
Oracle® Application Server InterConnect
Adapter for CICS Installation and User’s Guide

10g (9.0.4)

Part No. B10410-01

August 2003

Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide, 10g (9.0.4)

Part No. B10410-01

Copyright © 2002, 2003 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and OracleMetaLink, Oracle Store, Oracle9i, SQL*Plus, and PL/SQL are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

iii

Contents

Send Us Your Comments ... ix

Preface .. xi

Intended Audience ... xii
Documentation Accessibility .. xii
Organization.. xii
Related Documentation .. xiii
Conventions.. xiv

1 Introduction

What is CICS? .. 1-2
System Requirements and Platforms... 1-2
Definitions ... 1-2

Logical Unit (LU)... 1-2
CPI-C ... 1-3

2 Installation and Configuration

Installing the CICS Adapter ... 2-2
Preinstallation Tasks .. 2-2
Installation Tasks .. 2-2
Post Installation Tasks ... 2-4

Enabling iStudio .. 2-4
Registering the License for the CICS Adapter .. 2-5

CICS Adapter Configuration .. 2-5

iv

Using the Application Parameter ... 2-6
Adapter.ini Initialization Parameter File... 2-7

Hub.ini Parameters.. 2-7
Real Application Clusters-specific Hub.ini Parameters... 2-8
Agent Connection Parameters ... 2-9
CICS Adapter Parameters .. 2-17

Starting the CICS Adapter .. 2-17
Stopping the CICS Adapter .. 2-18

3 CICS and the CICS Adapter

The CICS Adapter... 3-2
Message Description Language (MDL) .. 3-2
Classes ... 3-3
LU6.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLs... 3-4
How the CICS Adapter Communicates With CICS ... 3-5

Using SNA LU 6.2 CPI-C Protocol API ... 3-5
Using the ECI Protocol API ... 3-6

CICS Adapter Security... 3-6
Using the LU 6.2 CPI-C Protocol .. 3-6
Using the ECI Protocol... 3-7

Implementing the CICS Adapter ... 3-7
SNA LU 6.2 CPI-C Protocol API... 3-7
ECI Protocol API ... 3-8
CICS Adapter .. 3-8

CICS Adapter Information Flow ... 3-9
Multi-Threading... 3-10

Using the CICS Adapter Inbound ... 3-11
SNA LU 6.2 CPI-C Protocol... 3-11

Application Start-up.. 3-12
Receiving a CICS Adapter Request from OracleAS InterConnect 3-12

ECI Protocol... 3-12
Application Start-up.. 3-13
Receiving a CICS Adapter Request from OracleAS InterConnect 3-13

Design Time... 3-13
Runtime.. 3-14

v

Creating an Implemented Procedure .. 3-14
Creating a Subscribed Event .. 3-19

4 Systems Network Architecture Definitions

LU 6.2 CPI-C Protocol Stack and URLs .. 4-2
Concepts and Terms ... 4-3

ABEND... 4-4
Advanced Program-to-Program Communication (APPC) .. 4-4
CICS.. 4-5
CICS Region .. 4-5
CICS Transaction .. 4-5
Conversation ... 4-5
CPI Communications (CPI-C)... 4-6
Logical Unit ... 4-7
Mode Name... 4-7
Node ... 4-7
Node Type ... 4-7
Physical Unit (PU) .. 4-8
Session .. 4-8
System Management Facility (SMF) .. 4-8
Systems Network Architecture (SNA) .. 4-8
Systems Network Architecture (SNA) Controllers ... 4-9
Synchronization Levels.. 4-9
Synchronization Services... 4-10
Transaction Program (TP) ... 4-12
Verb Control Block (VCB) ... 4-12
Verbs... 4-13
CICS as a Transaction Program.. 4-15

5 Systems Network Architecture Concepts

Data Flow.. 5-2
Logical Units and Parallel Sessions .. 5-2
CICS Adapter Conversations ... 5-2
Security ... 5-3

LU 6.2 Security .. 5-4

vi

Session Level Security .. 5-4
Session Level Cryptography .. 5-4
LU-LU Verification.. 5-4

Conversation Level Security ... 5-5
End-User Verification ... 5-5
Already-Verified Protocols .. 5-5
Persistent Verification ... 5-6
Password Expiration Management... 5-6

CICS Security Implementation ... 5-6
Bind Time Security .. 5-7

Security For CICS in General .. 5-7
Security Specific to LU 6.2 ... 5-8

User Security .. 5-8
Synchronization of Changes... 5-9
Error Handling... 5-10

6 Message Description Language Reference

What is Message Description Language?... 6-2
Message Description Language Classes.. 6-2

Message Description Language File.. 6-3
Class Declaration .. 6-3
Typedef Declaration ... 6-5
Struct Declaration ... 6-5
Method Declaration.. 6-5

Return Type Declaration .. 6-7
Argument Declarations .. 6-8

Supported Data Types.. 6-9
Binary Types.. 6-10
Integral Types.. 6-10
Floating Point Types... 6-10
String Types... 6-11
Length-Prefixed Strings ... 6-11
Delimited Strings .. 6-12
Null Terminated Strings .. 6-12
Fixed-Length Padded Strings.. 6-12

vii

Implicit Strings.. 6-13
Complex Types ... 6-13
Date Types ... 6-13
Numerical Types... 6-14

Floating Point Numbers ... 6-14
Fixed Scale, Variable Precision Numbers .. 6-15
Fixed Scale, Fixed Precision Numbers ... 6-15
Packed Decimal ... 6-16

Array Types (Tables).. 6-16
Fixed Length Tables .. 6-17
Prefixed Variable Length Tables ... 6-17
Explicitly Delimited Variable Length Sequences.. 6-17
Implicitly Delimited Variable Length Sequences ... 6-18

Structured Types... 6-19
Message Description Language File Format General Syntax Conventions 6-19

Type parameters ... 6-19
Type modifiers .. 6-20

Keyword Modifiers ... 6-20
Type Declaration Modifiers ... 6-20

Expression.. 6-21
Alias .. 6-21
Comment Insertion... 6-21
Case Sensitivity ... 6-22

Message Description Language File Example... 6-22

7 Using the Configuration Editor

Using the Configuration Editor.. 7-2
Configuration Editor Login... 7-3

General ... 7-4
Mode Name... 7-4
Synchronization Level ... 7-5

Configuration Editor Security .. 7-5

Index

viii

ix

Send Us Your Comments

Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide, 10 g
(9.0.4)

Part No. B10410-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: appserverdocs_us@oracle.com

■ FAX: 650-506-7375 Attn: Oracle Application Server Documentation Manager

■ Postal service:

Oracle Corporation

Oracle Application Server Documentation

500 Oracle Parkway, M/S 1op6

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

x

xi

Preface

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

xii

Intended Audience
This guide is intended for those who perform the following tasks:

■ install applications

■ maintain applications

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

Organization
This document contains:

Chapter 1, "Introduction"
This chapter describes the Oracle Application Server InterConnect Adapter for

CICS (CICS adapter) and the hardware and software requirements.

xiii

Chapter 2, "Installation and Configuration"
This chapter describes installation and configuration of the CICS adapter.

Chapter 3, "CICS and the CICS Adapter"
This chapter describes the concepts for the CICS adapter.

Chapter 4, "Systems Network Architecture Definitions"
This chapter provides system network architecture definitions for the CICS adapter.

Chapter 5, "Systems Network Architecture Concepts"
This chapter provides concepts for the system network architecture for the CICS

adapter.

Chapter 6, "Message Description Language Reference"
This chapter provides a reference to the message description language.

Chapter 7, "Using the Configuration Editor"
This chapter provides information on using the Configuration Editor to configure

the CICS adapter.

Related Documentation
For more information, see these Oracle resources:

■ Oracle Application Server InterConnect User’s Guide

■ Oracle Application Server InterConnect Installation Guide

■ Oracle Application Server InterConnect Adapter Configuration Editor User’s Guide

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

xiv

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

■ Conventions for Microsoft Windows Operating Systems

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

xv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the datafiles and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

Convention Meaning Example

xvi

Conventions for Microsoft Windows Operating Systems
The following table describes conventions for Microsoft Windows operating

systems and provides examples of their use.

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example

xvii

Convention Meaning Example

Choose Start > How to start a program. To start the Oracle Database Configuration
Assistant, choose Start > Programs > Oracle -
HOME_NAME > Configuration and Migration
Tools > Database Configuration Assistant.

File and directory
names

File and directory names are not case
sensitive. The following special characters
are not allowed: left angle bracket (<),
right angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (|),
and dash (-). The special character
backslash (\) is treated as an element
separator, even when it appears in quotes.
If the file name begins with \\, then
Windows assumes it uses the Universal
Naming Convention.

c:\winnt"\"system32 is the same as
C:\WINNT\SYSTEM32

C:\> Represents the Windows command
prompt of the current hard disk drive.
The escape character in a command
prompt is the caret (^). Your prompt
reflects the subdirectory in which you are
working. Referred to as the command
prompt in this manual.

C:\oracle\oradata>

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark
(") special character at the Windows
command prompt. Parentheses and the
single quotation mark (’) do not require
an escape character. Refer to your
Windows operating system
documentation for more information on
escape and special characters.

C:\>exp scott/tiger TABLES=emp
QUERY=\"WHERE job=’SALESMAN’ and
sal<1600\"

C:\>imp SYSTEM/ password
FROMUSER=scott TABLES=(emp, dept)

HOME_NAME Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

C:\> net start Oracle HOME_
NAMETNSListener

xviii

ORACLE_HOME
and ORACLE_
BASE

In releases prior to Oracle8i release 8.1.3,
when you installed Oracle components,
all subdirectories were located under a
top level ORACLE_HOME directory that by
default used one of the following names:

■ C:\orant for Windows NT

■ C:\orawin95 for Windows 95

■ C:\orawin98 for Windows 98

This release complies with Optimal
Flexible Architecture (OFA) guidelines.
All subdirectories are not under a top
level ORACLE_HOME directory. There is a
top level directory called ORACLE_BASE
that by default is C:\oracle . If you
install Oracle9i release 1 (9.0.1) on a
computer with no other Oracle software
installed, then the default setting for the
first Oracle home directory is
C:\oracle\ora90 . The Oracle home
directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Go to the ORACLE_BASE\ ORACLE_
HOME\rdbms\admin directory.

Convention Meaning Example

Introduction 1-1

1
Introduction

Oracle connects to CICS through Oracle Application Server InterConnect Adapter

for CICS (CICS adapter). This book introduces the CICS environment and CICS

specific information. This chapter provides an overview of the CICS adapter.

What is CICS?

1-2 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

What is CICS?
The IBM Customer Information Control System (CICS) allows data exchanges by

sending and receiving buffers to and from an application using the CICS adapter.

The CICS adapter uses the CPI-C LU6.2 SNA (LU6.2) protocol API and/or the ECI

protocol API. The LU 6.2 protocol communicates with a CICS transaction, while the

ECI protocol communicates with a CICS program. A CICS transaction contains

presentation logic and business logic, while the CICS program contains only the

business logic.

System Requirements and Platforms
To use CICS adapter with Oracle Application Server InterConnect (OracleAS

InterConnect), the following requirements must be met.

For the ECI protocol:

■ IBM CICS Universal client

 For using CPI-C LU6.2 SNA (LU6.2):

■ IBM SNA client or the MS SNA client

The CICS adapter runs on:

■ Windows 2000 with service pack 1 or above

■ Windows NT 4.0 with service pack 6 or above

Definitions
The following terms are specific to the CICS adapter:

■ Logical Unit (LU)

■ CPI-C

Logical Unit (LU)
A logical unit represents the logical destination of a communication data flow. The

formal definition of a logical unit is the means by which an end user gains entry

into a network. An end user is defined as the ultimate source, or destination, of data

flow in a network. SNA supports several different types of logical units. These are

grouped together in numbered logical unit types, such as logical unit type 2 for 3270

display terminals, and logical unit type 4 for printers. The logical unit type for

CICS-to-CICS communication is logical unit type 6.2, and is frequently referred to

What is CICS?

Introduction 1-3

as advanced program-to-program communication (APPC). Each logical unit is

given a unique name that identifies it in the network. There are two types of logical

units 6.2 pertinent to CICS adapter:

■ Dependent logical unit 6.2 can have only a single session and therefore only one

conversation at a time.

■ Independent logical unit 6.2 can have more one session with other logical

units—any conversations can be held simultaneously between two logical units.

CPI-C
CPI (CPI Communications) provides a cross-system-consistent and easy-to-use

programming interface for applications that require program-to-program

communication. From an application's perspective, CPI-C provides the function

necessary to enable this communication. The conversational model is implemented

in two major communications protocols: Advanced Program-to-Program

Communication (APPC) and Open Systems Interconnection Distributed Transaction

Processing (OSI TP). The APPC protocol is also referred to as Logical Unit type 6.2

(logical unit 6.2). CPI-C provides access to both APPC and OSI-TP.

What is CICS?

1-4 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Installation and Configuration 2-1

2
Installation and Configuration

This chapter describes installation and configuration of the CICS adapter. It

discusses the following topics:

■ Installing the CICS Adapter

■ CICS Adapter Configuration

■ Starting the CICS Adapter

■ Stopping the CICS Adapter

Installing the CICS Adapter

2-2 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Installing the CICS Adapter
This section contains these topics:

■ Preinstallation Tasks

■ Installation Tasks

■ Post Installation Tasks

Preinstallation Tasks
The CICS adapter must be installed in one of the following Oracle homes:

■ An existing OracleAS InterConnect Oracle home for 10g (9.0.4)

■ A new Oracle home (the installer creates this for you)

Consult the following guides before proceeding with CICS adapter installation:

■ Oracle Application Server InterConnect Installation Guide, which includes

information on:

■ Oracle Universal Installer startup

■ CD-ROM mounting

■ OracleAS InterConnect software, hardware, and system requirements

■ OracleAS InterConnect installation

Installation Tasks
To install the CICS adapter:

1. On the Available Product Components page of the OracleAS InterConnect

installation, select CICS adapter, then select Next.

Consider the following scenarios:

■ If installing the CICS adapter in an independent Oracle home, make sure

that the OracleAS InterConnect Hub has been installed, not necessarily in

the same Oracle home. Continue to step 2.

Note: OracleAS InterConnect Hub is installable through the

OracleAS InterConnect Hub installation type. You must install the

OracleAS InterConnect Hub before proceeding with the CICS

adapter installation.

Installing the CICS Adapter

Installation and Configuration 2-3

■ If installing the CICS adapter in an existing Oracle home, make sure that it

is a home directory to one of the OracleAS InterConnect component.

Continue to step 3.

2. If installing OracleAS InterConnect for the first time on this machine, complete

the following steps to enter the hub database information:

a. On the Welcome page, select Next. The Database Configuration page

displays. Enter information in the following fields:

* Host Name—The host name of the machine where the hub database is

installed.

* Port Number—The TNS listener port for the hub database.

* Database SID—The SID for the hub database.

b. Click Next. The Database User Configuration page displays. Enter

information in the following fields:

* User Name—The hub database user name. Make sure the OracleAS

InterConnect Hub is installed. If the Hub is not installed, complete the

installation and note the user name and password.

* Password—The password for the hub database user.

3. Click Next. The Adapter Configuration page displays. Enter the application to

be defined or already defined in iStudio in the Application Name field. White

spaces or blank spaces are not permitted. The default value is myCICSApp.

4. Click Next.

The OracleAS InterConnect CICS Adapter—Specify CICS client binaries

location page displays.

5. Enter the location for the client binaries location.

6. Click Next. Complete the fields for any other components selected for

installation, such as other adapters. When finished, the Summary page displays.

7. Click Install to install the CICS adapter and other selected components. The

CICS adapter is installed in the following directory:

Note: The hub database information, such as the SID, host, port,

and username/password from the Hub installation, is needed for

step 2.

Installing the CICS Adapter

2-4 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Application is the value you specified in Step 3 on page 2-3.

8. Click Exit on the End of Installation page to exit the CICS adapter installation.

Post Installation Tasks

Enabling iStudio
After installing the CICS adapter and the iStudio, complete the following post

installation steps to enable the iStudio to work with CICS adapter.

1. Update the PATH environment variable to include the ORACLE_
HOME\oai\9.0.4\bin directory. This is required for running the utilities in

this directory.

2. The CICS adapter requires the individual message reply and request pairs that

describe interactions between clients and servers be modeled as methods in

Message Description Language (MDL) format.

The MDL files must be located in the ORACLE_
HOME\oai\9.0.4\config\CICS directory for design time and runtime.

