
Oracle® Application Server Personalization
User’s Guide

10g (9.0.4)

Part No. B12102-01

September 2003

Oracle Application Server Personalization User’s Guide, 10g (9.0.4)

Part No. B12102-01

Copyright © 2001, 2003 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

 iii

Contents

Send Us Your Comments .. vii

Preface.. ix

Intended Audience .. ix
Documentation Accessibility ... ix
Structure... x
Requirements... x
Where to Find More Information .. xi
Online Help ... xii
Conventions... xii

1 Introducing OracleAS Personalization

1.1 What Is Personalization? .. 1-1
1.2 What Is OracleAS Personalization? .. 1-2
1.3 What Kind of Data Does OracleAS Personalization Collect? ... 1-3
1.4 How Does OracleAS Personalization Collect the Data?.. 1-3
1.4.1 Sessionful and Sessionless Web Applications.. 1-4
1.5 What Does OracleAS Personalization Do with the Data? ... 1-4
1.5.1 Models Built by OracleAS Personalization .. 1-5
1.6 OracleAS Personalization Components ... 1-5
1.6.1 Location of OracleAS Personalization Components... 1-7
1.7 How It All Works .. 1-8

iv

2 The OracleAS Personalization Administrative UI

2.1 Administrative UI Overview ... 2-1
2.1.1 Login Page ... 2-1
2.1.2 Home Page .. 2-2
2.1.3 Farms Page .. 2-2
2.1.4 Packages Page ... 2-2
2.1.5 Schedules Page.. 2-3
2.1.6 Reports Page.. 2-5
2.1.7 Log Page .. 2-5
2.2 Obtaining OracleAS Personalization Recommendations .. 2-5
2.2.1 Create an RE Farm with an RE ... 2-6
2.2.2 Create a Package... 2-7
2.2.3 Schedule a Build ... 2-7
2.2.4 Schedule a Deployment... 2-8
2.2.5 Summary ... 2-8
2.2.6 MTR Sample.. 2-8

3 Using the REAPI Demo

3.1 Before Running REAPI Demo.. 3-2
3.2 Start REAPI Demo ... 3-2
3.2.1 Proxies.. 3-3
3.2.2 View Source Code .. 3-3
3.3 Exercises.. 3-3
3.3.1 Values and Results ... 3-3
3.3.2 Exercise 1: Creating a Proxy ... 3-4
3.3.3 Exercise 2: A Sessionful Web Application .. 3-4
3.3.4 Exercise 3: A Sessionless Web Application... 3-8
3.3.5 Exercise 4: Change Visitor to Customer.. 3-10
3.4 Summary... 3-10

A Recommendation Algorithms

A.1 Predictive Association Rules.. A-1
A.2 Transactional Naive Bayes ... A-2

v

Glossary

Index

vi

vii

Send Us Your Comments

Oracle Application Server Personalization User’s Guide, 10g (9.0.4)

Part No. B12102-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ infodev_us@oracle.com
■ FAX: 781-238-9893 Attn: OracleAS Personalization Documentation
■ Postal service:

Oracle Corporation
OracleAS Personalization Documentation
10 Van de Graaff Drive
Burlington, Massachusetts 01803
U.S.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

viii

 ix

Preface

Oracle Application Server Personalization provides real-time personalization for
Web sites using an integrated real-time recommendation engine that is embedded in
an Oracle database. OracleAS Personalization is based on data mining technology
and modeling; it builds a predictive model of customer preferences using
Web-based behavioral data collected by a Web site as well as demographic data.

This manual is designed to introduce Java programmers and DBAs to the basic
components and interfaces of OracleAS Personalization.

Intended Audience
This manual is intended for users of OracleAS Personalization:

■ Database administrator (DBA) who administers OracleAS Personalization

■ Web applications designer

■ Web applications programmer

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at http://www.oracle.com/accessibility/.

x

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Structure
This manual contains the following:

■ Chapter 1, "Introducing OracleAS Personalization"

■ Chapter 2, "The OracleAS Personalization Administrative UI"

■ Chapter 3, "Using the REAPI Demo"

■ Appendix A, "Recommendation Algorithms"

■ Glossary

Requirements
To follow the exercises in this manual, you will need to have OracleAS
Personalization installed, including the option of installing the REAPI demo.
(During installation, you are asked whether you want to install the demo data; you
do.)

OracleAS Personalization needs both Oracle9i and Oracle Application Server
installed, possibly on different systems. If they are installed on different systems,

■ install the MOR, MTR, and RE schemas on the machine where Oracle9i is
loaded

■ install REAPI and the REAPI demo on the machine where Oracle Application
Server is loaded

■ the Administrative UI operates from the OracleJServ/HTTP server

The following software is required for the Administrative UI browser:

■ Netscape 4.75 or Internet Explorer 5.5 with SP1.

 xi

Where to Find More Information
Documentation for OracleAS Personalization at the current release consists of the
following documents:

■ Oracle Application Server 10G Release Notes, 10g (9.0.4), which contains a chapter
for each component of Oracle Application Server. The chapter for the OracleAS
Personalization component contains platform-specific information, a bug
report, and informatioin about any late-breaking changes.

■ Oracle Application Server Personalization User’s Guide, release 10g (9.0.4) (this
document).

■ Oracle Application Server Personalization Administrator’s Guide, release 10g (9.0.4).

■ Oracle Application Server Personalization Programmer’s Guide, release 10g (9.0.4). A
programmer’s manual for programming the recommendation engines in real
time and for obtaining bulk recommendations.

■ The API classes and methods are also described in Javadoc (Oracle Application
Server Personalization API Reference), updated for the current release.

Related Manuals
OracleAS Personalization documentation is a component of the Oracle Application
Server 10g (9.0.4) Documentation Library. See especially:

■ Oracle Application Server 10G Concepts

■ Oracle Application Server 10G Administrator’s Guide

■ Oracle Application Server 10G Installation Guide (the appropriate version for your
operating system).

Documentation Formats
Documentation for OracleAS Personalization is provided in PDF and HTML
formats.

To view the PDF files, you will need

■ Adobe Acrobat Reader 3.0 or later, which you can download from
www.adobe.com.

To view the HTML files, you will need

■ Netscape 4.x or later, or

■ Internet Explorer 4.x or later

xii

Online Help
The OracleAS Personalization Administrative UI includes extensive online help that
can be summoned from a list of contents and from Help buttons.

Conventions
In this manual, Windows refers to the Windows 95, Windows 98, and the Windows
NT operating systems.

The SQL interface to Oracle9i is referred to as SQL. This interface is the Oracle9i
implementation of the SQL standard ANSI X3.135-1992, ISO 9075:1992, commonly
referred to as the ANSI/ISO SQL standard or SQL92. In examples, an implied
carriage return occurs at the end of each line, unless otherwise noted. You must
press the Return key at the end of a line of input.

The table below shows the conventions followed in this manual and their meanings:

Convention Meaning

boldface Commands, menu names, menu items, names of dialogs.

 code Data fields and values, special characters, etc., examples of files, data,
filenames, and pathnames.

italics Argument names and placeholders in command formats.

<> Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

% user input
system output

In interactive examples, user input is shown in bold typewriter, and
system output is shown in regular typewriter.

Introducing OracleAS Personalization 1-1

1
Introducing OracleAS Personalization

Oracle Application Server Personalization (OracleAS Personalization) enables 1:1
marketing for e-businesses by dynamically serving personalized recommendations
in real time to both registered customers and anonymous visitors. OracleAS
Personalization uses data mining technology to sift through the large amounts of
data gathered from Web sites and other applications to find patterns within
purchase, demographic, ratings, and navigational data. OracleAS Personalization
answers such questions as "Which items is this person most likely to buy or like,
and with what likelihood?", "People that bought this item are likely to buy which
other item?", and "What should I offer this customer to retain his or her business?"

This chapter first explains what personalization is and then introduces OracleAS
Personalization.

1.1 What Is Personalization?
Personalization makes recommendations automatically, implicitly, and explicitly. It
should not be confused with similar processes such as customization, business
rules, or collaborative filtering.

Customization requires users to explicitly state preferences such as which stocks or
sports teams to track. Personalization automatically deduces the customer’s
interests from the customer’s behavior.

Business rules, such as "people who buy digital cameras buy many batteries for the
cameras," are created from the experience of human beings running a business.
They are not automatic and do not necessarily apply to a particular customer.

Collaborative filtering considers a customer’s purchasing history but usually is not
able to distinguish gifts from regular purchases. For example, you may never buy
perfume for yourself, but do sometimes buy perfume as a gift. In this case, you may

What Is OracleAS Personalization?

