (for
example, "class not found") may occur when applications are migrated and run
from one J2EE-compliant application server to another. In addition, some J2EE

Migration Approach

1-8 Oracle Application Server 10g Migrating From WebSphere

application servers still support deprecated APIs and others are strictly compliant
to the J2EE specifications. WebSphere contains extentions to servlets, JSPs, EJBs,
JNDI, and JDBC. In such cases, evaluating code and planning for its modification
may be a significant part of the migration effort.

Dependence on Vendor Specific Implementation
If WebSphere-specific services are in use, migration of those components becomes
difficult or unfeasible. These components may need to be redesigned and
reimplemented, instead of being identified as migration candidates. This guide does
not address complete redesign toward J2EE specifications. For example,
applications using Component Broker (IBM ORB) services, CICS or Encina
transaction monitors, MQSeries or DB2 libraries are not candidates for migration as
defined in this guide.

Deviations from J2EE Specification
Different application server vendors have different levels of support for J2EE
standards, and some variations in behavior. For example, WebSphere Advanced
Edition 3.5.3 supports pre-J2EE 1.3 specifications, but Oracle Application Server
fully supports J2EE 1.3. This fact raises issues with servlet, EJB, JNDI, and security
migration. This guide addresses those issues and explains how to migrate to Oracle
Application Server without major code changes.

Migration Approach
Our approach for this guide is to document our experiences with migrating
components and/or example applications from WebSphere Advanced Edition 3.5.3
to Oracle Application Server 10g (9.0.4). Guidelines for migrating from WebSphere
Advanced Edition 4.0 to Oracle Application Server 10g (9.0.4) is discussed in
Appendix A, "Migrating from WebSphere 4.0".

We selected some of the examples shipped with WebSphere for this migration
excercise.We tested these samples with WebSphere and migrated them to Oracle
Application Server. In doing so, we exposed and documented specific migration
issues not identified in the product documentation. As described in "J2EE
Application Migration Challenges" these issues exist because WebSphere Advanced
Edition 3.5.3 does not support J2EE 1.3 specifications, and because
WebSphere-specific API extensions are used.

Using this Guide

Overview 1-9

Using this Guide
This guide details the migration of components from WebSphere Advanced Edition
3.5.3 to Oracle Application Server. While it does not claim to be an exhaustive
source of solutions for every possible configuration, it provides solutions for some
of the migration issues listed above, which will surface, along with others, in your
migration effort. The information in this guide helps you to assess the WebSphere
applications and plan and execute their migration to Oracle Application Server. The
material in this guide supports these high-level tasks:

■ Survey the components according to the issues listed above

■ Identify migration candidates

■ Prepare the migration environment and tools

■ Migrate and test the candidate components

Note: In this document, unless otherwise specified, any reference
to WebSphere without a version number implies reference to
WebSphere Advanced Edition 3.5.3.

Using this Guide

1-10 Oracle Application Server 10g Migrating From WebSphere

Comparison of Oracle Application Server and WebSphere Features 2-1

2
Comparison of Oracle Application Server

and WebSphere Features

WebSphere 3.5.3 and Oracle Application Server are created from entirely different
architectures. WebSphere is based on the IBM SanFrancisco Java application
framework and its Component Broker, both of which predate J2EE standards.
Oracle Application Server has a new lightweight, robust J2EE container that
supports the J2EE 1.3 standard APIs.

This chapter identifies major differences between WebSphere and Oracle
Application Server in terms of overall product offering, architecture, clustering and
load balancing, J2EE support, and development and deployment tools.

Application Server Product Offerings Comparison
This section describes WebSphere and Oracle Application Server products.

WebSphere Product Offerings
IBM sells a several technologies under the WebSphere marketing umbrella (for
WebSphere 3.5.3). The WebSphere Application Server is the core of the WebSphere
extended family of products, of which there are three versions, described below.

WebSphere Standard Edition
WebSphere Standard Edition is a servlet/JSP container layer that runs on top of an
HTTP server. It works with a number of popular HTTP servers, including IBM
HTTP Server, Microsoft IIS, and Netscape iPlanet server. WebSphere Standard
Edition supports static HTML pages, servlets, JavaServer Pages, and XML .

Oracle Application Server

2-2 Oracle Application Server 10g Migrating From WebSphere

WebSphere Advanced Edition
WebSphere Advanced Edition contains all the features of Standard Edition, and also
includes:

■ Full support for the Enterprise JavaBeans™ (EJB) component model

■ Workload management (WLM) features to support multiple servers within a
single administrative domain

WebSphere Advanced Edition is IBM’s core J2EE server.

WebSphere Enterprise Edition
WebSphere Enterprise Edition includes all of the features in Advanced Edition, and
also includes:

■ Component Broker (CB), the IBM Object Request Broker

■ TXSeries, the IBM transactional middleware solution with two transaction
processing monitors: CICS and Encina

In WebSphere Enterprise Edition, the Component Broker serves both EJBs and
CORBA objects. TXSeries provides a a pure transactional environment, for
applications that don't require an EJB/component-based/object-oriented
programming model. Depending on your requirements, you could use either or
both.

Oracle Application Server
Like WebSphere, Oracle Application Server is a platform-independent J2EE
application server that can host multi-tier, web-enabled enterprise applications for
the Internet and intranets, and which is accessible from browser and standalone
clients. It includes Oracle Application Server Containers for J2EE (OC4J) a
lightweight, scalable J2EE container written in Java, and is J2EE 1.3 certified. Hence,
OC4J provides support for the following J2EE 1.3 APIs:

■ Servlets 2.3

■ JSP 1.2

■ EJB 2.0

■ JNDI 1.2

■ JavaMail 1.1.2

Oracle Application Server

Comparison of Oracle Application Server and WebSphere Features 2-3

■ JAF 1.0

■ JAXP 1.1

■ JCA 1.0

■ JAAS 1.0

■ JMS 1.0

■ JTA 1.0

■ JDBC 2.0 Extension

Oracle Application Server is designed specifically for running large-scale,
distributed Java enterprise applications, including Internet commerce sites,
enterprise portals and high volume transactional applications. It adds considerable
value beyond the J2EE standards in areas critical to the implementation of real
world applications, providing an entire suite of integrated solutions that
encompass:

■ Web services

■ Business intelligence

■ Management and security

■ E-business integration

■ Support for wireless clients

■ Enterprise portals

■ Performance caching

Oracle Application Server is designed specifically for running large-scale, highly
available distributed Java enterprise applications, including Internet commerce
sites, enterprise portals and high volume transactional applications. It adds
considerable value beyond the J2EE standards in areas critical to the
implementation of real world applications, providing an entire suite of integrated
solutions that encompass:

■ Web services

■ Business intelligence

■ Management and security

■ E-business integration

■ Support for wireless clients

Architecture Comparison

2-4 Oracle Application Server 10g Migrating From WebSphere

■ Enterprise portals

■ Performance caching

To enable these solutions to be implemented in a reliable and scalable
infrastructure, Oracle Application Server can be deployed in a redundant
architecture using clustering mechanisms. The sections "Architecture Comparison"
and "Oracle Application Server Support for High Availability and Load Balancing"
in this chapter details the components in and characteristics of Oracle Application
Server.

Architecture Comparison
This section describes and compares the overall architectures of WebSphere and
Oracle Application Server.

IBM WebSphere Components
The WebSphere Advanced Edition 3.5.3 consists of the following components:

IBM HTTP Server
IBM's HTTP Server is the Apache HTTP Server (with official product support) with
SSL capability implemented by IBM, and IBM tools for managing keys, certificates,
and such. The public key technology that SSL uses is patented and requires tracking
for licensing purposes. The SSL support is part of IBM's value-add on top of the
Apache HTTP Server open source distribution. Neither Apache nor the IBM HTTP
Server provide servlet support out-of-the-box.

Web Server Plug-in
The Web Server Plug-in is a module that runs within the web server, using its
native APIs, and forwards requests to the WebSphere Application Server. When you
install WebSphere, the installation program installs a hook into the web server that
intercepts HTTP requests that target a servlet (it examines the incoming URL to
determine whether it is a servlet request), and redirects those requests to the servlet
engine for processing. Static content is still handled solely by the HTTP Server.

Administrative Server
The Adminsitrative Server must be running on every node that is running a
WebSphere Application Server component. It performs the following functions:

■ Starting, stopping and monitoring all configured application servers.

Architecture Comparison

Comparison of Oracle Application Server and WebSphere Features 2-5

■ Providing a location service daemon (LSD).

■ Providing a persistence name server (PNS).

■ Providing a security server.

■ Providing a watchdog process to restart the Administrative Server in case of
failure.

Figure 2–1 Runtime Components of WebSphere Application Server Advanced Edition

Administrative Repository
The WebSphere Application Server version 3.5.x requires an Administrative Server
Repository. The Administrative Server Repository is a relational database
containing configuration information. This database is used to store setup,
configuration, and state information about the WebSphere Application Server.

Before starting the Administrative Server, WebSphere Application Server checks for
the existence of an Administrative Server Repository, which contains descriptive
information about the resources that are configured to run on each node in the
domain, for example, the names of application servers, the node each server is
running on, the enterprise beans installed in each server, and the current state of
each server.

The Administrative Server Repository enables the system administrator to manage
the domain from any machine, because all configuration information is stored in a
central location. Each Administrative Server has a central view of resource
configuration information about in the domain. When the administrator modifies a
resource configuration, the changes are seen by all administrative servers.

Architecture Comparison

2-6 Oracle Application Server 10g Migrating From WebSphere

Application Server
In WebSphere, an Application Server is the process that runs servlet and/or
EJB-based applications, providing both the servlet run-time components (Servlet
Engine, Web applications) and EJB run-time (EJB container). Like the
Administrative Server, each WebSphere Application Server runs in its own Java
Virtual Machine (JVM).

Oracle Application Server Components and Concepts
This section describes components and several concepts peculiar to Oracle
Application Server. The discussion here provides an overview scope.

OracleAS Instance
An OracleAS instance is a runtime occurrence of an installation of Oracle
Application Server. An Oracle Application Server installation corresponds to an
"Oracle Home" where the Oracle Application Server files are installed. Each Oracle
Application Server installation can provide only one OracleAS instance at runtime.
A physical node can have multiple "Oracle Homes", and hence, more than one
Oracle Application Server installation and OracleAS instance.

Each OracleAS instance consists of several interoperating components that enable
Oracle Application Server to service user requests in a reliable and scalable manner.
These components are:

■ Oracle HTTP Server

■ OC4J Instances

■ Oracle Process Manager and Notification Server (OPMN) Server

■ Distributed Configuration Manager (DCM))

■ Oracle Application Server Web Cache

■ Oracle Enterprise Manager Application Server Control

■ Oracle Application Server Infrastructure

See Also:

Oracle Application Server 10g Concepts

Oracle Application Server 10g Administrator’s Guide

Oracle Application Server Containers for J2EE User’s Guide

Architecture Comparison

Comparison of Oracle Application Server and WebSphere Features 2-7

Oracle HTTP Server
OracleAS contains two listeners: The Oracle HTTP Server (based on the Apache
open source project) and the listener that is part of OC4J, which runs in a separate
thread of execution. Each OracleAS instance has one Oracle HTTP Server.

The OC4J listener listens to requests coming from the mod_oc4j module of the
Oracle HTTP Server and forwards them to the appropriate OC4J instance. From a
functional viewpoint, the Oracle HTTP Server acts as a proxy server to OC4J,
wherein all servlet or JSP requests are redirected to OC4J instances.

mod_oc4j communicates with the OC4J listener using the Apache JServ Protocol
version 1.3 (AJP 1.3). mod_oc4j works with the Oracle HTTP Server as an Apache
module. The OC4J listener can also accept HTTP and RMI requests, in addition to
AJP 1.3 requests.

The following diagram depicts Oracle HTTP Server and other Oracle Application
Server runtime components in a single instance of OracleAS.

Figure 2–2 Components of an OracleAS Instance

OC4J Instances
An OC4J instance is a logical instantiation of the OC4J implementation in Oracle
Application Server. This implementation is Java 2 Enterprise Edition (J2EE)
complete and written entirely in Java. It executes on the standard Java Development
Kit (JDK) 1.4 Java Virtual Machine, which is installed with OracleAS (JDK 1.3 is
supported). It has a lower disk and memory footprint than the previous Oracle
Application Server Java environment and competitive Java application servers.
Note that each OC4J instance can consist of more than one JVM process where each
process can be executing multiple J2EE containers. The number of JVM processes

Architecture Comparison

2-8 Oracle Application Server 10g Migrating From WebSphere

can be specified for each OC4J instance using the Oracle Enterprise Manager
Application Server Control GUI.

Oracle Application Server allows several OC4J instances to be clustered together for
scalability and high availibility purposes. When OC4J instances are clustered
together, they have the same configuration and applications deployed amongst
them. A more in-depth discussion on clustering is found in the section "Oracle
Application Server Support for High Availability and Load Balancing" below.

Oracle Process Manager and Notification Server (OPMN) Server
Each OracleAS instance has an OPMN server which performs monitoring and
process management functions within that instance. This service communicates
messages between the components in an OracleAS instance to enable startup,
death-detection and recovery of components. This communication extends to other
OPMN services in other OracleAS instances belonging to the same cluster as well,
thereby allowing other instances in a cluster to be aware of active OC4J and Oracle
HTTP Server processes in other OracleAS instances (in the same cluster).

The OPMN service also communicates and interfaces with Application Server
Control to provide a consolidated interface for monitoring, configurating, and
managing Oracle Application Server. Oracle Application Server components,
Oracle HTTP Server, OC4J instances, and Distributed Configuration Manager
(described below), use a subscribe-publish messaging mechanism to communicate
with the OPMN service. For failover and availibility, the process that implements
the OPMN service has a shadow process that restarts the OPMN process if it fails.

Distributed Configuration Manager (DCM)
In order to manage and track configuration changes in the various components in
each OracleAS instance, a DCM process exists in each OracleAS instance to perform
those tasks. Each configuration change made to any of the components in a
OracleAS instance is communicated to the DCM. DCM in turn takes note of the
change and records it in the Oracle Application Server Metadata Repository in the
Infrastructure database. This repository contains the configuration information for
all the OracleAS instances connected to it through their respective DCMs. All
OracleAS instances connecting to the same infrastructure repository in this way
belong to the same OracleAS Farm. If any of the OracleAS instances fail, the
configuration information can be retrieved from the repository for purposes of
restarting the instance.

Each DCM also communicates with the OPMN in their respective instances to send
notification events on changes in repository data. This allows OPMN to make the
corresponding adjustments to the Oracle Application Server components.

Architecture Comparison

Comparison of Oracle Application Server and WebSphere Features 2-9

Oracle Application Server Web Cache
OracleAS provides a caching solution with the unique capability to cache both static
and dynamically generated web content. The Oracle Application Server Web Cache
significantly improves the performance and scalability of heavily loaded Oracle
Application Server web sites by reducing the number of round trips to the web
server. In addition, it provides a number of features to ensure consistent and
predictable responses. These features include page fragment caching, dynamic
content assembly, web server load balancing, Web Cache clustering, and failover.
Oracle Application Server Web Cache can be used as a load balancer for OracleAS
instances in a cluster. Oracle Application Server Web Cache can itself be deployed
in its own cluster. Refer to the Oracle Application Server Web Cache Administrator’s
Guide.

Oracle Enterprise Manager Application Server Control
Oracle Enterprise Manager Application Server Control provides a web-based
interface for managing Oracle Application Server components and applications.
Using the Application Server Control, you can do the following:

■ monitor OracleAS components, OracleAS middle tier and Infrastructure
instances, OracleAS middle tier clusters, and deployed J2EE applications and
their components

■ configure Oracle Application Server components, instances, clusters, and
deployed applications

■ operate OracleAS components, instances, clusters, and deployed applications

■ manage security for OracleAS components and deployed applications

For more information on Oracle Enterprise Manager and its two frameworks, see
the Oracle Enterprise Manager documentation.

Oracle Application Server Infrastructure
In this version of Oracle Application Server, 10g (9.0.4), the role of the Infrastructure
is expanded from earlier versions. It provides a completely integrated framework
for the development and deployment of enterprise applications. An OracleAS
Infrastructure installation type provides centralized product metadata, security
services, management services, and configuration and data repositories for the

See Also: Oracle Application Server 10g Administrator’s Guide -
provides descriptions on Application Server Control and
instructions on how to use it.

Architecture Comparison

2-10 Oracle Application Server 10g Migrating From WebSphere

OracleAS middle tier. By integrating the Infrastructure services required by the
middle tier, time and effort required to develop enterprise applications are reduced.
In turn, the total cost of developing and deploying these applications is reduced,
and the deployed applications are more reliable.

The OracleAS Infrastructure provides the following overall services:

■ Product Metadata Service

OracleAS Infrastructure stores all application server metadata required by
OracleAS middle tier instances. This data is stored in an Oracle9i database,
thereby leveraging the robustness of the database to provide a reliable, scalable,
and easy-to-manage metadata repository.

■ Security Service

The security service provides a consistent security model and identity
management for all applications deployed on OracleAS. The service enables
centralized authentication using single sign-on, web-based administration, and
centralized storage of user authentication credentials. The Oracle Internet
Directory is used as the underlying repository for this service.

■ Management Service

This service is used by Oracle Enterprise Manager and DCM to manage and
administer OracleAS middle tier instances and the OracleAS Infrastructure. It is
also used to administer clustering services for the middle tier. Oracle Enterprise
Manager reduces the total administrative cost by centralizing the management
of deployed J2EE applications through the OracleAS Console, which provides
web pages for unified administration of OracleAS.

The components in OracleAS Infrastructure which implement the above services
are:

■ Oracle Application Server Metadata Repository

■ Oracle Identity Management

Oracle Application Server Metadata Repository Oracle Application Server Metadata
Repository is an Oracle9i Enterprise Edition database server and stores
component-specific information that is accessed by the Oracle Application Server
middle tier or Infrastructure components as part of their application deployment.
The end user or the client application does not access this data directly. For
example, a Portal application on the middle tier accesses the Portal metadata as part
of the Portal page assembly aggregation. Metadata also includes demo data for

Architecture Comparison

Comparison of Oracle Application Server and WebSphere Features 2-11

many Oracle Application Server components, such as data used by the Order
Management Demo for Oracle Business Components for Java (BC4J).

Oracle Application Server metadata and customer or application data can coexist in
the Oracle Application Server Metadata Repository, the difference is in which
applications are allowed to access them.

The Oracle Application Server Metadata Repository stores three main types of
metadata corresponding to the three main Infrastructure services described earlier
in this section. These types of metadata are:

■ management metadata

■ security metadata

■ product metadata

Table 2–1 shows the Oracle Application Server components that store and use these
types of metadata during application deployment.

Oracle Application Server Metadata Repository is needed for all application
deployments except for those using the J2EE and Web Cache install option. Oracle
Application Server provides three middle tier installation options:

■ J2EE and Web Cache: Installs Oracle HTTP Server, OC4J, Oracle Application
Server Web Cache, Web Services, BC4J, and Oracle Enterprise Manager
Application Server Control.

■ Portal and Wireless: Installs all components of J2EE and OracleAS Web Cache,
plus UDDI, Oracle Application Server Portal, Oracle Application Server
Syndication Services, Oracle Ultra Search, and Oracle Application Server
Wireless.

■ Business Intelligence and Forms: Installs all components of J2EE and Oracle
Application Server Web Cache, Oracle Application Server Portal, and Oracle

Table 2–1 Metadata and Infrastructure Components

Type of Metadata Infrastructure Components Involved

Product metadata
(includes demo data)

Oracle Application Server Metadata Repository

Identity Management
metadata

OracleAS Single Sign-On, Oracle Internet Directory,
Oracle Application Server Certificate Authority

Management metadata Distributed Configuration Management, Oracle Enterprise
Manager

Architecture Comparison

2-12 Oracle Application Server 10g Migrating From WebSphere

Application Server Wireless, plus Oracle Application Server Forms Services,
Oracle Application Server Reports Services, Oracle Application Server
Discoverer, and Oracle Application Server Personalization.

Integration components, such as Oracle Application Server ProcessConnect, Oracle
Application Server InterConnect, and Oracle Workflow are installed on top of any
of these middle tier install options.

The DCM component enables middle tier management, and stores its metadata in
the Metadata Repository for both the Portal and Wireless and the Business
Intelligence and Forms install options. For the J2EE and Web Cache installation
type, by default, DCM uses a file-based repository. If you choose to associate the
J2EE and Web Cache installation type with an Infrastructure, the file-based
repository is moved into the Metadata Repository.

Oracle Identity Management The Oracle Identity Management components provide an
infrastructure for the security lifecycle of applications and entities in OracleAS. The
components that make up Identity Management are:

■ Oracle Internet Directory

Oracle Internet Directory is Oracle’s implementation of a directory service using
the Lightweight Directory Access Protocol (LDAP) version 3. It runs as an
application on the Oracle9i database and utilizes the database’s high
performance, scalability, and high availability.

Oracle Internet Directory provides a centralized repository for creating and
managing users for the rest of the Oracle Application Server components such
as OC4J, Oracle Application Server Portal, or Oracle Application Server
Wireless. Central management of user authorization and authentication enables
users to be defined centrally in Oracle Internet Directory and shared across all
Oracle Application Server components.

Oracle Internet Directory is provided with a Java-based management tool
(Oracle Directory Manager), a Web-based administration tool (Oracle Delegated
Administration Services) for trusted proxy-based administration, and several
command-line tools. Oracle Delegated Administration Services provide a
means of provisioning end users in the Oracle Application Server environment
by delegated administrators who are not the Oracle Internet Directory
administrator. It also allows end users to modify their own attributes.

See Also: Oracle Application Server 10g Installation Guide for
information on the OracleAS installation details.

Architecture Comparison

Comparison of Oracle Application Server and WebSphere Features 2-13

Oracle Internet Directory also enables Oracle Application Server components to
synchronize data about users and group events, so that those components can
update any user information stored in their local application instances.

■ Oracle Application Server Single Sign-On

OracleAS Single Sign-On is a multi-part environment which is made up of both
middle tier and database functions allowing for a single user authentication
across partner applications. A partner application can be achieved either by
using the SSOSDK or via the Apache mod_osso module. This module allows
Apache (and subsequently URLS) to be made partner applications.

OracleAS Single Sign-On is fully integrated with Oracle Internet Directory,
which stores user information. It supports LDAP-based user and password
management through Oracle Internet Directory.

OracleAS Single Sign-On supports Public Key Infrastructure (PKI) client
authentication, which enables PKI authentication to a wide range of Web
applications. Additionally, it supports the use of X.509 digital client certificates
and Kerberos Security Tickets for user authentication.

By means of an API, OracleAS Single Sign-On can integrate with third-party
authentication mechanisms such as Netegrity Site Minder.