3. Set the configuration settings for the adapter using the Configuration Editor

before using the CICS adapter for runtime. The Configuration Editor is a Java

application and is launched by running the configeditor.bat file in the

ORACLE_HOME\oai\9.0.4\config directory.

Platform Directory

Windows ORACLE_HOME\oai\9.0.4\adapters\ Application

See Also: Oracle Application Server InterConnect Installation Guide
for information on installing iStudio along with OracleAS

InterConnect Development Kit

See Also: Oracle Application Server InterConnect User’s Guide for

information on the MDL syntax and sample MDL files

CICS Adapter Configuration

Installation and Configuration 2-5

Registering the License for the CICS Adapter
Before using the CICS adapter, or if using the browser in iStudio, you need to

register the license using the license registration tool. This tool uses the following

files:

■ licreg.exe —Located in the ORACLE_HOME\oai\9.0.4\bin directory.

■ acboai.lic —The license file located in the following directory:

ORACLE_HOME\oai\9.0.4\config

To register the license, complete the following:

1. Update the PATH environment variable to include the ORACLE_
HOME\oai\9.0.4\bin directory. This is required for running the utilities in

this directory.

2. Double click on licreg.exe to display the License Manager dialog.

3. Navigate to the ORACLE_HOME\oai\9.0.4\config directory.

4. Select acboai.lic and click OK.

Licreg.exe silently registers the license. To verify the registration, from a

command prompt, launch logdump.exe located in ORACLE_
HOME\oai\9.0.4\bin directory. This prints the log messages regarding license

registration.

CICS Adapter Configuration
Table 2–2, Table 2–3, and Table 2–4 describe executable files, configuration files, and

directories. These files and directories are accessible from the directory shown in

Table 2–1:

Table 2–1 CICS Adapter Directory

On.. Go to...

Windows ORACLE_HOME\oai\9.0.4\adapters\ Application

CICS Adapter Configuration

2-6 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Using the Application Parameter
Adapters do not have integration logic. The CICS adapter has a generic

transformation engine that processes metadata from the repository as runtime

instructions to do transformations. The application defines for an adapter what its

capabilities are. For example, it can define what messages it can publish, what

messages it can subscribe to, and what are the transformations to perform. The

application parameter allows the adapter to become smart in the context of the

application to which it is connected. It allows the adapter to retrieve from the

repository only that metadata that is relevant to the application. The application

parameter must match the corresponding application that will be defined in iStudio

under the Applications folder.

Table 2–2 Executable Files

File Description

start.bat Takes no parameters, starts the adapter.

stop.bat Takes no parameters; stops the adapter.

ignoreErrors.bat If an argument is specified, then the given error code will be
ignored. If no argument is specified, then all error codes
specified in the ErrorCodes.ini will be ignored.

Table 2–3 Configuration Files

File Description

ErrorCodes.ini Contains one error code per line.

adapter.ini Consists of all the initialization parameters which the adapter
reads at startup. Refer to Appendix A for a typical
adapter.ini file.

Table 2–4 Directories

File Description

persistence The messages are persisted in this directory. Do not edit the
files in this directory.

logs The logging of adapter activity is done in subdirectories of the
log directory. Each new run of the adapter creates a new
subdirectory in which logging is done in an oailog.txt file.

CICS Adapter Configuration

Installation and Configuration 2-7

If you are using pre-packaged metadata, after importing the pre-packaged metadata

into the repository, start up iStudio to find the corresponding application (under the

Applications folder in iStudio) to use as the application for the adapter you are

installing (unless the package you are using provides directions for what the

application should be).

Adapter.ini Initialization Parameter File
This section contains these topics:

■ Hub.ini Parameters

■ Real Application Clusters-specific Hub.ini Parameters

■ Agent Connection Parameters

■ CICS Adapter Parameters

Hub.ini Parameters
The CICS adapter connects to the hub database using parameters from the

hub.ini file located in the hub directory. The following table lists the parameter

name, a description for each parameter, the possible and default values, and an

example.

CICS Adapter Configuration

2-8 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Real Application Clusters-specific Hub.ini Parameters
When a hub is installed on a Real Application Clusters (RAC) database, parameters

listed in Table 2–6 represent information on additional nodes used for connection

and configuration. These parameters are added on top of the default parameters

which represent the primary node. In Table 2–6, x represent the node number,

which varies between 2 and the number of nodes. For example, if the Real

Application Clusters setup contains 4 nodes, x can take a value between 2 and 4.

Table 2–5 Hub.ini Parameters

Parameter Description Example

hub_username The name of the hub database schema (or username).
The default value is oaihub904 .

hub_username=oaihub904

hub_password The password for the hub database user. There is no
default value. You input the hub_password value
during installation.

hub_password=manager

hub_host The name of the machine hosting the hub database.
There is no default value. You input the hub_host
value during installation.

hub_host=mpmypc

hub_instance The system identification number (SID) of the hub
database. There is no default value. You input the hub_
instance value during installation.

hub_instance=orcl

hub_port The transparent network services (TNS) listener port
number for the HUB database instance. There is no
default value. You input the hub_port value during
installation.

hub_port=1521

repository_name The valid name of the repository this adapter talks to.
The default value is InterConnectRepository .

repository_
name=InterConnectRepos
itory

Table 2–6 Real Application Cluster-specific hub.ini Parameters

Parameter Description Example

hub_num_nodes Number of nodes in Real Application Clusters. hub_num_nodes=4

hub_host x The host where the Real Application Clusters database is
installed.

hub_host2=dsunram13

hub_instance x The instance on the respective node. hub_instance2=orcl2

hub_port x The port on which the listener is listening. hub_port2=1521

CICS Adapter Configuration

Installation and Configuration 2-9

Agent Connection Parameters
The CICS adapter connects to the spoke application using parameters from the

adapter.ini file. Table 2–7 lists the parameter name, a description for each

parameter, the possible and default values and an example.

Table 2–7 adapter.ini Parameters

Parameter Description Example

application The name of the application this adapter connects to.
This must match with the name specified in iStudio
during creating of metadata. Any alphanumeric string
can be used. There is no default value.

application=aqapp

partition The partition this adapter handles as specified in
iStudio. Any alphanumeric string is a possible value.
There is no default value.

partition=germany

instance_number To have multiple adapter instances for the given
application with the given partition, each adapter
should have a unique instance number. Possible values
are any integer greater than 1. There is no default value.

instance_number=1

agent_log_level Specifies the amount of logging necessary. Possible
values are:

0=errors only

1=status and errors

2=trace, status, and errors

The default value is 1.

agent_log_level=2

agent_
subscriber_name

The subscriber name used when this adapter registers
its subscription. The possible value is a valid Oracle
Advanced Queuing subscriber name and there is no
default value.

agent_subscriber_
name=aqapp

agent_message_
selector

Specifies conditions for message selection when
registering its subscription with the hub. The possible
value is a valid Oracle Advanced Queuing message
selector string. There is no default value.

agent_message_
selector=recipient_
list like ’%aqapp,%’

agent_reply_
subscriber_name

The subscriber name used when multiple adapter
instances for the given application with the given
partition are used. Optional if there is only one instance
running. The possible value is application name
(parameter: application) concatenated with
instance number (parameter: instance_number).
There is no default value.

If application=aqapp ,
instance_number=2 , then,
agent_reply_
subscriber_name=aqapp2

CICS Adapter Configuration

2-10 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

agent_reply_
message_selector

Used only if multiple adapter instances for the given
application with the given partition. The possible value
is a string built using concatenating application name
(parameter:application) with instance number
(parameter:instance_number). There is no default
value.

If application=aqapp ,
instance_number=2 , then
agent_reply_message_
selector=receipient_
list like ’%,aqapp2,%’

agent_tracking_
enabled

Specifies if message tracking is enabled. Set to false to
turn off all tracking of messages. Set to true to track
messages with tracking fields set in iStudio. Possible
values are true or false . The default value is true .

agent_tracking_
enabled=true

agent_
throughput_
measurement_
enabled

Specifies if throughput measurement is enabled. Set to
true to turn on all throughput measurements. Possible
values are true or false . The default value is true .

agent_throughput_
measurement_
enabled=true

agent_use_
custom_hub_dtd

Specifies if a custom DTD should be used for the
common view message when handing it to the hub. By
default adapters use an OracleAS InterConnect-specific
DTD for all messages sent to the hub as other OracleAS
InterConnect adapters will be retrieving the messages
from the hub and know how to interpret them. Set to
true if for every message, the DTD imported for the
message of the common view is to be used instead of
the OracleAS InterConnect DTD. Only set to true if a
OracleAS InterConnect adapter is not receiving the
messages from the hub. Possible values are true or
false . There is no default value.

agent_use_custom_hub_
dtd=false

agent_metadata_
caching

Specifies the metadata caching algorithm. Possible
values are:

■ startup —Cache everything at startup. This may
take a while if there are a lot of tables in the
repository.

■ demand—Cache metadata as it is used.

■ none —No caching. This slows down performance.

The default value is demand.

agent_metadata_
caching=demand

Table 2–7 adapter.ini Parameters

Parameter Description Example

CICS Adapter Configuration

Installation and Configuration 2-11

agent_dvm_table_
caching

Specifies the DVM caching algorithm. Possible values
are:

■ startup —Cache all DVM tables at startup. This
may take a while if there are a lot of tables in the
repository.

■ demand—Cache tables as they are used.

■ none —No caching. This slows down performance.

The default value is demand.

agent_dvm_table_
caching=demand

agent_lookup_
table_caching

Specifies the lookup table caching algorithm. Possible
values are:

■ startup —Cache all lookup tables at startup. This
may take a while if there are a lot of tables in the
repository.

■ demand—Cache tables as they are used.

■ none —No caching. This slows down performance.

The default value is demand.

agent_lookup_table_
caching=demand

agent_delete_
file_cache_at_
startup

With any of the agent caching methods enabled,
metadata from the repository is cached locally on the
file system.

Set this parameter to true to delete all cached
metadata on startup.

Note: After changing metadata or DVM tables for this
adapter in iStudio, you must delete the cache to
guarantee access to the new metadata or table
information.

Possible values are true or false . The default value is
false .

agent_delete_file_
cache_at_startup=false

agent_max_ao_
cache_size

Specifies the maximum number of application objects’
metadata to cache. Possible values are any integer
greater than 1. The default value is 200 .

agent_max_ao_cache_
size=200

agent_max_co_
cache_size

Specifies the maximum number of common objects’
metadata to cache. Possible values are any integer
greater than 1. The default value is 100 .

agent_max_co_cache_
size=100

agent_max_
message_
metadata_cache_
size

Specifies the maximum number of messages’ metadata
to cache (publish/subscribe and invoke/implement).
Possible values are any integer greater than 1. The
default value is 200 .

agent_max_message_
metadata_cache_
size=200

Table 2–7 adapter.ini Parameters

Parameter Description Example

CICS Adapter Configuration

2-12 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

agent_max_dvm_
table_cache_size

Specifies the maximum number of DVM tables to
cache. Possible values are any integer greater than 1.
The default value is 200 .

agent_max_dvm_table_
cache_size=200

agent_max_
lookup_table_
cache_size

Specifies the maximum number of lookup tables to
cache. Possible values are any integer greater than 1.
The default value is 200 .

agent_max_lookup_
table_cache_size=200

agent_max_queue_
size

Specifies the maximum size that internal OracleAS
InterConnect message queues can grow. Possible values
are any integer greater than 1. The default value is
1000 .

agent_max_queue_
size=1000

agent_
persistence_
queue_size

Specifies the maximum size that internal OracleAS
InterConnect persistence queues can grow. Possible
values are any integer greater than 1. The default value
is 1000 .

agent_persistence_
queue_size=1000

agent_
persistence_
cleanup_interval

Specifies how often the persistence cleaner thread
should run. Possible values are any integer greater than
30000 milliseconds. The default value is 60000 .

agent_persistence_
cleanup_interval=60000

agent_
persistence_
retry_interval

Specifies how often the persistence thread should retry
when it fails to push a OracleAS InterConnect message.
Possible values are any integer greater than 5000
milliseconds. The default value is 60000 .

agent_persistence_
retry_interval=60000

agent_pipeline_
to_hub

Specifies how to turn on or off the pipeline for
messages from the Bridge towards the hub. If you set
the pipeline to false , the file persistence is not used in
that direction.

agent_pipeline_to_
hub=false

agent_pipeline_
from_hub

Specifies how to turn on or off the pipeline for
messages from the hub towards the Bridge. If you set
the pipeline to false , the file persistence is not used in
that direction.

agent_pipeline_from_
hub=false

service_path Windows only. The value that the environment variable
PATH should be set to. path is set to the specified value
before forking the Java VM. Typically, all directories
containing all necessary DLLs should be listed here.
Possible values are the valid path environment variable
setting. There is no default value.

service_
path=%JREHOME%\bin;D:\
oracle\ora902\bin

Table 2–7 adapter.ini Parameters

Parameter Description Example

CICS Adapter Configuration

Installation and Configuration 2-13

service_
classpath

The classpath used by the adapter Java VM. If a custom
adapter is developed and as a result, the adapter is to
be used to pick up any additional jars, add the jars to
the existing set of jars being picked up. Possible values
are the valid classpath. There is no default value.

service_
classpath=D:\oracle\
ora904\oai\904\lib\
oai.jar;
%JREHOME%\lib\i18n.ja;
D:\oracle\ora902\jdbc\
classes12.zip

service_class The entry class for the Windows service. The possible
value is
oracle\oai\agent\service\AgentService .
There is no default value.

service_
class=oracle\oai\agent
\service\AgentService

service_max_
java_stack_size

Windows only. The maximum size to which the Java
VM’s stack can grow. Possible values are the valid Java
VM maximum native stack size. The default value is
the default for the Java VM.

service_max_java_
stack_size=409600

service_max_
native_stack_
size

Windows only. The maximum size to which the Java
VM’s native stack can grow. Possible values are the
valid Java VM maximum native stack size. The default
value is the default for the Java VM.

service_max_native_
size=131072

service_min_
heap_size

Windows only. Specifies the minimum heap size for the
adapter Java VM. Possible values are the valid Java VM
heap sizes. The default value is the default Java VM
heap size.

service_min_heap_
size=536870912

service_max_
heap_size

Windows only. Specifies the maximum heap size for the
adapter Java VM. Possible values are any valid Java
VM heap sizes. The default value is 536870912 .

service_max_heap_
size=536870912

service_num_vm_
args

Windows only. The number of service_vm_arg<number>

parameters specified. Possible values are the number of
service_vm_arg<number> parameters. There is no
default value.

service_num_vm_args=1

service_vm_
arg<number>

Windows only. Specifies any additional arguments to
the Java VM. For example, to get line numbers in any of
the stack traces, set service_vm_

arg1=java.compiler=NONE . If there is a list of arguments
to specify, use multiple parameters as shown in the
example by incrementing the last digit starting with 1.
Be sure to set the service_num_vm_args correctly.
Possible values are any valid Java VM arguments.
There is no default value.

service_vm_
arg1=java.compiler=
NONE

service_vm_
arg2=oai.adapter=.aq

Table 2–7 adapter.ini Parameters

Parameter Description Example

CICS Adapter Configuration

2-14 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

service_jdk_
version

Windows only. The JDK version the adapter Java VM
should use. The default value is 1.4.1 .

service_jdk_
version=1.4.1

service_jdk_dll Windows only. The dll the adapter Java VM should use.
The default value is jvm.dll .

service_jdk_
dll=jvm.dll

corba_port_
number

The CORBA port number on which the adapter
CORBA service listens. Generally, this port is allocated
dynamically. However, it can be configured to enable
access across firewall.

corba_port_
number=14000

nls_country This parameter is a valid ISO Country Code. These
upper-case and two-letter codes are defined by
ISO-3166. You can find a full list of these codes at a Web
site, such as,
http://www.chemie.fu-berlin.de/diverse/do
c/ISO_3166.html

The default Country code is US.

Note: This parameter specifies date format. It is
applicable for the date format only.

US

Table 2–7 adapter.ini Parameters

Parameter Description Example

CICS Adapter Configuration

Installation and Configuration 2-15

encoding Character encoding for published messages. The
adapter uses this parameter to generate encoding
information in encoding tag of transformed OracleAS
InterConnect message. OracleAS InterConnect
represents messages internally as an XML document.
The default encoding of the XML document is UTF-8 .
However, this encoding can be configured using this
parameter, which is typically used when the OracleAS
InterConnect message consists of characters not
supported by UTF-8 and when the XMLParser is
unable to handle them.

encoding=JA16SJIS

nls_language This parameter is a valid ISO Language Code. These
lower-case and two-letter codes are defined by ISO-639.
You can find a full list of these codes at a Web site, such
as,
http://www.ics.uci.edu/pub/ietf/http/rela
ted/iso639.txt

The default language code is en .