1-2 OracleAS Personalization User’s Guide

not want to get recommendations about specials on perfume. Personalization can
take such things into consideration.

Personalization permits delivering recommendations with the touch and timing of
someone who knows you well.

1.2 What Is OracleAS Personalization?
OracleAS Personalization is an integrated software product that provides a way for
businesses to personalize recommendations they make to customers.

Recommendations are personalized for each customer. Note: A customer is often
thought of as an anonymous visitor or registered customer at a Web site, but can
also be a customer calling in to a call center or using an ATM machine. For
OracleAS Personalization to be able to serve recommendations, the applications
need only be able to make Java-API calls to or from OracleAS Personalization.

OracleAS Personalization collects the data and uses it to build predictive models
that support personalized recommendations of the form "a person who has clicked
links x and y and who has demographic characteristics a and b is likely to buy z".

OracleAS Personalization incorporates visitor activity into its recommendations in
real time — during the Web visitor’s session. For example, OracleAS
Personalization records a visitor’s navigation through the Web site, noting the links
that are clicked, etc. The visitor may respond to a Web site’s request to rate
something, e.g., a book or a movie; the rating becomes part of the data stored for
that visitor. Any purchases made become part of the data stored for that visitor. All
the Web-based behavior for the visitor is saved to a database, where OracleAS
Personalization uses it to build predictive models. This data can be updated with
data collected in subsequent sessions, thereby increasing the accuracy of
predictions.

OracleAS Personalization can work in conjunction with an existing Web application
or other customer applications. The Web application asks OracleAS Personalization
to record certain activities, and the data is saved by OracleAS Personalization into a
schema in an Oracle9i database.

The application asks OracleAS Personalization to produce a list of products likely to
be purchased by the visitor; a scored list of recommendations compiled from the
visitor’s current behavior (stored in a database table) and from data in another
schema holding historical data is passed to the application.

A third schema maintains administrative schedules and activities.Although
recommendations to Web site visitors is one important use of OracleAS
Personalization, OracleAS Personalization can provide recommendations in other

How Does OracleAS Personalization Collect the Data?

Introducing OracleAS Personalization 1-3

situations. Any application that collects customer data and needs to provide
recommendations can use OracleAS Personalization. OracleAS Personalization also
has a batch interface that can be used to generate recommendations that would be
useful in marketing campaigns.

1.3 What Kind of Data Does OracleAS Personalization Collect?
OracleAS Personalization collects four kinds of data:
■ navigational behavior
■ ratings
■ purchases
■ demographic data

Of these, navigational behavior allows the most flexibility. It can represent anything
the Web application wants to consider a hit (e.g., viewing a page, clicking a
link/item, etc.).

Visitors to the Web site are of two types: registered visitors (customers) and
unregistered visitors (visitors). For customers, OracleAS Personalization has both
data from a current session and historical data collected over time for that customer,
as well as demographic data. For visitors, there is no historical data, so
recommendations are based on current session behavior and any demographic data
that may be available.

1.4 How Does OracleAS Personalization Collect the Data?
OracleAS Personalization collects the data using Java calls provided by the REAPI
(Recommendation Engine Application Programming Interface). These calls add
information to the recommendation engine (RE) cache for the specific session,
identified by a session ID. The RE finds the correct session ID by looking up one of
the following arguments passed in the REAPI calls:

appSessionID -- used by sessionful Web applications (that is, an application that
stores an identifier for each session)

customerID -- used by sessionless Web applications (that is, an application that
does not store an identifier for each session)

In more detail: The data collected are temporarily stored in a dual buffer cache.
Periodically the buffer is flushed and the data are sent to the appropriate RE
schema. The session data are then used, combined with historical data, to generate
recommendations. Finally, the RE instance periodically flushes the data to the

What Does OracleAS Personalization Do with the Data?

1-4 OracleAS Personalization User’s Guide

Mining Table Repository (MTR) for sessions that have concluded or timed out. The
OracleAS Personalization administrator can set configuration parameters to
indicate what data (by data source type) is saved to the MTR. The data in the MTR
is then used to build predictive models for future deployment.

1.4.1 Sessionful and Sessionless Web Applications
Some Web applications are sessionful, i.e., they create a session for each visit to the
Web site. Others are sessionless (stateless), i.e., they do not create sessions.

Regardless of whether the calling Web application is sessionful or sessionless,
OracleAS Personalization is always sessionful; OracleAS Personalization always
creates a session internally and maps that session to the Web site’s session if there is
one.

During the OracleAS Personalization session, the Web application can collect data
and/or request recommendations.

1.5 What Does OracleAS Personalization Do with the Data?
OracleAS Personalization uses the data to build data mining models. The models
predict what the Web site visitor will probably like or buy. The predictions are based
on the data collected for that Web site visitor in previous sessions, in the current
session, and all available demographic, ratings, purchase, and navigational data
stored in the MTR.

A model is no better than the data that it is based on. As time passes, more data is
collected. When there is more data available, a model should be rebuilt.

The OracleAS Personalization Administrator defines a package that controls model
building and deployment. A package specifies the build settings and other
attributes that control the way a models is to be built, as well as the RE Farm
(collection of recommendation engines) to which the model is to be deployed. After
the build is complete, the package consists of the rules tables that are deployed to
the recommendation engines in the specified RE Farm.

The OracleAS Personalization Administrator creates and manages schedules for
building the packages, and for deploying the packages to the recommendation
engines (REs) that will produce the recommendations. Recommendation engines
with the same package are grouped together in recommendation engine farms (RE
Farms). These and related terms are defined more fully in the next section.

OracleAS Personalization Components

Introducing OracleAS Personalization 1-5

1.5.1 Models Built by OracleAS Personalization
OracleAS Personalization uses data mining models to make predictions. A model is
actually part of an OracleAS Personalization package.

OracleAS Personalization uses one of two algorithms, depending on the type of
recommendation requested by the Web application. Both algorithms are based on a
theorem of Bayes concerning conditional probability. See Appendix A for a
description of the algorithms.

Data for Model Building
Model building requires data. OracleAS Personalization must have the data
required to build a model before you try to build and deploy a package.

If you have data collected and saved to an Oracle database, that data can be used to
populate the MTR tables. As an alternative, the MTR schema can be mapped to the
existing data via views.

However, if you have no previously collected data, you must use the REAPI
methods addItem and addItems to collect data. Data collection occurs in the
Recommendation Engine (RE). For an RE to be up and running, there must be a
package deployed in that RE. However, in order to build and deploy a package, you
must have data in the MTR. To put it simply, you can’t collect data unless you have
enough data to build a package. You resolve this problem by populating the MTR
with seed data and then using the seed data to build and deploy an initial package.
See the administrator’s guide for information on how to use the seed data.

1.6 OracleAS Personalization Components
The user of the OracleAS Personalization Administrative UI is anyone who needs to
build and deploy packages. The Oracle Application Server Personalization User’s Guide
is designed to introduce anyone who needs to build and deploy packages to the
basic components and interfaces of OracleAS Personalization. This guide may also
be useful to people who design and implement REAPI programs.

OracleAS Personalization Components

1-6 OracleAS Personalization User’s Guide

The OracleAS Personalization components and interfaces consist of:

■ Administrative UI: A browser-based user interface that permits the OracleAS
Personalization Administrator to schedule package builds, deployments, and
reports, manage RE Farms and REs, and otherwise manage OracleAS
Personalization. Chapter 2 describes the Administrative UI in detail. The
Administrative UI is installed on the system where Oracle Application Server is
installed.

■ Recommendation Engine (RE): An RE consists of programs and tables (RE
schema) and programs required for collecting data and making
recommendations. The RE supports a Web application written in Java for
collecting and preprocessing customer and visitor data, and for providing
recommendations to those customers and visitors. Access to the RE is provided
via the REAPI (Recommendation Engine Application Programming Interface).
A given RE may support one or more Java server processes in a Web
application. An RE resides in the customer database on the system where
Oracle9i is installed.

■ Recommendation Engine Farm (RE Farm): A logical grouping of one or more
REs that are populated with the same deployable package (data mining
model(s)). An RE Farm is generally treated as a single unit for management
from the Administrative UI.

■ Package: An object created using the Administrative UI. A package contains the
information from historical data necessary to make recommendations. A
package defines the build settings and other attributes necessary for building
data mining models and for scheduling model builds. A package also contains
the model that is built from this definition.

