
Oracle® Application Server Containers for J2EE
User’s Guide

10g (9.0.4)

Part No. B10322-01

September 2003

Oracle Application Server Containers for J2EE User’s Guide, 10g (9.0.4)

Part No. B10322-01

Copyright © 2002, 2003 Oracle Corporation. All rights reserved.

Primary Author: Sheryl Maring

Contributing Author: Brian Wright, Timothy Smith

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i and SQL*Plus are trademarks or registered trademarks of
Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface.. xi

1 OC4J Overview

Introduction to OC4J .. 1-2
JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages ... 1-3
Navigating the OC4J Documentation Set .. 1-4
OC4J Installation .. 1-5
Using OC4J in an Enterprise or Standalone Environment ... 1-5

Managing Multiple OC4J Instances in an Enterprise Environment 1-6
Managing a Single OC4J Instance .. 1-7
OC4J Documentation Set Assumptions .. 1-7

OC4J Communication .. 1-8
HTTP Communication... 1-8
Requirements .. 1-9

2 Configuration and Deployment

OC4J Home Page Overview .. 2-2
Applications Page... 2-3
Administration Page .. 2-4

Starting and Stopping OC4J ... 2-4
Testing the Default Configuration ... 2-5

Creating the Development Directory.. 2-6
iii

Configuring the FAQ Application Demo... 2-7
Environment Setup for FAQ Demo ... 2-8
OC4J System Configuration for FAQ Demo... 2-9
Deploy the FAQ Demo... 2-11
Deployment Details Explained ... 2-12

Deploying Applications .. 2-14
Basic Deployment ... 2-14

Recovering From Deployment Errors ... 2-23
Undeploying Web Applications... 2-24

3 Advanced Configuration, Development, and Deployment

Configuring OC4J Using Oracle Enterprise Manager ... 3-2
OC4J Instance Level Configuration.. 3-2
Application Level Configuration.. 3-18

Overview of OC4J and J2EE XML Files .. 3-21
XML Configuration File Overview .. 3-21
XML File Interrelationships... 3-25

What Happens When You Deploy? ... 3-28
OC4J Tasks During Deployment .. 3-28
Configuration Verification of J2EE Applications ... 3-29

Sharing Libraries... 3-30
Understanding and Configuring OC4J Listeners ... 3-31

HTTP Requests.. 3-31
RMI Requests... 3-32

Configuring Oracle HTTP Server With Another Web Context ... 3-32
Building and Deploying Within a Directory... 3-33
Developing Startup and Shutdown Classes .. 3-36

OC4J Startup Classes.. 3-37
OC4J Shutdown Classes... 3-39

Setting Performance Options ... 3-40
Performance Command-Line Options .. 3-41
Thread Pool Settings... 3-42
Statement Caching .. 3-44
Task Manager Granularity .. 3-45

Enabling OC4J Logging .. 3-45
iv

Viewing OC4J System and Application Log Messages .. 3-46
Redirecting Standard Out and Standard Error .. 3-51

OC4J Debugging ... 3-52
Servlet Debugging Example.. 3-55
Remote Debugging Using Oracle JDeveloper.. 3-56

4 Data Sources Primer

Introduction ... 4-2
Definition of Data Sources ... 4-2
Retrieving a Connection From a Data Source ... 4-10

5 Servlet Primer

A Brief Overview of Servlet Technology ... 5-2
What Is a Servlet? ... 5-2
Servlet Portability ... 5-3
The Servlet Container... 5-3
Request and Response Objects ... 5-4
Learning More About Servlets ... 5-5

Running a Simple Servlet ... 5-5
Create the Hello World Servlet... 5-5
Deploy the Hello World Servlet ... 5-6
Run the Hello World Servlet... 5-7
Automatic Compilation ... 5-7

Running a Data-Access Servlet .. 5-8
Create the HTML Form ... 5-8
Create the GetEmpInfo Servlet ... 5-9
Deploy GetEmpInfo and the HTML Page .. 5-12
Run GetEmpInfo... 5-12

Creating and Deploying the Servlet Primer Samples WAR File ... 5-14
WAR File Structure .. 5-15
Deploy the WAR File ... 5-15

6 JSP Primer

A Brief Overview of JavaServer Pages Technology ... 6-2
v

What Is JavaServer Pages Technology?... 6-2
JSP Translation and Runtime Flow .. 6-3
Key JSP Advantages ... 6-4
Overview of Oracle Value-Added Features for JSP Pages ... 6-5

Running a Simple JSP Page .. 6-6
Create and Deploy welcomeuser.jsp.. 6-6
Run welcomeuser.jsp ... 6-6

Running a JSP Page That Invokes a JavaBean .. 6-7
Create the JSP: usebean.jsp.. 6-8
Create the JavaBean: NameBean.java .. 6-9
Deploy usebean.jsp and Namebean.java... 6-9
Run usebean.jsp .. 6-10

Running a JSP Page That Uses Custom Tags... 6-10
Create the JSP Page: sqltagquery.jsp.. 6-11
Files for Tag Library Support ... 6-12
Deploy sqltagquery.jsp .. 6-13
Run sqltagquery.jsp.. 6-13

Creating and Deploying the JSP Primer Samples EAR File... 6-14
EAR and WAR File Structure.. 6-15
Deploy the EAR File ... 6-16

7 EJB Primer

Develop EJBs ... 7-2
Create the Development Directory .. 7-2
Implement the EJB .. 7-4
Access the EJB.. 7-10
Create the Deployment Descriptor .. 7-15
Archive the EJB Application ... 7-17

Prepare the EJB Application for Assembly.. 7-17
Modify the Application.xml File .. 7-18
Create the EAR File .. 7-19

Deploy the Enterprise Application to OC4J .. 7-19

8 OC4J Clustering

The OC4J Instance in a Cluster .. 8-2
vi

The OC4J Process in a Cluster .. 8-3
Islands .. 8-4
J2EE Applications Involved in a Cluster ... 8-6

Instance-Specific Parameters .. 8-7
OC4J Clustering Examples.. 8-7

Software Failure .. 8-7
Hardware Failure ... 8-8
State Replication ... 8-9

OC4J Cluster Configuration ... 8-11
OC4J Instance Configuration .. 8-11
Configuring OC4J Instance-Specific Parameters ... 8-17

A Additional Information

Description of XML File Contents... A-2
OC4J Configuration XML Files... A-2
J2EE Deployment XML Files... A-5

Elements in the server.xml File .. A-8
Configure OC4J ... A-8
Reference Other Configuration Files ... A-9

Elements in the application.xml File .. A-19
Elements in the orion-application.xml File ... A-21
Elements in the application-client.xml File ... A-28
Elements in the orion-application-client.xml File.. A-32
Configuration and Deployment Examples .. A-34
OC4J Command-Line Options and System Properties ... A-41

B Third Party Licenses

Third-Party Licenses .. C-2
Apache HTTP Server.. C-2
Apache JServ ... C-3

Index
vii

viii

Send Us Your Comments

Oracle Application Server Containers for J2EE User’s Guide, 10g (9.0.4)

Part No. B10322-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail—appserverdocs_us@oracle.com
■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
ix

x

xi

Preface

This preface introduces you to the Oracle Application Server Containers for J2EE User’s
Guide, discussing the intended audience, structure, and conventions of this
document. It also provides a list of related Oracle documents.

Intended Audience
This manual is intended for anyone who is interested in using Oracle Application
Server Containers for J2EE (OC4J), assuming you have basic knowledge of the
following:

■ Java and J2EE

■ XML

■ JDBC

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

xii

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Structure
The Oracle Application Server Containers for J2EE User’s Guide contains the following
chapters and appendices:

Chapter 1, "OC4J Overview"
This chapter describes OC4J primary features, an overview of J2EE APIs and OC4J
support, and tunneling and performance services provided by OC4J.

Chapter 2, "Configuration and Deployment"
This chapter discusses how to install OC4J, how to configure and deploy the FAQ
application.

Chapter 3, "Advanced Configuration, Development, and Deployment"
This chapter covers advanced OC4J information. It includes an overview of OC4J
XML configuration files, how they relate to each other, what happens when you
deploy an application, some tips on manual XML configuration file editing for
applications, when OC4J automatic deployment for applications occurs, and
building and deploying within a directory.

Chapter 4, "Data Sources Primer"
This chapter documents how to use data sources and the JDBC driver.

Chapter 5, "Servlet Primer"
This chapter instructs how to create and use a servlet in OC4J.

xiii

Chapter 6, "JSP Primer"
This chapter instructs how to create and use a JSP page in OC4J.

Chapter 7, "EJB Primer"
This chapter instructs how to create and use an EJB in OC4J.

Chapter 8, "OC4J Clustering"
This chapter describes how to cluster application server instances, Oracle HTTP
Servers, and OC4J instances.

Appendix A, "Additional Information"
This appendix describes the elements of the server XML configuration files, OC4J
command-line tool options, and provides configuration and deployment examples.

Appendix B, "Third Party Licenses"

This appendix lists the Java plug-in partners, third party tool support and third
party licences.

Related Documents
For more information on OC4J, see the following documentation available from
other OC4J manuals:

■ Oracle Application Server Containers for J2EE Services Guide

■ Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide

■ Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference

■ Oracle Application Server Containers for J2EE Servlet Developer’s Guide

■ Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s Guide

■ Oracle Application Server Containers for J2EE Security Guide

The following documentation may also be helpful in understanding OC4J:

■ Oracle Application Server 10g Administrator’s Guide

■ Oracle Application Server 10g Performance Guide

■ Oracle Application Server 10g High Availability Guide

xiv

■ Oracle9i JDBC Developer’s Guide and Reference

■ Oracle9i SQLJ Developer’s Guide and Reference

■ Oracle HTTP Server Administrator’s Guide

■ Oracle Application Server 10g DMS API Reference

Conventions
The following conventions are used in this manual:

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

OC4J Ove
1

OC4J Overview

This chapter describes OC4J and demonstrates how to install OC4J with the Oracle
Application Server installation.

This chapter includes the following topics:

■ Introduction to OC4J

■ JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages

■ Navigating the OC4J Documentation Set

■ OC4J Installation

■ Using OC4J in an Enterprise or Standalone Environment

■ OC4J Communication
rview 1-1

Introduction to OC4J
Introduction to OC4J
Oracle Application Server provides a complete Java 2 Enterprise Edition (J2EE)
environment written entirely in Java that executes on the Java virtual machine
(JVM) of the standard Java Development Kit (JDK). You can run Oracle Application
Server Containers for J2EE (OC4J) on the standard JDK that exists on your
operating system. Refer to the certification matrix on http://otn.oracle.com.

OC4J is J2EE certified and provides all the containers, APIs, an services that J2EE
specifies. OC4J is based on technology licensed from Ironflare Corporation, which
develops the Orion server—one of the leading J2EE containers. Although OC4J is
integrated with the Oracle Application Server infrastructure, the product and some
of the documentation still contains some reference to the Orion server.

OC4J supports and is certified for the standard J2EE APIs, as listed in Table 1–1.

The OC4J documentation assumes that you have a basic understanding of Java
programming, J2EE technology, and Web and EJB application technology. This
includes deployment conventions such as the WEB-INF and META-INF directories.

Examples in each of the primers assume the following:

Table 1–1 Oracle Application Server J2EE Support

J2EE 1.3 Standard APIs Version Supported

JavaServer Pages (JSP) 1.2

Servlets 2.3

Enterprise JavaBeans (EJB) 2.0

Java Transaction API (JTA) 1.0

Java Message Service (JMS) 1.0

Java Naming and Directory Interface (JNDI) 1.2

Java Mail 1.1.2

Java Database Connectivity (JDBC) 2.0 Extension

Oracle Application Server Java Authentication
and Authorization Service

 1.0

J2EE Connector Architecture (JCA) 1.0

JAXP 1.1
1-2 Oracle Application Server Containers for J2EE User’s Guide

JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages
■ You have a working JDK. The JDK version 1.4.1 is installed with Oracle
Application Server. However, OC4J can also work with JDK version 1.3.x.

■ You have installed Oracle Application Server, including the OC4J software.

■ You have started the OC4J instance.

For Web applications, when specifying a URL to execute an application in Oracle
Application Server, note that by default in Oracle Application Server, you should
use port 7777 to go through the Oracle HTTP Server, with OracleAS Web Cache
enabled.

Examples also use standard J2EE configuration files such as web.xml and
application.xml.

JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages
Among the migration considerations in moving to a Sun Microsystems JDK 1.4
environment, which is the environment that is shipped with Oracle Application
Server 10g, there is one of particular importance to servlet and JSP developers.

As stated by Sun Microsystems, "The compiler now rejects import statements that
import a type from the unnamed namespace." (This was to address security
concerns and ambiguities with previous JDK versions.) Essentially, this means that
you cannot invoke a class (a method of a class) that is not within a package. Any
attempt to do so will result in a fatal error at compilation time.

This especially affects JSP developers who invoke JavaBeans from their JSP pages,
as such beans are often outside of any package (although the JSP 2.0 specification
now requires beans to be within packages, in order to satisfy the new compiler
requirements). Where JavaBeans outside of packages are invoked, JSP applications
that were built and executed in an OC4J 9.0.3 / JDK 1.3.1 environment will no
longer work in an OC4J 9.0.4 / JDK 1.4 environment.

Until you update your application so that all JavaBeans and other invoked classes
are within packages, you have the alternative of reverting back to a JDK 1.3.1
environment to avoid this issue.
OC4J Overview 1-3

Navigating the OC4J Documentation Set
For more information about the "classes not in packages" issue and other JDK 1.4
compatibility issues, refer to the following Web site:

http://java.sun.com/j2se/1.4/compatibility.html

In particular, click the link "Incompatibilities Between Java 2 Platform, Standard
Edition, v1.4.0 and v1.3".

Navigating the OC4J Documentation Set
Most of the location of J2EE subject matter is obvious. For example, you can find out
how to implement and use servlets within the Oracle Application Server Containers for
J2EE Servlet Developer’s Guide. Table 1–2 shows each J2EE subject matter and where
you can find the information in the OC4J documentation set.

Notes:

■ The javac -source compiler option is intended to allow JDK
1.3.1 code to be processed seamlessly by the JDK 1.4 compiler,
but this option does not account for the "classes not in
packages" issue.

■ Only the JDK 1.3.1 and JDK 1.4 compilers are supported and
certified by OC4J. It is possible to specify an alternative
compiler by adding a <java-compiler> element to the
server.xml file, and this might provide a workaround for the
"classes not in packages" issue, but no other compilers are
certified or supported by Oracle for use with OC4J.
(Furthermore, do not update the server.xml file directly in an
Oracle Application Server environment. Use the Oracle
Enterprise Manager.)

Table 1–2 Location of Information for J2EE Subjects

J2EE Subject The Subject is Documented in this OC4J Documentation Book

JSP Oracle Application Server Containers for J2EE Support for JavaServer Pages
Developer’s Guide

JSP Tag Libraries Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference

Servlet Oracle Application Server Containers for J2EE Servlet Developer’s Guide
1-4 Oracle Application Server Containers for J2EE User’s Guide

Using OC4J in an Enterprise or Standalone Environment
OC4J Installation
OC4J is a lightweight container that is J2EE-compliant. It is configured with
powerful and practical defaults and is ready to execute after installation. OC4J is
installed with Oracle Application Server; therefore, see the Oracle Application Server
10g Installation Guide for details on OC4J installation.

Using OC4J in an Enterprise or Standalone Environment
OC4J is installed within Oracle Application Server with the goal of managing J2EE
enterprise systems. Oracle Application Server can manage multiple clustered OC4J
processes. Oracle Application Server, which includes OC4J, is managed and
configured through the Oracle Enterprise Manager, which can manage and
configure your OC4J processes across multiple application server instances and
hosts. Thus, you cannot locally manage your OC4J process using the admin.jar
tool or by hand editing a single OC4J process’ configuration files. This undermines
the enterprise management provided by the Oracle Enterprise Manager.

EJB Oracle Application Server Containers for J2EE Enterprise JavaBeans Developer’s
Guide

JTA Oracle Application Server Containers for J2EE Services Guide

Data Source Oracle Application Server Containers for J2EE Services Guide

JNDI Oracle Application Server Containers for J2EE Services Guide

JMS Oracle Application Server Containers for J2EE Services Guide

RMI and RMI/IIOP Oracle Application Server Containers for J2EE Services Guide

Security Oracle Application Server Containers for J2EE Security Guide

CSiV2 Oracle Application Server Containers for J2EE Security Guide

JCA Oracle Application Server Containers for J2EE Services Guide

Java Object Cache Oracle Application Server Containers for J2EE Services Guide

OracleAS Web Services Oracle Application Server Web Services Developer’s Guide

HTTPS Oracle Application Server Containers for J2EE Services Guide

Table 1–2 Location of Information for J2EE Subjects

J2EE Subject The Subject is Documented in this OC4J Documentation Book
OC4J Overview 1-5

Using OC4J in an Enterprise or Standalone Environment
You can still execute OC4J as you have in the past. For those who want a single
OC4J instance for development environments or simple business needs, you can
download OC4J in standalone mode—complete with documentation.

This following sections discusses both management options in the following
sections:

■ Managing Multiple OC4J Instances in an Enterprise Environment

■ Managing a Single OC4J Instance

Also, the following section describes how to understand the OC4J documentation
set:

■ OC4J Documentation Set Assumptions

Managing Multiple OC4J Instances in an Enterprise Environment
You manage Oracle Application Server, including OC4J, using Oracle Enterprise
Manager within an enterprise system. This includes clustering, high availability,
load balancing, and failover.

You configure each OC4J instance and its properties—within the context of an
application server instance—using Oracle Enterprise Manager. After configuration,
you start, manage, and control all OC4J instances through Oracle Enterprise
Manager. You can group several OC4J processes in a cluster. You must use either the
Oracle Enterprise Manager management tool or its command-line tools for starting,
stopping, restarting, configuring, and deploying applications.

Note: You cannot use the OC4J standalone
tool—admin.jar—for managing OC4J instances created in an
application server instance.

You can modify the XML files locally. If you do so, you must notify
Oracle Enterprise Manager that these files have been hand edited
through the Distributed Configuration Management (DCM)
component tool—dcmctl. The following is the command that you
execute after hand editing an XML file:

dcmctl updateconfig -ct oc4j

DCM controls and manages configuration for Oracle Application
Server instances and its Oracle HTTP Server and OC4J components.
For more information on DCM, see the Distributed Configuration
Management Reference Guide.
1-6 Oracle Application Server Containers for J2EE User’s Guide

Using OC4J in an Enterprise or Standalone Environment
This book discusses how to start, stop, manage, and configure OC4J in an enterprise
environment.

Managing a Single OC4J Instance
You can still use a single OC4J—outside of the Oracle Application Server
environment. After downloading OC4J in oc4j_extended.zip from OTN, you
can start, manage, and control all OC4J instances through oc4j.jar and the
admin.jar command-line tool. You configure either through the admin.jar
command or by modifying the XML files by hand.

Any standalone OC4J process is not managed by Oracle Enterprise Manager and
cannot be used within an Oracle Application Server enterprise environment.
Typically, you would use standalone for development or for a simple single OC4J
instance Web solution.

Download the OC4J Standalone User’s Guide for information on how to start, stop,
configure, and manage your standalone process.

OC4J Documentation Set Assumptions
Aside from this book, the rest of the OC4J documentation set was written with a
standalone mindset. These other books may refer to modifying XML files by hand
for managing the instance. This book provides a good overview and familiarization
of the Oracle Enterprise Manager configuration pages. It also guides you to
understand the relationship of each Oracle Enterprise Manager page to its XML
counterpart. Use the familiarity of the Oracle Enterprise Manager when reading the
other OC4J books. You should be able to look at an XML representation and match
it to the relevant Oracle Enterprise Manager field names.

Also, the Distributed Configuration Management (DCM) utility, dcmctl, provides
a command-line alternative to using Oracle Enterprise Manager for some
management tasks. The dcmctl tool uses the same distributed architecture and
synchronization features as Oracle Enterprise Manager, thereby providing identical
functionality in a format that is ideal for scripting and automation.

The following functions can be managed through DCM:

■ administration

■ managing application server instances

■ managing components

■ managing clusters
OC4J Overview 1-7

OC4J Communication
■ deploying applications

For other DCM commands that relate to OC4J, see the Distributed Configuration
Management Reference Guide.

OC4J Communication
For HTTP applications, OC4J is preconfigured to execute behind the Oracle HTTP
Server (OHS). You use the Oracle HTTP Server as a front-end listener and OC4J as
the back-end J2EE application server.

However, for RMI-based applications—such as EJB and JMS—clients should send
their requests directly to OC4J. See "Understanding and Configuring OC4J
Listeners" on page 3-31 for directions.

HTTP Communication
For all incoming HTTP communication within the application server environment,
you use the OHS as a front-end listener and OC4J as the back-end J2EE application
server. Figure 1–1 illustrates this as follows:

1. A browser accesses the OHS listener for all HTTP requests. The Oracle HTTP
Server is an Apache server. The default port number is 7777.

2. OHS, through the mod_oc4j module, passes the request to the OC4J server.
The connection between the OHS and OC4J uses the Apache JServ Protocol
(AJP) on a port number negotiated during OC4J startup. AJP is faster than
HTTP, through the use of binary formats and efficient processing of message
headers.

Figure 1–1 HTTP Application Listener

The mod_oc4j module is preconfigured to direct all incoming HTTP requests
under the j2ee/ Web context to OC4J. This is to separate incoming requests for
JServ from those directed to OC4J. Thus, if you want to use the default routing, you
can deploy your Web application into a servlet context that includes as its prefix
j2ee/. However, any URL mapping you provide in the deployment wizard is
automatically added to the mod_oc4j module. See "Configuring Oracle HTTP

O
-1

01
4HTTP

or HTTPS
AJP 1.3 OC4J

J2EE applications

Oracle HTTP
Server

mod_oc4j

Web
browser
1-8 Oracle Application Server Containers for J2EE User’s Guide

OC4J Communication
Server With Another Web Context" on page 3-32 for information on what is added
to mod_oc4j for you during deployment. For additional information on the
mod_oc4j module, see the Oracle HTTP Server Administrator’s Guide.

Requirements
For optimum performance, run OC4J with the JDK that is installed with Oracle
Application Server Release 2, which is JDK 1.3.x.

It is not necessary to add anything to your CLASSPATH to run OC4J, because it
loads the Java JAR and class files directly from the installation directory, from the
lib/ subdirectory, and from the deployed application EAR files.

Notes: In Oracle9iAS version 1.0.2.2, the default OC4J Web site
did not use the Oracle HTTP Server as a front-end, and it listened
using the HTTP protocol on port 8888.
OC4J Overview 1-9

OC4J Communication
1-10 Oracle Application Server Containers for J2EE User’s Guide

Configuration and Deploy
2

Configuration and Deployment

This chapter demonstrates how to configure and execute OC4J as simply and
quickly as possible. You installed OC4J with the Oracle Application Server
installation.

Within OC4J, you can execute servlets, JSP pages, EJBs, and SQLJ. As an example of
deploying an application to OC4J, this chapter describes how to configure the FAQ
application demo.

This chapter includes the following topics:

■ OC4J Home Page Overview

■ Starting and Stopping OC4J

■ Creating the Development Directory

■ Configuring the FAQ Application Demo

■ Deploying Applications

■ Recovering From Deployment Errors

■ Undeploying Web Applications
ment 2-1

OC4J Home Page Overview
OC4J Home Page Overview
Most of the configuration and management of your OC4J instance occurs off its
OC4J Home Page. When you create an OC4J instance off of the Oracle Application
Server Instance Home Page, it creates an OC4J Home Page for configuration and
management of your OC4J instance. Each OC4J instance has its own OC4J Home
Page.

Off the Application Server Control, you can drill down to any of the running OC4J
instances by selecting the name of the instance (home, for example) in the System
Components table. The Application Server Control displays the OC4J Home Page
for that instance.

Figure 2–1 shows portions of the OC4J Home Page for the home instance.

Figure 2–1 Application Server Control OC4J Home Page

The OC4J Home Page shows metrics on your OC4J instance and its applications. In
addition, you can start, stop, and restart all OC4J processes configured to this
instance.
2-2 Oracle Application Server Containers for J2EE User’s Guide

OC4J Home Page Overview
From the OC4J Home Page, you can navigate to the following pages:

■ Click Applications to access the Application Server Control Applications Page.
See "Applications Page" on page 2-3 for more information.

■ Click Administration to access the Application Server Control Administration
Page. See "Administration Page" on page 2-4 for more information.

Applications Page
Figure 2–2 shows the Deployed Applications section. In this section, you can deploy
applications using the Deploy EAR file or Deploy WAR file buttons. After
deployment, you can modify configuration for each application. See "Deploying
Applications" on page 2-14 for more information.

Figure 2–2 Deployed Applications

As an example, you can see how the FAQ application demo is configured and
deployed to OC4J in "Configuring the FAQ Application Demo" on page 2-7.
Configuration and Deployment 2-3

Starting and Stopping OC4J
Administration Page
Figure 2–3 shows the Administration page. You can modify the following:

■ Instance Properties, which are global configuration values for a specific OC4J
instance. This includes configuration of OC4J services, such as RMI, JMS, and
Web sites.

■ Application defaults, including default data sources and security that can be
used by all deployed applications in this OC4J instance.

Figure 2–3 Administration Section

Details for each of these options are covered in "Configuring OC4J Using Oracle
Enterprise Manager" on page 3-2.

Starting and Stopping OC4J
OC4J is installed with a default configuration that includes a default Web site and a
default application. Therefore, you can start OC4J immediately without any
additional configuration.

From the Oracle Enterprise Manager Web site, you can start, stop, and restart OC4J
with one of the following methods:

■ Drill down to the Oracle Application Server Instance Home Page, start the
entire Oracle Application Server instance, which includes any configured OC4J
2-4 Oracle Application Server Containers for J2EE User’s Guide

Starting and Stopping OC4J
instances, by clicking the Start All button in the General section. In addition,
Stop All and Restart All buttons are included for these purposes.

■ Drill down to the Oracle Application Server Instance Home Page, start a
specific OC4J instance by selecting the radio button next to the OC4J instance.
Click the Start button. Click Stop, Restart, or Delete to stop, restart, or delete
the specified OC4J instance.

■ From the Oracle Application Server Instance Home Page, drill down to the
OC4J Home Page. Click the Start button in the General section on this page. In
addition, Stop and Restart buttons are included for these purposes. Figure 2–1
displays the General section of the OC4J Home Page.

OC4J automatically detects changes made to deployed applications and reloads
these applications automatically. Therefore, you do not need to restart the server
when redeploying an application. However, you may have to restart OC4J if you
modify fields in any of the options off of the Administration page.

You can also start, stop, and restart using the DCM control command. See the
Distributed Configuration Management Reference Guide for directions.

Testing the Default Configuration
Start OC4J with the defaults, as follows:

1. From the Oracle Application Server Instance Page, start either the whole Oracle
Application Server instance or—at least—the Oracle HTTP Server and OC4J
components. To start, click the Start All button for the Oracle Application
Server instance or select the components and click the Start button.

2. Test OC4J by specifying the following from a Web browser:

http://<ohs_host>:7777/j2ee/j2ee-index.html

Substitute the name of the host where the OHS is installed for <ohs_host>.

3. Test a servlet deployed in OC4J during installation by specifying the following
in a Web browser:

http://<ohs_host>:7777/j2ee/servlet/HelloWorldServlet

This command returns a "Hello World" page. The HelloWorldServlet is
automatically deployed with the OC4J installation.
Configuration and Deployment 2-5

Creating the Development Directory
Creating the Development Directory
When developing your application, Oracle recommends that you use consistent and
meaningful naming conventions. As an example, you could develop your
application as modules within a directory named after your application. All the
subdirectories under this directory could be consistent with the structure for
creating JAR, WAR, and EAR archives. Thus, when you have to archive the source,
it is already in the required archive format. Figure 2–4 demonstrates this structure.

Figure 2–4 Development Application Directory Structure

Note: The examples and URLs in this guide use port 7777, which
is the default port for the OHS Web listener. If you change the
default port number of the OHS, then specify the new port number
after the hostname, as follows:

http://<ohs_host>:<ohs_port>/j2ee/

<appname>/

META-INF/
application.xml

<ejb_module>
EJB classes
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml
classes/

Servlet classes

<client_module>/

Client classes
META-INF/

application-client.xml

lib/
dependent libraries

/

2-6 Oracle Application Server Containers for J2EE User’s Guide

Configuring the FAQ Application Demo
Consider the following points regarding Figure 2–4:

■ You cannot change the following directory names and XML filenames:
META-INF, WEB-INF, application.xml, ejb-jar.xml, web.xml, and
application-client.xml.

■ Separate directories clearly distinguish modules of the enterprise Java
application from each other. The application.xml file, which acts as the
standard J2EE application descriptor file, defines these modules.

■ The directories containing the separate modules (<ejb_module>,
<web_module>, and <client_module>) can have arbitrary names. However,
these names must match the values in the standard J2EE application descriptor
file—the local application.xml file.

■ The top of the module represents the start of a search path for classes. As a
result, classes belonging to packages are expected to be located in a nested
directory structure beneath this point. For example, a reference to an EJB
package class ’myapp.ejb.Demo’ is expected to be located in
<appname>/<ejb_module>/myapp/ejb/Demo.class.

Configuring the FAQ Application Demo
This section describes how to configure the FAQ J2EE demo application, which
provides support for managing Frequently Asked Questions (FAQs) and
storing/retrieving these FAQs from an Oracle database. You must have a working
Oracle database and an OC4J installation. You should use this installation for
demonstration purposes only and not in a production environment.

FAQs are broadly categorized into Specialization Areas. Each Specialization Area is
further sub-categorized into Topics. Each FAQ can be associated with multiple
Specialization Areas, where each area has one or more Topics associated with them.

You can generate a list of FAQs (in HTML format) for a given Specialization Area
for internal or external publication.

■ Internal: FAQs that are published for internal users only. These include all
external and internal FAQs.

■ External: FAQs that are published on external forums.

Within the demo, Areas, Topics, and FAQs are entered or updated in the database
through Input/Update screens or through a Web service interface. Each Area, Topic
and FAQ is uniquely identified by a primary key, which is automatically generated
by the system.
Configuration and Deployment 2-7

Configuring the FAQ Application Demo
This application is a J2EE 1.3 compliant application, developed utilizing the
following technologies:

■ HTML (including MS-HTML for creating a Rich-Text Editor)

■ JavaScript

■ Cascade Style Sheets

■ Java Server Pages 1.2

■ Servlet 2.3

■ JSP Standard Tag Library (JSTL) 1.0

■ Oracle JSP 1.2 Utility Tag Libraries

■ Enterprise JavaBeans 2.0 (using Local Interfaces, Abstract Classes, CMR and
EJB-QL)

■ Entity Bean (CMP)

■ Session (Facade) Bean (stateless)

■ Oracle Application Server Java Authentication and Authorization Service

■ Oracle Application Server Web Services

The following sections detail how to configure and deploy the FAQ demo
application. In addition, the last section demonstrates how these steps relate to any
application that you may wish to configure and deploy to OC4J:

■ Environment Setup for FAQ Demo

■ OC4J System Configuration for FAQ Demo

■ Deploy the FAQ Demo

■ Deployment Details Explained

Environment Setup for FAQ Demo
In order to execute the FAQ demo, you must modify the back-end database to
contain tables that the demo uses.

Oracle Database
Add the FAQ user and tables, as follows:

1. Add the faq user with password of faq in your database.
2-8 Oracle Application Server Containers for J2EE User’s Guide

Configuring the FAQ Application Demo
2. Create the database tables for the FAQ demo by executing the SQL table
creation script CreateTables.sql script, which is located at
<FAQApp_home>/faq/sql/CreateTables.sql or can be downloaded with
the rest of the FAQ application from OTN at
http://otn.oracle.com/tech/java/oc4j/demos/ in the FAQApp.zip
file.

In an Oracle database environment, you can execute the SQL script through
SQL*Plus, connecting to the database and schema where you want the tables to
be installed and executing @CreateTables. Please refer to the Oracle database
documentation for further instructions on how to use SQL*Plus, running install
scripts, creating database users/schemas, and so on.

OC4J System Configuration for FAQ Demo
In order for the FAQ demo to execute properly, the following system modification
must be implemented:

■ Modify the default data source, OracleDS, to point to the back-end database.

■ Add the FAQ user to the jazn.com realm and assign it to the users role.

The directions for each of these steps are covered in the following sections:

■ Data Source Configuration

■ Security Configuration

Data Source Configuration
In order to execute the FAQ application, you must have an Oracle database with the
corresponding FAQ application database schema installed on it. The FAQ
Application uses the default global data source named OracleDS that ships with
the application server, which must be configured so that it connects to the database
in which you created the FAQ tables.

1. Navigate to the OC4J Home Page on the Oracle Enterprise Manager Web site.

2. Select the Administration tab at the top of the page.

Note: An I/O exception is thrown if you do not update the global
OracleDS data source appropriately.
Configuration and Deployment 2-9

Configuring the FAQ Application Demo
3. Select Data Sources under the Application Defaults section. The default
application is the automatic parent of each application and it holds global
configuration for all deployed applications, such as the data sources used. You
are going to modify the default data source that the FAQ application uses.

4. For the OracleDS data source, click the Edit button. This brings up the
configuration information for this data source. Modify the JDBC URL, driver,
username, and password to point to your back-end database.

When finished, click the Apply button.

If your back-end database uses the thin JDBC driver, is located at
myhost:1521:ORCL, and uses the username/password of faq/faq, then the
j2ee/home/config/data-sources.xml file is modified to point to the
database at the URL of jdbc:oracle:thin:@myhost:1521:ORCL, as follows:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="faq"
 password="faq"
 url="jdbc:oracle:thin:@myhost:1521:ORCL"
 inactivity-timeout="30"
/>

See Chapter 4, "Data Sources Primer" for more information on data sources.

Security Configuration
The FAQ demo uses Oracle Application Server Java Authentication and
Authorization Service for authentication and user access control capabilities.

1. Select the Administration tab at the top of the OC4J Home Page.

2. Select Security under the Application Defaults section. The default configures
global configuration for all deployed applications. You are going to add the user
that the FAQ application uses to the jazn.com realm.

3. On the Security page, scroll down to the Users section

4. Click Add User. A configuration screen appears that allows you to add
information about the new user. Supply the following information:
2-10 Oracle Application Server Containers for J2EE User’s Guide

Configuring the FAQ Application Demo
■ Name and password of the user

■ Check the checkbox next to the jazn.com/users realm

When finished, click the Apply button.

Alternatively, an application user is added to the default jazn.com realm through
the jazn.jar command line tool, as follows:

> java -jar jazn.jar -adduser jazn.com <username> <passwd>
> java -jar jazn.jar -grantrole users jazn.com <username>

The previous adds your user (given the username and password) to the jazn.com
realm and then grants the users role to the new user. See the Oracle Application
Server Containers for J2EE Security Guide for complete information on using OracleAS
JAAS Provider as your security provider.

Deploy the FAQ Demo
Download the FAQ demo application from OTN at
http://otn.oracle.com/tech/java/oc4j/demos/ in the FAQApp.zip file.

1. Unzip this file to a working directory, which is referred to as <FAQApp_Home>.

2. Navigate to the OC4J Home Page on the Oracle Enterprise Manager Web site.

3. Select the Applications tab at the top of the screen.

4. Click on the Deploy EAR File button. This starts the application deployment
wizard.

5. Provide the EAR file and the name of your application in the Select Application
page. Click the Browse button to find the FAQApp.ear file that you unzipped
on your system. Type "FAQApp" in the application name field. Click the
Continue button.

6. Provide the URL mappings for the servlet context on all Web modules in the
FAQ application. The FAQApp demo contains a Web module, which should be
mapped to the /FAQApp servlet context. Type "/FAQApp" in the URL mapping
field and click the Next button.

7. At this point, the FAQApp demo does not need any additional configuration
through the wizard. You can jump to the Summary page by clicking Finish.

8. Read the summary of the FAQApp application deployment. Click the Deploy
button to complete the application deployment.
Configuration and Deployment 2-11

Configuring the FAQ Application Demo
9. On the OC4J Home Page, select "FAQApp" in the Name column of the
Applications section. This shows the configuration and all deployed modules of
the FAQApp demo application. If the OC4J server is started, the application is
automatically started.

10. Execute the FAQApp application in your browser by accessing the OHS, where
the default port is 7777.

http://<ohs_host>:7777/FAQApp

The FAQApp screen appears.

Deployment Details Explained
Although the development of J2EE applications is standardized and portable, the
non-application (server) configuration is not. The necessary server configuration
depends on the services that your application uses. For example, if your application
uses a database, you must configure its DataSource object.