Note: This parameter specifies date format. It is
applicable for the date format only.

nls_language=en

Table 2–7 adapter.ini Parameters

Parameter Description Example

CICS Adapter Configuration

2-16 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

nls_date_format Format for date fields expressed as string. The
following pattern letters are defined. All other
characters from A to Z and from a to z are reserved.

Letter Date or Time Component Examples

G Era designator AD

y Year 1996 ; 96

M Month in year July ; Jul ; 07

w Week in year 27

W Week in month 2

D Day in year 189

d Day in month 10

F Day of week in month Number 2

E Day in week Tuesday ; Tue

a A.M./P.M. marker P.M.

H Hour in day (0-23) 0

k Hour in day (1-24) 24

K Hour in A.M/P.M. (0-11) 0

h Hour in A.M./P.M. (1-12) 12

m Minute in hour 30

s Second in minute 55

S Millisecond 978

z Time zone Pacific

The default date format is EEE MMM dd HH:mm:ss
zzz yyyy .

Note: This parameter specifies date format. It is
applicable for the date format only.

Date format pattern
dd/MMM/yyyy can represent
01/01/2003.

nls_date_
format=dd-MMM-yy

Multiple date format can be
specified as num_nls_
formats=2

nls_date_
format1=dd-MMM-yy

nls_date_
format2=dd/MMM/yy

Table 2–7 adapter.ini Parameters

Parameter Description Example

Starting the CICS Adapter

Installation and Configuration 2-17

CICS Adapter Parameters
The following table lists the parameters specific to the CICS adapter.

Starting the CICS Adapter
Start the adapter from the Services window available from the Start menu.

1. Access the Services window from the Start menu:

The Services window displays.

2. Select the OracleHomeOracleASInterConnectAdapter-Application service.

3. Start the service based on your operating system:

The CICS adapter, in turn, automatically starts the publishing engine, a tool for

notifying foreign applications of additions, deletions, or updates to the native

application.

If you are using the CICS adapter or your browser in iStudio, but you fail to

initialize the CICS adapter, you may not have the keys for JavaHome and

Parameter Description Example

bridge_class This indicates the entry class for the CICS adapter. Do
not modify this value. A possible value is
com.actional.oai.Agent . There is no default value.

bridge_
class=com.actional.oa
i.Agent

On... Choose...

Windows NT Start > Settings > Control Panel > Services

Windows 2000 Start > Settings > Control Panel > Administrative Tools > Services

On... Choose...

Windows NT Choose Start.

Windows 2000 Right click the service and choose Start from the menu that
displays.

See Also: Oracle Application Server InterConnect Adapter Publishing
Engine User’s Guide

Stopping the CICS Adapter

2-18 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

RuntimeLib , or these keys do not point to the correct JDK. In this case, the iStudio

browser will not display or the data from the backend system cannot be imported.

To created these keys, use the Windows regedit tool. To access the regedit tool:

1. Click Start and select Run.

2. Enter regedit and click OK.

The following example displays the values for these keys when the CICS adapter is

installed under the C:\Oracle\Ora90 directory :

[HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime Environment]

[HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime Environment\1.3]
"CurrentVersion"="1.3"

[HKEY_LOCAL_MACHINE\SOFTWARE\JavaSoft\Java Runtime Environment\1.3]
"JavaHome"="c:\\oracle\\ora90\\jdk\\jre"
"MicroVersion"="1"
"RuntimeLib"="C:\\Oracle\\Ora90\\jdk\\jre\\bin\\hotspot"

Stopping the CICS Adapter
Stop the adapter from the Services window available from the Start menu.

1. Access the Services window from the Start menu:

The Services window displays.

2. Select the OracleHomeOracleASInterConnectAdapter-Application service.

3. Stop the service based on your operating system:

On... Choose...

Windows NT Start > Settings > Control Panel > Services

Windows 2000 Start > Settings > Control Panel > Administrative Tools > Services

On... Choose...

Windows NT Choose Stop.

Windows 2000 Right click the service and choose Stop from the menu that
displays.

Stopping the CICS Adapter

Installation and Configuration 2-19

You may verify the stop status by viewing the oailog.txt files in the appropriate

time stamped subdirectory of the log directory within the adapter directory.

Stopping the CICS Adapter

2-20 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

CICS and the CICS Adapter 3-1

3
CICS and the CICS Adapter

This chapter discusses the following:

■ The CICS Adapter

■ Message Description Language (MDL)

■ Classes

■ LU6.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLs

■ How the CICS Adapter Communicates With CICS

■ CICS Adapter Security

■ Implementing the CICS Adapter

■ Using the CICS Adapter Inbound

■ Creating an Implemented Procedure

■ Creating a Subscribed Event

The CICS Adapter

3-2 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

The CICS Adapter
In CICS, both partners (CICS and the CICS adapter) must define the content of the

CICS buffer. When this is done, it is possible to exchange data.

The CICS adapter provides the OracleAS InterConnect system with the ability to

interact with CICS. To make the CICS buffer description visible to OracleAS

InterConnect, the adapter specifies how to format data (representing a call) on a

communication line by describing the format of the data being passed. The format

is described in an Message Description Language (MDL) file. It abstracts a method

call as input and output messages. A normal method call has arguments passed

from the Agent (caller) to CICS (callee) represented as synchronous or

asynchronous messages going up and back from arbitrary services.

Individual message reply and request pairs (each request message can have a reply

message) describe interactions between clients and servers.

The CICS adapter represents a method call as a pair of messages:

■ A request message containing all input arguments.

■ A reply message containing all output arguments.

Message Description Language (MDL)
Message-oriented technology does not have any type description which

object-technologies require. A language specification, the Message Description

Language, describes the internal data format of each message buffer.

The CICS adapter uses the Message Description Language to describe the CICS

buffer.

Message Description Language elements are message buffers, sent or received by

the CICS adapter, mapped as Message Description Language method arguments.

The mapping allows object-oriented technologies to have a familiar view of the

message buffers; with each message treated as a single argument or separated into

multiple arguments. The CICS adapter automatically concatenates the arguments at

run-time. The request and reply messages are grouped as a single method with

input and output arguments. One Message Description Language interface groups

Message Description Language methods (performing similar tasks) for a specific

message queue.

Classes

CICS and the CICS Adapter 3-3

Classes
To make CICS servers visible as components to OracleAS InterConnect applications,

you first describe a set of methods using adapter’s message formats. A method call

translates into a request message and a reply message. The request message

contains all the input arguments and the reply message contains all the output

arguments.

The CICS adapter uses Message Description Language *.cls files as the

representation of component interfaces with methods having elements as

arguments. For example, the message definition:

method GetBalance
in BankName bank
in CustName customer
out Balance balance
out CustStatus status

end method

defines a method containing four arguments with the type defined using Message

Description Language fixed length string types:

typedef string(54,' ',tail) BankName
typedef string(30,' ',tail) CustName
typedef string(20,' ',head) Balance
typedef string(20,' ',tail) CustStatus

The following is an example of a Message Description Language file for CPI-C

LU6.2 SNA protocol. This file must be named cics62b.cls (this is the class name

and the cls extension):

#cics62b.CLS
Class for CICS A62B transaction invoking ACTB62P1 Program
Note the ACTB62P1 program is invoking (CICS LINK) ACTBNKP1 Program

class cics62b (lu62cpic://CICSVIET)
struct dfhcommarea

string(8,' ',tail) transCode
number(5,0,none) in string(5,'0',head) acctNumber
string(20,' ',tail) clientName
number(6,2,none) in string(8,'0',head) Amount
number(8,2,none) in string(10,'0',head) Balance
string(3,' ',tail) ReturnCode
string(80,' ',tail) Information

end struct
method AB62

LU6.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLs

3-4 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

return void
inout dfhcommarea programdata

end method
end class

01 IOAREA.
05 TRANSACTION-CODE PIC X(8).
05 ACCOUNT-NUMBER PIC 9(5).
05 CLIENT-NAME PIC X(20).
05 TRANSACTION-AMOUNT PIC 9(6)V99.
05 ACCOUNT-BALANCE PIC 9(8)V99.
05 APPL-RETURN-CODE PIC X(3).
05 APPL-ERROR-MESSAGE PIC X(80).

LU6.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLs
At run-time, the CICS adapter interacts with the communication framework to pass

along data over the adapter CPI-C protocol stack or the ECI protocol API. You can

use either of these protocol stacks with the CICS adapter.

Both the ECI protocol API and the CPI-C protocol stack (CPI-C LU6.2 SNA protocol

API) defines the transport layer used to communicate data between CICS

applications and adapter. Just as the metadata describes how to format documents,

the protocol stack defines the shipping mechanism.

Message Description Language class files must specify a URL in the class definition.

URLs specify routing information when describing destinations within the CICS

world. The URL contains CPI-C transport, ECI transport, and protocol under the

form of a protocol stack identifier, as well as transport specific server identification.

The following is an example using the CPI-C LU6.2 SNA protocol API:

lu62cpic://luname/tpname

where:

■ lu62cpic—Specifies the IBM snalu62 protocol stack, using the CPI-C API.

■ Luname—Alias of the remote location unit name of the destination.

■ tpname—CICS transaction name.

How the CICS Adapter Communicates With CICS

CICS and the CICS Adapter 3-5

The following is an example using the ECI protocol API:

eci://cicsservername/cicsprogramname

where:

■ eci—Specifies the ECI protocol API.

■ cicsservername—Specifies the CICS server name.

■ cicsprogramname—Specifies the CICS program name.

How the CICS Adapter Communicates With CICS
The CICS adapter uses either a SNA LU62 CPI-C interface or ECI protocol

application to communicate with CICS.

Using SNA LU 6.2 CPI-C Protocol API
To achieve the communication, install the CICS adapter on a machine that has the

IBM eNetwork communication server or the IBM eNetwork communication client,

or on a machine having a Microsoft SNA server or Microsoft SNA client.

Install all the required definitions in the following locations:

■ Local SNA Server

■ Remote SNA Server (Virtual Telecommunications Access Method/Network

Program Control)

■ CICS tables

To communicate with CICS, the CICS adapter needs two pieces of information:

1. Remote LU alias—The name defined in the local SNA server. Usually it is the

same name as the remote LU name (this name is often also the name of the

CICS in VTAM (VTAM ACB)).

2. transaction program Name—The name of the CICS transaction. Its length is

usually four characters.

The URL specified in the Message Description Language class definition provides

this information.

CICS Adapter Security

3-6 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Using the ECI Protocol API
To achieve the communication, install the CICS adapter on a machine that has the

IBM CICS Universal Client. This software may require one of the following pieces

of software to communicate with the CICS server:

■ TCP/PI—This protocol can be used with non-mainframe CICS server.

■ TCP62—This protocol can be used with all CICS servers. It requires IBM

Personal Communication software installed on the computer running ACB with

the CICS adapter using the ECI protocol.

■ SNA LU6.2—This protocol can also be used with all CICS servers. It requires

IBM eNetwork Communication Server client or server software installed on the

computer running ACB with the CICS adapter using the ECI protocol.

To communicate with CICS, the CICS adapter needs two pieces of information:

1. CICS server name—The name defined in the CICS Universal Client

configuration. It is the server name.

2. CICS program name—The name of the CICS program. Its length can be up to

eight characters. This is the name of the program as defined in the CICS region

The URL specified in the Message Description Language class definition provides

this information.

CICS Adapter Security
Security is provided by the CICS adapter and by the different software needed by

the protocols.

Using the LU 6.2 CPI-C Protocol
There are different levels of security when using the CICS adapter with the SNA LU

6.2 CPI-C protocol. Security may be optional, but it is almost always used in

mainframe applications. You may also have security between the SNA Client and

the SNA server (if you are using a SNA client) and security between SNA servers

(the mainframe SNA server and the SNA server used by the CICS adapter to

communicate. For more details refer to your system administrator or to the SNA

(Microsoft or IBM) books for the CICS LU6.2 CPI-C protocol and to the IBM SNA

and CICS mainframe books.

Implementing the CICS Adapter

CICS and the CICS Adapter 3-7

Security can be specified in the user profile. If you are using security, you must

provide a user identification and a password that your mainframe application

accepts.

Using the ECI Protocol
There are different levels of security when using the CICS adapter with the ECI

protocol. Security may be optional, but it is almost used in mainframe applications.

The security used in the CICS Universal agent depends on which communication

protocol is used. For more details, refer to your system administrator or to the CICS

Universal Agent documentation.

Security can be specified in the user profile. If you are using security, you must

provide a user identification and a password that your mainframe application

accepts.

Implementing the CICS Adapter
There are two parts in the implementation:

■ LU 6.2 protocol or the ECI protocol API

■ CICS adapter

SNA LU 6.2 CPI-C Protocol API
LU 6.2 provides the services required to establish a conversation with the Remote

partner of the CICS adapter, the Mainframe CICS region. The services related to a

transaction program are:

■ Start transaction program (identify to LU 6.2 a transaction program that can

issue ALLOCATE or MC_ALLOCATE).

■ Stop the transaction program.

■ Data related to a transaction program—transaction program identification and

transaction program behavior (dead or alive).

■ Services related to a Conversation:

■ Receive_Allocate (start an invoked transaction program)

See Also: "Using the Configuration Editor" on page 7-1

See Also: "Using the Configuration Editor" on page 7-1

Implementing the CICS Adapter

3-8 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

■ Send Data

■ Receive data

■ All the other APPC conversation verbs

■ Data related to a conversation—Conversation Identification, conversation

behavior (dead or alive), and conversation states (reset, receive, or send state).

ECI Protocol API
ECI provides the service requires to establish a Distributed Program Link (DPL) call

to a CICS program running in a CICS region, through the Commarea. The services

related to a Distributed Program Link call are:

■ Provides security information if required.

■ Establish contact with the CICS Universal Agent.

■ Do the call to a remote CICS program, by passing to the CICS Universal agent:

■ Name of the CICS server.

■ Name of the CICS program.

■ Commarea containing the application data.

■ User Id and password, if required.

CICS Adapter
The CICS adapter in inbound mode does the following:

■ Uses services provided by the SNA LU 6.2 CPI-C protocol or by the ECI

protocol.

■ Provides UserID and Password for security (at data communication message

level).

■ Builds from the metadata and the request received messages sent to the CICS

region.

If using services provided by the SNA LU 6.2 CPI-C protocol, the following is

achieved:

■ Allocates a conversation with the remote Transaction Program (CICS region).

■ Sends the required data and security.

Implementing the CICS Adapter

CICS and the CICS Adapter 3-9

■ Receives reply (replies) from the CICS program.

■ Converts the data to the original format.

If using services provide by the ECI protocol:

■ Connect with the CICS Universal Agent (using the CICS server Name and

security).

■ Sends the required data using to the CICS program.

■ Receives reply (replies) from the CICS region.

■ Converts the data to the original format.

CICS Adapter Information Flow
The following is the CICS adapter information flow:

■ Receives a request from the OracleAS InterConnect application.

■ Transforms the component (in a CICS transaction and in procedures to obtain

what it is required).

■ For SNA LU 6.2 CPI-C:

■ Transaction definition

■ Transaction code and input data (format) (fields position + type: binary,

ASCII, EBCDIC)

■ Transaction output data format

■ Transaction destination and protocols

■ LU name (Transaction destination)

■ Protocol used (LU 6.2 CPI-C)

■ Security (application level—logical to be mapped in configuration data

(logonids or others)

■ For ECI:

■ Commarea definition

■ Program name and input data (format (fields position & type: binary,

ASCII, EBCDIC)

■ Message Destination (CICS Server name)

Implementing the CICS Adapter

3-10 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

■ Security (application level—logical to be mapped in configuration data

logonIds or others)

■ Sends the result of the transformation to the Communication layer.

■ Receives transaction responses from the Communication layer.

■ Transforms the transaction response.

■ Sends the response to the OracleAS InterConnect application.

■ Uses functions library for sending/receiving data (CPI-C and/or APPC or ECI

Protocol API).

The Communication Layer manages physical communication with the mainframe

(physical links, PUs and logical units activation/deactivation, and link security). It

sends and receives data received from the CICS adapter.

Multi-Threading
The following are multi-threaded for SNA LU62 CPI-C:

■ CICS

■ SNA servers (VTAM and Windows)

The SNA API DLLs support multiple calls from a program using APPC or CPI-C

SNA APIs.