■ Mining Object Repository (MOR): The schema that maintains mining
metadata and mining model results. The MOR contains data required for
logging in to the data mining system, logging off, and scheduling OracleAS

Note: OracleAS Personalization requires both an Oracle9i
database and the Oracle Application Server. The database and the
application server can either be installed on the same system or on
different systems. If they are installed on different systems, some
OracleAS Personalization components are installed on the system
where the database is installed; others are installed on the system
where the application server is installed.

OracleAS Personalization Components

Introducing OracleAS Personalization 1-7

Personalization events. The Administrative UI provides a way to interact with
the MOR. The MOR is installed on the system where the database is installed

■ Mining Table Repository (MTR): The MTR contains the schema and data to be
used for data mining. The MTR has a fixed schema designed to support the
building of models that produce recommendations. The MTR resides in the
customer database on the system where Oracle9i is installed.

■ Recommendation Engine API (REAPI): A collection of Java classes that enable
a Web application to collect and preprocess data used to build OracleAS
Personalization models and to obtain recommendations in real time from
OracleAS Personalization (that is, to score items for particular customers).
REAPI is installed on the system where Oracle Application Server is installed.

■ Batch Recommendation Engine API: A collection of Java classes that permits
users to obtain bulk recommendations in batch, i.e., offline. The Batch API is
installed on the system where Oracle Application Server is installed.

It is an option during OracleAS Personalization installation to populate the MTR
with a small amount of sample data. If this option is chosen, an RE demo can be
accessed and some recommendations and administrative actions can be tested.

1.6.1 Location of OracleAS Personalization Components
OracleAS Personalization requires both Oracle9i and the Oracle Application Server.
Oracle9i and Oracle Application Server may be installed on different systems.

If the database and Oracle Application Server are installed on different systems, the
following OracleAS Personalization components are installed on the system where
Oracle Application Server is installed:

■ REAPI

■ RE Batch API

■ REAPI Demo

■ The Administrative UI

All other components are installed on the system where the database is installed.

How It All Works

1-8 OracleAS Personalization User’s Guide

1.7 How It All Works
OracleAS Personalization’s components and process are diagrammed in Figure 1–1.
The diagram is a flow chart of the entire Oracle Personalization process.

Figure 1–1 Oracle Personalization Process

Keep in mind the following main points about the different OracleAS
Personalization components: the MTR (Mining Table Repository) is where all the
data is stored — data that is used to create the model that produces the rules that
generate the recommendations.

How It All Works

Introducing OracleAS Personalization 1-9

The MOR (Mining Object Repository) provides the administrative environment
within OracleAS Personalization; it holds all the tables that are responsible for
OracleAS Personalization’s administrative functions. Your access to the MOR is
provided by the Administrative UI. It is through the Admin UI that you control the
MOR functions such as creating recommendation engine farms, building packages,
scheduling packages for builds and deployments — all these functions are
accomplished through the Admin UI.

The RE (Recommendation Engine) is the part of OracleAS Personalization that
generates the recommendations that are displayed within a Web application. The
RE is also the part of OracleAS Personalization that collects data into the RE
schema.

The process, in a nutshell, is as follows: The data (step 1) resides in the MTR, and is
transferred to the MOR (step 2), where a package (a data mining model) is
developed. Once that package is built, it is deployed to the recommendation engine
(step 3), where it is used to score data and records and develop the
recommendations that are then passed to the Web application (step 4). The Web
application provides data via the REAPI data collection methods, which are passed
back to the REs (step 5) and are eventually synchronized back to the MTR (step 6).

Where does the data come from? Wherever it comes from, it has to end up in the
MTR. There are two ways of getting the data into the MTR. The most direct way is
to map existing customer data (session data — ratings, purchasing, or navigational
— or demographic data) onto the MTR schema. This method lets you generate
recommendations very quickly. If you have no customer data, you can use the seed
data that is optionally installed with OracleAS Personalization. The point is simply
that you have to have data of some kind to get started; you cannot build a model
without data. It can be real data, mapped to the MTR schema, or artificial data,
which you use to get started and can then adjust as real customer data comes in.

The second way to get data into the MTR is through the REAPI data collection
methods, which are implemented within the Web Site. As a visitor to the Web site
goes through the Web application, the APIs are collecting data at different points
and sending it back to the RE, which then passes the data back to the MTR, where it
is used in subsequent model builds.

Note that to collect data using REAPI calls, there must be a deployed package in the
RE. Of course, you cannot deploy a package until you build it, and you cannot build
a package without data. If you have no real data, you can use the seed data to
kick-start the process. The seed data is artificial data — it is the minimum amount of
data required to build and deploy a package. Once you have built and deployed a
package, you can collect real data, and you can then build a package that can be
used to generate recommendations relevant to your target.

How It All Works

1-10 OracleAS Personalization User’s Guide

The OracleAS Personalization Administrative UI 2-1

2
The OracleAS Personalization

Administrative UI

The Oracle Application Server Personalization (OracleAS Personalization)
Administrative UI is a browser-based user interface that permits the OracleAS
Personalization administrator to manage RE Farms and REs, schedule and deploy
packages, produce reports, and otherwise manage OracleAS Personalization.

This chapter provides an overview of the Administrative UI and then illustrates
how to use the UI to obtain recommendations.

2.1 Administrative UI Overview
Bring up the OracleAS Personalization Administrative UI by typing the following
in the URL field of your browser:

http://<hostname>/OP/Admin/

where <hostname> is the name of the system on which Oracle Application Server
is installed. Note that the URL is case-sensitive.

The first page that appears is the login page, which welcomes you to OracleAS
Personalization.

2.1.1 Login Page
Enter a user name and password for the MOR schema (a valid user name and
password were established during OracleAS Personalization installation; if you
don’t know what they are, ask the person who installed OracleAS Personalization).

■ After entering a valid user name and password, click Log in, which brings up
the OracleAS Personalization Administrative home page.

Administrative UI Overview

2-2 OracleAS Personalization User’s Guide

2.1.2 Home Page
The Home page welcomes you and briefly describes the product. At the left are
links to common tasks, such as create new farm, create package, schedule a build,
etc. They are listed in the order you would follow in executing the tasks. To the
right is a brief status of recent events (builds, deployments, and reports).

Browse the pages to get familiar with their structure and content. Click the tabs to
see the various pages. The tabs are Home, Farms, Packages, Schedules, Reports,
and Log. The tab pages organize OracleAS Personalization administrative tasks.

2.1.3 Farms Page
The Farms page lists the current recommendation engine farms. Use the Farms page
to create, delete, and in general manage recommendation engine farms.

The Farms page gives access to recommendation engines, which you add to a farm.
Adding a recommendation engine to a farm means specifying the RE’s database
connection details. These details were established during the installation of the
database.

An RE must have a connection to the MTR. If there is no pre-existing MTR
connection, you create one and give it a name. This also requires information
established during installation and configuration of the database.

2.1.4 Packages Page
The Packages page lists current packages. Use this page to create, delete, and
manage packages.

An OracleAS Personalization package contains all the information needed for
building predictive models, which includes the general settings for the package,
information about its connection to the MTR, and settings specified for the
package’s build (which includes settings for building the model).

To create a package, click Create Package. This brings up the first of three pages
that guide you through creating a package:

■ The first page, Create Package, prompts you for a name and description of the
package and asks you to specify the MTR connection by name. If there is no
MTR connection, you are propted to create one.

Administrative UI Overview

The OracleAS Personalization Administrative UI 2-3

■ The second page, Specify Build Settings, prompts you for the build settings,
which include

■ Recommendation performance: This is a trade-off between accuracy and
speed — that is, between higher recommendations accuracy and faster
recommendations.

■ New products: Specify whether you want OracleAS Personalization to use a
proxy for new products. There must be proxy information in the MTR to
use this option.

■ Choose what time-stamped session data to use: Use data from any dates,
including data with no dates; a rolling window of the past x number of
days, or between specified dates.

■ The third page, Confirm Settings, summarizes and confirms the settings you
have specified. The Confirm Settings page also gives you the option of going
directly to scheduling a build for the package.

2.1.5 Schedules Page
Click the Schedules tab and note the three kinds of events that are scheduled:
Builds, deployments, and reports. The Schedules tab opens by default to the Build
Schedule page (see the next section).

Build Schedule
Use this page to create, edit, delete, and in general manage the building schedule of
a package, that is, the creation of predictive models and other information needed
to make recommendations.

To create a new build schedule, click Create Build Schedule. The Create Build
Schedule page gives you the following options:

■ Build the package as soon as possible.

■ Build the package at a future time that you specify, and with the frequency you
specify. When a package is built, it is stored in the MOR, ready for deployment.