For basic applications, such as the FAQ demo, you would configure the following:

■ META-INF/application.xml—The standard J2EE application descriptor for
the application is contained within the application.xml file. This file must
be properly configured and included within the J2EE EAR file that is to be
deployed.

■ DataSource objects—You must configure the DataSource object in the Data
Source configuration page for each database used within the application.

■ When you deploy any application, you configure the name of the application,
the Web contexts, and any application-level data sources or security, as well as
other services.

To create and deploy simple J2EE applications, perform the following basic steps:

 Basic Step FAQ Application Step Description

1. Create or obtain the application. Download the FAQApp.zip from OTN

2. Make any necessary server
environment changes.

Set the JAVA_HOME variable

3. Modify any global configuration
modifications.

Modified the default data source, OracleDS,
and added a user to the default OracleAS JAAS
Provider security.
2-12 Oracle Application Server Containers for J2EE User’s Guide

Configuring the FAQ Application Demo
The following steps describe what modifications to make to deploy the FAQ demo
application into OC4J.

1. We asked you to download the FAQ demo application from the Oracle OTN
site.

2. Make any necessary server environment changes. You must set the JAVA_HOME
variable to the base directory of the Java 2 SDK.

3. Modify the global configuration of Oracle Application Server:

a. Configure the OC4J DataSource for an Oracle database. Modify the
default data source, OracleDS, to point to your back-end database, with
the correct URL, username, and password.

b. Add the user to the jazn.com realm.

4. You can modify the FAQ demo application and rebuild it using the ANT
command. You must install ANT as it is not provided with OC4J. To rebuild the
FAQ demo, execute the following in the <FAQAPP_Home> directory:

ant all

4. Provide the application deployment
descriptors.

The deployment descriptors, such as web.xml
and ejb-jar.xml, are provided in the
FAQApp.EAR file. For your application, you
may have to create these XML files.

5. Update the application standard
J2EE application descriptor file.

The application.xml file is included in the
FAQApp.EAR file. For your application, you
may have to create this XML file.

6. Build an EAR file including the
application—if one does not already
exist.

If you want to modify the FAQ demo, modify
within the src directory, and use ANT to build
an EAR file.

7. Register the application in the
appropriate server XML files.

The application is registered when you deploy
the application through the deployment
wizard.

Note: Displays of the screens for each step of the deployment
wizard are shown in "Deploying Applications" on page 2-14.

 Basic Step FAQ Application Step Description
Configuration and Deployment 2-13

Deploying Applications
The ANT build.xml is included in the FAQ ZIP download. To learn more
about the ANT file, go to the following Jakarta site:

http://jakarta.apache.org/ant/

5. Deploy the FAQApp application with the Oracle Enterprise Manager
deployment wizard. When you deploy, the wizard asks for information that is
necessary to register the application, such as the name of the application and
the Web context.

6. Using the Oracle Enterprise Manager, start OC4J. For a complete description of
all the OC4J starting options, see "Starting and Stopping OC4J" on page 2-4.

7. Open your Web browser and then specify the following URL:

http://oc4j_host:7777/FAQApp

Deploying Applications
This section describes how to deploy a J2EE application to the OC4J server. When
you deploy an application using the deployment wizard, the application is
deployed to the OC4J instance and any Web application is bound to a URL context
so that you can access the application from OC4J.

To deploy your application, drill down to the OC4J Home Page and scroll to the
Deployed Applications section. Figure 2–2 shows this section.

Basic Deployment
Your J2EE application can contain the following modules:

■ Web applications

The Web applications module (WAR files) includes servlets and JSP pages.

■ EJB applications

The EJB applications module (EJB JAR files) includes Enterprise JavaBeans
(EJBs).

■ Client application contained within a JAR file

Note: You can also deploy simple applications with the dcmctl
command. See the Distributed Configuration Management Reference
Guide for directions.
2-14 Oracle Application Server Containers for J2EE User’s Guide

Deploying Applications
Archive the JAR and WAR files that belong to an enterprise Java application into an
EAR file for deployment to OC4J. The J2EE specifications define the layout for an
EAR file.

The internal layout of an EAR file should be as follows:

Figure 2–5 Archive Directory Format

Archive these files using the JAR command in the <appname> directory, as follows:

% jar cvfM <appname>.ear .

Note that the application.xml file acts as a standard J2EE application descriptor
file.

■ To deploy a J2EE application packaged within an EAR file, click the Deploy Ear
File button on the Applications page.

■ To deploy a J2EE Web application packaged within a WAR file, click the Deploy
WAR File button on the Applications page.

Both of these buttons start an application deployment wizard, which guides you
through deploying an application. In the case of the WAR file, the
application.xml file is created for the Web application. Whereas, you must
create the application.xml file within the EAR file. Thus, deploying a WAR file
is an easier method for deploying a Web application.

Select Application
Figure 2–6 shows the first page, which enables you to provide the following:

■ Browse your system for the EAR file to be deployed.

Note: You must still provide configuration for J2EE services, such
as data source and security configuration.

<appname>/

META-INF/
application.xml

EJB JAR file

WEB WAR file

Client JAR file
Configuration and Deployment 2-15

Deploying Applications
■ Provide a name to be identified with this application. The application name is
user-created and will be the identifier for the application in the Applications
page.

■ Designate a parent application. A child application can see the namespace of its
parent application. Thus, setting up an application as a parent is used to share
services among children. The default parent is the global application. The
parent application must already be deployed to be seen in the pull-down menu.

Figure 2–6 Designate EAR File

When the application is deployed, the information in this step enables the
following:

1. Copies the EAR file to the /applications directory.

2. Creates a new entry in server.xml for the application, as follows:

<application name=<app_name> parent="applicationWithCommonClasses"
path=<path_EARfile> auto-start="true" />

where

■ The name variable is the name of the application you provided.
2-16 Oracle Application Server Containers for J2EE User’s Guide

Deploying Applications
■ The parent is the name of the optional parent application. The default is
the global application. Children see the namespace of its parent application.
This setting is used to share services, such as EJBs among multiple
applications.

■ The path indicates the directory and filename where the EAR file is
deployed.

■ The auto-start variable indicates if this application should be
automatically restarted each time OC4J is restarted.

For a description of the elements in server.xml, see "Elements in the
server.xml File" on page A-8.

Click the Continue button to go to the next step in the wizard deployment process.
The wizard uploads your EAR file and examines the application. Based on your
configuration files and deployment descriptors, the wizard dynamically presents
only the configuration screens your application needs. These screens are a subset of
the steps presented in the following sections:

■ Provide The URL Mappings For All Web Modules

■ IIOP Stub Generation

■ Provide Any Resource Reference Mappings

■ Specify Any User Manager

■ Publish OracleAS Web Services

■ Deployment Review

Provide The URL Mappings For All Web Modules
Map any Web modules in your application to a specific URL for its servlet context.
When you try to access any Web applications, you provide the host, port, and Web
context.

For all Web modules, your URL mapping for this module includes the URL you
bind in this screen. Thus, for the URL http://<host>:<port>/url_name,
provide /url_name in the URL mapping screen of the wizard.
Configuration and Deployment 2-17

Deploying Applications
Figure 2–7 Configure URL Mapping for Web Modules

Click the Next button to go to the next step in the wizard deployment process.

IIOP Stub Generation
The EJBs in your application can have IIOP stubs generated by selecting Generate
IIOP Stubs. See the "Interoperability and RMI Tunneling" chapter in the Oracle
Application Server Containers for J2EE Services Guide for information on IIOP stubs.

Figure 2–8 Generate IIOP Stubs

Click the Next button to go to the next step in the wizard deployment process.

Provide Any Resource Reference Mappings
Map any references resources in your application, such as data sources or mail
queues, to physical entities currently present on the OC4J container. Note that if you
need a specific resource, you must have already added this to the OC4J container
before you deploy your application in order for you to match them in this step.

For most applications, the resource reference you must designate is the data source
JNDI name. This screen does not configure the data source information, it only
designates an already configured data source or a data source that you will be
2-18 Oracle Application Server Containers for J2EE User’s Guide

Deploying Applications
configuring later. Designate the JNDI location name of the data source that the
application will be using.

Figure 2–9 Map Resource References

If you have any MDBs in your EAR file, you may be required to add information
about the subscriptions or topics. If you are defining DataSource objects for CMP
entity beans, you are given the option to add a JNDI location for those DataSource
objects.

put the third step here... with in fields?
Configuration and Deployment 2-19

Deploying Applications
Figure 2–10 Map Resource References for Entity Beans and MDBs

Click the Next button to go to the next step in the wizard deployment process.

Specify Any User Manager
You can specify what User Manager to use for security. For complete security, we
recommend that you choose the OracleAS JAAS Provider XML User Manager.
2-20 Oracle Application Server Containers for J2EE User’s Guide

Deploying Applications
Figure 2–11 User Manager Choices

As Figure 2–11 demonstrates, you must already have your User Manager set up and
configured. Most of the entries requires an XML file that designates the security
roles, users, and groups for your security mappings.

■ OracleAS JAAS Provider XML User Manager—This is the recommended User
Manager. It requires a default realm and a jazn-data.xml file.

■ XML User Manager—This is not the most secure option. It requires a
principals.xml file.

■ Custom User Manager—This User Manager must be programmed; provide the
class name in this field.

For more information on security and User Managers, see the Oracle Application
Server Containers for J2EE Security Guide.
Configuration and Deployment 2-21

Deploying Applications
Publish OracleAS Web Services
Publish any OracleAS Web Services defined in your application. This feature
requires the UDDI registry. OracleAS Web Services are not installed with a core
install.

If you have defined any OracleAS Web Services, they are shown in the following
screen:

Figure 2–12 Publish Web Services

If you want to publish these OracleAS Web Services, then click on the Publish
button. This leads you through the process of publishing your OracleAS Web
Services. When finished, it brings you back to this screen.

Click the Next button to go to the next step in the wizard deployment process.

Deployment Review
At this point, you will receive a review of your application deployment modules
and configuration, as follows:
2-22 Oracle Application Server Containers for J2EE User’s Guide

Recovering From Deployment Errors
Figure 2–13 Review Panel

In order to deploy this application, click on the Deploy button. A message will be
displayed that tells you that your application deployed.

Post-Deployment Application Modifications
You can modify any fields and add additional configuration by returning to the
OC4J Home page, select the application name in the Applications section. This
brings you to a screen with the details of the deployed application.

From within this screen, you can view the Web and EJB modules. In addition, you
can add and modify application-specific properties, resources, and security options
in the Administration section. It is in this Administration section, that you can add
application-specific data sources or security groups or users mentioned in the
deployment wizard.

Recovering From Deployment Errors
If the deployment process is interrupted for any reason, you may need to clean up
the temp directory, which by default is /var/tmp, on your system. The deployment
wizard uses 20 MB in swap space of the temp directory for storing information
during the deployment process. At completion, the deployment wizard cleans up
the temp directory of its additional files. However, if the wizard is interrupted, it
may not have the time or opportunity to clean up the temp directory. Thus, you
must clean up any additional deployment files from this directory yourself. If you
do not, this directory may fill up, which will disable any further deployment. If you
receive an Out of Memory error, check for space available in the temp directory.
Configuration and Deployment 2-23

Undeploying Web Applications
To change the temp directory, set the command-line option for the OC4J process to
java.io.tmpdir=<new_tmp_dir>. You can set this command-line option in the
Server Properties page. Drill down to the OC4J Home Page. Scroll down to the
Administration Section. Select Server Properties. On this page, Scroll down to the
Command Line Options section and add the java.io.tmpdir variable definition
to the OC4J Options line. All new OC4J processes will start with this property.

Undeploying Web Applications
You can remove a J2EE Web application from the OC4J Web server by selecting the
application in the Applications section of the OC4J Home Page (see Figure 2–2) and
clicking the Undeploy button. This command removes the deployed J2EE
application and results in the following:

■ The application is removed from the OC4J runtime.

■ All bindings for the Web modules are removed from all the Web sites to which
the Web modules were bound.

■ The application files are removed from both the applications/ and
application-deployments/ directories.

Note: You can also undeploy applications with the DCM
command. See the Distributed Configuration Management Reference
Guide for directions.
2-24 Oracle Application Server Containers for J2EE User’s Guide

Advanced Configuration, Development, and D
3

Advanced Configuration,

Development, and Deployment

Chapter 2, "Configuration and Deployment", discusses basic configuration,
development, and deployment of a J2EE application. This chapter discusses both
global J2EE service configuration and advanced J2EE application configuration.

This chapter discusses the following topics:

■ Configuring OC4J Using Oracle Enterprise Manager

■ Overview of OC4J and J2EE XML Files

■ What Happens When You Deploy?

■ Sharing Libraries

■ Understanding and Configuring OC4J Listeners

■ Configuring Oracle HTTP Server With Another Web Context

■ Building and Deploying Within a Directory

■ Developing Startup and Shutdown Classes

■ Setting Performance Options

■ Enabling OC4J Logging

■ OC4J Debugging
eployment 3-1

Configuring OC4J Using Oracle Enterprise Manager
Configuring OC4J Using Oracle Enterprise Manager
You can configure J2EE services, J2EE applications, and Oracle Application Server
clusters with Oracle Enterprise Manager. Some aspects are configured at the OC4J
instance level; thus, they provide a global configuration for all deployed
applications in the instance. Other aspects are configured at the application level;
thus, this type of configuration is local and applicable only to the application.

The following sections provide you with an overview of advanced configuration
within Oracle Enterprise Manager for OC4J:

■ OC4J Instance Level Configuration

■ Application Level Configuration

OC4J Instance Level Configuration
Off of the OC4J Home page, you can configure global services that apply to all
applications by drilling down to the Administration page, which allows you to
configure the following:

■ Configuring Server Properties

■ Configure a Web Site

■ Configure JSP Container Parameters

■ Configure Replication Parameters

■ Advanced Configuration Through XML Files

■ Configure Data Sources

■ Configure Security

■ Configure JMS

■ Configure Global Web Application Parameters

■ Configure RMI

Configuring Server Properties
To configure OC4J properties, scroll down to the Instance Properties section and
select Server Properties. The General section of this page contains the following
fields:
3-2 Oracle Application Server Containers for J2EE User’s Guide

Configuring OC4J Using Oracle Enterprise Manager
Figure 3–1 General Properties

The following information about the default server properties is displayed in the
upper half of the page.

■ Default application—The default application is what most deployed
applications used as its parent. Thus, these deployed applications can see the
classes within the default application. See "Select Application" on page 2-15 for
more information on parent applications.

■ Default application path—There exists a file named application.xml, which is
separate from the application.xml included with each EAR file. This
application.xml file is known as the global application.xml file. It defines
properties that are used across all deployed applications within this OC4J
instance.

In this section, you can modify OC4J server defaults. These are listed below:

■ Default Web module properties—These are specified in an XML file called
global-web-application.xml. If you want it to refer to another XML file, you
can change the pointer to this file here. However, this file must conform to the
DTD that Oracle specifies. The directory is relative to j2ee/home/config.
Advanced Configuration, Development, and Deployment 3-3

Configuring OC4J Using Oracle Enterprise Manager
If you want to actually modify elements contained within this file, update
entries in either the Web Site Properties or Advanced Properties section. These
are discussed more in "Configure a Web Site" on page 3-6 and "Modifying XML
Files Included in the Deployed Application EAR File" on page 3-20.

■ Application and deployment directories—The default directory to place the
"master" EAR file of the deployed application is the /applications directory.
The default directory is where OC4J places modified module deployment
descriptors with added defaults. Currently, this location is in the
/application-deployments directory. You can change the locations of the
default directories in these fields. The directory is relative to j2ee/home/config.
See "What Happens When You Deploy?" on page 3-28 for more information on
the usage of these directories.

The next section, Multiple VM Configuration, is dedicated as part of the cluster
configuration. The following details what each field means; however, the context of
how to configure clusters using this section is discussed fully in Chapter 8, "OC4J
Clustering".

Figure 3–2 Clustering and Ports
3-4 Oracle Application Server Containers for J2EE User’s Guide

Configuring OC4J Using Oracle Enterprise Manager
■ Islands—Designate the number of islands within the cluster. Each island is
created when you click on the Add Another Row button. You can supply a
name for each island within the Island ID field. You can designate how many
OC4J processes should be started within each island by the number configured
in the Number of Processes field. For more information on configuring islands
for clustering, see "OC4J Cluster Configuration" on page 8-11.

■ Ports—This section enables you to configure what the port ranges should be for
RMI, JMS, AJP, and IIOP. For more information on these services, see the Oracle
Application Server Containers for J2EE Services Guide.

Figure 3–3 Command-Line Options and Environment Variables

■ Command Line Options—This section enables you to configure the following:

– the Java executable command that should be used, such as javac

– any OC4J options to include when starting a new OC4J process

– any Java options to include when executing ’java’

– any OC4J system properties

See "OC4J Command-Line Options and System Properties" on page A-41 for a
list of command-line options and system properties.
Advanced Configuration, Development, and Deployment 3-5

Configuring OC4J Using Oracle Enterprise Manager
■ Environment Variables—This section enables you to configure environment
variables for OC4J. To add a new environment variable, click Add Environment
Variable. A new row is added for you to define the variable name in the left
column and the value in the right column.

Configure a Web Site
To configure your Web site, select Website Properties in the Instance Properties
column on the Administration page.

The Web site page has two sections. In the first section, you can see what is the
default Web application. In the second section—URL Mappings for Web
Modules—you can specify whether each Web application is to be loaded upon
startup. These parameters are discussed in more detail in the Oracle Application
Server Containers for J2EE Servlet Developer’s Guide and are stored in the
default-web-site.xml file.

Figure 3–4 Default Web Module Properties

Configure JSP Container Parameters
You can configure global JSP Container parameters. These apply to all JSPs
deployed in this OC4J instance. To configure JSP Container parameters, select JSP
Container Properties in the Instance Properties column on the Administration page.
This brings you to the following page:
3-6 Oracle Application Server Containers for J2EE User’s Guide

Configuring OC4J Using Oracle Enterprise Manager
Figure 3–5 Oracle JSP Container Properties

Most of the properties indicated here are described in Chapter 3 of the Oracle
Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide.
These properties can be included within the global-web-application.xml file
within the <servlet> element.

Configure Replication Parameters
For clustering servlet or EJBs, you may need to configure replication parameters.
See "OC4J Instance Configuration" on page 8-11 for details.

Advanced Configuration Through XML Files
In OC4J version 1.0.2.2, you configured the OC4J server and all deployed
application parameters through XML files. Since the OC4J server existed on a single
node and did not need high availability and clustering management, this worked
well. However, with the integration of OC4J with Oracle Application Server,
increased enterprise management abilities with clustering and high availability
options, all configuration must be accomplished through Oracle Enterprise
Manager.

When you select Advanced Properties off of the Administration page, you can
modify the OC4J Server XML files. These include the XML files that configure the
server and its services. The files that are in this group are server.xml,
global-web-application.xml, rmi.xml, jms.xml, and default-web-site.xml.

put JSP Container properties page here.
Advanced Configuration, Development, and Deployment 3-7

Configuring OC4J Using Oracle Enterprise Manager
Modify any of these XML files in the Advanced Properties page off of the OC4J
Home Page.

Other XML configuration files can be modified in other areas of the Application
Server Control.

■ Global application XML files: These include XML files that apply to all
applications deployed in the OC4J instance. These include the global
application.xml, data-sources.xml, the security XML file and
oc4j-connectors.xml. To modify these XML files, select Applications off of the
OC4J Home Page. On the Applications page, select default. On the default
application page, scroll down to the Administration section and choose
Advanced Properties.

■ Local application XML files. You can modify XML files that configure the
overall application. These include local data sources, local security, and
OC4J-specific application configuration. These XML files include
data-sources.xml, orion-application.xml, and security XML files. To modify
these files, drill down to the specific application from the Deployed
Applications section on the Applications page. On the specified application
screen, scroll down to the Administration section and choose Advanced
Properties.

■ Application module XML files: When the EAR or WAR file is deployed, you
provided module deployment descriptors, such as web.xml, orion-web.xml,
ejb-jar.xml, and orion-ejb-jar.xml. You can modify parameters only in the
OC4J-specific (orion-xxx.xml) XML files. You cannot modify the J2EE XML
files, such as web.xml or ejb-jar.xml. For more information on modifying these
XML files, see "Modifying XML Files Included in the Deployed Application
EAR File" on page 3-20.

As an example, the server.xml page is shown. Notice that you can hand edit the
XML elements.
3-8 Oracle Application Server Containers for J2EE User’s Guide

Configuring OC4J Using Oracle Enterprise Manager
Figure 3–6 Editing the SERVER.XML File

If you do not understand the OC4J XML files, see "Overview of OC4J and J2EE XML
Files" on page 3-21 for a discussion of these files and their relation to each other.
Other books in the OC4J documentation set describe the elements within each of
these files.

Configure Data Sources
You can configure global or local data sources. A global data source is available to
all deployed applications in this OC4J instance. A local data source is configured
within the deployed application and can only be used by that application.

See Oracle Application Server Containers for J2EE Services Guide for a full explanation
of how to configure a data source and the elements within the data-sources.xml
file.

To configure global data sources, select one of the following off of the OC4J Home
Page:

■ Data Sources under the Application Defaults column on the Administration
page—This page allows you to add data source definitions one field at a time.
See "Data Source Field Page" on page 3-10 for a description of this page.

put server.xml page here.
Advanced Configuration, Development, and Deployment 3-9

Configuring OC4J Using Oracle Enterprise Manager
■ Off the default application page—You can either modify or add a data source
either through a GUI or by directly accessing the data-sources.xml file.

1. Select Applications off of the OC4J Home Page.

2. On the Applications page, select default next to the Default Application
Name.

3. On the default application page, scroll down to the Administration section
and do one of the following:

– Select Data Sources under the Resources column. This allows you to
add or modify a data source using a GUI form.

– Select Advanced Properties under the Properties column. Select
data-sources.xml on this page. This allows you to add data sources
using the XML definitions. This is useful if you have been provided the
XML. You can just copy in the already configured data sources.

To configure local data sources, you perform the same selection off of the
application page. You drill down to the particular application to which this data
source is local. On the application page, choose Data Source under the Resources
column. It displays the same data source field page that is discussed in "Data Source
Field Page" on page 3-10.

Data Source Field Page To configure a new Data Source, click Add Data Source. This
brings you to a page where you can enter all configuration details about the data
source. This page is divided up into four sections.

Figure 3–7 shows the General section.
3-10 Oracle Application Server Containers for J2EE User’s Guide

Configuring OC4J Using Oracle Enterprise Manager
Figure 3–7 General Section of Data Source Definition

The General section enables you to define the following aspects about a data source:

■ Name—A user-defined name to identify the data source.

■ Description—A user-defined description of the data source.

■ Data Source Class—This is the class, such as
com.evermind.sql.DriverManagerDataSource, that the data source is
instantiated as.

■ JDBC URL—The URL to the database represented by this data source. For
example, if using an Oracle Thin driver, the URL could be the following:
jdbc:oracle:thin:@my-lap:1521:SID.

■ JDBC Driver—The JDBC driver to use. One example of a JDBC driver is
oracle.jdbc.driver.OracleDriver.

■ Schema—This is an optional parameter. Input the file name that contains the
Java to database mappings for a particular database.

Figure 3–8 shows the username and password.
Advanced Configuration, Development, and Deployment 3-11

Configuring OC4J Using Oracle Enterprise Manager
Figure 3–8 Username and Password

Username/Password—The username and password used to authenticate to the
database that this data source represents. The password can either be entered as
clear text, or you can provide a username for an indirect password. For details, see
the Oracle Application Server Containers for J2EE Services Guide.

Figure 3–9 shows the JNDI Locations section.
3-12 Oracle Application Server Containers for J2EE User’s Guide

Configuring OC4J Using Oracle Enterprise Manager
Figure 3–9 JNDI Locations

The JNDI Locations section enables you to define the JNDI location string that the
data source is bound with. This JNDI location is used within the JNDI lookup for
retrieving this data source.

Figure 3–10 shows the Connection Attributes section.
Advanced Configuration, Development, and Deployment 3-13

Configuring OC4J Using Oracle Enterprise Manager
Figure 3–10 Connection Attributes

This section enables you to modify connection tuning parameters, including the
retry interval, pooling parameters, timeout parameters, and maximum attempt
parameter.

Figure 3–11 shows the Properties section for the data source.

Figure 3–11 Properties

If your data source is a third party data source, you may need to set certain
properties. These properties would be defined in the third-party documentation. In
addition, properties must be set for JTA transactions for the two-phase commit
coordinator.
3-14 Oracle Application Server Containers for J2EE User’s Guide

Configuring OC4J Using Oracle Enterprise Manager
Configure Security
The user manager, employing the user name and password, verifies the user’s
identity based on information in the user repository. The user manager defines what
type of authentication you will be using. It contains your definitions for users,
groups, or roles. The default user manager is the JAZNUserManager. You can
define a user manager for all applications or for specific applications.

See the Oracle Application Server Containers for J2EE Security Guide for a full
description of OC4J security, including user managers.

Configure JMS
JMS can be configured either within the JMS section or directly within the jms.xml
file, as follows:

■ Add Oracle JMS or Third-Party Providers by Editing the JMS Section

■ Add Queues or Topics for OC4J JMS by Editing the JMS XML File

Add Oracle JMS or Third-Party Providers by Editing the JMS Section To add Oracle JMS or
third-party JMS providers, select JMS Providers under the Application Defaults
column on the Administration page. This brings you to the following page:

Figure 3–12 JMS Providers

Click the Add new JMS Provider button to configure each JMS provider, which
brings up the following page:
Advanced Configuration, Development, and Deployment 3-15

Configuring OC4J Using Oracle Enterprise Manager
Figure 3–13 Adding a JMS Provider

This page enables you to configure either Oracle JMS or a third-party JMS provider.
OC4J JMS is always provided and preconfigured, except for the topics and queues,
with the OC4J installation.

Once you choose the typs of JMS provider, you must provide the following:

■ Oracle JMS: Provide the data source name and JNDI location for the database
where Oracle JMS is installed and configured.

■ Third-party JMS provider: Provide the name, JNDI initial context factory class,
and JNDI URL for the third-party provider. To add JNDI properties for this JMS
provider, such as java.naming.factory.initial and
3-16 Oracle Application Server Containers for J2EE User’s Guide

Configuring OC4J Using Oracle Enterprise Manager
java.naming.provider.url, click Add a property. A row is added where you
can add the name for each JNDI property and its value.

This only configures the providers; it does not configure the Destination objects
(topic, queue, and subscription). See the Oracle Application Server Containers for J2EE
Services Guide or more information on JMS providers.

To configure a JMS provider that is only for a specific application, select the
application from the Applications page, scroll down to the Resources column, and
select JMS Providers. The screens that appear are the same as for the default JMS
provider.

Add Queues or Topics for OC4J JMS by Editing the JMS XML File To add queues and topics
for OC4J JMS, you can edit the jms.xml file directly as follows: select the Advanced
Server Properties section under the Instance Properties column on the
Administration page. In this section, choose jms.xml to modify the straight XML
file. See the Oracle Application Server Containers for J2EE Services Guide or
descriptions of the elements in the jms.xml file.

Configure Global Web Application Parameters
To configure Web parameters that apply to all deployed Web applications, select
Global Web Module in the Application Defaults column on the Administration
page. This brings you to the following page:
Advanced Configuration, Development, and Deployment 3-17

Configuring OC4J Using Oracle Enterprise Manager
Figure 3–14 Global Web Module

The type of parameters that you can define for Web modules concern mappings,
filtering, chaining, environment, and security. Drill down into each of the provided
links under the Properties and Security columns to modify these parameters. Each
of these parameters are discussed in detail in the Oracle Application Server Containers
for J2EE Servlet Developer’s Guide. These parameters are stored in the
global-web-application.xml and orion-web.xml files. This guide discusses the
elements in these files.

Configure RMI
RMI can only be defined within an XML definition. To edit the rmi.xml file, select
Advanced Properties under the Instance Properties column on the Administration
page. In this section, choose rmi.xml to modify the XML file. See the Oracle
Application Server Containers for J2EE Services Guide for descriptions of the elements
in the rmi.xml file.

Application Level Configuration
You can deploy, redeploy, or undeploy a J2EE application that exists in an EAR or
WAR file archival format. To deploy an application, click the Deploy EAR File or
Deploy WAR File buttons to deploy in the Deployed Applications section on the
Applications page.

put global web module page here.
3-18 Oracle Application Server Containers for J2EE User’s Guide

Configuring OC4J Using Oracle Enterprise Manager
This starts the deployment wizard that is covered in "Deploying Applications" on
page 2-14. If you deploy an EAR file, it must contain an application.xml that
describes the application modules; if you deploy a WAR file, the application.xml
file is created for you automatically.

To undeploy, click the Select radio button for the application and then click the
Undeploy button.

To redeploy, click the Select radio button for the application and then click the
Redeploy button.

Once you have deployed your application, you can modify most of the parameters
for this application. To configure application-specific parameters, do the following:

1. On the OC4J Home Page, select the Applications page.

2. Select the application where you want to change the configuration using one of
the following methods:

a. Click the Select radio button for the application and click the Edit button.

b. Select the application name in the Name column in the applications box.

This page is the initiating point for changing general application configuration as
well as configuration specific to a certain part of your deployed application, such as
a WAR file.

The following sections provide a brief overview of these configuration options:

■ Configuring Application General Parameters

■ Configuring Local J2EE Services

■ Modifying XML Files Included in the Deployed Application EAR File

Configuring Application General Parameters
If you drill down to the application, scroll down to the Properties column and select
the General link, you can configure a multitude of application details, as follows:

■ persistence path

■ data sources path

Note: You can also deploy, undeploy, or redeploy simple
applications with the DCM command. See the Distributed
Configuration Management Reference Guide for directions.
Advanced Configuration, Development, and Deployment 3-19

Configuring OC4J Using Oracle Enterprise Manager
■ library paths

■ EJB properties

– automatically create database tables for CMP beans

– automatically delete old database tables for CMP beans

■ default data source (JNDI name)

■ User Manager configuration

Configuring Local J2EE Services
As described in "Configure Data Sources" on page 3-9 and "Configure Security" on
page 3-15, you can configure data sources and security either for all deployed
applications (global) or only for a specific application (local). See these sections for
directions on how to configure your J2EE services for your application.

Modifying XML Files Included in the Deployed Application EAR File
You can modify only the OC4J-specific XML files of your application after
deployment. This includes orion-ejb-jar.xml, orion-web.xml, and
orion-application-client.xml. You cannot modify the J2EE XML files, such as
web.xml, ejb-jar.xml, and application-client.xml.

In order to modify the OC4J-specific XML files, do the following:

1. From the application screen, select the JAR or WAR file whose configuration
you are interested in modifying. The application screen is shown.

2. You can modify parameters for the application in one of the following manners:

■ Follow links in the Administration section for modifying parameters.

■ Select the bean or servlet in the section that details the beans, servlets, or
JSPs deployed. This drills down to another level of configuration.

■ The Administration section contains either a Properties or Advanced
Properties section that allows you to modify XML directly for the
OC4J-specific deployment descriptors—orion-ejb-jar.xml,
orion-web.xml, and orion-application-client.xml.
3-20 Oracle Application Server Containers for J2EE User’s Guide

Overview of OC4J and J2EE XML Files
Overview of OC4J and J2EE XML Files
This section contains the following topics:

■ XML Configuration File Overview

■ XML File Interrelationships

XML Configuration File Overview
Each XML file within OC4J exists to satisfy a certain role; thus, if you have need of
that role, you will understand which XML file to modify and maintain.

Figure 3–15 illustrates all the OC4J XML files and their respective roles.

■ OC4J server: All XML files within this box are used to set up this instance of the
OC4J server. These files configure things such as listening ports, administration
passwords, security, and other basic J2EE services.

These files configure the OC4J server and point to other key configuration files.
The settings in the OC4J configuration files are not related to the deployed J2EE
applications directly, but to the server itself.

■ Oracle HTTP Server: These files are configuration files within the Oracle HTTP
Server. However, they are included in this diagram because you may need to
modify these to change how requests are handed off to the OC4J server.

■ Web site: These XML files configure listening ports, protocols, and Web contexts
for the OC4J Web site.

■ Application XML files: Each J2EE application type (EJB, servlet, JSP, connector)
requires its own configuration (deployment) files. Each application type has one
J2EE deployment descriptor and one OC4J-specific deployment descriptor,
which is denoted with an "orion-" prefix. In addition, the following are global
configuration files for all components in the application:

– The application.xml as the global application configuration file that
contains common settings for all applications in this OC4J instance.

– The orion-application.xml file contains OC4J-specific global application
information for all applications in this OC4J instance.

– The global-web-application.xml file contains OC4J-specific global Web
application configuration information that contains common settings for all
Web modules in this OC4J instance.
Advanced Configuration, Development, and Deployment 3-21

Overview of OC4J and J2EE XML Files
– The oc4j-connectors.xml file contains global connector configuration
information.

Figure 3–15 OC4J and J2EE Application Files

OC4J Server XML Files

OC4J Server Configuration Files

Server Configuration

server.xml
principals.xml
data-sources.xml
rmi.xml
jms.xml

*-web-site.xml

Web site

Application XML Files

J2EE Application Deployment XML Files

Global Configuration

application.xml
orion-application.xml
global-web-application.xml
oc4j-connectors.xml

Client

application-client.xml
orion-application-client.xml

ejb-jar.xml
orion-ejb-jar.xml

EJB

ra.xml
oc4j-ra.xml

Connector

web.xml
orion-web.xml

Web site

O
_1

00
9

3-22 Oracle Application Server Containers for J2EE User’s Guide

Overview of OC4J and J2EE XML Files
Table 3–1 describes the role and function for each XML file that was displayed in the
preceding figure.

Note: Each deployed application uses an application.xml as its
standard J2EE application descriptor file. That XML file is local to
the application and separate from the global application.xml,
which configures options that are applied to all applications
deployed in this OC4J server instance.

Table 3–1 OC4J Features and Components

XML Configuration File Features/Components

server.xml OC4J overall server configuration. Configures the
server and points to the XML files that add to this
file, such as jms.xml for JMS support. The listing
of other XML files enables the services to be
configured in separate files, but the server.xml
file denotes that they be used for the OC4J
configuration.

jazn.xml

jazn-data.xml

OC4J security configuration for OracleAS JAAS
Provider security required for accessing the server.

data-sources.xml OC4J data source configuration for all databases
used by applications within OC4J.

rmi.xml OC4J RMI port configuration and RMI tunneling
over HTTP.

jms.xml OC4J JMS configuration for Destination topics
and queues that are used by JMS and MDBs in
OC4J.

default-web-site.xml OC4J Web site definition.

mod_oc4j.conf The mod_oc4j module is an Oracle HTTP Server
module that forwards OC4J requests. This file
configures the mount point that denotes what
contexts to be directed to OC4J.
Advanced Configuration, Development, and Deployment 3-23

Overview of OC4J and J2EE XML Files
application.xml
orion-application.xml

J2EE application standard J2EE application
descriptor file and configuration files.

■ The global application.xml file exists in the
j2ee/home/config directory and contains
common settings for all applications in this
OC4J instance. This file defines the location of
the security XML definition
file—jazn-data.xml and the datasource XML
definition file—data-sources.xml. This is a
different XML file than the local
application.xml files.

■ The local application.xml file defines the
J2EE EAR file, which contains the J2EE
application modules. This file exists within the
J2EE application EAR file.

■ The orion-application.xml file is the
OC4J-specific definitions for all applications.

global-web-application.xml
web.xml
orion-web.xml

J2EE Web application configuration files.

■ global-web-application.xml is an
OC4J-specific file for configuring servlets that
are bound to all Web sites.

■ web.xml and orion-web.xml for each Web
application.

The web.xml files are used to define the Web
application deployment parameters and are
included in the WAR file. In addition, you can
specify the URL pattern for servlets and JSPs in this
file. For example, servlet is defined in the
<servlet> element, and its URL pattern is defined
in the <servlet-mapping> element.

ejb-jar.xml
orion-ejb-jar.xml

J2EE EJB application configuration files. The
ejb-jar.xml files are used to define the EJB
deployment descriptors and are included in the EJB
JAR file.

application-client.xml
orion-application-client.xml

J2EE client application configuration files.

Table 3–1 OC4J Features and Components (Cont.)

XML Configuration File Features/Components
3-24 Oracle Application Server Containers for J2EE User’s Guide

Overview of OC4J and J2EE XML Files
XML File Interrelationships
Some of these XML files are interrelated. That is, some of these XML files reference
other XML files—both OC4J configuration and J2EE application (see Figure 3–17).

Here are the interrelated files:

■ server.xml—contains references to the following:

– All *-web-site.xml files for each Web site for this OC4J server, including
the default default-web-site.xml file.