■ OracleAS Certificate Authority

OracleAS Certificate Authority (OCA) is a component of the Oracle public key
infrastructure (PKI) offering that allows you to create and manage X.509v3
digital certificates for use in Oracle or third-party software. OCA is fully
standards-compliant, and is fully integrated with Oracle Application Server
Single Sign-On and Oracle Internet Directory. OracleAS Certificate Authority
provides web-based certificate management and administration, as well as
XML-based configuration. It leverages the Identity Management infrastructure,
high availability, and scalability of the Oracle9i platform.

See Also: Oracle Internet Directory Administrator’s Guide

See Also: Oracle Application Server Single Sign-On Administrator’s
Guide

See Also: Oracle Application Server Certificate Authority
Administrator’s Guide

High Availability and Load balancing

2-14 Oracle Application Server 10g Migrating From WebSphere

High Availability and Load balancing
This section defines and describes clustering and load balancing and their
importance to application server operation, It compares the methods for high
availability (mainly through clustering) and load balancing used in WebSphere and
Oracle Application Server.

WebSphere Suppport for High Availability and Load Balancing
WebSphere provides clustering and load balancing support through its
Administrative Console, with cloning and workload management services.

Clustering in WebSphere
Clustering is implemented in WebSphere with a mechanism called cloning,
available in the Administration system. Cloning enables you to create multiple
copies of an application server, based on a server that you have already configured.

The clone has the same structure and attributes as the application server on which it
is based, but it is not associated with any node, and does not correspond to any real
server process running on any node.

WebSphere Application Server supports cloning for servlet engines, Web
applications, and servlets for workload management, load balancing, and failover.
The servlets, EJBs, and Web resources are shared by the clones, but each clone uses
its own JVM to run the application code. This provides identical, yet independent
processes for the application to run in.

Load Balancing in WebSphere
The workload management service improves the scalability of the application
server environment by grouping multiple application servers into application
server groups. Clients then access these application server groups as if they were a
single server, and the workload management service distributes the workload
among the application servers in the application server groups. An application
server can belong to only one application server group. WebSphere workload
management supports load balancing for stateless servlets and stateless session
beans, and provides a failover mechanism for stateful servlets and stateful session
beans.

Servlet load balancing is performed by a servlet redirector. The servlet redirector
runs on the Web server in front of the application servers. The redirector balances
workload across the servlet engines running in multiple application servers behind

High Availability and Load balancing

Comparison of Oracle Application Server and WebSphere Features 2-15

the Web server. When a web server HTTP session asks to invoke a servlet, the
redirector transfers the request to a servlet engine.

The EJB component workload manager balances the load between Java objects
(servlets to EJB components, EJB components to EJB components and stand-alone
Java clients to EJB components). For example, when a servlet needs data or begins a
transaction through an EJB component, the EJB component workload manager
transfers the request to an EJB container (an instance of WebSphere Application
Server) or a remote EJB handler.

Oracle Application Server Support for High Availability and Load Balancing
Oracle Application Server is designed with several high availability and load
balancing mechanisms. These mechanisms ensure that failover and scalability are
achieved at the Infrastructure and middle tier levels. For failover, clusters of similar
OracleAS components can be created. These clusters offer redundancy for similar
components.

This section describes the clustering and load balancing concepts and capabilities of
applicable components in Oracle Application Server.

Oracle Application Server Instance
The Oracle Application Server architecture supports high availability in the middle
tier that in many cases can prevent unplanned down time for deployed
applications. This section provides an overview of the architecture of an Oracle
Application Server instance and shows some of the mid-tier high availability
features.

Within each Oracle Application Server instance, the following features provide high
availability within the instance, and for any clusters that the instance is a part of:

■ Process Monitoring – Using the Oracle Process Manager and Notification Server
system provides for process death detection and process restarting in the event
that problems are detected for monitored processes.

■ Configuration Cloning – Using the Distributed Configuration Management
features that uses a Oracle Application Server Metadata Repository for
configuration information provides distributed and managed configuration for
Oracle Application Server instances and for Oracle Application Server instances
that are part of a cluster.

See Also: Oracle Application Server 10g High Availability Guide

High Availability and Load balancing

2-16 Oracle Application Server 10g Migrating From WebSphere

■ Data Replication – Using OC4J instances with OC4J islands that provide Web
application level stateful session replication, and using EJB sessions, data is
replicated across processes within an Oracle Application Server instance and
across different Oracle Application Server instances that may reside on different
hosts when using Oracle Application Server Clusters. This allows stateful
session based applications to remain available even when processes within an
Oracle Application Server instance become unavailable or fail.

■ Smart Routing – Oracle Application Server Web Cache and Oracle HTTP Server
(mod_oc4j) provide configurable and intelligent routing for incoming
requests. Requests are routed only to processes and components that mod_oc4J
determines to be alive, through communication with the Oracle Process
Manager and Notification Server system.

Oracle Application Server Clusters (Middle Tier)
An Oracle Application Server Cluster (OracleAS Cluster) is made up of one or more
OracleAS instances (see Figure 2–3). All OracleAS instances in the cluster have the
same configuration. The first OracleAS instance to join a cluster has its
configuration replicated to the second and later instances when they join. In
addition to the configuration, deployed OC4J applications are also replicated to the
newer instances. Information for the replicated configuration and applications is
retrieved from the OracleAS Metadata Repository used by the cluster.

Within each cluster, there is no mechanism to load balance or failover the OracleAS
instances. That is, there is no internal mechanism in the cluster to load balance or
failover requests to the Oracle HTTP Server component in the instances. A separate
load balancer such as OracleAS Web Cache or hardware load balancing product can
be used to load balance the OracleAS instances in the cluster and failover the Oracle
HTTP Server instances in the cluster.

Several OracleAS Clusters and standalone OracleAS instances can be further
grouped into an OracleAS Farm. The clusters and instances in this farm share the
same OracleAS Metadata Repository. For further information on OracleAS Farms,
refer to the Oracle Application Server 10g Administrator’s Guide.

High Availability and Load balancing

Comparison of Oracle Application Server and WebSphere Features 2-17

Figure 2–3 An OracleAS Cluster Using OracleAS Web Cache for Load Balancing

OC4J Islands
An important function of clustering technology in Oracle Application Server is that
of reducing multicast traffic. With every server sharing its session state with every
other server in the cluster, a lot of CPU cycles is consumed as overhead to replicate
the session state across all nodes in the cluster. Oracle Application Server solves this
problem by introducing the concept of OC4J islands, where OC4J processes (JVMs)
in an OracleAS Cluster can be sub-grouped into islands. Session state of
applications is replicated only to OC4J processes belonging to the same island
rather than all OC4J processes in the OracleAS Cluster. Hence, state is replicated to
a smaller number of processes. OC4J islands are typically configured to span across
physical nodes, thereby allowing failover of application state if a node goes down.

Consider an OracleAS Cluster with four OC4J processes running in two nodes, two
processes per node (see Figure 2–4). When the state of an application changes,
which could occur at every request from the same client, multicast messages are
sent between all four processes to update the state of that application in each
process. If these four processes were to be divided into two islands of two processes
across two nodes, state replication of the application would only have to occur
between processess within the same island. Multicast messages would be required
only between the two processes in the island instead of four, reducing replication
overhead by half. As a result, network traffic and CPU cycles are reduced.

High Availability and Load balancing

2-18 Oracle Application Server 10g Migrating From WebSphere

Figure 2–4 OC4J Islands

When configuring OC4J islands, you can specify the number of OC4J processes for
each node that belong to each island. By doing so, you can increase or decrease the
number of processes based on the capabilities of the hardware and operating
system of each node. For instructions on how to configure OracleAS Clusters and
OC4J islands, refer to Oracle Application Server 10g High Availability Guide.

Stateful Session EJB High Availability Using EJB Clustering
Using OC4J, stateful session EJBs can be configured to provide state replication
across OC4J processes running within an application server instance or across an
OracleAS Cluster. This EJB replication configuration provides high availability for
stateful session EJBs by using multiple OC4J processes to run instances of the same
stateful session EJB.

High Availability and Load balancing

Comparison of Oracle Application Server and WebSphere Features 2-19

EJB clusters provide high availability for stateful session EJBs. They allow for
failover of these EJBs across multiple OC4J processes that communicate over the
same multicast address. Thus, when stateful session EJBs use replication, this can
protect against process and node failures and can provide for high availability of
stateful session EJBs running on Oracle Application Server.

JNDI Namespace Replication When EJB clustering is enabled, JNDI namespace
replication is also enabled between the OC4J instances in an OracleAS Cluster. New
bindings to the JNDI namespace in one OC4J instance are propagated to other OC4J
instances in the OracleAS Cluster. Rebindings and unbindings are not replicated.

The replication is done outside the scope of OC4J islands. In other words, multiple
islands in an OC4J instance have visibility into the same replicated JNDI
namespace.

Java Object Cache
Oracle Application Server Java Object Cache provides a distributed cache that can
serve as a high availability solution for applications deployed to OC4J. The Java
Object Cache is an in-process cache of Java objects that can be used on any Java
platform by any Java application. It allows applications to share objects across
requests and across users, and coordinates the life cycle of the objects across
processes.

Java Object Cache enables data replication among OC4J processes even if they do
not belong to the same OC4J island, application server instance, or Oracle
Application Server Cluster.

Note: Use of EJB replication (EJB clusters) for high availability is
independent of OracleAS Clusters and can involve multiple
application server instances installed across nodes that are or are
not part of OracleAS Clusters.

See Also:

■ Oracle Application Server 10g High Availability Guide

■ Oracle Application Server Containers for J2EE User’s Guide

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide

See Also: Oracle Application Server Containers for J2EE Services
Guide

High Availability and Load balancing

2-20 Oracle Application Server 10g Migrating From WebSphere

By using Java Object Cache, performance can be improved since shared Java objects
are cached locally, regardless of which application produces the objects. This also
improves availability; in the event that the source for an object becomes
unavailable, the locally cached version will still be available.

Oracle Application Server Web Cache Clusters
Two or more OracleAS Web Cache instances can be clustered together to create a
single logical cache. Physically, the cache can be distributed amongst several nodes.
If one node fails, a remaining node in the same cluster can fulfill the requests
serviced by the failed node. The failure is detected by the remaining nodes in the
cluster who take over ownership of the cacheable content of the failed member. The
load balancing mechanism in front of the OracleAS Web Cache cluster, for example,
a hardware load balancing appliance, redirects the requests to the live OracleAS
Web Cache nodes.

OracleAS Web Cache clusters also add to the availability of OracleAS instances. By
caching static and dynamic content in front of the OracleAS instances, requests can
be serviced by OracleAS Web Cache reducing the need for the requests to be
fulfilled by OracleAS instances, particularly for Oracle HTTP Servers. The load and
stress on OracleAS instances is reduced, thereby increasing availability of the
components in the instances.

Oracle Application Server Web Cache can also perform a stateless or stateful load
balancing role for Oracle HTTP Servers. Load balancing is done based on the
percentage of the available capacity of each Oracle HTTP Server, or, in other words,
the weighted available capacity of each Oracle HTTP Server. If the weighted
available capacity is equal for several Oracle HTTP Servers, OracleAS Web Cache
uses round robin to distribute the load. Refer to Oracle Application Server Web Cache
Administrator’s Guide for the formula to calculate weighted available capacity.

In the case of failure of a Oracle HTTP Server, OracleAS Web Cache redistributes
the load to the remaining Oracle HTTP Servers and polls the failed server
intermittently until it comes back online. Thereafter, OracleAS Web Cache
recalculates the load distribution with the revived Oracle HTTP Server in scope.

OracleAS Infrastructure High Availability Solutions
Several solutions exist to enable high availability for the OracleAS Infrastructure.
These solutions allow for intrasite failover. They are:

See Also: Oracle Application Server Web Cache Administrator’s Guide

High Availability and Load balancing

Comparison of Oracle Application Server and WebSphere Features 2-21

Oracle Application Server Cold Failover Clusters The cold failover cluster solution offers
a two-node hardware cluster, which are identically configured. One node is active
whilst the other is passive. A hardware interconnect exists between both nodes,
which run with an operating system that has clustering features. Both of these
nodes access a common shared storage. A single logical IP address is also shared
between the two nodes. (A unique physical IP address also exists for each node. But
only the single logical IP address is visible and used by the middle tier to access the
Infrastructure on the cold failover cluster.

During OracleAS Infrastructure installation, the "Oracle Home" for the installation
is installed on the shared storage together with the database files. During operation,
only one node is mounted on the shared storage at any one time. In the event that
the active node fails, the clustering software of the passive node detects the failure
and "takes over" the logical IP address. The passive node becomes the active node,
mounts the shared storage, and services requests from the middle tier.

The cold failover cluster nodes can also be installed with the middle tier. In this
scenario, the nodes are active-active for the middle tier and active-passive for the
Infrastructure.

Oracle Application Server Active Clusters Whilst the cold failover cluster offers an
active-passive availability configuration for the Infrastructure, the Oracle
Application Server Active Clusters (OracleAS Active Clusters) solution offers
active-active availability. The OracleAS Active Clusters solution is based on
Oracle9i Real Application Clusters technology. It allows more than two nodes to be
active in a cluster. The underlying hardware used for each node also utilizes
hardware cluster technology. But the IP address take over mechanism is not used.
Instead, a hardware load balancer appliance is configured in front of the OracleAS
Active Clusters nodes to load balance requests to them. This load balancer has a
logical IP name and address, which is/are used by the middle tier to access the
Infrastructure. Oracle Net connections bypass this hardware load balancer by using
an address list of nodes in the cluster. Both the hardware load balancer appliance
and Oracle Net manage the failover of requests to active nodes if a node fails.

See Also: Oracle Application Server 10g High Availability Guide

See Also: Oracle Application Server 10g High Availability Guide

J2EE Support Comparison

2-22 Oracle Application Server 10g Migrating From WebSphere

J2EE Support Comparison
This section outlines the differences in the level of support of J2EE specifications
between WebSphere and Oracle Application Server.

WebSphere J2EE support
WebSphere 3.5.3 is a J2EE server, but is not fully J2EE 1.2 compliant. It supports the
following J2EE API specifications:

■ Servlet 2.1 (and partial support for Servlet 2.2)

■ JSPs - supports .91 and 1.0

■ EJBs 1.0+

■ JTA 1.0

■ JNDI 1.2

■ JDBC 2.0

■ JMS 1.0

WebSphere is not fully J2EE compliant, since it provides custom extensions to J2EE
standards and includes non-standard packages for supporting J2EE features, such
as servlet filtering and chaining, security, connection pooling and data access beans,
and deployment dersciptors. An application using these extensions and packages
requires code-level changes in order to migrate to Oracle Application Server or any
other J2EE-compliant application server.

Oracle Application Server J2EE support
Oracle Application Server Containers for J2EE (OC4J) is fully certified with J2EE 1.3.
Table 2–1 lists the J2EE technologies and the level of support provided by Oracle
Application Server and WebSphere:

Table 2–2 J2EE Technology Support

J2EE Technology
Version Supported by
WebSphere 3.5.3

Version Supported by
Oracle Application
Server 10g (9.0.4)

JDK 1.2.2 1.4 and 1.3

Servlets 2.1+ 2.3

JSPs 1.0 1.2

Java Development and Deployment Tools

Comparison of Oracle Application Server and WebSphere Features 2-23

In addition to supporting these standards, Oracle Application Server provides a
well-thought-out, integrated architecture for building real world J2EE applications,
including implementation of standard deployment archives: JAR files for EJBs, Web
Archives (WARs) for servlets and JSPs, and Enterprise Archives (EARs) for
applications. This ensures smooth server interoperability.

Java Development and Deployment Tools
This section compares the Java tools included with WebSphere and Oracle
Application Server.

WebSphere Development and Deployment Tools
The WebSphere development environment, tools, and system administration
console are described below.

EJBs 1.0+ 2.0

JDBC 2.0 2.0 Extension

JNDI 1.2 1.2

JTA 1.0 1.0.1

JMS 1.0 1.0.2

JavaMail None 1.1.2

JAF None 1.0.1

JAXP 1.0.1 1.1

JCA 1.0 1.0

JAAS 1.0 1.0

Note: Oracle Application Server OC4J is installed with JDK 1.4.1.
However, OC4J can also work with JDK 1.3.x for this version, 10g
(9.0.4), of Oracle Application Server.

Table 2–2 J2EE Technology Support

J2EE Technology
Version Supported by
WebSphere 3.5.3

Version Supported by
Oracle Application
Server 10g (9.0.4)

Java Development and Deployment Tools

2-24 Oracle Application Server 10g Migrating From WebSphere

WebSphere Development Tools
VisualAge for Java is is IBM’s integrated development environment (IDE) for
building J2EE applications. VisualAge for Java offers remote debugging support for
JSP pages and other server-side Java logic. A new Servlet SmartGuide generates
servlets, JSP components, and HTML prototypes, so that developers can quickly test
their code inside the IDE before deploying to a production server. Integration with
IBM WebSphere Studio allows for quick addition of content to prototypes,
increasing productivity for programmers and web developers. VisualAge also
comes with Persistence Builder, a standalone object-relational mapper tool .

WebSphere Studio
The WebSphere Studio provides a tool set for creating, managing and debugging
multiplatform Web applications. It includes the following functionality:

■ Visual Page Designer for Java Server Pages (JSP), HTML and DHTML.

■ Wizards to create database applications, queries, JavaBeans and servlets.

■ Deployment of EJBs, servlets and web applications.

WebSphere Administrative Console
The WebSphere Administrative Console provides a GUI for managing the
WebSphere domain. A WebSphere domain consists of one or more WebSphere
instances (where each instance runs one or more applications). The Administrative
Console connects to one of the Administrative servers running in the domain and
can be used change to the configuration or run-time state on any machine in a
domain. The Administrative Console is used to manage the administrative
repository, deploy applications and configure applications.

Oracle Application Server Development and Deployment Tools
This section describes development and deployment tools for creating J2EE
applications. The tools are part of the Oracle Developer Suite.

Development Tools
Application developers can use the tools in Oracle JDeveloper to build J2EE
compliant applications for deployment on OC4J. JDeveloper is a component in
Oracle Internet Developer Suite, a full-featured, integrated development
environment for creating multi-tier Java applications. It enables you to develop,
debug, and deploy Java client applications, dynamic HTML applications, web and
application server components and database stored procedures based on

Java Development and Deployment Tools

Comparison of Oracle Application Server and WebSphere Features 2-25

industry-standard models. For creating multi-tier Java applications, JDeveloper has
the following features:

■ Oracle Business Components for Java (BC4J)

■ Web application development

■ Java client application development

■ Java in the database

■ Component-Based Development with JavaBeans

■ Simplified database access

■ Visual Integrated Development Environment

■ Complete J2EE 1.3 support

■ Automatic generation of .ear files, .war files, EJB JAR file, and deployment
descriptors.

You can build applications with Oracle JDeveloper and deploy them manually,
using Application Server Control. Also note that you are not restricted to using
JDeveloper to build applications; you can deploy applications built with IBM
VisualAge or Borland JBuilder on OC4J.

Assembly Tools
Oracle Application Server provides a number of assembly tools to configure and
package J2EE Applications. The output from these tools is compliant with J2EE
standards and is not specific to OC4J. These include:

■ A WAR file assembly tool to assemble JSP, servlets, tag libraries and static
content into WAR files.

■ An EJB assembler, which packages an EJB home, remote interface, deployment
descriptor, and the EJB into a standard JAR file.

■ An EAR File assembly tool, which assembles WAR Files and EJB JARs into
standard EAR files.

Note: In addition to JDeveloper, Oracle Application Server
TopLink, an object-relational mapping tool, also comes with Oracle
Application Server. See Oracle Application Server TopLink Application
Developer’s Guide.

Java Development and Deployment Tools

2-26 Oracle Application Server 10g Migrating From WebSphere

■ A tag library assembly tool, which assembles JSP tag libraries into standard JAR
files.

Administration Tools
Oracle Application Server also provides two different administration facilities to
configure, monitor, and administer OC4J.

■ A graphical management console, integrated with Oracle Enterprise Manager
Application Server Control, which provides a single point of administration
across OracleAS Clusters, Farms, and OC4J containers.

■ A command line tool for performing administrative tasks locally or remotely
from a command prompt. (Oracle Enterprise Manager Application Server
Control is the preferred administration environment over this command line
tool as Application Server Control provides a more integrated set of
administration services.

Migrating Servlets 3-1

3
Migrating Servlets

This chapter discusses key servlet features and APIs, WebSphere support for servlet
APIs and its extensions to standards, and OC4J support for servlet APIs. It also
includes a step-by-step migration path for servlets deployed on WebSphere to
Oracle Application Server OC4J container.

Overview of the Java Servlet API
A servlet is an instance of Java class running in a web container and servlet engine.
Servlets are used for generating dynamic web pages. Servlets receive and respond
to requests from web clients, usually via the HTTP protocol.

Servlets have several advantages over traditional CGI programming:

■ Each servlet does not run in a separate process. This removes the overhead of
creating a new process for each request.

■ A servlet stays in memory between requests. A CGI program (and probably
also an extensive runtime system or interpreter) needs to be loaded and started
for each CGI request.

■ There is only a single instance which answers all requests concurrently. This
saves memory and allows a servlet to easily manage persistent data.

■ A servlet can be run by a servlet engine in a restrictive sandbox (similar to how
an applet runs in a web browser's sandbox), which allows secure use of servlets.

■ Servlets are scalable, providing support for a multi-application server
configuration. Servlets also enable data caching, database access, and data
sharing with other servlets, JSP files and (in some environments) Enterprise
JavaBeans.

Overview of the Java Servlet API

3-2 Oracle Application Server 10g Migrating From WebSphere

The servlet API is specified in two java extension packages: javax.servlet and
javax.servlet.http. Most servlets, however, extend one of the standard
implementations of that interface, namely javax.servlet.GenericServlet
and javax.servlet.http.HttpServlet. Of these, the classes and interfaces in
javax.servlet are protocol independent, while javax.servlet.http contain
classes specific to HTTP.

The servlet API provides support in four categories:

■ Servlet life cycle management

■ Access to servlet context

■ Utility classes

■ HTTP-specific support classes

Table 3–1 identifies the servlet API classes according to the purpose they serve.

Table 3–1 Servlet API Classes

Purpose Class or Interface

Servlet implementation javax.servlet.Servlet

javax.servlet.SingleThreadModel

javax.servlet.GenericServlet

javax.servlet.httpServlet

Servlet configuration javax.servlet.ServletConfig

Servlet exceptions javax.servlet.ServletException

javax.servlet.UnavailableException

Request/response javax.servlet.ServletRequest

javax.servlet.ServletResponse

javax.servlet.ServletInputStream

javax.servlet.ServletOutputStream

javax.servlet.http.HttpServletRequest

javax.servlet.http.HttpServletResponse

Overview of the Java Servlet API

Migrating Servlets 3-3

Servlet Lifecycle
Servlets run on the web server platform as part of the same process as the web
server itself. The web server is responsible for initializing, invoking, and destroying
each servlet instance. A web server communicates with a servlet through a simple
interface, javax.servlet.Servlet.