This page also gives you the option of going directly to scheduling deployment of
the package (see the next section).

Administrative UI Overview

2-4 OracleAS Personalization User’s Guide

Deployment Schedule
Use this page to create, edit, delete, and in general manage deployment schedules.

Deploying a package means copying it to every RE on a given RE Farm. Multiple
REs with the same package can share the load.

To create a new deployment schedule, click Create Deployment Schedule. The
Create Deployment Schedule page gives you the following options:

■ Deploy the package every time it is built.

■ Deploy the package as soon as possible.

■ Deploy the package at a future time that you specify, and with the frequency
you specify.

Report Schedule
Use this page to create and manage report schedules.

To schedule a report, click Create report schedule.

The Create Report Schedule page gives you the following options:

■ General settings: Specify the RE Farm, the report type, the email address of the
person who should receive notification, and any notes you may wish to make.

■ Data selection: Use data from any dates; a rolling window of the past x number
of days, or between specified dates.

■ Schedule: Run the report as soon as possible or schedule the run for a specified
date with specified frequency.

The Create Report Schedule page also lets you do the following:

■ To update or look at the details of a report schedule, click its Edit icon.

■ To delete a scheduled report, select it and click Delete.

■ To stop a scheduled report that is running, select it and click Stop.

Note: You cannot edit or delete a scheduled report while it is running or canceling;
it must be idle.

Obtaining OracleAS Personalization Recommendations

The OracleAS Personalization Administrative UI 2-5

2.1.6 Reports Page
Use this page to view reports. There are three types of reports:

■ Purchasing session report: Reports, for a user-specified period of time, the total
number of sessions, the number of sessions that had at least one purchase, and
the percentage of purchasing sessions to total sessions.

The total number of sessions includes both visitor and customer sessions.
Sessions that had purchases include only customer sessions.

■ Recommendation effectiveness report: Reports, for a user-specified time
period, the number of recommendation requests served by the system, the
number of recommended items clicked per recommendation request, and the
number of recommended items purchased per recommendation request.

This report includes all clicked and purchased items in its "Clicked" and
"Purchased" columns, even those items that are not part of the
recommendations.

■ Itemized recommendation effectiveness report: Reports, for a specified time
period, how many times the items have been recommended, how many times
they have been clicked, and how many times they have been purchased.

Entries in the "Product ID" column have the following format:

<Product type> : <Product id>

Note: The MTR tables MTR_SESSION and MTR_RECOMMENDATION_DETAIL
must be populated before a report can be generated.

2.1.7 Log Page
The event log allows you to monitor results of scheduled builds, deployments, and
reports.

To view details of an item, click its Details icon. To delete one or more items, select
the item(s) and click Delete.

2.2 Obtaining OracleAS Personalization Recommendations
You must deploy a package before you can execute a Java program that requests
recommendations or collects data.

Therefore, before you can obtain recommendations you must:

1. Create a Recommendation Engine Farm.

Obtaining OracleAS Personalization Recommendations

2-6 OracleAS Personalization User’s Guide

2. Add at least one RE to the Farm.

3. Populate at least the minimum data required in the MTR tables. You can do this
with the demo data that is loaded at the time of installataion.

4. Schedule a build and deployment.

This chapter illustrates performing these steps.

Note that you cannot build a package unless there is data available; see "Data for
Model Building" in Chapter 1 for more information.

2.2.1 Create an RE Farm with an RE
The first step is to create an RE Farm. There are two ways to start:

■ On the Home page, click the Create new farm link to bring up the Create
Recommendation Engine Farm page.

■ Click the Farms tab to go to the Farms page. On the Farms page, click Create
Farm (lower right), which brings up the Create Recommendation Engine Farm
page.

On the Create Recommendation Engine Farm page,

5. Enter a name for the farm.

6. Click Add Recommendation Engine.

7. On the Add Recommendation Engine page, enter a name for the
recommendation engine.

For the database connection details, you will need information that was
provided during installation.

■ For Host ID, Port, SID, and Database alias, you will need the database
information you provided when you installed the database.

■ For DB schema name, User name, and Password, you will need the
information provided when you installed and configured the RE schema.

8. After filling in all the fields, click Test Connection to determine whether the
database connection is successful, that is, to verify that the information
provided can be used to make a successful connection to the desired schema.

9. Assuming the database connection is successful, click OK (lower right), which
takes you back to the Create Recommendation Engine Farm page, where you
will see listed the recommendation engine you defined.

Obtaining OracleAS Personalization Recommendations

The OracleAS Personalization Administrative UI 2-7

Note: If you click Cancel instead of OK, the information you have entered is
lost.

2.2.2 Create a Package
Next, create a package.

To create a package, you must have a connection to the MTR. If you do not have an
MTR connection,

1. Click Options (upper right) and go to the MTR database connections section.
The information needed for an MTR connection comes from entries provided
when you installed and configured the MTR schema.

2. To check the database connection, click Test Connection.

3. Assuming the connection is successful, click OK, which returns you to the
Create Farm page.

Now you can create a package:

1. Click the Packages tab, which brings up the Packages page.

2. On the Packages page, click Create Package (lower right), which brings up the
first of three pages of the Create Package wizard.

3. Give the package a name (required), a description (optional), confirm the name
of the MTR connection, and click Next.

4. Specify the settings to be used to build and tune the new package, and click
Next.

5. Review the settings you have specified, leave the Schedule a build box
checked, and click Finish. This takes you to the Create Build Schedule page.

2.2.3 Schedule a Build
On the Create Build Schedule page, select

1. Build as soon as possible.

2. Leave the Schedule deployment box checked.

3. Click OK. This takes you to the Create Deployment Schedule page.

Obtaining OracleAS Personalization Recommendations

2-8 OracleAS Personalization User’s Guide

2.2.4 Schedule a Deployment
On the Create Deployment Schedule page,

1. Select Deploy every time the package is built.

2. Leave the default for Frequency, Once.

3. Click OK. This returns you to the Packages page.

2.2.5 Summary
You have created an RE Farm with one RE, and you have created a package and
scheduled its build and deployment.

Check the Packages page after a few minutes to see whether the package has yet
built and deployed. The Packages page dispays the status; refresh the page by
clicking Go.

When the package has built and deployed successfully, you can use it to collect data
and make recommendations using the Recommendation Engine API.

2.2.6 MTR Sample
Next, browse the contents of the Mining Table Repository (MTR) database used to
build the model. This is the prepopulated MTR that is installed when OracleAS
Personalization is installed if you select that option. This prepopulated MTR
provides the data needed to perform the exercises described in this manual.

Use SQL*Plus commands to examine the contents of any of the database tables. The
table below shows what part of one of the MTR database tables looks like. It
contains movie ratings by customers, demographic data on those customers, an ID
for each movie that was rated, the rating given the movie by the customer, and the
data source type.

Table 2–1 Sample MTR Database Table

CUSTOMER_ID ITEM_ID ITEM_TYPE ATTRIBUTE_ID BIN_VALUE
DATA_
SOURCE_TYPE

2 264 MOVIE 1 1 2

2 389 MOVIE 2 1 3

2 153 MOVIE 2 2 3

2 354 MOVIE 2 2 3

Obtaining OracleAS Personalization Recommendations

The OracleAS Personalization Administrative UI 2-9

This sample comes from a large database table that contains movie ratings by
customers, demographic data on those customers, an ID for each movie that was
rated, and the rating given the movie by the customer. Table columns are as follows:

■ CUSTOMER_ID: The data is all from customer with CUSTOMER_ID = 2.

■ ITEM_ID: The ID numbers identify particular movies. Demographic
information for a customer always has an ITEM_ID of 0.

■ ITEM_TYPE: Refers to kind of item being rated; here the type is movie.
Demographic informtion for a customer always has an ITEM_TYPE of NONE.

■ ATTRIBUTE_ID: Values 1, 2, and 3 are attributes from purchasing, rating, and
navigational data; values 4, 5, and 6 are from demographic data (the last three
rows), where 4 = age, 5 = gender, and 6 = marital status.

■ BIN_VALUE: Ratings were binned in 3 bins; the values here correspond to those
bins.

■ DATA_SOURCE_TYPE: (what kind of data) 1 = demographic, 2 = purchases,
3 = ratings, 4 = navigational.

For more information about the OracleAS Personalization schemas, see the Oracle
Application Server Personalization Administrator’s Guide.