– The location of each of the other OC4J server configuration files, except
jazn-data.xml and data-sources.xml which are defined in the global
application.xml, shown in Figure 3–15

– The location of each application.xml file for each J2EE application that has
been deployed in OC4J

■ default-web-site.xml—references applications by name, as defined in the
server.xml file. And this file references an application-specific EAR file.

■ application.xml—contains references to the jazn-data.xml and
data-sources.xml files.

The server.xml file is the keystone that contains references to most of the files used
within the OC4J server. Figure 3–16 shows the XML files that can be referenced in
the server.xml file:

oc4j-connectors.xml
ra.xml
oc4j-ra.xml

Connector configuration files.

■ The oc4j-connectors.xml file contains
global OC4J-specific configuration for
connectors.

■ The ra.xml file contains J2EE configuration.

■ The oc4j-ra.xml file contains OC4J-specific
configuration.

Table 3–1 OC4J Features and Components (Cont.)

XML Configuration File Features/Components
Advanced Configuration, Development, and Deployment 3-25

Overview of OC4J and J2EE XML Files
Figure 3–16 XML Files Referenced Within server.xml

Figure 3–17 demonstrates how the server.xml points to other XML configuration
files. For each XML file, the location can be the full path or a path relative to the
location of where the server.xml file exists. In addition, the name of the XML file
can be any name, as long as the contents of the file conform to the appropriate DTD.

■ The <rmi-config> tag denotes the name and location of the rmi.xml file.

■ The <jms-config> tag denotes the name and location of the jms.xml file.

■ The <global-application> tag denotes the name and location of the global
application.xml file.

■ The <global-web-app-config> tag denotes the name and location of the
global-web-application.xml file.

■ The <web-site> tag denotes the name and location of one *-web-site.xml file.
Since you can have multiple Web sites, you can have multiple <web-site>
entries.

In addition to pointing to the OC4J server configuration files, the server.xml file
describes the applications that have been deployed to this OC4J server. Each
deployed application is denoted by the <application> tag.

...j2ee/home/config/server.xml

rmi.xml
jms.xml
application.xml

data-sources.xml
jazn-data.xml

global-web-application.xml
default-web-site.xml O

_1
06

0

3-26 Oracle Application Server Containers for J2EE User’s Guide

Overview of OC4J and J2EE XML Files
Figure 3–17 Server.xml File and Related XML Files

Other tags for server.xml are described in "Elements in the server.xml File" on
page 3-21.

Note: If you understand the OC4J XML files from previous
releases of OC4J, you can simply change most of the OC4J server
XML configuration files by drilling to the OC4J Home Page, scroll
down to Administration, and click on Advanced Properties. From
here, you can modify the XML files using an Oracle Enterprise
Manager editor.

server.xml

O
_1

01
0

rmi.xml<rmi...>

<jms...> jms.xml

application.xml

global-web-application.xml

default-web-site.xml

bank_application<application name="bank_application".../>

<web-site path="./default-web-site.xml"/>

 <global-web-app-config
path="global-web-application.xml"/>

 <global-application..path="application.xml"/>

inventory_application<application name="inventory_application".../>
Advanced Configuration, Development, and Deployment 3-27

What Happens When You Deploy?
What Happens When You Deploy?
When you become more proficient with OC4J and deploying applications, you
should acquaint yourself with what OC4J does for you. The following sections help
you understand these tasks:

■ OC4J Tasks During Deployment

■ Configuration Verification of J2EE Applications

OC4J Tasks During Deployment
When you deploy your application, the following occurs:

OC4J opens the EAR file and reads the descriptors.

1. OC4J opens, parses the application.xml that exists in the EAR file. The
application.xml file lists all of the modules contained within the EAR file.
OC4J notes these modules and initializes the EAR environment.

2. OC4J reads the module deployment descriptors for each module type: Web
module, EJB module, connector module, or client module. The J2EE descriptors
are read into memory. If OC4J-specific descriptors are included, these are also
read into memory. The JAR and WAR file environments are initialized.

3. OC4J notes any unconfigured items that have defaults and writes these defaults
in the appropriate OC4J-specific deployment descriptor. Thus, if you did not
provide an OC4J-specific deployment descriptor, you will notice that OC4J
provides one written with certain defaults. If you did provide an OC4J-specific
deployment descriptor, you may notice that OC4J added elements.

4. OC4J reacts to the configuration details contained in both the J2EE deployment
descriptors and any OC4J-specific deployment descriptors. OC4J notes any J2EE
component configurations that require action on OC4J’s part, such as wrapping
beans with their interfaces.

5. After defaults have been added and necessary actions have been taken, the new
module deployment descriptors are written to the application-deployments/
directory. These are the descriptors that OC4J uses when starting and restarting
your application. But do not modify these descriptors. Always change your
deployment descriptors in the "master" location.

6. OC4J copies the EAR file to the "master" directory. This defaults to the
applications/ directory. You can change the "master" directory in the Server
Properties page off of the OC4J Home Page. In the General section, modify the
3-28 Oracle Application Server Containers for J2EE User’s Guide

What Happens When You Deploy?
Application Directory field to the new location of the "master" directory. The
location of the directory is relative to /j2ee/home/config.

7. Finally, OC4J updates the server.xml file with the notation that this application
has been deployed.

Configuration Verification of J2EE Applications
After deployment, you can see your application configuration in the server.xml
and default-web-site.xml files, as follows:

■ In server.xml, each existing application contains a line with an
<application name=... path=... auto-start="true" /> entry. The
auto-start attribute designates that you want this application automatically
started when OC4J starts. The path is either the location of the EAR file to be
deployed or the exploded directory where the applicatoin has been built. See
"Basic Deployment" on page 2-14 or "Building and Deploying Within a
Directory" on page 3-33 for more information.

■ In default-web-site.xml, a <web-app...> entry exists for each Web application
that is bound to the Web site upon OC4J startup. Because the name attribute is
the WAR filename (without the .WAR extension), there is one line for each WAR
file included in your J2EE application.

For each Web application binding included in a WAR file, the following line has
been added:

<web-app application="myapp" name="myapp-web" root="/myapp" />

■ The application attribute is the name provided in the server.xml as the
application name.

■ The name attribute is the name of the WAR file, without the .WAR extension.

■ The root attribute defines the root context for the application off of the Web
site. For example, if you defined your Web site as

Note: Each time you deploy this EAR file without removing the
EAR file from the applications/ directory, the new deployment
renames the EAR file prepended with an underscore. It does not
copy over the EAR file. Instead, you can copy over the EAR file.
OC4J notices the change in the timestamp and redeploys.
Advanced Configuration, Development, and Deployment 3-29

Sharing Libraries
"http://<ohs_host>:7777/j2ee", then to initiate the application, point
your browser at "http://<ohs_host>:7777/j2ee/myapp".

Sharing Libraries
If you have libraries that you want to share among applications, add a <library>
element in the global application.xml file, indicating the directory where you are
placing the libraries, as follows:

Windows:

<library path="d:\oc4j\j2ee\home\applib\"/>

UNIX:

<library path="/private/oc4j/j2ee/home/applib/"/>

For each directory to be included, use a separate <library> element on a separate
line, as follows:

<library path="/private/oc4j/j2ee/home/applib/"/>
<library path="/private/oc4j/j2ee/home/mylibrary/"/>

As a default, a <library> element exists in the global application.xml file with the
j2ee/home/applib directory. Instead of modifying the <library> element to contain
other directories, you could move your libraries into the applib directory. However,
note that adding libraries to this directory increases the size of OC4J and effects the
performance as all libraries are searched for unknown classes. Use this with
discretion.

If you can, you should keep your shared libraries local to the application through
the orion-application.xml file deployed with the application. You can add
<library> elements in the orion-application.xml file for the application to
indicate where the libraries are located, which are used only within the application.

Note: Wait for automatic startup to complete before trying to
access the client. The client fails on lookup if it tries to access before
the completion of these processes.

Note: The default j2ee/home/applib directory is not created
when OC4J is installed. If you want to add shared libraries to this
directory, you must first create it before adding your libraries.
3-30 Oracle Application Server Containers for J2EE User’s Guide

Understanding and Configuring OC4J Listeners
Understanding and Configuring OC4J Listeners
Incoming client requests use one of three protocols: AJP, HTTP, or RMI. AJP and
HTTP are used for HTTP requests. AJP is used between the OHS and OC4J
components. HTTP is used for HTTP requests directed past OHS to OC4J. RMI is
used for incoming EJB requests.

HTTP Requests
All HTTP requests, whether through OHS or directly to OC4J, must have a listener
configured in an OC4J Web site. You can have two Web sites for each OC4J instance:
one for each protocol type. That is, one Web site is only for AJP requests and the
other is for HTTP requests. You cannot have one Web site listen for both types of
protocols. Thus, OC4J provides two Web site configuration files:

■ default-web-site.xml—This is the AJP protocol listener and the default for
most HTTP requests that use Oracle Application Server. After installation, the
Oracle HTTP Server front-end forwards incoming HTTP requests over the AJP
port. The OC4J Web server configuration file (default-web-site.xml) indicates
the AJP listener port. The default-web-site.xml file defines the default AJP
port as zero. This enables OC4J and the Oracle HTTP Server to negotiate a port
upon startup. The range of port values that the AJP port can be is configured in
the OPMN configuration. See the High Availability chapter in the Oracle
Application Server 10g Administrator’s Guide for more information on OPMN.

The following shows the entry in the default-web-site.xml for the default AJP
listener:

<web-site host="oc4j_host" port="0" protocol="ajp13"
 display-name="Default OC4J WebSite">

You can configure the AJP default Web site protocol in two places: Website
Properties or Advanced Properties off of the OC4J Home Page.

■ http-web-site.xml—This is the HTTP protocol listener. If you want to bypass
OHS and go directly to OC4J, you use the port number defined in this file.
However, you must be careful. The AJP port is chosen at random every time
OC4J is started. If it chooses the same port number that is hard-coded in this
XML file, there will be a conflict. If you use this method for incoming requests,
verify that the port number you choose is outside of the range for AJP port
numbers, which is defined in the OPMN configuration.

The default HTTP port is 7777. The following shows the entry in the
http-web-site.xml for an HTTP listener with a port number of 7777:
Advanced Configuration, Development, and Deployment 3-31

Configuring Oracle HTTP Server With Another Web Context
<web-site host="oc4j_host" port="7777" protocol="http"
 display-name="HTTP OC4J WebSite">

You access the http-web-site.xml file only in the Advanced Properties on the
OC4J Home Page.

RMI Requests
The RMI protocol listener is set up by OPMN in the RMI configuration—rmi.xml. It
is separate from the Web site configuration. EJB clients and the OC4J tools access the
OC4J server through a configured RMI port. OPMN designates a range of ports that
the RMI listener could be using. When you use the "opmn:ormi://" string in the
lookup, the client retrieves automatically the assigned RMI port. See "Accessing the
EJB" in the EJB Primer chapter in Oracle Application Server Containers for J2EE
Enterprise JavaBeans Developer’s Guide.

Configuring Oracle HTTP Server With Another Web Context
The mod_oc4j module in the Oracle HTTP Server is configured at install time to
direct all j2ee/ context bound applications to the OC4J server. If you want to use a
different context, such as pubs/, you can add another mount for this context in the
mod_oc4j.conf configuration file.

To modify this file, drill down to the Oracle HTTP Server Page and select
mod_oc4j.conf. The file is presented for edits in the right-hand frame.

1. Find the Oc4jMount directive for the j2ee/ directory. Copy it to another line.
The mount directive is as follows:

Oc4jMount /j2ee/* OC4Jworker

2. Modify the j2ee/ context to your desired context. In our example, you would
have another line with a pubs/ mount configuration. Assuming that the OC4J
worker name is OC4Jworker, then both lines would be as follows:

Note: In a UNIX environment, the port number should be greater
than 1024, unless the process has administrative privileges.

Note: The OC4Jworker is defined further down in the
mod_oc4j.conf file to be the OC4J instance.
3-32 Oracle Application Server Containers for J2EE User’s Guide

Building and Deploying Within a Directory
Oc4jMount /j2ee/* OC4Jworker
Oc4jMount /pubs/* OC4Jworker

3. Restart the Oracle HTTP Server to pick up the new mount point.

Then all incoming requests for the pubs/ context will be directed to the OC4J
server. Note that when you deploy an application using the deployment wizard, the
wizard automatically adds a mount point as described here for your URL mapping.

See the Oracle HTTP Server Administrator’s Guide for complete details on the
mod_oc4j module configuration.

Building and Deploying Within a Directory
When developing applications, you want to quickly modify, compile, and execute
your classes. OC4J can automatically deploy your applications as you are
developing them within an expanded directory format. OC4J automatically deploys
applications if the timestamp of the top directory, noted by <appname> in
Figure 3–18, changes. This is the directory that server.xml knows as the "master"
location.

The application must be placed in the "master" directory in the same hierarchical
format as necessary for JAR, WAR, and EAR files. For example, if <appname> is the
directory where your J2EE application resides, Figure 3–18 displays the necessary
directory structure.
Advanced Configuration, Development, and Deployment 3-33

Building and Deploying Within a Directory
Figure 3–18 Development Application Directory Structure

To deploy EJB or complex J2EE applications in an expanded directory format,
complete the following steps:

1. Place the files in any directory. Figure 3–18 demonstrates an application placed
into j2ee/home/applications/<appname>/. The directory structure below
<appname> is similar to that used within an EAR file, as follows:

a. Replace the EJB JAR file name, Web application WAR file name, client JAR
file name, and Resource Adapter Archive (RAR) file name with a directory
name of your choosing to represent the separate modules. Figure 3–18
demonstrates these directory names by <ejb_module>/, <web_module>/,
<client_module>/, and <connector_module>/.

applications/<appname>/

META-INF/
application.xml

<ejb_module>
EJB classes (my.ejb.class maps to /my/ejb/class)
META-INF/

ejb-jar.xml

<web_module>/
index.html
JSP pages
WEB-INF/

web.xml
classes/

Servlet classes

<client_module>/

Client classes
META-INF/

application-client.xml

lib/
dependent libraries

/

 (my.Servlet to /my/Servlet)

<connector-module>
META-INF/

ra.xml

resource adaptor JAR files

native libraries
3-34 Oracle Application Server Containers for J2EE User’s Guide

Building and Deploying Within a Directory
b. Place the classes for each module within the appropriate directory structure
that maps to their package structure.

2. Modify the server.xml, application.xml, and *-web-site.xml files. The
server.xml and *-web-site.xml files are located in j2ee/home/config
directory, while the application.xml is under
j2ee/home/applications/<appname>/META-INF directory. Modify these files as
follows:

■ In server.xml, add a new or modify the existing <application name=...
path=... auto-start="true" /> element for each J2EE application. The
path points to the "master" application directory. In Figure 3–18, this is
j2ee/home/applications/<appname>/.

You can specify the path in one of two manners:

* Specifying the full path from root to the parent directory.

In the example in Figure 3–18, if <appname> is "myapp", then the
fully-qualified path is as follows:

<application_name="myapp"
 path="/private/j2ee/home/applications/myapp"
 auto-start="true" />

* Specifying the relative path. The path is relative to where the
server.xml file exists to where the parent directory lives.

 In the example in Figure 3–18, if <appname> is "myapp", then the rela-
tive path is as follows:

<application_name="myapp" path="../applications/myapp"
auto-start="true" />

■ In application.xml, modify the <module> elements to contain the directory
names for each module—not JAR or WAR files. You must modify the
<web-uri>, the <ejb>, and the <client> elements in the application.xml
file to designate the directories where these modules exist. The path
included in these elements should be relative to the "master" directory and
the parent of the WEB-INF or META-INF directories in each of these
application types.

For example, if the <web_module>/ directory in Figure 3–18 was
"myapp-web/", then the following example designates this as the Web
module directory within the <web-uri> element as follows:
Advanced Configuration, Development, and Deployment 3-35

Developing Startup and Shutdown Classes
<module>
 <web>
 <web-uri>myapp-web</web-uri>
 </web>
</module>

■ In the *-web-site.xml file, add a <web-app...> element for each Web
application. This is important, because it binds the Web application within
the Web site. The application attribute value should be the same value as
that provided in the server.xml file. The name attribute should be the
directory for the Web application. Note that the directory path given in the
name element follows the same rules as for the path in the <web-uri>
element in the application.xml file.

To bind the"myapp" Web application, add the following:

<web-app application="myapp" name="myapp-web" root="/myapp" />

3. Add mount points for the Web application in the mod_oc4j.conf configuration
file. Based on the root="/myapp" in this example, the mod_oc4j.conf should be
updated to contain the following lines:

Oc4jMount /myapp home
Oc4jMount /myapp/* home

Developing Startup and Shutdown Classes
You can develop classes that are called after OC4J initializes or before OC4J
terminates. Startup classes can start services and perform functions after OC4J
initiates; shutdown classes can terminate these services and perform functions
before OC4J terminates. The oc4j.jar must be in the Java CLASSPATH when you
compile these classes.

OC4J deploys and executes the OC4J startup and shutdown classes based on
configuration of these classes in the server.xml file.

Note: You achieve better performance if you are deploying with a
JAR file. During execution, the entire JAR file is loaded into
memory and indexed. This is faster than reading in each class from
the development directory when necessary.
3-36 Oracle Application Server Containers for J2EE User’s Guide

Developing Startup and Shutdown Classes
■ OC4J Startup Classes

■ OC4J Shutdown Classes

OC4J Startup Classes
Startup classes are executed only once after OC4J initializes. They are not
re-executed everytime the server.xml file is touched. Your startup class implements
the com.evermind.server.OC4JStartup interface that contains two
methods—preDeploy and postDeploy—in which you can implement code for
starting services or performing other initialization routines.

■ The preDeploy method executes before any OC4J application initialization.

■ The postDeploy method executes after all OC4J applications initialize.

Each method requires two arguments—a Hashtable that is populated from the
configuration and a JNDI Context to which you can bind to process values
contained within the Context. Both methods return a String, which is currently
ignored.

Once created, you must configure the startup class within the <startup-classes>
element in the server.xml file. You access this file by selecting Advanced
Properties on the OC4J home page. Each OC4JStartup class is defined in a single
<startup-class> element within the <startup-classes> element. Each
<startup-class> defines the following:

■ The name of the class that implements the com.evermind.server.OC4JStartup
interface.

■ Whether a failure is fatal. If considered fatal, then when an exception is thrown,
OC4J logs the exception and exits. If not considered fatal, then OC4J logs the
exception and continues. Default is not fatal.

■ The order of execution where each startup class receives an integer number that
designates in what order the classes are executed.

■ The initialization parameters that contain key-value pairs, of type String,
which OC4J takes, which are provided within the input Hashtable argument.
The names for the key-value pairs must be unique, as JNDI is used to bind each
value to its name.

In the <init-library path="../[xxx]" /> element in the server.xml file,
configure the directory where the startup class resides, or the directory and JAR
filename where the class is archived. The path attribute can be fully-qualified or
relative to j2ee/home/config.
Advanced Configuration, Development, and Deployment 3-37

Developing Startup and Shutdown Classes
Example 3–1 Startup Class Example

The configuration for the TestStartup class is contained within a <startup-class>
element in the server.xml file. The configuration defines the following:

■ The failure-is-fatal attribute is true, so that an exception causes OC4J to
exit.

■ The execution-order is 0, so that this is the first startup class to execute.

■ Two initialization key-value pairs defined, of type String, which will be
populated in the Hashtable, of the following:

"oracle.test.startup" "true"
"startup.oracle.year" "2002"

Thus, configure the following in the server.xml file to define the TestStartup class:

<startup-classes>
 <startup-class classname="TestStartup" failure-is-fatal="true">
 <execution-order>0</execution-order>
 <init-param>
 <param-name>oracle.test.startup</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>startup.oracle.year</param-name>
 <param-value>2002</param-value>
 </init-param>
 </startup-class>
 </startup-classes>

The container provides the two initialization kay-value pairs within the input
Hashtable parameter to the startup class.

The following example shows TestStartup, which implements the
com.evermind.server.OC4JStartup interface. The preDeploy method retrieves the
key-value pairs from the Hashtable and prints them out. The postDeploy method is
a null method. The oc4j.jar must be in the Java CLASSPATH when you compile
TestStartup.

import com.evermind.server.OC4JStartup;

Note: The names of the key-value pairs must be unique in all
startup and shutdown classes, as JNDI binds the name to its value.
3-38 Oracle Application Server Containers for J2EE User’s Guide

Developing Startup and Shutdown Classes
import javax.naming.*;
import java.util.*;

public class TestStartup implements OC4JStartup {
 public String preDeploy(Hashtable args, Context context) throws Exception {
 // bind each argument using its name
 Enumeration keys = args.keys();
 while(keys.hasMoreElements()) {
 String key = (String)keys.nextElement();
 String value = (String)args.get(key);
 System.out.println("prop: " + key + " value: " + args.get(key));
 context.bind(key, value);
 }

 return "ok";
 }

 public String postDeploy(Hashtable args, Context context) throws Exception {
 return null;
 }
}

Assuming that the TestStartup class is archived in "../app1/startup.jar",
modify the <init-library> element in the server.xml file as follows:

<init-library path="../app1/startup.jar" />

When you start OC4J, the preDeploy method is executed before any application is
initialized. OC4J populates the JNDI context with the values from the Hashtable. If
TestStartup throws an exception, then OC4J exits since the failure-is-fatal
attribute was set to TRUE.

OC4J Shutdown Classes
Shutdown classes are executed before OC4J terminates. Your shutdown class
implements the com.evermind.server.OC4JShutdown interface that contains two
methods—preUndeploy and postUndeploy—in which you can implement code for
shutting down services or perform other termination routines.

■ The preUndeploy method executes before any OC4J application terminates.

■ The postUndeploy method executes after all OC4J applications terminates.
Advanced Configuration, Development, and Deployment 3-39

Setting Performance Options
Each method requires two arguments—a Hashtable that is populated from the
configuration and a JNDI Context to which you can bind to process values
contained within the Context.

The implementation and configuration is identical to the shutdown classes as
described in "OC4J Startup Classes" on page 3-37 with the exception that the
configuration is defined within the <shutdown-classes> and <shutdown-class>
elements and there is no failure-is-fatal attribute. Thus, the configuration for a
TestShutdown class would be as follows:

<shutdown-classes>
 <shutdown-class classname="TestShutdown">
 <execution-order>0</execution-order>
 <init-param>
 <param-name>oracle.test.shutdown</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>shutdown.oracle.year</param-name>
 <param-value>2002</param-value>
 </init-param>
 </shutdown-class>
 </shutdown-classes>

Assuming that the TestShutdown class is archived in "../app1/shutdown.jar", add
another <init-library> element in the server.xml file as follows:

<init-library path="../app1/shutdown.jar" />

Setting Performance Options
Most performance settings are discussed in the Oracle Application Server 10g
Performance Guide.

You can manage these performance settings yourself from either the OC4J
command-line option or by editing the appropriate XML file element.

■ Performance Command-Line Options

■ Thread Pool Settings

■ Statement Caching

■ Task Manager Granularity
3-40 Oracle Application Server Containers for J2EE User’s Guide

Setting Performance Options
Performance Command-Line Options
Each -D command-line option, except for the dedicated.rmicontext option,
defaults to the recommended setting. However, you can modify these options by
providing each -D command-line option as an OC4J option. See the"OC4J
Command-Line Options and System Properties" on page A-41 for an example.

■ dedicated.rmicontext=true/false. The default value is false. This
replaces the deprecated dedicated.connection setting. When two or more
clients in the same process retrieve an InitialContext, OC4J returns a
cached context. Thus, each client receives the same InitialContext, which is
assigned to the process. Server lookup, which results in server load balancing,
happens only if the client retrieves its own InitialContext. If you set
dedicated.rmicontext=true, then each client receives its own
InitialContext instead of a shared context. When each client has its own
InitialContext, then the clients can be load balanced.

This parameter is for the client. You can also set this in the JNDI properties.

■ oracle.dms.sensors=[none, normal, heavy, all]. You can set the value for
Oracle Application Server built-in performance metrics to the following: None
(off), normal (medium amount of metrics), heavy (high number of metrics), or
all (all possible metrics). The default is normal.This parameter should be set on
the OC4J server. The previous method for turning on these performance
metrics, oracle.dms.gate=true/false, is replaced by the
oracle.dms.sensors variable. However, if you still use oracle.dms.gate, then
setting this variable to false is equivalent to setting oracle.dms.sensors=none.

■ DefineColumnType=true/false. The default is false. Set this to true if you
are using an Oracle JDBC driver that is prior to 9.2. For these drivers, setting
this variable to true avoids a round-trip when executing a select over the Oracle
JDBC driver. This parameter should be set on the OC4J server.

When you change the value of this option and restart OC4J, it is only valid for
applications deployed after the change. Any applications deployed before the
change are not affected.

When true, the DefineColumnType extension saves a round trip to the
database that would otherwise be necessary to describe the table. When the
Oracle JDBC driver performs a query, it first uses a round trip to a database to
determine the types that it should use for the columns of the result set. Then,
when JDBC receives data from the query, it converts the data, as necessary, as it
populates the result set. When you specify column types for a query with the
DefineColumnType extension set to true, you avoid the first round trip to the
Advanced Configuration, Development, and Deployment 3-41

Setting Performance Options
Oracle database. The server, which is optimized to do so, performs any
necessary type conversions.

Thread Pool Settings
You can specify an unbounded, one, or two thread pools for an OC4J process
through the <global-thread-pool> element in the server.xml file. If you do
not specify this element, then an infinite number of threads can be created, which is
the unbounded option.

There are two types of threads in OC4J:

■ short lived threads: A worker thread that is process intensive and uses database
resources. These threads are mapped ApplicationServerThreadPool.

■ long lived threads: A connection thread that is not process intensive. It listens
for events or processes socket IOs. These threads are mapped to
ConnectionThreadPool.

OC4J always maintains a certain amount of worker threads, so that any client
connection traffic bursts can be handled.

If you specify a single thread pool, then both short and long lived threads exist in
this pool. The risk is that all the available threads in the pool are one type of thread.
Then, performance can be poor because of a lack of resources for the other type of
thread. However, OC4J always guarantees a certain amount of worker threads,
which are normally mapped to short lived threads. If a need for a worker thread
arises and no short lived thread is available, the work is handled by a long lived
thread.

If you specify two thread pools, then each pool contains one type of thread.

To create a single pool, configure the min, max, queue, and keepAlive attributes.
To create two pools, configure the min, max, queue, and keepAlive attributes for
the first pool and the cx-min, cx-max, cx-queue, and cx-keepAlive attributes
for the second pool. In order to activate two thread pools, you must configure all
the attributes for the first thread pool, which includes min, max, queue, and
keepAlive. If any of these attributes is not configured, you cannot configure the
second pool. Instead, you will receive the following error message:

Error initializing server: Invalid Thread Pool parameter: null

The global-thread-pool element provides the following attributes:
3-42 Oracle Application Server Containers for J2EE User’s Guide

Setting Performance Options
Table 3–2 The Thread Pool Attributes

Thread Pool Attributes Description

min The minimum number of threads that OC4J can
simultaneously execute. By default, a minimum number of
threads are preallocated and placed in the thread pool when
the container starts. Value is an integer. The default is 20. The
minimum value you can set this to is 10.

max The maximum number of threads that OC4J can
simultaneously execute. New threads are spawned if the
maximum size is not reached and if there are no idle threads.
Idle threads are used first before a new thread is spawned.
Value is an integer. The default is 40.

queue The maximum number of requests that can be kept in the
queue. Value is an integer. The default is 80.

keepAlive The number of milliseconds to keep a thread alive (idle) while
waiting for a new request. This timeout designates how long
an idle thread remains alive. If the timeout is reached, the
thread is destroyed. The minimum time is a minute. Time is set
in milliseconds. To never destroy threads, set this timeout to a
negative one.

Value is a long. The default is 600000 milliseconds.

cx-min The minimum number of connection threads that OC4J can
simultaneously execute. Value is an integer. The default is 20.
The minimum value you can set this to is 10.

cx-max The maximum number of connection threads that OC4J can
simultaneously execute. Value is an integer. The default is 40.

cx-queue The maximum number of connection requests that can be kept
in the queue. Value is an integer. The default is 80.

cx-keepAlive The number of milliseconds to keep a connection thread alive
(idle) while waiting for a new request. This timeout designates
how long an idle thread remains alive. If the timeout is
reached, the thread is destroyed. The minimum time is a
minute. Time is set in milliseconds. To never destroy threads,
set this timeout to a negative one.

Value is a long. The default is 600000 milliseconds.

debug If true, print the application server thread pool information at
startup. The default is false.
Advanced Configuration, Development, and Deployment 3-43

Setting Performance Options
Recommendations:

■ The queue attributes should be at least twice the size of the maximum number
of threads.

■ The minimum and maximum number of worker threads should be a multiple
of the number of CPUs installed on your machine and fairly small. The more
threads you have, the more burden you put on the operating system and the
garbage collector. The minimum that you should set it to is 10.

■ The cx-min and cx-max sets the thread pool size for the connection threads;
thus, they are relative to the number of the physical connections you have at
any point in time. The cx-queue handles burst in connection traffic.

■ When running benchmarks or in a production environment, once you figure
out the right number of threads, set the minimum to the maximum number and
the keepAlive attribute to negative one.

Example 3–2 Setting Thread Pool

The following example initializes two thread pools for the OC4J process. Each
contains at minimum 10 threads and maximum of 100 threads. The number of
requests outstanding in each queue can be 200 requests. Also, idle threads are kept
alive for 700 seconds. The thread pool information is printed at startup.

<application-server ...>
...

<global-thread-pool min="10" max="100" queue="200"
keepAlive="700000" cx-min="10" cx-max="100" cx-queue="200"
cx-keepAlive="700000" debug="true"/>

...
</application-server>

Statement Caching
You can cache database statements, which prevents the overhead of repeated cursor
creation and repeated statement parsing and creation. In the DataSource
configuration, you enable JDBC statement caching, which caches executable
statements that are used repeatedly. A JDBC statement cache is associated with a
particular physical connection. See Oracle9i JDBC Developer’s Guide and Reference for
more information on statement caching.

You can dynamically enable and disable statement caching programmatically
through the setStmtCacheSize() method of your connection object or through
the stmt-cache-size XML attribute in the DataSource configuration. An
3-44 Oracle Application Server Containers for J2EE User’s Guide

Enabling OC4J Logging
integer value is expected with the size of the cache. The cache size you specify is the
maximum number of statements in the cache. The user determines how many
distinct statements the application issues to the database. Then, the user sets the
size of the cache to this number.

If you do not specify this attribute or set it to zero, this cache is disabled.

Example 3–3 Statement Caching

The following XML sets the statement cache size to 200 statements.

<data-source>
 ...
 stmt-cache-size="200"
</data-source>

Task Manager Granularity
The task manager is a background process that performs cleanup. However, the
task manager can be expensive. You can manage when the task manager performs
its duties through the taskmanager-granularity attribute in server.xml.
This attribute sets how often the task manager is kicked off for cleanup. Value is in
milliseconds. Default is 1000 milliseconds.

<application-server ... taskmanager-granularity="60000" ...>

Enabling OC4J Logging
OC4J logs messages both to standard error, standard out, and several log files for
OC4J services and deployed applications.

■ Viewing OC4J System and Application Log Messages: This section describes the
separate log files for OC4J sub-systems and deployed applications. You can
manage how large these files can be and where they are located.

■ Redirecting Standard Out and Standard Error: This section describes how to
forward standard out and standard error messages to a log file.

Note: Also, OC4J supports Jakarta log4j. See the "Open Source
Frameworks and Utilities" appendix in the Oracle Application Server
Containers for J2EE Servlet Developer’s Guide.
Advanced Configuration, Development, and Deployment 3-45

Enabling OC4J Logging
Viewing OC4J System and Application Log Messages
Each OC4J process included in the Oracle Application Server environment has a set
of log files, as shown in Table 3–3. If there are multiple processes running for an
OC4J instance, there is a multiple set of log files.

There are two types of log files:

■ Oracle Diagnostic Logging (ODL) Log Files: The messages logged in these files
use an XML format that is read by the Oracle Enterprise Manager GUI. We
recommend that you use this format for your logging, even though it is not the
default, when you are using OC4J within Oracle Application Server.

■ Text Log Files: The messages logged in these files are not in XML and are
simply for reading within any editor. This is the default. Normally, those who
use OC4J standalone would benefit from viewing their log messages in a text
format.

Oracle Diagnostic Logging (ODL) Log Files
The ODL log entries are each written out in XML format in its respective log file.
Each XML message can be read through the Oracle Enterprise Manager GUI or
through your own XML reader. The advantages for ODL logging is that the log files
and the directory have a maximum limit. When the limit is reached, the log files are
overwritten.

Table 3–3 List of Log Files Generated for OC4J

Default Log File Name Description Scope Configuration File

application.log All events, errors, and exceptions
for a deployed application.

One log file for each
application deployed.

orion-application.
xml

global-application
.log

All common events, errors, and
exceptions related to
applications.

All applications,
including the default
application.

application.xml

jms.log All JMS events and errors. JMS sub-system jms.xml

rmi.log All RMI events and errors. RMI sub-system rmi.xml

server.log All events not associated with a
particular sub-system or an
application. This logs history of
server startup, shutdown
internal server errors.

server-wide server.xml

web-access.log Logs all accesses to the Web site. Each Web site default-web-site.xml
3-46 Oracle Application Server Containers for J2EE User’s Guide

Enabling OC4J Logging
When you enable ODL logging, each new message goes into the current log file,
named log.xml. When the log file is full—that is, the log file size maximum is
reached—then it is copied to an archival log file, named logN.xml, where N is a
number starting at one. When the last log file is full, the following occurs:

1. The least recent log file is erased to provide space in the directory.

2. The log.xml file is written to the latest logN.xml file, where N increments by
one over the most recent log file.

Thus, your log files are constantly rolling over and do not encroach on your disk
space.

Within each XML file listed in Table 3–3, you enable ODL logging by
uncommenting the ODL configuration line, as follows:

■ Uncomment the <odl> element within the <log> element in all XML files listed
in Table 3–3, except for the default-web-site.xml file.

■ Uncomment the <odl-access-log> element in the default-web-site.xml file.

The attributes that you can configure are:

■ path: Path and folder name of the log folder for this area. You can use an
absolute path or a path relative to where the configuration XML file exists,
which is normally in the j2ee/home/config directory. This denotes where the
log files will reside for the feature that the XML configuration file is concerned
with. For example, modifying this element in the server.xml file denotes where
the server log files are written.

■ max-file-size: The maximum size in KB of each individual log file.

■ max-directory-size: The maximum size of the directory in KB.

New files are created within the directory, until the maximum directory size is
reached. Each log file is equal to or less than the maximum specified in the
attributes.

Thus, to specify log files of 1000 KB and a maximum of 10,000 KB for the directory
in the ORACLE_HOME/j2ee/log/server directory in the server.xml file, configure the
following:

<log>
<odl path="../log/server/" max-file-size="1000" max-directory-size="10000" />
</log>

When OC4J is executing, all log messages that are server oriented are logged in the
ORACLE_HOME/j2ee/log/server directory.
Advanced Configuration, Development, and Deployment 3-47

Enabling OC4J Logging
The XML message that is logged is of the following format:

<MESSAGE>
<HEADER>
<TSTZ_ORIGINATING>2002-11-12T15:02:07.051-08:00</TSTZ_ORIGINATING>
<COMPONENT_ID>oc4j</COMPONENT_ID>
<MSG_TYPE TYPE="ERROR"></MSG_TYPE>
<MSG_LEVEL>1</MSG_LEVEL>
<HOST_ID>myhost</HOST_ID>
<HOST_NWADDR>001.11.22.33</HOST_NWADDR>
<PROCESS_ID>null-Thread[Orion Launcher,5,main]</PROCESS_ID>
<USER_ID>dpda</USER_ID>
</HEADER>
<PAYLOAD>
<MSG_TEXT>java.lang.NullPointerException at
com.evermind.server.ApplicationServer.setConfig(ApplicationServer.java:1070)
at com.evermind.server.ApplicationServerLauncher.run
(ApplicationServerLauncher.java:93) at java.lang.Thread.run(Unknown Source)
</MSG_TEXT>
</PAYLOAD>
</MESSAGE/>

You can have both the ODL and text logging turned on. To save on disk space, you
should turn off one of these options. If you decide to enable ODL logging, turn off
the text logging functionality by commenting out the <file> subelement of the
<log> element for all XML files except the default-web-site.xml file. For the
default-web-site.xml file, turn off the text logging by commenting out the
<access-log> element.