This interface consists of three main methods

■ init()

■ service()

■ destroy()

and two ancillary methods:

■ getServletConfig()

■ getServletInfo()

The init() Method
When a servlet is first loaded, its init() method is invoked, and begins initial
processing such as opening files or establishing connections to servers. If a servlet
has been permanently installed in a server, it is loaded when the server starts.

Otherwise, the server activates a servlet when it receives the first client request for
the services provided by the servlet. The init() method is guaranteed to finish
before any other calls are made to the servlet, such as a call to the service()
method. The init() method is called only once; it is not called again unless the
servlet is reloaded by the server.

Session tracking javax.servlet.http.HttpSession

javax.servlet.http.HttpSessionBindingList
ner

javax.servlet.http.HttpSessionBindingEvent

javax.servlet.http.Cookie

Servlet context javax.servlet.ServletContext

Servlet collaboration javax.servlet.RequestDispatcher

Table 3–1 Servlet API Classes

Purpose Class or Interface

Overview of the Java Servlet API

3-4 Oracle Application Server 10g Migrating From WebSphere

The init() method takes one argument, a reference to a ServletConfig object,
which provides initialization arguments for the servlet. This object has a method
getServletContext() that returns a ServletContext object, which contains
information about the servlet's environment.

The service() Method
The service() method is the heart of the servlet. Each request from a client
results in a single call to the servlet's service() method. The service() method
reads the request and produces the response from its two parameters:

■ A ServletRequest object with data from the client. The data consists of
name/value pairs of parameters and an InputStream. Several methods are
provided that return the client's parameter information. The InputStream
from the client can be obtained via the getInputStream() method. This
method returns a ServletInputStream, which can be used to get additional
data from the client. If you are interested in processing character-level data
instead of byte-level data, you can get a BufferedReader instead with
getReader().

■ A ServletResponse represents the servlet's reply back to the client. When
preparing a response, the method setContentType() is called first to set the
MIME type of the reply. Next, the method getOutputStream() or
getWriter() can be used to obtain a ServletOutputStream or
PrintWriter, respectively, to send data back to the client.

There are two ways for a client to send information to a servlet. The first is to send
parameter values and the second is to send information via the InputStream (or
Reader). Parameter values can be embedded into a URL. The service()
method's job is simple--it creates a response for each client request sent to it from
the host server. However, note that there can be multiple service requests being
processed simultaneously. If a service method requires any outside resources, such
as files, databases, or some external data, resource access must be thread-safe.

The destroy() Method
The destroy() method is called to allow the servlet to clean up any resources
(such as open files or database connections) before the servlet is unloaded. If no
clean-up operations are required, this can be an empty method.

The server waits to call the destroy() method until either all service calls are
complete, or a certain amount of time has passed. This means that the destroy()
method can be called while some longer-running service() methods are still

Overview of the Java Servlet API

Migrating Servlets 3-5

running. It is important that you write your destroy() method to avoid closing
any necessary resources until all service() calls have completed.

Session Tracking
HTTP is a stateless protocol, which means that every time a client requests a
resource, the protocol opens a separate connection to the server, and the server
doesn't preserve the context from one connection to another; each transaction is a
isolated. However, most web applications aren't stateless. Robust Web applications
need to interact with with users and remember the user the nature of a given user’s
requests, making data collected about the user in one request available to the next
request from the same user. A classic example would be the shopping cart
application, from internet commerce. The Servlet API provides techniques for
identifying a session and associating data with it, even over multiple connections.
These techniques include the following:

■ Cookies

■ URL rewriting

■ Hidden form fields

To eliminate the need for manually managing the session information within
application code (regardless of the technique used), you use the HttpSession
class of the Java Servlet API. The HttpSession interface allows servlets to:

■ View and manage information about a session

■ Preserve information across multiple user connections, to include multiple page
requests as well as connections

Cookies
Cookies are probably the most common approach for session tracking. Cookies
store information about a session in a human-readable file on the client's machine.
Subsequent sessions can access the cookie to extract information. The server
associates a session ID from the cookie with the data from that session. This
becomes more complicated when there are multiple cookies involved, when a
decision must be made about when to expire the cookie, and when many unique
session identifiers are needed. Also, a cookie has a maximum size of 4K, and no
domain can have more than 20 cookies. Cookies pose some privacy concerns for
users. Some people don't like the fact that a program can store and retrieve
information from their local disk, and disable cookies or delete them altogether.
Therefore, they are not dependable as a sole mechanism for session tracking.

Overview of the Java Servlet API

3-6 Oracle Application Server 10g Migrating From WebSphere

URL rewriting
The URL rewriting technique works by appending data to the end of each URL that
identifies a session. The server associates the identifier with data it has stored about
the session. The URL is constructed using an HTTP GET, and may include a query
string containing pairs of parameters and values. For example:

 http://www.server.com/getPreferences?uid=username&bgcolor=red&fgcolor=blue.

Hidden form fields in HTML
Hidden form fields are another way to store information about the session. The
hidden data can be retrieved later by using the HTTPServletRequest object. When a
form is submitted, the data is included in the GET or POST. A note of caution
though: form fields can be used only on dynamically generated pages,so their use is
limited. And there are security holes: people can view the HTML source to see the
stored data.

The HttpSession object
No matter the technique(s) used to collect session data, it must be stored
somewhere. The HttpSession object can be used to store the session data from a
servlet and associate it with a user.

The basic steps for using the HttpSession object are:

1. Obtain a session object

2. Read or write to it

3. Terminate the session by expiring it, or allowing it to expire on its own

A session persists for a certain time period, up to forever, depending on the value
set in the servlet. A unique session ID is used to track multiple requests from the
same client to the server. Persistence is valid within the context of the Web
application, which may encompass multiple servlets. A servlet can access an object
stored by another servlet; the object is distinguished by name and is considered
bound to the session. These objects (called attributes when set and get methods are
performed on them) are available to other servlets within the scope of a request, a
session, or an application.

Servlets are used to maintain state between requests, which is cumbersome to
implement in traditional CGI and many CGI alternatives. Only a single instance of
the servlet is created, and each request simply results in a new thread calling the
servlet’s service method (which calls doGet or doPost). So, shared data simply
has to be placed in a regular instance variable (field) of the servlet. Thus,the servlet

Overview of the Java Servlet API

Migrating Servlets 3-7

can access the appropriate ongoing calculation when the browser reloads the page
and can keep a list of the N most recently requested results, returning them
immediately if a new request specifies the same parameters as a recent one. Of
course, the normal rules that require authors to synchronize multithreaded access to
shared data still apply to servlets.

Servlets can also store persistent data in the ServletContext object, available
through the getServletContext method. ServletContext has
setAttribute and getAttribute methods that enable storage of arbitrary data
associated with specified keys. The difference between storing data in instance
variables and storing it in the ServletContext is that the ServletContext is
shared by all servlets in the servlet engine or in the Web application.

 J2EE Web Applications
A Web application, as defined in the servlet specification, is a collection of servlets,
JavaServer Pages (JSPs), Java utility classes and libraries, static documents such as
HTML pages, images , client side applets, beans, and classes, and other Web
resources that are set up in such a way as to be portably deployed across any
servlet-enabled Web server. A Web applications, can be contained in entirety within
a single archive file and deployed by placing the file into a specific directory.

Web Application Archive (WAR)
Web application archive files have the extension .war. WAR files are .jar files
(created using the jar utility) saved with an alternate extension. The JAR format
allows JAR files to be stored in compressed form and have their contents digitally
signed. The .war file extension was chosen over .jar to distinguish them for
certain operations. An example of a WAR file listing is shown below:

index.html
howto.jsp
feedback.jsp
images/banner.gif
images/jumping.gif
WEB-INF/web.xml
WEB-INF/lib/jspbean.jar
WEB-INF/classes/MyServlet.class
WEB-INF/classes/com/mycorp/frontend/CorpServlet.class
WEB-INF/classes/com/mycorp/frontend/SupportClass.class

On install, a WAR file can be mapped to any URI prefix path on the server. The
WAR file then handles all requests beginning with that prefix. For example, if the

Overview of the Java Servlet API

3-8 Oracle Application Server 10g Migrating From WebSphere

WAR file above were installed under the prefix /demo, the server would use it to
handle all requests beginning with /demo. A request for /demo/index.html
would serve the index.html file from the WAR file. A request for
/demo/howto.jsp or /demo/images/banner.gif would also serve content
from the WAR file.

About the WEB-INF directory
The WEB-INF directory is special. The files in it are not served directly to the client;
instead, they contain Java classes and configuration information for the Web
application. The directory behaves like a JAR file's META-INF directory; it contains
metainformation about the archive contents. The WEB-INF/classes directory
contains the class files for the Web application's servlets and supporting classes.
WEB-INF/lib contains classes stored in JAR files. For convenience, web server
class loaders automatically look to WEB-INF/classes and WEB-INF/lib for their
classes—no extra install steps are necessary.

The servlets under WEB-INF in the example Web application listing can be invoked
using URIs like /demo/servlet/MyServlet and
/demo/servlet/com.mycorp.frontend.CorpServlet.

Note that every request for this application begins with /demo, even requests for
servlets.

The web.xml file in the WEB-INF directory defines descriptors for a Web
Application. This file contains configuration information about the Web application
in which it resides and is used to register your servlets, define servlet initialization
parameters, register JSP tag libraries, define security constraints, and other Web
Application parameters .

 Differences between Servlet 2.0, 2.1 and 2.2
The Servlet API in the J2EE specification is continously evolving. In a span of two
years Servlet API 2.0 , 2.1, 2.2 has been published; the most recent version as of this
writing is Servlet API 2.3. The fundamental architecture of servlets has not changed
much, so most of the API is still relevant. However, there are enhancements and
some new functionality, and some APIs have been deprecated.

This section will cover the major difference between Servlet API 2.0 , 2.1 ,2.2 and 2.3
draft specification.

Highlights of the Java Servlet API 2.1
The Servlet 2.1 API highlights include:

Overview of the Java Servlet API

Migrating Servlets 3-9

■ A request dispatcher wrapper for each resource (servlet)

A request dispatcher is a wrapper for resources that can process HTTP requests
(such as servlets andJSPs) and files related to those resources (such as static
HTML and GIFs). The servlet engine generatesa single request dispatcher for
each servlet or JSP when it is instantiated. The request dispatcher receives client
requests and dispatches the request to the resource.

■ A servlet context for each application

In Servlet API 2.0, the servlet engine generated a single servlet context that was
shared by all servlets. The Servlet API 2.1 provides a single servlet context per
application, which facilitates partitioning applications. As explained in the
description of the application programming model, applications on the same
virtual host can access each other's servlet context.

■ Deprecated HTTP session context

The Servlet API 2.0 HttpSessionContext interface grouped all of the
sessions for a Web server into a single session context. Using the session context
interface methods, a servlet could get a list of the session IDs for the session
context and get the session associated with an ID. As a security safeguard, this
interface has been deprecated in the Servlet API 2.1. The interface methods have
been redefined to return null.

New Features in the Java Servlet API 2.2
The Servlet API 2.2 specification changed the term ’servlet engine’, replacing it with
’servlet container’. This change is indicative of the Java Servlet API is now a
required API of the Java 2 Platform, Enterprise Edition (J2EE) specification and,
throughout J2EE's terminology, container is preferred over engine. Servlet API 2.2
introduced the following new features:

■ Web Applications (as discussed above)

■ References to external data sources, such as JNDI. Enables adding resources
into the JNDI lookup table, such as database connections. Allows the resources
to be located by servlets using a simple name lookup.

■ Parameter information for the application (initiallization parameters for the
application).

■ Registered servlet names. Provides a place to register servlets and give them
names. Previously, each server had a different process for registering servlets,
making deployment difficult.

Overview of the Java Servlet API

3-10 Oracle Application Server 10g Migrating From WebSphere

■ Servlet initialization parameters. Enables passing parameters to servlets
parameters at initialization time. This is a new, standard way to accomplish
what used to be a server dependent process.

■ Servlet load order. Specifies which servlets are preloaded, and in what order.

■ Security constraints. Dictate which pages must be protected, and by what
mechanism. Include built-in form-based authentication.

Servlet API 2.3
The Servlet API 2.3 leaves the core of servlets relatively untouched. Additions and
changes include:

■ JDK 1.2 or later is required

■ A filter mechanism has been created

■ Application lifecycle events have been added

■ Additional internationalization support has been added

■ The technique to express inter-JAR dependencies has been formalized

■ Rules for class loading have been clarified

■ Error and security attributes have been added

■ The HttpUtils class has been deprecated

■ Several DTD behaviors have been expanded and clarified

Filters and Servlet Chaining
Filtering support is provided as a part of the Servlet 2.3 API. WebSphere Advanced
Edition 3.5.3 achieves similar filtering functionality with a WebSphere-specific
package. OC4J supports the Java servlet 2.3 filtering specification.

Filtering is a method of loading and invoking servlets in a web server. Both local
and remote servlets can be part of a servlet chain (defined below). There are
restrictions, however, on chaining the local internal servlets, and these restrictions
are specific to the J2EE container used. For example, in WebSphere, if an internal
servlet is used in a chain, it must be the first servlet in the chain. Internal servlets
include: file servlet, pageCompile servlet, ssInclude servlet, and template
servlet.

Overview of the Java Servlet API

Migrating Servlets 3-11

Servlet Chains
For some requests, a chain of ordered servlets can be invoked rather than just one
servlet. The input from the browser is sent to the first servlet in the chain and the
output from the last servlet in the chain is the response sent back to the browser.
Each servlet in the chain receives inputs from, and transmits outputs to, the servlet
before and after it, respectively. A chain of servlets can be triggered for an incoming
request by using:

■ Servlet aliasing to indicate a chain of servlets for a request

■ MIME types to trigger the next servlet in the chain

WebSphere Servlet API Support
WebSphere versions 3.5.2 and 3.5.3 maintain compatibility with existing
applications while simultaneously supporting the Java Servlet API 2.2 specification.
But this support is partial, and you can choose only one. To ensure compatibility, a
new option was added to servlet container properties in the Administrative console.
This new option, the Select Servlet Engine Mode, is located on the Servlet Engine
Properties view. The Select Servlet Engine Mode option toggles between the
following two different ’runtime’ modes:

WebSphere Advanced Edition 3.5.3 Compatibility Mode
This mode maintains behavior with existing WebSphere Application Server v3.5
and v3.5.1 applications at the expense of full compliance with the Java Servlet API
2.2 specification. In compatibility mode, the servlet engine is Servlet 2.2
specification level compliant, except for the method and behavior changes noted
below. This capability is provided to allow existing WebSphere Advanced Edition
v3.5 and v3.5.1 applications to successfully execute until they are migrated to fully
compliant Servlet 2.2 level applications.

Full Servlet 2.2 Compliance Mode
This mode maintains compliance with the Java Servlet API 2.2 specification at the
expense of compatibility with existing WebSphere Application Server v3.5 and
v3.5.1 applications.

The default mode is the Compatibility Mode. You select the desired mode using the
Administrative Console, Servlet Engine General tab.

Overview of the Java Servlet API

3-12 Oracle Application Server 10g Migrating From WebSphere

Servlet 2.2 API Support
WebSphere Advanced Edition 3.5.3 has partial support for the Servlet 2.2 API. The
supported API features are:

■ Response Buffering

■ Multiple Error page support

■ Welcome File Lists

■ New request mapping logic

■ Session Timeout per web application

■ Mime mapping table per web application

■ Request Dispatchers by name

■ Request Dispatchers by relative path

■ Duplicate Header support (addHeader(), getHeaders(name) APIs)

■ Initialization parameters on a web application

■ Internationalization improvements (getLocale(), getLocales())

■ New APIs getServletName()

The following Servlet 2.2 API features are not supported:

■ J2EE Security Roles

■ Security deployment information in web.xml

■ isUserInRole()

■ getUserPrincipal() API

■ J2EE-style Form Login

■ J2EE References

■ EJB reference

■ Resource Reference

■ Environment Reference

■ Environment Entry

■ Refrence deployment information in web.xml

■ Security deployment information in web.xml

Overview of the Java Servlet API

Migrating Servlets 3-13

WebSphere Extensions to the Servlet API
The WebSphere Application Server includes its own packages that extends and
adds to the Java Servlet API. The extensions and additions are provided to manage
session state, create personalized Web pages, generate better servlet error reports,
and access databases.

The Application Server API packages and classes are:

■ com.ibm.servlet.personalization.sessiontracking

Records the referral page that led a visitor to a web site, tracks the visitor's
position within the site, and associates user identification with the session. IBM
has also added session clustering support to the API.

■ com.ibm.websphere.servlet.session.IBMSession interface

Extends HttpSession for session support and increases Web administrators'
control in a session cluster environment.

■ com.ibm.servlet.personalization.userprofile package

Provides an interface for maintaining detailed information about web visitors
and incorporate it in your applications, so that you can provide a personalized
user experience. This information stored it in a database.

■ com.ibm.websphere.userprofile package

User profile enhancements.

■ com.ibm.websphere.servlet.error.ServletErrorReport class

Enables the application to provide more detailed and tailored messages to the
client when errors occur.

■ com.ibm.websphere.servlet.event package

Provides listener interfaces for notifications of application lifecycle events,
servlet lifecycle events, and servlet errors. The package also includes an
interface for registering listeners.

■ com.ibm.websphere.servlet.filter package

Provides classes that support servlet chaining. The package includes the
ChainerServlet, the ServletChain object, and the ChainResponse
object.

■ com.ibm.websphere.servlet.request package

Overview of the Java Servlet API

3-14 Oracle Application Server 10g Migrating From WebSphere

Provides an abstract class, HttpServletRequestProxy, for overloading the
servlet engine's HttpServletRequest object. The overloaded request object
is forwarded to another servlet for processing. The package also includes the
ServletInputStreamAdapter class for converting an InputStream into a
ServletInputStream and proxying all method calls to the underlying
InputStream.

■ com.ibm.websphere.servlet.response package

Provides an abstract class, HttpServletResponseProxy, for overloading the
servlet engine's HttpServletResponse object. The overloaded response
object is forwarded to another servlet for processing. The package includes the
ServletOutputStreamAdapter class for converting an OutputStream into
a ServletOutputStream and proxying all method calls to the underlying
OutputStream.

The package also includes the StoredResponse object that is useful for
caching a servlet response that contains data that is not expected to change for a
period of time, for example, a weather forecast.

Oracle Application Server Servlet API Suport
Oracle Application Server OC4J is a fully compliant implementation of the Java
Servlets 2.2 and 2.3 specifications. As such, standard Java Servlets 2.2 code will
work correctly. WebSphere 3.5.3, on the other hand, has partial support for the Java
Servlets 2.2 specification as described above. In particular, the security support
remains at the Servlet 2.1 level, and there is no support for J2EE references that
would normally be defined in the web.xml file associated with the Web
application. There is also no direct support for J2EE Web Abpplications.

Because of these differences in API support and WebSphere extensions, an
application may require code level changes before it can be migrated if it uses
extensions or deprecated method calls. Since WebSphere does not support J2EE
deployment descriptors, existing applications must be packaged into the J2EE Web
Application structure before deployment on Oracle Application Server OC4J.

Migrating Standalone Servlets to OC4J
We migrated example servlets provided with WebSphere Advanced Edition 3.5.3.
Some of these examples were not migrated because they used WebSphere-specific
extensions. For example, we did not migrate AbstractLoginServlet because it
uses a single sign-on package specific to WebSphere.

We migrated these servlets (located in in WebSphereInstallHome/Servlets):

Overview of the Java Servlet API

Migrating Servlets 3-15

■ Custom Login Servlet

■ HelloWorldServlet

■ SessionServlet

In addition to these, we migrated packaged Web Applications that use WebSphere-
specific deployment descriptors.

These examples were migrated without code changes. All that was required was to
place these servlets in

<ORACLE_HOME>/j2ee/home/default-web-app/WEB-INF/classes in UNIX

or

<ORACLE_HOME>\j2ee\home\default-web-app\WEB-INF\classes in NT.

The OC4J servlet container loads these servlets automatically. You can invoke these
servlets from a browser using an URL similar to
http://<hostname>:7777/j2ee/servlet/HelloWorldServlet.

WebSphere provides another way of deploying standalone servlets (that is, servlets
that require initialization parameters and configuration information). These servlets
are deployed in WebSphere using a deployment descriptor whose name is the name
of the servlet and ends with .servlet. This WebSphere-specific deployment
descriptor must be migrated to the J2EE Web application deployment descriptor
before it can be deployed in OC4J.

Example 3–1 SnoopServlet.servlet Deployment Descriptor

<servlet>
<name>snoop</name>
<description>snoop servlet</description>
<code>SnoopServlet</code>
<servlet-path>/servlet/snoop/*</servlet-path>
<servlet-path>/servlet/snoop2/*</servlet-path>
<init-parameter>

<name>param1</name>
<value>test-value1</value>

</init-parameter>
<autostart>false</autostart>

</servlet>

Overview of the Java Servlet API

3-16 Oracle Application Server 10g Migrating From WebSphere

Sample .servlet file: SnoopServlet.servlet
The Snoop Servlet can be migrated by placing its .class file in
<ORACLE_HOME>/j2ee/home/default-web-app/WEB-INF/classes in UNIX
or <ORACLE_HOME>\j2ee\home\default-web-app\WEB-INF\classes in NT

and editing web.xml located in the following directory:

UNIX:
<ORACLE_HOME>/j2ee/home/default-web-app/WEB-INF

NT:
<ORACLE_HOME>\j2ee\home\default-web-app\WEB-INF

The migrated SnoopServlet deployment descriptor looks like:

<web-app>
<servlet>

<servlet-name>snoop</servlet-name>
<description>snoop servlet</description>
<servlet-class>SnoopServlet</servlet-class>
<servlet-path>/servlet/snoop/*</servlet-path>
<servlet-path>/servlet/snoop2/*?/servlet-path?
<init-param>
<param-name>param1</param-name>
<param-value>test-value1</param-value>

</init-param>
<autostart>false</autostart>

</servlet>
</web-app>

Migrating Cluster-Aware applications to OC4J
Clustering and load balancing are two key features of an enterprise application
server. These features make the application server available, fault tolerant, and
scalable. The load balancer replicates state of an individual node to the cluster of
instances so that if a node fails, the state information is preserved elsewhere. The
cluster configuration provided by OC4J accomplishes the following:

■ Maximizes use of resources

If an application cannot make full use of a machine’s resources, OC4J can help
make more efficient useof the processing power.

■ Maximize throughput

OC4J can dramatically increase the number of requests an application can serve
concurrently.

Overview of the Java Servlet API

Migrating Servlets 3-17

■ Minimize risks of single points of failure

OC4J builds redundancy into your configuration. If one instance fails, others
can continue to process requests.

WebSphere and Oracle Application Server OC4J both provide clustering and load
balancing session failover. OC4J also supports HTTP tunneling of RMI requests
and responses without clustering. If you have a cluster-aware application running
on WebSphere, it can be migrated to an OC4J instance (a set of OC4J processes,
equivalent to a cluster).