More than one instance of the CICS adapter are possible:

■ one to one

■ one to two or plus

■ two or plus to one

■ two or plus to two or plus

It is possible for one instance of the CICS adapter to have more than one

conversation with multiple remote transaction programs.

Note: Implementation of security and/or implementation of

multi-threading is specific to the SNA server and to the functions

provided by the API. For example, Microsoft provides a Windows

standard APPC where they allow asynchronous APPC calls on

Windows.

Using the CICS Adapter Inbound

CICS and the CICS Adapter 3-11

The following are multi-threaded for ECI:

■ CICS

■ The CICS Universal Agent

■ Windows

The CICS Universal Agent DLLs support multiple calls from a program using ECI

API.

More than one instance of the CICS adapter is possible. The possibilities are:

■ one to one

■ one to two or plus

■ two or plus to one

■ two or plus to two or plus

It is possible for one instance of the CICS adapter to have more than one program

call to multiple CICS regions.

Implementation of security and/or implementation of multi-threading is specific to

the CICS Universal Agent and to the functions provided by the API.

Using the CICS Adapter Inbound
Sending messages inbound means that the CICS adapter is the client and CICS is

the server. To send messages to CICS using the CPI-C LU 6.2 SNA protocol, ensure

that the SNA client and the adapter configuration settings are setup properly. To use

an ECI protocol, ensure that the IBM Universal client and adapter settings are set up

properly.

SNA LU 6.2 CPI-C Protocol
Before using the CICS adapter, you must prepare your environment. For example:

■ SNA controllers are up and running.

■ CICS at the mainframe is up and running.

■ Session(s) between LUs are either active or inactive. If sessions are active, the

Bind security was done at session activation.

Using the CICS Adapter Inbound

3-12 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Application Start-up
Launch the CICS adapter. In its initialization process, the CICS adapter sends a

TP_START APPC verb. The SNA returns a TP_id . All conversations and

commands sent to the SNA controller use this TP_id . It is valid until the adapter

issues a TP_END later in the allocation of a conversation.

Receiving a CICS Adapter Request from OracleAS InterConnect
When the CICS adapter receives a request, complete the following:

1. Extract the data required to build the CICS transaction.

2. Get and set all related settings for the conversation:

■ Security information—UserID and Password .

■ ModeName—Characteristics of the session between the 2 LUs.

■ Synchronization level of the conversation—NONE or CONFIRM.

■ Remote LU name—The SNA name of the CICS region.

■ Remote transaction program name—For CICS, he CICS transaction name.

■ Start (allocate) the conversation—The protocol obtains from SNA a

conversion identifier. This identifier is used on each subsequent call to the

SNA LU62 CPI-C API for this conversation.

■ Data is sent to the CICS region through SNA.

3. Issue a confirmation command if CONFIRM is set as synchronization level.

4. Issue a receive command to receive the reply from the CICS transaction.

When all the data is received, the session will be de-allocated and the CICS

adapter receives notification. With the data, the CICS adapter builds back a

reply to the requestor.

ECI Protocol
Before using the CICS adapter, you must prepare your environment. For example:

■ CICS Universal agent is up and running.

■ Communications software used by CICS agent is up and running.

■ CICS at the mainframe is up and running.

Using the CICS Adapter Inbound

CICS and the CICS Adapter 3-13

Application Start-up
To start the application, launch the CICS adapter.

Receiving a CICS Adapter Request from OracleAS InterConnect
When the CICS adapter receives a request, complete the following:

1. Extract the data required to build the CICS program Commarea.

2. Initialize and set all the control information, such as:

■ CICS Server Name—Name of the CICS server, as known by the CICS

Universal Agent.

■ CICS Program Name—Name of the CICS program, as known by the CICS

region.

■ If required, enter the User Id and Password.

3. Send the data to the CICS region.

4. The CICS program in the CICS Region receive data in a memory buffer called

Commarea. It processes the data and puts back output data in the same buffer.

When finished, control returns to the CICS Server.

5. The CICS server sends back the Commarea to the CICS Universal Agent.

6. The CICS Universal Agent passes the buffer back to the CICS adapter.

Design Time
Create an Message Description Language *.cls file describing the messages buffer

format to send and receive as Message Description Language method argument

parameters.

Create a new sub-directory under config/CICS and copy the Message Description

Language class file into the new directory. After the Message Description Language

files have been copied into the directory, the interfaces are visible to OracleAS

InterConnect. iStudio can be used in the normal manner to create definitions,

procedures, and events.

See Also:

■ "Message Description Language Reference" on page 6-1

■ "Classes" on page 3-3 for an example of an Message

Description Language class file

Creating an Implemented Procedure

3-14 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

You use the CICS adapter to:

1. Expose the Message Description Language interface in iStudio.

2. Define application views in iStudio.

Runtime
Performing a call requires a bidirectional exchange of information with the CICS

servers. On performing a call, the CICS adapter extracts all input information from

the passed in arguments; it uses information within the Message Description

Language to format these arguments into an input message. The CICS adapter uses

the URL provided in the Message Description Language file to connect to the

service.

Creating an Implemented Procedure
To create an implemented procedure using iStudio:

1. Start iStudio.

2. Open your project.

3. Expand the Applications folder.

Creating an Implemented Procedure

CICS and the CICS Adapter 3-15

4. Right-click Implemented Procedures and select New.

Figure 3–1 iStudio - New Implemented Procedure

Creating an Implemented Procedure

3-16 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

The Implement Wizard—Select a Procedure dialog displays.

Figure 3–2 Selecting a Procedure

5. Select the Application and Message Type from the dropdown lists.

Creating an Implemented Procedure

CICS and the CICS Adapter 3-17

6. Select a procedure and click Next. The Implement Wizard—Define Application

View dialog displays.

Figure 3–3 Implement Wizard - Define Application View - Importing CICS

Creating an Implemented Procedure

3-18 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

7. Click Import and select CICS from the dropdown list. The Component Selector

dialog displays.

Figure 3–4 Component Selector

8. Expand the CICS tree to display the component for selection.

Creating a Subscribed Event

CICS and the CICS Adapter 3-19

9. Select a component and click OK. The populated Define Applications View

dialog displays.

Figure 3–5 Implement Wizard - Define Application View Dialog

10. Click Next to define the mappings.

The Define Mappings dialog displays.

11. Click New to define mappings and click Finish.

The new populated event displays in the right panel of iStudio.

Creating a Subscribed Event
To create a subscribed event in iStudio:

1. Start iStudio.

2. Open your project.

3. Expand the Applications folder.

Creating a Subscribed Event

3-20 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

4. Right-click Subscribed Events and select New.

Figure 3–6 iStudio—Creating a Subscribed Event

Creating a Subscribed Event

CICS and the CICS Adapter 3-21

The Subscribe Wizard—Select an Event dialog displays.

Figure 3–7 Select an Event

5. Select the Application and Message Type from the dropdown lists.

6. Select an event and click Next.

Creating a Subscribed Event

3-22 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

The Define Application View dialog displays.

Figure 3–8 Implement Wizard - Define Application View - Importing CICS

Creating a Subscribed Event

CICS and the CICS Adapter 3-23

7. Click Import and select CICS. The Component Selector dialog displays.

Figure 3–9 Component Selector

8. Expand the CICS tree to display the correct component for selection.

Creating a Subscribed Event

3-24 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

9. Select a component and click OK. The populated Define Applications View

dialog displays.

Figure 3–10 Implement Wizard - Define Application View

10. Click Next to define the mappings.

The Define Mappings dialog displays

11. Click New to define mappings and click Finish.

The new populated event displays in the right panel of iStudio.

Systems Network Architecture Definitions 4-1

4
Systems Network Architecture Definitions

This chapter describes the terms commonly used when referring to systems

network architecture. This chapter discusses the following topics:

■ LU 6.2 CPI-C Protocol Stack and URLs

■ Concepts and Terms

LU 6.2 CPI-C Protocol Stack and URLs

4-2 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

LU 6.2 CPI-C Protocol Stack and URLs
At run-time, the CICS adapter interacts with the communication framework to pass

along data over the CPI-C protocol stack.

The CPI-C protocol stack (CPI-C LU 6.2 SNA protocol API) defines the transport

layer used to communicate data between CICS applications and the CICS adapter.

Just as the meta-data describes how to format documents, the protocol stack defines

the shipping mechanism.

URLs specify routing information when describing destinations within CICS. The

URL contains CPI-C transport and protocol under the form of a protocol stack

identifier, as well as transport specific server identification. The following is an

example using the CPI-C LU 6.2 SNA protocol API:

lu62cpic://luname/tpname

where:

■ lu62cpic —Specifies the IBM snalu62 protocol stack, using the CPI-C API.

■ Luname—Alias of the remote logical unit name of the destination.

■ tpname —CICS transaction name.

A default URL must be specified on the class definition. It must contain the protocol

name (logical unit name) for the CPI-C LU 6.2 SNA protocol. If the tpname
(lu62cpic) is not specified, then the method name is used.

For example:

class CICS_BasicTypes(lu62cpic://S9 CICS) ascii littleendian
 Method testsigned8
 return void
 in signed8 inArg
 out signed8 outArg
 end method

Concepts and Terms

Systems Network Architecture Definitions 4-3

Concepts and Terms
This section describes the following concepts:

■ ABEND

■ Advanced Program-to-Program Communication (APPC)

■ CICS

■ CICS Region

■ CICS Transaction

■ Conversation

■ CPI Communications (CPI-C)

■ Logical Unit

■ Mode Name

■ Node

■ Node Type

■ Physical Unit (PU)

■ Session

■ System Management Facility (SMF)

■ Systems Network Architecture (SNA)

■ Systems Network Architecture (SNA) Controllers

■ Synchronization Levels

■ Synchronization Services

■ Transaction Program (TP)

■ Verb Control Block (VCB)

■ Verbs

■ CICS as a Transaction Program

Concepts and Terms

4-4 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

ABEND
In OS/390, it is an abnormal termination of a program task (thread) or an address

space (process). There are two types of abends: system and user. A system abend is

done by the system because a system request (this is a supervisor call, usually done

by a SVC) cannot be completed; therefore, the program that issued it cannot

continue to work. Examples are unconditional requests for memory or problem

accessing files. A user abend is an abend generated by the application program.

This occurs when issuing a SVC number 13 instruction in the executable code. A

system abend is prefixed by the letter S and followed by three hexadecimal digits,

for example, S80A (missing memory). A User abend is prefixed by the letter U

followed by four decimal digit, for example, abend U1001.

In CICS, it is an abnormal termination of a transaction. When CICS has an OS/390

abend, the entire CICS region is not available. When a CICS transaction abends,

only that transaction is terminated. A CICS abend code is usually made up of 4

characters, for example, abend ASRA. This abend is usually a program exception

(for example, divides by zero, invalid addressing, non decimal data in a packed

decimal field, and so forth). These types of errors are “trapped” by CICS and

converted in a CICS abend ASRA. If, for example, the packed decimal error is not

trapped, the whole CICS region abends with a OS/390 system abend code S0C7.

Advanced Program-to-Program Communication (APPC)
Advanced Program-to-Program Communication is the general facility

characterizing the LU 6.2 architecture and its various implementations in products.

APPC is sometimes used to refer to the LU 6.2 architecture and its product

implementations as a whole, or to a LU 6.2 product feature in particular, such as an

APPC application program interface. In this document, APPC is referred to as the

API, which allows a program to communicate with another program via a LU 6.2.

This API is implemented as APPC verbs. Transaction programs can directly use

these verbs to communicate with the LU 6.2 or they can use another layer of API,

such as CICS. CPI-C is an example of a higher layer-programming interface.

Note: These abends can be trapped (caught) by user written

programs.

Concepts and Terms

Systems Network Architecture Definitions 4-5

CICS
CICS is a transaction-oriented system. Basically, a transaction is entered via a

terminal or programmatically. The data entered contains a transaction ID, which

enables CICS to recognize the program to be executed. CICS provides this data as

input to the called program. Processing includes calls to databases, to other

programs, or even to other systems. Next, a reply is built and the data is sent back

via CICS. The receiving program reads the data and proceeds with it. If it is a

terminal, control characters may have been embedded with the data to display the

data correctly.

To communicate with other terminals, programs, or both, CICS can use a large

number of protocols, including TCP/IP and systems network architecture

protocols. In this case, LU 6.2 is a peer-to-peer protocol used to transmit messages

between programs.

CICS Region
The CICS region refers to CICS and ESA only. In MVS (or OS/390), a variable-size

subdivision of virtual storage that is allocated to a job step or system task.

CICS/ESA runs in an MVS/ESA region, usually referred to as the CICS region.

A named collection of resources controlled by CICS as a unit. The collection

includes programs, BMS map sets, transactions, terminals, files, transient data

queues, temporary storage queues, journals, products, and users. One installation of

CICS can run a number of regions on the one processor. Regions are likely to be

application-specific, but one clear distinction is between a production region and a

test region.

CICS Transaction
A CICS transaction is a unit of application data processing, consisting of one or

more application programs, initiated by a single request, often from a terminal.

Conversation
In systems network architecture, conversation describes the communication

between two transaction programs. That is, when two APPC transaction programs

are in communication, they are said to be holding a conversation. Conversations

flow on LU-LU sessions. Each conversation is allocated a session for its own private

use. When the conversation ends, the session is free to be used by another

conversation. There can only be one conversation between any two transaction

programs, but one transaction program could have multiple conversations with

Concepts and Terms

4-6 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

different transaction programs. LU 6.2 transaction programs may select either

two-way alternate (half-duplex) or two-way simultaneous (full-duplex)

conversations, if both the local and remote logical units support full-duplex

conversations. In a full-duplex conversation, each transaction programs can send

data simultaneously. In half-duplex, the transaction program doing the allocation is

in send state at the beginning and the other transaction program is in a receive

state. There are 2 types of conversation:

■ APPC mapped conversation—The systems provide and interpret protocol

headers, and the application programs deal only with user data.

■ APPC basic conversation—The sending application must prefix the data with

the header required by the communications protocol. The receiving application

must interpret this header.

In CICS, the communication commands you code in your application depend on

whether you intend to use basic or mapped conversations. CICS-to-CICS

applications need only use mapped conversations. Basic conversations (also

referred to as unmapped) are useful only when communicating with systems that

do not support mapped conversations. These include some APPC devices.

The two conversation types are similar. The main difference is in the way user data

is formatted for transmission:

■ In mapped conversations, the application sends the data to the partner.

■ In basic conversations, the application has to add a few control bytes to convert

the data into an systems network architecture-defined format called a

generalized data stream (GDS).

CPI Communications (CPI-C)
CPI Communications provides a cross-system-consistent and easy-to-use

programming interface for applications that require program-to-program

communication. From an application's perspective, CPI-C provides the function

necessary to enable this communication. The conversational model is implemented

in two major communications protocols: Advanced Program-to-Program

Communication (APPC) and Open Systems Interconnection Distributed Transaction

Processing (OSI TP). The APPC protocol is also referred to as logical unit type 6.2

(LU 6.2). CPI-C provides access to both APPC and OSI-TP.

Concepts and Terms

Systems Network Architecture Definitions 4-7

Logical Unit
A logical unit represents the logical destination of a communication data flow. The

formal definition of an logical unit is that it is the means by which an end user gains

entry into a network, and an end user is defined as the ultimate source, or

destination, of data flow in a network. Systems network architecture supports

several different types of logical units. These are grouped together in numbered

logical unit types, such as logical unit type 2 for 3270 display terminals, and logical

unit type 4 for printers. The logical unit type for CICS-to-CICS communication is

logical unit type 6.2, and is frequently referred to as advanced program-to-program

communication (APPC). Each logical unit is given a unique name that identifies it

in the network, and this is referred to as the logical unit name. There are two types

of LU 6.2 pertinent to CICS adapter:

■ Dependent LU 6.2—Can have only a single session and, therefore, only one

conversation at a time.

■ Independent LU 6.2—Can have more than one session with other logical units.

Therefore, many conversations can be held simultaneously between 2 logical

units.

Mode Name
A mode name is the name used by the initiator of a session to designate the

characteristics desired for the session, such as traffic pacing values, message-length

limits, synchronization point and cryptography options, and the class of service

within the transport network.

Node
A node is any device attached to a network that transmits and receives data.

An endpoint of a link or a junction common to two or more links in a network.

Nodes can be processors, communication controllers, cluster controllers, or

terminals, and can vary in routing and other functional capabilities.