You can view ODL log files by performing the following:

1. At the bottom of the Oracle Application Server Instance Home page, select
Logs.

2. Select the OC4J Instances for which you want to view the log files.

a. Select the OC4J Instances in the Available Components column.

b. Select Move to transfer your select to the Selected Components column.

c. Select Search to view the log files for these OC4J Instances.
3-48 Oracle Application Server Containers for J2EE User’s Guide

Enabling OC4J Logging
Figure 3–19 Viewing Logs

Text Log Files
Full text logging is still available in OC4J. Primarily, you should use text logging
within OC4J standalone. It is easier to read within any editor, as it is not in XML
format.

The text logging facility separates messages out in alignment with the XML files.
However, instead of writing to multiple log files of the same size, all messages for
that component are written into a single file. The text logging does not have any
imposed limits or log rollover. Instead, the log files will continue to grow, unless
you stop OC4J, remove the file, and restart OC4J to start the log files over. You can

See Also: "Managing Log Files" chapter in the Oracle Application
Server 10g Administrator’s Guide
Advanced Configuration, Development, and Deployment 3-49

Enabling OC4J Logging
overrun your disk space if you do not monitor your log files. This is only feasible in
a standalone, development environment.

Text messaging is the default and is configured in the same XML files as listed for
ODL logging in Table 3–3. Text messaging is enabled in the <file> subelement the
<log> element of the XML files, except the default-web-site.xml file. For the
default-web-site.xml file, the text messaging is enabled with the <access-log>
element. To turn off text messaging, eliminate or comment out the <file> or
<access-log> element. If you do not remove this line and enable ODL logging, you
will have both logging facilities turned on. The location and filename for text
messaging does have defaults, as shown in Table 3–4, but you can specify the
location and filename within the path attribute of the <log> or <access-log>
elements.

The following table shows the default location directory for text messaging log files
of an OC4J process.

The location of all of the above log files can be specified, except the web-access.log
file, using the <log> element in the respective configuration files. You can specify
either absolute paths or paths relative to the j2ee/home/config directory. For
example, specify the server log file in the server.xml configuration file, as follows:

Table 3–4 OC4J Log File Locations

Log File Default Location

application.log $ORACLE_HOME/j2ee/<OC4J
InstanceName>/application-deployments/<application-name>/
<OC4J IslandName>

global-application.log $ORACLE_HOME/j2ee/<OC4J InstanceName>/log/<OC4J
IslandName>_<Process#>

jms.log $ORACLE_HOME/j2ee/<OC4J InstanceName>/log/<OC4J
IslandName>_<Process#>

rmi.log $ORACLE_HOME/j2ee/<OC4J InstanceName>/log/
<OC4J IslandName>_<Process#>

server.log $ORACLE_HOME/j2ee/<OC4J InstanceName>/log/
<OC4J IslandName>_<Process#>

web-access.log The location is configurable from *-web-site.xml with the <access-log> element,
as follows: <access-log path="../log/http-web-access.log" />

OPMN log file, named
<OC4J_Instance_Name>~
<Island_Name>~<Process#>

$ORACLE_HOME/opmn/logs/
3-50 Oracle Application Server Containers for J2EE User’s Guide

Enabling OC4J Logging
<log>
<file path="../log/my-server.log" />
</log>

You can also specify an absolute path for the location of the log file, as follows:

<log>
<file path="d:\log-files\my-server.log" />
</log>

Redirecting Standard Out and Standard Error
In an Oracle Application Server environment, the standard output and standard
errors for OC4J are routed to the OPMN log for the OC4J instance. For example, if
you have an OC4J instance called OC4J_Demos, and it has an island called
default_island, and there is only one process in the island, the file that will contain
the STDOUT and STDERR streams is
$ORACLE_HOME/opmn/logs/OC4J_Demos.default_island.1

Figure 3–20 shows how you specify the -out and -err parameters in the OC4J
command-line options for your OC4J Instance. When you specify these parameters
without specifying a specific directory, the log files are created in the
$J2EE_HOME/<OC4JInstanceName>_<IslandName>_<Process#> file. For example, if
you have an OC4J instance called OC4J_Demos and it has an island called
default_island, then the log file will be created in the
$J2EE_HOME/OC4J_Demos_default_island_1.

In the Application Server Control, select Server Properties on the Administration
page, which will bring you to the screen in Figure 3–20.

Note: In the preceding examples, it is assumed that there is only
one OC4J process for the default island. If there are more processes
for an island there are separate log files for each OC4J process.
Advanced Configuration, Development, and Deployment 3-51

OC4J Debugging
Figure 3–20 EM Console to Modify Server Properties for an OC4J Instance

OC4J Debugging
OC4J properties are configuration switches that can be set on the command-line. As
shown in Figure 3–20, the properties are prefaced with a -D in the Java Options line.
OC4J provides several debug properties for generating additional information on
the operations performed by the various sub-systems of OC4J. These debug
properties can be set for a particular sub-system while starting up OC4J.

Note: Turning on excessive debug options can slow down the
execution of your applications and use large amounts of disk space
with the contents of the log files.
3-52 Oracle Application Server Containers for J2EE User’s Guide

OC4J Debugging
OC4J is started and managed by OPMN. You have to specify the Java system
properties for your OC4J instance using Oracle Enterprise Manager as shown in
Figure 3–20. The supplied properties are saved in the OPMN configuration file.
OPMN starts OC4J with these supplied properties when you shutdown and restart
your OC4J Instance. See "OC4J Command-Line Options and System Properties" on
page A-41 for OC4J general properties.

By default, the debug information is written to the OPMN log file for the OC4J
Instance, which resides in the $ORACLE_HOME/opmn/logs/ directory. For example,
you have a OC4J instance named OC4J_DEMOS and there is only one island and the
island has only process for this OC4J instance, then the debug information is logged
in $ORACLE_HOME/opmn/logs/OC4J_Demos.default_island.1. However, if there is
-out and -err command-line options specified with OC4J, then the debug
information is redirected to the appropriate files.

The following tables provide useful debug options that available with OC4J. These
debug options have two states either true or false. By default these are set to false.
For a complete list of debug properties, see "OC4J Command-Line Options and
System Properties" on page A-41.

Table 3–5 HTTP Debugging Options

HTTP Debugging Description of Option

http.session.debug Provides information about HTTP session events

http.request.debug Provides information about each HTTP request

http.cluster.debug Provides information about HTTP clustering events

http.error.debug Prints all HTTP errors

http.method.trace.allow Default: false. If true, turns on the trace HTTP method.

Table 3–6 JDBC Debugging Options

JDBC Debugging Description of Option

datasource.verbose Provides verbose information on creation of data source and
connections using Data Sources and connections released to the
pool, and so on,

jdbc.debug Provides very verbose information when JDBC calls are made
Advanced Configuration, Development, and Deployment 3-53

OC4J Debugging
In addition to the specific sub-system switches, you can also start OC4J with a
supplied verbosity level. The verbosity level is an integer between 1 and 10. The
higher the verbosity level, the more information that is printed in the console. You
specify the verbosity level with the -verbosity OC4J option in the Oracle
Enterprise Manager in the OC4J command-line options section. The following
examples show the output with and without verbosity:

Example 3–4 Error Messages Displayed Without Verbosity

D:\oc4j903\j2ee\home>java -jar oc4j.jar
Oracle Application Server Containers for J2EE initialized

Example 3–5 Error Messages Displayed With Verbosity Level of 10

D:\oc4j903\j2ee\home>java -jar oc4j.jar -verbosity 10
Application default (default) initialized...
Binding EJB work.ejb.WorkHours to work.ejb.WorkHours...
Application work (work) initialized...
Application serv23 (Servlet 2.3 New Features Demo) initialized...
Web-App default:defaultWebApp (0.0.0.0/0.0.0.0:8888) started...
Oracle Application Server Containers for J2EE initialized

Table 3–7 EJB Debugging Options

EJB Debugging Description of Options

ejb.cluster.debug Turns on EJB clustering debug messages

Table 3–8 RMI Debugging Options

RMI Debugging Description of Options

rmi.debug Prints RMI debug information

rmi.verbose Provides very verbose information on RMI calls

Table 3–9 OracleAS Web Services Debugging Options

OracleAS Web Services Debugging Description of Options

ws.debug Turns on Web Services debugging
3-54 Oracle Application Server Containers for J2EE User’s Guide

OC4J Debugging
Servlet Debugging Example
You deployed a Web application to OC4J that is having some problems with
servlets. You are losing the client session when you use a pre-configured data
source to make database connection. You want to know what OC4J is doing when
the servlet is accessing the data source. In order to generate the debug information
on HTTP Session and data source usage, you must set two debug options -
http.session.debug and datasource.verbose to true.

Perform the following tasks

1. Logon to Oracle Enterprise Manager console as administrator.

2. Drill down to the OC4J Instance.

3. Select Server Properties for the OC4J Instance.

4. Enter Java Options as follows: -Dhttp.session.debug=true
-Ddatasource.verbose=true

5. Restart the OC4J instance.

After the OC4J Instance is restarted, you re-execute your servlet and see the
following type of debug information in the standard output for the OC4J Instance:

DataSource logwriter activated... jdbc:oracle:thin:@localhost:1521:DEBU:
Started
jdbc:oracle:thin:@localhost:1521:DEBU: Started
Oracle Application Server Containers for J2EE initialized
Created session with id '4fa5eb1b9a564869a426e8544963754f' at Tue APR 23
16:22:56 PDT 2002, secure-only: false
Created new physical connection: XA XA Orion Pooled
jdbc:oracle:thin:@localhost:1521:DEBU
null: Connection XA XA Orion Pooled jdbc:oracle:thin:@localhost:1521:DEBU
allocated (Pool size: 0)
jdbc:oracle:thin:@localhost:1521:DEBU: Opened connection
Created new physical connection: Pooled
oracle.jdbc.driver.OracleConnection@5f18
Pooled jdbc:oracle:thin:@localhost:1521:DEBU: Connection Pooled
oracle.jdbc.driver.OracleConnection@5f1832 allocated (Pool size: 0)
Pooled jdbc:oracle:thin:@localhost:1521:DEBU: Releasing connection Pooled
oracle.jdbc.driver.OracleConnection@5f1832 to pool (Pool size: 1)
null: Releasing connection XA XA Orion Pooled
jdbc:oracle:thin:@localhost:1521:DEBU to pool (Pool size: 1)
Orion Pooled jdbc:oracle:thin:@localhost:1521:DEBU: Cache timeout, closing
connection (Pool size: 0)
com.evermind.sql.OrionCMTDataSource/default/jdbc/OracleDS: Cache timeout,
Advanced Configuration, Development, and Deployment 3-55

OC4J Debugging
closing connection (Pool size: 0)

Remote Debugging Using Oracle JDeveloper
You can remotely debug your applications deployed in OC4J using any Java
debugging facility that supports the JPDA (Java Platform Debugging Architecture).
With OC4J embedded directly inside of the Oracle JDeveloper IDE, debugging both
locally deployed and remote J2EE applications is simple. For more details, please
see the Oracle JDeveloper documentation or read the "Remote Debugging How-To"
document that is posted on OTN.
3-56 Oracle Application Server Containers for J2EE User’s Guide

Data Sources P
4

Data Sources Primer

This chapter describes how to use the pre-installed default data source in your OC4J
application. A data source, which is the instantiation of an object that implements
the javax.sql.DataSource interface, enables you to retrieve a connection to a
database server.

 This chapter covers the following topics:

■ Introduction

■ Definition of Data Sources

■ Retrieving a Connection From a Data Source

For more information on data sources, see the Data Source chapter in the Oracle
Application Server Containers for J2EE Services Guide.
rimer 4-1

Introduction
Introduction
A data source is a Java object that has the properties and methods specified by the
javax.sql.DataSource interface. Data sources offer a portable,
vendor-independent method for creating JDBC connections. Data sources are
factories that return JDBC connections to a database. J2EE applications use JNDI to
look up DataSource objects. Each JDBC 2.0 driver provides its own
implementation of a DataSource object, which can be bound into the JNDI
namespace. Once bound, you can retrieve this data source object through a JNDI
lookup.

Because they are vendor-independent, we recommend that J2EE applications
retrieve connections to data servers using data sources.

Definition of Data Sources
OC4J data sources are stored in an XML file known as data-sources.xml.

Defining Data Sources
The data-sources.xml file is pre-installed with a default data source named
OracleDS. For most uses, this default is all you will need. However, you can also
add your own customized data source definitions. Oracle Enterprise Manager
displays all data sources in the global Data Sources page. From the OC4J Home
Page, select the Administration page and choose Data Source from the Application
Defaults column. The following graphic shows the Data Source page.

Figure 4–1 Data Source Page
4-2 Oracle Application Server Containers for J2EE User’s Guide

Definition of Data Sources
These data sources are able to be used by all applications deployed in this OC4J
instance. To create data sources that are local to a particular application, drill down
to the application page and then choose Data Source in the Administration section.

The OracleDS default data source is an emulated data source. That is, it is a
wrapper around Oracle data source objects. You can use this data source for
applications that access and update only a single data server. If you need to update
more than one database and want these updates to be included in a JTA transaction,
you must use a non-emulated data source. See the Data Sources chapter in the
Oracle Application Server Containers for J2EE Services Guide for more information on
non-emulated data sources.

The default emulated data source is extremely fast and efficient, because it does not
enable two-phase commit operations. This would be necessary if you were to
manage more than a single database.

The following shows the XML configuration for the default data source definition
that you can use for most applications:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="hr"
 password="hr"
 url="jdbc:oracle:thin:@myhost:1521:ORCL"
 inactivity-timeout="30"
/>

■ The class attribute defines the type of data source you want to use.

■ The location, xa-location, and ejb-location attributes are JNDI names
that this data source is bound to within the JNDI namespace. While you must
specify all three, we recommend that you use only the ejb-location JNDI
name in the JNDI lookup for retrieving this data source.

■ The connection-driver attribute defines the type of connection you expect
to be returned to you from the data source.

■ The URL, username, and password identify the database, its username, and
password.
Data Sources Primer 4-3

Definition of Data Sources
These fields can be modified in either the global Data Sources page or in the global
data-sources.xml modification page. To navigate to the data-sources.xml
modification page, select the default application from the OC4J Home page. Scroll
down to the Administration section and choose Advanced Properties.

The Data Sources chapter in the Oracle Application Server Containers for J2EE Services
Guide fully describes all elements for configuring any type of data source.

Configuring A New Data Source
You can configure global or local data sources. A global data source is available to
all deployed applications in this OC4J instance. A local data source is configured
within the deployed application and can only be used by that application.

See the Oracle Application Server Containers for J2EE Services Guide for a full
explanation of how to configure a data source and the elements within the
data-sources.xml file.

To configure global data sources, select one of the following:

■ Data Sources under the Application Defaults column on the Administration
page—This page allows you to add data source definitions one field at a time.
See "Data Source Field Page" on page 4-5 for a description of this page.

■ Advanced Properties in the default application off the Applications page—On
the Applications page, select the default application. Scroll down to the
Administration section and select Advanced Properties. Select
data-sources.xml on this page. This allows you to add data sources using the
XML definitions. This is useful if you have been provided the XML. You can just
copy in the data source XML.

To configure local data sources, you perform the same selection off of the
application page. You must drill down to the particular application that this data
source will be local to. On the application page, choose Data Source under the
Resources column. It displays the same data source field page that is discussed in
"Data Source Field Page" on page 4-5.

Note: Instead of providing the password in the clear, you can use
password indirection. For details, see the Oracle Application Server
Containers for J2EE Services Guide.
4-4 Oracle Application Server Containers for J2EE User’s Guide

Definition of Data Sources
Data Source Field Page When you choose Data Sources under the Application
Defaults column, you can enter all configuration details about the data source into
fields provided. This page is divided up into five sections.

Figure 4–2 shows the General section.

Figure 4–2 General Section of Data Source Definition

The General section enables you to define the following aspects about a data source:

■ Name—A user-defined name to identify the data source.

■ Description—A user-defined description of the data source.

■ Data Source Class—This is the class, such as
com.evermind.sql.ConnectionDataSource, that the data source is instantiated
as.

■ JDBC URL—The URL to the database represented by this data source. For
example, if using an Oracle Thin driver, the URL could be the following:
jdbc:oracle:thin:@my-lap:1521:SID.

■ JDBC Driver—The JDBC driver to use. One example of a JDBC driver is
oracle.jdbc.driver.OracleDriver.

■ Schema—This is an optional parameter. Input the file name that contains the
Java to database mappings for a particular database.

Figure 4–3 shows the username and password.
Data Sources Primer 4-5

Definition of Data Sources
Figure 4–3 Username and Password

Username/Password—The username and password used to authenticate to the
database that this data source represents. The password can either be entered as
clear text, or you can provide a username for an indirect password. For details, see
the Oracle Application Server Containers for J2EE Services Guide.

Figure 4–4 shows the JNDI Locations section.
4-6 Oracle Application Server Containers for J2EE User’s Guide

Definition of Data Sources
Figure 4–4 JNDI Locations

The JNDI Locations section enables you to define the JNDI location string that the
data source is bound with. This JNDI location is used within JNDI lookup for
retrieving this data source. For emulated, you must provide all locations, even
though only the EJB Location is used. That is, you should only refer to the EJB
Location in your application.

Figure 4–5 shows the Connection Attributes section.
Data Sources Primer 4-7

Definition of Data Sources
Figure 4–5 Connection Attributes

This section enables you to modify connection tuning parameters, including the
retry interval, pooling parameters, timeout parameters, and maximum attempt
parameter.

Figure 4–6 shows the Properties section for the data source.

Figure 4–6 Properties

If your data source is a third party data source, you may need to set certain
properties. These properties would be defined in the third-party documentation. In
addition, properties must be set for JTA transactions for the two-phase commit
coordinator.
4-8 Oracle Application Server Containers for J2EE User’s Guide

Definition of Data Sources
Defining the Location of the DataSource XML Configuration File
The elements you add or modify are stored by Oracle Enterprise Manager in an
XML file. This file defaults to the name of data-sources.xml and is located in
/j2ee/home/config. If you want to change the name or the location of this file,
you can do this in the General Properties page off of the default application screen.

On the Applications page, scroll down to Default Application. Choose default. This
brings you to the default application screen. Scroll down to the Administration
section and choose General from the Properties column. Within the General
Properties screen, shown below, you can modify the name and location of the data
sources XML configuration file. Any location that you configure in the data sources
path field must be relative to the /j2ee/home/config directory.

Figure 4–7 Default Application Properties

When applied, the data sources XML filename and path are stored in the global
application.xml file. In the application.xml file, the <data-sources> element
contains both the name and path of the data sources XML file.

The following shows the default configuration:

<data-sources
 path = "data-sources.xml"
/>

The path attribute of the <data-sources> tag contains both path and name of
the data-sources.xml file. The path can be fixed, or it can be relative to where
the application.xml is located.

put default general properties here.
Data Sources Primer 4-9

Retrieving a Connection From a Data Source
Retrieving a Connection From a Data Source
One way to modify data in your database is to retrieve a JDBC connection and use
JDBC or SQLJ statements. We recommend that you use data source objects in your
JDBC operations.

Do the following to modify data within your database:

1. Retrieve the DataSource object through a JNDI lookup on the data source
definition.

The lookup is performed on the logical name of the default data source, which
is an emulated data source that is defined in the ejb-location element.

You must always cast or narrow the object that JNDI returns to the
DataSource, because the JNDI lookup() method returns a Java object.

2. Create a connection to the database represented by the DataSource object.

Once you have the connection, you can construct and execute JDBC statements
against this database specified by the data source.

The following code represents the preceding steps:

Context ic = new InitialContext();
DataSource ds = (DataSource) ic.lookup("jdbc/OracleDS");
Connection conn = ds.getConnection();

Use the following methods of the DataSource object in your application code to
retrieve the connection to your database:

■ getConnection();

The username and password are those defined in the data source definition.

■ getConnection(String username, String password);

This username and password overrides the username and password defined in
the data source definition.

You can cast the connection object returned on the getConnection method to
oracle.jdbc.OracleConnection and use all the Oracle extensions. This is
shown below:

oracle.jdbc.OracleConnection conn =
(oracle.jdbc.OracleConnection) ds.getConnection();

Once retrieved, you can execute SQL statements against the database either through
SQLJ or JDBC.
4-10 Oracle Application Server Containers for J2EE User’s Guide

Retrieving a Connection From a Data Source
For more information, see the Data Sources chapter in the Oracle Application Server
Containers for J2EE Services Guide.
Data Sources Primer 4-11

Retrieving a Connection From a Data Source
4-12 Oracle Application Server Containers for J2EE User’s Guide

Servlet Prim
5

Servlet Primer

In Oracle Application Server 10g, OC4J includes a servlet container that is fully
compliant with the servlet 2.3 specification. This chapter covers the basics of
running servlet applications in the OC4J environment. There is also a brief servlet
review, although it is assumed that you are at least somewhat familiar with servlet
technology.

There are a few assumptions before you try running the primers. See "Introduction
to OC4J" on page 1-2.

This chapter includes the following sections:

■ A Brief Overview of Servlet Technology

■ Running a Simple Servlet

■ Running a Data-Access Servlet

■ Creating and Deploying the Servlet Primer Samples WAR File

For detailed information about the Oracle servlet implementation, see the Oracle
Application Server Containers for J2EE Servlet Developer’s Guide.
er 5-1

A Brief Overview of Servlet Technology
A Brief Overview of Servlet Technology
The following sections provide a quick servlet overview:

■ What Is a Servlet?

■ Servlet Portability

■ The Servlet Container

■ Request and Response Objects

■ Learning More About Servlets

What Is a Servlet?
In recent years, servlet technology has emerged as a powerful way to extend Web
server functionality through dynamic Web pages. A servlet is a Java program that
runs in a Web server (as opposed to an applet, which is a Java program that runs in
a client browser). Typically, the servlet takes an HTTP request from a browser,
generates dynamic content (such as by querying a database), and provides an HTTP
response back to the browser. Alternatively, it can be accessed directly from another
application component, or send its output to another component. Most servlets
generate HTML text, but a servlet might instead generate XML to encapsulate data.

More specifically, a servlet runs in a J2EE application server, such as OC4J. Servlet is
one of the main application component types of a J2EE application, along with
JavaServer Pages (JSP) and Enterprise JavaBeans (EJB), which are also server-side
J2EE component types. These are used in conjunction with client-side components
such as applets (part of the Java 2 Standard Edition specification) and application
client programs. An application might consist of any number of any of these
components.

Using Java servlets allows you to use the standard servlet API for programming
convenience, and enables you to employ any of the numerous standard Java and
J2EE features and services, including JDBC to access a database, RMI to call remote
objects, or JMS to perform asynchronous messaging.

Servlets outperform previous means of generating dynamic HTML. Once a servlet
is loaded into memory, it is able to run as a single lightweight thread. The ability to
run as a continuous process has led to servlets largely replacing older technologies
such as server-side includes and CGI as a means of running code in the server.
5-2 Oracle Application Server Containers for J2EE User’s Guide

A Brief Overview of Servlet Technology
Servlet Portability
Because servlets are written in the Java programming language, they are supported
on any platform that has a Java virtual machine and has a Web server and J2EE
containers. You can use servlets on different platforms without recompiling, and
you can package servlets together with associated files such as graphics, sounds,
and other data to make a complete Web application. This greatly simplifies
application development.

A servlet-based application that was developed to run on any J2EE-compliant
application server can be ported to OC4J with little effort.

The Servlet Container
Unlike a Java client program, a servlet has no static main() method. Therefore, a
servlet must execute under the control of an external container.

Servlet containers, sometimes referred to as servlet engines, execute and manage
servlets. It is the servlet container that calls servlet methods and provides services
that the servlet needs when executing. A servlet container is usually written in Java
and is either part of a Web server (if the Web server is also written in Java) or
otherwise associated with and used by a Web server. OC4J includes a fully
standards-compliant servlet container.

The servlet container provides the servlet easy access to properties of the HTTP
request, such as its headers and parameters. When a servlet is called or invoked, the
Web server passes the HTTP request to the servlet container. The container, in turn,
passes the request to the servlet.

Figure 5–1 illustrates the communication path between a client (such as a Web
browser), the Web listener in the Web server, the servlet container, a servlet, and a
back-end database.
Servlet Primer 5-3

A Brief Overview of Servlet Technology
Figure 5–1 Servlet and the Servlet Container

Request and Response Objects
In Java, an HTTP request is represented by an instance of a class that implements
the standard javax.servlet.http.HttpServletRequest interface. Similarly,
an instance of a class that implements the
javax.servlet.http.HttpServletResponse interface is used for an HTTP
response. These interfaces specify methods to be used in processing requests and
responses.

A servlet extends one of two standard servlet base classes:
javax.servlet.GenericServlet or javax.servlet.http.HttpServlet. Key
HttpServlet methods such as doGet(), to process an HTTP GET request, and
doPost(), to process an HTTP POST request, take an HttpServletRequest instance
and an HttpServletResponse instance as input parameters. The servlet container
passes these objects to the servlet and receives the response back from the servlet to
pass on to the client or to another server object such as an EJB.

The servlet overrides the access methods implemented in GenericServlet and
HttpServlet classes, as appropriate, in order to process the request and return the

O
_1

07
6

Web listener

Servlet Container

Client

Servlet

Request Response

Data Source

JDBC Connection
5-4 Oracle Application Server Containers for J2EE User’s Guide

Running a Simple Servlet
response as desired. For example, most servlets override the doGet() and doPost()
methods (or both) of HttpServlet.

Learning More About Servlets
For a first step in learning more about servlets, see the Oracle Application Server
Containers for J2EE Servlet Developer’s Guide. This guide tells you what you need to
know to develop servlets and Web applications in the OC4J environment.

For complete documentation of the J2EE APIs, including servlets, visit the Sun
Microsystems Web site at:

http://java.sun.com/j2ee/docs.html

You can also find a great deal of tutorial information there about servlets as well as
other aspects of J2EE application development.

Running a Simple Servlet
A good way to learn about servlets and how to code them is to view a basic servlet
example. This section shows you how to create and run a simple "Hello World"
servlet.

Create the Hello World Servlet
Here is the Hello World code, showing the basic servlet framework. This servlet just
prints "Hi There!" back to the client browser. The numbered comments along the
right side correspond to the code notes below.

Save this servlet in a file called HelloWorldServlet.java and compile it.

import java.io.*; // 1
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet { // 2

Note: Before compiling the servlet, be sure that servlet.jar,
supplied with OC4J, is in your classpath. This contains the Sun
Microsystems javax.servlet and javax.servlet.http
packages.
Servlet Primer 5-5

Running a Simple Servlet
 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException { // 3
 resp.setContentType("text/html"); // 4

 ServletOutputStream out = resp.getOutputStream(); // 5
 out.println("<html>"); // 6
 out.println("<head><title>Hello World</title></head>");
 out.println("<body>");
 out.println("<h1>Hi There!</h1>");
 out.println("</body></html>");
 }
}

Code Notes

1. You must import at least java.io.*, javax.servlet.*, and
javax.servlet.http.* for any servlet you write. Additional packages are
needed for SQL operations or to support Oracle JDBC drivers.

2. The servlet extends the HttpServlet class, which has base implementations of
the methods that a servlet uses in processing HTTP requests and responses.

3. The doGet() method, which services HTTP GET requests, overrides the base
implementation in HttpServlet. Like almost all HttpServlet methods, doGet()
takes a request object and a response object as parameters. In this example, no
methods are called on the request object (req), because this example requires no
input data (that is, request data).

4. The servlet calls the setContentType() method of the response object to set the
response content MIME type in the header. Here it is text/html.

5. The getOutputStream() method of the response object (resp) is called to get
an output stream to use in sending the output from the server back to the client.
Alternatively, you could call the getWriter() method to get a
java.io.PrintWriter object.

6. The remainder of the servlet consists of output statements with HTML code to
write a simple Web page to display "Hi There!" in a Heading 1 (<h1>) format.
The Web browser will display this output when it receives the response object
from the server.

Deploy the Hello World Servlet
Archive HelloWorldServlet.class into the WAR file for the servlet primer
samples, and deploy the WAR file using the Oracle Enterprise Manager deployment
5-6 Oracle Application Server Containers for J2EE User’s Guide

Running a Simple Servlet
wizard. This is all described in "Creating and Deploying the Servlet Primer Samples
WAR File" on page 5-14.

Run the Hello World Servlet
Assuming you specify a context path of /hello, as described in "Deploy the WAR
File" on page 5-15, you can run the Hello World servlet with a URL such as the
following:

http://host:port/hello/servlet/HelloWorldServlet

The /servlet part of the URL employs an OC4J feature that starts up a servlet,
such as HelloWorldServlet in this case, according to its class name. The
servlet-webdir attribute in the <orion-web-app> element of the
global-web-application.xml file or orion-web.xml file defines this special
URL component. Anything following it in the URL is assumed to be a servlet class
name, including applicable package information, within the appropriate servlet
context. By default in OC4J, the setting for this URL component is "/servlet".

Automatic Compilation
For easier test development, use the OC4J auto-compile feature. Set
development="true" in the <orion-web-app> element of the
global-web-application.xml configuration file, as follows:

<orion-web-app ... development="true" ... >
 ...
</orion-web-app>

If development is set to "true", then each time you change the servlet (the
.java or .class file) and save it in a particular directory, or change the web.xml
file, the OC4J server automatically redeploys (essentially, restarts) the servlet or Web
application. A modified .java file is also automatically recompiled upon first
access.

Important: Invoking a servlet in this way is recommended only
for development and testing scenarios. Allowing the invocation of
servlets by class name presents a significant security risk; OC4J
should not be configured to operate in this mode in a production
environment. See the Oracle Application Server Containers for J2EE
Servlet Developer’s Guide for information.
Servlet Primer 5-7

Running a Data-Access Servlet
The directory is determined by the setting of the source-directory attribute of
<orion-web-app>. The default is "WEB-INF/src" if it exists, otherwise
"WEB-INF/classes".

Running a Data-Access Servlet
The HelloWorldServlet example shows a minimal servlet with only static output.
The power of servlets, however, comes from the ability to retrieve data from a
database, generate dynamic content based on the data, and send that content to the
client. (Of course, a servlet can also update a database, based upon information
passed to it in the HTTP request.)

In this next example, a servlet gets some information from the client (the Web
browser), uses this information in constructing a database query, and reports the
query results back to the client.

Although there are many ways that a servlet can get information from its client, this
example uses a very common method: reading a query string from the HTTP
request.

Create the HTML Form
First, create an HTML page that acts as the front end for the servlet. This page
includes an HTML form through which the end user specifies the query parameters.

Enter or copy the following text into a file and name the file EmpInfo.html.

<html>

<head>
<title>Query the Employees Table</title>
</head>

<body>
<form method=GET ACTION="/hello/servlet/GetEmpInfo">
The query is

SELECT LAST_NAME, EMPLOYEE_ID FROM EMPLOYEES WHERE LAST NAME LIKE ?.<p>

Enter the WHERE clause ? parameter (use % for wildcards).

Note: This example works only if the HR schema has been
installed in the Oracle database. This schema is part of the sample
Common Schemas set available with the Oracle Database.
5-8 Oracle Application Server Containers for J2EE User’s Guide

Running a Data-Access Servlet
Example: 'S%':

<input type=text name="queryVal">
<p>
<input type=submit>
</form>

</body>
</html>

Create the GetEmpInfo Servlet
The servlet called by the preceding HTML page constructs a SELECT statement
(query), with the end user being prompted for the WHERE clause to complete the
SELECT statement. For database access, this example uses JDBC connection, result
set, and statement objects. If you are not familiar with JDBC, see the Oracle9i JDBC
Developer’s Guide and Reference.

This code also assumes default OC4J data source configuration in the
data-sources.xml file, as in the following example:

<data-source
 class="com.evermind.sql.DriverManagerDataSource"
 name="OracleDS"
 location="jdbc/OracleCoreDS"
 xa-location="jdbc/xa/OracleXADS"
 ejb-location="jdbc/OracleDS"
 connection-driver="oracle.jdbc.driver.OracleDriver"
 username="hr"
 password="hr"
 url="jdbc:oracle:thin:@localhost:1521:orcl"
 inactivity-timeout="30"
/>

For introductory information about data sources, see Chapter 4, "Data Sources
Primer". For further information, see the Oracle Application Server Containers for J2EE
Services Guide.

Note: For the URL, change localhost to an appropriate host
name (such as according to the hosts file on UNIX), as applicable.
Change orcl to the name of the Oracle database instance, if
different.
Servlet Primer 5-9

Running a Data-Access Servlet
Here is the code for the servlet. Numbered comments along the right side
correspond to the code notes below.

Enter or copy the code into a file called GetEmpInfo.java and compile it.

import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*; // 1
import javax.sql.*; // 2
import java.sql.*;
import java.io.*;

public class GetEmpInfo extends HttpServlet {

 DataSource ds = null;
 Connection conn = null;

 public void init() throws ServletException { // 3
 try {
 InitialContext ic = new InitialContext(); // 4
 ds = (DataSource) ic.lookup("jdbc/OracleDS"); // 5
 conn = ds.getConnection(); // 6
 }
 catch (SQLException se) { // 7
 throw new ServletException(se);
 }
 catch (NamingException ne) { // 8
 throw new ServletException(ne);
 }
 }

 public void doGet (HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 String queryVal = req.getParameter("queryVal"); // 9
 String query = //10
 "select last_name, employee_id from employees " +
 "where last_name like " + queryVal;

 resp.setContentType("text/html");

 PrintWriter out = resp.getWriter();
 out.println("<html>");
 out.println("<head><title>GetEmpInfo</title></head>");
 out.println("<body>");
5-10 Oracle Application Server Containers for J2EE User’s Guide

Running a Data-Access Servlet
 try {
 Statement stmt = conn.createStatement(); //11
 ResultSet rs = stmt.executeQuery(query); //12

 out.println("<table border=1 width=50%>");
 out.println("<tr><th width=75%>Last Name</th><th width=25%>Employee " +

 "ID</th></tr>");

 int count=0;
 while (rs.next()) { //13
 count++;
 out.println("<tr><td>" + rs.getString(1) + "</td><td>" +rs.getInt(2) +
 "</td></tr>");

 }
 out.println("</table>");
 out.println("<h3>" + count + " rows retrieved</h3>");

 rs.close(); //14
 stmt.close();
}
 catch (SQLException se) { //15
 se.printStackTrace(out);
 }

 out.println("</body></html>");
 }

 public void destroy() { //16
 try {
 conn.close();
 }
 catch (SQLException se) { //15
 se.printStackTrace();
 }
 }
}

Code Notes

1. Import javax.naming.* to support the JNDI API.

2. Import JDBC standard interfaces in java.sql and extended interfaces in
javax.sql (for support of data sources and connection pooling).

3. Override the HttpServlet init() method.
Servlet Primer 5-11

Running a Data-Access Servlet
4. Get a JNDI initial context. For more information about using JNDI with OC4J,
see the Oracle Application Server Containers for J2EE Services Guide.

5. Look up the data source with the JNDI name jdbc/OracleDS, which is
configured by default in the data-sources.xml file.

6. Use the data source to get a connection to the database.

7. Catch any SQL exception from the connection attempt, and throw it as a
ServletException instance.

8. Catch any JNDI naming exception and throw it as a ServletException
instance.

9. Get the parameter that was passed in the request from the HTML form. This is
the WHERE clause for the query.

10. Construct a SQL query using the WHERE clause specified by the user.

11. Create a JDBC statement object.

12. Execute the query, with the results going into a JDBC result set object.

13. Loop through the rows of the result set. Use the result set getString() and
getInt() methods to get the particular data values and then output the values
to the browser.

14. Close the result set and statement.

15. Catch any SQL exceptions from the query, processing of the result set, or closing
of the statement object or connection object (two locations). Print the stack trace.

16. The destroy() method closes the database connection.

Deploy GetEmpInfo and the HTML Page
Archive EmpInfo.html and GetEmpInfo.class into the WAR file for the servlet
primer samples, and deploy the WAR file using the Oracle Enterprise Manager
deployment wizard. This is all described in "Creating and Deploying the Servlet
Primer Samples WAR File" on page 5-14.

Run GetEmpInfo
Assuming you specify a context path of /hello, as described in "Deploy the WAR
File" on page 5-15, you can access the front-end HTML page for the GetEmpInfo
servlet with a URL such as the following:

http://host:port/hello/EmpInfo.html
5-12 Oracle Application Server Containers for J2EE User’s Guide

Running a Data-Access Servlet
When your browser invokes this page, you should see output like the following:

Figure 5–2 Query Output

Pressing Submit Query calls the GetEmpInfo servlet. If you first enter ’S%’ (for
example) in the form for the WHERE clause, you will get the following results:
Servlet Primer 5-13

Creating and Deploying the Servlet Primer Samples WAR File
Figure 5–3 Submit Query Results

Creating and Deploying the Servlet Primer Samples WAR File
Two examples have been covered in this chapter: a simple Hello World servlet and a
servlet that accesses a database. For simplicity, we suggest that you package and
deploy them in a single WAR file. This section shows the required files for the
examples and how you can package and deploy them.
5-14 Oracle Application Server Containers for J2EE User’s Guide

Creating and Deploying the Servlet Primer Samples WAR File
For additional information about building and deploying servlet applications, refer
to the Oracle Application Server Containers for J2EE Servlet Developer’s Guide.