The OC4J configuration incorporates the concept of islands. An island is a set of
OC4J processes that have uniform application configuration and replicated
application state. An island is a subset of processes within an OC4J instance.

Configuring an OC4J Island (in OC4J standalone mode)

The following steps explain how to configure an OC4J island:

1. Install your web application on all of the nodes in your cluster.

a. First, make sure that the nodes you are using in your cluster have the same
web application installed. If you do not want to install the application in
two places, you can place it on a shared drive that both servers access.

b. Start all your nodes and check that the web-applications are working
correctly on all of them.

2. Set up your web-application to replicate its state to the cluster.

a. Edit the orion-web.xml deployment descriptor for the web application,
located at the following directory:

Note: The instructions in this section show you how to configure a
island manually. This can be done in a development environment
where OC4J is running in standalone mode. If you are configuring
an island in an OracleAS Cluster, use the Oracle Enterprise
Manager Application Server Control web pages or the dcmctl
command line utility. Information on using these can be found in
Oracle Application Server 10g Administrator’s Guide and Oracle
Application Server Containers for J2EE User’s Guide

Overview of the Java Servlet API

3-18 Oracle Application Server 10g Migrating From WebSphere

UNIX:
<ORACLE_HOME>/j2ee/home/application-deployments/
application-name/web-app-name/

NT:
<ORACLE_HOME>\j2ee\home\application-deployments\
application-name\web-app-name\

b. If you want to add clustering for all web applications in the site, edit the
orion-web.xml of the global web application located at the following
directory:

UNIX:
<ORACLE_HOME>/j2ee/home/config/
global-web-application.xml

NT:
<ORACLE_HOME>\j2ee\home\config\
global-web-application.xml

Add the following to the main body of the <orion-web-app> tag:

<cluster-config/>

3. Optional: Specify the multicast host and IP address on which to transmit and
receive cluster data.

4. Optional: Specify the port on which to transmit and receive cluster data.

5. Specify the ID (number) of the node to identify itself within the cluster. The
default is localhost.

6. Optional: Repeat steps 4, 5 and 6 for all the nodes in your cluster.

The HTTPSession data will now be replicated (as long as it is serializable, or
an EJB reference). Note, however, that if the EJBs are located on a server that
goes down, the references might become invalid. The ServletContext data is
also replicated.

Overview of the Java Servlet API

Migrating Servlets 3-19

7. Configure your islands.

Islands are connected to a certain site rather than to a web-application. To
configure an island:

a. Edit the web-site.xml file for the website your web application is
deployed on (for example, default-web-site.xml if you are clustering
the default web-site). Add the following to the <web-site> tag:

cluster-island="1"

If your cluster has more than one island, you will specify different island
values for the servers that belong to different islands. State is shared only
within an island.

b. Specify the host the web-site is serving using the host="<hostname/ip
address>" attribute in the <web-site> tag.

8. Tell the servers about the load balancer. In the same file, the web-site.xml for
your web site, you also specify where the load balancer for the site is located.

a. In the main body of the <website> tag, add:

<frontend host="balancer hostname" port="balancer port" />

where balancer hostname and balancer port are the hostname and
port of the server that will be running the load balancer.

9. In the /WEB-INF/web.xml or NT equivalent of your application, put in the tag

</distributable>

This tag indicates that the application is distributable (a feature of the J2EE 1.2
specification).

10. Access the load balancer's host and port with a browser. You will notice how
the request is sent to a server. If you request the same page again from the same

Note: It is important to understand that load balancing, in this
case, is implemented for the web-component, not the EJB (EJBs
have a different way of load balancing using client stubs). When
using multiple islands, you may want to use different multicast IP
addresses, to enable smart routing of multicast packets in your
network, and just send traffic on certain IP addresses to certain
servers.

Overview of the Java Servlet API

3-20 Oracle Application Server 10g Migrating From WebSphere

client, your request will probably be sent to the same server again, but if you
request the same page from different clients, you will see that the client requests
get balanced.

To test the state replication, you can try accessing the servlet in the following
directory:

UNIX:
<ORACLE_HOME>/j2ee/home/servlet/SessionServlet

NT:
<ORACLE_HOME>\j2ee\home\servlet\SessionServlet

Make the request once, and check which server becomes the primary server for
the session. Stop that server and make the request again. The desired result is
that the request is part of the same session as before but on a different node.
And, the counter is updated correctly.

How OC4J Island Works (in OC4J standalone mode)
For all of the islands, there is a single load balancer OC4J instance that dispatches
requests to the application clones.

■ If a new request is made from an IP address that has not connected to the site
before, and has no session associated with it, it is sent to a random OC4J
instance. If more than one island in the cluster is capable of serving the same
site, an island is chosen at random. Thereafter, a random node is picked within
the selected island.

■ All state replication occurs within the island of this selected node. If a request is
made from an IP address that has connected to to the website before, the
request will be sent to the same server as the previous request (unless the
configuration specifies that requests not be routed based on IP address).

■ By default, load balancing is based on client, not on request. In other words,
statistically speaking, default load balancing is expected to send off an equal
number of clients to each node in the island. Note that an equal number of
clients to nodes in the island does not equate to an equal number of requests to
the server, since each client makes a different number of requests.

■ To make load balancing request based, you can use the "dontuseIP" switch, a
powerful feature of OC4J islands.

■ If a request is made within a keep-alive socket, the request will get sent to the
same server as the previous request, unless you have specified that keep-alives

Overview of the Java Servlet API

Migrating Servlets 3-21

should not be used (-dontUseKeepalives as command line option or
use-keepalives="false" in load-balancer.xml

■ If a request is made from a user in a session, the request is sent to the primary
server for that session. If the primary server for the session does not respond,
the request will be sent to another server in the same island. Since the state has
been replicated, the other server has the same user state.

Overview of the Java Servlet API

3-22 Oracle Application Server 10g Migrating From WebSphere

Migrating JSPs 4-1

4
Migrating JSPs

This chapter describes how to migrate JavaServer Pages (JSPs) from WebSphere to
Oracle Application Server OC4J. The JSP API, and the details of the WebSphere
extensions and different JSP engines it supports are discussed. The process of
migrating JSPs from WebSphere to Oracle Application Server is outlined at the end
of the chapter. The chapter is organized as follows:

■ Overview of JSP Pages

■ WebSphere Support for the JSP API

■ Migrating from WebSphere JSP 0.91

■ Migrating WebSphere Extensions to OC4J

Overview of JSP Pages
JavaServer Pages is a technology specified by Sun Microsystems as a method of
generating dynamic content from an application running on a web server. This
technology, which is closely coupled with Java servlet technology, allows you to
include Java code snippets and calls to external Java components within the HTML
code (or other markup code, such as XML) of your Web pages.

A JSP page is translated into a Java servlet before being executed (typically on
demand, but sometimes in advance). As a servlet, it processes HTTP requests and
generates responses. JSP technology offers a more convenient way to code the
servlet instead of embedding HTML tags in the servlets. Furthermore, JSP pages are
fully interoperable with servlets—that is, JSP pages can include output from a
servlet or forward output to a servlet, and servlets can include output from a JSP
page or forward to a JSP page.

Overview of JSP Pages

4-2 Oracle Application Server 10g Migrating From WebSphere

Parts of a JSP Page
A JSP page typically consists of the following:

■ Directives - imports and and interfaces

■ Declarations - class-wide variables and methods

■ Expressions - return value substitution

■ Scriptlets - inline Java code

Each is described below.

Directives
Directives are compile-time control tags. They allow you to customize how your JSP
pages are compiled to Java servlets. There are three types of directives:

Page A page directive is placed at the top of a JSP page. Its attributes apply to the
entire page.

Example:

<%@ page language="java" import="com.mycom.*" buffer="16k" %>

Taglib A taglib directive extends the set of tags recognized by the JSP processor. It
requires two attributes, uri and prefix.

Example:

<%@ taglib uri="tag-lib-uri" prefix="tag-prefix" %>

The uri attribute contains the location of the tag library TLD (Tag Library
Descriptor) file.

The prefix attribute specifies the tag prefix you want to use for your custom tag.

Example:

<%@ taglib uri="/WEB-INF/tlds/myapp.tld" prefix="custom" %>

Include The include directive enables you to insert the content of another file into
the JSP page at compilation time. Its syntax is as follows:

<%@ include file="localOrAbsoluteURL" %>

Overview of JSP Pages

Migrating JSPs 4-3

During compilation the content of the file specified in the file attribute will be
added to the current JSP page.

What is a JSP container?
A JSP container is software that stores the JSP files and servlets, converts JSP files
into servlets, compiles the servlets, and runs them (creating HTML). The exact
make-up of a JSP container varies from implementation to implementation, but it
will consist of a servlet or collection of servlets. The JSP container is executed by a
servlet container.

The JSP container creates and compiles a servlet from each JSP file. The container
produces two files for each JSP file:

■ A .java file, which contains the Java language code for the servlet

■ A .class file, which is the compiled servlet

The JSP container puts the .java and the .class file in a path specific to the
container. The .java and the .class file have the same filename. Each container
uses a naming convention for the generated .java and .class files. For example,
WebSphere generates files named _simple_xjsp.java and
_simple_xjsp.class from the JSP file simple.jsp.

Life Cycle of a JSP Page
1. The user requests the JSP page through a URL ending with a .jsp file name.

2. Upon noting the .jsp file name extension in the URL, the servlet container of
the Web server invokes the JSP container.

3. The JSP container locates the JSP page and translates it if this is the first time it
has been requested.

Translation includes producing servlet code in a .java file and then compiling
the .java file to produce a servlet .class file.

4. The servlet class generated by the JSP translator subclasses a class (provided by
the JSP container) that implements the javax.servlet.jsp.HttpJspPage
interface.

5. The servlet class is referred to as the page implementation class. This document
will refer to instances of page implementation classes as JSP page instances.

WebSphere Support for the JSP API

4-4 Oracle Application Server 10g Migrating From WebSphere

WebSphere Support for the JSP API
WebSphere Advanced Edition 3.5.3 supports JSP 0.91, JSP 1.0, and, in its latest
service pack, JSP 1.1. However, the support is not backward compatible.

WebSphere specifies two modes of operation for JSPs: Compatibility mode and
Compliance mode. In Compatibility mode, you can choose compatibility with JSP
1.0 or JSP 0.91. For example, if you choose compatibility mode with JSP 0.91 you
cannot use features of JSP 1.0 or JSP 1.1. In compliance mode, your applications are
compliant with JSP 1.1.

These modes of JSP are necessary because WebSphere provides a JSP processor for
each supported level of the JSP specification. Each of these JSP processors is a
servlet that can be added to a web application to handle all JSP requests specific to
the web application. The JSP processor used is dependent on the web application. If
a web application includes JSPs of version 1.0, WebSphere loads the JSP processors
for JSP 1.0. These is specified as a part of your web application.

WebSphere-Specific Features
WebSphere provides several JSP features which are available in WebSphere only.
These are:

Batch JSP Compiler
WebSphere provides a batch JSP compiler, enabling faster responses to requests for
the JSP files. The process of batch compilation is different for JSP 0.91 and JSP 1.0.

HTML Template Extensions in JSP 0.91
WebSphere has built-in extensions for JSPs called HTML templates for variable
data. These extensions are supported by the WebSphere JSP engine and are useful
for generating tabular data.These template extensions consist of three additional
tags:

Table 4–1 JSP Processors

JSP
Processor Processor Servlet Name Class Name

JSP 1.0 JSPServlet com.sun.jsp.runtime.JspServlet in jsp10.jar

JSP 0.91 PageCompileServlet com.ibm.servlet.jsp.http.pagecompile.
PageCompileServletinibmwebas.jar

WebSphere Support for the JSP API

Migrating JSPs 4-5

■ <INSERT> - This tag enables developers to insert a value based on a property
name and an object specifier. This object can be a bean name or reference to a
object in request object.

■ <REPEAT> - This tag enables developers to write a "for" loop in a JSP page, as a
HTML element, without embedding Java code. For example, a database query
resulting in a variable result set can be iterated using a <REPEAT> tag instead of
a embedded Java "for" loop. A <REPEAT> tag can contain a block of HTML
tagging that in turn contains the <INSERT> tags, and the HTML tags for
formatting content. The <REPEAT> tag iterates from the start value to the end
value until either the end value is reached or an
ArrayIndexOutofBoundsException is thrown. The output of a <REPEAT>
block is buffered until the block completes. If an exception is thrown before a
block completes, no output is written for that block.

■ <BEAN> - This tag enables the developer to reference a bean in the JSP.

JSP also has tags for database connect, query, and modify: <DBCONNECT>,
<DBQUERY> and <DBMODIFY>. The functionality of these tags has not changed in
JSP 1.0 other than being moved to a new tag library, tsx, with names
<tsx:dbconnect>, <tsx:dbquery>, and <tsx:dbmodify> respectively.

WebSphere Extensions to JSP 1.0
WebSphere Advanced Edition 3.5.3 provides several extensions to the base APIs.
The extensions are categorized as tags for variable data and tags for database
access.

Tags for variable data:

■ <tsx:repeat> - This tag is similar to the <REPEAT> tag described above,
useful in creating HTML tables.

■ <tsx:getProperty> - This tag is an extension of the Sun JSP tag
<jsp:getProperty>. It is similar to <jsp:getProperty>, and adds the
ability to introspect a database bean that was created using the extension
<tsx:dbquery> or <tsx:dbmodify>.

Tags for database access:

(These tags are useful for making database connections from a JSP and then use that
connection to query or update the database. The user ID and password for the
database connection can be provided by the user at request-time or hard coded
within the JSP file.)

WebSphere Support for the JSP API

4-6 Oracle Application Server 10g Migrating From WebSphere

■ <tsx:dbconnect> - This tag enables the JSP page to make a database
connection to through JDBC. dbconnect tags are not used directly to establish a
database connection. Instead, the <tsx:dbquery> and <tsx:dbmodify> tags
are used to reference a <tsx:dbconnect> in the same JSP file and establish
the connection to the database. Note that this is different from what is done at
the application server level, where you setup a set of datasources.

■ <tsx:userid> and <tsx:passwd> - These tags enable the JSP page to accept
user input for the values and then add that data to the request object. The
request object can be accessed by a JSP file, for example, Account.jsp, that
requests the database connection.These two tags should be used in within a
<tsx:dbconnect> tag.

■ <tsx:dbquery> - This tag is used to establish a connection to a database using
information specified in the <tsx:dbconnect> tag in the same JSP file, and
query the database and return the result set. This caches the result set in a
results object. At the end of the operation it closes the connection.

■ <tsx:dbmodify>: <tsx:dbconnect> - This tag is used to open a new
connection to a database and then update the database tables. This tag is also
similar to <tsx:dbquery> in that it obtains database connnection information,
and at the end of the operation closes the connection.

OC4J JSP Features
Oracle Application Server provides one of the fastest JSP engines on the market.
Further, it also provides several value-added features and enhancements such as
support for globalization and SQLJ. If you are familiar with Oracle9iAS 1.0.2.2, the
first release of Oracle Application Server to include OC4J, there were two JSP
containers: a container developed by Oracle and formerly known as OracleJSP and
a container licensed from Ironflare AB and formerly known as the "Orion JSP
container".

In Oracle Application Server 10g, these have been integrated into a single JSP
container, referred to as the "OC4J JSP container". This new container offers the best
features of both previous versions, runs efficiently as a servlet in the OC4J servlet
container, and is well integrated with other OC4J containers. The integrated
container primarily consists of the OracleJSP translator and the Orion container
runtime running with a new simplified dispatcher and the OC4J 1.0.2.2 core
runtime classes. The result is one of the fastest JSP engines on the market with
additional functionality over the standard JSP specifications.

OC4J JSP provides extended functionality through custom tag libraries and custom
JavaBeans and classes that are generally portable to other JSP environments:

WebSphere Support for the JSP API

Migrating JSPs 4-7

■ Extended types implemented as JavaBeans that can have a specified scope

■ JspScopeListener for event handling

■ Integration with XML and XSL through custom tags

■ Data-access JavaBeans

■ The Oracle JSP Markup Language (JML) custom tag library, which reduces the
level of Java proficiency required for JSP development

■ OC4J JSP includes connection pooling tags, XML tags, EJB tags, file access tags,
email tags, caching tags, OracleAS Personalization tags, OracleAS Ultrasearch
tags, and a custom tag library for SQL functionality.

■ JESI (Edge Side Includes for Java) tags and Web Object Cache tags and API that
work with content delivery network edge servers to provide an intelligent
caching solution for web content (see the following sub-sections).

The OC4J JSP container also offers several important features such as the ability to
switch modes for automatic page recompilation and class reloading, JSP instance
pooling, and tag handler instance pooling.

Edge Side Includes for Java (JESI) Tags
OC4J provides fine-grained control allowing developers to cache fragments of JSP
pages down to each individual tag - these can be cached in OracleAS Web Cache
and are automatically invalidated and refreshed when a JSP changes. The
technology behind this is Edge Side Includes (ESI), a W3C standard XML
schema/markup language that allows dynamic content to be cached in a Web
Cache or to be assembled in an edge network. By caching this dynamic content, it
reduces the need to execute JSPs or Servlets, thereby improving performance, off
loading the application servers, and reducing latency. JESI (JSP to ESI) tags are
layered on top of an Edge Side Includes (ESI) framework to provide ESI caching
functionality in a JSP application. JESI tags enable the user to break down dynamic
content of JSP pages into cacheable components or fragments.

Web Object Cache Tags
The Web Object Cache is an Oracle Application Server feature that allows Web
applications written in Java to capture, store, reuse, post-process, and maintain the

See Also: Oracle Application Server Containers for J2EE JSP Tag
Libraries and Utilities Reference for detailed information on custom
JSP tag libraries.

Migrating from WebSphere JSP 0.91

4-8 Oracle Application Server 10g Migrating From WebSphere

partial and intermediate results generated by JSPs or Servlets. For programming
interfaces, it provides a tag library (for use in JSP pages) and a Java API (for use in
Servlets). Cached objects might consist of HTML or XML fragments, XML DOM
objects, or Java serializable objects. By caching these objects in memory, various
operations can be carried out on the cached objects including:

■ Applying a different XSLT based on user profile or device characteristics on the
stored XML

■ Re-using a cached object outside HTTP, such as SMTP to send e-mail to clients.

Oracle JDeveloper and OC4J JSP Container
Oracle JDeveloper is integrated with the OC4J JSP container to support the full JSP
application development cycle - editing, source-level debugging, and running JSP
pages. It also provides an extensive set of data-enabled and web-enabled JavaBeans,
known as JDeveloper web beans and a JSP element wizard which offers a
convenient way to add predefined web beans to a page. JDeveloper also provides a
distinct feature that is very popular with developers. It allows you to set
breakpoints within JSP page source and can follow calls from JSP pages into
JavaBeans. This is much more convenient than manual debugging techniques, such
as adding print statements within the JSP page to output state into the response
stream for display on browser or to the server log.

Migrating from WebSphere JSP 0.91
This section explains how to migrate WebSphere JSP 0.91 files to OC4J.

The <REPEATGROUP> Tag
1. If you are migrating JSP 0.91 files that contain <REPEATGROUP> tags, you must

change these tags. This tag is used for repeating a block of HTML, for data that
is already logically grouped in the database.

2. Replace the <SERVLET> tag with the <jsp:include> tag.

For example, change the following:

<SERVLET CODE="com.samples.test.TestServlet"></SERVLET>

to

<jsp:include page="/servlet/com.samples.test.TestServlet" />

3. Replace the WebSphere <BEAN> tag with the <jsp:useBean> tag.

Migrating from WebSphere JSP 0.91

Migrating JSPs 4-9

The example below shows the <BEAN> tag migrated to the JSP standard tag:

<BEAN NAME="AccountDBBean"
TYPE="com.test.AccountDBBean"
CREATE="YES"
INTROSPECT="YES"
SCOPE="request">
<PARAM NAME="userID" VALUE="wsdemo">
</BEAN>

Migrating to OC4J, the above is replaced by:

<jsp:useBean
id="AccountDBBean"
type="com.test.AccountDBBean"
class="com.test.AccountDBBea"
scope="request"/>

<jsp:setProperty
name="AccountDBBean"
property="userID"
value="wasdemo" />

■ Note that the explicit attribute of CREATE="YES" is removed. This is
because, if the bean with the name specified by the id attribute is not found
within the specified scope, then an instance of bean will be created
according to the class attribute. The JSP NAME attribute corresponds to the
JSP 1.0 id attribute. It is no longer an INTROSPECT attribute. (The JSP 0.91
scope of requests and sessions carries over to JSP 1.0.)

■ The class attribute is not necessary if the bean already exists within the
specified scope . But if the class attribute is not specified and the bean is
not in the specified scope an error will occur when creating a new instance
of the bean.

4. Set the bean properties.

In JSP 0.91, the <PARAM> tag is used within the <BEAN> tag to specify
properties for the bean. In JSP 1.0, you must use the <jsp:setProperty> tag
outside of the <jsp:useBean> tag. You can link to the property settings of an
existing bean using the name attribute within <jsp:setProperty> and
specifying the bean identified by the id attribute in <jsp:useBean>. A similar
way to obtain bean property values can be achieved using the tag
<jsp:getProperty>.

Migrating WebSphere Extensions to OC4J

4-10 Oracle Application Server 10g Migrating From WebSphere

Migrating WebSphere Extensions to OC4J
There are two ways to migrate JSPs that use any WebSphere-specific custom tags
defined in the tsx tag library to OC4J.

■ If there are many pages, and it is tedious to modify all the JSP files, you can use
the WebSphere tag library and deploy it on on OC4J.

■ Edit the JSP source files, using the OCJ JSP tag library wherever possible.

Following are code examples showing how to migrate WebSphere JSP extensions to
OC4J using the Oracle JSP Markup Language (JML) tag library.

<REPEAT> or <tsx:repeat> tag:
These tags are provided by WebSphere for looping over a HTML block a specified
number of times, as an altenative to writing a Java "for" loop within a JSP page. The
Oracle JML tag library has a <jml:for> tag with the same functionality. The
syntax for this tag is:

<jml:for id = " loopVariable"
from = "<%= jspExpression %>"
to = "<%= jspExpression %>" >
... body of for tag (executed once at each value of range, inclusive)...

</jml:for>

which is similar to the WebSphere tsx:repeat:

<tsx:repeat index=name start=start_index end=end_index >
</tsx:repeat>

The differences are:

■ The id variable in the <jml:for> tag holds the current value in the range and
is local in scope to the tag, whereas the index variable is global in scope to the
JSP page.

■ from and to in <jml:for> are mandatory in OC4J JSP. In WebSphere, start
and end are optional.