Node Type
A designation of a node according to the protocols it supports or the role it plays in

a network. Node type was originally denoted numerically (as 1, 2.0, 2.1, 4, and 5)

but is now characterized more specifically by protocol type (APPN network node,

LEN node, subarea node, and interchange node, for example) because type 2.1

nodes and type 5 nodes support multiple protocol types and roles.

Concepts and Terms

4-8 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Physical Unit (PU)
A Physical Unit (PU) is the hardware and software components in a device that

manages its network resources. Logical units reside within a physical unit, and one

physical unit may hold many logical units. There are several different types of

physical units: Virtual Telecommunications Access Method (VTAM) running in a

mainframe host is a physical unit type 5, and Network Program Control (NCP)

running in a 37x5 network controller (physical unit type 4). When workstations

connect together in a peer-to-peer manner they act as physical unit type 2.1. When a

workstation connects to a mainframe host in a hierarchical manner, it acts as a

physical unit type 2.0. The physical unit type 2.1 is described as an independent

node (because it is independent of a mainframe host), and the physical unit type 2.0

is a dependent node.

Session
Systems network architecture uses the term session to refer to various types of data

flow in a network. To avoid ambiguity, it should always be qualified by a

description of the type of data flow, for example CP-CP session. However, when

used by CICS for APPC, it can be assumed to refer to data flow between logical

units, and therefore is a LU-LU session. There are usually several sessions between

any two (independent) logical units, and these are known as parallel sessions. CICS

uses the term connection to refer to a group of sessions that connect two CICS

systems (or a CICS with the CICS adapter logical unit).

System Management Facility (SMF)
A System Management Facility (SMF) is a standard feature of OS/390 that collects

and records a variety of system and job-related information.

Systems Network Architecture (SNA)
Systems Network Architecture (SNA), in the mainframe work, are commonly used

to:

■ Enable the reliable transfer of data between end users.

■ Provide protocols for controlling the resources of any specific network

configuration.

Concepts and Terms

Systems Network Architecture Definitions 4-9

Systems Network Architecture (SNA) Controllers
In this document, the systems network architecture controller represents the type

2.1 node (or physical unit) when on the CICS adapter side as well as the type 5

node, when at the mainframe site. Examples of systems network architecture

controller include:

■ Type 2.1—Microsoft SNA Server. The LU 6.2 is also part of Microsoft SNA

Server.

■ Type 5—VTAM. This is the software running at the mainframe. For some

telecommunications, VTAM requires a Type 4 physical unit. This is hardware

equipment (the IBM 37x5 families).

Synchronization Levels
In synchronization levels, CICS defines three levels of synchronization for

conversation using the APPC protocol:

■ Level 0—None. There is no CICS support for synchronization of remote

resources on connected systems. However, it is still possible, under the control

of the application to achieve some degree of synchronization by interchanging

data, using the SEND and RECEIVE commands.

■ Level 1—Confirm. Special commands for communication between the two

conversation partners can be used. One transaction can confirm the continued

presence and readiness of the other. Both transactions are responsible for

preserving the data integrity of recoverable resources by issuing

synchronization point requests a the appropriate times.

■ Level 2—Sync point. (Sync level 2 is not supported on single-session

connections). All synchronization point requests are automatically propagated

across multiple systems. CICS implies a synchronization point when it starts a

transaction; that is, it initiates logging of changes to recoverable resources, but

no control flows take place. CICS takes a synchronization point when one of the

transactions terminates normally.

One abending transaction causes all to rollback. The transactions themselves

can initiate synchronization point or rollback requests. However, a

synchronization point or rollback request is propagated to another transaction

only when the originating transaction is in conversation with the other

transaction, and synchronization level 2 has been selected.

Concepts and Terms

4-10 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Sync point and rollback are not limited to any one conversation within a

transaction. They are propagated on every conversation currently active at

synchronization level 2.

APPC provides support for the three levels of synchronization by providing

synchronization verbs and resynchronization services. Synchronization level 2

services is an option for many systems network architecture communication

servers.

Synchronization Services
When a failure occurs, an application transaction program may be accessing

multiple resources that may be local or remote, which causes synchronization

services to happen. Local resources reside on the same node as the application

transaction program. Remote resources may or may not be on the same node as the

application transaction program. The function of logical unit synchronization point

services is to ensure that selected local and distributed resources are in consistent

states at defined synchronization points even if failures occur. Resources within

such a set have consistent states if all the actions affecting them since the last

synchronization point persist or if none persist. If all persist, the changes are said to

be committed at all resources. If none persist, the changes are said to be backed out,

for example, all the resources are returned to their states at the last synchronization

point. Resources that are kept consistent by using the synchronization point

protocols are called protected resources. Following a transaction program, session,

logical unit, or other protected resource failures, that occur during synchronization

point protocols, protected resources are returned to consistent states by the LU 6.2

partners using resynchronization (resynchronization) protocols.

Full support of synchronization point services in actual implementations includes

provisions for synchronizing local resources as well as distributed resources

accessed through conversations. An application transaction program may use

synchronization point services when it is not using protected conversations. For

completeness, this section describes general synchronization point services. Details

of synchronization point services, including resynchronization services, for

resources other than LU 6.2 conversations are not defined in this document.

A transaction program selects the synchronization point service for a conversation

by specifying the SYNCPT value of the SYNC_LEVEL parameter on the ALLOCATE
verb. With other values of the SYNC_LEVEL parameter (NONE and CONFIRM),
maintaining resource consistency is up to the application transaction program.

If a transaction program has conversations using a synchronization level of SYNCPT,
it may use the SYNCPT and BACKOUT verbs to establish synchronization points. The

Concepts and Terms

Systems Network Architecture Definitions 4-11

BACKOUT verb undoes all changes made to protected resources since the last

synchronization point. The SYNCPT verb invokes two-phase commit protocols to

commit changes to local and distributed resources. Two outcomes to the SYNCPT
verb are possible:

■ The changes may all be committed, establishing a new synchronization point.

■ The changes may all be backed out, restoring the old synchronization point.

Application transaction programs execute a sequence of logical units of work

(LUWs), with each unit of work consisting of some changes to the resources under

the control of the transaction programs. If a synchronization level other than

SYNCPT is used, a transaction consists of one logical units of work. In this case,

recovery from a failure can be done by undoing the work accomplished up to the

point of the failure and running the transaction again from the beginning. By using

synchronization point services, a transaction can consist of multiple logical units of

work that are delimited by the start-up of a transaction program and by the

execution of each SYNCPT or BACKOUT verb. At the beginning of each logical units

of work, all resources are in consistent states. As a result, the amount of work

required to recover from a failure can be limited using synchronization point

services.

The following failures are addressed by synchronization point services:

■ Transaction program failures happen when transaction programs end

abnormally. LU 6.2 synchronization point services return protected resources to

consistent states following a transaction program failure.

■ Conversation failures happen when conversations fail as a result of failure of

the underlying sessions caused by the failures of physical components over

which the sessions are carried. If protected resources are used by the transaction

program, the transaction program can issue (and sometimes must issue) the

BACKOUT verb to put resources into consistent states following a conversation

failure. If a synchronization point operation was in progress when the

conversation failed, resynchronization returns protected resources to consistent

states.

■ Logical unit failures happen sometimes by themselves or as a result of the

failure of underlying hardware or software. The logical unit failure appears to

another logical unit as failures of all sessions connecting the two logical units.

After the logical unit recovers and sessions are established, resynchronization

may be needed to return protected resources to consistent states.

Concepts and Terms

4-12 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

■ Local resource failures (files). Some implementations may reduce the frequency

of these failures by having dual-copy file support. If the local resource is

protected by the synchronization point service, recovery is managed by

synchronization point services cooperating with the local resource manager.

Transaction Program (TP)
Transaction program (TP), in systems network architecture, the transaction program

refers to the application program in an APPC environment. The transaction

program uses the LU 6.2 (APPC) to gain access to the network.

CICS provides a choice of two application programming interfaces (APIs) for

coding your DTP conversations on APPC sessions:

■ CICS API, the programming interface of the CICS implementation of the APPC

architecture. It consists of EXEC CICS commands. These CICS commands are

converted in APPC verbs (as defined below).

■ Common Programming Interface Communications (CPI Communications) is

the communications interface defined by the Systems Application Architecture

(SAA). It consists of a set of defined functions in the form of program calls, that

are adapted for the language being used.

Verb Control Block (VCB)
Verb Control Block (VCB) is a structure passed to the APPC function. All the calls

done to APPC require only one parameter: a pointer to a verb control block. The

verb control block is different depending on the type of the call, but the first

parameter is the operation code, telling APPC which APPC verb the CICS adapter

wants to perform, and, at the same time, the format of this verb control block. There

are two types of APPC verbs:

■ Blocking Verb—Does not return before the completion.

■ Nonblocking Verb Support—Enables the transaction program to issue a

conversation verb and return control prior to the completion of the verb. The

verb whose execution is left incomplete becomes an outstanding verb. A

conversation can have more than one verb outstanding at a time. The

completion of the verb can be checked later with a WAIT_FOR_COMPLETE verb.

WAIT_FOR_COMPLETION waits for posting to occur on one or more

nonblocking operations represented in the specified list of wait objects. Posting

of a nonblocking operation occurs when the logic unit has completed the

associated nonblocking verb and filled all the return values.

Concepts and Terms

Systems Network Architecture Definitions 4-13

Verbs
APPC Verb is the mechanism by which a program accesses APPC. Each verb

supplies parameters to APPC. There are three types of APPC verbs:

■ Management Verbs—Provide the following management functions:

■ ACTIVATE_SESSION

■ CNOS (Change Number of Sessions)

■ DEACTIVATE_SESSION

■ DISPLAY

■ Transaction program (TP)—Transaction program verbs start and end

transaction programs and get and set transaction program properties. The

following are transaction program verbs:

■ GET_TP_PROPERTIES

■ SET_TP_PROPERTIES

■ TP_ENDED

■ TP_STARTED

■ Conversation Verb—Enable transaction programs to allocate and deallocate

conversations, send and receive data, and change conversation states. The

conversation verbs are listed in the following table.

There are two groups of conversation verbs:

■ Mapped conversation verbs—Intended for programs that use the

conversation directly.

■ Basic conversation verbs—Intended for more complex programs that

provide services to other users.

In typical situations, end-user transaction programs use mapped conversations

and service transaction programs use basic conversations. Mapped

conversation verbs can only be issued by a transaction program in mapped

conversations, while basic conversation verbs are reserved for basic

conversations. There is one exception to this rule: ALLOCATE can be used to

start either a basic or a mapped conversation.

Concepts and Terms

4-14 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Other conversation verbs (mapped or basic) include:

■ GET_LU_STATUS

■ GET_STATE

■ GET_TYPE

Mapped and basic verbs have the same function in their respective types of

conversation. For example, MC_CONFIRM performs the same function in a mapped

conversation that CONFIRM performs in a basic conversation.

Table 4–1 Conversion Table

Mapped conversation verbs Basic conversation verbs

MC_ALLOCATE ALLOCATE

MC_CONFIRM CONFIRM

MC_CONFIRMED CONFIRMED

MC_DEALLOCATE DEALLOCATE

MC_FLUSH FLUSH

MC_GET_ATTRIBUTES GET_ATTRIBUTES

MC_POST_ON_RECEIPT POST_ON_RECEIPT

MC_PREPARE_TO_RECEIVE PREPARE_TO_RECEIVE

RECEIVE_ALLOCATE RECEIVE_ALLOCATE

MC_RECEIVE_AND_POST RECEIVE_AND_POST

MC_RECEIVE_AND_WAIT RECEIVE_AND_WAIT

MC_RECEIVE_IMMEDIATE RECEIVE_IMMEDIATE

MC_RECEIVE_LOG_DATA RECEIVE_LOG_DATA

MC_REQUEST_TO_SEND REQUEST_TO_SEND

MC_SEND_CONVERSATION SEND_CONVERSATION

MC_SEND_DATA SEND_DATA

MC_SEND_ERROR SEND_ERROR

MC_TEST_RTS TEST_RTS

Concepts and Terms

Systems Network Architecture Definitions 4-15

CICS as a Transaction Program
CICS can utilize the following APIs to issue APPC verbs:

■ EXEC CICS Command Interface—CICS is “mapping” the CICS command to an

APPC verb.

■ CPI-C interface.

When CICS is using its CICS command interface, the CICS adapter should use the

APPC verb to communicate with the CICS transaction. It is not mandatory, the idea

is to try to use interface (or API) that supports all the functions the other transaction

program support.

Concepts and Terms

4-16 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Systems Network Architecture Concepts 5-1

5
Systems Network Architecture Concepts

This chapter describes typical data flows between two systems network architecture

transaction programs. The following topics are discussed:

■ Data Flow

■ Logical Units and Parallel Sessions

■ CICS Adapter Conversations

■ Security

■ Synchronization of Changes

■ Error Handling

Data Flow

5-2 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Data Flow
Figure 5–1 displays a simple exchange of data between the following two

transaction programs:

■ The CICS adapter

■ A CICS transaction on the mainframe

Figure 5–1 Windows Platform to Mainframe Flow

Logical Units and Parallel Sessions
LU 6.2 can provide more than one session (used by the conversation). These

sessions are:

■ Long-lived—Activated on demand by a command or automatically when a

there is request to start a conversation. They can also be called when an

Allocate command is received.

■ The maximum number of sessions is a parameter—The maximum session is

32767 (for VTAM) for a LU 6.2.

There is a limitation of 999 sessions for the mainframe CICS LU 6.2. CICS can

receive up to 999 conversations concurrently from one to n other LU 6.2 connection.

The session can be reused by conversations.

CICS Adapter Conversations
Since it is possible that a request from an adapter may require more than one

transaction, it is possible to reuse the same conversation (by not de-allocating the

session). By definition, sessions are long-lived connections between the two logical

units and a conversation should be allocated and deallocated as soon as possible, to

allow other conversations to start. For example a terminal operator who forgot to

close a session may hold a conversation open.

Security

Systems Network Architecture Concepts 5-3

It is possible for the CICS adapter to use the same conversation (without

de-allocating it and reallocating it again). Therefore, similar credentials from

different source use the same one. Modification must be made in the CICS

application (application written using CICS as APPC API). If the application in

CICS issues a EXEC CICS SEND LAST command, it tells CICS that it will

deallocate the session (by an EXEC CICS FREE) later.

If the application instead loops backs to an EXEC CICS RECEIVE and waits for new

data, then the conversation could be reused if the program supports the new

transaction code.

One of the ways to know if a CICS program loops back is to define it in the

metadata. This allows the CICS adapter to know if it can issue more than one

transaction without reallocating a conversation. Also, the CICS transaction may

deallocate the session when:

■ The CICS adapter has no choice.

■ It must deallocate locally the session and re-allocate one for a new transaction.

Reusing the same conversation drives more complexity in the CICS adapter because

it knows when it can use an already open conversation. In addition, there are

security issues. If the same UserID is not used, it starts a new conversation and

there are conversations management issues.

On the other hand, if the application on the mainframe was designed to be called

from a concentrating server, it may expect several transactions to be sent on the

same conversation, to increase efficiency.

Security
Security has always been an important matter in mainframe. Almost every resource

in a mainframe can be protected. While in the past, applications programs were

doing their own security, you can now use software packages that help to protect

almost all types of mainframe resources. IBM integrated a security interface in the

operating system and different vendors (including IBM) uses that interface for

implementation. CICS is using the same interface. In short, defining it and allowing

users, with the correct profile, can protect resources. VTAM (systems network

architecture controller) is also using it. CICS, like the others packages, is using its

own security scheme. However, since CICS version 9.0.2, it is using an External

Security Manager (ESM) to protect resources. The ESM used in CICS mainframe

documentation is RACF, the IBM ESM.

Security

5-4 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

LU 6.2 Security
The LU 6.2 architecture defines a number of conversation-level security option sets

that include passwords, UserIDs, and profiles in allocation requests. The LU 6.2

architecture also defines a session-level security option set. The architecture requires

that session-level LU-LU verification be allowed when conversation-level security

option sets are enabled and when the logical units that make up the network are not

physically secure (as determined by installation management). In an IBM

mainframe using OS/390 for example, VTAM, in essence, is part of the systems

network architecture Server and is primarily responsible for handling the LU 6.2

security. It supports session-level security and offers pass-through support for

conversation-level security. The application programs are responsible for

implementing conversation-level security. In this case, the application program is

CICS at the mainframe.

Session Level Security
Session level security includes the following:

■ Session Level Cryptography

■ LU-LU Verification

Session Level Cryptography
Session level cryptography refers to the enciphering of all or selected user data, at

the source logical unit, and the later deciphering that occur at the target logical unit.