2 264 MOVIE 2 3 3

2 153 MOVIE 3 1 4

2 264 MOVIE 3 1 4

2 354 MOVIE 3 1 4

2 389 MOVIE 3 1 4

2 0 NONE 4 3 1

2 0 NONE 5 1 1

2 0 NONE 6 2 1

Table 2–1 (Cont.) Sample MTR Database Table

CUSTOMER_ID ITEM_ID ITEM_TYPE ATTRIBUTE_ID BIN_VALUE
DATA_
SOURCE_TYPE

Obtaining OracleAS Personalization Recommendations

2-10 OracleAS Personalization User’s Guide

Using the REAPI Demo 3-1

3
Using the REAPI Demo

This chapter presents several exercises using the REAPI Demo.

Running the REAPI Demo accomplishes the following:

■ You can verify that OracleAS Personalization was installed correctly by using
the REAPI to get recommendations. To run REAPI Demo, OracleAS
Personalization must be installed properly and the REAPI Demo must be
configured to access RE. The demo data must also be loaded into the MTR.

■ To follow the exercises in this chapter, you need to have installed a populated
MTR (installed if you selected "Install demo data" when you installed OracleAS
Personalization).

■ You can experiment with the configuration so that you can learn how best to
configure RE to suit your Web site.

■ You can familiarize yourself with OracleAS Personalization’s Java operations
and see how the calls work and how they interact.

■ You can view the source code to see how the program uses the REAPI calls.

For detailed information about the REAPI, see the Oracle Application Server
Personalization Programmer’s Guide.

For details about installing REAPI, see the Oracle Application Server 10g
Administrator’s Guide.

Note: When you are finished using the REAPI demo, you should
remove the accounts associated with it. Leaving the accounts can
result in security problems.

Before Running REAPI Demo

3-2 OracleAS Personalization User’s Guide

In a production environment, the REAPI calls are used to "instrument" a Web site so
that you can collect the data needed to create good models and generate
recommendations.

The REAPI and the REAPI Demo are installed on the system where Oracle
Application Server is installed.

3.1 Before Running REAPI Demo
Before running the REAPI Demo, you need to have created and deployed a package
to the recommendation engine so that there is data available for making
recommendations.

When you install OracleAS Personalization, choose the option to install the demo
data into the MTR.

Next, use the OracleAS Personalization Administrative UI (described in Chapter 2)
to perform the following steps:
1. Create a movies MTR connection, using the sample movies MTR database

supplied with OracleAS Personalization.
2. Create a package using the movies MTR connection created in step 1.
3. Create a recommendation engine farm (RE Farm) with one recommendation

engine (RE).
4. Build a package.
5. Deploy the movies package to the farm created in step 3.

After the movies package is successfully deployed to the RE Farm, you can begin
experimenting with the REAPI demo to see how the REAPI calls work.

3.2 Start REAPI Demo
When you are ready to begin working with the REAPI Demo, point your browser to
the following URL:

http://<hostname>/OP/redemo/

where <hostname> is the name of the system on which Oracle Application Server
is installed. This will bring up the REAPI Demo user interface. The first page that
appears is the Welcome to OP REAPI Demo page.

Exercises

Using the REAPI Demo 3-3

3.2.1 Proxies
REAPI calls execute in the context of a proxy, which specifies the environment in
which the calls execute. One of the important elements of the environment is the
default RE schema. You must create a proxy before you execute any calls, as shown
in the steps outlined below.

3.2.2 View Source Code
While you are running the REAPI Demo, you can view the source code for the
demo by clicking the View Source Code link.

REAPI Demo is implemented as a Java servlet consisting of the following classes:

■ REDemoServlet.java

■ REUtil.java

■ REDemoException.java

■ REDemoConstants.java

You can view the source code for each of these classes; you can also download the
classes to your desktop.

3.3 Exercises
This section provides exercises that you can work through to get a feel for how the
REAPI Demo works. The exercises cover the following tasks:

■ Creating a proxy

■ Collecting data

■ Making recommendations

■ A sessionful exercise

■ A sessionless exercise

■ Changing a visitor to a customer

3.3.1 Values and Results
To get meaningful results from these examples, you must enter valid values (that is,
values for which there are recommendations) to REAPI Demo. All the values in this

Exercises

3-4 OracleAS Personalization User’s Guide

demo produce useful results. You can determine other values by examining the
populated MTR provided with OracleAS Personalization.

The results returned when you execute the calls will be similar to but not identical
to the results displayed in this document.

3.3.2 Exercise 1: Creating a Proxy
You must create a proxy before you execute any calls. Here’s how: In the frame on
the left of the REAPI Demo screen, click createProxy, and enter these values:

■ RE Name: The name of the recommendation engine schema that you will use.

■ JDBC URL: jdbc:oracle:thin:<host>:<port>:<sid> Enter the values
that were specified during OracleAS Personalization installation for host, port,
and SID.

■ User name: The user name for the database. Enter the RE user name that was
specified during OracleAS Personalization installation.

■ Password: The password for the RE user. Enter the password that was specified
during OracleAS Personalization installation.

■ Cache Size: 3242 KB (default).

■ Archive Interval: 10,000 milliseconds (default).

Click Create RE Proxy.

REAPI Demo displays a message indicating success or failure. (REAPI Demo does
this for every action.)

3.3.3 Exercise 2: A Sessionful Web Application
Follow these steps to experiment with any of the methods listed under the heading
"Sessionful." (These are the methods that are valid with a sessionful Web
application.)

A sessionful Web application starts a session for each customer when the customer
logs in to the site.

1. To create a session, specify a customer ID and a session ID. At the left, under
Sessionful, click createSession to bring up the Create RE Session page, and
enter these values:

■ User Type: Customer

Exercises

Using the REAPI Demo 3-5

■ User ID: 1

■ App Session ID: 1011 (You must enter a unique number; this number
cannot be used more than once.)

Click Create Session.

2. You can now execute any of the methods listed under Sessionful, for example,
to obtain recommendations. To do this, click recommendTopN to bring up the
Recommend Top Items page, and enter these values:

■ Number of recommendations to display: 10

■ Tuning Settings

– Data Source Type: PURCHASING

– Interest Dimension: PURCHASING

– Personalization Index Type: LOW

– Profile Data Balance: CURRENT

– Profile Usage: INCLUDE

■ Filtering Settings

– Filtering Type: All Items

– Taxonomy ID: 1

– Select Categories: For Include items, you can highlight any individual
items, or, if you set Filtering Type to All Items, you do not need to
highlight any items or categories.

■ Recommendation Content

– Sorting order for Prediction: ASCEND

– Sorting order for Type: NONE

– Sorting order for ID: NONE

Click Recommend Top N.

OracleAS Personalization then returns 10 or fewer recommendations for the user of
this session. It will look something like Table 3–1, below, which displays
information for four movies. It displays the item type (MOVIE, for each), the item

Exercises

3-6 OracleAS Personalization User’s Guide

ID (a unique number for each item), and the ranking of the four movies, ranked on
the likelihood of being purchased):

3. You can collect data while a session is running. To add data, click addItems to
bring up the Add Items page, and enter these values

■ Data source Type: RATING

■ Item Type: MOVIE

■ Item ID: 122

■ Value: 5 (Rating on a scale from 1 to 5.)

Click Add>> to move this item to the list; click Add Items to add it to the RE.
This updates the information in the RE tables for this user.

4. Next, try Hot Picks. Hot picks are used by some Web sites; for example, daily
specials might be in a Hot Picks Group. Click recommendHotPicks to bring up the
Recommend from Hot Picks page, and enter these values:

■ # of Recommended Items: 10

■ Hot Pick Group: COMEDY

■ Tuning Settings

– Data Source Type: NAVIGATION

– Interest Dimension: NAVIGATION

– Personalization Index Type: LOW

– Profile Data Balance: HISTORY

– Profile Usage: INCLUDE

■ Filtering Settings

– Filtering Type: Exclude Items

Table 3–1 Recommended Top N Items for User ID = 1

Type Item ID Rating

MOVIE 345 1.000

MOVIE 383 2.000

MOVIE 147 3.000

MOVIE 223 4.000

Exercises

Using the REAPI Demo 3-7

– Taxonomy ID: 1

– Select Categories: For Exclude items, you do not need to select here.

■ Recommendation Content

– Sorting order for Prediction: ASCEND

– Sorting order for Type: NONE

– Sorting order for ID: NONE

Click Recommend Hot Picks.

OracleAS Personalization then returns 10 or fewer recommendations for the
user of this session. In this case, it returns something like what is shown in
Table 3–2, below. Again, it displays the item type (MOVIE), the item ID (a
number identifying each movie), and the rating.