Migrating WebSphere Extensions to OC4J

Migrating JSPs 4-11

See Also:

Oracle Application Server Containers for J2EE Support for JavaServer
Pages Developer’s Guide

Oracle Application Server Containers for J2EE JSP Tag Libraries and
Utilities Reference

Migrating WebSphere Extensions to OC4J

4-12 Oracle Application Server 10g Migrating From WebSphere

Migrating Enterprise Java Beans 5-1

5
Migrating Enterprise Java Beans

This chapter provides you with an overview of Sun Microsystems’ Enterprise
JavaBeans (EJB) architecture and its implementation in Oracle Application Server.
In addition, the issues involved in migrating EJB components from WebSphere
Advanced Edition 3.5.3 to Oracle Application Server are presented.

This chapter contains these topics:

■ Overview of Enterprise JavaBeans

■ EJB Migration Considerations

■ EJB Functionality and Components

■ WebSphere 3.5.x Support for the EJB API

■ Migrating EJB Applications from WebSphere to OC4J

Overview of Enterprise JavaBeans
Enterprise JavaBeans (EJB) is the standard server-side component architecture for
developing and deploying object-oriented Java applications. It enables developers
to quickly and easily build distributed applications.

A major goal of the EJB architecture is to provide component portability at both the
source code level and the binary code level.

EJB components, called enterprise beans, are server-side components, written in
Java, that typically contain the business logic of an application. The different types
of enterprise beans are summarized in Table 5–1.

EJB Migration Considerations

5-2 Oracle Application Server 10g Migrating From WebSphere

Although the EJB architecture does provide for component portability, certain
implementation-specific aspects of an EJB component remain non-portable. These
include:

■ Deployment of enterprise beans

■ Runtime support for deployed enterprise beans

■ Container-managed persistence of entity beans

EJB Migration Considerations
One of the goals of the EJB initiative is to deliver component portability between
different environments not only at source-code level, but also at a binary level, to
ensure portability of compiled, packaged components. While it is true that EJB does
offer an appreciable deal of portability, there are still a number of non-portable,
implementation-specific aspects that need to be addressed when migrating
components from one application server to another. Typically, an EJB component
requires low-level interfaces with the container in the form of stubs and skeleton
classes that will probably always need to be container implementation-specific. In
effect, a clear partitioning between portable and non-portable elements of an EJB
component can be drawn from the EJB 1.1 specification:

■ Portable EJB elements include:

■ The actual component implementation classes and interfaces (bean class,
and remote, and home interfaces).

■ The assembly and deployment descriptor that describes generic component
properties such as JNDI names and transactional attributes.

■ Security attributes

■ Implementation-specific elements include:

Table 5–1 Types of EJBs

Type of Enterprise Bean Description

Session bean A component created to provide a service on behalf of a
single client; it lives only for the duration of a single
client/server session.

Entity bean A component representing data maintained in a data store; it
can persist as long as the data it represents.

EJB Functionality and Components

Migrating Enterprise Java Beans 5-3

■ Low-level helper implementation classes (stubs and skeletons) to interface
with the host container.

■ Object-relational mapping definitions for CMP entity beans, including
search logic for custom finder methods that are declared in an
implementation-specific format proprietary to each application server.

■ Every component has a set of properties that require systematic
configuration at deployment time. For example, mapping of security roles
declared in an EJB component to actual users and groups is a task that is
systematically performed at deployment-time, first, because mappings may
not be known in advance, and secondly, because there are dependencies on
the structure and population of the user directory on the target deployment
server.

■ There are issues specific to migration from WebSphere to OC4J that arise
from different levels of EJB standards support, and WebSphere-specific
extensions to APIs. WebSphere Advanced Edition 3.5.3 supports the EJB 1.0
specification, OC4J supports EJB 2.0.

The following sections describe EJB specifications, session beans, and entity beans,
transactions and concurrency, the WebSphere support for these APIs and
WebSphere extensions, the difference between OC4J and WebSphere in the EJB
containers and finally the migration path to OC4J.

EJB Functionality and Components
In brief, the goal of EJB technology surpasses the basic Java object model by
integrating new functionality important for enterprise systems:

■ Automatic management of object life cycle (instantiation, destruction, and
activation)

■ Object security: who can use which object and how

■ Object persistence: how objects are stored on a long-term basis

■ Transaction behavior of the objects

■ Distribution: how can remote applications access objects

■ Scalability: by implementing various technologies

From a developer’s point of view, an EJB is presented as a group of files that brings
together:

■ Java classes

EJB Functionality and Components

5-4 Oracle Application Server 10g Migrating From WebSphere

■ Java interfaces,

■ Deployment information,

■ Metadata

The EJB Server
EJB servers manage low-level system resources, allocating resources to the
containers as they are needed. The EJB Server hosts and provides a runtime
environment for the EJB containers. Containers are transparent to the client—there
is no client API to manipulate the container, and there is no way for a client to tell in
which container an enterprise bean is deployed. However, the EJB container and the
EJB servers are not clearly separated constructs. The EJB specification only defines a
bean-container contract and does not define a container-server contract.

EJB container
The EJB container is a specialized service in which enterprise beans are deployed.
EJB containers insulate the deployed enterprise beans from the underlying EJB
server and provide a standard application programming interface (API) between
the beans and the container. This specialized service manages their life cycle,
transactions, security, naming, persistence, and so on, according to a specific
contract and constrained model delineated by the EJB specification. To do this, the
container uses the generic services provided by the server.

EJB Specification Roles
The Enterprise JavaBeans specification identifies the following roles that are
associated with a specific task in the development of distributed applications.

Enterprise Bean Provider
Typically an expert in the application domain; for example, in the financial or
telecommunications industry. The bean provider implements the business task
without being concerned about the distribution, transaction, security, and
other non-business aspects of the application.

Application Assembler
This is also a domain expert. The application assembler composes an application
from various prefabricated building blocks (that is, enterprise beans) and adds
other components such as GUI clients, applets, and servlets to complete the

EJB Functionality and Components

Migrating Enterprise Java Beans 5-5

application. While composing an application, an assembler is only concerned with
the interfaces to enterprise beans, but not with their implementation.

Deployer
The deployer is specialized in the installation of applications. The deployer adapts
an application, composed of a number of enterprise beans, to a target operation
environment by modifying the properties of the enterprise beans. The deployer’s
tasks include, for example, the setting of transaction and security policies,
specifying JNDI names by setting the appropriate properties in the deployment
descriptor, and integration with enterprise management software.

EJB Server Provider
Typically a vendor with expertise in distributed infrastructures and services. The
server provider implements a platform, which facilitates the development of
distributed applications and provides a runtime environment for them. This role
can also provide specialized containers that wrap a certain class of legacy
applications or systems.

EJB Container Provider
An expert in distributed systems, transactions, and security. A container is a
runtime system for one or multiple enterprise beans. It provides the glue between
enterprise beans and the EJB server. A container can be both, prefabricated
code as well as a tool that generates code specific for a particular enterprise bean. A
container also provides tools for the deployment of an enterprise bean and hooks
into the application for monitoring and management.

System Administrator
The system administrator is concerned with a deployed application. The
administrator monitors the running application and takes appropriate action in the
case of abnormal behavior of the application. The administrator ensures that the
hardware and network hosting the application is maintained and serviceable for the
duration of the application’s availibility. Typically, an administrator uses enterprise
management tools that are connected to the application by the deployer through the
hooks provided by the container.

Session Beans
A session bean is an object that executes on behalf of a single client. The container
creates the session bean instance in response to a remote task request from a client.

EJB Functionality and Components

5-6 Oracle Application Server 10g Migrating From WebSphere

A session bean has one client; in a sense, a session bean represents its client in the
EJB server. Session beans can also be transaction-aware--they can update shared
data in an underlying database but they do not directly represent the shared
database data. The life of a session bean is transient and relatively short-lived.
Typically, the session bean lives for as long as its client maintains the session
"conversation." When the client terminates, the session bean is no longer associated
to that client. A session bean is considered transient because the session bean
instance is removed should the container crash, and the client must reestablish a
new session object to continue.

There are two types of session beans: Stateful Session Beans (SFSB) and Stateless
Session Beans (SLSB). Both of these beans must implement
javax.ejb.SessionBean. However their life cycles are different within a EJB
container.

Stateful Session Beans
A session bean typically maintains the state of the interaction or conversation with
its client--that is, the session bean holds information about the client across method
invocations and for the duration of the client session. A session bean that maintains
its state is called a stateful session bean. When the client ends its interaction with
the session bean, the session ends and the bean no longer maintains the state values.

The Life Cycle of Stateful Session Beans

A session bean's life cycle begins when a client invokes a create() method
defined in the bean's home interface. In response to this method invocation, the
container does the following:

1. Creates a new memory object for the session bean instance.

2. Invokes the session bean's setSessionContext() method. This method
passes the session bean instance a reference to a session context interface that
can be used by the instance to obtain container services and get information
about the caller of a client-invoked method.

3. Invokes the session bean's ejbCreate() method corresponding to the
create() method called by the EJB client.

Ready State

After a session bean instance is created, it moves to the ready state of its lifecycle. In
this state, EJB clients can invoke the bean's business methods defined in the remote
interface. The actions of the container in this state are determined by whether a
method is invoked transactionally or non-transactionally:

EJB Functionality and Components

Migrating Enterprise Java Beans 5-7

Transactional Method Invocations

When a client invokes a transactional business method, the session bean instance is
associated with a transaction. After a bean instance is associated with a transaction,
it remains associated until that transaction completes. Furthermore, an error results
if an EJB client attempts to invoke another method on the same bean instance and
invoking that method causes the container to associate the bean instance with
another transaction or with no transaction. The container then invokes the
following methods:

1. The afterBegin() method if the session bean implements the
SessionSynchronization interface.

2. The business method in the bean class that corresponds to the business method
defined in the bean's remote interface and called by the EJB client.

3. The bean instance's beforeCompletion() method, if the session bean
implements the SessionSynchronization interface.

The transaction service then attempts to commit the transaction, resulting either in a
commit or a roll back. When the transaction completes, the container invokes the
bean's afterCompletion() method (if the bean implements the
SessionSynchronization interface), passing the completion status of the
transaction (either commit or rollback) to the afterCompletion() method.

If a rollback occurs, a stateful session bean can roll back its conversational state to
the values contained in the bean instance prior to beginning the transaction.
Stateless session beans do not maintain a conversational state, so they do not need
to be concerned about rollbacks.

Non-transactional Method Invocations

When a client invokes a nontransactional business method, the container simply
invokes the corresponding method in the bean class.

Pooled State

The container has a sophisticated algorithm for managing which enterprise bean
instances are retained in memory. When a container determines that a stateful
session bean instance is no longer required in memory, it invokes the bean
instance's ejbPassivate() method and moves the bean instance into a reserve
pool. A stateful session bean instance cannot be passivated (deactivated) when it is
associated with a transaction.

If a client invokes a method on a passivated instance of a stateful session bean, the
container activates the instance by restoring the instance's state and then invoking

EJB Functionality and Components

5-8 Oracle Application Server 10g Migrating From WebSphere

the bean instance's ejbActivate() method. When this method returns, the bean
instance is again in the ready state.

Because every stateless session bean instance of a particular type is the same as
every other instance of that type, stateless session bean instances are not passivated
or activated. These instances exist in a ready state at all times until their removal.

Removal

The lifecycle of a stateful session bean ends when an enterprise bean client or the
container calls a remove() method defined in the bean's home interface or remote
interface. In response to this method invocation, the container calls the bean
instance's ejbRemove() method. The container can end stateless session beans by
this method, or it can pool them for later use.

A container can implicitly call a remove method on an instance after the lifetime of
the EJB object has expired. The lifetime of a session EJB object is set in the
deployment descriptor with the timeout attribute.

Stateless Session Beans
A session bean may also be a stateless session bean. A stateless session bean does
not maintain information or state for its client. A client may invoke a method of a
stateless session bean to accomplish some objective, but the bean will hold values in
its instance variables only for the duration of the method call. The stateless session
bean does not retain these values (or state) when the method completes. Thus, all
instances of stateless session beans are identical except when they are in the midst
of a method invocation. As a result, stateless session beans can support multiple
clients. The container can maintain a pool of stateless bean instances, and it can
assign any instance to any client.

The Life Cycle of a Stateless Session Bean

The stateless session bean’s life cycle has two states:

■ The does-not-exist state.

■ The method-ready pool state.

When a bean instance is in the does-not-exist state, this means that it has not yet
been instantiated. When a bean instance is instantiated by the container and is
ready to serve client requests, it is in the method-ready pool state. The container
moves a stateless session bean from the does-not-exist state to the method-ready
pool state by performing the following three operations:

1. Invoke the Class.newInstance() method on the stateless bean class.

EJB Functionality and Components

Migrating Enterprise Java Beans 5-9

2. Invoke the
SessionBean.setSessionContext(SessionContext context)
method on the bean instance.

3. ejbCreate() method is invoked on the bean instance.

Entity Beans
An entity bean represents an object view of persistent data maintained in a domain
model, as well as methods that act on that data. To be more specific, an entity bean
maps to a record in your domain model. In a relational database context, one bean
exists for each row in a table. A primary key identifies each entity bean. Entity
beans are created by using an object factory create() method. Access to entity
beans may be shared by more than one client--multiple clients can simultaneously
access an entity bean. Entities access and update the underlying data within the
context of a transaction so that data integrity is maintained. Entity beans are also
implicitly persistent as an EJB object can manage its own persistence or delegate its
persistence to its container. Based on the type of persistence in entity beans are
divided into two types:

Container-managed Persistence (CMP) Entity Beans
Container Managed Persistence (CMP) allows developers to build EJB components
without having to directly deal with persistence during development. For CMP
Entity Beans, the EJB container is responsible for persisting the state of the entity
beans and synchronization of instance fields within the persistence store (the
database). This means that the container would, for example, manage both
generating and executing SQL code to read and write to the database. Because it is
container-managed, the implementation is independent of the data source. All
container-managed fields need to be specified in the deployment descriptor for the
persistence to be automatically handled by the container. CMP Entity Beans are
wrappers for persistent data—commonly in the form of relational database
tables—with additional support for transaction control and security.

Bean-managed Persistence (BMP) Entity Beans
For BMP Entity Beans, the entity bean is directly responsible for persisting its own
state and the container does not need to generate any database calls. Each BMP EJB
is responsible for storing and retrieving its own state from a backing store in
response to specific "hook" messages (like ejbLoad() and ejbStore()) that are
sent to it at appropriate times during its lifecycle. Consequently, this

EJB Functionality and Components

5-10 Oracle Application Server 10g Migrating From WebSphere

implementation is less adaptable than the previous one as the persistence needs to
be hard-coded into the bean.

The Entity Beans Life Cycle
An entity bean is considered to be long-lived and its state is persistent. It lives as
long as the data remains in the database, rather than for the life of the application or
server process. An entity bean survives the crash of the EJB container. Once an
enterprise bean is deployed into a container, clients can create and use instances of
that bean as required. Within the container, instances of an enterprise bean go
through a defined life cycle. The events in an enterprise bean’s life cycle are derived
from actions initiated by either the client or the container. The life cycle of entity
beans has three states:

Does-not-exist State

At this stage, no instances of the bean exist. An entity bean instance’s life cycle
begins when the container creates that instance. After creating a new entity bean
instance, the container invokes the instance’s setEntityContext() method. This
method passes to the bean instance a reference to an entity context interface that can
be used by the instance to obtain container services and to retrieve information
about the caller of the client-invoked method.

Pooled State

Once an entity bean instance is created, it is placed in a pool of available instances
of the specified entity bean class. While the instance is in this pool, it is not
associated with a specific EJBObject. Every instance of the same enterprise bean
class in this pool is identical. While an instance is in this pooled state, the container
can use it to invoke any of the bean’s finder methods.

Ready State

When a client needs to work with a specific entity bean instance, the container picks
an instance from the pool and associates it with the EJBObject initialized by the
client. An entity bean instance is moved from the pooled to the ready state if there
are no available instances in the ready state.

There are two events that cause an entity bean instance to be moved from the
pooled state to the ready state:

■ When a client invokes the create() method in the bean’s home interface to
create a new and unique entity of the entity bean class (and a new record in the
data source). As a result of this method invocation, the container calls the bean

EJB Functionality and Components

Migrating Enterprise Java Beans 5-11

instance’s ejbCreate() and ejbPostCreate() methods. The new
EJBObject is associated with the bean instance.

■ When a client invokes a finder method to manipulate an existing instance of the
entity bean class (associated with an existing record in the data source). In this
case, the container calls the bean instance’s ejbActivate() method to
associate the bean instance with the existing EJBObject.

When an enterprise bean instance is in the ready state, the container can invoke the
instance’s ejbLoad() and ejbStore() methods to synchronize the data in the
instance with the corresponding data in the data source. In addition, the client can
invoke the bean instance’s business methods when the instance is in this state. All
interactions required to handle an entity bean instance’s business methods in the
appropriate transactional (or non-transactional) manner are handled by the
container, unless the EJB developer wrote the bean to handle these interactions
itself. When a container determines that an entity bean instance in the ready state is
no longer required, it moves the instance to the pooled state. This transition to the
pooled state results from either of the following events:

■ When the container invokes the ejbPassivate() method.

■ When the client invokes a remove() method on the EJBObject associated
with the bean instance or on the EJB home object. When the remove() method
is called, the underlying entity is removed permanently from the data source.

The state that an entity bean represents is shared and transactional. In contrast, if a
session bean has state, it must be private and conversational.

Object-relational (O-R) Mapping and Persistence
The problem of persistence is complex, and many research projects are being carried
out on this subject. One of the important points to remember is that at runtime,
objects (as it happens, EJBs) are not isolated entities but referenced mutually.
Therefore, the problem of persistence does not concern isolated objects, but complex
object graphs. There are many questions to answer. How can an object graph in
memory be projected on a disk and vice versa? How can synchronization problems
between the graph on disk and the graph in memory be resolved? How do you go
about loading in memory only the parts of the graph being used at a given
moment? How can the graph be saved in a relational database (object-relational
mapping technologies)?

The EJB specification attempts to render container-managed persistence with a
clean separation between an entity bean and its persistent representation. That is, a
separation between the data logic methods (such as the logic in an entity bean to

EJB Functionality and Components

5-12 Oracle Application Server 10g Migrating From WebSphere

add two fields together) and JDBC. The reason this separation is valuable is that the
persistent representation of an entity bean (such as changing from a relational
database to an object database) can be modified without affecting the entity bean
logic.

To achieve this clean separation, container-managed persistent entity bean classes
must be written to be devoid of any JDBC or other persistence logic. The container
then generates the JDBC by subclassing your entity bean class. The generated
subclass inherits from your entity bean class. Thus, all container-managed
persistent entity beans are each broken up into two classes: the superclass (which
the user writes, and contains the entity bean data logic) and the subclass (which the
container generates, and contains the persistence logic). With these two classes, a
clean separation of entity bean logic and persistent representation is achieved. The
actual entity bean is a combination of the superclass and the subclass.

EJB Transactions and Concurrency
A transaction is a set of statements that must be processed as a single unit.
Transactions must have four properties recalled with the acronym ACID: Atomicity,
Consistency, Isolation and Durability.

■ Atomicity is "all or nothing" operation wherein, for example, a transaction
consisting of a debit to one account and a credit to another is not committed
unless both operations are successful. Typically, atomicity is provided by the
database management system.

■ Consistency reflects the state of the system. A system is always consistent based
upon the state invariants and transactions give the opportunity to write code
that checks the consistency of the state.

■ Isolation keeps operations on shared data invisible across transactions.

■ Durability guarantees the effect of completed transaction are permanent and are
not lost.

The EJB specification describes the creation of applications that enforce
transactional consistency on the data manipulated by the enterprise beans.
However, unlike other specifications that support distributed transactions, the EJB
specification does not require enterprise bean and EJB client developers to write any
special code to use transactions. Instead, the container manages transactions based
on two deployment descriptor attributes associated with the EJB module and the
enterprise bean. EJB application developers are freed to deal with the business logic
of their applications.

EJB Functionality and Components

Migrating Enterprise Java Beans 5-13

A J2EE 1.3 compliant EJB container should support flat transactions, the most
common kind of transctions. A flat transaction cannot have any child (nested)
transactions. These are the only transaction types supported by EJBs.

The Java Transaction API(JTA)
The JTA APIs specifies start and end transactions.

interface javax.transaction.UserTransaction
{

public abstract void begin();
public abstract void commit();
public abstract void rollback();
public abstract void setRollbackOnly();
public abstract int getStatus();
public abstract void setTransactionTimeout(int);

}

interface javax.transaction.Status
{

public static final int STATUS_ACTIVE;
public static final int STATUS_MARKED_ROLLBACK;
public static final int STATUS_PREPARED;
public static final int STATUS_COMMITTED;
public static final int STATUS_ROLLEDBACK;
public static final int STATUS_UNKNOWN;
public static final int STATUS_NO_TRANSACTION;
public static final int STATUS_PREPARING;
public static final int STATUS_COMMITTING;
public static final int STATUS_ROLLING_BACK;

}

The JTA UserTransaction interface is actually an interface to the application
server’s transaction manager. It is the public API exposed by the transaction
manager. To get a reference to this, you must look up the interface via JNDI, just like
you use JNDI to lookup EJB homes, JDBC drivers, etc. The application server must
publish the JTA under "java:comp/UserTransaction".

Context ctx = new InitialContext(...);
javax.transaction.UserTransaction userTran =

(javax.transaction.UserTransaction) PortableRemoteObject.narrow(
ctx.lookup(“javax.transaction.UserTransaction”),
javax.transaction.UserTransaction.class);

EJB Functionality and Components

5-14 Oracle Application Server 10g Migrating From WebSphere

Transaction Boundaries
Transaction boundaries mark the beginning and end of transactions. The
application developer chooses the boundaries. The J2EE specification mentions
three ways of controlling transactional boundaries: programmatically inside bean
code (bean-managed transactions), programmatically from client code
(client-managed transactions), and declaratively inside deployment descriptors
(container-managed transactions).

Client-Managed Transactions
A Java client can use the javax.transaction.UserTransaction interface to
explicitly demarcate transaction boundaries. The client program obtains the
javax.transaction.UserTransaction interface using the JNDI API.The EJB
specification does not imply that the javax.transaction.UserTransaction is
available to all Java clients. The J2EE specification specifies the client environments
in which the javax.transaction.UserTransaction interface is available.

Container-Managed Transactions (CMT)
Whenever a client invokes an enterprise bean, the container interposes on the
method invocation. The interposition allows the container to control transaction
demarcation declaratively through the transaction attributes set in the deployment
descriptor.

For example, if an enterprise bean method is configured with the "Required"
transaction attribute, the container behaves as follows: if the client request is not
associated with a transaction context, the container automatically initiates a
transaction whenever a client invokes an enterprise bean method that requires a
transaction context. If the client request contains a transaction context, the container
includes the enterprise bean method in the client transaction.