The encryption algorithm uses a cryptographic key, supplied by the control point,

and a session seed, generated by one of the logical units when the session is started.

These parameters are exchanged at session activation.

LU-LU Verification
The identity of a logical unit’s partner is verified by using a LU-LU password and

the Data Encryption Standard (DES) algorithm.

Security

Systems Network Architecture Concepts 5-5

Conversation Level Security
Conversation-level security includes end-user verification, already-verified

protocols, persistent verification, and password management. The following terms

are associated with conversation level security:

■ End-User Verification

■ Already-Verified Protocols

■ Persistent Verification

■ Password Expiration Management

End-User Verification
End-user verification confirms the identity of the partner end user. When a

transaction program requests access to another transaction program, it must supply

adequate security information in the request to satisfy the security requirements of

the other transaction program, or the request is rejected. Security information, here,

could be the user ID and password supplied by the end user in its ALLOCATE verb

initiating the Attach request between the two logical units. When a user ID and

password are supplied on the request, they are verified by the logical unit that

receives them. If the UserID and password combination is incorrect, the request is

rejected. Also, an authorization list associated with the target transaction program

can be used. The keys to search the authorization list would be combinations of the

UserID and an optional profile supplied on the request, along with the name of the

partner logical unit from which the request originated. The authorization list could

be made up of combinations of UserID, profile, and partner logical unit name. After

the UserID and password combination is verified by the logical unit, the

authorization list may be searched using the received UserID and/or profile for

access rights to the specific transaction program named in the request. If the

additional criterion is not met, the request is rejected.

Already-Verified Protocols
A transaction program in its invocation of partner transaction programs may

represent an end user whose identify has been verified locally and need not be

verified at each remote partner, provided that partner trusts the invoking

transaction program's logical unit. In this case, the Attach invoking the partner

transaction program need not carry the already-verified password of the

represented UserID. Instead, an already-verified indicator is set in the Attach

request; the UserID and optional profile of the user represented by the invoking

transaction program are supplied in the request. For security reasons, the password

Security

5-6 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

used to initiate the invoking transaction program is never saved. However, the

UserID and optional profile used to initiate the invoking transaction program, are

saved. The already-verified indicator can be used only if the sender of the indicator

is trusted by the receiver of the indicator to have performed the proper verification

of the UserID and password that initiated the sender. This level of trust is

installation defined at the receiver of the indicator and communicated to the sender

of the indicator during session activation in the BIND/RSP(BIND) exchange.

Persistent Verification
Persistent verification (PV) is one way of reducing the number of password

transmissions, by eliminating the need to provide a UserID and password on each

Attach (Conversation request) during multiple conversations between a user and its

partner at a remote logical unit. The user is verified during a sign-on process

preceding its initial conversation and remains verified until being signed off by the

remote logical unit, which may occur as the result of an explicit request (triggered

by a SIGNOFF verb issued at the remote logical unit), or because no active sessions

remain between the user's logical unit and the remote logical unit.

Password Expiration Management
Password expiration management involves request and reply exchanges between

two programs. The first program is a sign-on requester service transaction program

and the second is a sign-on server service transaction program (called the

Sign-On/Change-Password TP) identified by the registered transaction program

name X'06F3F0F1 '. The requester program invokes the server by an Attach
carrying this registered transaction program name.

CICS Security Implementation
CICS defines APPC sessions, connections, and partners as resources, all of which

have security requirements. CICS provides the following security mechanisms for

the APPC environment:

■ Bind-time security, or in systems network architecture terms session level

security, to prevent an unauthorized connection between two LU 6.2. This

security check is done when a session is opened between the two LU 6.2

sessions.

■ Link security defines the authority of the remote system to access transactions

or resources to which the connection itself is not authorized.

■ User security checks that a user is authorized both to attach a transaction and to

access all the resources that the transaction is programmed to use.

Security

Systems Network Architecture Concepts 5-7

Link and User security are a CICS implementation of the APPC conversation level

security.

Bind Time Security
An eight character (or 16 hexadecimal digit) password is used by both partners to

authenticate. The check is done when a new session is created. All binds can be

audited, since it is recorded in mainframe SMF files. This type of security is done at

the systems network architecture controller level. This security check is not

associated with a UserID; both ends of the connection must have the same session

key. In CICS, the key is kept in a resource definition in its ESM. On the other end,

the key is defined in the remote APPC logical unit in the Microsoft systems network

architecture server. The Bind security is done at Bind time (when a session is

activated) and it is kept as long as the session is active.

Security For CICS in General
Each link between systems is given an authority defined by a UserID. It is

important to note that users cannot access any transactions or resources over a link

that is itself unauthorized to access. This means that each user's authorization is a

subset of the link's authority as a whole.

To limit the remote system's access to your transactions and resources, you use link

security. Link security is concerned with the single user profile that you assign to

the remote system as a whole. Similar to user security in a single-system

environment, link security governs the following:

■ Transaction security—Controls the link's authority to attach specific

transactions.

■ Resource security—Controls the link's authority to access specific resources.

This applies to transactions, executing on any of the sessions from the remote

system, that have RESSEC(YES) specified in their transaction definition.

■ Command security—Controls the link's authority for the commands that the

attached transaction issues. This applies to transactions, executing on any of the

sessions from the remote system, that have CMDSEC(YES) specified in their

transaction definition.

■ Surrogate user security—Controls the link's authority to START transactions

with a new UserID, and to install resources with an associated UserID .

Security

5-8 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Security Specific to LU 6.2
Link security further restricts the resources a user can access, depending on the

remote system from which they are accessed. The practical effect of link security is

to prevent a remote user from attaching a transaction or accessing a resource for

which the link UserID has no authority. Link security can be associated with a

connection or a session, depending on whether you want to control the link security

for each group of sessions separately.

■ To define link security for a connection as a whole, specify the SECURITYNAME
parameter in the CONNECTIONdefinition (this is a CICS definition equivalent to

the remote LU 6.2).

■ To define link security for individual groups of sessions within a connection,

specify the UserID in the SESSIONS definition as a UserID (SESSIONS
definition in CICS is the same as SESSIONS in LU 6.2).

Each link between systems is given an authority defined by a link UserID. A link

UserID for LU 6.2 is a UserID defined on your session’s definition for this

connection. If not defined, the link UserID is the SECURITYNAME UserID specified

on the connection definition. If there is no SECURITYNAME, the link UserID is the

default UserID. The CICS default UserID is the UserID used by CICS when a

resource check has to be done and there is no other UserID that CICS can use.

User Security
User security causes a second check to be made against a user signed onto a

terminal, in addition to the link security described in Link security. A conversation

allocation is related to a CICS transaction and security can apply at that level. Again

a UserID and a password may be used to protect the CICS transactions being

invoked in the conversation. CICS also uses that UserID to protect files and other

resources. The user defined for link security must also have the same access that the

UserID used in the user security.

User security can be implemented in five different ways however, only one of these

options can be selected:

■ LOCAL—Specifies that a UserID is not to be supplied by the remote system,

and if one is received, the attach fails. CICS makes the user security profile

equivalent to the link security profile. You do not need to specify ESM profiles

for the remote users. LOCAL is the default value.

■ IDENTIFY—Specifies that a UserID is expected on every attach request. All

remote users of a system must be identified to the ESM. If an attach request with

both a UserID and a password is received on a link with

Synchronization of Changes

Systems Network Architecture Concepts 5-9

ATTACHSEC(IDENTIFY) , CICS does not reject the attach request. CICS handles

the attach request as if the connection was defined with ATTACHSEC(VERIFY).

■ VERIFY—If a UserID and an invalid password, or a UserID and no password is

received for verification, the attach is rejected. If no UserID is received, CICS

applies the security capabilities of the default user. The rules that apply to the

checking of the UserID for ATTACHSEC(IDENTIFY) also apply for

ATTACHSEC(VERIFY). If a valid UserID is received but the password

verification fails then CICS rejects the attach request.

■ PERSISTENT VERIFICATION—Specifies that a UserID and a user password

are required with the first attach request for a new user, but all following attach

requests for the same user need supply only a UserID. (All remote users of a

system must be identified to the ESM.) The first attach signs on the user, even if

the attach request is later unsuccessful because the user is not authorized to

attach the transaction.

■ MIXIDPE—Specifies that the sign-on level for the remote user is determined by

parameters sent with the attach request. The possibilities are PERSISTENT or

IDENTIFY .

Synchronization of Changes
Systems network architecture defines three levels of synchronization for

conversation using the APPC protocol:

■ Level 0 - None—At sync level zero (0), there is no CICS support for

synchronization of remote resources on connected systems. However, it is still

possible, under the control of the application to achieve some degree of

synchronization by interchanging data, using the SEND and RECEIVE
commands.

■ Level 1 - Confirm—At sync level one, you can use special commands for

communication between the two conversation partners. One transaction can

confirm the continued presence and readiness of the other. Both transactions are

responsible for preserving the data integrity of recoverable resources by issuing

synchronization point requests at the appropriate times.

■ Level 2 - Syncpoint—At sync level 2, all syncpoint requests are automatically

propagated across multiple systems. CICS implies a syncpoint when it starts a

transaction which initiates logging of changes to recoverable resources, but no

control flows take place. CICS takes a syncpoint when one of the transactions

terminates normally. One abending transaction causes all to rollback. The

transactions themselves can initiate syncpoint or rollback requests. However, a

Error Handling

5-10 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

syncpoint or rollback request is propagated to another transaction only when

the originating transaction is in conversation with the other transaction, and

sync level 2 has been selected.

Syncpoint and rollback are not limited to any one conversation within a

transaction. They are propagated on every conversation currently active at sync

level two.

Error Handling
This section describes the types of errors, how to handle them, and how to find

errors. As there are many pieces of hardware and software involved, errors can be

generated from many sources: Application program, CICS, VTAM, NCP, the

systems network architecture Controller, or the CICS adapter. There are two type of

errors:

■ Application Error—An error detected by the application and reported in a data

message returning to the CICS adapter.

CICS program issues an Issue Signal (APPC verb MC_REQUEST_TO_
SEND): this advises the partner that it wants to send data, even if it is still in

Receive state. The partner may or may not respond to the request.

The CICS program issues an Issue error (APPC verb MC_SEND_
ERROR): It requires immediate attention from the partner logical unit.

The CICS program issues an Issue Abend (APPC verb MC_DEALLOCATE
TYPE(ABEND_PROG). This command not only signals a problem but also ends

the conversation. It is a severe error condition.

■ System Errors—Errors are usually detected by other components than the

application system. Examples of system errors include:

■ CICS application program abended. Abend is a term defining a program

which is terminated by a control software instance (CICS for the application

program, or OS/390 for the CICS program). Usually the local LU 6.2 is

advised of the condition and is able to send to the partner logical unit and

application program a message telling the condition.

■ CICS itself abended—Causes all the conversations in progress to be

abended).

■ VTAM problems (physical unit type five) or NCP problems (physical unit

type four).

■ Systems network architecture controller, including the local LU 6.2.

Message Description Language Reference 6-1

6
Message Description Language Reference

This chapter describes message description language and its concepts. The

following topics are discussed:

■ What is Message Description Language?

■ Message Description Language File

■ Supported Data Types

■ Message Description Language File Format General Syntax Conventions

■ Message Description Language File Example

What is Message Description Language?

6-2 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

What is Message Description Language?
Message oriented technology does not have any type description which

object-technologies, like OracleAS InterConnect, require. The language specification

describes the internal data format of each message buffer. The CICS adapter uses

the message description language to describe the CICS buffer.

Message description language elements are message buffers sent or received by the

CICS adapter mapped as message description language method arguments. The

mapping allows object-oriented technologies to have a familiar view of the message

buffers, with each message treated as a single argument or separated into multiple

arguments. The CICS adapter automatically concatenates the arguments at

run-time. The request and reply messages are grouped as a single method with

input and output arguments. One message description language interface groups

message description language methods (performing similar tasks) for a specific

message queue.

Message Description Language Classes
To make CICS servers visible as components to OracleAS InterConnect, you must

first describe a set of methods using message description language. A method call

translates into a request message and a reply message. The request message

contains all the input arguments and the reply message contains all the output

arguments.

The CICS adapter uses message description language *.cls files as the

representation of component interfaces with methods having elements as

arguments. For example, the message definition:

method GetBalance
 in BankName bank
 in CustName customer
 out Balance balance
 out CustStatus status
end method

defines a method containing four arguments with the type defined using message

description language fixed length string types:

typedef string(54,' ',tail) BankName
typedef string(30,' ',tail) CustName
typedef string(20,' ',head) Balance
typedef string(20,' ',tail) CustStatus

Message Description Language File

Message Description Language Reference 6-3

Message Description Language File
An message description language file is a text file with an *.cls extension. It

contains four types of declarations:

■ Class Declaration

■ Typedef Declaration

■ Struct Declaration

■ Method Declaration

Every message description language file requires a class declaration; it is always the

first declaration in an message description language file. All other declarations are

written within it. The typedef and struct declarations are optional. All

declarations reside on separate lines, there are no delimiters (such as semi-columns,

or commas) required in any declarations.

Class Declaration
A class describes the set of functions and class specific complex types. Classes are

always the topmost level of a CLS file. They are declared with a class classname
[(default URL)] [endianness] and [character encoding] declarator,

and are terminated with an end class terminator. All class declarations should be

on a separate line and the class declarator and terminator must be defined on

separate lines. Interfaces may not be nested. A single public class declaration may

reside within a CLS file and the name of the file must match the name of the class.

Class definitions may contain:

■ Type definitions (typedef declaration):

■ Structures definitions (struct declaration)

■ Method definitions (method declaration)

■ Layout of a class declaration:

class class name [(default URL)] [endianness][character encoding]
struct declarations...
typedef declarations...
method declarations...

end class

Message Description Language File

6-4 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

where:

■ class name —The name of the class. This name must be the same as the

file name.

■ (default URL) —Specifies the default URL on the class declaration line.

■ [endianness] —The bigendian and littleendian keywords act as

endian convention gateways , and they specify in which format the CICS

adapter sends the binary integral types. Use these keywords when the CICS

adapter receives integral types regardless of its platform‘s convention. For

example, if all integral types sent to the CICS adapter are always in the

bigendian convention, prefix the message description language

endainness with the bigendian keyword. Similarly, if all integral types

sent from the CICS adapter are in the bigendian convention, declare

message description language endianness on message description language

class declarations such as bigendian.littleendian modifiers follow

the same logic. In the absence of such keywords, the CICS adapter treats

these types as opaque entities and provides them the same way as it

receives them—which means the CICS adapter always expects to receive

and send integral types using the platform‘s format where the CICS adapter

is running.

■ [character encoding] —The ASCII and EBCDIC keywords act as character

encoding convention gateways . They specify in which format the CICS

adapter sends and receives the string type. Use these keywords when the CICS

adapter receives string types of a certain convention regardless of your

platform’s convention.

■ struct declarations—A declaration for a collection of variables grouped together

for convenient handling.

■ typedef declarations—Provides a new name for an existing type.

■ method declarations—Sends messages through the messaging system and receive

replies by abstracting incoming and outgoing messages as method input and

output parameters.

■ end class —The class terminator.

See Also: "Integral Types" on page 6-10 for an explanation of

binary integral types

Message Description Language File

Message Description Language Reference 6-5

Typedef Declaration
Typedef declarations do not create a new type; their purpose is to provide a new

name for an existing type. The following is an example of a typedef declaration:

typedef composite type new name

Struct Declaration
Structures can contain:

■ Binary

■ String

■ Complex Types

■ Predefined Structures

Structures are declared with a structure declarator struct struct name and a

terminator end struct which must reside on separate lines. Structures may be

nested using predefined structures.

The layout of a struct declaration is as follows:

struct struct name
 field declaration
 field declaration
end struct

Method Declaration
Methods describe the act of sending a message through the messaging system, and

of receiving replies to those messages. The concatenation of the in and inout
parameters form the contents of a message sent to the destination specified by the

URL. The return , out , and inout parameters form the reply message and the in
and inout parameters form the request message. Contextual information that is

part of the requests and reply messages map as inout parameters. When mapping

the reply message, the return value precedes the out and inout parameters, in the

same parameter order. Methods map to corresponding methods in other systems as

synchronous calls, which emit a blocking wait for the reply message.

Note: Field declarations are specific to the declared type, and are

identical to the type declarations described in "Supported Data

Types" on page 6-9.