WAR File Structure
Here is the structure of the WAR file for the examples in this chapter:

EmpInfo.html
WEB-INF/
 classes/
 HelloWorldServlet.class
 GetEmpInfo.class

If you use an IDE for your development, the IDE can usually create the WAR file for
you. Otherwise, you can create it manually using the Java JAR utility.

No special web.xml entries are required for the examples in this chapter.

Deploy the WAR File
Use Oracle Enterprise Manager, the Application Server Control, to deploy the
examples. Select the Applications page. Click the Deploy WAR file button and
follow the directions for the deployment wizard.

The following figure shows the key portion of the Oracle Enterprise Manager
Deploy Web Application Page, which is the page for deploying a WAR file.

Note: Web components, such as JSP pages and servlets, are
archived in WAR files. An application consisting of only Web
components can be deployed as a WAR file directly, as shown here
for simplicity; however, the primary J2EE deployment vehicle is an
EAR file. An EAR file can include a WAR file as well as other types
of archive files for other types of components, such as EJBs. (For the
sample applications here, you also have the option of placing the
WAR file within an EAR file, then deploying the EAR file.) See
"Creating and Deploying the JSP Primer Samples EAR File" on
page 6-14 for an example of an EAR file.
Servlet Primer 5-15

Creating and Deploying the Servlet Primer Samples WAR File
Figure 5–4 Deploy the Web Application

Click the Browse button to select the WAR file to deploy. Then specify the
application name along with a URL mapping for the application. This specified
mapping will become the context path portion of the URLs to run the examples in
this chapter. In preceding sections showing how to run the examples, we assume
that /hello is the URL mapping.
5-16 Oracle Application Server Containers for J2EE User’s Guide

6

JSP Primer

In Oracle Application Server 10g, OC4J includes a JavaServer Pages (JSP) container
that is fully compliant with the JSP 1.2 specification. This chapter covers the basics
of running JSP applications in the OC4J environment. There is also a brief JSP
review, although it is assumed that you are at least somewhat familiar with JSP
technology.

There are a few assumptions before you try running the primers. See "Introduction
to OC4J" on page 1-2.

This chapter includes the following sections:

■ A Brief Overview of JavaServer Pages Technology

■ Running a Simple JSP Page

■ Running a JSP Page That Invokes a JavaBean

■ Running a JSP Page That Uses Custom Tags

■ Creating and Deploying the JSP Primer Samples EAR File

For a complete description of Web application deployment, see "Deploying
Applications" on page 2-14.

For detailed information about the Oracle JSP implementation, refer to the Oracle
Application Server Containers for J2EE Support for JavaServer Pages Developer’s Guide .
JSP Primer 6-1

A Brief Overview of JavaServer Pages Technology
A Brief Overview of JavaServer Pages Technology
Here is a quick JSP overview in the following sections:

■ What Is JavaServer Pages Technology?

■ JSP Translation and Runtime Flow

■ Key JSP Advantages

■ Overview of Oracle Value-Added Features for JSP Pages

What Is JavaServer Pages Technology?
JavaServer Pages, a part of the J2EE platform, is a technology that provides a
convenient way to generate dynamic content in pages that are output by a Web
application. This technology, which is closely coupled with Java servlet technology,
allows you to include Java code snippets and calls to external Java components
within the HTML code, or other markup code such as XML, of your Web pages. JSP
technology works nicely as a front-end for business logic and dynamic functionality
encapsulated in JavaBeans and Enterprise JavaBeans (EJB).

Traditional JSP syntax within HTML or other code is designated by being enclosed
within <%...%> syntax. There are variations on this: <%=...%> to designate
expressions or <%!...%> to designate declarations, for example.

A JSP page is translated into a Java servlet, typically at the time that it is requested
from a client. The JSP translator is triggered by the .jsp file name extension in a
URL. The translated page is then executed, processing HTTP requests and
generating responses similarly to any other servlet. Coding a JSP page is more
convenient than coding the equivalent servlet.

JSP pages are fully interoperable with servlets. A JSP page can include output from
a servlet or forward to a servlet, and a servlet can include output from a JSP page or
forward to a JSP page.

Here is the code for a simple JSP page, welcomeuser.jsp:

Note: The JSP 1.2 specification introduces an XML-compatible JSP
syntax as an alternative to the traditional syntax. This allows you to
produce JSP pages that are syntactically valid XML documents. The
XML-compatible syntax is described in the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide .
6-2 Oracle Application Server Containers for J2EE User’s Guide

A Brief Overview of JavaServer Pages Technology
<HTML>
<HEAD><TITLE>The Welcome User JSP</TITLE></HEAD>
<BODY>
<% String user=request.getParameter("user"); %>
<H3>Welcome <%= (user==null) ? "" : user %>!</H3>
<P> Today is <%= new java.util.Date() %>. Have a fabulous day! :-)</P>
Enter name:
<FORM METHOD=get>
<INPUT TYPE="text" NAME="user" SIZE=15>
<INPUT TYPE="submit" VALUE="Submit name">
</FORM>
</BODY>
</HTML>

This JSP page will produce something like the following output if the user inputs
the name "Amy":

Welcome Amy!

Today is Wed Jun 21 13:42:23 PDT 2000. Have a fabulous day! :-)

JSP Translation and Runtime Flow
Figure 6–1 shows the flow of execution when a user runs a JSP page, specifying its
URL in the browser. Assume that Hello.jsp accesses a database.

Because of the .jsp file name extension, the following steps occur automatically:

1. The JSP translator is invoked, translating Hello.jsp and producing the file
Hello.java.

2. The Java compiler is invoked, creating Hello.class.

3. Hello.class is executed as a servlet, using the JSP runtime library.

4. The Hello class accesses the database through JDBC (or perhaps SQLJ), as
appropriate, and sends its output to the browser.
JSP Primer 6-3

A Brief Overview of JavaServer Pages Technology
Figure 6–1 JSP Translation and Runtime Flow

Key JSP Advantages
For most situations, there are at least two general advantages to using JSP pages
instead of servlets:

■ Coding convenience: JSP syntax provides a shortcut for coding dynamic Web
pages, typically requiring much less code than equivalent servlet code. The JSP
translator also automatically handles some servlet coding overhead for you,
such as implementing standard JSP or servlet interfaces and creating HTTP
sessions. JSP tag libraries, typically supplied with J2EE products such as OC4J,
provide even further programming convenience.

■ Separation of static content and dynamic content: Realistically, a JSP developer
will need some knowledge of Java. However, JSP technology attempts to allow
some separation between the HTML code development for static content, and
the Java code development for business logic and dynamic content. This makes
JSP programming accessible and attractive to Web designers, as it simplifies the
division of maintenance responsibilities between presentation and layout
specialists who might be more proficient in HTML than in Java, and code
specialists who might be more proficient in Java than in HTML. In a typical JSP
page, most Java code and business logic will not be within snippets embedded

How is a JSP Served?

http://host:port/Hello.jsp

JSP
Translator

Java
Compiler

OC4J Servlet
Runner

Oracle

JDBC

JSP
Source

Hello.jsp

Generated
file

Hello.java

Servlet class
Hello

JSP runtime

Output
of Hello

HTML/XML

O
_1

01
7

6-4 Oracle Application Server Containers for J2EE User’s Guide

A Brief Overview of JavaServer Pages Technology
in the JSP page. Instead, business logic will be in JavaBeans or Enterprise
JavaBeans that are invoked from the JSP page.

Overview of Oracle Value-Added Features for JSP Pages
The OC4J JSP implementation provides the following extended functionality
through custom tag libraries and custom JavaBeans and classes that are generally
portable to other JSP environments. These features are documented in the Oracle
Application Server Containers for J2EE JSP Tag Libraries and Utilities Reference.

■ Support for the JavaServer Pages Standard Tag Library (JSTL)

■ Extended types implemented as JavaBeans that can have a specified scope

■ JspScopeListener for event-handling

■ Integration with XML and XSL

■ Data-access tag library (sometimes referred to as "SQL tags") and JavaBeans

■ The JSP Markup Language (JML) custom tag library, which reduces the level of
Java proficiency required for JSP development

■ Oracle Personalization tag library

■ OracleAS Web Services tag library

■ Tag libraries and JavaBeans for uploading files, downloading files, and sending
e-mail from within an application

■ EJB tag library

■ Additional utility tags (such as for displaying dates and currency amounts
appropriately for a specified locale)

In addition, the OC4J JSP container offers integration with caching technologies,
documented in the Oracle Application Server Containers for J2EE JSP Tag Libraries and
Utilities Reference:

■ JESI tags for Edge Side Includes

■ Web Object Cache tags and API

The OC4J JSP container also supports Oracle-specific programming extensions, such
as for globalization support. These are documented in the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide:
JSP Primer 6-5

Running a Simple JSP Page
Running a Simple JSP Page
This section shows you how to run the elementary JSP example from earlier in this
chapter.

Create and Deploy welcomeuser.jsp
Copy or type the sample code from "What Is JavaServer Pages Technology?" on
page 6-2 into a file, and save it as welcomeuser.jsp.

Archive welcomeuser.jsp into the WAR and EAR files for the JSP primer
samples, and deploy the EAR file using the Oracle Enterprise Manager deployment
wizard. This is all described in "Creating and Deploying the JSP Primer Samples
EAR File" on page 6-14.

Run welcomeuser.jsp
Assuming you specify a URL mapping of /jspprimer, as described in "Deploy the
EAR File" on page 6-16, you can run welcomeuser.jsp with a URL such as the
following:

http://host:port/jspprimer/welcomeuser.jsp

This uses host to represent the name of the system where Oracle Application
Server and the application are installed.

If the JSP were within a subdirectory below the top level of the WAR file, then this
directory must be included in the URL. For example, if welcomeuser.jsp is
located in the mydir directory in the WAR file, you would invoke it as follows:

http://host:port/jspprimer/mydir/welcomeuser.jsp

When you first run the page, you will see something like the following output:
6-6 Oracle Application Server Containers for J2EE User’s Guide

Running a JSP Page That Invokes a JavaBean
Submitting a name, such as "Amy", rewrites the URL to indicate the input:

http://host:port/jspprimer/welcomeuser.jsp?user=Amy

and updates the page:

Running a JSP Page That Invokes a JavaBean
As mentioned earlier, JSP technology works nicely as a front-end for business logic
and dynamic functionality encapsulated in JavaBeans. This section contains the
code for a JavaBean and a JSP page that calls it.

The steps involved are covered in the following sections:

■ Create the JSP: usebean.jsp

■ Create the JavaBean: NameBean.java

■ Deploy usebean.jsp and Namebean.java

■ Run usebean.jsp
JSP Primer 6-7

Running a JSP Page That Invokes a JavaBean
Create the JSP: usebean.jsp
This section lists the source for a JSP page that uses the standard JSP jsp:useBean
tag to invoke a JavaBean. To run the code, you can copy or type it into a file called
usebean.jsp. The numbers in JSP comment statements along the right edge
correspond to the notes following the code.

<%@ page import="beans.NameBean" %> <%--1--%>

<jsp:useBean id="pageBean" class="beans.NameBean" scope="page" /><%--2--%>
<jsp:setProperty name="pageBean" property="*" /> <%--3--%>

<HTML>
<HEAD> <TITLE> The Use Bean JSP </TITLE> </HEAD>
<BODY BGCOLOR=white>

<H3> Welcome to the Use Bean JSP </H3>

<% if (pageBean.getNewName().equals("")) { %>
 I don't know you.
<% } else { %>
 Hello <%= pageBean.getNewName() %> !
<% } %>

<P>May we have your name?
<FORM METHOD=get>
<INPUT TYPE=TEXT name=newName size = 20>
<INPUT TYPE=SUBMIT VALUE="Submit name">
</FORM>
</BODY>
</HTML>

Code Notes

1. This is a JSP construct called a page directive. In this case, it imports the
JavaBean class. (There are other uses for page directives, and other kinds of
directives.)

2. The standard jsp:useBean tag instantiates the JavaBean, specifying the
package name, class name, and instance name. A scope setting of page
specifies that the JavaBean instance is accessible only from the JSP page where it
was created. Other possible scopes are request, session, and application.

3. The standard jsp:setProperty tag sets the values of one or more properties
for the specified bean instance. A property setting of * results in iteration over
the HTTP request parameters, matching bean property names with request
6-8 Oracle Application Server Containers for J2EE User’s Guide

Running a JSP Page That Invokes a JavaBean
parameter names, and setting bean property values according to the
corresponding request parameter values. In this case, the only bean property is
newName. This corresponds to the newName HTTP request parameter specified
in the HTML forms code in the page. (For use with the jsp:useBean tag, in
addition to the jsp:setProperty tag, there is a jsp:getProperty tag to
retrieve parameter values.)

For general information about any of these topics, see the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Create the JavaBean: NameBean.java
Here is the code for the JavaBean class, NameBean. The package name specified
here must be consistent with the page directive and the jsp:useBean tag of the
JSP page. To run the JSP page, you can copy or type this code into a file called
NameBean.java and then compile it. The resulting NameBean.class file must be
placed in a beans subdirectory under the WEB-INF/classes directory for your
application, according to the beans package name.

package beans;

public class NameBean {

 String newName="";

 public void NameBean() { }

 public String getNewName() {
 return newName;
 }
 public void setNewName(String newName) {
 this.newName = newName;
 }
}

Deploy usebean.jsp and Namebean.java
Archive usebean.jsp and Namebean.class into the WAR and EAR files for the
JSP primer samples, and deploy the EAR file using the Oracle Enterprise Manager
deployment wizard. This is all described in "Creating and Deploying the JSP Primer
Samples EAR File" on page 6-14.
JSP Primer 6-9

Running a JSP Page That Uses Custom Tags
Run usebean.jsp
Assuming you specify a URL mapping of /jspprimer, as described in "Deploy the
EAR File" on page 6-16, you can run usebean.jsp with a URL such as the
following:

http://host:port/jspprimer/usebean.jsp

This example, as before, uses host as the name of the system where Oracle
Application Server and the application are installed.

When you run this page, you will initially see the following output:

Once you submit a name, such as "Ike", the page is updated (but still prompts you
in case you want to enter another name):

Running a JSP Page That Uses Custom Tags
The Sun Microsystems JavaServer Pages specification includes standard tags to use
in JSP pages to perform various tasks. An example is the jsp:useBean tag
6-10 Oracle Application Server Containers for J2EE User’s Guide

Running a JSP Page That Uses Custom Tags
employed in "Running a JSP Page That Invokes a JavaBean" on page 6-7. The JSP
specification also outlines a standard framework that allows vendors to offer their
own custom tag libraries in a portable way.

Each custom tag library has a tag library descriptor (TLD) file that specifies the tags,
tag attributes, and other properties of the library. Each tag requires support classes,
at least a tag handler class with the code to execute tag semantics. (Tag handler
classes implement standard tag interfaces, according to the JSP specification.) These
classes must be available to your Web application.

OC4J supplies portable tag libraries with functionality in several areas. This section
shows an example that uses tags from the Oracle data-access (SQL) tag library to
access and query a database and output the results to the browser. A standard JSP
taglib directive is used to access the TLD file and to specify a tag prefix to use for
the tags of this library.

Here are the steps in using a JSP tag library:

The steps involved are covered in the following sections:

■ Create the JSP Page: sqltagquery.jsp

■ Files for Tag Library Support

■ Deploy sqltagquery.jsp

■ Run sqltagquery.jsp

For information about the standard tag library framework, including TLD files, tag
handler classes, and the taglib directive, refer to the Oracle Application Server
Containers for J2EE Support for JavaServer Pages Developer’s Guide.

Create the JSP Page: sqltagquery.jsp
This section provides the source for a JSP page that uses data-access tags, supplied
with OC4J, to open a database connection, run a simple query, and output the
results as an HTML table. To run the page, you can copy or type the code into a file
called sqltagquery.jsp. The numbers in JSP comment statements along the right
edge correspond to the notes following the code.

<%@ taglib uri="http://xmlns.oracle.com/j2ee/jsp/tld/ojsp/sqltaglib.tld"
 prefix="sql" %> <%--1--%>
<HTML>
 <HEAD>
 <TITLE>The SQL Tag Query JSP</TITLE>
 </HEAD>
 <BODY BGCOLOR="#FFFFFF">
JSP Primer 6-11

Running a JSP Page That Uses Custom Tags
 <HR>
 <sql:dbOpen dataSource= "jdbc/OracleDS" > <%--2--%>
 <sql:dbQuery> <%--3--%>
 select * from EMP
 </sql:dbQuery>
 </sql:dbOpen> <%--4--%>
 <HR>
 </BODY>
</HTML>

Code Notes

1. The taglib directive uses a JSP 1.2-style uri value, which is used as a
keyword instead of actually indicating a physical location. (See the Oracle
Application Server Containers for J2EE Support for JavaServer Pages Developer’s
Guide for information about such URI functionality.) The taglib directive also
specifies the tag prefix, "sql", to use in any tag statements.

2. OracleDS is the JNDI name of a data source that is available by default
through the OC4J data-sources.xml file. Verify that the data source points
to an appropriate database. For introductory information about data sources,
see Chapter 4, "Data Sources Primer".

3. By default, the dbQuery tag uses the database connection established by the
surrounding dbOpen tag. Also by default, the dbQuery tag outputs its results
as an HTML table. Other choices are JDBC result set, XML string, or XML DOM
object.

4. Because no explicit connection ID is specified in the dbOpen start-tag, the
database connection is automatically closed when the dbOpen end-tag is
reached.

For more information about the data-access tag library that is supplied with OC4J,
refer to the Oracle Application Server Containers for J2EE JSP Tag Libraries and Utilities
Reference.

Files for Tag Library Support
JSP applications require some JAR files that are installed with OC4J:

■ ojsp.jar (JSP container)

■ ojsputil.jar (OC4J tag libraries and utilities)

■ xmlparserv2.jar (XML parser)
6-12 Oracle Application Server Containers for J2EE User’s Guide

Running a JSP Page That Uses Custom Tags
■ xsu12.jar (XML-SQL utility)

The tag handler class files and TLD files, including the tag handlers and TLD file
(sqltaglib.tld) for this example, are in ojsputil.jar.

Deploy sqltagquery.jsp
Archive sqltagquery.jsp into the WAR and EAR files for the JSP primer
samples, and deploy the EAR file using the Oracle Enterprise Manager deployment
wizard. This is all described in "Creating and Deploying the JSP Primer Samples
EAR File" on page 6-14.

Run sqltagquery.jsp
Assuming you specify a URL mapping of /jspprimer, as described in "Deploy the
EAR File" on page 6-16, you can run sqltagquery.jsp with a URL such as the
following:

http://host:port/jspprimer/sqltagquery.jsp

This page produces output such as the following.

Note: The library ojsputil.jar also gives you access to
data-access JavaBeans and other Java utility classes that come with
OC4J. These classes are described in the Oracle Application Server
Containers for J2EE JSP Tag Libraries and Utilities Reference.
JSP Primer 6-13

Creating and Deploying the JSP Primer Samples EAR File
Creating and Deploying the JSP Primer Samples EAR File
Three examples have been covered in this chapter: a simple JSP page, a page that
calls a JavaBean, and a page that uses a tag library. For simplicity, we suggest that
you package and deploy them in a single WAR file within an EAR file. This section

Important: The Oracle JDBC driver classes are supplied with
Oracle Application Server, but you must ensure that they are
compatible with your JDK and your database version. The
classes12.zip or classes12.jar library is for JDK 1.2.x or
higher. Also, the driver release number must be compatible with
your database release number.
6-14 Oracle Application Server Containers for J2EE User’s Guide

Creating and Deploying the JSP Primer Samples EAR File
shows all the required files for the examples and how you can package and deploy
them.

EAR and WAR File Structure
Here is the structure of the EAR file for the examples in this chapter:

jsp-primer-samples.war
META-INF/
 application.xml
 manifest.mf

And here is the structure of the nested WAR file:

sqltagquery.jsp
usebean.jsp
welcomeuser.jsp
WEB-INF/
 web.xml
 classes/
 beans/
 NameBean.class

If you use an IDE for your development, the IDE can usually create the WAR and
EAR files for you. Otherwise, you can create them manually using the Java JAR
utility or the ant utility.

However the standard application.xml file is created (either manually or
through an IDE), it must have a <web-uri> entry that indicates the WAR file name,
and a <context-root> entry that indicates the context path portion of the URL.
The DTD for the standard application.xml file is according to the J2EE
specification. Here is a sample file:

<?xml version="1.0" ?>
<!DOCTYPE application (View Source for full doctype...)>

Note: Web components, such as JSP pages and servlets, are
archived in WAR files. An application consisting of only Web
components can be deployed as a WAR file directly; however, the
primary J2EE deployment vehicle is an EAR file. An EAR file can
include a WAR file as well as other types of archive files for other
types of components, such as EJBs. This chapter uses an EAR file.
See "Creating and Deploying the Servlet Primer Samples WAR File"
on page 5-14 for an example using only a WAR file.
JSP Primer 6-15

Creating and Deploying the JSP Primer Samples EAR File
<application>
 <display-name>OracleAS JAAS Provider Application: SimpleServlet</display-name>
 <module>
 <web>
 <web-uri>callerInfo-web.war</web-uri>
 <context-root>/callerInfo</context-root>
 </web>
 </module>
</application>

Deploy the EAR File
Use Oracle Enterprise Manager, the Application Server Control, to deploy the
examples. Select the Applications page. Click the Deploy EAR file button to start
the deployment wizard.

"Deploying Applications" on page 2-14 discusses the steps involved in deploying an
application to OC4J. Only three of these steps are required to deploy the examples
in this chapter:

1. Specify the application name.

In the Deploy Application: Select Application Page, specify the J2EE application
and the application name. You can use the same name in both places. In this
example, we use jsp-primer-samples (here and in the application.xml
file).

See "Select Application" on page 2-15 for information.

2. Specify the URL mapping for the application.

In the Deploy Application: URL Mapping for Web Modules Page, the servlet
context path for your application must be specified. Typically, Oracle Enterprise
Manager can pick this up from the <context-root> element of the
application.xml file. For this discussion, assume /jspprimer is the
context path. This will be part of the URL you would use to invoke the
application.

See "Provide The URL Mappings For All Web Modules" on page 2-17 for
information.

3. Deploy the application.

Note: There are no relevant or required web.xml entries for the
examples in this chapter.
6-16 Oracle Application Server Containers for J2EE User’s Guide

Creating and Deploying the JSP Primer Samples EAR File
In the Deploy Application: Summary Page, you can look over the application
summary and then click the Deploy button.

See "Deployment Review" on page 2-22 for information.
JSP Primer 6-17

Creating and Deploying the JSP Primer Samples EAR File
6-18 Oracle Application Server Containers for J2EE User’s Guide

EJB P
7

EJB Primer

After you have installed Oracle Application Server Containers for J2EE (OC4J) and
configured the base server and default Web site, you can start developing J2EE
applications. This chapter assumes that you have a working familiarity with simple
J2EE concepts and a basic understanding for EJB development.

The following sections describe how to develop and deploy EJB applications with
OC4J:

■ Develop EJBs—Developing and testing an EJB module within the standard J2EE
specification.

■ Prepare the EJB Application for Assembly—Before deploying, you must modify
an XML file that acts as a standard J2EE application descriptor file for the
enterprise application.

■ Deploy the Enterprise Application to OC4J—Archive the enterprise Java
application into an Enterprise ARchive (EAR) file and deploy it to OC4J.

This chapter uses a stateless session bean example to show you each development
phase and deployment steps for an EJB. As an introduction to EJBs, a simple EJB
with a basic OC4J-specific configuration is used. You can download the stateless
session bean example from the OC4J sample code page at
http://otn.oracle.com/tech/java/oc4j/demos on the OTN Web site.

For more information on EJBs in OC4J, see the Oracle Application Server Containers
for J2EE Enterprise JavaBeans Developer’s Guide.
rimer 7-1

Develop EJBs
Develop EJBs
You develop EJB components for the OC4J environment in the same way as in any
other standard J2EE environment. Here are the steps to develop EJBs:

1. Create the Development Directory—Create a development directory for the
enterprise application (as Figure 7–1 shows).

2. Implement the EJB—Develop your EJB with its home interfaces, component
interfaces, and bean implementation.

3. Access the EJB—Develop the client to access the bean through the remote or
local interface.

4. Create the Deployment Descriptor—Create the standard J2EE EJB deployment
descriptor for all beans in your EJB application.

5. Archive the EJB Application—Archive your EJB files into a JAR file.

Create the Development Directory
Although you can develop your application in any manner, we encourage you to
use consistent naming for locating your application easily. One method would be to
implement your enterprise Java application under a single parent directory
structure, separating each module of the application into its own subdirectory.

Our hello example was developed using the directory structure mentioned in
"Creating the Development Directory" on page 2-6. Notice in Figure 7–1 that the EJB
and Web modules exist under the hello application parent directory and are
developed separately in their own directory.
7-2 Oracle Application Server Containers for J2EE User’s Guide

Develop EJBs
Figure 7–1 Hello Directory Structure

Note: For EJB modules, the top of the module (ejb_module)
represents the start of a search path for classes. As a result, classes
belonging to packages are expected to be located in a nested
directory structure beneath this point. For example, a reference to a
package class ’myapp.Hello.class’ is expected to be located in
"...hello/ejb_module/myapp/Hello.class".

.../hello/

META-INF/

<ejb_module>
EJB classes (Hello.class, ...)
META-INF/

ejb-jar.xml

<web_module>/
HTML files
JSP pages
WEB-INF/

web.xml

classes/
Servlet classes

lib/
dependent libraries

/

 (HelloServlet.class)

orion-application.xml
application.xml

orion-ejb-jar.xml

orion-web.xml
EJB Primer 7-3

Develop EJBs
Implement the EJB
When you implement a session or entity EJB, create the following:

1. The home interfaces for the bean. The home interface defines the create
method for your bean. If the bean is an entity bean, it also defines the finder
method(s) for that bean.

a. The remote home interface extends javax.ejb.EJBHome.

b. The local home interface extends javax.ejb.EJBLocalHome.

2. The component interfaces for the bean.

a. The remote interface declares the methods that a client can invoke remotely.
It extends javax.ejb.EJBObject.

b. The local interface declares the methods that a collocated bean can invoke
locally. It extends javax.ejb.EJBLocalObject.

3. The bean implementation includes the following:

a. The implementation of the business methods that are declared in the
component interfaces.

b. The container callback methods that are inherited from either the
javax.ejb.SessionBean or javax.ejb.EntityBean interfaces.

c. The ejb* methods that match the home interface create methods:

* For stateless session beans, provide an ejbCreate method with no
parameters.

* For stateful session beans, provide an ejbCreate method with
parameters matching those of the create method as defined in the home
interfaces.

* For entity beans, provide ejbCreate and ejbPostCreate methods
with parameters matching those of the create method as defined in
the home interfaces.

Note: Message-driven beans have similar, but not the same,
requirements as listed below. See the Oracle Application Server
Containers for J2EE Enterprise JavaBeans Developer’s Guide for more
information.
7-4 Oracle Application Server Containers for J2EE User’s Guide

Develop EJBs
Creating the Home Interfaces
The home interfaces (remote and local) are used to create the bean instance; thus,
they define the create method for your bean. Each type of EJB can define the
create method in the following ways:

For each create method, a corresponding ejbCreate method is defined in the
bean implementation.

Remote Invocation Any remote client invokes the EJB through its remote interface.
The client invokes the create method that is declared within the remote home
interface. The container passes the client call to the ejbCreate method—with the
appropriate parameter signature—within the bean implementation. You can use the
parameter arguments to initialize the state of the new EJB object.

1. The remote home interface must extend the javax.ejb.EJBHome interface.

2. All create methods must throw the following exceptions:

■ javax.ejb.CreateException

■ javax.ejb.EJBException or another RuntimeException

Example 7–1 Remote Home Interface for Session Bean

The following code sample illustrates a remote home interface for a session bean
called HelloHome.

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface HelloHome extends EJBHome

EJB Type Create Parameters

Stateless Session Bean Can have only a single create method, with no parameters.

Stateful Session Bean Can have one or more create methods, each with its own
defined parameters.

Entity Bean Can have zero or more create methods, each with its own
defined parameters. All entity beans must define one or more
finder methods, where at least one is a findByPrimaryKey
method.
EJB Primer 7-5

Develop EJBs
{
 public Hello create() throws CreateException, RemoteException;
}

Local Invocation An EJB can be called locally from a client that exists in the same
container. Thus, a collocated bean, JSP, or servlet invokes the create method that is
declared within the local home interface. The container passes the client call to the
ejbCreate method—with the appropriate parameter signature—within the bean
implementation. You can use the parameter arguments to initialize the state of the
new EJB object.

1. The local home interface must extend the javax.ejb.EJBLocalHome
interface.

2. All create methods may throw the following exceptions:

■ javax.ejb.CreateException

■ javax.ejb.EJBException or another RuntimeException

Example 7–2 Local Home Interface for Session Bean

The following code sample shows a local home interface for a stateless session bean
called HelloLocalHome.

package hello;

import javax.ejb.*;

public interface HelloLocalHome extends EJBLocalHome
{
 public HelloLocal create() throws CreateException, EJBException;
}

Creating the Component Interfaces
The component interfaces define the business methods of the bean that a client can
invoke.

Creating the Remote Interface The remote interface defines the business methods that a
remote client can invoke. Here are the requirements for developing the remote
interface:
7-6 Oracle Application Server Containers for J2EE User’s Guide

Develop EJBs
1. The remote interface of the bean must extend the javax.ejb.EJBObject
interface, and its methods must throw the java.rmi.RemoteException
exception.

2. You must declare the remote interface and its methods as public for remote
clients.

3. The remote interface, all its method parameters, and return types must be
serializable. In general, any object that is passed between the client and the EJB
must be serializable, because RMI marshals and unmarshals the object on both
ends.

4. Any exception can be thrown to the client, as long as it is serializable. Runtime
exceptions, including EJBException and RemoteException, are transferred
back to the client as remote runtime exceptions.

Example 7–3 Remote Interface Example for Hello Session Bean

The following code sample shows a remote interface called Hello with its defined
methods, each of which will be implemented in the stateless session bean.

package hello;

import javax.ejb.*;
import java.rmi.*;

public interface Hello extends EJBObject
{
 public String sayHello(String myName) throws RemoteException;
}

Creating the Local Interface The local interface defines the business methods of the
bean that a local (collocated) client can invoke.

1. The local interface of the bean must extend the javax.ejb.EJBLocalObject
interface.

2. You declare the local interface and its methods as public.

Example 7–4 Local Interface for Hello Session Bean

The following code sample contains a local interface called HelloLocal with its
defined methods, each of which will be implemented in the stateless session bean.

package hello;
EJB Primer 7-7

Develop EJBs
import javax.ejb.*;

public interface HelloLocal extends EJBLocalObject
{
 public String sayHello(String myName) throws EJBException;
}

Implementing the Bean
The bean contains the business logic for your application. It implements the
following methods:

1. The signature for each of these methods must match the signature in the remote
or local interface, except that the bean does not throw the RemoteException.
Since both the local and the remote interfaces use the bean implementation, the
bean implementation cannot throw the RemoteException.

2. The lifecycle methods are inherited from the SessionBean or EntityBean
interface. These include the ejb<Action> methods, such as ejbActivate,
ejbPassivate, and so on.

3. The ejbCreate methods that correspond to the create method(s) that are
declared in the home interfaces. The container invokes the appropriate
ejbCreate method when the client invokes the corresponding create
method.

4. Any methods that are private to the bean or package used for facilitating the
business logic. This includes private methods that your public methods use for
completing the tasks requested of them.

Example 7–5 Hello Session Bean Implementation

The following code shows the bean implementation for the hello example.

package hello;

import javax.ejb.*;

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.
7-8 Oracle Application Server Containers for J2EE User’s Guide

Develop EJBs
public class HelloBean implements SessionBean
{
 public SessionContext ctx;

 public HelloBean()
 { // constructor
 }

 public void ejbCreate() throws CreateException
 { // when bean is created
 }

 public void ejbActivate()
 { // when bean is activated
 }

 public void ejbPassivate()
 { // when bean is deactivated
 }

 public void ejbRemove()
 { // when bean is removed
 }

 public void setSessionContext(SessionContext ctx)
 { this.ctx = ctx;
 }

 public void unsetSessionContext()
 { this.ctx = null;
 }

 public String sayHello(String myName) throws EJBException
 {
 return ("Hello " + myName);
 }
}

EJB Primer 7-9

Develop EJBs
Access the EJB
All EJB clients perform the following steps to instantiate a bean, invoke its methods,
and destroy the bean:

1. Look up the home interface through a JNDI lookup. Follow JNDI conventions
for retrieving the bean reference, including setting up JNDI properties if the
bean is remote to the client.

2. Narrow the returned object from the JNDI lookup to the home interface, as
follows:

a. When accessing the remote interface, use the
PortableRemoteObject.narrow method to narrow the returned object.

b. When accessing the local interface, cast the returned object with the local
home interface type.

3. Create instances of the bean in the server through the returned object. Invoking
the create method on the home interface causes a new bean to be instantiated
and returns a bean reference.

4. Invoke business methods, which are defined in the component (remote or local)
interface.

5. After you are finished, invoke the remove method. This will either remove the
bean instance or return it to a pool. The container controls how to act on the
remove method.

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.

Note: For entity beans that are already instantiated, you can
retrieve the bean reference through one of its finder methods.
7-10 Oracle Application Server Containers for J2EE User’s Guide

Develop EJBs
Example 7–6 A Servlet Acting as a Local Client

The following example is executed from a servlet that is collocated with the Hello
bean. Thus, the session bean uses the local interface, and the JNDI lookup does not
require JNDI properties.

package hello;

import javax.servlet.http.*;
import javax.servlet.*;
import javax.ejb.*;
import javax.naming.*;
import java.io.IOException;

public class HelloServlet extends HttpServlet

Important: In order to access EJBs, the client-side must download
oc4j_client.zip file from http://otn.oracle.com/
software/products/ias/devuse.html. Unzip the JAR into a
directory that is in your CLASSPATH. This JAR contains the classes
necessary for client interaction. If you download this JAR into a
browser, you must grant certain permissions. See the "Granting
Permissions" section of the Security chapter in the Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide for a
list of these permissions.

If the client is not on an Oracle Application Server installation, you
must also download the optic.jar file, which is located in
ORACLE_HOME/opmn/lib on your Oracle Application Server
installation. This JAR file must be in the CLASSPATH.

Note: The JNDI name is specified in the <ejb-local-ref>
element in the session bean EJB deployment descriptor as follows:

 <ejb-local-ref>
 <ejb-ref-name>ejb/HelloBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>hello.HelloLocalHome</local-home>
 <local>hello.HelloLocal</local>
</ejb-local-ref>
EJB Primer 7-11

Develop EJBs
{
 HelloLocalHome helloHome;
 HelloLocal hello;

 public void init() throws ServletException
 {
 try {
 // 1. Retreive the Home Interface using a JNDI Lookup
 // Retrieve the initial context for JNDI.
 // No properties needed when local
 Context context = new InitialContext();

 // Retrieve the home interface using a JNDI lookup using
 // the java:comp/env bean environment variable
 // specified in web.xml
 helloHome = (HelloLocalHome)
 context.lookup("java:comp/env/ejb/HelloBean");

 //2. Narrow the returned object to be an HelloHome object.
 // Since the client is local, cast it to the correct object type.
 //3. Create the local Hello bean instance, return the reference
 hello = (HelloLocal)helloHome.create();

 } catch(NamingException e) {
 throw new ServletException("Error looking up home", e);
 } catch(CreateException e) {
 throw new ServletException("Error creating local hello bean", e);
 }
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 try
 {
 out.println("<html>");
 out.println("<body>");
 //4. Invoke a business method on the local interface reference.
7-12 Oracle Application Server Containers for J2EE User’s Guide

Develop EJBs
 out.println(hello.sayHello("James Earl"));
 out.println("</body>");
 out.println("</html>");
 } catch(EJBException e) {
 out.println("EJBException error: " + e.getMessage());
 } catch(IOException e) {
 out.println("IOException error: " + e.getMessage());
 } finally {
 out.close();
 }
 }
}

Example 7–7 A Java Client as a Remote Client

The following example is executed from a pure Java client that is a remote client.
Any remote client must set up JNDI properties before retrieving the object, using a
JNDI lookup.