5. You can also rate items with respect to the current user, that is, determine how
the current user will rate items. Click rateItems to bring up the Rate Items
page, and enter these values:

■ Taxonomy ID: 1

■ Tuning Settings

– Data Source Type: RATING

– Interest Dimension: RATING

– Personalization Index Type: MEDIUM

– Profile Data Balance: HISTORY

– Profile Usage: INCLUDE

Table 3–2 Recommended Hotpick Items for User ID = 1

Type Item ID Rating

MOVIE 360 1.000

MOVIE 370 2.000

MOVIE 116 3.000

MOVIE 83 4.000

MOVIE 18 5.000

MOVIE 20 6.000

Exercises

3-8 OracleAS Personalization User’s Guide

■ Recommendation Content

– Sorting order for Prediction: ASCEND

– Sorting order for Type: NONE

– Sorting order for ID: NONE

■ Items

– Item Type: MOVIE

– Item ID: 72

Click Add>> to add this item to the list. You can add other items to the list,
if you wish.

– Similarly, add "Movie, 122" and "Movie, 287".

– When you are finished adding items, click Rate Items.

REAPI Demo returns the following:

6. When you have finished experimenting, close the session. (REAPI sessions that
are not explicitly closed eventually time out; it is a good practice, however, to
close them explicitly.) Close the session by clicking closeSession, which brings
up the Close the Current Session page. Click the Close Session button.

3.3.4 Exercise 3: A Sessionless Web Application
If your Web site does not start a session for each visitor or customer, you use the
calls listed under Sessionless. For each of these calls, you provide the identification
data for user and session. Otherwise, the calls are identical to sessionful ones. This
example illustrates several sessionless calls.

1. If a customer buys an item, you may want to offer the customer a similar or
related item, that is, a cross-sell item. To create cross-sell recommendations for
an item from the HORROR hot picks group, click Cross-SellFromHotpicks in

Table 3–3 Rate Items for User ID = 1

Type Item ID Rating

MOVIE 72 4.3071

MOVIE 287 4.3453

MOVIE 122 4.3569

Exercises

Using the REAPI Demo 3-9

the left frame under Sessionless. The Cross-Sell for Items from Hot Picks page
is displayed.

■ Number of recommendations to display: 10

– Hot Pick Group: HORROR

■ User Details

– User Type: Customer

– User ID: 1

■ Tuning Settings

– Data Source Type: NAVIGATION

– Interest Dimension: NAVIGATION

– Personalization Index Type: MEDIUM

– Profile Data Balance: CURRENT

– Profile Usage: INCLUDE

■ Filtering Settings

– Filtering Type: Exclude Items

– Taxonomy ID: 1

– Select Categories: Select items you want to exclude or select none.

■ Recommendation Content

– Sorting order for Prediction: ASCEND

– Sorting order for Type: NONE

– Sorting order for ID: NONE

■ Items

– Item Type: MOVIE

– Item ID: 199

Click Add>> to add this item to the list. Similarly, add MOVIE 354 and
MOVIE 122 to the list.

When you have finished adding items, click Cross-Sell for Items from Hot Picks.

Summary

3-10 OracleAS Personalization User’s Guide

OracleAS Personalization then returns 10 or fewer recommendations for the user of
this session. In this case, it returns the following:

3.3.5 Exercise 4: Change Visitor to Customer
If a visitor registers as a user during a session, you need to change the visitor to a
customer. You can only change a visitor to a customer during a session that the user
entered as a visitor.

1. To create a session using the default proxy, you specify a visitor ID and a
session ID. At the left, under Sessionful, click createSession to bring up the
Create RE Session page, and enter these values:

■ User Type: Visitor

■ User ID: 100

■ App Session ID: 1015

Note that App Session ID value must refer to a session that does not
already exist.

2. Now you can change the visitor to a customer. At the left, under Sessionful,
click setVisitorToCustomer to bring up the Set Visitor to Customer page. Click
Set Visitor to Customer.

REAPI Demo displays a message that announces SUCCESS!

You can close the session now or continue experimenting, as you like.

3.4 Summary
This chapter has presented exercises to show you how the REAPI works.

The Demo is different from the way you would use the REAPI calls in practice. In
practice, you would embed the REAPI calls in a Java program that you write, and
you would execute the program as you ordinarily do.

Table 3–4 Cross-Sell for Items for Hot Picks for User ID = 1

Type Item ID Rating

MOVIE 72 1.2785

Recommendation Algorithms A-1

A
Recommendation Algorithms

This appendix contains descriptions of the two algorithms used by Oracle
Application Server Personalization (OracleAS Personalization) to create models.
Models are used to generate personalized recommendations. The two algorithms
are

■ Predictive Association Rules

■ Transactional Naive Bayes

OracleAS Personalization automatically picks the best algorithm to for a particular
type of recommendation.

A.1 Predictive Association Rules
The most familiar use of association rules is what we know as "market basket
analysis," i.e., rules about what goes with what in a shopping cart, such as "eighty
percent of people who buy beer also buy potato chips."

The association rules algorithm finds combinations of items that appear frequently
in transactions and describes them as rules of the following "if-then" form:
"If A, then B," where A is the antecedent and B is the consequent. (Note that the two
sides of the proposition can be more than one item each; for example, "If A, B, and
C, then D and E." For Predictive Association Rules, there is only one item in the
consequent.)

It turns out that many such rules can be found -- the challenge is to find those that
are meaningful or interesting and that also lead to actionable business decisions. An
example is "eighty percent of people who buy beer and pretzels also buy chocolate."
This combination is not obvious, and it can lead to a change in display layout, e.g.,
moving the chocolate display closer to where beer is on sale.

Transactional Naive Bayes

A-2 OracleAS Personalization User’s Guide

On the other hand, a rule like "eighty percent of people who buy paint also buy
paint brushes" is not very useful, given that it’s obvious and doesn’t lead you to
change the arrangement of these items in your store -- they’re probably already
displayed near each other.

Similarly, "eighty percent of people who buy toothpaste and tissues also buy
tomatoes" is not obvious, and is probably not useful as it may not lead to any
actionable business decision.

To identify rules that are useful or interesting, three measures are introduced:
support, confidence, and lift.

Support: First, determine which rules have strong support, i.e., rules that are based
on many examples in the database. Support is the percentage of records that obey
the rule, i.e., baskets that contain both A and B.

Confidence: Next, determine which rules have high confidence, i.e., instances that
obey the rule (contain both A and B) as a percentage of all instances of A. For
example, assume you have 10 instances of A, 8 of which also have B; the other 2 do
not have B. Confidence is 8 out of 10, or 80 percent.

Lift: Lift compares the chances of having B, given A, to the chances of having B in
any random basket. Of the three, lift is the most useful because it improves
predictability.

A.2 Transactional Naive Bayes
Naive Bayes is a type of supervised-learning module that contains examples of the
input-target mapping the model tries to learn. Such models make predictions about
new data based on the examination of previous data. Different types of models have
different internal approaches to learning from previous data. The Naive Bayes
algorithm uses the mathematics of Bayes’ Theorem to make its predictions.

Bayes’ Theorem is about conditional probabilities. It states that the probability of a
particular predicted event, given the evidence in this instance, is computed from
three other numbers: the probability of that prediction in similar situations in
general, ignoring the specific evidence (this is called the prior probability); times the
probability of seeing the evidence we have here, given that the particular prediction
is correct; divided by the sum, for each possible prediction (including the present
one), of a similar product for that prediction (i.e., the probability of that prediction
in general, times the probability of seeing the current evidence given that possible
prediction).

Transactional Naive Bayes

Recommendation Algorithms A-3

A simplifying assumption (the "naive" part) is that the probability of the combined
pieces of evidence, given this prediction, is simply the product of the probabilities
of the individual pieces of evidence, given this prediction. The assumption is true
when the pieces of evidence work independently of one another, without mutual
interference. In other cases, the assumption merely approximates the true value. In
practice, the approximation usually does not degrade the model’s predictive
accuracy much, and it makes the difference between a computationally feasible
algorithm and an intractable one.

Compared to other supervised-learning modules, Naive Bayes has the advantages
of simplicity and speed. It also lends itself to future extensions supporting
incremental learning and distributed learning.

"Transactional Naive Bayes" refers to the way the input is formatted; the algorithm
is the same. The table below shows an example of traditional data format, with
columns for the items (customer, apples, oranges, pears, and bananas) and rows for
the customers (Joe, Jim, Jeff), and zeroes or ones in each table cell, indicating
whether, for example, Joe bought an apple (no), an orange (no), a pear (no), or a
banana (yes):

Traditional data layout often produces a sparse matrix because of all those zeroes; it
takes up more space in the database, and therefore takes more time in calculations.