Message Description Language File

6-6 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Methods are described in message description language as method <method
name> [(method properties)] [async] and terminator end method, residing

on different lines. They always contain a return argument description on the next

line (using the keyword return), and a list of argument declarations directly

following the return statement.

The layout of a method declaration is as follows:

method < method name> [(method properties)] [async]
return < return type>
argument declarations

end method

where:

■ <method name> is the name of the method.

■ (method properties) provides the message-oriented server a list of

properties. There is no property for the lu62cpic protocol.

The format of the properties list for the ECI protocol is:

(<property>=<value>...)

where:

<property> is the name of the property.
<value> is the value accepted by the property..

Table 6–1 describes method properties, an explanation, and an acceptable value.

Table 6–1 Method Properties

Method Properties Explanation Acceptable Values

commarea The size of the commarea used by
the remote CICS program. The
maximum size is determined by
CICS software, which is 32500 bytes

A number up to 32500

Message Description Language File

Message Description Language Reference 6-7

■ [async] —Indicates the OracleAS InterConnect adapter will not wait for a

server reply message and, in the case of a message OracleAS InterConnect

adapter, the CICS adapter will not send a reply message.

■ <return type> —Returns a certain supported type or a void argument if is

the method does not return anything.

■ <argument declarations> —Arguments may consist of binary, string, and

complex types, and structures.

■ End method is the method terminator.

Return Type Declaration
Return type arguments may consist of:

■ void arguments

■ binary types

■ string types

■ complex types

■ structures

It is recommended to always void for the return argument as most messaging

systems do not have a notion of a return argument. If a method returns a certain

supported type, the return declaration is formulated as the return keyword,

followed by the type declaration.

Note: The commarea size is calculated at run time. It is the actual

size of the in and inout arguments. If the value specified in

commarea is smaller than the computed value a warning message

is included in the CICS adapter log file and the computed value is

used. If a value greater than the acceptable maximum (32500) is

used, a warning is also logged and the maximum is used.

See Also: "Supported Data Types" on page 6-9

Message Description Language File

6-8 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

For example:

return type declaration

A method that does not return anything must explicitly declare it to include the

void keyword. For example:

return void

An EOL delimiter separates return declarations from the rest of the method

declaration.

Argument Declarations
The syntax declaration of an argument declaration is the following:

arg direction_type declaration

where:

■ arg direction —Describes the argument direction and may be either of the

keywords in , inout or out . The in keyword describes arguments whose

contents are initialized by the client, and are useful to the server. The inout
keyword describes parameters which may contain information for both the

client and the server (a variable initialized by the client, and which may be

modified by the server). The out parameter describes arguments initialized by

the server and serves as a data recipient for information returned to the caller.

For example:

#describes an "in" parameter which contains data for the server
in type declaration

#describes an "out" parameter which serves as data recipient for the client
out type declaration

#describes an "inout" parameter which serves as data recipient for both the
server and the client
inout type declaration

Argument names are significant only to the systems to which the method that is

exposed. An EOL (End of line) delimiter separates argument declarations.

Supported Data Types

Message Description Language Reference 6-9

Supported Data Types
An message description language file supports the following data types:

■ Binary Types

■ String Types

■ Complex Types

Table 6–2 identifies the different types belonging to the three supported types:

Note: You can insert comments anywhere in an message

description language file by inserting pound signs “#” at the

beginning of a line. Throughout this chapter comments will

precede the example.

Table 6–2 Supported Types

BINARY STRING COMPLEX

Floating Point Length Prefixed Date

Integral Delimited Numerical:

■ Floating Point

■ Fixed Scale, Variable Precision Numbers

■ Fixed Scale, Fixed Precision Numbers

■ Packed Decimal

Fixed-Length
Padded

Array (tables):‘

■ Fixed Length Tables

■ Prefixed Length Tables

■ Explicitly Delimited Variable Length
Sequences

■ Implicitly Delimited Variable Length
Sequences

Null Terminated Structured Types

Implicit

Supported Data Types

6-10 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Binary Types
Supported binary types must be in your system platform endianness, or in that

endianness which is specifically indicated for the class it is used, align on a 1 byte

boundary. They include integer and floating point, up to 32 bits.

Binary types are all simple types of binary nature separated into two main

subclasses:

■ Integral Types—Binary types describing integral numbers.

■ Floating Point Types—Real numbers, containing a mantissa and an exponent.

Integral Types
Integral types come in various formats: 8, 16, 32 bits signed or unsigned. They are

always declared as their sign concatenated with their size in bits. For example:

signed8 aChar
signed16 aShort
signed32 aLong
unsigned8 aByte
unsigned16 aWord
unsigned32 aDoubleWord

Floating Point Types
There are two supported floating point types. 32 bit IEEE binary floating point is

declared with the type specifier single , and 64 bit IEEE floating point is declared

with the type specifier double . For example:

single myFloat
double aBigNumber

The run-time data format of binary floating point types always follow the IEEE

binary standard.

Floating point types are generally mapped to similar (IEEE), binary entities in other

systems.

See Also: "Class Declaration" on page 6-3

Supported Data Types

Message Description Language Reference 6-11

String Types
All character types are assumed to be in your native system platform character set

where the CICS adapter is running. The strings can be of fixed or variable length,

with a length prefix or a terminating delimiter. Strings are declared with the

keyword string and may come in five string styles.

Length-Prefixed Strings
Length prefixed strings are variable length strings where a length specifier precedes

the string at run-time. They are declared by following the string type with its length

type specifier. The length specifier may be any of the numerical or integral types,

and should immediately follow the string keyword. Prefixed string types do not

take any parameters. For example:

string prefixed length type declaration_string name

where:

length type declaration may be any of the numerical or integral types, and

consists in a standard type declaration.

For example:

 #this string is length prefixed with a binary double-word
 string prefixed unsigned32 myPrefixedString
 #this string is length prefixed with a fixed numerical value
 #for which there are 5 digits reserved for the integer part,
 #no decimal digits or decimal separator enclosed in a dot
 #delimited string.
 string prefixed number(5, 0, none) in string(‘.‘)
 myNumPrefixedString

Length prefixed strings are expected to have their length prefixed with a numerical

type or integral type (as described in the message description language) which

should directly precede the string itself. They map such strings in other systems if

they are available in the target system or as null terminated strings if they are not.

The decimal component of numerical types passed as the string‘s length is always

ignored if present.

Note: The presence of NULL characters in any of the following

string types may cause unwanted behavior when the latter are

mapped into other systems.

Supported Data Types

6-12 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Delimited Strings
Variable length strings for which the length is determined at run-time by the

presence of a delimiter. They are declared the string type and have a type parameter

for delimiter.

 string(delimiter) string name

Delimiters are not considered part of the displayable string, and are generally

replaced by null terminated strings in other systems, in which the delimiter has

been removed.

For example:

 string(‘,‘) myCommaTerminatedString

Null Terminated Strings
Delimited strings map in general as null terminated strings, the EOS (End of String)

delimiter is considered as an inherent part of the string and appear in the final data.

For example:

string(0) myNullTerminatedString

Fixed-Length Padded Strings
A fixed string’s maximum length is known in advance. Declared by passing three

parameters to the string type keyword, which are, respectively the size of the string,

the padding character, and the padding convention. The padding convention

parameter consists of the tail, head or none keywords, which indicates where the

padding occurs. The none keyword indicates no padding occurs, and that the string

is always assumed to take up the full fixed length (a date string, for example, may

always contain a certain count of characters).

string(str size, padding char, pad convention) name

For example:

#declares an 80 character wide string padded with spaces
 string(80, ‘ ‘, tail) myString

#declares a 40 character string front padded with spaces
 string(40, ‘ ‘, head) myString

See Also: "Complex Types" on page 6-13

Supported Data Types

Message Description Language Reference 6-13

#declares a 40 character wide string front padded with zeros
 string(40, ‘0‘, head) myString

#declares a 40 character wide string with no padding
 string(40, none, none) myString

Fixed length strings map fixed length strings if such notions exist in the target other

system. They may also map into variable length strings for which the maximum

length is the fixed length described in the message description language, and the

actual length is always at maximum.

Implicit Strings
Implicit strings are implicit sequences where the base type is signed8 . The

declaration is string implicit. The CICS adapter assumes that meeting this type

means that the entire data buffer is a string.

Implicit strings have the following limitations:

■ Cannot be defined in arrays.

■ If defined in a structure, it must be the only field.

■ Must be the only in, out, or inout argument defined in a method.

Complex Types
Complex types come in as a composition of different or similar sets of string types

and binary types.

Date Types
Date types are stored in any of the supported string types. The date type represents

the date under the form of a fixed length string. The supported date formats are

respectively DDMMYY, DDMMYYY, MMDDYY and MMDDYYYY. The date type parameter

string defines the date field separators.

date(date format) in string type myDateVar

For example:

date("DD-MM-YY") in string(8,none,none) myYear2000bug
date("DD/MM/YYYY") in string (10,none, none)
 myYear2000compliantDate

Supported Data Types

6-14 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

date("MM DD YYYY") in string (10,none, none)
 mySpaceSepY2KCompDate
date("MM.DD.YY") in string(10,none,none) mydotSeparatedY2KBug

Separators are mandatory, although their nature may be of any sort.

When delimited strings are used, the date string should exclusively contain the

date and delimiter, or have the date left aligned within the string.

Date types map other system date formats, if any exist. For example, they would

map DATE structures in the case of COM, for example. If no such date formats

exist, they map as variable length strings.

Numerical Types
Numerical types are formatted numbers stored within any of the supported string

types (for example, numerical types are stored in ASCII). They always have a string

declaration following their type declaration. The following lists supported

numerical types:

■ Floating Point Numbers

■ Fixed Scale, Variable Precision Numbers

■ Fixed Scale, Fixed Precision Numbers

■ Packed Decimal

Floating Point Numbers
Represented as exponent based ANSI floats. They are declared as follows:

number in string type declaration name

For example:

number in string(‘*‘) MyStarTerminatedFloat
number in string(30,‘‘, tail) MyFixedLengthFloat
number in string unsigned16 MyPrefixedLengthFloat

#This is a number within a prefixed string itself prefixed with a
#number within a prefixed string prefixed with a binary byte.
#This is not the best design, but still legal
number in string prefixed number in string prefixed signed8 MyNumber

Supported Data Types

Message Description Language Reference 6-15

Fixed Scale, Variable Precision Numbers
Strings in which the decimal separator may freely reside. They are declared as

follows:

number (dec separator) in string type_name

where:

■ decimal separator may be the keyword none, specifying an entirely

integral number.

■ name is the name of the defined type.

For example:

#declaration for the form 398.029
number(‘.‘) in string(‘_‘) myDotDecimalUnderscoreTerminatedNb

#declaration for the form word len "98372"
number(none) in string prefixed unsigned16
myIntegralWordPrefixedNumber

A fixed scale, variable precision number is always confined in the limits the string it

resides in imposes. For example:

#This number may NOT exceed 20 characters.
#"12345678901234567890"
#The following is the declaration definition
number(none) in string(20,‘0‘,head) my20CharNumber

Fixed Scale, Fixed Precision Numbers
Strings in which the number integral digits and decimal digit is constant. They are

declared as follows:

number (Idigits , Ddigits , dec sep) in string type name

where:

■ Idigits and Ddigits respectively represent the count of integer and

decimal digits.

Note: When the decimal separator is specified, the maximum

number of integral and integral precision is 7 digits. For example,

1234567.1234567

Supported Data Types

6-16 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

■ decimal separator may be the keyword none, indicating that the decimal

separator‘s position is implied in the number‘s format, and not expected in the

run-time string.

name is the name of the defined type

#declaration in the form of "1234567890.12345_"
number (10, 5, ‘.‘) in string(‘_‘) myUnderscoreFixedNumber

#declaration of the form of "00000123456789012345" = 1234567890.12345
number(10,5,none) in string(20, ‘0‘, head) myNumber

As for the preceding Number type , the fixed scale , fixed precision
numbers may be bounded by the string type in which case the decimal, then digits,

should be truncated in order to fit inside the string constraints.

#declaration of the form of "123456789012" = 1234567890.12
number(10,5,none) in string(12, ‘0‘, head) myNumber

Packed Decimal
An internal representation of numbers. It is also called BCD (Binary Code Decimal).

The field size is variable and can be determined by the number of digits divided by

two (truncated) plus one. For example, if you have the number +123.45 the internal

representation is 0x12345c and the length is 3 bytes. If you have the number -12.34,

the internal representation is 0x1234D and the length is 3 bytes.

number (Ydigits , Zdigits) packed name

where:

■ Ydigits and Zdigits respectively represent the number of integer and

fractional digits.

■ name is the name of the defined type.

Array Types (Tables)
Arrays come in four variants: fixed length, length prefixed, explicitly delimited, and

implicitly delimited. Each element has the same type. Unless the array is explicitly

delimited, there are no special delimiters between the elements of an array itself

since the delimiters of the contained data type act as implicit delimiters. Array types

consist of variable or fixed sequences of a certain type. They are defined with a base

type (the sequence‘s element type) and of subscript operators, in the case of fixed

arrays.

Supported Data Types

Message Description Language Reference 6-17

The base type may be any of the structures, binary, string, complex types, or tables:

■ Fixed length tables map to bound sequences in other systems.

■ All variable length tables map to unbound sequences in other systems.

■ Tables may be nested in any given combination provided the inner tables’

definition has been defined.

For example:

#variable length table of bytes length prefixed with a DWord
typedef table prefixed unsigned32 of unsigned8 varByteTbl_t
#fixed length table of the preceding table type
table(80) of varByteTbl_t myNestedTables

#This is incorrect syntax because a nested array where the inner array must be
predefined cannot use the table keyword table(80) of table prefixed unsigned32
of unsigned8 myNestedTables

Fixed Length Tables
Fixed length tables do not have any associated run-time data overhead.

table(subscript) of base type declaration table name

For example:

table(30) of signed8 myVariableByteTable

Prefixed Variable Length Tables
Prefixed variable length tables have an message description language described

length indicator preceding the table at run-time.

table prefixed length type decl of base type decl name

For example:

#table of prefixed length with a word of null terminated string
typedef table prefixed unsigned16 of string(0) myT

Explicitly Delimited Variable Length Sequences
Explicitly delimited variable length sequences have a delimiter between each

element.

table(cont del , end del) of base type decl name

Supported Data Types

6-18 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

For example:

#each element has a comma separator between them until
#the last element is reached, where a dot appears.
#declaration for the form dword , dword ... dword .
table(‘,‘,‘.‘) of signed32 myDWordTbl

#declaration for the form string(‘.‘) , string(‘.‘) " string(‘.‘) .
#example: "helloworld.,helloworld2.,helloworld3.."
table(‘,‘,‘.‘) of string(‘.‘) myDelimitedStringTbl

One message description language-specified delimiter is used to indicate the table‘s

continuation while the other indicates a terminator. For example, the run-time

format is:

elmnt 1 cont del elmnt 2 cont del ... elmnt n end del

where:

■ elemnt 1 is the first element and elemnt n is the last.

■ cont del is the continuation delimiter (first type parameter).

■ end del is the end delimiter (second type parameter).

Implicitly Delimited Variable Length Sequences
Implicitly delimited variable length sequences terminate at the end of the provided

buffer.

table implicit of base type decl name

Example:

#This is the same as a string implicit
table implicit of unsigned8 myByteTable

Some of the reply messages have items in a sequence where the length is

determined by how many items are in the message buffer (there is no length prefix).

COM and CORBA arrays and sequences must have a length defined before they can

be filled.

Message Description Language File Format General Syntax Conventions

Message Description Language Reference 6-19

Structured Types
These are structures or records containing a set of named fields where each field can

have a different type. Field types are binary, string, date, or numerical types. The

syntax of the fields determines the layout of the structure. There are no special

delimiters for fields of a structure itself, the delimiters of the data types of the fields

themselves act as implicit delimiters between fields. Fields are not named within

the message itself; they are intended for systems such as CORBA and COM.

Message Description Language File Format General Syntax
Conventions

This section describes the general syntax conventions for the message description

language file format.

Type parameters
Certain types require fully-defined parameters, such as fixed-length table (array)

types, requiring subscript parameters, or fixed-length strings, requiring a

description of their length and formatting style. Enclose these parameters within

parenthesis “()” or brackets “[]”. Separate the parameters by commas “,” if more

than one parameter qualifies the given type. Type parameters always directly follow

the type they modify. When passing characters as parameters, pass them enclosed

respectively in quotes ‘ ‘ and double quotes “ ”. If passing non-printable characters,

type their binary values instead. Parameter ordering is specific to the type

concerned.