The jndi.properties file for this client is as follows:

java.naming.factory.initial=
 com.evermind.server.ApplicationClientInitialContextFactory
java.naming.provider.url=opmn:ormi://opmnhost:oc4j_inst1/helloworld
java.naming.security.principal=admin
java.naming.security.credentials=welcome

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.

Note: The JNDI name is specified in the <ejb-ref> element in
the client’s application-client.xml file—as follows:

 <ejb-ref>
 <ejb-ref-name>ejb/HelloBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>hello.HelloHome</home>
 <remote>hello.Hello</remote>
 </ejb-ref>
EJB Primer 7-13

Develop EJBs
The pure Java client that invokes Hello remotely is as follows:

package hello;

import javax.ejb.*;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;
import java.io.*;
import java.util.*;
import java.rmi.RemoteException;

/*
 * A simple client for accessing an EJB.
 */

public class HelloClient
{
 public static void main(String[] args)
 {
 System.out.println("client started...");
 try {
 // Initial context properties are set in the jndi.properties file
 //1. Retrieve remote interface using a JNDI lookup*/
 Context context = new InitialContext();

 // Lookup the HelloHome object. The reference is retrieved from the
 // application-local context (java:comp/env). The variable is
 // specified in the application-client.xml).
 Object homeObject = context.lookup("java:comp/env/Helloworld");

 //2. Narrow the reference to HelloHome. Since this is a remote
 // object, use the PortableRemoteObject.narrow method.
 HelloHome home = (HelloHome) PortableRemoteObject.narrow
 (homeObject, HelloHome.class);

 //3. Create the remote object and narrow the reference to Hello.
 Hello remote =
 (Hello) PortableRemoteObject.narrow(home.create(), Hello.class);

 //4. Invoke a business method on the remote interface reference.
 System.out.println(remote.sayHello("James Earl"));
7-14 Oracle Application Server Containers for J2EE User’s Guide

Develop EJBs
 } catch(NamingException e) {
 System.err.println("NamingException: " + e.getMessage());
 } catch(RemoteException e) {
 System.err.println("RemoteException: " + e.getMessage());
 } catch(CreateException e) {
 System.err.println("FinderException: " + e.getMessage());
 }
 }
}

Create the Deployment Descriptor
After implementing and compiling your classes, you must create the standard J2EE
EJB deployment descriptor for all beans in the module. The XML deployment
descriptor (defined in the ejb-jar.xml file) describes the EJB module of the
application. It describes the types of beans, their names, and attributes. The
structure for this file is mandated in the DTD file, which is provided at "
http://java.sun.com/dtd/ejb-jar_2_0.dtd".

Any EJB container services that you want to configure is also designated in the
deployment descriptor. For information about data sources and JTA, see the Oracle
Application Server Containers for J2EE Services Guide. For information about security,
see the Oracle Application Server Containers for J2EE Security Guide.

After creation, place the deployment descriptors for the EJB application in the
META-INF directory that is located in the same directory as the EJB classes. See
Figure 7–1 for more information.

The following example shows the sections that are necessary for the Hello
example, which implements both a remote and a local interface.

Example 7–8 XML Deployment Descriptor for Hello Bean

The following is the deployment descriptor for a version of the hello example that
uses a stateless session bean. This example defines both the local and remote
interfaces. You do not have to define both interface types; you may define only one
of them.

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.
EJB Primer 7-15

Develop EJBs
<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd">

<ejb-jar>
 <display-name>hello</display-name>
 <description>
 An EJB app containing only one Stateless Session Bean
 </description>
 <enterprise-beans>
 <session>
 <description>no description</description>
 <display-name>HelloBean</display-name>
 <ejb-name>HelloBean</ejb-name>
 <home>hello.HelloHome</home>
 <remote>hello.Hello</remote>
 <local-home>hello.HelloLocalHome</local-home>
 <local>hello.HelloLocal</local>
 <ejb-class>hello.HelloBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>HelloBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Supports</trans-attribute>
 </container-transaction>
 <security-role>
 <role-name>users</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>
7-16 Oracle Application Server Containers for J2EE User’s Guide

Prepare the EJB Application for Assembly
Archive the EJB Application
After you have finalized your implementation and created the deployment
descriptors, archive your EJB application into a JAR file. The JAR file should include
all EJB application files and the deployment descriptor.

For example, to archive your compiled EJB class files and XML files for the Hello
example into a JAR file, perform the following in the ../hello/ejb_module
directory:

% jar cvf helloworld-ejb.jar .

This archives all files contained within the ejb_module subdirectory within the
JAR file.

Prepare the EJB Application for Assembly
To prepare the application for deployment, you do the following:

1. Modify the application.xml file with the modules of the enterprise Java
application.

2. Archive all elements of the application into an EAR file.

These steps are described in the following sections:

■ Modify the Application.xml File

■ Create the EAR File

Note: You can download this example on OTN from the OC4J
sample code page at
http://otn.oracle.com/tech/java/oc4j/demos.

Note: If you have included a Web application as part of this
enterprise Java application, follow the instructions for building the
Web application in the Oracle Application Server Containers for J2EE
User’s Guide.
EJB Primer 7-17

Prepare the EJB Application for Assembly
Modify the Application.xml File
The application.xml file acts as the standard J2EE application descriptor file for
the application and contains a list of the modules that are included within your
enterprise application. You use each <module> element defined in the
application.xml file to designate what comprises your enterprise application.
Each module describes one of three things: EJB JAR, Web WAR, or any client files.
Respectively, designate the <ejb>, <web>, and <java> elements in separate
<module> elements.

■ The <ejb> element specifies the EJB JAR filename.

■ The <web> element specifies the Web WAR filename in the <web-uri>
element, and its context in the <context> element.

■ The <java> element specifies the client JAR filename, if any.

As Figure 7–2 shows, the application.xml file is located under a META-INF
directory under the parent directory for the application. The JAR, WAR, and client
JAR files should be contained within this directory. Because of this proximity, the
application.xml file refers to the JAR and WAR files only by name and relative
path—not by full directory path. If these files were located in subdirectories under
the parent directory, then these subdirectories must be specified in addition to the
filename.

Figure 7–2 Archive Directory Format

For example, the following example modifies the <ejb>, <web>, and <java>
module elements within application.xml for the Hello EJB application that
also contains a servlet that interacts with the EJB.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.2//EN" "http://java.sun.com/j2ee/dtds/application_1_
2.dtd">

hello/

META-INF/
application.xml

helloworld-ejb.jar

helloworld-web.war

helloworld-client.jar
7-18 Oracle Application Server Containers for J2EE User’s Guide

Deploy the Enterprise Application to OC4J
<application>
 <display-name>helloworld j2ee application</display-name>
 <description>
 A sample J2EE application that uses a Helloworld Session Bean
 on the server and calls from java/servlet/JSP clients.
 </description>
 <module>
 <ejb>helloworld-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>helloworld-web.war</web-uri>
 <context-root>/helloworld</context-root>
 </web>
 </module>
 <module>
 <java>helloworld-client.jar</java>
 </module>
</application>

Create the EAR File
Create the EAR file that contains the JAR, WAR, and XML files for the application.
Note that the application.xml file serves as the EAR application descriptor file.

To create the helloworld.ear file, execute the following in the hello directory
contained in Figure 7–2:

% jar cvf helloworld.ear .

This step archives the application.xml, the helloworld-ejb.jar, the
helloworld-web.war, and the helloworld-client.jar files into the
helloworld.ear file.

Deploy the Enterprise Application to OC4J
After archiving your application into an EAR file, deploy the application to OC4J.
See "Deploying Applications" on page 2-14 for information on how to deploy your
application.
EJB Primer 7-19

Deploy the Enterprise Application to OC4J
7-20 Oracle Application Server Containers for J2EE User’s Guide

OC4J Clus
8

OC4J Clustering

This chapter discusses OC4J clustering, and provides instructions on how to
manage OC4J processes and applications within a cluster.

It contains the following topics:

■ The OC4J Instance in a Cluster

■ Instance-Specific Parameters

■ OC4J Clustering Examples

■ OC4J Cluster Configuration

The full picture of clustering within Oracle Application Server is discussed in the
Oracle Application Server 10g High Availability Guide.
tering 8-1

The OC4J Instance in a Cluster
The OC4J Instance in a Cluster
The OC4J instance is the entity to which J2EE applications are deployed and
configured. It defines how many OC4J processes exist within the application server
and the configuration for these OC4J processes. The OC4J process is what executes
the J2EE applications for the OC4J instance.

The OC4J instance has the following features:

■ The configuration of the OC4J instance is valid for one or more OC4J executable
processes. This way, you can duplicate the configuration for multiple OC4J
processes by managing these processes in the OC4J instance construct. When
you modify the cluster-wide configuration within the OC4J instance, the
modifications are valid for all OC4J processes.

■ Each OC4J instance can be configured with one or more OC4J processes.

■ When you deploy an application to an OC4J instance, the OC4J instance
deploys the application to all OC4J processes defined in the OC4J instance. The
OC4J instance is also responsible for replicating the state of its applications.

■ The number of OC4J processes is specific to each OC4J instance. This must be
manually configured for each application server instance in the cluster. The
OC4J process configuration provides flexibility to tune according to the specific
hardware capabilities of the host. By default, each OC4J instance is instantiated
with a single OC4J process.

Within the application sever instance, you can configure multiple OC4J instances,
each with its own number of OC4J processes. The advantage for this is for
configuration management and application deployment for separate OC4J
processes in your cluster.

Figure 8–1 demonstrates the home default OC4J instance. In the context of a cluster,
the OC4J instance configuration is part of the cluster-wide configuration. Thus, the
home instance, configured on the first application instance, is replicated on all other
application server instances.

The number of processes in each home instance is an instance-specific parameter, so
you must configure the home instance separately on each application server
instance for the number of OC4J processes that exist on each application server
instance. Figure 8–1 shows that the home instance on application server instance 1
contains two OC4J processes; the home instance on application server instance 2
contains only one OC4J process. Each OC4J instance defaults to having one OC4J
process.
8-2 Oracle Application Server Containers for J2EE User’s Guide

The OC4J Instance in a Cluster
Figure 8–1 OC4J Processes in a Cluster

The OC4J Process in a Cluster
The OC4J process is the JVM process that executes J2EE applications. Each OC4J
process is contained in an OC4J instance and inherits its configuration from the
OC4J instance. All applications deployed to an OC4J instance are deployed to all
OC4J processes in the OC4J instance.

You can define one or more OC4J processes within an OC4J instance, so that J2EE
requests can be load balanced and have failover capabilities.

The configuration for the number of OC4J processes is instance-specific. Thus, you
must configure each OC4J instance in each application server instance with the
number of OC4J processes you want to start up for that OC4J instance. The default
is one OC4J process.

Each host that you install the application server instances on has different
capabilities. To maximize the hardware capabilities, configure the number of OC4J
processes in each OC4J instance that will use these capabilities properly. For
example, you can configure a single OC4J process on host A and five OC4J
processes on host B.

When you define multiple OC4J processes, you enable the following:

Cluster

Application Server Instance 1

Oracle HTTP Server

OC4J Instance

O
_1

02
5

Application Server Instance 2

Oracle HTTP Server

OC4J Instance

OC4J
Process

OC4J
Process

OC4J
Process
OC4J Clustering 8-3

The OC4J Instance in a Cluster
■ You can serve multiple users with multiple OC4J processes.

■ You can provide failover if the state of the application is replicated across
multiple OC4J processes.

■ OHS provides load balancing for all OC4J processes in the OC4J instance. The
OPMN component notifies each OHS when a new OC4J process is initiated.
Thus, each OHS in the cluster knows of each OC4J process in the cluster.

Replicating Application State
The OC4J processes involved in the cluster can replicate application state to all
OC4J processes. Once you configure replication, OC4J handles the propagation of
the application state for you.

If one OC4J process fails, then another OC4J process—which has had the
application state replicated to it—takes over the application request. When an OC4J
process fails during a stateful request, the OHS forwards the request in the
following order:

1. If another OC4J process is active within the same application server instance,
OHS forwards the request to this process.

2. Otherwise, OHS forwards the state request to an OC4J process in another
application server instance in the cluster.

There are two types of failure that you want to protect against: software failure and
hardware failure.

Islands
An island is a logical grouping of OC4J processes that allows you to determine
which OC4J processes will replicate state.

Failure Type Avoidance Technique

Software failure occurs
when the OC4J process
fails.

Multiple OC4J processes in the same OC4J instance. When one
OC4J process fails, the OHS forwards the request to another
OC4J process in the same OC4J instance.

Hardware failure occurs
when the host goes
down.

OC4J processes in the cluster configured on separate hosts.
When the first host dies, the OC4J process on another host can
take over the request. This requires that you have installed an
application server instance on another host, which is a part of
the cluster, and the OC4J instance has at least one OC4J process.
8-4 Oracle Application Server Containers for J2EE User’s Guide

The OC4J Instance in a Cluster
In each OC4J instance, you can have more than one OC4J process. If we consider
state replication in a situation where all OC4J processes tried to replicate state, then
the CPU load can significantly increase. To avoid a performance degradation, the
OC4J instance enables you to subgroup your OC4J processes. The subgroup is
called an island.

To ensure that the CPU load is partitioned among the processes, the OC4J processes
of an OC4J instance can be partitioned into islands. The state for application
requests is replicated only to OC4J processes that are grouped within the same
island. All applications are still deployed to all OC4J processes in the OC4J instance.
The only difference is that the state for these applications is confined to only a
subset of these OC4J processes.

The island configuration is instance-specific. The name of the island must be
identical in each OC4J instance, where you want the island to exist. When you
configure the number of OC4J processes on each application server instance, you
can also subgroup them into separate islands. The OC4J processes are grouped
across application server instances by the name of the island. Thus, the application
state is replicated to all OC4J processes within the island of the same name
spanning application server instances.

The grouping of OC4J processes for the state replication is different for EJB
applications than for Web applications. Web applications replicate state within the
island sub-grouping. EJB applications replicate state between all OC4J processes in
the OC4J instance and do not use the island sub-grouping.

Figure 8–2 demonstrates OC4J processes in islands within the cluster. Two islands
are configured in the home instance: default_island and second_island. One
OC4J process is configured in each island on each application server instance. The
OC4J islands, designated within the shaded area, span application server instances.
OC4J Clustering 8-5

The OC4J Instance in a Cluster
Figure 8–2 Island Description

J2EE Applications Involved in a Cluster
J2EE applications are deployed in all cases to the OC4J instance—whether the
application server instance is included in a cluster or not. However, when the
application is deployed to an OC4J instance that is in a cluster, certain configuration
details must be accomplished:

■ Multicast host and port—The state of the applications is replicated from one
OC4J process to another over a multicast address. In the case of an EJB
application, you must also specify a username and password. You can either
accept the defaults for the multicast address or configure it through the Oracle
Enterprise Manager.

■ State replication request—You request state replication for all applications
through the Oracle Enterprise Manager.

■ XML deployment descriptor elements—Both Web and EJB applications require
an additional configuration in their respective XML deployment descriptors.

■ Island definition—Web applications use the island subgrouping for its state
replication. EJB applications ignore the island subgrouping and use all OC4J
processes for its state replication.

Cluster

Application Server Instance #1 Application Server Instance #2

Oracle HTTP Server Oracle HTTP Server

OC4J Instance OC4J Instance

O
_1

02
6

default_island

second_island

OC4J
Process

OC4J
Process

OC4J
Process

OC4J
Process
8-6 Oracle Application Server Containers for J2EE User’s Guide

OC4J Clustering Examples
Instance-Specific Parameters
The following parameters are not replicated across the cluster; thus, each must be
set at the OC4J instance level on each application server.

■ Islands and number of OC4J processes—While you want to keep the names of
the islands consistent across the application server instances, the definition of
the islands and the number of OC4J processes is configured independently. The
host on which you install each application server instance has different
capabilities. On each host, you can tune the number of OC4J processes to match
the host capabilities. Remember that the state is replicated in islands across
application boundaries. So the island names must be the same in each OC4J
instance.

■ Port numbers—The RMI, JMS, and AJP port numbers can be different for each
host.

OC4J Clustering Examples
No matter how many application server instances you add within the cluster, the
cluster-wide configuration is replicated within the cluster. You control protecting
against software and hardware failure with how you configure island and OC4J
processes, which are instance-specific parameters.

Software Failure
Suppose you configure more than one OC4J process within your OC4J instance,
then if one of these processes fails, another process can take over the work load of
the failed process. Figure 8–3 shows application server instance 1, which is involved
in the cluster. Within this application server instance, there are two OC4J processes
defined in the default_island in the home instance. If the first OC4J process
fails, the other can pick up the work load.

Both of these OC4J processes are on the same host; so, if the host goes down, both
OC4J processes fail and the client cannot continue processing.
OC4J Clustering 8-7

OC4J Clustering Examples
Figure 8–3 Software Failure Demonstration

Hardware Failure
To protect against hardware failure, you must configure OC4J processes in the same
OC4J instance across hosts. Figure 8–4 shows home instance in application server
instance 1 and 2. Within the default_island, two OC4J processes are configured
on application server instance 1 and three are configured in application server
instance 2. If a client is interacting with one of the OC4J processes in application
server 1, which terminates abnormally, the client is redirected automatically to one
of the OC4J processes in the default_island in application server 2. Thus, your
client is protected against hardware failure.

Application Server Instance #1

default_island

home

O
_1

02
8

OC4J
Process

OC4J
Process
8-8 Oracle Application Server Containers for J2EE User’s Guide

OC4J Clustering Examples
Figure 8–4 Hardware Failure Demonstration

State Replication
If the client is a stateful application, then the state is replicated only within the same
island. In the previous example, there is only a single island, so the state of the
application would be preserved.

To enhance your performance, you want to divide up state replication among
islands. However, you must also protect for hardware and software failure within
these islands.

The optimal method of protecting against software and hardware failure, while
maintaining state with the least number of OC4J processes, is to configure at least
one OC4J process on more than one host in the same island. For example, if you
have application server instance 1 and 2, within the home instance, you configure
one OC4J process in the default_island on each application server instance.
Thus, you are protected against hardware and software failure and your client
maintains state if either failure occurs.

Application Server Instance #1 Application Server Instance #2

home home

O
_1

02
9

default_island

OC4J
Process

OC4J
Process

OC4J
Process

OC4J
Process

OC4J
Process
OC4J Clustering 8-9

OC4J Clustering Examples
■ If one of the OC4J processes fails, then the client request is redirected to the
other OC4J process in the island. The state is preserved and the client does not
notice any irregularity.

■ If application server 1 terminates abnormally, then the client is redirected to the
OC4J process in the default_island on application server 2. The state is
preserved and the client does not notice any irregularity.

As demand increases, you will configure more OC4J processes. To guard against a
performance slowdown, separate your OC4J processes into separate islands. For
example, if fifteen OC4J processes utilize the hardware efficiently on the two hosts
and serve the client demand appropriately, then you could divide these processes
into at least two islands. The following shows the fifteen OC4J processes grouped
into three islands:

■ The host where application server 1 is installed can handle seven OC4J
processes; the host where application server 2 is installed can handle eight OC4J
processes.

■ Each island contains at least one OC4J process in each island across hosts to
protect against software and hardware failure.

■ The performance is maximized by dividing up the state replication across three
islands.

Island Names Application Server 1 Application Server 2

default_island two three

second_island two three

third_island three two
8-10 Oracle Application Server Containers for J2EE User’s Guide

OC4J Cluster Configuration
OC4J Cluster Configuration
The following sections describe how to manage OC4J elements in the cluster: EJBs
and Servlets. For directions on how to create and modify Oracle Application Server
clusters, see the Oracle Application Server 10g High Availability Guide.

■ OC4J Instance Configuration

■ Configuring OC4J Instance-Specific Parameters

OC4J Instance Configuration
The following sections describe how to configure your OC4J Instance for clustering:

■ Configuring Islands and Processes

■ Configuring Web Application State Replication

■ Configuring EJB Application State Replication

■ EJB Clustering Includes JNDI Namespace Replication

Configuring Islands and Processes
To modify the islands and the number of processes each island contains, do the
following:

1. Select the Administration page off the OC4J Home Page.

2. Select Server Properties in the Instance Properties column.

3. Scroll down to the Multiple VM Configuration section. This section defines the
islands and the number of OC4J processes that should be started on this
application server instance in each island.

4. Create any islands for this OC4J instance within the cluster by clicking Add
Another Row. You can supply a name for each island within the Island ID field.
You can designate how many OC4J processes should be started within each
island by the number configured in the Number of Processes field.

Note: As an alternative to using Oracle Enterprise Manager, you
can create a cluster, add application server instances to the cluster,
and manage the cluster using the DCM command-line tool. See the
Distributed Configuration Management Reference Guide for
information on the DCM command-line tool.
OC4J Clustering 8-11

OC4J Cluster Configuration
Figure 8–5 displays the Multiple VM Configuration section.

Figure 8–5 Island and Process Configuration

Configuring Web Application State Replication
Configuring state replication for stateful applications is different for Web
applications than for EJB applications. To configure state replication for Web
applications, do the following as shown in Figure 8–6:
8-12 Oracle Application Server Containers for J2EE User’s Guide

OC4J Cluster Configuration
Figure 8–6 Web State Replication Configuration

1. Select the Administration page off of the OC4J Home Page.

2. Select Replication Properties in the Instance Properties column.

3. Scroll down to the Web Applications section. Figure 8–6 shows this section.

4. Select the Replicate session state checkbox.

5. Optionally, you can provide the multicast host IP address and port number. If
you do not provide the host and port for the multicast address, it defaults to
host IP address 230.230.0.1 and port number 9127. The host IP address must be
between 224.0.0.2 through 239.255.255.255. Do not use the same multicast
address for both HTTP and EJB multicast addresses.
OC4J Clustering 8-13

OC4J Cluster Configuration
6. Add the <distributable/> tag to all web.xml files in all Web applications.
If the Web application is serializable, you must add this tag to the web.xml file.

The following shows an example of this tag added to web.xml:

<web-app>
 <distributable/>
 <servlet>
 ...
 </servlet>
</web-app>

Configuring EJB Application State Replication
To create an EJB cluster, you specify the OC4J instances that are to be involved in
the cluster, configure each of them with the same multicast address, username, and
password, and deploy the EJB, which is to be clustered, to each of the nodes in the
cluster.

Unlike HTTP clustering, EJBs involved in a cluster cannot be sub-grouped in an
island. Instead, all EJBs within the cluster are in one group. Also, only session beans
are clustered.

The state of all beans is replicated at the end of every method call to all nodes in the
cluster using a multicast topic. Each node included in the EJB cluster is configured
to use the same multicast address.

The concepts for understanding how EJB object state is replicated within a cluster
are described in the Oracle Application Server Containers for J2EE Enterprise JavaBeans
Developer’s Guide. To configure EJB replication, you configure the following as
shows in Figure 8–7:

Note: When choosing a multicast address, ensure that it does not
collide with the addresses listed in http://www.iana.org/
assignments/multicast-addresses. Also, if the low order 23
bits of an address is the same as the local network control block
(224.0.0.0 - 224.0.0.255), then a collision may occur. To
avoid this, provide an address that does not have the same bits in
the lower 23 bits of the address as the addresses in this range.
8-14 Oracle Application Server Containers for J2EE User’s Guide

OC4J Cluster Configuration
Figure 8–7 EJB State Replication Configuration

1. Select the Administration page off of the OC4J Home Page.

2. Select Replication Properties in the Instance Properties column.

3. Scroll down to the EJB Applications section. Figure 8–7 shows this section.

4. Select the Replicate session state checkbox.

5. Provide the username and password, which is used to authenticate itself to
other hosts in the cluster. If the username and password are different for other
hosts in the cluster, they will fail to communicate. You can have multiple
username and password combinations within a multicast address. Those with
the same username/password combinations will be considered a unique
cluster.
OC4J Clustering 8-15

OC4J Cluster Configuration
6. Provide the host name where the OC4J Instance resides in the RMI Server Host
field.

7. Optionally, you can provide the multicast host IP address and port number. If
you do not provide the host and port for the multicast address, it defaults to
host IP address 230.230.0.1 and port number 23791. The host IP address must be
between 224.0.0.2 through 239.255.255.255. Do not use the same multicast
address for both HTTP and EJB multicast addresses.

8. Configure the type of EJB replication within the orion-ejb-jar.xml file
within the JAR file. See "Stateful Session Bean Replication Configuration in the
Application JAR" on page 8-16 for full details. You can configure these within
the orion-ejb-jar.xml file before deployment or add this through the
Oracle Enterprise Manager screens after deployment. If you add this after
deployment, drill down to the JAR file from the application page.

Stateful Session Bean Replication Configuration in the Application JAR For stateful session
beans, you may have you modify the orion-ejb-jar.xml file to add the state
replication configuration. Since you configure the replication type for the stateful
session bean within the bean deployment descriptor, each bean can use a different
type of replication.

Stateful session beans require state to be replicated among nodes. In fact, stateful
session beans must send all their state between the nodes, which can have a
noticeable effect on performance. Thus, the following replication modes are
available to you to decide on how to manage the performance cost of replication:

JVM Termination Replication The state of the stateful session bean is replicated to only
one other node in the cluster (with the same multicast address) when the JVM is
terminating. Since this uses JDK 1.3 shutdown hooks, you must use JVM version 1.3
or later. This is the most performant option, because the state is replicated only
once. However, it is not very reliable for the following reasons:

Note: When choosing a multicast address, ensure that it does not
collide with the addresses listed in http://www.iana.org/
assignments/multicast-addresses. Also, if the low order 23
bits of an address is the same as the local network control block
(224.0.0.0 - 224.0.0.255), then a collision may occur. To
avoid this, provide an address that does not have the same bits in
the lower 23 bits of the address as the addresses in this range.
8-16 Oracle Application Server Containers for J2EE User’s Guide

OC4J Cluster Configuration
■ Your state is not replicated if the power is shut off unexpectedly.

■ The state of the bean exists only on a single node at any time; the depth of
failure is equal to one node.

Set the replication attribute of the <session-deployment> tag in the orion-
ejb-jar.xml file to "VMTermination". This is shown below:

<session-deployment replication="VMTermination" .../>

End of Call Replication The state of the stateful session bean is replicated to all nodes
in the cluster (with the same multicast address) at the end of each EJB method call.
If the node loses power, then the state has already been replicated. The JVM
termination replication mode does not guarantee state replication in the case of lost
power.

Set the replication attribute of the <session-deployment> tag in the orion-
ejb-jar.xml file to "endOfCall". This is shown below:

<session-deployment replication="EndOfCall" .../>

EJB Clustering Includes JNDI Namespace Replication
When EJB clustering is enabled, JNDI namespace replication is also enabled
between the OC4J instances in a cluster. New bindings to the JNDI namespace in
one OC4J instance are propagated to other OC4J instances in the cluster. Re-
bindings and unbindings are not replicated. The replication is completed outside
the scope of OC4J islands. In other words, multiple islands in an OC4J instance have
visibility into the same replicated JNDI namespace. For more information see the
Oracle Application Server Containers for J2EE Services Guide.

Configuring OC4J Instance-Specific Parameters
The manageability feature of the cluster causes the configuration to be replicated
across all application server instances in the cluster, which is defined as a cluster-
wide configuration. However, there are certain parameters where it is necessary to
configure them separately on each OC4J instance. These parameters are referred to
as OC4J instance-specific.

The following parameters are OC4J instance-specific parameters, which are not
replicated across the cluster. You must modify these parameters on each application
server instance.

The following are instance-specific parameters within each OC4J instance:

■ islands
OC4J Clustering 8-17

OC4J Cluster Configuration
■ number of OC4J processes

■ port numbers

All other parameters are part of the cluster-wide parameters, which are replicated
across the cluster.

Figure 8–8 shows the section where these parameters are modified. These sections
are located in the Server Properties on the Administration page.

Figure 8–8 Non-Replicated Configuration
8-18 Oracle Application Server Containers for J2EE User’s Guide

Additional Inform
A

Additional Information

This appendix contains complete information about the following topics:

■ Description of XML File Contents

■ Elements in the server.xml File

■ Elements in the application.xml File

■ Elements in the orion-application.xml File

■ Elements in the application-client.xml File

■ Elements in the orion-application-client.xml File

■ Configuration and Deployment Examples

■ OC4J Command-Line Options and System Properties

Most of these sections discuss how to modify your XML files. Modify all XML files
only through Oracle Enterprise Manager. Do not modify XML files on a single
node.
ation A-1

Description of XML File Contents
Description of XML File Contents
OC4J uses configuration and deployment XML files. The following sections describe
each of these files and their function.

OC4J Configuration XML Files
This section describes the following XML files, which are necessary for OC4J
configuration:

■ server.xml

■ default-web-site.xml

■ jazn-data.xml

■ principals.xml

■ data-sources.xml

■ jms.xml

■ rmi.xml

■ httpds.conf

■ mod_oc4j.conf

■ workers.properties

server.xml
This file contains the configuration for the application server. The server.xml file is
the root configuration file—it contains references to other configuration files. In this
file, specify the following:

■ Library path, which is located in the application deployment descriptor

■ Global application, global Web application, and default Web site served

■ Maximum number of HTTP connections the server allows

■ Logging settings

■ Java compiler settings

■ Cluster ID

■ Transaction time-out

■ SMTP host
A-2 Oracle Application Server Containers for J2EE User’s Guide

Description of XML File Contents
■ Location of the data-sources.xml configuration

■ Location of the configuration for JMS and RMI

■ Location of the default and additional Web sites

Specify these locations by adding entries that list the location of the Web site
configuration files. You can have multiple Web sites. The
default-web-site.xml file defines a default Web site; therefore, there is only
one of these XML files. All other Web sites are defined in web-site.xml
configuration files. Register each Web site within the server.xml file, as
follows:

<web-site path="./default-web-site.xml" />
<web-site path="./another-web-site.xml" />

■ Pointers to all applications for the container to deploy and execute

Specify the applications that run on the container in the server.xml file. You
can have as many application directories as you want, and they do not have to
be located under the OC4J installation directory.

default-web-site.xml
This file contains the configuration for a Web site. In the default-web-site.xml file,
specify the following:

■ Host name or IP address, virtual host settings for this site, listener ports, and
security using SSL

■ Default Web application for this site

■ Additional Web applications for this site

■ Access-log format

■ Settings for user Web applications (for /~user/ sites)

■ SSL configuration

■ Restrict access to the site from one or more hosts

Note: The path that is designated is relative to the config/
directory.
Additional Information A-3

Description of XML File Contents
jazn-data.xml
This file contains security information for the OC4J server. It defines the user and
group configuration for employing the default JAZNUserManager. In the
jazn-data.xml file, specify the following:

■ Username and password for the client-admin console

■ Name and description of users/groups, and real name and password for users

principals.xml
This file contains security information for the OC4J server. It defines the user and
group configuration for employing the XMLUserManager, which is no longer the
default security manager. In the principals.xml file, specify the following:

■ Username and password for the client-admin console

■ Name and description of users/groups, and real name and password for users

■ Optional X.509 certificates for users

data-sources.xml
This file contains configuration for the data sources that are used. In addition, it
contains information on how to retrieve JDBC connections. In the
data-sources.xml file, specify the following:

■ JDBC driver

■ JDBC URL

■ JNDI paths to which to bind the data source

■ User/password for the data source

■ Database schema to use

■ Inactivity time-out

■ Thread policy

■ Garbage collection granularity

■ Maximum number of connections allowed to the database
A-4 Oracle Application Server Containers for J2EE User’s Guide

Description of XML File Contents
jms.xml
This file contains the configuration for the OC4J Java Message Service (JMS)
implementation. In the jms.xml file, specify the following:

■ Host name or IP address, and port number to which the JMS server binds

■ Settings for queues and topics to be bound in the JNDI tree

■ Log settings

rmi.xml
This file contains configuration for the Remote Method Invocation (RMI) system. It
contains the setting for the RMI listener, which provides remote access for EJBs. In
the rmi.xml file, specify the following:

■ Host name or IP address, and port number to which the RMI server binds

■ Remote servers to which to communicate

■ Clustering settings

■ Log settings

J2EE Deployment XML Files
The OC4J-specific deployment XML files contain deployment information for
different components. If you do not create the OC4J-specific files, they are
automatically generated when the application is deployed. You can edit
OC4J-specific deployment XML files manually. OC4J uses these files to map
environment entries, resources references, and security-roles to actual
deployment-specific values.

This section describes the following XML files necessary for J2EE application
deployment:

■ The J2EE application.xml File

Note: Database schemas are used to make auto-generated SQL
work with different database systems. OC4J contains an XML file
format for specifying properties, such as type-mappings and
reserved words. OC4J comes with database schemas for MS SQL
Server/MS Access, Oracle, and Sybase. You can edit these or make
new schemas for your DBMS.
Additional Information A-5

Description of XML File Contents
■ The OC4J-Specific orion-application.xml File

■ The J2EE ejb-jar.xml File

■ The OC4J-Specific orion-ejb-jar.xml File

■ The J2EE web.xml File

■ The OC4J-Specific orion-web.xml File

■ The J2EE application-client.xml File

■ The OC4J-Specific orion-application-client.xml File

The J2EE application.xml File
This file identifies the Web or EJB applications that are contained within the J2EE
application. See "Elements in the application.xml File" on page A-19 for a list of the
elements.

The OC4J-Specific orion-application.xml File
This file configures the global application. In the orion-application.xml file,
specify the following:

■ Add files to the library path

■ Whether to auto-create and auto-delete tables for CMP beans

■ Which default data source to use with CMP beans

■ Security role mappings

■ Which user manager is the default for security

■ JNDI namespace-access rules (authorization)

See "Elements in the orion-application.xml File" on page A-21 for a list of the
elements.

The J2EE ejb-jar.xml File
This file defines the deployment parameters for the EJBs in this JAR file. See the Sun
Microsystems EJB specification for a description of these elements.

The OC4J-Specific orion-ejb-jar.xml File
This file is the OC4J-specific deployment descriptor for EJBs. In the
orion-ejb-jar.xml file, specify the following:
A-6 Oracle Application Server Containers for J2EE User’s Guide

Description of XML File Contents
■ Time-out settings

■ Transaction retry settings

■ Session persistence settings

■ Transaction isolation settings

■ CMP mappings

■ OR mappings

■ Finder method specifications

■ JNDI mappings

■ Minimum and maximum instance pool settings

■ resource reference mappings

See the appendix in the Oracle Application Server Containers for J2EE Enterprise
JavaBeans Developer’s Guide for description of the elements.

The J2EE web.xml File
This file contains deployment information about the servlets and JSPs in this
application. See the Sun Microsystems specifications for a description of these
elements.

The OC4J-Specific orion-web.xml File
This is the OC4J-specific deployment descriptor for mapping Web settings. This
XML file contains the following:

■ Auto-reloading (including modification-check time-interval)

■ Buffering

■ Charsets

■ Development mode

■ Directory browsing

■ Document root

■ Locales

■ Web timeouts

■ Virtual directories
Additional Information A-7

Elements in the server.xml File
■ Clustering

■ Session tracking

■ JNDI mappings

■ Classloading priority for Web applications

See the appendix in the Oracle Application Server Containers for J2EE Servlet
Developer’s Guide for description of the elements.

The J2EE application-client.xml File
This file contains JNDI information for accessing the server application and other
client information. See "Elements in the application-client.xml File" on page A-28 for
a list of the elements.

The OC4J-Specific orion-application-client.xml File
This OC4J-specific deployment file is for the client application. It contains JNDI
mappings and entries for the client. See "Elements in the
orion-application-client.xml File" on page A-32 for a list of the elements.

Elements in the server.xml File
The server.xml file is where you perform the following tasks:

■ Configure OC4J

■ Reference other configuration files

■ Specify your J2EE application(s)

Configure OC4J
Configuring the OC4J server includes defining the following elements in the
server.xml file:

■ Library path

■ Global application, global Web application, and default Web site

■ Maximum number of HTTP connections the server allows

■ Logging settings

■ Java compiler settings
A-8 Oracle Application Server Containers for J2EE User’s Guide

Elements in the server.xml File
■ Cluster ID

■ Transaction time-out

■ SMTP host

Reference Other Configuration Files
Referencing other configuration files in the server.xml file includes specifying the
following:

■ data-sources.xml location

■ jazn-data.xml location

■ jms.xml and rmi.xml locations

Several XML files and directories are defined in the server.xml file. The path to
these files or directories can be relative or absolute. If relative, the path should be
relative to the location of the server.xml file.

<application-server> Element Description of the server.xml file
The top level element of the server.xml file is the <application-server>
element.

<application-server>

This element contains the configuration for an application server.

Attributes:

■ application-auto-deploy-directory=".../applications/auto"
—Specifies the directory from which EAR files are automatically detected and
deployed by the running OC4J server. In addition, it performs the Web
application binding for the default Web site.