Transaction-based format has basically two columns: customer and "hits." For Joe,
the table cell contains "bananas":

apples oranges pears bananas

Joe 0 0 0 1

Jim 1 0 0 1

Jeff 0 1 0 0

Joe bananas

Jim apples

Jim bananas

Jeff oranges

Transactional Naive Bayes

A-4 OracleAS Personalization User’s Guide

Transactional format looks like a "shopping basket" rather than a checklist and is
better in cases where the customers buy only subsets of products. OracleAS
Personalization transforms data into transactional format, if necessary, before
building a package.

Glossary-1

Glossary

This glossary explains terms used in the text and terms encountered in discussions
related to personalization and data mining.

Admin UI (Administrative UI)

A graphical user interface that enables you to manage OracleAS Personalization,
which includes (1) scheduling the build and deployment of packages and the
generation of reports, and (2) managing the creation and use of recommendation
engines (RE) and RE Farms.

Aggregated Model

This type of model is used for all the recommendation methods except cross-sell. It
also allows all types of data source as inputs for predicting any of the interest
dimensions. See also Cross-Sell Model.

Algorithm

See Recommendation Algorithms.

Category

A group of similar items. A category is an element in a taxonomy; an abstraction for
a group of items or categories. In OracleAS Personalization, any item or category
can belong to one or more other categories. See also Taxonomy.

Category Membership

Category membership specifies how items and categories are related to other
categories. For example, an item can have a SUBTREELEAF relation to a category if
it is a descendant of that category. Similarly, a category can have a SUBTREENODE
or LEVEL relationship with another category. See also Taxonomy.

Glossary-2

Cross-Sell Model

This type of model is used only in the cross-sell methods. It allows only either
navigational or purchasing types of data source for input, and requires that the
interest dimension be directly related to the type of input data source.

Data Source Types

OracleAS Personalization uses data from four types of sources: ratings, purchasing,
navigational, and demographic.

Demographics .

The particular demographic attributes of interest to OracleAS Personalization are
listed below. They are stored in the MTR in the CUSTOMER table/view, which
consists of the following fields.

CUSTOMER_ID

NAME

GENDER

AGE

MARITAL_STATUS

PERSONAL_INCOME

HEAD_OF_HOUSEHOLD_FLAG

HOUSEHOLD_INCOME

HOUSE_HOLD SIZE

RENT_OWN_INDICATOR

ATTRIBUTE1 - ATTRIBUTE50: These are generic attributes that can be mapped
to any column in the customers’ database or can be null. They provide extra
flexibility. The first 25 are for string (VARCHAR2) data; the last 25 (26-50) are
for numeric data.

Deployment

The process of transferring the tables that define a model to one or more
recommendation engines after the model has been built. A deployment also
establishes the necessary connections between the recommendation engine and the
MTR.

Glossary-3

Farm

See Recommendation Engine Farm (RE Farm).

Hot Picks

On some e-commerce sites, vendors promote certain products called "hot picks"; the
hot picks might, for example, be this week’s specials. The hot pick items are
grouped into hot pick groups.

I-I

The term I-I is encountered in some detailed error messages. It stands for
Item-to-Item, and is an obsolete term for what is now discussed under cross-selling.
See Cross-Sell Model.

Interest Dimension

Specifies the interest dimension that items should be ranked against. The interest
dimensions supported in OracleAS Personalization are rating, purchasing, and
navigation.

Mining Object Repository (MOR)

The MOR is the Oracle database schema that maintains mining metadata defined by
the OracleAS Personalization data mining schema and provides for logging in to
the data mining system, logging off, and validating users for the MOR and data
mining functionality. Provides core data mining algorithm functionality.

Mining Table Repository (MTR)

The MTR is a schema containing the data used for data mining. It contains all the
data necessary to define and build a package. For OracleAS Personalization, the
MTR has a fixed schema designed to support the building of models that support
producing customer/visitor recommendations. The MTR also stores customer data
collected through the REAPI.

Model

A model is a set of tables containing all the data necessary to make
recommendations. See also Recommendation Algorithms.

OP

Oracle Application Server Personalization, also OracleAS Personalization.

Glossary-4

Package

An object created using the Admin UI that controls model building and
deployment. A package specifies the build settings and other attributes that control
how models are to be built, as well as the RE Farm to which the models are to be
deployed. After the build is complete, it consists of the database connection
information and the rules tables that are deployed to the recommendation engine.

Personalization Index

The relative degree of individualization desired in OracleAS Personalization’s
recommendations. A high setting produces the most individualized
recommendations, those most highly related to the given user profile. A low setting
generates recommendations that are the most popular or common for a given user
profile. A low setting would yield "best seller" kind of recommendations, whereas a
high setting will produce recommendations that may not be appropriate for many
people, but the recommendations may be of higher perceived value.

P-I

The term P-I is encountered in some detailed error messages. It stands for
Person-to-Item, and is an obsolete term for what is now discussed under aggregated
models. See Aggregated Model.

Profile

All the data collected about a customer from that customer’s sessions. Profiles are
stored in the MTR or cached in the RE.

Rating scale

The rating scale for OracleAS Personalization should be in ascending order of
"goodness". That is, create a scale in which a high rated item indicates that the user
prefers that item over items with lower ratings.

Recommendation Algorithms

OracleAS Personalization bases its recommendations on one of two algorithms:
Predictive Association Rules and Transactional Naive Bayes:

Predictive Association Rules:

■ Models are based on Association Rules

■ Builds models and scores datasets inside the database

■ The mined rules are stored in database tables

■ The rule consequents are combined and ordered using a ranking function

Glossary-5

■ Consequents with higher ranks are returned as recommendations

Transactional Naive Bayes:

■ Models are based on conditional probabilities

■ Builds models and scores datasets inside the database

■ Probabilities are combined according to Bayes’ Theorem and a score is
computed

■ Products with higher scores are returned as recommendations

For fuller descriptions of these algorithms, see Predictive Association Rules and
Transactional Naive Bayes, in Appendix A.

Recommendation Engine (RE)

The front end of OracleAS Personalization. Via the REAPI (Recommendation
Engine Application Programming Interface), RE provides the following services on
a Web server associated with the calling Web application:

■ Collects and pre-processes users’ profile data

■ Returns personalized recommendations

Recommendation Engine API (REAPI)

A collection of Java classes that enable a Web application written in Java to collect
and preprocess data used to build OracleAS Personalization models and to produce
recommendations from OracleAS Personalization.

Recommendation Engine Farm (RE Farm)

A group of systems with related OracleAS Personalization recommendation engines
installed. When a package is deployed to an RE Farm, it is deployed to all members
of the RE Farm. See also Web Farm.

Recommendations

This is how OracleAS Personalization makes its recommendations:

■ Uses demographics, taxonomies, session data histories, current session data,
keywords or concepts derived from the items

■ Data does not have to be complete

■ Performs efficient and scalable scoring

■ Builds models offline

Glossary-6

■ Handles both registered customers and visitors

■ Automatically selects algorithm (Transactional Naive Bayes or Predictive
Association Rules) for a given recommendation task and context

RE Farm

See Recommendation Engine Farm (RE Farm).

Schedule Item

An object created using the Admin UI that controls when models specified by a
package are to be built or deployed, or when a report is to be generated.

Score

With reference to applying a predictive model to new data, scoring means assigning
a score that reflects the likelihood that a particular record belongs in a certain class.
A score is the confidence in a prediction.

Session

Sessions are used to organize user activities. A session corresponds to a set of
activities that a user does in "one sitting". Each session is uniquely associated with a
user and has a start_time and end_time. All the activities performed by that
particular user within the (start_time, end_time) interval are considered to be part
of that session.

Sessionful and Sessionless Applications

These terms apply to the host Web application and indicate whether the application
does its own session management or not. OracleAS Personalization has its own
internal session management in both cases. If the application is sessionful, OracleAS
Personalization maintains the mapping between its internal session and the
application’s session. If the application is sessionless, OracleAS Personalization’s
session starts at the first activity of the user and ends when the user has been
inactive for a pre-specified time period. See also Web Application Session versus
OracleAS Personalization Session.

SID

See System Identifier (SID).

Status (of recommendation engines)

Recommendation Engines can be in any of the following states:

■ Unloaded: An RE is first created and no package is deployed to it

Glossary-7

■ Loaded: A package is being deployed to the RE

■ Online: The RE is ready to provide recommendations

■ Offline: The RE is not ready to provide recommendations

■ Updating: Online, but in the process of deploying a package to the RE

■ Switching: Offline; changing status

System Identifier (SID)

An identifier for an Oracle database instance. In OracleAS Personalization, it refers
to the unique identifier assigned to each system associated with an MOR. Each
system attached to an MOR must have a unique identifier specified in its
configuration file.