For example:

The following is a null terminated string:

string(0) myString

The following declares a fixed array of 40 bytes:

table(40) of signed8 myCharTable

The following is equivalent to the preceding line:

table[40] of signed8 myCharTable2

The following is a date declaration:

date("DD/MM/YYYY") in string(10,‘ ‘,tail) myDate

Message Description Language File Format General Syntax Conventions

6-20 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Type modifiers
There are two different classes of type modifiers, Keyword and Type Declaration

modifiers.

Keyword Modifiers
Modifiers, such as specifying the alignment specifiers for fixed length strings,

always follow the type itself. Type keyword modifiers never have parameters.

The following is a fixed length string, of 34 bytes, aligned to the right and padded

with zeros:

string(34, ‘0‘, head) myString

Type Declaration Modifiers
Certain types require other types to be defined (declared) in order to be completely

defined, for example, when the primary type aggregates, is contained in, or prefixed

by another type. Insert the keywords of , in , and prefixed , to describe these

different cases. Define the additional types following the original type declaration.

Tables, for example, contain elements of another type. To fully define the table,

declare the elements within the type declaration.

The following declares an array of 40 bytes:

table(40) of unsigned8

The following declares an array of 40 dot delimited strings:

table(40) of string(‘.‘)

The following declares a variable length array of (variable length strings prefixed

with dot delimited fixed numbers) length prefixed with a byte:

table of string prefixed number(5,5,none) in string
‘.‘)prefixed signed8

■ Types which prefix another are either numerical or binary types.

■ Types which aggregate (in) another are always string types.

■ Types contained in (of) may be of any type.

Message Description Language File Format General Syntax Conventions

Message Description Language Reference 6-21

Expression
Expressions are not supported by the message description language parser. For

example, the following expression is valid:

string(25)myString

The following expression is invalid:

string(10 + 50)myOtherString

Alias
To create an alias for a given type, use a typedef :

typedef type declaration typedef name

For example:

typedef string prefixed number(5,0,none) in string(‘.‘)
 myString_t
 struct myStruct
 MyString_t structName
 table(80) of myString_t myAddressList
end struct

Typedef declarations are always global to the file where they are defined. Their

declarations must precede their usage.

Comment Insertion
Insert comments anywhere in the file by inserting pound signs “#” at the beginning

of a line. For example:

 #commented line
 signed16 myShort this part is NOT commented

Message Description Language File Example

6-22 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Case Sensitivity
The message description language is case sensitive, and its reserved keywords are

always lower cased. Keywords with different case conventions as identifiers are

legal. For example:

#valid statement
signed16 Signed16
#valid method
method Method

Message Description Language File Example
The following is an example of a message description language file called CLS.

#MyClassName.CLS
#Tabs (or spaces) and Extra EOLs are here only for readability.
#Keywords are in bold.
 class MyClassName
 typedef string(‘.‘) string_t
 typedef number(5,5,‘.‘) in string(11,‘ ‘,none) number_t
 #this structure declaration is private to MyClassName
struct Account
 string_t structName
 string_t clientName
 unsigned16 accntID
 number_t balance
 end struct
 typedef table(‘,‘,‘.‘) of Account AccountList_t
 struct BankInfo
 string_t structName
 string_t bankName
 AccountList_t accountList
 table(80) of string_t debtorNameList
 date("DD-MM-YY") in string_t lastModificationDate
 end struct
 #Get account info method
 method GET
 return void
 in string_t clientName
 out Account account
 end method

Message Description Language File Example

Message Description Language Reference 6-23

 #Add new account method
 method ADD
 return BankInfo bankInfo
 out string_t result
 end method
end class

Message Description Language File Example

6-24 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Using the Configuration Editor 7-1

7
Using the Configuration Editor

This chapter describes how to use the Configuration Editor to configure the CICS

adapter. The Configuration Editor is only used at runtime. The following topics are

discussed:

■ Using the Configuration Editor

■ Configuration Editor Login

■ Configuration Editor Security

Using the Configuration Editor

7-2 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

Using the Configuration Editor
Using the Configuration Editor, you can customize the settings to specify how the

CICS adapter and Service Provider components interact with your system. You can

change these settings by accessing the Editors through the Configuration Editor.

To configure settings for the CICS adapter you must access the CICS Configuration

Editor as follows:

1. Change directories to the ...\oai\9.0.4\config\configeditor using a

DOS prompt.

2. Type configeditor and press Enter.

The Configuration Editor displays.

3. Click Profile and select iStudio.

4. Double-click on CICS to edit the CICS configuration settings for iStudio profile.

5. Click to expand the Login node.

Note: Profiles and Deployment are sensitive to the Master Key

setting. If using a shared machine, before accessing the

Configuration Editor, ensure the Master Key is set to either that of

User1 or create a new Master Key for your profiles.

Note: Under some circumstances you may wish to run your

adapter under a profile other than iStudio. This may be needed, for

example, if you want to run two instances of the CICS adapter on

the same machine. You may want to have two instances of the same
type of adapter if these instances need to connect to different
backend system installations. To accomplish this you need to cre-
ate a new profile using the configuration editor and fill in the set-
tings for this new profile. The name of the new profile should be
the same as the name of the application. For example, if your
application is called APP2, create a profile called APP2. Now
APP2 will use the settings in the profile called APP2, whenever it
runs.

Configuration Editor Login

Using the Configuration Editor 7-3

6. Click to expand the General node.

Figure 7–1 Configuration Settings Editor - Expanding the General folder

7. Click to unselect Use Global Settings in both the Login and General dialogs.

Configuration Editor Login
In the CICS adapter, the configuration dialog allows the user to set the login and

password for the CICS region.

Configuration Editor Login

7-4 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

To set the login information:

1. Click Login on the Login dialog.

Figure 7–2 Configuration Editor Login Screen

2. Enter a username in the Username field. A username in CICS can be up to eight

characters long.

3. Enter a password in the Password field. A password in CICS can be up to eight

characters long. The password is stored encrypted in the registry.

General
General settings only apply to the SNA LU 6.2 protocol. This section will explore

the General settings that need to be set in the Configuration Editor for the CICS

adapter. In the General Setting section, you can define the Synchronization Level

and Security. From the Configuration Settings Editor dialog:

1. Expand the General branch.

2. Expand the Use Global Settings branch.

Mode Name
To use a different Mode Name, enter the name of the Mode Name. The Mode Name

must be defined in both your local and remote system network architecture servers.

If you have any questions, please refer to your communication system

administrator.

Configuration Editor Security

Using the Configuration Editor 7-5

Synchronization Level
In the Synchronization Level section, you can define the type of confirmation the

remote CICS system requires when exchanging buffers with the CICS adapter.

1. Expand the Synchronization Level branch.

Figure 7–3 Configuration Settings Editor - Synchronization Level

2. Click None if there will be no confirmation when exchanging buffers with the

CICS adapter.

Click Confirm if there will be confirmation.

Configuration Editor Security
In the Security section, you can define the type of security CICS is using to

exchange data with the CICS adapter.

Configuration Editor Security

7-6 Oracle Application Server InterConnect Adapter for CICS Installation and User’s Guide

1. Expand the Security branch.

Figure 7–4 Configuration Settings Editor - Security section

2. Click None if there will be no security when exchanging data with the CICS

adapter.

Click Program if there will be security when exchanging data.

Index-1

Index
A
abend, 4-4

advanced program to program

communication, 4-4

advanced queuing adapter

installation, 2-2

already-verified protocols, 5-5

api

eci protocol, 3-8

sna lu 6.2 cpi-c protocol, 3-7

using the eci protocol api, 3-6

using the sna lu 6.2 cpi-c, 3-5

application

startup, 3-12, 3-13

B
binary types, 6-10

bind time security, 5-7

C
cics, 4-5

adapter information flow, 3-9

as a transaction program, 4-15

configuration, 2-5

cpi communications, 1-3

definitions, 1-2

how the adapter communicates with cics, 3-5

implementing the adapter, 3-7

installation, 2-2

installation tasks, 2-2

logical unit, 1-2

multi-threading, 3-10

preinstallation, 2-2

security implementation, 5-6

security in general, 5-7

system requirements, supported platforms, 1-2

using the adapter inbound, 3-11

what is, 1-2

cics adapter, 3-2

conversations, 5-2

cics region, 4-5

cics security implementation

bind time security, 5-7

cics transaction, 4-5

classes, 3-3

concepts, 4-3

configuration, 2-5

agent connection parameters, 2-9

cics parameters, 2-17

directories, 2-5

hub.ini, 2-7

initialization file settings, 2-7

configuration editor

general, 7-4

login, 7-3

mode name, 7-4

security, 7-5

synchronization level, 7-5

using, 7-2

conversation, 4-5

conversation level security, 5-5

already-verified protocols, 5-5

end-user verification, 5-5

password expiration management, 5-6

persistent verification, 5-6

Index-2

conversations

cics adapter, 5-2

cpi communications, 1-3

cpi communications (cpi-c), 4-6

D
data flow, 5-2

E
end-user verification, 5-5

error handling, 5-10

event

creating a subscribed event, 3-19

explicitly delimited variable length sequences, 6-17

F
fixed length tables, 6-17

fixed precision numbers, 6-15

fixed scale, 6-15

floating point numbers, 6-14

floating point types, 6-10

I
implicitly delimited variable length

sequences, 6-18

inbound, 3-11

design time, 3-13

eci protocol, 3-12

runtime, 3-14

sna lu 6.2 cpi-c protocol, 3-11

installation, 2-2

tasks, 2-2

integral types, 6-10

istudio

creating a subscribed event, 3-19

creating an implemented procedure, 3-14

K
keyword modifiers, 6-20

L
length-prefixed strings, 6-11

logical unit, 1-2, 5-2

logical unit (LU), 4-7

lu 6.2

security, 5-8

user security, 5-8

lu 6.2 cpi-c protocol stack, 4-2

lu-lu verification, 5-4

M
MDL Classes

Introducing, 6-2

message description language, 3-2

alias, 6-21

array types (tables), 6-16

case sensitivity, 6-22

class declaration, 6-3

comment insertion, 6-21

complex types, 6-13

date types, 6-13

delimited strings, 6-12

expression, 6-21

file, 6-3

file example, 6-22

fixed-length padded strings, 6-12

implicit strings, 6-13

method declaration, 6-5

null terminated strings, 6-12

numerical types, 6-14

struct declaration, 6-5

structured types, 6-19

supported data types, 6-9

typedef declaration, 6-5

what is, 6-2

message description language file format

general syntax conventions, 6-19

type modifiers, 6-20

type parameters, 6-19

method declarations

argument declarations, 6-8

return type, 6-7

mode name, 4-7

Index-3

N
node, 4-7

node type, 4-7

P
packed decimal, 6-16

parallel sessions, 5-2

password expiration management, 5-6

persistent verification, 5-6

physical unit, 4-8

prefixed variable length tables, 6-17

preinstallation, 2-2

procedure

creating implemented in istudio, 3-14

protocol

cics adapter, 3-8

protocols

lu6.2 cpi-c stack, eci stack, 3-4

R
Real Application Clusters

hub.ini parameters, 2-8

receiving

cics adapter request, 3-13

S
security, 5-3

conversation level, 5-5

lu 6.2, 5-4

session level, 5-4

using the eci protocol, 3-7

session, 4-8

session level cryptography, 5-4

session level security, 5-4

lu-lu verification, 5-4

start the adapter, 2-17

stop the adapter, 2-18

string types, 6-11

supported platforms, 1-2

synchronization levels, 4-9

synchronization services, 4-10

system management facility (SMF), 4-8

system network architecture

synchronization of changes, 5-9

system network architecture (SNA), 4-8

system requirements, 1-2

systems network architecture controllers, 4-9

T
terms, 4-3

transaction program (TP), 4-12

type declaration modifiers, 6-20

U
url, 3-4

urls, 4-2

V
variable precision numbers, 6-15

verb control block (vcb), 4-12

verbs, 4-13

Index-4

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Organization
	Chapter�1, "Introduction"
	Chapter�2, "Installation and Configuration"
	Chapter�3, "CICS and the CICS Adapter"
	Chapter�4, "Systems Network Architecture Definitions"
	Chapter�5, "Systems Network Architecture Concepts"
	Chapter�6, "Message Description Language Reference"
	Chapter�7, "Using the Configuration Editor"

	Related Documentation
	Conventions
	Conventions in Text
	Conventions in Code Examples
	Conventions for Microsoft Windows Operating Systems

	1 Introduction
	What is CICS?
	System Requirements and Platforms
	Definitions
	Logical Unit (LU)
	CPI-C

	2 Installation and Configuration
	Installing the CICS Adapter
	Preinstallation Tasks
	Installation Tasks
	Post Installation Tasks
	Enabling iStudio
	Registering the License for the CICS Adapter

	CICS Adapter Configuration
	Using the Application Parameter
	Adapter.ini Initialization Parameter File
	Hub.ini Parameters
	Real Application Clusters-specific Hub.ini Parameters
	Agent Connection Parameters
	CICS Adapter Parameters

	Starting the CICS Adapter
	Stopping the CICS Adapter

	3 CICS and the CICS Adapter
	The CICS Adapter
	Message Description Language (MDL)
	Classes
	LU6.2 CPI-C Protocol Stack, ECI Protocol Stack, and URLs
	How the CICS Adapter Communicates With CICS
	Using SNA LU 6.2 CPI-C Protocol API
	Using the ECI Protocol API

	CICS Adapter Security
	Using the LU 6.2 CPI-C Protocol
	Using the ECI Protocol

	Implementing the CICS Adapter
	SNA LU 6.2 CPI-C Protocol API
	ECI Protocol API
	CICS Adapter
	CICS Adapter Information Flow
	Multi-Threading

	Using the CICS Adapter Inbound
	SNA LU 6.2 CPI-C Protocol
	Application Start-up
	Receiving a CICS Adapter Request from OracleAS InterConnect

	ECI Protocol
	Application Start-up
	Receiving a CICS Adapter Request from OracleAS InterConnect

	Design Time
	Runtime

	Creating an Implemented Procedure
	Creating a Subscribed Event

	4 Systems Network Architecture Definitions
	LU 6.2 CPI-C Protocol Stack and URLs
	Concepts and Terms
	ABEND
	Advanced Program-to-Program Communication (APPC)
	CICS
	CICS Region
	CICS Transaction
	Conversation
	CPI Communications (CPI-C)
	Logical Unit
	Mode Name
	Node
	Node Type
	Physical Unit (PU)
	Session
	System Management Facility (SMF)
	Systems Network Architecture (SNA)
	Systems Network Architecture (SNA) Controllers
	Synchronization Levels
	Synchronization Services
	Transaction Program (TP)
	Verb Control Block (VCB)
	Verbs
	CICS as a Transaction Program

	5 Systems Network Architecture Concepts
	Data Flow
	Logical Units and Parallel Sessions
	CICS Adapter Conversations
	Security
	LU 6.2 Security
	Session Level Security
	Session Level Cryptography
	LU-LU Verification

	Conversation Level Security
	End-User Verification
	Already-Verified Protocols
	Persistent Verification
	Password Expiration Management

	CICS Security Implementation
	Bind Time Security

	Security For CICS in General
	Security Specific to LU 6.2
	User Security

	Synchronization of Changes
	Error Handling

	6 Message Description Language Reference
	What is Message Description Language?
	Message Description Language Classes

	Message Description Language File
	Class Declaration
	Typedef Declaration
	Struct Declaration
	Method Declaration
	Return Type Declaration
	Argument Declarations

	Supported Data Types
	Binary Types
	Integral Types
	Floating Point Types
	String Types
	Length-Prefixed Strings
	Delimited Strings
	Null Terminated Strings
	Fixed-Length Padded Strings
	Implicit Strings
	Complex Types
	Date Types
	Numerical Types
	Floating Point Numbers
	Fixed Scale, Variable Precision Numbers
	Fixed Scale, Fixed Precision Numbers
	Packed Decimal

	Array Types (Tables)
	Fixed Length Tables
	Prefixed Variable Length Tables
	Explicitly Delimited Variable Length Sequences
	Implicitly Delimited Variable Length Sequences

	Structured Types

	Message Description Language File Format General Syntax Conventions
	Type parameters
	Type modifiers
	Keyword Modifiers
	Type Declaration Modifiers

	Expression
	Alias
	Comment Insertion
	Case Sensitivity

	Message Description Language File Example

	7 Using the Configuration Editor
	Using the Configuration Editor
	Configuration Editor Login
	General
	Mode Name
	Synchronization Level

	Configuration Editor Security

	Index