■ auto-start-applications="true|false"—If set to true, all
applications defined in the <applications> elements are automatically
started when the OC4J server is started. If set to false, the applications are not
started unless their auto-start attribute is set to true. The default for
auto-start-applications is true.

■ application-directory=".../applications"— Specifies a directory in
which to store applications (EAR files). If none is specified (the default), OC4J
stores the information in j2ee/home/applications.
Additional Information A-9

Elements in the server.xml File
■ deployment-directory=".../application-deployments"—Specifies
the master location where applications that are contained in EAR files are
deployed. The location defaults to
j2ee/home/application-deployments/.

■ connector-directory—The location and file name of the
oc4j-connectors.xml file.

■ check-for-updates="true|false"—This attribute is only used for
standalone OC4J.

■ recovery-procedure="automatic|prompt|ignore"— Specifies how the
EJB container reacts for recovery if an error occurred in the middle of a global
transaction (JTA). If a CMP bean is in the middle of a global transaction, the EJB
container saves the transactional state to a file. The next time OC4J is started,
these attributes specify how to recover the JTA transaction.

– automatic — automatically attempts recovery (the default)

– prompt — prompts the user (system in/out)

You may notice a prompt for recovery even if no CMP beans were
executing. This is because the OC4J server asks for permission to see if there
was anything to recover.

– ignore — ignores recovery (useful in development environments or if you
are never executing a CMP entity bean)

■ taskmanager-granularity=milliseconds. The task manager is a
background process that performs cleanup. However, the task manager can be
expensive. You can manage when the task manager performs its duties through
this attribute, which sets how often the task manager is kicked off for cleanup.
Value is in milliseconds. Default is 1000 milliseconds.

Elements Contained Within <application-server> of the server.xml file
Within the <application-server> element, the following elements, which are
listed alphabetically and not by DTD ordering, can be configured:

<application>

An application is a entity with its own set of users, Web applications, and EJB JAR
files.

Attributes:

■ auto-start="true|false" — Specifies whether the application should be
automatically started when the OC4J server starts. The default is true. Setting
A-10 Oracle Application Server Containers for J2EE User’s Guide

Elements in the server.xml File
auto-start to false is useful if you have multiple applications installed and
want them to start on demand. This can improve general server startup time
and resource usage.

■ deployment-directory=".../application-deployments/myapp" —
Specifies a directory to store application deployment information. If none is
specified (the default), OC4J looks in the global deployment-directory, and
if none exists there, it stores the information inside the EAR file. The path can be
relative or absolute. If relative, the path should be relative to the location of the
server.xml file.

■ name="anApplication" — Specifies the name used to reference the
application.

■ parent="anotherApplication" — The name of the optional parent
application. The default is the global application. Children see the namespace of
its parent application. This is used to share services such as EJBs among
multiple applications.

■ path=".../applications/myApplication.ear" /> — The path to the
EAR file containing the application code. In this example, the EAR file is named
myApplication.ear.

<compiler>

This element is deprecated for version 9.0.4 and forward. See the
<java-compiler> element for the alternative. For previous releases, it specifies an
alternative compiler (such as Jikes) for EJB/JSP compiling.

Attributes:

■ classpath="/my/rt.jar" — Specifies an alternative/additional classpath
when compiling. Some compilers need an additional classpath (such as Jikes,
which needs the rt.jar file of the Java 2 VM to be included).

■ executable="jikes" /> — The name of the compiler executable to use,
such as Jikes or JVC.

<cluster>

Cluster settings for this server.

Attribute:

■ id="123" /> — The unique cluster ID of the server.
Additional Information A-11

Elements in the server.xml File
<execution-order>

Defines the ordering of how the startup classes are executed. Value is an integer.
OC4J loads from 0 on up. If duplicate numbers, OC4J chooses the ordering for those
classes.

<global-application>

The default application for this server. This acts as a parent to other applications in
terms of object visibility.

Attributes:

■ name="default" — Specifies the application.

■ path=".../application.xml" /> — Specifies the path to the global
application.xml file, which contains the settings for the default application.
An application.xml file exists for each application as the standard J2EE
application descriptor file, which is different than this file. This
application.xml may have the same name, but it exists to provide global
settings for all J2EE applications.

<global-thread-pool>

You can specify unbounded, one, or two thread pools for an OC4J process through
this element. If you do not specify this element, then an infinite number of threads
can be created. See "Thread Pool Settings" on page 3-42 for a full description.

Attributes:

■ min —The minimum number of threads that OC4J can simultaneously execute.
By default, a minimum number of threads are preallocated and placed in the
thread pool when the container starts. Value is an integer. The default is 20. The
minimum value you can set this to is 10.

■ max —The maximum number of threads that OC4J can simultaneously execute.
New threads are spawned if the maximum size is not reached and if there are
no idle threads. Idle threads are used first before a new thread is spawned.
Value is an integer. The default is 40.

■ queue —The maximum number of requests that can be kept in the queue.
Value is an integer. The default is 80.

■ keepAlive —The number of milliseconds to keep a thread alive (idle) while
waiting for a new request. This timeout designates how long an idle thread
remains alive. If the timeout is reached, the thread is destroyed. The minimum
time is a minute. Time is set in milliseconds. To never destroy threads, set this
timeout to a negative one.
A-12 Oracle Application Server Containers for J2EE User’s Guide

Elements in the server.xml File
Value is a long. The default is 600000 milliseconds.

■ cx-min —The minimum number of connection threads that OC4J can
simultaneously execute. Value is an integer. The default is 20. The minimum
value you can set this to is 10.

■ cx-max —The maximum number of connection threads that OC4J can
simultaneously execute. Value is an integer. The default is 40.

■ cx-queue —The maximum number of connection requests that can be kept in
the queue. Value is an integer. The default is 80.

■ cx-keepAlive —The number of milliseconds to keep a connection thread
alive (idle) while waiting for a new request. This timeout designates how long
an idle thread remains alive. If the timeout is reached, the thread is destroyed.
The minimum time is a minute. Time is set in milliseconds. To never destroy
threads, set this timeout to a negative one.

Value is a long. The default is 600000 milliseconds.

■ debug —If true, print the application server thread pool information at startup.
The default is false.

<global-web-app-config>

Attributes:

■ path— The path where the web-application.xml file is located.

path=".../web-application.xml" />

<init-library>

Attributes:

■ path— The path in which the startup and shutdown classes are located. The
path indicates the directory in which the class resides or the directory and JAR
filename of the JAR where the class is archived. If more than one directory or
JAR file exists, then supply an <init-library> element for each directory
and JAR filename.

<init-library path="../xxx">

<init-param>

Attributes:

■ Defines the key-value pairs of the parameters to pass into the startup class.
Additional Information A-13

Elements in the server.xml File
<javacache-config>

Attributes:

■ path—Specifies the path to the javacache.xml file.

<javacache-config path="../../../javacache/admin/javacache.xml" />

<java-compiler>

You can specify an alternative compiler—either in or out of process—for your JSP
and EJB compilation. The default compiler is an out of process javac compiler
found in the JDK bin directory.

Attributes:

■ name—Specify the name of the compiler to use. Valid compiler names are as
follows:

* for in-process compilers—modern, classic, javac or ojc

* for out-of-process compilers (forked)—modern, javac, ojc, or jikes

These names are defined as follows:

* javac—the standard compiler name for all JDKs.

* classic—the standard compiler of JDK 1.1/1.2.

* modern—the standard compiler of JDK 1.3/1.4.

* jikes—the Jikes compiler.

* ojc—The Oracle Java compiler.

■ in-process—If true, the compiler is to run in process. If false, the compiler
runs out of the process. Most compilers can execute both in and out of the
process. The exceptions are as follows:

* The classic compiler cannot run out of the process; thus, the
in-process attribute is always true.

* The jikes compiler cannot run in process; thus, the in-process
attribute is always false.

■ encoding—Specify the type of character encoding for the source file, such as
UTF-8, EUCJIS, or SJIS. Encoding is only supported by the javac compiler. The
default is determined by the language version of the JVM that is installed.
A-14 Oracle Application Server Containers for J2EE User’s Guide

Elements in the server.xml File
■ bindir—Provide the absolute path to the compiler directory. You do not need
to specify this attribute for javac, modern, or classic as the JDK bin
directory is searched for this compiler.

The syntax is specific to the operating system platform:

* Sun Microsystems Solaris example—If you are using jikes, which is in
/usr/local/bin/jikes, then specify the following:

name="jikes"
bindir="/usr/local/bin"

* Windows example—To specify jikes, which is located in
c:\jdk1.3.1\bin\jikes.exe, specify the following:

name="jikes"
bindir="c:\\jdk1.3.1\\bin"

■ extdirs—Specifies extension directories that the compilation uses to compile
against. The default is your JDK extension directories. Multiple directories can
be specified, each separated by a colon. Each JAR archive in the specified
directories are searched for class files. You can specify certain directories to be
searched by modifying the -Djava.ext.dirs system property. The jikes
compiler requires that extension directories are specified in either this attribute
or in the -Djava.ext.dirs system property.

The following are four examples of how to define alternate compilers in this
element:

<java-compiler name="jikes" bindir="C:\java\jikes\bin"
in-process="false" />

<java-compiler name="ojc" bindir="C:\java\jdev\jdev\bin"
in-process="false"/>

<java-compiler name="classic" in-process="true" />
<java-compiler name="modern" in-process="true" />

<jms-config>

Attribute:

■ path— Specifies the path to the jms.xml file.

path=".../jms.xml"

<log>

<file>
Additional Information A-15

Elements in the server.xml File
Attribute:

■ path=".../log/server.log" — Specifies a relative or absolute path to
a file where log events are stored.

<mail>

An e-mail address where log events are forwarded. You must also specify a
valid mail-session if you use this option.

Attribute:

■ address="my@mail.address" — Specifies the mail address.

<odl>

The ODL log entries are each written out in XML format in its respective log
file. The log files have a maximum limit. When the limit is reached, the log files
are overwritten.

When you enable ODL logging, each message goes into its respective log file,
named logN.xml, where N is a number starting at one. The first log message
starts the log file, log1.xml. When the log file size maximum is reached, the
second log file is opened to continue the logging, log2.xml. When the last
logfile is full, the first log file, log1.xml is erased and a new one is opened for
the new messages. Thus, your log files are constantly rolling over and do not
encroach on your disk space.

Attributes:

■ path: Path and folder name of the log folder for this area. You can use an
absolute path or a path relative to where the configuration XML file exists,
which is normally in the j2ee/home/config directory. This denotes where
the log files will reside for the feature that the XML configuration file is
concerned with. For example, modifying this element in the server.xml file
denotes where the server log files are written.

■ max-file-size: The maximum size in KB of each individual log file.

■ max-directory-size: The maximum size of the directory in KB. The default
directory size is 10 MB.

New files are created within the directory, until the maximum directory size is
reached. Each log file is equal to or less than the maximum specified in the
attributes.
A-16 Oracle Application Server Containers for J2EE User’s Guide

Elements in the server.xml File
<max-http-connections>

Used to define the maximum number of concurrent connections any given Web site
can accept at a single point in time. If text exists inside the tag, it is used as a
redirect-URL when the limit is reached.

Attributes:

■ max-connections-queue-timeout="10" — When the maximum number
of connections are reached, this is the number of seconds that can pass before
the connections are dropped and a message is returned to the client stating that
the server is either busy or connections will be redirected. The default is 10
seconds.

■ socket-backlog — The number of connections to queue up before denying
connections at the socket level. The default is 30.

■ value — The maximum number of connections.

<rmi-config>

Attribute:

■ path— Specifies the path to the rmi.xml file.

path=".../rmi.xml"

<sep-config>

The <sep-config> element in this file specifies the pathname, normally
internal-settings.xml, for the server extension provider properties.

Attribute:

■ path—The path of the server extension provider properties.

<sfsb-config>

Passivation for stateful session beans is automatically done, unless you set the
enable-passivation attribute for this element to false. For more information on
stateful session bean passivation, see the Advanced chapter in the Oracle Application
Server Containers for J2EE Enterprise JavaBeans Developer’s Guide.

Attribute

■ enable-passivation—Default is true, which means that stateful session
bean passivation occurs. If you have a situation where your stateful session
beans are not in a state to be passivated, set this attribute to false.
Additional Information A-17

Elements in the server.xml File
<shutdown-classes>

Shutdown classes can be defined by the user, and are executed after undeployment,
but before the core services are stopped.

<shutdown-class>

Each startup class is defined within the <startup-class> element.

Attributes:

■ classname—The classname of the user-defined startup class.

<startup-classes>

Startup classes can be defined by the user, and will be executed after the core
services (JMS, RMI) are started, but before applications are deployed. The shutdown
classes are executed after undeployment, but before the core services are stopped.

<startup-class>

Each startup class is defined within the <startup-class> element.

Attributes:

■ classname—The classname of the user-defined startup class.

■ failure-is-fatal—If true, if an exception is thrown, then OC4J logs the
exception and exit. If false, OC4J logs the exception and then continues. Default
is false.

<transaction-config>

Transaction configuration for the server.

Attribute:

■ timeout="30000" — Specifies the maximum amount of time (in
milliseconds) that a transaction can take to finish before it is rolled back due to a
timeout. The default value is 30000. This timeout will be a default timeout for
all transactions that are started in OC4J. You can change it by using the dynamic
API—UserTransaction.setTransactionTimeout(milliseconds).

<web-site>

Attribute:

■ path— The path to a *web-site.xml file that defines a Web site. For each
Web site, you must specify a separate *web-site.xml file. This example
shows that a Web site is defined in the my-web-site.xml file.
A-18 Oracle Application Server Containers for J2EE User’s Guide

Elements in the application.xml File
path=".../my-web-site.xml"

Elements in the application.xml File

<application> Element Description of the application.xml file
The top level element of the application.xml file is the <application>
element.

Elements Contained Within <application> of the application.xml file
Within the <application> element, the following elements, which are listed
alphabetically and not by DTD ordering, can be configured:

<alt-dd>path/to/dd</alt-dd>

The alt-dd element specifies an optional URI to the post-assembly version of the
deployment descriptor file for a particular J2EE module. The URI must specify the
full pathname of the deployment descriptor file relative to the application's root
directory. If alt-dd is not specified, the deployer must read the deployment
descriptor from the default location and file name required by the respective
component specification.

<connector>context</connector>

The connector element specifies the URI of a resource adapter archive file,
relative to the top level of the aplication package.

<context-root>thedir/</context-root>

The context-root element specifies the context root of a web application.

<description>A description.</description>

The description element provides a human readable description of the
application. The description element should include any information that the
application assembler wants to provide the deployer.

<display-name>The name.</display-name>

The display-name element specifies an application name. The application name is
assigned to the application by the application assembler and is used to identify the
application to the deployer at deployment time.

<ejb>pathToEJB.jar</ejb>

The ejb element specifies the URI of a EJB JAR, relative to the top level of the
application package.
Additional Information A-19

Elements in the application.xml File
<icon>

The icon element contains a small-icon and a large-icon element which
specify the location within the application for a small and large image used to
represent the application in a GUI tool.

<java>pathToClient.jar</java>

The java element specifies the URI of a Java application client module, relative to
the top level of the application package.

<large-icon>path/to/icon.gif</large-icon>

The large-icon element contains the location within the application of a file
containing a large (32x32 pixel) icon image. The image must be either GIF or JPEG
format and the filename must end with the extension of ".gif" or ".jpg".

<module>

The module element represents a single J2EE module and contains an EJB, Java, or
Web element, which indicates the module type and contains a path to the module
file, and an optional alt-dd element, which specifies an optional URI to the
post-assembly version of the deployment descriptor. The application deployment
descriptor must have one module element for each J2EE module in the application
package.

<role-name>nameOfRole</role-name>

The name of the role.

<security-role>

The security-role element contains the definition of a security role which is
global to the application. The definition consists of a description of the security role,
and the security role name. The descriptions at this level override those in the
component level security role definitions and must be the descriptions tool display
to the deployer.

<small-icon>path/to/icon.gif</small-icon>

The small-icon element contains the location within the application of a file
containing a small (16x16 pixel) icon image. The image must be either GIF or JPEG
format and the filename must end with the extension of ".gif" or ".jpg".

<web>

The web element contains the web-uri and context-root of a Web application
module.
A-20 Oracle Application Server Containers for J2EE User’s Guide

Elements in the orion-application.xml File
<web-uri>pathTo.war</web-uri>

The web-uri element specifies the URI of a web application file, relative to the top
level of the application package.

Elements in the orion-application.xml File

<orion-application> Element Description of the orion-application.xml file
The top level element of the orion-application.xml file is the
<orion-application> element.

Attributes:

■ autocreate-tables - Whether or not to automatically create database tables
for CMP beans in this application. The default is true.

■ autodelete-tables - Whether or not to automatically delete old database
tables for CMP beans when redeploying in this application. The default is false.

■ default-data-source - The default data source to use if other than server
default. This must point to a valid CMT data source for this application if
specified.

■ deployment-version - The version of OC4J that this JAR was deployed
against, if it is not matching the current version then it will be redeployed. This
is an internal server value; do not edit.

■ treat-zero-as-null - Whether or not to treat read zero's as null's when
they represent primary keys. The default is false.

Elements Contained Within <orion-application> of the orion-application.xml file
Within the <orion-application> element, the following elements, which are
listed alphabetically and not by DTD ordering, can be configured:

<argument value="theValue" />

An argument used when invoking the client.

Attribute:

■ value - The value of the argument.

<arguments>

A list of arguments to used when invoking the application client if starting it
in-process (auto-start="true").
Additional Information A-21

Elements in the orion-application.xml File
<client-module auto-start="true|false"
deployment-time="073fc2ab513bc3ce" path="myappclient.jar"
user="theUser">

An application client module of the application. An application client is a GUI or
console-based standalone client that interacts with the server.

Attributes:

■ auto-start - Whether or not to auto-start the client (in-process) at server
startup. The default is false.

■ deployment-time - Last deploy time attribute. Internal to OC4J; do not edit.

■ path - The path (relative to the enterprise archive or absolute) to the
application-client.

■ user - User to run the client as if run in-process (autostart="true"). Must be
specified if auto-start is activated.

<commit-coordinator>

Configure the two-phase commit engine.

<commit-class
class="com.evermind.server.OracleTwoPhaseCommitDriver" />

Attribute:

■ class - Configures the OracleTwoPhaseCommitDriver class for two-phase
commit engines.

<connectors path="./oc4j-connectors.xml" />

Attribute:

■ path - The name and path of the oc4j-connectors.xml file. If no
<connectors> element is specified, then the default path is
$OC4J_HOME/connectors/rarname./oc4j-connectors.xml.

<data-sources path="./data-sources.xml" />

Attribute:

■ path - The path.

<description>A short description</description>

A short description of this component.
A-22 Oracle Application Server Containers for J2EE User’s Guide

Elements in the orion-application.xml File
<ejb-module path="myEjbs.jar" remote="true|false" />

An EJB JAR module of the application.

Attributes:

■ path - The path (relative to the enterprise archive or absolute) to the ejb-jar.

■ remote - true/false value stating whether or not to activate the EJB
instances on this node or to look them up remotely from another server (remote
or inside a cluster). The default is false.

<file path="../log/server.log" />

A relative/absolute path to log events to.

Attribute:

■ path - The path.

<group name="theGroup" />

A group that this security-role-mapping implies. That is, all members of the
specified group are included in this role.

Attribute:

■ name - The name of the group.

<jazn provider="XML" location="./jazn-data.xml" />

Configure the OracleAS JAAS Provider to use the XML-based provider type.

Attributes:

■ provider - XML

■ location - Path to file. For example: ./jazn-data.xml This can be an
absolute path, or a path relative to the jazn.xml file, where the OracleAS
JAAS Provider first looks for the jazn-data.xml in the directory containing
the jazn.xml file. Optional if jazn.xml file configured, otherwise Required

■ persistence - Values can be NONE (Do not persist changes), ALL (Persist
changes after every modification), VM_EXIT - (Default- Persist changes when VM
exits)

■ default-realm - A realm name. For example: sample_subrealm. Optional if only
one realm is configured.
Additional Information A-23

Elements in the orion-application.xml File
<jazn-web-app auth-method="SSO" runas-mode="false"
doasprivileged-mode="true" />

The filter element of JAZNUserManager.

Attributes:

■ auth-method - Set auth-method to SSO (single sign-on). If you do not set this
parameter, it defaults to null.

■ The runas-mode and doasprivileged-mode settings are described in
Table A–1. See the Oracle Application Server Containers for J2EE Security Guide for
more information.

<library path="../lib/" />

A relative/absolute path/URL to a directory or a JAR/ZIP to add as a library-path
for this server. Directories are scanned for JARS/ZIP files to include at startup.

Attribute:

■ path - The path.

<log>

Logging settings.

<odl>

The ODL log entries are each written out in XML format in its respective log
file. The log files have a maximum limit. When the limit is reached, the log files
are overwritten.

Table A–1 runas-mode and doasprivileged-mode Settings

If runas-mode is
Set To...

If doasprivileged-mode Is
Set To... Then...

true true (default) Subject.doAsPrivileged in a
privilegedExceptionAction block that calls
chain.doFilter (myrequest,response)

true false Subject.doAs in a privilegedExceptionAction
block that calls chain.doFilter
(myrequest,response)

false (default) true chain.doFilter (myrequest,response)

false false chain.doFilter (myrequest,response)
A-24 Oracle Application Server Containers for J2EE User’s Guide

Elements in the orion-application.xml File
When you enable ODL logging, each message goes into its respective log file,
named logN.xml, where N is a number starting at one. The first log message
starts the log file, log1.xml. When the log file size maximum is reached, the
second log file is opened to continue the logging, log2.xml. When the last
logfile is full, the first log file, log1.xml is erased and a new one is opened for
the new messages. Thus, your log files are constantly rolling over and do not
encroach on your disk space.

Attributes:

■ path: Path and folder name of the log folder for this area. You can use an
absolute path or a path relative to where the configuration XML file exists,
which is normally in the j2ee/home/config directory. This denotes where
the log files will reside for the feature that the XML configuration file is
concerned with. For example, modifying this element in the server.xml file
denotes where the server log files are written.

■ max-file-size: The maximum size in KB of each individual log file.

■ max-directory-size: The maximum size of the directory in KB. The default
directory size is 10 MB.

New files are created within the directory, until the maximum directory size is
reached. Each log file is equal to or less than the maximum specified in the
attributes.

<mail address="my@mail.address" />

An e-mail address to log events to. A valid mail-session also needs to be specified if
this option is used.

Attribute:

■ address - The mail-address.

<mail-session location="mail/TheSession"
smtp-host="smtp.server.com">

The session SMTP-server host (if using SMTP).

Attributes:

■ location - The location in the namespace to store the session at.

■ smtp-host - The session SMTP-server host (if using SMTP).

<namespace-access>

Namespace (naming context) security policy for RMI clients.
Additional Information A-25

Elements in the orion-application.xml File
<namespace-resource root="the/path">

A resource with a specific security setting.

Attribute:

■ root - The root of the part of the namespaec that this rule applies to.

<password-manager>

Specifies the UserManager that is used for the lookup of hidden passwords. If
omitted, the current UserManager is used for authentication and authorization.
For example, you can use a OracleAS JAAS Provider LDAP UserManager for the
overall UserManager, but use a OracleAS JAAS Provider XML UserManager for
checking hidding passwords.

To identify a UserManager, provide a <jazn> element definition within this
element, as follows:

<password-manager>
<jazn ...>

</password-manager>

<persistence path="./persistence" />

A relative (to the application root) or absolute path to a directory where application
state should be stored across restarts.

Attribute:

■ path - The path (relative to the enterprise archive or absolute) to the
persistence directory.

<principals path="principals.xml" />

Attribute:

■ path - The path (relative to the enterprise archive or absolute) to the principals
file.

<property name="theName" value="theValue" />

Contains a name/value pair initialization param.

Attributes:

■ name - The name of the parameter.

■ value - The value of the parameter.
A-26 Oracle Application Server Containers for J2EE User’s Guide

Elements in the orion-application.xml File
<read-access>

The read-access policy.

<resource-provider>

Define a JMS resource provider. To add a custom <resource-provider>, add the
following to your orion-application.xml file:

<resource-provider class="providerClassName" name="JNDI name">
 <description> description </description>
 <property name="name" value="value" />
</resource-provider>

In place of the user-replaceable constructs (those in italics) in the preceding code, do
the following:

■ Replace the value providerClassName of the class attribute with the name
of the resource-provider class.

■ Replace the value JNDI name of the name attribute with a name by which to
identify the resource provider. This name will be used in finding the resource
provider in the application’s JNDI as "java:comp/resource/name/".

■ Replace the value description of the description tag with a description of
the specific resource provider.

■ Replace the values name and value of the corresponding attributes with the
same name in any property tags that the specific resource provider needs to be
given as parameters.

<security-role-mapping impliesAll="true|false" name="theRole">

The runtime mapping (to groups and users) of a role. Maps to a security-role of the
same name in the assembly descriptor.

Attributes:

■ impliesAll - Whether or not this mapping implies all users. The default is
false.

■ name - The name of the role

<user name="theUser" />

A user that this security-role-mapping implies.

Attribute:

■ name - The name of the user.
Additional Information A-27

Elements in the application-client.xml File
<user-manager class="com.name.of.TheUserManager"
display-name="Friendly UserManager name">

Specifies an optional user-manager to use. For example, user-managers are
com.evermind.sql.DataSourceUserManager,
com.evermind.ejb.EJBUserManager, and so on. These are used to integrate
existing systems and provide custom user-managers for Web applications.

Attributes:

■ class - The fully qualified classname of the user-manager.

■ display-name - A descriptive name for this UserManager instance.

<web-module id="myWebApp" path="myWebApp.war" />

A Web application module of the application. Each Web application can be installed
on any site and in any context on those sites (for instance
http://www.myserver.com/myapp/).

Attributes:

■ id - The name used to reference this web-application when used in web-sites
etc.

■ path - The path (relative to the enterprise archive or absolute) to the
web-application.

<write-access>

The write access policy.

Elements in the application-client.xml File

<application-client> Element Description of the application-client.xml file
The top level element of the application-client.xml file is the
<application-client> element.

<application-client>

The application-client element is the root element of an application client
deployment descriptor. The application client deployment descriptor describes the
EJB components and external resources referenced by the application client.
A-28 Oracle Application Server Containers for J2EE User’s Guide

Elements in the application-client.xml File
Elements Contained Within <application-client> of the application-client.xml file
Within the <application-client> element, the following elements, which are
listed alphabetically and not by DTD ordering, can be configured:

<callback-handler>

The callback-handler element names a class provided by the application. The
class must have a no args constructor and must implement the
javax.security.auth.callback.CallbackHandler interface. The class will
be instantiated by the application client container and used by the container to
collect authentication information from the user.

<description>The description</description>

A short description.

<display-name>The name</display-name>

The display-name element contains a short name that is intended to be displayed
by tools.

<ejb-link>EmployeeRecord</ejb-link>

The ejb-link element is used in the ejb-ref element to specify that an EJB
reference is linked to an enterprise bean in the encompassing J2EE Application
package. The value of the ejb-link element must be the ejb-name of an
enterprise bean in the same J2EE Application package.

<ejb-ref>

The ejb-ref element is used for the declaration of a reference to an enterprise
bean's home. The declaration consists of an optional description; the EJB reference
name used in the code of the referencing application client; the expected type of the
referenced enterprise bean; the expected home and remote interfaces of the
referenced enterprise bean; and an optional ejb-link information. The optional
ejb-link element is used to specify the referenced enterprise bean.

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

The ejb-ref-name element contains the name of an EJB reference. The EJB
reference is an entry in the enterprise bean's environment. It is recommended that
name is prefixed with "ejb/".

<ejb-ref-type>Entity/Session</ejb-ref-type>

The ejb-ref-type element contains the expected type of the referenced
enterprise bean. The ejb-ref-type element must be one of the following: Entity
Session
Additional Information A-29

Elements in the application-client.xml File
<env-entry>

The env-entry element contains the declaration of an Enterprise JavaBean's
environment entries. The declaration consists of an optional description, the name
of the environment entry, and an optional value.

<env-entry-name>minAmount</env-entry-name>

The env-entry-name element contains the name of an Enterprise JavaBean's
environment entry.

<env-entry-type>java.lang.String</env-entry-type>

The env-entry-type element contains the fully-qualified Java type of the
environment entry value that is expected by the enterprise bean's code. The
following are the legal values of env-entry-type: java.lang.Boolean,
java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and
java.lang.Float.

<env-entry-value>100.00</env-entry-value>

The env-entry-value element contains the value of an Enterprise JavaBean's
environment entry.

<home>com.aardvark.payroll.PayrollHome</home>

The home element contains the fully-qualified name of the Enterprise JavaBean's
home interface.

<icon>

The icon element contains a small-icon and large-icon element which
specify the URIs for a small and a large GIF or JPEG icon image used to represent
the application client in a GUI tool.

<large-icon>lib/images/employee-service-icon32x32.jpg
</large-icon>

The large-icon element contains the name of a file containing a large (32 x 32)
icon image. The file name is a relative path within the application client JAR file.
The image must be either in the JPEG or GIF format, and the file name must end
with the suffix ".jpg" or ".gif" respectively. The icon can be used by tools.

<remote>com.wombat.empl.EmployeeService</remote>

The remote element contains the fully-qualified name of the Enterprise JavaBean's
remote interface.
A-30 Oracle Application Server Containers for J2EE User’s Guide

Elements in the application-client.xml File
<res-auth>Application/Container</res-auth>

The res-auth element specifies whether the Enterprise JavaBean code signs on
programmatically to the resource manager, or whether the Container will sign on to
the resource manager on behalf of the bean. In the latter case, the Container uses
information that is supplied by the Deployer. The value of this element must be one
of the two following: Application or Container

<resource-env-ref>

The resource-env-ref element contains a declaration of an application’s
reference to an administered object associated with a resource in the application’s
environment. It consists of an optional descrioption, the resource environment
reference name, and an indication of the resource environment reference type
expected by the application code.

<resource-env-ref-name>

The resource-env-ref-name element specifies the name of a resource
environment entry name used in the application code.

<resource-env-ref-type>

The resource-env-ref-type element specifies the type of a resource
environment reference.

<resource-ref>

The resource-ref element contains a declaration of Enterprise JavaBean's
reference to an external resource. It consists of an optional description, the resource
factory reference name, the indication of the resource factory type expected by the
enterprise bean code, and the type of authentication (Bean or Container).

<res-ref-name>name</res-ref-name>

The res-ref-name element specifies the name of a resource factory reference.

<res-sharing-scope>Shareable</res-sharing-scope>

The res-sharing-scope element specifies whether connections obtained
through the given resource manager connection factory reference can be shared. The
value of this element, if specified, must be one of the following: Shareable or
Unshareable. The default value is Shareable.

<res-type>javax.sql.DataSource</res-type>

The res-type element specifies the type of the data source. The type is specified
by the Java interface (or class) expected to be implemented by the data source.
Additional Information A-31

Elements in the orion-application-client.xml File
<small-icon>lib/images/employee-service-icon16x16.jpg
</small-icon>

The small-icon element contains the name of a file containing a small (16 x 16)
icon image. The file name is a relative path within the application client JAR file.
The image must be either in the JPEG or GIF format, and the file name must end
with the suffix ".jpg" or ".gif" respectively. The icon can be used by tools.

Elements in the orion-application-client.xml File

<orion-application-client> Element Description
The top level element of the orion-application-client.xml file is the
<orion-application-client> element.

<orion-application-client>

An orion-application-client.xml file contains the deploy time information for a
J2EE application client. It complements the application client assembly information found in
application-client.xml.

Elements Contained Within <orion-application-client>
Within the <orion-application-client> element, the following elements,
which are listed alphabetically and not by DTD ordering, can be configured:

<context-attribute name="name" value="value" />

An attribute sent to the context. The only mandatory attribute in JNDI is the
'java.naming.factory.initial,' which is the classname of the context factory
implementation.

Attributes:

■ name - The name of the attribute.

■ value - The value of the attribute.

<ejb-ref-mapping location="ejb/Payroll" name="ejb/Payroll" />

The ejb-ref element is used for the declaration of a reference to another
enterprise bean's home. The ejb-ref-mapping element ties this to a
JNDI-location when deploying.

Attributes:

■ location - The JNDI location to look up the EJB home from.
A-32 Oracle Application Server Containers for J2EE User’s Guide

Elements in the orion-application-client.xml File
■ name - The ejb-ref name. Matches the name of an ejb-ref in
application-client.xml.

<env-entry-mapping
name="theName">deploymentValue</env-entry-mapping>

Overrides the value of an env-entry in the assembly descriptor. It is used to keep
the EAR (assembly) clean from deployment-specific values. The body is the value.

Attributes:

■ name - The name of the context parameter.

<lookup-context location="foreign/resource/location">

The specification of an optional javax.naming.Context implementation used
for retrieving the resource. This is useful when hooking up with third party
modules, such as a third party JMS server for instance. Either use the context
implementation supplied by the resource vendor or if none exists write an
implementation which in turn negotiates with the vendor software.

Attributes:

■ location - The name looked for in the foreign context when retrieving the
resource.

<resource-env-ref-mapping location="jdbc/TheDS" >

The resource-env-ref element is used for the declaration of a reference to an
external resource, such as a data source, JMS queue, mail session, or similar. The
resource-env-ref-mapping ties that element to a JNDI location during
deployment.

Attributes:

■ location - The JNDI location to bind the resource to.

<resource-ref-mapping location="jdbc/TheDS"
name="jdbc/TheDSVar">

The resource-ref element is used for the declaration of a reference to an external
resource such as a data source, JMS queue, mail session or similar. The
resource-ref-mapping ties this to a JNDI-location when deploying.

Attributes:

■ location - The JNDI location to look up the resource home from.

■ name - The resource-ref name. Matches the name of an resource-ref in
application-client.xml.
Additional Information A-33

Configuration and Deployment Examples
Configuration and Deployment Examples
The following example shows how to configure and deploy a J2EE application
within OC4J. See "Deploying Applications" on page 2-14 to learn how to modify the
XML configuration files for the FAQ demo.

In this example, the myapp application contains a Java client, an EJB assembled into
a JAR file, servlets and JSPs assembled into a WAR file, and an EAR file that
contains both the EJB JAR file and the Web application WAR file. The tree structure
showing the location of all the XML configuration files, the Java class files, and the
JSP files is shown in Figure A–1. Notice that you can separate all the configuration
files into logical directories within the application directory.

Figure A–1 Application EAR Structure

myapp.ear

META-INF/
application.xml

myapp-ejb.JAR

META-INF/
ejb-jar.xml

myapp-web.WAR

index.html

WEB-INF/
web.xml
classes/

myapp-client.JAR

TemplateClient.class
META-INF/

application-client.xml

TemplateServlet.class

orion-application-client.xml

Template.class
TemplateBean.class
TemplateHome.class

add.jsp
delete.jsp
edit.jsp
list.jsp
serv.jsp
A-34 Oracle Application Server Containers for J2EE User’s Guide

Configuration and Deployment Examples
application.xml Example
The myapp/META-INF/application.xml file lists the EJB JAR and Web
application WAR file that is contained in the EAR file using the <module>
elements.

<?xml version="1.0"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE
Application 1.3//EN"
"http://java.sun.com/j2ee/dtds/application_1_3.dtd">
<application>
 <display-name>myapp j2ee application</display-name>
 <description>
 A sample J2EE application that uses a Container Managed
 Entity Bean and JSPs for a client.
 </description>
 <module>
 <ejb>myapp-ejb.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>myapp-web.war</web-uri>
 <context-root>/myapp</context-root>
 </web>
 </module>
</application>

web.xml Example
The myapp/web/WEB-INF/web.xml file contains the class definitions for EJBs,
servlets, and JSPs that are executed within the Web site. The myapp Web module
specifies the following in its descriptor:

■ The default page to be displayed for the application’s root context
(http://<host>:<port>/j2ee/myapp)

■ Where to find the stubs for the EJB home and remote interfaces

■ The JNDI name for the EJB

■ The included servlets and where to find each servlet class

■ How servlets are mapped to a subcontext using the <servlet-mapping>
element (/template) off of the application root context

The Web server looks for the following:
Additional Information A-35

Configuration and Deployment Examples
■ All servlet classes under WEB-INF/classes/<package>.<class>.

■ All HTML and JSP from the root of the WAR file that is pointed to by
<web-app name="<warfile.war>"> in the web-site.xml file, which is
packaged in the deployed corresponding application EAR file.

■ OC4J compiles each JSP from .java into .class the first time it is used and
caches it for subsequent use.