Taxonomy

In the OracleAS Personalization context, this term refers to the structural
organization of items in a company’s catalog or site. Typically the catalog and/or
the site has a hierarchical structure, with the most general category at the base (for
example, "clothing"), and branching to increasingly specific categories (for example,
from "clothing" to "shoes" to "sneakers" to "tennis shoes").

Items can belong to more than one category and to different levels of the structure.
For example, "tennis shoes" can be a category in "clothiing" and also a category in
"sports equipment."

The structure of the OracleAS Personalization taxonomy is a DAG (direct acyclic
graph), which can contain multiple top-level nodes. The different portions of the
taxonomy can be disconnected too. Any node can connect to any other node but
there cannot be a path that connects a node’s child back to the node itself.

OracleAS Personalization also supports multiple taxonomies (different ways of
organizing the items). The taxonomy is implemented using a group of tables (they
are specified by the customer at installation time):

■ MTR-TAXONOMY: Lists the different taxonomies used by the site.

■ MTR-TAXONOMY_CATEGORY: Specifies which categories belong to the
different taxonomies. (A category can belong to multiple taxonomies; however,
for a given taxonomy, there can be only one instance of any category.)

■ MTR-TAXONOMY_CATEGORY_ITEM: Specifies which items are contained in
a given category in a given taxonomy.

■ MTR-CATEGORY: A list of all categories in all taxonomies.

Glossary-8

User (of OracleAS Personalization)

The user of OracleAS Personalization is a DBA or system administrator or Java
programmer, or perhaps all three. Do not confuse this with the user of a Web site
that uses OracleAS Personalization.

User (of Web site)

Anyone who visits or logs on to the Web site. There are two kinds of users:

■ Customers — registered users of the Web site (typically, the Web site stores
information about these users (purchasing history, likes and dislikes, etc.)

■ Visitors — users of the Web site who are not registered (typically the Web site
stores less information about visitors than it does about customers). In many
instances, the only information for visitors is the immediate Web navigation.
OracleAS Personalization synchs data for visitors, but doesn’t load it back for
scoring.

Either type of user is assigned a user ID by the Web application.

Sometimes the Web site user is referred to as the end user, to distinguish this user
from the user of OracleAS Personalization.

Web Application Session versus OracleAS Personalization Session

Some Web applications keep track of sessions, which provide an association
between the Web server and a Web client. This association persists over multiple
connections and/or requests during a given time period.

Sessions are used to maintain state and user identity across multiple page requests.
The Web applications maintain session information in different ways, e.g., by using
cookies, by URL rewriting, or via hidden variables like HttpSession objects. A Web
application is sessionful if it keeps track of sessions, sessionless if it does not.

OracleAS Personalization has its own session management. An OracleAS
Personalization session maps the OracleAS Personalization end user's activities
during a certain period, i.e., from the first activity until the session is timed out or is
closed by the host application. Whether the host Web application is sessionful or
sessionless, OracleAS Personalization always manages its own session in order to
provide better predictions. If the host application is sessionful, the OracleAS
Personalization session is perfectly mapped to the host application session. If the
host application is sessionless, OracleAS Personalization tracks the session on its
own, which has no effect on the host application.

Glossary-9

Web Farm

A Web farm uses two or more servers to host the same site. HTTP requests are
usually routed to each server using some appropriate scheme, such as round-robin
routing, to distribute load and allow the site to handle more requests in a timely
manner.

During a given session, recommendation requests go to a recommendation engine,
because information is temporarily stored there before being synchronized back to
the MTR. If you have multiple REs, all the information from any one session has to
be kept together for that RE.

Glossary-10

Index-1

Index
A
accessibility of documentation, 1-ix
add recommendation engine, 2-6
Administrative UI, 1-6, 2-1
algorithms, A-1
appSessionID, 1-3
Association Rules, Predictive, A-1

B
batch recommendation engine API, 1-7
Bayes theorem, A-2
build schedule, 2-3, 2-7
build settings, 2-3
business rules, 1-1

C
collaborative filtering, 1-1
components

location of, 1-6, 1-7
confidence, in rules, A-2
conventions table, 1-xii
create build schedule, 2-3
create deployment schedule, 2-4
create package, 2-2, 2-7
create report schedule, 2-4
customerID, 1-3

D
data

collection process, 1-3
kinds of, 1-3

database
location of OracleAS Personalization

components, 1-6
demo source code, 3-3
deployment schedule, 2-4, 2-8
documentation accessibility, 1-ix

E
exercises

REAPI demo, 3-3

F
Farms page, 2-2

H
help, online, 1-xii
Home page, 2-2

I
installation, 1-6, 1-7
Itemized Recommendation Effectiveness

Report, 2-5

Index-2

L
Lift, for rules, A-2
Log page, 2-5
Login page, 2-1

M
market basket analysis, A-1
Mining Object Repository (MOR), 1-6
Mining Table Repository (MTR), 1-7
model building, 1-4
MOR schema, 2-1
MTR sample, 2-8

N
Naive Bayes, Transactional, A-2

O
online help, 1-xii
Oracle Application Server, 1-6
OracleAS Personalization

definition, 1-ix, 1-1, 1-2
OracleAS Personalization administrator, 1-4

P
package, 1-4, 1-6
Packages page, 2-2
Predictive Association Rules, A-1
proxies, 3-3

creating, 3-4
Purchasing SessionReport, 2-5

R
RE Farm

create, 2-6
REAPI demo, 3-1
REAPI demo exercises, 3-3
REAPI demo source code, 3-3
recommendation algorithms, A-1

Recommendation effectiveness report, 2-5
recommendation engine (RE), 1-6
recommendation engine API (REAPI), 1-7
recommendation engine farm (RE Farm), 1-4, 1-6
recommendation engines (REs), 1-4
recommendnations

obtaining, 2-5
report

Itemized RecommendationEffectiveness
Report, 2-5

purchasing session, 2-5
Recommendation Effectiveness Report, 2-5

Report page, 2-5
Report schedule, 2-4
requirements, 1-x

S
Schedules page, 2-3
scheduling, 1-4

build, 2-3, 2-7
deployment, 2-8
report, 2-4

sessionful
exercise, 3-4

sessionful applications, 1-3, 1-4
sessionless

exercise, 3-8
sessionless applications, 1-3, 1-4
source code

demo, 3-3
REAPI demo, 3-3

support, for rules, A-2

T
transactional format, A-3
Transactional Naive Bayes, A-2

V
visitor to customer

exercise, 3-10

	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Requirements
	Where to Find More Information
	Online Help
	Conventions

	1 Introducing OracleAS Personalization
	1.1� What Is Personalization?
	1.2� What Is OracleAS Personalization?
	1.3� What Kind of Data Does OracleAS Personalization Collect?
	1.4� How Does OracleAS Personalization Collect the Data?
	1.4.1� Sessionful and Sessionless Web Applications

	1.5� What Does OracleAS Personalization Do with the Data?
	1.5.1� Models Built by OracleAS Personalization

	1.6� OracleAS Personalization Components
	1.6.1� Location of OracleAS Personalization Components

	1.7� How It All Works

	2 The OracleAS Personalization Administrative UI
	2.1� Administrative UI Overview
	2.1.1� Login Page
	2.1.2� Home Page
	2.1.3� Farms Page
	2.1.4� Packages Page
	2.1.5� Schedules Page
	2.1.6� Reports Page
	2.1.7� Log Page

	2.2� Obtaining OracleAS Personalization Recommendations
	2.2.1� Create an RE Farm with an RE
	2.2.2� Create a Package
	2.2.3� Schedule a Build
	2.2.4� Schedule a Deployment
	2.2.5� Summary
	2.2.6� MTR Sample

	3 Using the REAPI Demo
	3.1� Before Running REAPI Demo
	3.2� Start REAPI Demo
	3.2.1� Proxies
	3.2.2� View Source Code

	3.3� Exercises
	3.3.1� Values and Results
	3.3.2� Exercise 1: Creating a Proxy
	3.3.3� Exercise 2: A Sessionful Web Application
	3.3.4� Exercise 3: A Sessionless Web Application
	3.3.5� Exercise 4: Change Visitor to Customer

	3.4� Summary

	A Recommendation Algorithms
	A.1� Predictive Association Rules
	A.2� Transactional Naive Bayes

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	V