An entity bean must always be designed with container-managed transaction
demarcation. For entity beans using container-managed persistence, transaction
isolation is managed by the data access classes that are generated by the container
provider’s tools. The tools must ensure that the management of the isolation levels
performed by the data access classes will not result in conflicting isolation level
requests for a resource manager within a transaction.

Bean Managed Transactions (BMT)
The enterprise bean with bean-managed transaction demarcation must be a session
bean. An instance that starts a transaction must complete the transaction before it
starts another new transaction. A session bean can use the EJBContext and the

EJB Functionality and Components

Migrating Enterprise Java Beans 5-15

javax.transaction.UserTransaction object to programmatically demarcate
transactions. For session beans with bean-managed transaction demarcation, the
bean code can specify the desirable isolation level programmatically in the
enterprise bean’s methods using the resource manager specific API. For example,
the bean provider can use the
java.sql.Connection.setTransactionIsolation(...) method to set the
appropriate isolation level for database access.

For transactions, a session bean can either use container-managed transactions or
bean-managed transactions. Entity beans must use container-managed transactions.
Whether an enterprise bean uses bean-managed or container-managed transaction
demarcation, the burden of implementing transaction management is on the EJB
container and server provider.

Transaction Isolation and Concurrency
The transaction isolation attribute tells the container how to limit concurrent reads
in a database. The EJB 1.1 specification removed the guidelines for managing
transaction isolation levels for beans with container-managed transaction
demarcation. But since bean deployers still require mechanisms to govern EJB
concurrency, WebSphere continues to support it along with other mechanisms
discussed in the next section.

Using CMP, different databases need different SQL statements while trying to
acquire a read/write lock at the "database" level as opposed to
optimistic/pessimistic concurrency or locking at the container/bean level. For
example, MS-SQL Server needs a "SELECT ... AT ISLOLATION SERIALIZABLE",
Oracle needs a "SELECT ... FOR UPDATE" as a method of acquiring 'locks' or in
other words at a transaction isolation level 'Serializable' to prevent
dirty/unrepeatable/phantom reads. Hence, it is difficult to use generic SQL clauses
in conjunction with transactions and locks at the database level without resorting to
vendor-specific clauses.

The need is for a simple time stamp/versioning mechanism in EJB 1.1 (even EJB 2.0
seems to imply that acquiring a read/write lock at the database level is up to the
EJB vendor, which vendors may or may not provide). All that the time stamp and
versioning do is compare versions when the client sends data over for modification.
The reading could have been done by different clients in different transactions.
Hence, if another client tries to update the same data in the entity bean instance, the
version numbers will not match if the data has been updated by another client, and
an exception can be raised that effectively tells the client to 'refresh' the information,
i.e. get the data again to see what might have changed since the client first
requested it for modification. This is analogous to performing an "Update <table>

EJB Functionality and Components

5-16 Oracle Application Server 10g Migrating From WebSphere

set <fields> where <fields = fields_read_at_transaction_start>". The only difference
is that the above technique works across transactions, i.e. it prevents a client from
overwriting committed changes made by another client.

Session beans that use bean-managed transaction have transaction attributes
associated with each method of the bean. The attribute value tells the container how
it must manage the transactions that involve this bean. There are six different
transaction attributes that can be associated with each method of a bean. This
association is done at deployment time by the application assembler or deployer.

EJB supports distributed flat transactions. The distribution mechanism makes it
possible to involve bean objects on multiple EJB servers or to update data in
multiple databases in a single transaction. Every client method invocation on a bean
is supervised by the bean's container, which makes it possible to manage the
transactions according to the transaction attributes that are specified in the
corresponding bean's deployment descriptor.

A particular transaction attribute can be associated with an entire bean and apply to
all its methods or just to an individual method. The scope of a transaction is defined
by the transaction context that is shared by the participating bean objects.

EJB Caching
EJB containers allow smart caching of entity beans, which allow some operations to
occur in memory rather than at database level. Caching conserves system resources
used in making a database connection by eliminating database accesses to
unchanged data. There are three caching options available for the container in
committing a transaction:

Option A : The container caches a readily available instance between transactions,
which has explicit access to the state of the object in the persistent storage. That is,
each instance of the EJB will be held in memory. This option is supported by
WebSphere and OC4J but should only be used in a single node system. Neither
WebSphere nor OC4J enforce this restriction, hence, it is the bean deployer’s
responsibility to ensure that this restriction is satisfied. This means that the beans
using this option will only be used within a single container. It is thus the
responsibility of all clients of that bean to always direct their requests to the one
bean instance within that specific container.

Option B: The container caches the instance between transactions which does not
have access to the persistent object state. This option is not supported by
WebSphere nor OC4J.

WebSphere 3.5.x Support for the EJB API

Migrating Enterprise Java Beans 5-17

Option C: The container does not cache the instance between transactions. An
entity bean’s state is read once per transaction at the beginning of each transaction-
even if the value did not change from the last time it was read. The instance is
returned to the pool after the transaction is completed. This is the default option
supported by WebSphere and OC4J and should be used in multiple node
configurations.

WebSphere 3.5.x Support for the EJB API
WebSphere supports EJB 1.0 specification with some additional features. WebSphere
supports:

■ Container-managed persistence (CMP)

■ Uses javax.transaction.UserTransaction

■ Restricts bean-managed transactions to session beans (as required by EJB 1.1
specification)

WebSphere Advanced Edition 3.5.3 does not support these EJB 1.1 features:

■ XML deployment descriptors

■ Use of JNDI within EJB environment:

■ Lookup of home interfaces via EJB references and links defined in the EJB's
environment

■ The new HomeHandle class and the associated API changes to EJBHome

■ Use of the javax.security.Principal interface

WebSphere and VisualAge for Java extend the EJB specification with the following
features:

■ Access beans: Simplify client application using EJBs

■ Association: Support relationship between CMP beans

■ Inheritance: Support polymorphism and reuse

Read-only Methods
The EJB specification does not provide a standard mechanism to let the container
check if the bean's state has changed within a unit of work. The specification
assumes that all beans accessed during a transaction are "dirty," and must have their
state written back to the persistent store at the end of a transaction. WebSphere

WebSphere 3.5.x Support for the EJB API

5-18 Oracle Application Server 10g Migrating From WebSphere

provides an extension to the EJB specification with the const method flag in the
deployment descriptor of entity beans. It lets the developer tell the container which
methods are const or read-only—in other words, it doesn't change the state of the
bean. For these methods EJB container does not call ejbLoad at the end of the
method call.

EJB Finder-Helper Interface
WebSphere uses a concept called a “FinderHelper” to define the finder logic for
CMP entity beans.The following finder logic is required for each finder method
(other than the findByPrimaryKey method) contained in the home interface of an
entity bean with CMP:

■ The logic must be defined in a public interface named
<Name>BeanFinderHelper, where <Name> is the name of the enterprise bean
(for example, AccountBeanFinderHelper).

■ The logic must be contained in a String constant named
<findMethodName>QueryString, where <findMethodName> is the name
of the finder method. The String constant can contain zero or more question
marks (?) that are replaced from left to right with the value of the finder
method’s arguments when that method is invoked.

Example 5–1 Finder Helper Interface

Public interface AccountBeanFinderHelper
{
String findLargeAccountsQueryString ="select * from

ejb.accountbeantblwhere balance > ?";
}

This file contains one static java.lang.String field for each finder method
declared in the EJB home interface. The strings are initialized with SQL queries
executed dynamically when bean instances are retrieved in a finder method. Note
that this file is specific to the WebSphere application server.

CMP in WebSphere
The CMP model in WebSphere allows a set of entity EJBs to be read from a
relational database in the findXXX() method with only single SQL SELECT call.
This is much more efficient then BMP case, which requires N+1 SQL calls to
accomplish the same task.

WebSphere 3.5.x Support for the EJB API

Migrating Enterprise Java Beans 5-19

Transactions
WebSphere supports two-phase commits for distributed transactions for Oracle ,
DB2, and Sybase and MQ Series. Distributed transaction support is also provided
for Oracle and Microsoft SQL Server using the Merant drivers in addition to the
existing support for DB2 and Sybase. WebSphere 3.5.3 also supports distributed
transactions over EJBs and JMS.

WebSphere never passivates an active bean, i.e. a bean participating in a transaction.
WebSphere will throw a ROLLBACK exception back to the client.

WebSphere also makes the UserTransaction interface available to Java clients
including servlets, JSPs, and standalone programs.

EJB Inheritance
WebSphere provides EJB inheritance similar to Java class inheritance.This EJB
inheritance model is specific to the IBM EJB development environment. This is an
extension of the EJB specification. In EJB inheritance, an enterprise bean inherits
properties, such as CMP fields and association roles, methods, and method-level
control descriptor attributes from another enterprise bean that resides in the same
EJB group.

Distributed Exceptions
Support for chaining distributed exceptions is provided by the
com.ibm.websphere.exception Java package. The following classes and
interfaces make up this package

■ DistributedException

■ DistributedExceptionEnabled

■ DistributedExceptionInfo

■ ExceptionInstantiationException

Access Beans
An access bean adapts an enterprise bean to the JavaBeans programming model by
hiding the home and remote interfaces from the access bean user (that is, an EJB
client developer). This is specific to IBM WebSphere environment. These access
beans are packaged in com.ibm.ivj.ejb.access. There are three types of access
beans:

Migrating EJB Applications from WebSphere to OC4J

5-20 Oracle Application Server 10g Migrating From WebSphere

■ A Java bean wrapper

This facilitates either a session or entity bean to be used like a standard Java
bean. It hides the enterprise bean home and remote interfaces from you. Each
Java bean wrapper that you create extends the
com.ibm.ivj.ejb.access.AccessBean class.

■ Copy helper

A copy helper is similar to Java bean wrapper, but it also incorporates a single
copy helper object that contains a local copy of attributes from a remote entity
bean. A user program can retrieve the entity bean attributes from the local copy
helper object that resides in the access bean, which eliminates the need to access
the attributes from the remote entity bean.

■ Rowset

A rowset access bean has all of characteristics of both the Java bean wrapper
and copy helper access beans. However, instead of a single copy helper object, it
containsmultiplecopyhelperobjects.Eachcopyhelperobjectcorrespondstoa
single enterprise bean instance.

Associations Between Enterprise Beans
WebSphere supports one-to-one and one-to-many associations for CMP beans. The
generated code is specific to WebSphere and VisualAge for Java environment
specific.

In the EJB 1.1 specification, the application would have been required to throw an
EJBException, but this has not yet been implemented in WebSphere Advanced
Edition 3.5.3.

Migrating EJB Applications from WebSphere to OC4J
There are four aspects of an EJB that differ between WebSphere and OC4J:

■ EJB code - The actual bean code, which is mainly well defined in the EJB 1.0
specification and should be compatible across implementations, with some
minor exceptions which we will discuss.

■ EJB-Java archive (JAR) - The EJB-Java Archive (JAR) file, which is also defined
in the standard. This is designed to be a “binary” standard in the sense that
EJB-JARs developed to the EJB specification are meant to be deployable on any
EJB platform. The EJB-JAR file consists of the implementation and interface

Migrating EJB Applications from WebSphere to OC4J

Migrating Enterprise Java Beans 5-21

classes, a manifest and the serialized deployment descriptor .ser file in
WebSphere 3.5.

■ Client code - The client code is mainly defined and compatible between
implementations with some minor exceptions. The deployment process differs
between EJB implementations.

■ Deployment process - The deployment process takes EJB code, packages it as an
EJB-JAR file, creates support code (e.g. stubs and ties) so that it can be hosted in
a particular EJB container and installs it into the server. When the JAR file is
finally deployed, it has non-standard code in it. Note that different vendors
have varying views on exactly what the “deployment” process is.

The following features cannot be migrated to OC4J:

■ Access beans

■ Object-level Trace (OLT) package of WebSphere

■ XA-transactions across EJB, JMS, and MQ Series.

EJB Code Changes
In general, enterprise beans written to version 1.0 of the EJB specification are mostly
compatible with version 1.1. However, you need to modify or recompile enterprise
bean code in the following cases:

Changes specific to transaction API:

■ IBM-specific transaction packages

Any EJB application code still using the following IBM specific transaction
support packages for user transactions need to be migrated. This involves
finding the import statements in the EJB source files containing

import com.ibm.db2.jdbc.app.jta.javax.transaction.*

 and changing it to:

import javax.transaction.*

■ The bean uses the javax.jts.UserTransaction interface.

The package name of the javax.jts interface has changed to
javax.transaction, and there have been minor changes to the exceptions
thrown by the methods of this interface. An enterprise bean that uses the

Migrating EJB Applications from WebSphere to OC4J

5-22 Oracle Application Server 10g Migrating From WebSphere

javax.jts.UserTransaction interface needs to be modified to use the new
name javax.transaction.UserTransaction.

■ UserTransaction object lookup

The UserTransaction object is obtained differently for enterprise beans
written to version 1.1 of the EJB specification. Under WebSphere version 1.0, it
was obtained as:

initialContext.lookup("jta/UserTransaction")

 This should be changed to the following in OC4J:

initialContext.lookup("java:comp/UserTransaction")

■ The bean uses the getCallerIdentity() or isCallerInRole(Identity
identity) or getEnvironment() methods of the
javax.ejb.EJBContext interface.

These methods of EJBContext class were deprecated in EJB 1.1 because the
class java.security.Identity is deprecated in the Java 2 platform. While
OC4J still provides backward compatibility for implementation of these
methods, Oracle recommends moving to standard methods.

Table 5–2 Deprecated methods in EJB 1.1

Method Replace with Description

getCallerIdentity() Principal
getCallerPrincipal()

getCallerIdentity() is
deprecated in EJB 1.1. The
container is allowed to always
return null from this method.
The enterprise bean should
use the
getCallerPrincipal()
method instead.

getEnvironment() TheJNDInamingcontext
java:comp/env

If the enterprise bean has no
environment properties, this
method returns an empty
java.util.Properties
object. This method never
returns null.

CallerInRole(java.security.
Identityrole())

boolean
isCallerInRole(String

roleName)

Migrating EJB Applications from WebSphere to OC4J

Migrating Enterprise Java Beans 5-23

■ An entity bean with container-managed persistence needs to be recompiled

The return value of ejbCreate() is different in EJB 1.1 than in EJB 1.0. A CMP
bean written to the EJB 1.0 specification needs to be recompiled to work with
OC4J. The ejbCreate() method has different return values for BMP and CMP
entity beans in EJB 1.0 specification. BMP entity beans return the unique
identity of the bean, which is the primary key. The CMP Entity Bean returns
void.

The following code shows the different method signatures used for
container-managed and bean-managed ejbCreate() methods in an EJB 1.0.
CMP entity bean:

public class EmployeeCMP implements javax.ejb.EntityBean
{

public int Empid;
public void ejbCreate(int empID)
{

Empid= empID;
}
// more bean code follows
....

}

The code below shows a BMP entity bean, EJB 1.0:

public class EmployeeBMP implements javax.ejb.EntityBean
{

public int Empid;
public EmployeePK ejbCreate(int myID)
{

Empid= empID;
// do a database insert using JDBC
EmployeePK pk = new AccountPK(empID);
return pk;

}
// more bean code follows
...

}

The EJB 1.1 specification changes this so that both bean-managed and
container-managed entities have to return the primary key type from the
ejbCreate() methods. However, container-managed beans are required to
return null instead of a primary key object.

■ CMP EJB finder methods

Migrating EJB Applications from WebSphere to OC4J

5-24 Oracle Application Server 10g Migrating From WebSphere

The OC4J server puts finder queries in XML deployment descriptors using
proprietary query language formats, as compared to the WebSphere finder
helper classes. When deploying CMP entity beans you can ignore finder helper
classes and replace them by manually editing queries into the OC4J deployment
descriptor orion-ejb-jar.xml. For example, the following finder helper in
WebSphere EJB can be migrated to OC4J as follows:

In WebSphere:

public interface AccountBeanFinderHelper
{

String findLargeAccountsQueryString ="select * from ejb.accountbeantbl
where balance > ?";

}

To migrate this functionality to OC4J, change the generated
orion-ejb-jar.xml by modifying the <finder-method/> tag section
with:

public static final String findByOwner_query="full: select "+
"*"+"from from ejb.accountbeantbl"+ "where balance >$1";

Note that this query uses "full:" at the beginning to specify that this is the full
text of the query.

■ Read-only entity bean methods

As pointed out earlier, WebSphere provides an option in its Administration
Console to indicate to the EJB container that a particular method is read-only.
OC4J uses a runtime approach to provide the same feature. In order to migrate
EJBs containing read-only methods you must:

1. Define a method "public boolean isModified()" in the bean code.

2. Ensure that the method returns a boolean flag that is set each time the
bean is modified. This flag should be cleared in ejbStore().

If isModified() returns false, OC4J knows that it does not need to talk
to the database.

Client Level Code Changes
The following code changes are necessary:

■ Client managed transactions - The EJB programming model allows client
applications and enterprise beans to create transactions (through the

Migrating EJB Applications from WebSphere to OC4J

Migrating Enterprise Java Beans 5-25

javax.jts.UserTransaction interface) to bound related method
invocations into a single atomic unit of work. The EJB specification does not,
however, define how a client application can create a transaction; it does not
specify how to obtain a reference to the javax.jts.UserTransaction
interface in a client application. In the absence of this specification, the
application server provides a class that may be used to access the JTS
CosTransactions . This is the current interface, which is a superset of the
javax.jts.UserTransaction interface. This interface allows transactions
to be created, suspended and resumed, and committed or aborted. To obtain a
reference to the org.omg.CosTransactions.Current interface, the client
application may simply call the static getCurrent() method in the
com.ibm.ejs.client.EJClient class. For example:

org.omg.CosTransactions.Current current
=com.ibm.ejs.client.EJClient.getCurrent();

current.begin();
// do transactional work
current.commit(false);

OC4J does not support client-managed transactions. Any client-managed
transactions can be deployed as container managed transactions by changing
the transaction properties in the EJB deployment descriptors.

■ JNDI lookup - To lookup an EJB from a client code, you need to create the JNDI
initial naming context InitialContext object. This object will be hooked to
the naming service running in the application server based on two parameters:
host name and port of the naming service (PROVIDER_URL) and the name of
the initial context factory (INITIAL_CONTEXT_FACTORY). This information is
provided to the constructor of the InitialContext as a
java.util.Properties object. When migrating from WebSphere to OC4J,
these values must be changed. For example:

 In WebSphere, the initial naming context is obtained by the following code:

java.util.Properties properties =new java.util.Properties();
properties.put(javax.naming.Context.PROVIDER_URL,"iiop:///");
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.ejs.ns.jndi.CNInitialContextFactory");
javax.naming.InitialContext initialContext =

new javax.naming.InitialContext(properties);
initialContext.lookup("com/ibm/Hello");

The string “///” for the PROVIDER_URL property indicates to the runtime
environment to find the naming service at the standard port on the local

Migrating EJB Applications from WebSphere to OC4J

5-26 Oracle Application Server 10g Migrating From WebSphere

machine. The general form of the PROVIDER_URL string is
“iiop://hostname:port/”. The value of the second property, INITIAL_
CONTEXT_FACTORY, is the class name of the naming service factory.

To migrate to OC4J, this code must be changed as follows:

■ If the client and the EJB are deployed on the on the same OC4J instance, the
JNDI properties (initial context factory, location, security parameters) are
not needed):

javax.naming.InitialContext initialContext =
new javax.naming.InitialContext();

 Object yourEJBHome = initialContext.lookup("java:comp/env/ejb/Hello")

If the client and EJBs are deployed on different OC4J instances:

java.util.Properties properties = new java.util.Properties();
properties.put(javax.naming.Context.PROVIDER_URL,

"ormi://<hostname>:<port>/<application>");
properties.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"com.evermind.server.rmi.initialContextFactory");
properties.put(javax.naming.Context.SECURITY_PRINCIPAL,"admin");
properties.put(javax.naming.Context.SECURITY_CRIDENTIALSL,"123");
javax.naming.InitialContext initialContext = new

javax.naming.InitialContext(properties);
Object yourEJBHome = initialContext.lookup("Java:comp/env/ejb/Hello")

The SECURITY_PRINCIPAL and SECURITY_CREDENTIAL properties are
the administrator username and password specified during installation of
OC4J.

Changes in Transactional Semantics
The following should be noted:

■ TRANSACTION_SERIALISABLE has different semantics in OC4J and
WebSphere. In WebSphere, if two transactions both read the same row (entity),
they acquire a read lock on that row.

■ Read-only methods - The EJB specification does not provide a standard
mechanism to allow a container to check if the bean’s state has changed within
a unit of work. As an IBM extension to the EJB specification, VisualAge for Java
allows the bean developer to define the method types (read-only or update).
With the Const Method checkbox in the control descriptor of the bean’s
Properties panel (Method screen), a selected checkbox means read-only, and

Migrating EJB Applications from WebSphere to OC4J

Migrating Enterprise Java Beans 5-27

non-checked is an update method. When deployed on WebSphere, the
container runtime only stores a bean’s state if at least one non read-only
(update) method has been invoked during a transaction. This eliminates
unnecessary SQL UPDATE queries at commit time, for example, for get
operations that do not change the entity state. When an update (non read-only)
method is invoked on a bean and the bean is not active, the container runtime
will load the bean using the Persister loadForUpdate method. This method
will acquire a lock on the bean’s state in the underlying data store.

■ OC4J provides a complete implementation of the JTA 1.0.1 specification. This
version of Oracle Application Server integrates the JTA facilities with a
middle-tier Distributed Commit Coordinator based on the Oracle Database’s
Commit Coordinator that provides highly scalable one-phase commit and
two-phase commit facilities across Oracle and non-Oracle XA compliant
Resource Managers.

Object-relational (O-R) Mapping
With EJBs, O-R mapping is done differently according to the EJB container used (in
practice, according to the application server).This means that in order to import an
EJB into a different container, it is necessary to go through this development phase
again. This is the case with WebSphere and OC4J, since they have different ways of
generating O-R mapping classes. WebSphere uses the WebSphere Studio and the
VisualAge for Java development environment to generate code for O-R mapping.
WebSphere supports one-to-one and one-to-many associations among EJBs.

OC4J supports the EJB 2.0 O-R mapping model. EJB 2.0 is not backward compatible
with EJB 1.1, rather, it is a complete break with the old way of doing CMP
persistence. OC4J supports one-to-one and one-to-many associations.

Deployment of EJBs
Since WebSphere 3.5.x is at the EJB 1.0 specification level, the EJB JAR files are
deployed using serialized deployment descriptors. These cannot be directly
deployed on OC4J, which supports the EJB 2.0 XML-based deployment descriptors.
Consequently, the EJB JAR files must be re-archived using the EJB 2.0 deployment
descriptors. Package individual or multiple EJB components in EJB JAR files and
place assembly and deployment properties for EJBs in the standard deployment
descriptor XML file (ejb-jar.xml) within the EJB archive file. The deployment
descriptor contains attribute and environment settings that define how the
container invokes enterprise bean functionality. Every enterprise bean (both session

Migrating EJB Applications from WebSphere to OC4J

5-28 Oracle Application Server 10g Migrating From WebSphere

and entity) must have a deployment descriptor that contains settings for the
following attributes:

■ JNDI home name attribute - Specifies the Java Naming and Directory Interface
(JNDI) home name that is used to locate instances of an EJB home object

■ Transaction attribute - To define the transactional manner in which the
container invokes a method

■ Transaction isolation level attribute - To define the degree to which transactions
are isolated from each other by the container

■ Access control attribute - To define an access control entry that identifies users
or roles that are permitted to access the methods in the enterprise bean. This
value is not used by the WebSphere EJB servers.