<web-app>
 <display-name>myapp web application</display-name>
 <description>
 Web module that contains an HTML welcome page, and 4 JSP’s.
 </description>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>
 <ejb-ref>
 <ejb-ref-name>TemplateBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>TemplateHome</home>
 <remote>Template</remote>
 </ejb-ref>
 <servlet>
 <servlet-name>template</servlet-name>
 <servlet-class>TemplateServlet</servlet-class>
 <init-param>
 <param-name>length</param-name>
 <param-value>1</param-value>
 </init-param>
 </servlet>
</web-app>

ejb-jar.xml Example
The ejb-jar.xml file contains the definitions for a container-managed persistent
EJB. The myapp EJB deployment descriptor contains the following:

■ The entity bean uses container-managed persistence.

■ The primary key is stored in a table. This descriptor defines the type and fields
of the primary key.
A-36 Oracle Application Server Containers for J2EE User’s Guide

Configuration and Deployment Examples
■ The table name is TemplateBean, and columns are named according to fields
in the ejb-jar.xml descriptor and type mappings in
j2ee/home/config/database-schemas/oracle.xml.

■ The bean uses JDBC to access databases, as specified in data-source.xml, by
ejb-location or by default-data-source in
orion-application.xml.

<ejb-jar>
 <display-name>myapp</display-name>
 <description>
 An EJB app containing only one Container Managed Persistence
 Entity Bean
 </description>
 <enterprise-beans>
 <entity>
 <description>
 template bean populates a generic template table.
 </description>
 <display-name>TemplateBean</display-name>
 <ejb-name>TemplateBean</ejb-name>
 <home>TemplateHome</home>
 <remote>Template</remote>
 <ejb-class>TemplateBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-field><field-name>empNo</field-name></cmp-field>
 <cmp-field><field-name>empName</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <primkey-field>empNo</primkey-field>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>TemplateBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 <security-role>
Additional Information A-37

Configuration and Deployment Examples
 <description>Users</description>
 <role-name>users</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

server.xml Addition
When you deploy the application using the deployment wizard, this adds the
location of the application EAR file to the server.xml file. This causes the
application to be started every time that OC4J is started. If you do not want the
application to be started with OC4J, change the auto-start variable to FALSE.

<application name="myapp" path="../myapp/myapp.ear"
auto-start="true" />

where

■ The name variable is the name of the application.

■ The path indicates the directory and filename for the EAR file.

■ The auto-start variable indicates if this application should be automatically
started each time OC4J is started.

default-web-site.xml Addition
The deployment wizard defines the root context for the Web application and binds
the Web context and adds the following to the default-web-site.xml file:

<web-app application="myapp" name="myapp-web" root="/myapp" />

■ The name variable is the name of the WAR file, without the .WAR extension.

■ The root variable defines the root context for the application off of the Web
site. For example, if you defined your Web site as
"http://<host>:7777/j2ee", then to initiate the application, you would
point your browser at "http://<host>:7777/j2ee/myapp".

Note: If you set auto-start to FALSE, you can manually start
the application through Oracle Enterprise Manager or it is
automatically started when a client requests the application.
A-38 Oracle Application Server Containers for J2EE User’s Guide

Configuration and Deployment Examples
Client Example
The application client that accesses the myapp application has a descriptor, which
describes where to find the EJB stubs (home and remote interface) and its JNDI
name.

The client XML configuration is contained in two files:
application-client.xml and orion-application-client.xml.

The application-client.xml file contains a reference for an EJB, as follows:

<application-client>
<display-name>TemplateBean</display-name>
<ejb-ref>

<ejb-ref-name>TemplateBean</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>mTemplateHome</home>
<remote>Template</remote>

</ejb-ref>
</application-client>

The orion-application-client.xml file maps the EJB reference logical name
to the JNDI name for the EJB. For example, this file maps the <ejb-ref-name>
element, "TemplateBean," defined in the application-client.xml, to the
JNDI name, "myapp/myapp-ejb/TemplateBean", as follows:

<orion-application-client>
<ejb-ref-mapping name="TemplateBean"

location="myapp/myapp-ejb/TemplateBean" />
</orion-application-client>

JNDI Properties for the Client Set the JNDI properties for a regular client so it finds the
initial JNDI context factory in one of the following manners:

■ Set the JNDI properties within a Hashtable, then pass the properties to
javax.naming.InitialContext.

■ Set the JNDI properties within a jndi.properties file.

If you provide the JNDI properties in the jndi.properties file, package the
properties in myapp-client.jar to ensure that it is in the CLASSPATH.

jndi.properties:

java.naming.factory.initial=com.evermind.server.ApplicationClientInitialCont
extFactory
Additional Information A-39

Configuration and Deployment Examples
java.naming.provider.url=
opmn:ormi://<opmnhost>:<oc4j_instance>:7777/j2ee/myapp

java.naming.security.principal=admin
java.naming.security.credentials=welcome

Client Module—Standalone Java Client Invoking EJBs
Package your client module in a JAR file with the descriptor
META-INF/application-client.xml.

Manifest File for the Client Package the client in a runable JAR with a manifest that has
the main class to run and required CLASSPATH, as shown below. Check that the
relative paths in this file are correct. Verify that you point to the relative location of
the required OC4J class libraries.

manifest.mf

Manifest-Version: 1.0
Main-Class: myapp.myapp-client.TemplateClient
Name: "TemplateClient"
Created-By: 1.2 (Sun Microsystems Inc.)
Implementation-Vendor: "Oracle"
Class-Path: ../../../j2ee/home/oc4J.jar ../../../j2ee/home/jndi.jar
../../../j2ee/home/ejb.jar ../myapp-ejb.jar

Executing the Client To execute the client, perform the following:

% java -jar myapp-client.jar
TemplateClient.main(): start
Enter integer value for col_1: 1
Enter string value for col_2: BuyME
Enter float value for col_3: 99.9
Record added through bean
A-40 Oracle Application Server Containers for J2EE User’s Guide

OC4J Command-Line Options and System Properties
OC4J Command-Line Options and System Properties
You can set both system properties and command-line options on the OC4J
command-line before startup. If OC4J is running, you must restart the instance for
these to take effect. All system properties are prefaced with a -D. For example,
-Dhttp.session.debug. All command-line options are prefaced with a hyphen
(-). For example, -help.

■ Table A–2 details OC4J command-line options.

■ Table A–3 details general system properties.

■ Table A–4 details debugging properties.

As described in "Configuring Server Properties" on page 3-2 and shown in
Figure A–2, the -D system properties are entered on the Java Options line; the OC4J
command-line options are entered on the OC4J Options line.
Additional Information A-41

OC4J Command-Line Options and System Properties
Figure A–2 EM Console to Modify Server Properties for an OC4J Instance

Table A–2 OC4J Command-Line Options

Command-Line Options Description

-install Installs the server, activates the Admin account, and rewrites text files to
match the OS linefeed, and so on.

-quiet Supress standard output.

-config Specifies a location for the server.xml file.

-rewriteXML Rewrites bad XML files (after prompting) as accurately as possible. Warning: If
you have corrupt XML files, you may lose data when rewriting if they're badly
misformed. Use this command with care.

-out [file] Specifies a file to route standard output.

-err [file] Specifies a file to route error output.
A-42 Oracle Application Server Containers for J2EE User’s Guide

OC4J Command-Line Options and System Properties
-monitorResourceThreads Enables backup debugging of thread resources. Enable this only if you have
problems that relates to threads getting stuck in critical sections of code.

-verbosity Define an integer between 1 and 10 to set the verbosity level of the message
output. Example: -verbosity 10. See Example 3–5 for an example of this
option.

-version Prints the version and exits.

-? -help Prints the help message.

Table A–3 -D General System Properties for OC4J

-D Option Description

java.home Sets the JAVA_HOME environment variable

java.ext.dirs Sets the external directories to be searched for classes when
compiling.

java.io.tmpdir=
<new_tmp_dir>

Default is /tmp/var. To change the temporary directory for
the deployment wizard.

The deployment wizard uses 20 MB in swap space of the
temp directory for storing information during the
deployment process. At completion, the deployment wizard
cleans up the temp directory of its additional files. However,
if the wizard is interrupted, it may not have the time or
opportunity to clean up the temp directory. Thus, you must
clean up any additional deployment files from this directory
yourself. If you do not, this directory may fill up, which will
disable any further deployment. If you receive an Out of
Memory error, check for space available in the temp
directory.

KeepIIOPCode=
true/false

Default is false. If true, keeps the generated IIOP stub/tie code.

oracle.arraylist.deepCopy=
true/false

If true, then while cloning an array list, a deep copy is performed. If
false, a shallow copy is performed for the array list. Default: true

Table A–2 OC4J Command-Line Options (Cont.)

Command-Line Options Description
Additional Information A-43

OC4J Command-Line Options and System Properties
dedicated.rmicontext=
true/false

Default is false. This replaces the deprecated
dedicated.connection setting. When two or more
clients in the same process retrieve an InitialContext,
OC4J returns a cached context. Thus, each client receives the
same InitialContext, which is assigned to the process.
Server lookup, which results in server load balancing,
happens only if the client retrieves its own
InitialContext. If you set
dedicated.rmicontext=true, then each client receives
its own InitialContext instead of a shared context.
When each client has its own InitialContext, then the
clients can be load balanced.

This parameter is for the client. You can also set this in the
JNDI properties.

associateUsingThirdTable=
true/false

For container-managed relationships in entity beans, you
can designate if a third database table is used to manage the
relationship. Set to false if you do not want a third
association table. Default is true. See the "Entity Relationship
Mapping" chapter in the Oracle Application Server Containers
for J2EE Enterprise JavaBeans Developer’s Guide for more
information.

Table A–3 -D General System Properties for OC4J (Cont.)

-D Option Description
A-44 Oracle Application Server Containers for J2EE User’s Guide

OC4J Command-Line Options and System Properties
DefineColumnType=
true/false

DefineColumnType=true/false. The default is false. Set
this to true if you are using an Oracle JDBC driver that is
prior to 9.2. For these drivers, setting this variable to true
avoids a round-trip when executing a select over the Oracle
JDBC driver. This parameter should be set on the OC4J
server.

When you change the value of this option and restart OC4J,
it is only valid for applications deployed after the change.
Any applications deployed before the change are not
affected.

When true, the DefineColumnType extension saves a
round trip to the database that would otherwise be
necessary to describe the table. When the Oracle JDBC
driver performs a query, it first uses a round trip to a
database to determine the types that it should use for the
columns of the result set. Then, when JDBC receives data
from the query, it converts the data, as necessary, as it
populates the result set. When you specify column types for
a query with the DefineColumnType extension set to true,
you avoid the first round trip to the Oracle database. The
server, which is optimized to do so, performs any necessary
type conversions.

Table A–3 -D General System Properties for OC4J (Cont.)

-D Option Description
Additional Information A-45

OC4J Command-Line Options and System Properties
oracle.mdb.fastUndeploy=<int> The oracle.mdb.fastUndeploy system property enables
you to shutdown OC4J cleanly when you are running MDBs
in a Windows environment or when the backend database is
running on a Windows environment. Normally, when you
use an MDB, it is blocked in a receive state waiting for
incoming messages. However, if you shutdown OC4J while
the MDB is in a wait state in a Windows environment, then
the OC4J instance cannot be stopped and the applications
are not undeployed since the MDB is blocked. However, you
can modify the behavior of the MDB in this environment by
setting the oracle.mdb.fastUndeploy system property.
If you set this property to an integer, then when the MDB is
not processing incoming messages and in a wait state, the
OC4J container goes out to the database (requiring a
database round-trip) and polls to see if the session is shut
down. The integer denotes the number of seconds the
system waits to poll the database. This can be expensive for
performance. If you set this property to 60 (seconds), then
every 60 seconds, OC4J is checking the database. If you do
not set this property and you try to shutdown OC4J using
CTRL-C, the OC4J process will hang for at least 2.5 hours.

oracle.dms.sensors=[none, normal,
heavy, all].

You can set the value for Oracle Application Server built-in
performance metrics to the following: none (off), normal
(medium amount of metrics), heavy (high number of
metrics), or all (every possible metric). The default is
normal.This parameter should be set on the OC4J server. The
previous method for turning on these performance metrics,
oracle.dms.gate=true/false, is replaced by the
oracle.dms.sensors variable. However, if you still use
oracle.dms.gate, then setting this variable to false is
equivalent to setting oracle.dms.sensors=none.

Table A–3 -D General System Properties for OC4J (Cont.)

-D Option Description
A-46 Oracle Application Server Containers for J2EE User’s Guide

OC4J Command-Line Options and System Properties
Table A–4 -D System Properties for Debugging

-D Debug System Properties Description

ajp.debug Default: false. If true, displays the AJP request (headers, mime types, URI
etc) and response (status, error messages, and so on).

ajp.io.debug Default: false. If true, displays the AJP post data, if any, and response data
sent to the client.

KeepWrapperCode Default: false. If true, keeps and debugs the generated wrapper code.

DBEntityHomeDebug Default: false. If true, displays entity bean home interface debug messages.

DBEntityObjectDebug Default: false. If true, displays entity bean object debug messages.

DBEntityWrapperDebug Default: false. If true, displays entity bean pool debug messages.

iiop.runtime.debug Default: false. If true, outputs IIOP debug messages.

NativeJDBCDebug Default: false. Native JDBC debug messages.

http.cluster.debug Default: false. HTTP clustering debug messages.

http.request.debug Default: false. If true, provides information about each HTTP request to
standard output.

http.redirect.debug Default: false. If true, provides information about each HTTP redirects to
standard output.

http.method.trace.allow Default: false. If true, turns on the trace HTTP method.

http.session.debug Default: false. If true, provides information about HTTP session events

http.error.debug Default: false. If true, prints all HTTP errors

http.virtualdirectory.debug Default:false. If true, print the enforced virtual directory mappings upon
startup.

debug.http.contentLength Default: false. If true, print explicit content-length calls as well as extra
sendError information.

ejb.cluster.debug Default: false. EJB clustering debug messages.

cluster.debug Default: false. Clustering debug messages.

jms.debug Default: false. JMS debug messages.

multicast.debug Default: false. Multicast debug messages.

rmi.debug Default: false. RMI debug messages.

transaction.debug Default: false. If true, prints debug messages for JTA events.

rmi.verbose Default: false. RMI verbose information.
Additional Information A-47

OC4J Command-Line Options and System Properties
For more information about debugging properties, see "OC4J Debugging" on
page 3-52.

datasource.verbose Default: false. If true, provides verbose information on creation of data
source and connections using data sources and connections released to the
pool, and so on,

jdbc.debug Default: false. If true, provides very verbose information when JDBC calls
are made

ws.debug Default:false. If true, turns on OracleAS Web Services debugging

javax.net.debug=[ssl|all] If ssl, turns on SSL debugging. If all, turns on SSL debugging with verbose
messages.

Table A–4 -D System Properties for Debugging (Cont.)

-D Debug System Properties Description
A-48 Oracle Application Server Containers for J2EE User’s Guide

Third Party Lice
B

Third Party Licenses

This appendix includes a description of the Third Party Licenses for all the third
party products included with Oracle Application Server.
nses B-1

Third-Party Licenses
Third-Party Licenses
Topics include:

■ Apache HTTP Server

■ Apache JServ

Apache HTTP Server
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
B-2 Oracle Application Server Containers for J2EE User’s Guide

Third-Party Licenses
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */

Apache JServ
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.
Third Party Licenses B-3

Third-Party Licenses
Apache JServ Public License
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

■ Redistribution of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

■ Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

■ All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

■ The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

■ Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

■ Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA
APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
B-4 Oracle Application Server Containers for J2EE User’s Guide

Index

Symbols
<access-log> element, 3-50
<alt-dd> element, A-19
<application> element, A-10, A-19
<application-client> element, A-28
<application-server> element, A-9
<argument> element, A-21
<arguments> element, A-21
<callback-handler> element, A-29
<client-module> element, A-22
<cluster> element, A-11
<commit-class> element, A-22
<commit-coordinator> element, A-22
<compiler> element, A-11
<connector> element, A-19
<connectors> element, A-22
<context-attribute> element, A-32
<context-root> element, A-19
<data-sources> element, A-22
<description> element, A-22, A-29
<display-name> element, A-19, A-29
<ejb> element, 7-18, A-19
<ejb-link> element, A-29
<ejb-module> element, A-23
<ejb-ref> element, A-29
<ejb-ref-mapping> element, A-32
<ejb-ref-name> element, A-29
<ejb-ref-type> element, A-29
<env-entry> element, A-30
<env-entry-mapping> element, A-33
<env-entry-name> element, A-30
<env-entry-type> element, A-30
<env-entry-value> element, A-30

<execution-order> element, A-12
<file> element, 3-50, A-15, A-23
<global-application> element, A-12
<global-thread-pool> element, 3-42, A-12
<global-web-app-config> element, A-13
<group> element, A-23
<home> element, A-30
<icon> element, A-20, A-30
<init-library> element, 3-37, 3-39, 3-40, A-13
<init-param> element, A-13
<java>, A-20
<java> element, 7-18
<javacache-config> element, A-14
<java-compiler> element, A-11, A-14
<jazn> element, A-23, A-26
<jazn-web-app> element, A-24
<jms-config> element, A-15
<large-icon> element, A-20, A-30
<library> element, 3-30, A-24
<log> element, 3-47, 3-50, 3-51, A-15, A-24
<lookup-context> element, A-33
<mail> element, A-16, A-25
<mail-session> element, A-25
<max-http-connections> element, A-17
<module> element, 7-18, A-20
<namespace-access> element, A-25
<namespace-resource> element, A-26
<odl> element, 3-47, A-16, A-24
<odl-access-log> element, 3-47
<orion-application> element, A-21
<orion-application-client> element, A-32
<password-manager> element, A-26
<persistence> element, A-26
<principals> element, A-26
Index-1

<property> element, A-26
<read-access> element, A-27
<remote> element, A-30
<res-auth> element, A-31
<resource-env-ref> element, A-31
<resource-env-ref-mapping> element, A-33
<resource-env-ref-name> element, A-31
<resource-env-ref-type> element, A-31
<resource-provider> element, A-27
<resource-ref> element, A-31
<resource-ref-mapping> element, A-33
<res-ref-name> element, A-31
<res-sharing-scope> element, A-31
<res-type> element, A-31
<rmi-config> element, A-17
<role-name> element, A-20
<security-role> element, A-20
<security-role-mapping> element, A-27
<sep-config> element, A-17
<servlet> element, 3-7
<sfsb-config> element, A-17
<shutdown-class> element, 3-40, A-18
<shutdown-classes> element, 3-40, A-18
<small-icon> element, A-20, A-32
<startup-class> element, 3-37, A-18
<startup-classes> element, 3-37, A-18
<transaction-config> element, A-18
<user> element, A-27
<user-manager> element, A-28
<web> element, 7-18, A-20
<web-module> element, A-28
<web-site> element, A-18
<web-uri> element, A-21
<write-access> element, A-28

A
administration, 2-4
admin.jar tool

undeployment, 2-24
AJP

overview, 1-8
ajp.debug property, A-47
ajp.io.debug property, A-47
ANT, 2-14

Apache
Oracle HTTP Server, 1-5

Apache JServ protocol, see AJP
application

deployment, 2-14
example, 2-7
undeployment, 2-24

Application Server Console
OC4J Home Page, 2-2

application-client.xml file
element description, A-28
example, A-39

application.xml
designating data-sources.xml, 4-9

application.xml file, 2-12, 7-17
element description, A-19
example, 7-18, A-35
overview, 7-18

archiving
directions, 7-17
EAR file, 7-19
EJBs, 7-17

associateUsingThirdTable property, A-44
authentication, 3-15

B
bean

creating, 7-4
implementation, 7-8
removal, 7-10

C
CLASSPATH, 1-9
cluster.debug property, A-47
clustering, 8-1 to 8-18

configuration, 8-11
configure replication, 8-12
configuring islands, 8-11
configuring OC4J instance, 8-2
configuring OC4J processes, 8-11
EJB applications, 8-5, 8-14
OC4J instance, 8-3
replicating application state, 8-4
Index-2

tuning parameters, 8-7, 8-17
Web applications, 8-5, 8-12

command-line options, 2-24, 3-5, A-41
performance settings, 3-41

compiler
specifying, A-14

configuration
application.xml file, 2-12
default, 1-5, 2-5
server.xml file, 2-16
Web context, 3-32

create method, 7-10
EJBHome interface, 7-4, 7-5

CreateException, 7-5, 7-6

D
data source

default, 2-10, 4-2
definition, 4-2
emulated, 2-10, 4-2
introduction, 4-1
location of XML file, 4-9
retrieving connection, 4-10

database
retrieving connection, 4-10

DataSource interface, 4-10
data-sources.xml

designating location, 4-9
data-sources.xml file

pre-installed definitions, 2-10, 4-2
datasource.verbose property, A-48
DBEntityHomeDebug property, A-47
DBEntityObjectDebug property, A-47
DBEntityWrapperDebug property, A-47
DCM

overview, 1-7
dcmctl

DCM utility, 1-7
debugging, 3-52 to 3-56
debug.http.contentLength property, A-47
dedicated.connection setting, 3-41, A-44
dedicated.rmicontext property, A-44
dedicated.rmicontext setting, 3-41
default-web-site.xml file, 3-31, A-38

DefineColumnType property, 3-41, A-45
deployment

applications, 2-14
error recovery, 2-23
example, 2-12

deployment descriptor, 7-15
destroy method, 5-12
development

recommendations, 2-6
Distributed Configuration Management, see DCM
DTD file, 7-15

E
EAR file, 7-1

creation, 2-15, 7-19
structure, 2-15
used in deployment, 2-15

EJB
archive, 7-17
creating, 7-2, 7-4, 7-8
deployment, 2-14
deployment descriptor, 7-15
development suggestions, 7-2
home interface, 7-5
interact with JSPs, 6-2
local interface, 7-7
remote interface, 7-6
replication, 8-16

ejb.cluster.debug property, A-47
ejbCreate method, 7-4, 7-5
EJBException, 7-5, 7-6, 7-7
EJBHome interface, 7-4, 7-5
ejb-jar.xml file, 7-15

example, A-36
EJBLocalHome interface, 7-4, 7-6
EJBLocalObject interface, 7-4, 7-7
EJBObject interface, 7-4, 7-7
enable-passivation attribute, A-17
Enterprise Archive file, see EAR file
Enterprise JavaBeans, see EJB
EntityBean interface, 7-4
environment

modifications, 2-13
environment variables, 3-6
Index-3

F
front-end listener

Oracle HTTP Server, 1-5

G
getConnection method, 4-10

H
hashtable, A-39
home interface

creating, 7-4
lookup, 7-10

HTTP method
trace, 3-53, A-47

http.cluster.debug property, A-47
http.error.debug property, A-47
http.method.trace.allow property, 3-53, A-47
http.redirect.debug property, A-47
http.request.debug property, 3-53, A-47
http.session.debug property, A-47
http.virtualdirectory.debug property, A-47

I
iiop.runtime.debug property, A-47
InitialContext, 3-41, A-44
installation

requirements, 1-9

J
J2EE

definition, 1-2
JAR

archiving command, 7-17
jar command, 7-17
JAR file

EJB, 7-17
Java

command-line options, 3-5
Java Platform Debugging Architecture, see JPDA
JAVA_HOME variable, 2-13
JavaBeans

JSP code to call a JavaBean, 6-8
java.ext.dirs property, A-15, A-43
java.home property, A-43
java.io.tmpdir property, A-43
javax.net.debug property, A-48
JDBC

retrieving connection, 4-10
jdbc.debug property, A-48
JDK, 1-2
JDK 1.4 considerations, 1-3
Jikes, A-11
JMS, A-5
jms.debug property, A-47
JNDI

clustering, 8-17
lookup, 7-10
lookup of data source, 4-10
namespace replication, 8-17

JPDA, 3-56
JSP pages

code to call a JavaBean, 6-8
code to use a tag library, 6-11
deployment, 2-14
interact with EJBs, 6-2
overview, 6-2
overview of Oracle value-added features, 6-5
placing tag library files into OC4J directory

structure, 6-12
running in OC4J, 6-6
simple example code, 6-2
steps in using a tag library, 6-11

JSP technology
overview, 6-2

JVM, 1-2

K
KeepIIOPCode property, A-43
KeepWrapperCode property, A-47

L
library

sharing, 3-30
local home interface
Index-4

example, 7-6
local interface

creating, 7-7
example, 7-7

logging, 3-45 to 3-52
log files, 3-46, 3-50
ODL, 3-46, A-16, A-24
rollover logging, 3-46, A-16, A-24
standard error, 3-51
standard out, 3-51
text, 3-49
XML message format, 3-48

M
mod_oc4j module, 1-8
multicast.debug property, A-47

N
narrowing, 7-10
NativeJDBCDebug property, A-47

O
OC4J

application example, 2-7
clustering role, 8-3
command-line options, 2-24, 3-5, A-41
installation requirements, 1-9
restarting, 2-4
setup, 1-5
shutdown class, 3-36
startup, 2-4
startup class, 3-36
stopping, 2-4
system properties, A-41
testing, 2-5
Windows shutdown, A-46

OC4J command-line options, A-41
Oc4jMount directive, 3-32
OC4JShutdown interface, 3-39
OC4JStartup interface, 3-37
Oracle Diagnostic Logging, see logging

ODL

Oracle Enterprise Manager
Application Server Console OC4J Home

Page, 2-2
Oracle HTTP Server

front-end listener, 1-5
Oracle HTTP Server (OHS), 3-32
oracle.dms.gate setting, 3-41, A-46
oracle.dms.sensors setting, 3-41, A-46
oracle.mdb.fastUndeploy property, A-46
orion-application-client.xml file

element description, A-32
example, A-39

orion-application.xml file
element description, A-21

Out of Memory error, 2-23, A-43

P
parent application, 2-16

setting, 2-16
XML definition, 2-16

performance
oracle.dms.sensors setting, 3-41, A-46

performance setting
command-line options, 3-41
dedicated.connection, 3-41, A-44
dedicated.rmicontext, 3-41, A-44
DefineColumnType, 3-41, A-45
oracle.dms.gate, 3-41, A-46
statement caching, 3-44
task manager granularity, 3-45, A-10
thread pools, 3-42, A-12

performance settings, 3-40
PortableRemoteObject

narrow method, 7-10
postDeploy method, 3-37
postUndeploy method, 3-39
preDeploy method, 3-37
preUndeploy method, 3-39

R
RAR, 3-34
remote home interface

example, 7-5
Index-5

remote interface
business methods, 7-10
creating, 7-4, 7-6
example, 7-7

RemoteException, 7-7
remove method, 7-10
requirements

software, 1-9
Resource Adapter Achieve, see RAR
restart OC4J, 2-4
RMI, A-5
rmi.debug property, A-47
rmi.verbose property, A-47

S
server.xml file, 2-16

element description, A-8
example, A-38

servlets
deployment, 2-14

session bean
local home interface, 7-6
remote home interface, 7-5

SessionBean interface
EJB, 7-4

setStmtCacheSize method, 3-44
sharing libraries, 3-30
shutdown class, 3-39

postUndeploy method, 3-39
preUndeploy method, 3-39

standard error
redirection, 3-51

standard out
redirection, 3-51

startup class, 3-37 to 3-39
example, 3-38
postDeploy method, 3-37
preDeploy method, 3-37

startup OC4J, 2-4
stateful session bean

clustering, 8-16
statement caching

DataSource
statement caching, 3-44

stmt-cache-size attribute, 3-44
stop OC4J, 2-4
system properties, A-41

T
tag libraries

JSP code to use, 6-11
placing support files in OC4J directory

structure, 6-12
steps to use in a JSP page, 6-11

task manager granularity, 3-45, A-10
taskmanager-granularity attribute, 3-45, A-10
thread

pooling, 3-42
transaction.debug property, A-47

U
undeployment, 2-24

W
Web

application deployment, 2-14
mount points, 3-32

Web context
customization, 3-32

web.xml file
example, A-35

Windows
shutdown, A-46

ws.debug property, 3-54, A-48
Index-6

	Send Us Your Comments
	Oracle Application Server Containers for J2EE User’s Guide, 10g (9.0.4)
	1 OC4J Overview
	Introduction to OC4J
	JDK 1.4 Considerations: Cannot Invoke Classes Not in Packages
	Navigating the OC4J Documentation Set
	OC4J Installation
	Using OC4J in an Enterprise or Standalone Environment
	Managing Multiple OC4J Instances in an Enterprise Environment
	Managing a Single OC4J Instance
	OC4J Documentation Set Assumptions

	OC4J Communication
	HTTP Communication
	Requirements

	2 Configuration and Deployment
	OC4J Home Page Overview
	Applications Page
	Administration Page

	Starting and Stopping OC4J
	Testing the Default Configuration

	Creating the Development Directory
	Configuring the FAQ Application Demo
	Environment Setup for FAQ Demo
	Oracle Database

	OC4J System Configuration for FAQ Demo
	Data Source Configuration
	Security Configuration

	Deploy the FAQ Demo
	Deployment Details Explained

	Deploying Applications
	Basic Deployment
	Select Application
	Provide The URL Mappings For All Web Modules
	IIOP Stub Generation
	Provide Any Resource Reference Mappings
	Specify Any User Manager
	Publish OracleAS Web Services
	Deployment Review
	Post-Deployment Application Modifications

	Recovering From Deployment Errors
	Undeploying Web Applications

	3 Advanced Configuration, Development, and Deployment
	Configuring OC4J Using Oracle Enterprise Manager
	OC4J Instance Level Configuration
	Configuring Server Properties
	Configure a Web Site
	Configure JSP Container Parameters
	Configure Replication Parameters
	Advanced Configuration Through XML Files
	Configure Data Sources
	Configure Security
	Configure JMS
	Configure Global Web Application Parameters
	Configure RMI

	Application Level Configuration
	Configuring Application General Parameters
	Configuring Local J2EE Services
	Modifying XML Files Included in the Deployed Application EAR File

	Overview of OC4J and J2EE XML Files
	XML Configuration File Overview
	XML File Interrelationships

	What Happens When You Deploy?
	OC4J Tasks During Deployment
	Configuration Verification of J2EE Applications

	Sharing Libraries
	Understanding and Configuring OC4J Listeners
	HTTP Requests
	RMI Requests

	Configuring Oracle HTTP Server With Another Web Context
	Building and Deploying Within a Directory
	Developing Startup and Shutdown Classes
	OC4J Startup Classes
	OC4J Shutdown Classes

	Setting Performance Options
	Performance Command-Line Options
	Thread Pool Settings
	Statement Caching
	Task Manager Granularity

	Enabling OC4J Logging
	Viewing OC4J System and Application Log Messages
	Oracle Diagnostic Logging (ODL) Log Files
	Text Log Files

	Redirecting Standard Out and Standard Error

	OC4J Debugging
	Servlet Debugging Example
	Remote Debugging Using Oracle JDeveloper

	4 Data Sources Primer
	Introduction
	Definition of Data Sources
	Defining Data Sources
	Configuring A New Data Source
	Defining the Location of the DataSource XML Configuration File

	Retrieving a Connection From a Data Source

	5 Servlet Primer
	A Brief Overview of Servlet Technology
	What Is a Servlet?
	Servlet Portability
	The Servlet Container
	Request and Response Objects
	Learning More About Servlets

	Running a Simple Servlet
	Create the Hello World Servlet
	Deploy the Hello World Servlet
	Run the Hello World Servlet
	Automatic Compilation

	Running a Data-Access Servlet
	Create the HTML Form
	Create the GetEmpInfo Servlet
	Deploy GetEmpInfo and the HTML Page
	Run GetEmpInfo

	Creating and Deploying the Servlet Primer Samples WAR File
	WAR File Structure
	Deploy the WAR File

	6 JSP Primer
	A Brief Overview of JavaServer Pages Technology
	What Is JavaServer Pages Technology?
	JSP Translation and Runtime Flow
	Key JSP Advantages
	Overview of Oracle Value-Added Features for JSP Pages

	Running a Simple JSP Page
	Create and Deploy welcomeuser.jsp
	Run welcomeuser.jsp

	Running a JSP Page That Invokes a JavaBean
	Create the JSP: usebean.jsp
	Create the JavaBean: NameBean.java
	Deploy usebean.jsp and Namebean.java
	Run usebean.jsp

	Running a JSP Page That Uses Custom Tags
	Create the JSP Page: sqltagquery.jsp
	Files for Tag Library Support
	Deploy sqltagquery.jsp
	Run sqltagquery.jsp

	Creating and Deploying the JSP Primer Samples EAR File
	EAR and WAR File Structure
	Deploy the EAR File

	7 EJB Primer
	Develop EJBs
	Create the Development Directory
	Implement the EJB
	Creating the Home Interfaces
	Creating the Component Interfaces
	Implementing the Bean

	Access the EJB
	Create the Deployment Descriptor
	Archive the EJB Application

	Prepare the EJB Application for Assembly
	Modify the Application.xml File
	Create the EAR File

	Deploy the Enterprise Application to OC4J

	8 OC4J Clustering
	The OC4J Instance in a Cluster
	Figure 8–1� OC4J Processes in a Cluster
	The OC4J Process in a Cluster
	Replicating Application State
	1. If another OC4J process is active within the same application server instance, OHS forwards th...
	2. Otherwise, OHS forwards the state request to an OC4J process in another application server ins...

	Islands
	Figure 8–2� Island Description

	J2EE Applications Involved in a Cluster

	Instance-Specific Parameters
	OC4J Clustering Examples
	Software Failure
	Figure 8–3� Software Failure Demonstration

	Hardware Failure
	Figure 8–4� Hardware Failure Demonstration

	State Replication

	OC4J Cluster Configuration
	Note
	OC4J Instance Configuration
	Configuring Islands and Processes
	1. Select the Administration page off the OC4J Home Page.
	2. Select Server Properties in the Instance Properties column.
	3. Scroll down to the Multiple VM Configuration section. This section defines the islands and the...
	4. Create any islands for this OC4J instance within the cluster by clicking Add Another Row. You ...
	Figure 8–5� Island and Process Configuration

	Configuring Web Application State Replication
	Figure 8–6� Web State Replication Configuration
	1. Select the Administration page off of the OC4J Home Page.
	2. Select Replication Properties in the Instance Properties column.
	3. Scroll down to the Web Applications section. Figure�8–6 shows this section.
	4. Select the Replicate session state checkbox.
	5. Optionally, you can provide the multicast host IP address and port number. If you do not provi...
	Note

	6. Add the <distributable/> tag to all web.xml files in all Web applications. If the Web applicat...

	Configuring EJB Application State Replication
	Figure 8–7� EJB State Replication Configuration
	1. Select the Administration page off of the OC4J Home Page.
	2. Select Replication Properties in the Instance Properties column.
	3. Scroll down to the EJB Applications section. Figure�8–7 shows this section.
	4. Select the Replicate session state checkbox.
	5. Provide the username and password, which is used to authenticate itself to other hosts in the ...
	6. Provide the host name where the OC4J Instance resides in the RMI Server Host field.
	7. Optionally, you can provide the multicast host IP address and port number. If you do not provi...
	Note

	8. Configure the type of EJB replication within the orion-ejb-jar.xml file within the JAR file. S...

	Stateful Session Bean Replication Configuration in the Application JAR
	JVM Termination Replication
	End of Call Replication

	EJB Clustering Includes JNDI Namespace Replication

	Configuring OC4J Instance-Specific Parameters
	Figure 8–8� Non-Replicated Configuration

	A Additional Information
	Description of XML File Contents
	OC4J Configuration XML Files
	server.xml
	default-web-site.xml
	jazn-data.xml
	principals.xml
	data-sources.xml
	jms.xml
	rmi.xml

	J2EE Deployment XML Files
	The J2EE application.xml File
	The OC4J-Specific orion-application.xml File
	The J2EE ejb-jar.xml File
	The OC4J-Specific orion-ejb-jar.xml File
	The J2EE web.xml File
	The OC4J-Specific orion-web.xml File
	The J2EE application-client.xml File
	The OC4J-Specific orion-application-client.xml File

	Elements in the server.xml File
	Configure OC4J
	Reference Other Configuration Files
	<application-server> Element Description of the server.xml file
	Elements Contained Within <application-server> of the server.xml file

	Elements in the application.xml File
	<application> Element Description of the application.xml file
	Elements Contained Within <application> of the application.xml file

	Elements in the orion-application.xml File
	<orion-application> Element Description of the orion-application.xml file
	Elements Contained Within <orion-application> of the orion-application.xml file

	Elements in the application-client.xml File
	<application-client> Element Description of the application-client.xml file
	<application-client>
	Elements Contained Within <application-client> of the application-client.xml file

	Elements in the orion-application-client.xml File
	<orion-application-client> Element Description
	Elements Contained Within <orion-application-client>

	Configuration and Deployment Examples
	application.xml Example
	web.xml Example
	ejb-jar.xml Example
	server.xml Addition
	default-web-site.xml Addition
	Client Example
	Client Module—Standalone Java Client Invoking EJBs

	OC4J Command-Line Options and System Properties

	B Third Party Licenses
	Third-Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