■ RunAsMode and RunAsIdentity attributes - the RunAsMode attribute defines
the identity used to invoke the method. If a specific identity is required, the
RunAsIdentity attribute is used to specify that identity. The RunAsMode
attribute is used by the WebSphere EJB servers; the RunAsIdentity attribute
is not.

The deployment descriptor for an entity bean must also contain settings for the
following attributes. These attributes can be set on the bean only. They cannot be set
on a per-method level.

■ Primary key class attribute - identifies the primary key class for the bean.

■ Container-managed fields attribute - lists those persistent variables in the bean
class that the container must synchronize with fields in a corresponding data
source to ensure that this data is persistent and consistent.

■ Reentrant attribute - specifies whether an enterprise bean can invoke methods
on itself or call another bean that invokes a method on the calling bean. Only
entity beans can be reentrant. The deployment descriptor for a session bean
must also contain settings for the following attributes. These attributes can be
set on the bean only; they cannot be set on a per-method level.

■ State management attribute - defines the conversational state of the session
bean. This attribute must be set to either STATEFUL or STATELESS.

■ Timeout attribute - defines the idle timeout value in seconds associated with
this session bean.

These attributes can be set for the entire enterprise bean or for the individual
methods in the bean. The container uses the definition of the bean-level attribute
unless a method-level attribute is defined, in which case the latter is used.

Migrating EJB Applications from WebSphere to OC4J

Migrating Enterprise Java Beans 5-29

<container-transaction>
<method>

<ejb-name>LogEntEJB</ejb-name>
<method-name>*</method-name>
<trans-attribute>Required</trans-attribute>

</method>
<method>

<ejb-name>EntUtenteEJB</ejb-name>
<method-name>*</method-name>
<trans-attribute>Required</trans-attribute>

</method>
</container-transaction>

OC4J EJB Container Setting
To cache EJB instances, you specify maximum instance limits for each entity bean in
orion-ejb-jar.xml with your application and place it in the META_INF
directory.

<?xml version="1.0"?>
<orion-ejb-jar>

<enterprise-beans>
<entity-deployment name="BeanName" location="BeanName"

max-instances="5" validity-timeout="3600000"/>
</enterprise-beans>

</orion-ejb-jar>

Migrating EJB Applications from WebSphere to OC4J

5-30 Oracle Application Server 10g Migrating From WebSphere

Migrating JDBC Applications 6-1

6
Migrating JDBC Applications

This chapter introduces the JDBC (Java Database Connectivity) API and describes
how to connect to, and access data from, a database with WebSphere Advanced
Edition 3.5.3. It also discusses ways of migrating WebSphere applications to Oracle
Containers for J2EE (OC4J). The sections in this chapter are:

■ The JDBC API

■ Database Drivers

■ Connection Pooling

■ IBM Extensions

The JDBC API
The JDBC API enables Java programs to create sessions, execute SQL statements,
and retrieve results from relational databases, providing vendor-independent access
to relational data. The JDBC specification delivers a call-level SQL interface for Java
that is based on the X/Open SQL call level interface specification.

The JDBC API consists of four major components: JDBC drivers, connections,
statements, and a result set. Database vendors deliver only the driver, which should
comply with JDBC specifications (for a complete description, see "Database Drivers"
on page 6-2). The connection, statement, and result set components are in the JDBC
API package (that is, the java.sql package).

The JDBC API provides interface classes for working with these components:

■ The java.sql.Driver and java.sql.DriverManager for managing JDBC
drivers

■ The java.sql.Connection for using connections

Database Drivers

6-2 Oracle Application Server 10g Migrating From WebSphere

■ The java.sql.Statement, for constructing and executing SQL statements

■ The java.sql.ResultSet for processing the results

The JDBC 2.0 API includes many new features in the java.sql package as well as
the new Standard Extension package, javax.sql Features in the java.sql
package include support for SQL3 data types, scrollable result sets, programmatic
updates, and batch updates.

The new JDBC standard extension APIs, an integral part of Enterprise JavaBeans
(EJB) technology, allows you to write distributed transactions that use connection
pooling and connect to virtually any tabular data source, including files and
spreadsheets.

When you write a JDBC application, the only driver-specific information required is
the database URL. You can build a JDBC application so that it derives the URL
information at runtime. Using the database URL, a user name, and password, your
application first requests a java.sql.Connection from the DriverManager.

A typical JDBC program follows this process:

1. Load the database driver, using the driver's class name

2. Obtain the connection, using the JDBC URL for connection

3. Create and execute statements

4. Use result sets to navigate through the results

5. Close the connection.

Database Drivers
JDBC defines standard API calls to a specified JDBC driver, a piece of software that
performs the actual data interface commands. The driver is considered the lower
level JDBC API. The interfaces to the driver are database client calls, or database
network protocol commands that are serviced by a database server.

Depending on the interface type, there are four types of JDBC drivers that translate
JDBC API calls:

■ Type 1, JDBC-ODBC bridge: Translates calls into ODBC API calls.

■ Type 2, Native API driver: Translates calls into database native API calls. As this
driver uses native APIs, it is vendor dependent. The driver consists of two
parts: a Java language part that performs the translation and a set of native API
libraries.

Database Drivers

Migrating JDBC Applications 6-3

■ Type 3, Network Protocol: Translates calls into DBMS-independent network
protocol calls. The database server interprets these network protocol calls into
specific DBMS operations.

■ Type 4, Native Protocol: Translates calls into DBMS native network protocol
calls. The database server converts these calls into DBMS operations.

The DriverManager Class
Using different drivers, a Java program can create several connections to several
different databases. To manage driver operations, JDBC provides a driver manager
class, the java.sql.DriverManager, which loads drivers and creates new
database connections.

Registering JDBC Drivers
The DriverManager registers any JDBC driver that is going to be used. If a Java
program issues a JDBC operation on a non-registered driver, JDBC raises a "No
Suitable Driver" exception.

There are several ways to register a driver:

■ Register the driver explicitly by using

DriverManager.registerDriver(driver-instance)

where driver-instance is an instance of the JDBC driver class.

■ Load the driver class by using

Class.forName(driver-class)

where driver-class is the JDBC driver class.This loads the driver into the Java
Virtual Machine. When loaded, each driver must register itself implicitly by
using the DriverManager.registerDriver method.

For example, to register the DB2 JDBC Type 2 driver in the
COM.ibm.db2.jdbc.app package, you can use either:

DriverManager.registerDriver(new COM.ibm.db2.jdbc.app.DB2Driver());

or

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

For an Oracle database:

Database Drivers

6-4 Oracle Application Server 10g Migrating From WebSphere

DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver ());

or

Class.forName("oracle.jdbc.driver.OracleDriver")

A J2EE server implicitly loads the driver based on the JDBC driver configuration, so
no client-specific code is needed to load the driver. The JNDI (Java Naming and
Directory Interface) tree provides the datatsource object reference.

WebSphere Advanced Edition 3.5.3 supports DB2, Informix, Microsoft SQL Server,
Oracle, Sybase, Versant, and others. However, WebSphere does not support the
Oracle thick JDBC driver. To use the Oracle thick JDBC driver, configure the data
sources in Oracle Containers for J2EE (OC4J), as described in "Configuring Data
Sources". OC4J will automatically load the driver classes during server startup.

The DataSource Class
The JDBC 2.0 specification introduced the java.sql.Datasource class to make
the JDBC program 100% portable. In this version, the vendor-specific connection
URL and machine and port dependencies were removed. This version also
discourages using java.sql.DriverManager, Driver, and
DriverPropertyInfo classes. The data source facility provides a complete
replacement for the previous JDBC DriverManager facility. Instead of explictly
loading the driver manager classes into the runtime of client applications, the
centralized JNDI service lookup obtains the java.sql.Datasource object. The
Datasource object can also be used to connect to the database.

According to the JDBC 2.0 API specification, a data source is registered under the
JDBC subcontext or one of its child contexts. The JDBC context itself is registered
under the root context. A Datasource object is a connection factory to a data
source. WebSphere and OC4J both support the JDBC 2.0 DataSource API.

Note: If you use the Type 3 JDBC driver
(COM.ibm.db2.jdbc.app.DB2Driver - jdcb:db2:DBNAME),
you must install the DB2 CAE (Client Application Enabler) and
then catalog the remote database. OC4J will treat the cataloged
database as a local database.

Database Drivers

Migrating JDBC Applications 6-5

Configuring Data Sources
In WebSphere, you configure data sources using the Administrative Console to
specify the data source name, database name, and JDBC URL string. This
information is stored in a repository database.

OC4J uses flat files to configure data sources for all of its deployed applications.
data sources are specified in the following descriptor file:

UNIX:
<ORACLE_HOME>/j2ee/home/config/data-sources.xml

NT:
<ORACLE_HOME>\j2ee\home\config\data-sources.xml

Following is a sample data source configuration for an Oracle database. Each data
source in data-sources.xml (xa-location, ejb-location and
pooled-location) must be unique.

<data-source
class="com.evermind.sql.DriverManagerDataSource"
name="Oracle"
url="jdbc:oracle:thin@node2058.oracle.com:1521:orcl"
xa-location="jdbc/xa/OracleXADS"
ejb-location="jdbc/OracleDS"
pooled-location="jdbc/OraclePoolDS"
connection-driver="oracle.jdbc.driver.OracleDriver"
username="scott"
password="tiger"
schema="database-schemas/oracle.xml"
inactivity-timeout="30"
max-connections="20"
/>

Table 6–1 describes all of the configuration parameters in data-sources.xml.
(Not all of the parameters are shown in the example above).

Table 6–1 data-sources.xml file

Parameter Description

class Class name of the data source.

connection-driver Class name of the JDBC driver

connection-retry-
interval

Number of seconds to wait before retrying a failed connection.
The default is 1.

Database Drivers

6-6 Oracle Application Server 10g Migrating From WebSphere

Note that WebSphere does not support subcontexts. For example, you cannot
specify xa/OracleXADS, where xa is subcontext under the JDBC context. Morever,
in WebSphere, the JDBC context is implicit, and you don't specify it (as you specify

ejb-location JNDI path for binding an EJB-aware, pooled version of this
data source; this version will participate in container-managed
transactions. This is the type of data source to use from within
EJBs and similar objects.

This parameter only applies to a ConnectionDataSource.

inactivity-timeout Number of seconds unused connections will be cached before
being closed.

location JNDI path for binding this data source.

max-connect-attempts Number of times to retry a failed connection. The default is 3.

max-connections Maximum number of open connections for pooling data
sources.

min-connections Minimum number of open connections for pooling data
sources. The default is zero.

name Displayed name of the data source.

password User password for accessing the data source (optional).

pooled-location JNDI path for binding a pooled version of this data source.
This parameter only applies to a ConnectionDataSource.

schema Relative or absolute path to a database-schema file for the
database connection.

source-location Underlying data source of this specialized data source.

url JDBC URL for this data source (used by some data sources that
deal with java.sql.Connections)

username User name for accessing the data source (optional).

wait-timeout Number of seconds to wait for a free connection if all
connections are used. Default is 60.

xa-location JNDI path for binding a transactional version of this data
source. This parameter only applies to a
ConnectionDataSource.

xa-source-location Underlying XADataSource of this specialized data source
(used by OrionCMTDataSource)

Table 6–1 data-sources.xml file

Parameter Description

Database Drivers

Migrating JDBC Applications 6-7

it explicitly for OC4J, in data-sources.xml). However, both WebSphere and
OC4J automatically bind the data sources for you.

Configuring OC4J with DB2 Database
If you are using DB2 as your database, you need to create an additional file,
db2.xml, in the following directory to define DB2 as a data source:

UNIX:
<ORACLE_HOME>/OC4J/j2ee/home/config/database-schema

NT:
<ORACLE_HOME>\OC4J\j2ee\home\config\database-schema

Below is an example of the schema file db2.xml:

<?xml version="1.0"?>
<!DOCTYPE database-schema PUBLIC "-//Evermind//- Database schema"
"http://www.orionserver.com/dtds/database-schemas.dtd">
<database-scheme name="DB2" not-null="not null" null="default null"

primary-key="primary key">
<type-mapping type="java.lang.String" name="varchar(255)" />
<type-mapping type="int" name="integer" />
<type-mapping type="long" name="bigint" />
<type-mapping type="float" name="double" />
<type-mapping type="double" name="double" />
<type-mapping type="byte" name="smallint" />
<type-mapping type="char" name="smallint" />
<type-mapping type="short" name="smallint" />
<type-mapping type="boolean" name="char(1)" />
<type-mapping type="java.util.Date" name="timestamp" />
<type-mapping type="java.io.Serializable" name="blob(1 M)" />
<disallowed-field name="add" />
<disallowed-field name="admin" />
<disallowed-field name="wvarchar" />

</database-scheme>

The following is an example of a corresponding data-sources.xml file with the
db2.xml file specified:

<data-source
name="Default data-source"
class="com.evermind.sql.ConnectionDataSource"
location="jdbc/DefaultDS"
pooled-location="jdbc/DefaultPooledDS"
xa-location="jdbc/xa/DefaultXADS"

Database Drivers

6-8 Oracle Application Server 10g Migrating From WebSphere

ejb-location="jdbc/DefaultEJBDS"
url="jdbc:db2:dbTest"
connection-driver="COM.ibm.db2.jdbc.app.DB2Driver"
username="myUserName"
password="myPwd"
inactivity-timeout="30"
schema="database-schemas/db2.xml"
/>

Obtaining a Data Source Object
Obtaining a data source object involves binding to the JNDI initial context and
doing a lookup for the subcontext jdbc/sampleDB. To do this, you have to get a
handle to the intial context javax.naming.InitialContext. IntialContext
is the root context of the JNDI namespace. InitialContext has two constructors:

■ A default constructor that takes no parameters

■ A constructor that takes one parameter, java.util.Properties or
java.util.HashTable

For OC4J, you must change your code to use the constructor that takes a parameter.
The following code example illustrates this:

//WebSphere Code
try
{

java.util.Properties parms = new java.util.Properties();
parms.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.ejs.ns.jndi.CNInitialContextFactory");
javax.naming.Context ctx = new javax.naming.InitialContext(parms);
javax.sql.DataSource ds = (javax.sql.DataSource)ctx.lookup("jdbc/SampleDB");
java.sql.Connection conn = ds.getConnection();

// process the results
...

}

To migrate from WebSphere, you must change the class that implements the initial
context factory (Context.INITIAL_CONTEXT_FACTORY) of the JNDI tree:

from the WebSphere-specific class:

com.ibm.ejs.ns.jndi.CNInitialContextFactory

to the OC4J-specific class:

Connection Pooling

Migrating JDBC Applications 6-9

com.evermind.server.ApplicationClientInitialContextFactory

Connection Pooling
Most web-based resources, such as servlets and application servers, access
information in a database. Each time a resource attempts to access a database, it
must establish a connection to the database using system resources to create the
connection, maintain it, and release it when it is no longer in use. The resource
overhead is particularly high for web-based applications due to the frequency and
volume of web users connecting and disconnecting. Often, more resources are
consumed in connecting and disconnecting than in executing the business logic.

Connection pooling enables you to control connection resource usage by spreading
the connection overhead across many user requests. A connection pool is is a
cached set of connection objects that multiple clients can share when they need to
access a database resource. The resources to create the connections in the pool are
expended only once for a specified number of connections. The connections are left
open and re-used by many client requests instead of each client request consuming
resources to create and close its own connection. Connection pooling improves
overall performance in the following ways:

■ Reducing the load on the middle-tier server

■ Minimizing resource usage by having session-wide create and close operations

■ Eliminating bottlenecks caused by socket and file descriptor limitations and ’n’
user license limitations

The JDBC 2.0 specification allows you to define a pool of JDBC database
connections, with the following objectives:

■ Maximize the availability of connections to resources

■ Minimize the idle connections in the pool

■ Return orphan connections to the pool and make them available for reuse by
other servlets or application servers.

To meet these objectives, you should perform the following:

1. Set the maximum connection pool size property equal to the maximum number
of concurrently active user requests expected

2. Set the minimum connection pool size property equal to the minimum number
of concurrently active user requests expected.

IBM Extensions

6-10 Oracle Application Server 10g Migrating From WebSphere

The connection pooling properties ensure that as the number of user requests
decreases, unused connections are gradually removed from the pool. Likewise, as
the number of user requests begins to grow, new connections are created. The
balance of connections is maintained so that connection re-use is maximized and
connection creation overhead minimized. You can also use connection pooling to
control the number of concurrent database connections.

Migrating WebSphere Connection Pooling to Oracle Application Server
WebSphere Advanced Edition 3.5.3 provides two options for accessing database
connections:

■ Connection pooling (model based on JDBC 2.0)

■ Connection manager (model based on JDBC 1.0)

Migrating from WebSphere JDBC 2.0 connection pooling:
WebSphere implements JDBC 2.0 connection pooling and data source objects using
the following packages.

import com.ibm.db2.jdbc.app.stdext.javax.sql.*;
import com.ibm.ejs.dbm.jdbcext.*;

To migrate from the WebSphere JDBC 2.0 connection to OC4J you must replace
these import packages with javax.sql.* .

An application component that obtains two or more connections to the same
database manager (using either the same data source or different data source) must
use data sources with JTA-enabled drivers. For more information, refer to Oracle
Application Server Containers for J2EE User’s Guide.

IBM Extensions
WebSphere provides the following extension packages for data access. Applications
using these packages require code level changes for migration.

Data Access Beans
WebSphere Advanced Edition 3.5.3 also provides data access beans (in addition to
access beans for EJBs), which offer a set of features for working with relational
database queries and result sets. The com.ibm.db package contains the data access
JavaBean classes. The classes are in the databeans.jar file (found in the lib

IBM Extensions

Migrating JDBC Applications 6-11

directory under the application server root install directory). You will need this JAR
file in your classpath in order to compile a servlet using the data access JavaBeans.

If you have lot of code using data access beans that need to be migrated to OC4J,
then put databeans.jar in the classpath of OC4J. However, Oracle recommends
that you migrate to JDBC 2.0 APIs.

Connection Pool Manager
As mentioned, IBM WebSphere 3.5.x still supports connection pooling with a
proprietary connection pool manager. Oracle recommends that you develop
connection pooling using IBM's standard extensions for JDBC 2.0.

IBM Extensions

6-12 Oracle Application Server 10g Migrating From WebSphere

Migrating from WebSphere 4.0 A-1

A
Migrating from WebSphere 4.0

This appendix outlines the migration strategy from WebSphere Advanced Edition
4.0 to Oracle Application Server in the following aspects:

■ Feature Differences Between WebSphere Advanced Edition 3.5.3 and 4.0

■ J2EE Specification Differences Between WebSphere Advanced Edition 4.0 and
Oracle Application Server

■ Migrating WebSphere 4.0 Servlets to Oracle Application Server

■ Migrating WebSphere 4.0 JSPs to Oracle Application Server

■ Migrating WebSphere 4.0 EJBs to Oracle Application Server

■ Other Considerations

Feature Differences Between WebSphere Advanced Edition 3.5.3 and
4.0

WebSphere Advanced Edition 4.0 is an evolution of the 3.5.x version in several areas
including J2EE specification support up to J2EE 1.2 for 4.0. Table A–1 summarizes
the evolved features. The information in the table provides a general reference for
what you can reuse from the other chapters in this book for your migration tasks
from WebSphere Advanced Edition 4.0 to Oracle Application Server 10g (9.0.4).

J2EE Specification Differences Between WebSphere Advanced Edition 4.0 and Oracle Application Server

A-2 Oracle Application Server 10g Migrating From WebSphere

J2EE Specification Differences Between WebSphere Advanced Edition
4.0 and Oracle Application Server

WebSphere Advanced Edition 4.0 advances on the J2EE specification support from
WebSphere Advanced Edition 3.x. It has more comparable features with Oracle
Application Server in the J2EE specification levels. Table A–2 compares the
specification levels supported by Oracle Application Server 10g (9.0.4) and
WebSphere Advanced Edition 4.0.

Table A–1 Summary of WebSphere 3.5.x and 4.0 feature differences

WebSphere Advanced Edition 3.5.x WebSphere Advanced Edition 4.0

Policy-based authorization J2EE roles-based authorization - method
invocation permissions for enterprise beans
can now be assigned to users through their
respective roles. Roles are specified in an
application’s deployment descriptors.

JSP 1.0 JSP 1.1

Servlet 2.1 Servlet 2.2

EJB 1.0 EJB 1.1

Presentation layer separation - HTML and
CGI requests are served by a separate
product. No implementation of J2EE Web
Application concept.

J2EE Web Application support (support for
.war files)

ServiceInitializer interface CustomService interface - Similar to the
ServiceInitializer interface except that
CustomService does not pass in the
context for the services to use for registration
binding.

Connection Manager V2.0 Connection pooling - JDBC 2.0 or data access
beans is used for connection pooling.

JNDI context interface used:
com.ibm.ejs.ns.jndi.

CNInitialContextFactory

New JNDI context interface used:
com.ibm.websphere.naming.

WsnInitialContextFactory

XML4J V2.0.15 parser XML4J V3.1.1 parser

.servlet file support Servlet extensions are bundled in .war file.

Open Servlet Engine (OSE) remote and
servlet redirector support for remote request
invocations.

HTTP transport plug-ins to communicate
between web server and application server.

Migrating WebSphere 4.0 Servlets to Oracle Application Server

Migrating from WebSphere 4.0 A-3

Migrating WebSphere 4.0 Servlets to Oracle Application Server
WebSphere 4.0 is compliant with Servlet 2.2 specifications. It has proprietary
mechanisms to enable servlet chaining and filtering and is not fully Servlet
2.3-compliant. The WebSphere 3.5.3 compatibility mode is not available. With those
points in mind and not taking Servlet 2.3 features into consideration, migrating
WebSphere Advanced Edition 4.0 servlets to OC4J servlets should be
straightforward as both products support the same level of specifications (Servlets
2.2). However, the following possible incompatibilities should be noted and
resolved if applicable to your servlets:

■ WebSphere Specific Servlet Extensions

■ WebSphere-Specific Deployment Descriptors

■ Deprecated 3.5.3 API (Supported in WebSphere 4.0)

WebSphere Specific Servlet Extensions
The servlet extensions from WebSphere Advanced Edition 3.5.3 are still available in
WebSphere Advanced Edition 4.0. Information in the section "WebSphere
Extensions to the Servlet API" on page 3-13 is still valid when these extensions are
used. If your servlets use any of these extensions, they need to be re-written to
conform with the standard Servlet 2.2 or 2.3 API in order to run in OC4J.

Table A–2 Summary of Oracle Application Server and WebSphere Advanced Edition
4.0 feature differences

J2EE Specification
WebSphere Advanced
Edition 4.0

Oracle Application Server
10g (9.0.4)

JDK 1.2.2 and 1.3 1.4 and 1.3

Servlet 2.2 2.3

JSP 1.1 1.2

EJB 1.1 2.0

JDBC 2.0 2.0 Extension

JNDI 1.2 1.2

JTA 1.0 1.0

JMS 1.0 1.0

Migrating WebSphere 4.0 JSPs to Oracle Application Server

A-4 Oracle Application Server 10g Migrating From WebSphere

WebSphere-Specific Deployment Descriptors
WebSphere Advanced Edition uses non-J2EE compliant deployment descriptors.
WebSphere 4.0’s Application Assembly Tool generates additional descriptor files in
addition to the standard J2EE files. These are the DDL and XMI files used to store
binding and WebSphere-specific extension information.

Since these files apply to WebSphere-specific extensions, they are redundant in
Oracle Application Server and need not be migrated. Ensure that other
WebSphere-specific extensions are not implemented in the migrated application
before deploying in Oracle Application Server.

Deprecated 3.5.3 API (Supported in WebSphere 4.0)
If your servlets deployed in WebSphere 4.0 use the 3.5.3 deprecated API shown in
the following table, you need to re-write them to use the equivalent Servlet 2.2 API
as follows:

Migrating WebSphere 4.0 JSPs to Oracle Application Server
WebSphere Advanced Edition 4.0 and Oracle Application Server 10g (9.0.4) both
support JSP 1.1 (with Oracle Application Server supporting 1.2 as well). Hence, JSP
migration between the two products should be straightforward. In general, the
rules and processes that apply when migrating JSPs from WebSphere Advanced
Edition 3.x to Oracle Application Server can also be applied here. This is especially
true for variations deviating from the JSP 1.1 specifications. These are related to the
"tsx" family of tags. In OC4J, these should be replaced with OC4J JML tags. Refer to
the section "Migrating WebSphere Extensions to OC4J" on page 4-10 for more
information.

Table A–3 Deprecated 3.5.3 API and their Servlet 2.2 replacement

WebSphere 3.5.3 (supported in 4.0) Servlet 2.2

getValue() getAttribute()

getValueNames() getAttributeNames()

removeValue() removeAttribute()

putValue() setAttribute()

Other Considerations

Migrating from WebSphere 4.0 A-5

Migrating WebSphere 4.0 EJBs to Oracle Application Server
WebSphere Advanced Edition 4.0 complies with EJB 1.1. Oracle Application Server
is compliant with EJB 2.0. Hence, migrating EJBs from WebSphere 4.0 to Oracle
Application Server requires upgrading EJBs to EJB 2.0 specifications level.

We strongly recommend that you archive your EJBs in a EAR file with any web
applications and deploy that file using Oracle Enterprise Manager Application
Server Control or dcmctl to ensure that appropriate stubs are generated by Oracle
Application Server. Copying EJB classes and their WebSphere-compiled stubs
manually is not recommended.

We are investigating the EJB migration process further and will update this
document and information in the Oracle Technology Network website
(http://otn.oracle.com).

Other Considerations
In addition to the migration points above, the following should also be observed:

Dynamic Fragment Cache
Dynamic Fragment Cache is a performance enhancement feature in WebShpere that
caches the output of servlets and JSPs. This feature intercepts calls to the service
method of servlets and determines if the calls can be serviced by its cache. For
servlets or JSPs to use this feature, they have to use the
com.ibm.websphere.servlet.cache package. When migrating to Oracle
Application Server, ensure that this package is removed and any related code
modified. For caching functionality in Oracle Application Server, consider using
Oracle Application Server Web Cache and its Edge Side Includes for Java (JESI)
technology.

Data Access and Sources
WebSphere 4.0 provides the com.ibm.db package as a substitute for the standard
JDBC package java.sql. When migrating to Oracle Application Server, replace
usage of com.ibm.db with java.sql (standard JDBC 2.0 package is
recommended). If your application and components also use IBM data access beans,
follow the guidelines in "Data Access Beans" on page 6-10.

In WebSphere 4.0, all data sources must be created using
com.ibm.websphere.advanced.cm.factory.DataSourceFactory. To
migrate to Oracle Application Server, data sources can be obtained using the JDBC

Other Considerations

A-6 Oracle Application Server 10g Migrating From WebSphere

2.0 java.sql.Datasource, which is a connection factory to a data source. A
Datasource object can be obtained by looking it up in the JNDI namespace. Refer
to "The DataSource Class" on page 6-4 for more information.

Index-1

Index
A
access beans, 2-22, 5-17, 5-19

copy helper, 5-20
rowset, 5-20

access control attribute, 5-28
ACID, 5-12
activation, 5-3
Apache, 2-7

JServ Protocol, 2-7
Application Assembly Tool, 7-4

B
batch updates, 6-2
bean-managed transactions, 5-14, 5-17
Borland JBuilder, 2-25
business intelligence, 2-3

C
caching

entity bean, 5-16
centralized repository, 2-12
CICS, 1-8, 2-2
client-managed transactions, 5-14
clustering, 2-14, 3-16
Component Broker, 1-8, 2-2
concurrency, 5-3
concurrent database connections, 6-10
configuration cloning, 2-15
connection pool, 2-22, 6-9

properties, 6-10
sizing, 6-9

container, 5-12
container-managed fields attribute, 5-28
container-managed transactions, 5-14
containers, 1-6
cookies, 3-5
CORBA, 2-2
CPU cycles, 2-17
custom, 5-3
custom finder methods, 5-3
CustomService, 7-2

D
data replication, 2-16
database-schema file, 6-6
data-sources.xml, 6-7

configuration example, 6-5
parameters, 6-5

DB2, 1-8, 6-4
Client Application Enabler (CAE), 6-4

db2.xml, 6-7
DCM, 2-11, 2-15
dcmctl, 7-5
DDL, 7-4
default-web-site.xml, 3-19
destruction, 5-3
directory service, 2-12
Distributed Commit Coordinator, 5-27
Distributed Configuration Manager (DCM), 2-8

E
EAR file, 2-23, 2-25, 7-5
Edge Side Includes for Java (JESI), 4-7

Index-2

EJB
cluster, 2-19
replication, 2-19
stateful session, 2-18

EJB session, 2-16
ejb-jar.xml, 5-27
ejb-location, 6-5
Encina, 1-8, 2-2
Enterprise JavaBeans, 3-1

1.0, 5-23
1.1, 5-15, 5-20, 5-23, 7-5
2.0, 5-15, 5-27
activation, 5-3
application assembler, 5-4
associations, 5-20
bean provider, 5-4
container provider, 5-5
custom finder methods, 5-3
deployer, 5-5, 5-16
destruction, 5-3
helper classes, 5-3
inheritence, 5-19
instantiation, 5-3
non-transactional methods, 5-7
object-relational mapping, 5-3
passivate, 5-7
server provider, 5-5
stateful session bean, 5-6

timeout, 5-8
stateless session bean, 5-8

pool, 5-8
system administrator, 5-5
transaction semantics, 5-26
transactional methods, 5-7

enterprise portals, 2-3
entity bean

bean-managed transactions, 5-17
caching, 5-16
container-managed persistence, 5-3, 5-9, 5-12,

5-15, 5-17, 5-23, 5-24
container-managed transactions, 6-6
custom finder methods, 5-3
finder method, 5-11, 5-18
finder-helper, 5-24
lifecycle, 5-10

lifecycle states, 5-10
object-relational mapping, 5-3, 5-11
synchronization, 5-9
transaction isolation, 5-15
transaction management, 5-15
transactions

bean-managed, 5-14
client-managed, 5-14
container-managed, 5-14

F
failover, 2-14, 2-15, 2-17
form fields, 3-6

H
helper classes, 5-3
high-availibility, 2-8

I
IBM

HTTP Server, 2-1, 2-4
Object Request Broker, 1-8, 2-2
VisualAge, 2-24, 2-25

Persistence Builder, 2-24
VisualAge for Java, 5-17, 5-20, 5-26
WebSphere Studio, 2-24, 5-27

Informix, 6-4
initial context factory, 6-8, 7-2
INITIAL_CONTEXT_FACTORY, 6-8
instantiation, 5-3
intelligent routing, 2-16

J
J2EE

1.2, 1-6, 1-8, 2-1, 2-22, 3-19
1.3, 7-1

supported component specifications, 2-2
application model, 1-2
architecture, 1-6
Certification Test Suite, 2-22
containers, 1-6, 2-7

Index-3

platform components, 1-3
JAAS, 2-3
JAF, 2-3
JAR file, 2-23, 2-25, 3-7, 3-8, 5-20
Java Virtual Machine, 2-7, 2-17, 6-3
JavaBeans, 4-6, 4-8
JavaMail, 2-2
java.sql.Connection, 6-1, 6-2
java.sql.Connections, 6-6
java.sql.Datasource, 6-4
java.sql.Driver, 6-1, 6-4
java.sql.DriverManager, 6-1, 6-2, 6-3, 6-4
java.sql.DriverPropertyInfo, 6-4
java.sql.ResultSet, 6-2
java.sql.Statement, 6-2
JAXP, 2-3
JCA, 2-3
JDBC, 2-3

1.0
connection manager, 6-10

2.0
connection pooling, 6-9, 6-10, 7-2

API, 6-1
description, 6-1
driver registration, 6-3
drivers, 6-2

registering, 6-3
native API driver, 6-2
native protocol, 6-3
network protocol calls, 6-3
ODBC bridge, 6-2
processing, 6-2
sessions, 6-1

JMS, 2-3, 2-22, 5-19
JNDI, 1-8, 2-2, 2-22, 3-9, 5-2, 5-5, 5-14, 5-25, 5-28,

6-4, 6-6, 7-2
description, 6-4
initial context, 6-8
namespace, 6-8

JNDI namespace
replication, 2-19

JSP
0.91, 4-4, 4-9
1.0, 4-4, 4-9
1.1, 4-4

Compatibility mode, 4-4
Compliance mode, 4-4
container, 4-3
directives, 4-2

Include, 4-2
Page, 4-2
Taglib, 4-2

Oracle JSP Markup Language (JML), 4-10
page implementation classes, 4-3
page instances, 4-3
processor, 4-4
Tag Library Descriptor, 4-2
translation, 4-3
translator, 4-3

JTA, 2-3, 2-22, 5-27
JTS, 5-25
JVM, 2-6, 2-14

K
Kerberos Security Tickets, 2-13

L
LDAP, 2-12
load balancer, 2-9, 2-16, 3-19
load balancing, 2-14, 3-16, 3-20
location service daemon, 2-5

M
Microsoft IIS, 2-1
Microsoft SQL Server, 6-4
mod_oc4j, 2-16
mod_oc4j, 2-7
MQSeries, 1-8
multicast, 2-17, 2-19, 3-18, 3-19

N
Netegrity Site Minder, 2-13
Netscape iPlanet, 2-1

O
object-relational mapping, 5-11, 5-27

Index-4

OC4J, 2-2, 6-1
container, 2-26, 3-1
failover, 2-17
instance, 2-7, 2-16, 2-19, 3-17
instances, 2-7
island, 2-16, 2-17
load balancer instance, 3-20
process, 3-17
processes, 2-17
tag library, 4-10

ODBC API, 6-2
Open Servlet Engine, 7-2
OPMN, 2-16
Oracle

Business Components for Java, 2-25
Enterprise Manager, 2-8, 2-26
HTTP Server, 2-7
Internet Developer Suite, 2-24
JDeveloper, 2-24, 2-25

Oracle Application Server
Certificate Authority, 2-11
Cluster, 2-15, 2-16, 2-18
Farm, 2-16
instance, 2-15, 2-16, 2-20
JSP Markup Language (JML), 4-7
Metadata Repository, 2-15, 2-16
Single Sign-On, 2-11

third party authentication, 2-13
Web Cache, 2-16

JESI, 4-7
Oracle Delegated Administration Services, 2-12
Oracle Directory Manager, 2-12
Oracle Enterprise Manager, 2-11
Oracle HTTP Server, 2-16

stateful load balancing, 2-20
stateless load balancing, 2-20

Oracle JDeveloper, 4-8
Oracle Process Management Notification

(OPMN), 2-8
Oracle Technology Network, 7-5
Oracle9iAS

cluster, 2-26
components, 2-6

Oracle HTTP Server, 2-7
farm, 2-26

installation, 2-6
instance, 2-6
Oracle JSP Markup Language (JML), 4-10
Web Cache, 2-9

OracleJSP, 4-6
Orion JSP container, 4-6
OrionCMTDataSource, 6-6
orion-ejb-jar.xml, 5-24, 5-29
orion-web.xml, 3-17

P
passivate, 5-7
persistence name server, 2-5
policy-based authorization, 7-2
polymorphism, 5-17
pooled-location, 6-5
pooling data sources, 6-6

binding to JNDI path, 6-6
portability, 1-7
primary key class attribute, 5-28
process monitoring, 2-15
programmatic updates, 6-2
Public Key Infrastructure, 2-13

R
reentrant attribute, 5-28
replication, 3-20
RMI, 3-17
roles-based authorization, 7-2

S
scalability, 1-2, 1-4, 2-8, 2-15, 5-3
scrollable result sets, 6-2
serializable, 3-18
serialized deployment descriptors, 5-27
ServiceInitializer, 7-2
servlet

API classes, 3-2
chaining, 2-22, 3-10, 3-13
filtering, 2-22, 3-10
initialization parameters, 3-8, 3-10
lifecycle events, 3-13

Index-5

sessions, 3-5
specification differences, 3-8

Servlet 2.2, 7-3, 7-4
Servlet 2.3, 7-3
session state, 2-17
skeletons, 5-2
smart routing, 2-16
SQL3 data types, 6-2
SQLJ, 4-6
SSOSDK, 2-13
state management attribute, 5-28
state replication, 3-20
stateful session bean, 5-6

timeout, 5-8
stateful session replication, 2-16
stateless session bean, 5-8

pool, 5-8
stubs, 5-2, 7-5
Sybase, 6-4

T
tag libraries, 3-8
Tag Library Descriptor file, 4-2
taglib, 4-2
timeout attribute, 5-28
transaction isolation, 5-15, 5-28
transaction management, 5-15
transaction monitors, 1-8
transactions

ACID, 5-12
tsx tags, 7-4
TXSeries, 2-2

U
URI prefix, 3-7
URL rewriting, 3-6

V
vendor-specific services, 1-8
Versant, 6-4
VisualAge, 5-17

W
WAR file, 2-23, 2-25, 3-7, 3-8
web server

plug-in, 2-4
web services, 2-3
web-site.xml, 3-19
WebSphere

4.0
Application Assembly Tool, 7-4

access beans, 5-17, 5-19
Administrative Console, 2-14, 2-24, 3-11, 6-5
Administrative Server, 2-4, 2-24
Administrative Server Repository, 2-5
Advanced Edition 4.0, 7-1
chaining distributed exceptions, 5-19
cloning, 2-14
clustering, 2-14
Compliance Mode, 3-11
connection pool manager, 6-11
connection pooling, 6-10
container-managed persistence, 5-17, 5-18

fields and associations, 5-19
data access beans, 6-10
domain, 2-24
EJB associations, 5-20
EJB inheritance, 5-19
extensions, 6-10
failover, 2-14
JSP extensions, 4-5
load balancing, 2-14
Object-level Trace, 5-21
Servlet API 2.2 support, 3-12
servlet API extensions, 3-13
transactions, 5-19
workload management, 2-14

web.xml, 3-8, 3-12, 3-14
workload management, 2-2, 2-14

X
X.509 certificate, 2-13
XADataSource, 6-6
xa-location, 6-5
xa/OracleXADS, 6-6

Index-6

XA-transactions, 5-21
XMI, 7-4
XML4J, 7-2
X/Open SQL, 6-1

	Contents
	Send Us Your Comments
	1 Overview
	Overview of J2EE
	What is the J2EE Application Model?
	What is the J2EE Platform?

	What is an Application Server?
	Overview of Oracle Application Server
	J2EE Application Migration Challenges

	J2EE Application Architecture
	Migration Issues
	Portability
	Dependence on Vendor Specific Implementation
	Deviations from J2EE Specification

	Migration Approach
	Using this Guide

	2 Comparison of Oracle Application Server and WebSphere Features
	Application Server Product Offerings Comparison
	WebSphere Product Offerings
	WebSphere Standard Edition
	WebSphere Advanced Edition
	WebSphere Enterprise Edition

	Oracle Application Server
	Architecture Comparison
	IBM WebSphere Components
	IBM HTTP Server
	Web Server Plug-in
	Administrative Server
	Administrative Repository
	Application Server

	Oracle Application Server Components and Concepts
	OracleAS Instance
	Oracle HTTP Server
	OC4J Instances
	Oracle Process Manager and Notification Server (OPMN) Server
	Distributed Configuration Manager (DCM)
	Oracle Application Server Web Cache
	Oracle Enterprise Manager Application Server Control
	Oracle Application Server Infrastructure
	Oracle Application Server Metadata Repository
	Oracle Identity Management

	High Availability and Load balancing
	WebSphere Suppport for High Availability and Load Balancing
	Clustering in WebSphere
	Load Balancing in WebSphere

	Oracle Application Server Support for High Availability and Load Balancing
	Oracle Application Server Instance
	Oracle Application Server Clusters (Middle Tier)
	OC4J Islands
	Stateful Session EJB High Availability Using EJB Clustering
	JNDI Namespace Replication

	Java Object Cache
	Oracle Application Server Web Cache Clusters
	OracleAS Infrastructure High Availability Solutions
	Oracle Application Server Cold Failover Clusters
	Oracle Application Server Active Clusters

	J2EE Support Comparison
	WebSphere J2EE support
	Oracle Application Server J2EE support

	Java Development and Deployment Tools
	WebSphere Development and Deployment Tools
	WebSphere Development Tools
	WebSphere Studio
	WebSphere Administrative Console

	Oracle Application Server Development and Deployment Tools
	Development Tools
	Assembly Tools
	Administration Tools

	3 Migrating Servlets
	Overview of the Java Servlet API
	Servlet Lifecycle
	The init() Method
	The service() Method
	The destroy() Method

	Session Tracking
	Cookies
	URL rewriting
	Hidden form fields in HTML

	The HttpSession object
	J2EE Web Applications
	Web Application Archive (WAR)
	About the WEB-INF directory

	Differences between Servlet 2.0, 2.1 and 2.2
	Highlights of the Java Servlet API 2.1
	New Features in the Java Servlet API 2.2
	Servlet API 2.3
	Filters and Servlet Chaining
	Servlet Chains

	WebSphere Servlet API Support
	WebSphere Advanced Edition 3.5.3 Compatibility Mode
	Full Servlet 2.2 Compliance Mode
	Servlet 2.2 API Support
	WebSphere Extensions to the Servlet API

	Oracle Application Server Servlet API Suport
	Migrating Standalone Servlets to OC4J
	Sample .servlet file: SnoopServlet.servlet

	Migrating Cluster-Aware applications to OC4J
	Configuring an OC4J Island (in OC4J standalone mode)
	How OC4J Island Works (in OC4J standalone mode)

	4 Migrating JSPs
	Overview of JSP Pages
	Parts of a JSP Page
	Directives
	Page
	Taglib
	Include

	What is a JSP container?
	Life Cycle of a JSP Page

	WebSphere Support for the JSP API
	WebSphere-Specific Features
	Batch JSP Compiler
	HTML Template Extensions in JSP 0.91
	WebSphere Extensions to JSP 1.0

	OC4J JSP Features
	Edge Side Includes for Java (JESI) Tags
	Web Object Cache Tags
	Oracle JDeveloper and OC4J JSP Container

	Migrating from WebSphere JSP 0.91
	The <REPEATGROUP> Tag

	Migrating WebSphere Extensions to OC4J
	<REPEAT> or <tsx:repeat> tag:

	5 Migrating Enterprise Java Beans
	Overview of Enterprise JavaBeans
	EJB Migration Considerations
	EJB Functionality and Components
	The EJB Server
	EJB container
	EJB Specification Roles
	Enterprise Bean Provider
	Application Assembler
	Deployer
	EJB Server Provider
	EJB Container Provider
	System Administrator

	Session Beans
	Stateful Session Beans
	The Life Cycle of Stateful Session Beans
	Ready State
	Transactional Method Invocations
	Non-transactional Method Invocations
	Pooled State
	Removal

	Stateless Session Beans
	The Life Cycle of a Stateless Session Bean

	Entity Beans
	Container-managed Persistence (CMP) Entity Beans
	Bean-managed Persistence (BMP) Entity Beans
	The Entity Beans Life Cycle
	Does-not-exist State
	Pooled State
	Ready State

	Object-relational (O-R) Mapping and Persistence
	EJB Transactions and Concurrency
	The Java Transaction API(JTA)
	Transaction Boundaries
	Client-Managed Transactions
	Container-Managed Transactions (CMT)
	Bean Managed Transactions (BMT)

	Transaction Isolation and Concurrency
	EJB Caching

	WebSphere 3.5.x Support for the EJB API
	Read-only Methods
	EJB Finder-Helper Interface
	CMP in WebSphere
	Transactions
	EJB Inheritance
	Distributed Exceptions
	Access Beans
	Associations Between Enterprise Beans

	Migrating EJB Applications from WebSphere to OC4J
	EJB Code Changes
	Client Level Code Changes
	Changes in Transactional Semantics
	Object-relational (O-R) Mapping
	Deployment of EJBs
	OC4J EJB Container Setting

	6 Migrating JDBC Applications
	The JDBC API
	Database Drivers
	The DriverManager Class
	Registering JDBC Drivers

	The DataSource Class
	Configuring Data Sources
	Configuring OC4J with DB2 Database
	Obtaining a Data Source Object

	Connection Pooling
	Migrating WebSphere Connection Pooling to Oracle Application Server
	Migrating from WebSphere JDBC 2.0 connection pooling:

	IBM Extensions
	Data Access Beans
	Connection Pool Manager

	A Migrating from WebSphere 4.0
	Feature Differences Between WebSphere Advanced Edition 3.5.3 and 4.0
	J2EE Specification Differences Between WebSphere Advanced Edition 4.0 and Oracle Application Server
	Migrating WebSphere 4.0 Servlets to Oracle Application Server
	WebSphere Specific Servlet Extensions
	WebSphere-Specific Deployment Descriptors
	Deprecated 3.5.3 API (Supported in WebSphere 4.0)

	Migrating WebSphere 4.0 JSPs to Oracle Application Server
	Migrating WebSphere 4.0 EJBs to Oracle Application Server
	Other Considerations
	Dynamic Fragment Cache
	Data Access and Sources

	Index

